SelectionDAG.cpp revision 4829b1c6ab810ee274a104985915988b4f92aa7a
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/Support/MathExtras.h"
22#include "llvm/Target/MRegisterInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/ADT/SetVector.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringExtras.h"
30#include <algorithm>
31#include <cmath>
32using namespace llvm;
33
34/// makeVTList - Return an instance of the SDVTList struct initialized with the
35/// specified members.
36static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
37  SDVTList Res = {VTs, NumVTs};
38  return Res;
39}
40
41//===----------------------------------------------------------------------===//
42//                              ConstantFPSDNode Class
43//===----------------------------------------------------------------------===//
44
45/// isExactlyValue - We don't rely on operator== working on double values, as
46/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
47/// As such, this method can be used to do an exact bit-for-bit comparison of
48/// two floating point values.
49bool ConstantFPSDNode::isExactlyValue(double V) const {
50  return DoubleToBits(V) == DoubleToBits(Value);
51}
52
53//===----------------------------------------------------------------------===//
54//                              ISD Namespace
55//===----------------------------------------------------------------------===//
56
57/// isBuildVectorAllOnes - Return true if the specified node is a
58/// BUILD_VECTOR where all of the elements are ~0 or undef.
59bool ISD::isBuildVectorAllOnes(const SDNode *N) {
60  // Look through a bit convert.
61  if (N->getOpcode() == ISD::BIT_CONVERT)
62    N = N->getOperand(0).Val;
63
64  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
65
66  unsigned i = 0, e = N->getNumOperands();
67
68  // Skip over all of the undef values.
69  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
70    ++i;
71
72  // Do not accept an all-undef vector.
73  if (i == e) return false;
74
75  // Do not accept build_vectors that aren't all constants or which have non-~0
76  // elements.
77  SDOperand NotZero = N->getOperand(i);
78  if (isa<ConstantSDNode>(NotZero)) {
79    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
80      return false;
81  } else if (isa<ConstantFPSDNode>(NotZero)) {
82    MVT::ValueType VT = NotZero.getValueType();
83    if (VT== MVT::f64) {
84      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
85          (uint64_t)-1)
86        return false;
87    } else {
88      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
89          (uint32_t)-1)
90        return false;
91    }
92  } else
93    return false;
94
95  // Okay, we have at least one ~0 value, check to see if the rest match or are
96  // undefs.
97  for (++i; i != e; ++i)
98    if (N->getOperand(i) != NotZero &&
99        N->getOperand(i).getOpcode() != ISD::UNDEF)
100      return false;
101  return true;
102}
103
104
105/// isBuildVectorAllZeros - Return true if the specified node is a
106/// BUILD_VECTOR where all of the elements are 0 or undef.
107bool ISD::isBuildVectorAllZeros(const SDNode *N) {
108  // Look through a bit convert.
109  if (N->getOpcode() == ISD::BIT_CONVERT)
110    N = N->getOperand(0).Val;
111
112  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
113
114  unsigned i = 0, e = N->getNumOperands();
115
116  // Skip over all of the undef values.
117  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
118    ++i;
119
120  // Do not accept an all-undef vector.
121  if (i == e) return false;
122
123  // Do not accept build_vectors that aren't all constants or which have non-~0
124  // elements.
125  SDOperand Zero = N->getOperand(i);
126  if (isa<ConstantSDNode>(Zero)) {
127    if (!cast<ConstantSDNode>(Zero)->isNullValue())
128      return false;
129  } else if (isa<ConstantFPSDNode>(Zero)) {
130    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
131      return false;
132  } else
133    return false;
134
135  // Okay, we have at least one ~0 value, check to see if the rest match or are
136  // undefs.
137  for (++i; i != e; ++i)
138    if (N->getOperand(i) != Zero &&
139        N->getOperand(i).getOpcode() != ISD::UNDEF)
140      return false;
141  return true;
142}
143
144/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
145/// when given the operation for (X op Y).
146ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
147  // To perform this operation, we just need to swap the L and G bits of the
148  // operation.
149  unsigned OldL = (Operation >> 2) & 1;
150  unsigned OldG = (Operation >> 1) & 1;
151  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
152                       (OldL << 1) |       // New G bit
153                       (OldG << 2));        // New L bit.
154}
155
156/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
157/// 'op' is a valid SetCC operation.
158ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
159  unsigned Operation = Op;
160  if (isInteger)
161    Operation ^= 7;   // Flip L, G, E bits, but not U.
162  else
163    Operation ^= 15;  // Flip all of the condition bits.
164  if (Operation > ISD::SETTRUE2)
165    Operation &= ~8;     // Don't let N and U bits get set.
166  return ISD::CondCode(Operation);
167}
168
169
170/// isSignedOp - For an integer comparison, return 1 if the comparison is a
171/// signed operation and 2 if the result is an unsigned comparison.  Return zero
172/// if the operation does not depend on the sign of the input (setne and seteq).
173static int isSignedOp(ISD::CondCode Opcode) {
174  switch (Opcode) {
175  default: assert(0 && "Illegal integer setcc operation!");
176  case ISD::SETEQ:
177  case ISD::SETNE: return 0;
178  case ISD::SETLT:
179  case ISD::SETLE:
180  case ISD::SETGT:
181  case ISD::SETGE: return 1;
182  case ISD::SETULT:
183  case ISD::SETULE:
184  case ISD::SETUGT:
185  case ISD::SETUGE: return 2;
186  }
187}
188
189/// getSetCCOrOperation - Return the result of a logical OR between different
190/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
191/// returns SETCC_INVALID if it is not possible to represent the resultant
192/// comparison.
193ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
194                                       bool isInteger) {
195  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
196    // Cannot fold a signed integer setcc with an unsigned integer setcc.
197    return ISD::SETCC_INVALID;
198
199  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
200
201  // If the N and U bits get set then the resultant comparison DOES suddenly
202  // care about orderedness, and is true when ordered.
203  if (Op > ISD::SETTRUE2)
204    Op &= ~16;     // Clear the U bit if the N bit is set.
205
206  // Canonicalize illegal integer setcc's.
207  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
208    Op = ISD::SETNE;
209
210  return ISD::CondCode(Op);
211}
212
213/// getSetCCAndOperation - Return the result of a logical AND between different
214/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
215/// function returns zero if it is not possible to represent the resultant
216/// comparison.
217ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
218                                        bool isInteger) {
219  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
220    // Cannot fold a signed setcc with an unsigned setcc.
221    return ISD::SETCC_INVALID;
222
223  // Combine all of the condition bits.
224  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
225
226  // Canonicalize illegal integer setcc's.
227  if (isInteger) {
228    switch (Result) {
229    default: break;
230    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
231    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
232    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
233    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
234    }
235  }
236
237  return Result;
238}
239
240const TargetMachine &SelectionDAG::getTarget() const {
241  return TLI.getTargetMachine();
242}
243
244//===----------------------------------------------------------------------===//
245//                           SDNode Profile Support
246//===----------------------------------------------------------------------===//
247
248/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
249///
250static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
251  ID.AddInteger(OpC);
252}
253
254/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
255/// solely with their pointer.
256void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
257  ID.AddPointer(VTList.VTs);
258}
259
260/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
261///
262static void AddNodeIDOperands(FoldingSetNodeID &ID,
263                              const SDOperand *Ops, unsigned NumOps) {
264  for (; NumOps; --NumOps, ++Ops) {
265    ID.AddPointer(Ops->Val);
266    ID.AddInteger(Ops->ResNo);
267  }
268}
269
270static void AddNodeIDNode(FoldingSetNodeID &ID,
271                          unsigned short OpC, SDVTList VTList,
272                          const SDOperand *OpList, unsigned N) {
273  AddNodeIDOpcode(ID, OpC);
274  AddNodeIDValueTypes(ID, VTList);
275  AddNodeIDOperands(ID, OpList, N);
276}
277
278/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
279/// data.
280static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
281  AddNodeIDOpcode(ID, N->getOpcode());
282  // Add the return value info.
283  AddNodeIDValueTypes(ID, N->getVTList());
284  // Add the operand info.
285  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
286
287  // Handle SDNode leafs with special info.
288  switch (N->getOpcode()) {
289  default: break;  // Normal nodes don't need extra info.
290  case ISD::TargetConstant:
291  case ISD::Constant:
292    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
293    break;
294  case ISD::TargetConstantFP:
295  case ISD::ConstantFP:
296    ID.AddDouble(cast<ConstantFPSDNode>(N)->getValue());
297    break;
298  case ISD::TargetGlobalAddress:
299  case ISD::GlobalAddress: {
300    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
301    ID.AddPointer(GA->getGlobal());
302    ID.AddInteger(GA->getOffset());
303    break;
304  }
305  case ISD::BasicBlock:
306    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
307    break;
308  case ISD::Register:
309    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
310    break;
311  case ISD::SRCVALUE: {
312    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
313    ID.AddPointer(SV->getValue());
314    ID.AddInteger(SV->getOffset());
315    break;
316  }
317  case ISD::FrameIndex:
318  case ISD::TargetFrameIndex:
319    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
320    break;
321  case ISD::JumpTable:
322  case ISD::TargetJumpTable:
323    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
324    break;
325  case ISD::ConstantPool:
326  case ISD::TargetConstantPool: {
327    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
328    ID.AddInteger(CP->getAlignment());
329    ID.AddInteger(CP->getOffset());
330    if (CP->isMachineConstantPoolEntry())
331      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
332    else
333      ID.AddPointer(CP->getConstVal());
334    break;
335  }
336  case ISD::LOAD: {
337    LoadSDNode *LD = cast<LoadSDNode>(N);
338    ID.AddInteger(LD->getAddressingMode());
339    ID.AddInteger(LD->getExtensionType());
340    ID.AddInteger(LD->getLoadedVT());
341    ID.AddPointer(LD->getSrcValue());
342    ID.AddInteger(LD->getSrcValueOffset());
343    ID.AddInteger(LD->getAlignment());
344    ID.AddInteger(LD->isVolatile());
345    break;
346  }
347  case ISD::STORE: {
348    StoreSDNode *ST = cast<StoreSDNode>(N);
349    ID.AddInteger(ST->getAddressingMode());
350    ID.AddInteger(ST->isTruncatingStore());
351    ID.AddInteger(ST->getStoredVT());
352    ID.AddPointer(ST->getSrcValue());
353    ID.AddInteger(ST->getSrcValueOffset());
354    ID.AddInteger(ST->getAlignment());
355    ID.AddInteger(ST->isVolatile());
356    break;
357  }
358  }
359}
360
361//===----------------------------------------------------------------------===//
362//                              SelectionDAG Class
363//===----------------------------------------------------------------------===//
364
365/// RemoveDeadNodes - This method deletes all unreachable nodes in the
366/// SelectionDAG.
367void SelectionDAG::RemoveDeadNodes() {
368  // Create a dummy node (which is not added to allnodes), that adds a reference
369  // to the root node, preventing it from being deleted.
370  HandleSDNode Dummy(getRoot());
371
372  SmallVector<SDNode*, 128> DeadNodes;
373
374  // Add all obviously-dead nodes to the DeadNodes worklist.
375  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
376    if (I->use_empty())
377      DeadNodes.push_back(I);
378
379  // Process the worklist, deleting the nodes and adding their uses to the
380  // worklist.
381  while (!DeadNodes.empty()) {
382    SDNode *N = DeadNodes.back();
383    DeadNodes.pop_back();
384
385    // Take the node out of the appropriate CSE map.
386    RemoveNodeFromCSEMaps(N);
387
388    // Next, brutally remove the operand list.  This is safe to do, as there are
389    // no cycles in the graph.
390    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
391      SDNode *Operand = I->Val;
392      Operand->removeUser(N);
393
394      // Now that we removed this operand, see if there are no uses of it left.
395      if (Operand->use_empty())
396        DeadNodes.push_back(Operand);
397    }
398    if (N->OperandsNeedDelete)
399      delete[] N->OperandList;
400    N->OperandList = 0;
401    N->NumOperands = 0;
402
403    // Finally, remove N itself.
404    AllNodes.erase(N);
405  }
406
407  // If the root changed (e.g. it was a dead load, update the root).
408  setRoot(Dummy.getValue());
409}
410
411void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
412  SmallVector<SDNode*, 16> DeadNodes;
413  DeadNodes.push_back(N);
414
415  // Process the worklist, deleting the nodes and adding their uses to the
416  // worklist.
417  while (!DeadNodes.empty()) {
418    SDNode *N = DeadNodes.back();
419    DeadNodes.pop_back();
420
421    // Take the node out of the appropriate CSE map.
422    RemoveNodeFromCSEMaps(N);
423
424    // Next, brutally remove the operand list.  This is safe to do, as there are
425    // no cycles in the graph.
426    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
427      SDNode *Operand = I->Val;
428      Operand->removeUser(N);
429
430      // Now that we removed this operand, see if there are no uses of it left.
431      if (Operand->use_empty())
432        DeadNodes.push_back(Operand);
433    }
434    if (N->OperandsNeedDelete)
435      delete[] N->OperandList;
436    N->OperandList = 0;
437    N->NumOperands = 0;
438
439    // Finally, remove N itself.
440    Deleted.push_back(N);
441    AllNodes.erase(N);
442  }
443}
444
445void SelectionDAG::DeleteNode(SDNode *N) {
446  assert(N->use_empty() && "Cannot delete a node that is not dead!");
447
448  // First take this out of the appropriate CSE map.
449  RemoveNodeFromCSEMaps(N);
450
451  // Finally, remove uses due to operands of this node, remove from the
452  // AllNodes list, and delete the node.
453  DeleteNodeNotInCSEMaps(N);
454}
455
456void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
457
458  // Remove it from the AllNodes list.
459  AllNodes.remove(N);
460
461  // Drop all of the operands and decrement used nodes use counts.
462  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
463    I->Val->removeUser(N);
464  if (N->OperandsNeedDelete)
465    delete[] N->OperandList;
466  N->OperandList = 0;
467  N->NumOperands = 0;
468
469  delete N;
470}
471
472/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
473/// correspond to it.  This is useful when we're about to delete or repurpose
474/// the node.  We don't want future request for structurally identical nodes
475/// to return N anymore.
476void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
477  bool Erased = false;
478  switch (N->getOpcode()) {
479  case ISD::HANDLENODE: return;  // noop.
480  case ISD::STRING:
481    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
482    break;
483  case ISD::CONDCODE:
484    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
485           "Cond code doesn't exist!");
486    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
487    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
488    break;
489  case ISD::ExternalSymbol:
490    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
491    break;
492  case ISD::TargetExternalSymbol:
493    Erased =
494      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
495    break;
496  case ISD::VALUETYPE:
497    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
498    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
499    break;
500  default:
501    // Remove it from the CSE Map.
502    Erased = CSEMap.RemoveNode(N);
503    break;
504  }
505#ifndef NDEBUG
506  // Verify that the node was actually in one of the CSE maps, unless it has a
507  // flag result (which cannot be CSE'd) or is one of the special cases that are
508  // not subject to CSE.
509  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
510      !N->isTargetOpcode()) {
511    N->dump();
512    cerr << "\n";
513    assert(0 && "Node is not in map!");
514  }
515#endif
516}
517
518/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
519/// has been taken out and modified in some way.  If the specified node already
520/// exists in the CSE maps, do not modify the maps, but return the existing node
521/// instead.  If it doesn't exist, add it and return null.
522///
523SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
524  assert(N->getNumOperands() && "This is a leaf node!");
525  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
526    return 0;    // Never add these nodes.
527
528  // Check that remaining values produced are not flags.
529  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
530    if (N->getValueType(i) == MVT::Flag)
531      return 0;   // Never CSE anything that produces a flag.
532
533  SDNode *New = CSEMap.GetOrInsertNode(N);
534  if (New != N) return New;  // Node already existed.
535  return 0;
536}
537
538/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
539/// were replaced with those specified.  If this node is never memoized,
540/// return null, otherwise return a pointer to the slot it would take.  If a
541/// node already exists with these operands, the slot will be non-null.
542SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
543                                           void *&InsertPos) {
544  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
545    return 0;    // Never add these nodes.
546
547  // Check that remaining values produced are not flags.
548  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
549    if (N->getValueType(i) == MVT::Flag)
550      return 0;   // Never CSE anything that produces a flag.
551
552  SDOperand Ops[] = { Op };
553  FoldingSetNodeID ID;
554  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
555  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
556}
557
558/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
559/// were replaced with those specified.  If this node is never memoized,
560/// return null, otherwise return a pointer to the slot it would take.  If a
561/// node already exists with these operands, the slot will be non-null.
562SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
563                                           SDOperand Op1, SDOperand Op2,
564                                           void *&InsertPos) {
565  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
566    return 0;    // Never add these nodes.
567
568  // Check that remaining values produced are not flags.
569  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
570    if (N->getValueType(i) == MVT::Flag)
571      return 0;   // Never CSE anything that produces a flag.
572
573  SDOperand Ops[] = { Op1, Op2 };
574  FoldingSetNodeID ID;
575  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
576  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
577}
578
579
580/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
581/// were replaced with those specified.  If this node is never memoized,
582/// return null, otherwise return a pointer to the slot it would take.  If a
583/// node already exists with these operands, the slot will be non-null.
584SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
585                                           const SDOperand *Ops,unsigned NumOps,
586                                           void *&InsertPos) {
587  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
588    return 0;    // Never add these nodes.
589
590  // Check that remaining values produced are not flags.
591  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
592    if (N->getValueType(i) == MVT::Flag)
593      return 0;   // Never CSE anything that produces a flag.
594
595  FoldingSetNodeID ID;
596  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), 0, 0);
597
598  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
599    ID.AddInteger(LD->getAddressingMode());
600    ID.AddInteger(LD->getExtensionType());
601    ID.AddInteger(LD->getLoadedVT());
602    ID.AddPointer(LD->getSrcValue());
603    ID.AddInteger(LD->getSrcValueOffset());
604    ID.AddInteger(LD->getAlignment());
605    ID.AddInteger(LD->isVolatile());
606  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
607    ID.AddInteger(ST->getAddressingMode());
608    ID.AddInteger(ST->isTruncatingStore());
609    ID.AddInteger(ST->getStoredVT());
610    ID.AddPointer(ST->getSrcValue());
611    ID.AddInteger(ST->getSrcValueOffset());
612    ID.AddInteger(ST->getAlignment());
613    ID.AddInteger(ST->isVolatile());
614  }
615
616  AddNodeIDOperands(ID, Ops, NumOps);
617  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
618}
619
620
621SelectionDAG::~SelectionDAG() {
622  while (!AllNodes.empty()) {
623    SDNode *N = AllNodes.begin();
624    N->SetNextInBucket(0);
625    if (N->OperandsNeedDelete)
626      delete [] N->OperandList;
627    N->OperandList = 0;
628    N->NumOperands = 0;
629    AllNodes.pop_front();
630  }
631}
632
633SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
634  if (Op.getValueType() == VT) return Op;
635  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
636  return getNode(ISD::AND, Op.getValueType(), Op,
637                 getConstant(Imm, Op.getValueType()));
638}
639
640SDOperand SelectionDAG::getString(const std::string &Val) {
641  StringSDNode *&N = StringNodes[Val];
642  if (!N) {
643    N = new StringSDNode(Val);
644    AllNodes.push_back(N);
645  }
646  return SDOperand(N, 0);
647}
648
649SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
650  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
651  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
652
653  // Mask out any bits that are not valid for this constant.
654  Val &= MVT::getIntVTBitMask(VT);
655
656  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
657  FoldingSetNodeID ID;
658  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
659  ID.AddInteger(Val);
660  void *IP = 0;
661  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
662    return SDOperand(E, 0);
663  SDNode *N = new ConstantSDNode(isT, Val, VT);
664  CSEMap.InsertNode(N, IP);
665  AllNodes.push_back(N);
666  return SDOperand(N, 0);
667}
668
669
670SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
671                                      bool isTarget) {
672  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
673  if (VT == MVT::f32)
674    Val = (float)Val;  // Mask out extra precision.
675
676  // Do the map lookup using the actual bit pattern for the floating point
677  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
678  // we don't have issues with SNANs.
679  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
680  FoldingSetNodeID ID;
681  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
682  ID.AddDouble(Val);
683  void *IP = 0;
684  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
685    return SDOperand(E, 0);
686  SDNode *N = new ConstantFPSDNode(isTarget, Val, VT);
687  CSEMap.InsertNode(N, IP);
688  AllNodes.push_back(N);
689  return SDOperand(N, 0);
690}
691
692SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
693                                         MVT::ValueType VT, int Offset,
694                                         bool isTargetGA) {
695  unsigned Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
696  FoldingSetNodeID ID;
697  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
698  ID.AddPointer(GV);
699  ID.AddInteger(Offset);
700  void *IP = 0;
701  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
702   return SDOperand(E, 0);
703  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
704  CSEMap.InsertNode(N, IP);
705  AllNodes.push_back(N);
706  return SDOperand(N, 0);
707}
708
709SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
710                                      bool isTarget) {
711  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
712  FoldingSetNodeID ID;
713  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
714  ID.AddInteger(FI);
715  void *IP = 0;
716  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
717    return SDOperand(E, 0);
718  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
719  CSEMap.InsertNode(N, IP);
720  AllNodes.push_back(N);
721  return SDOperand(N, 0);
722}
723
724SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
725  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
726  FoldingSetNodeID ID;
727  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
728  ID.AddInteger(JTI);
729  void *IP = 0;
730  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
731    return SDOperand(E, 0);
732  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
733  CSEMap.InsertNode(N, IP);
734  AllNodes.push_back(N);
735  return SDOperand(N, 0);
736}
737
738SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
739                                        unsigned Alignment, int Offset,
740                                        bool isTarget) {
741  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
742  FoldingSetNodeID ID;
743  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
744  ID.AddInteger(Alignment);
745  ID.AddInteger(Offset);
746  ID.AddPointer(C);
747  void *IP = 0;
748  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
749    return SDOperand(E, 0);
750  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
751  CSEMap.InsertNode(N, IP);
752  AllNodes.push_back(N);
753  return SDOperand(N, 0);
754}
755
756
757SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
758                                        MVT::ValueType VT,
759                                        unsigned Alignment, int Offset,
760                                        bool isTarget) {
761  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
762  FoldingSetNodeID ID;
763  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
764  ID.AddInteger(Alignment);
765  ID.AddInteger(Offset);
766  C->AddSelectionDAGCSEId(ID);
767  void *IP = 0;
768  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
769    return SDOperand(E, 0);
770  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
771  CSEMap.InsertNode(N, IP);
772  AllNodes.push_back(N);
773  return SDOperand(N, 0);
774}
775
776
777SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
778  FoldingSetNodeID ID;
779  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
780  ID.AddPointer(MBB);
781  void *IP = 0;
782  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
783    return SDOperand(E, 0);
784  SDNode *N = new BasicBlockSDNode(MBB);
785  CSEMap.InsertNode(N, IP);
786  AllNodes.push_back(N);
787  return SDOperand(N, 0);
788}
789
790SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
791  if ((unsigned)VT >= ValueTypeNodes.size())
792    ValueTypeNodes.resize(VT+1);
793  if (ValueTypeNodes[VT] == 0) {
794    ValueTypeNodes[VT] = new VTSDNode(VT);
795    AllNodes.push_back(ValueTypeNodes[VT]);
796  }
797
798  return SDOperand(ValueTypeNodes[VT], 0);
799}
800
801SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
802  SDNode *&N = ExternalSymbols[Sym];
803  if (N) return SDOperand(N, 0);
804  N = new ExternalSymbolSDNode(false, Sym, VT);
805  AllNodes.push_back(N);
806  return SDOperand(N, 0);
807}
808
809SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
810                                                MVT::ValueType VT) {
811  SDNode *&N = TargetExternalSymbols[Sym];
812  if (N) return SDOperand(N, 0);
813  N = new ExternalSymbolSDNode(true, Sym, VT);
814  AllNodes.push_back(N);
815  return SDOperand(N, 0);
816}
817
818SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
819  if ((unsigned)Cond >= CondCodeNodes.size())
820    CondCodeNodes.resize(Cond+1);
821
822  if (CondCodeNodes[Cond] == 0) {
823    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
824    AllNodes.push_back(CondCodeNodes[Cond]);
825  }
826  return SDOperand(CondCodeNodes[Cond], 0);
827}
828
829SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
830  FoldingSetNodeID ID;
831  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
832  ID.AddInteger(RegNo);
833  void *IP = 0;
834  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
835    return SDOperand(E, 0);
836  SDNode *N = new RegisterSDNode(RegNo, VT);
837  CSEMap.InsertNode(N, IP);
838  AllNodes.push_back(N);
839  return SDOperand(N, 0);
840}
841
842SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
843  assert((!V || isa<PointerType>(V->getType())) &&
844         "SrcValue is not a pointer?");
845
846  FoldingSetNodeID ID;
847  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
848  ID.AddPointer(V);
849  ID.AddInteger(Offset);
850  void *IP = 0;
851  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
852    return SDOperand(E, 0);
853  SDNode *N = new SrcValueSDNode(V, Offset);
854  CSEMap.InsertNode(N, IP);
855  AllNodes.push_back(N);
856  return SDOperand(N, 0);
857}
858
859SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
860                                  SDOperand N2, ISD::CondCode Cond) {
861  // These setcc operations always fold.
862  switch (Cond) {
863  default: break;
864  case ISD::SETFALSE:
865  case ISD::SETFALSE2: return getConstant(0, VT);
866  case ISD::SETTRUE:
867  case ISD::SETTRUE2:  return getConstant(1, VT);
868
869  case ISD::SETOEQ:
870  case ISD::SETOGT:
871  case ISD::SETOGE:
872  case ISD::SETOLT:
873  case ISD::SETOLE:
874  case ISD::SETONE:
875  case ISD::SETO:
876  case ISD::SETUO:
877  case ISD::SETUEQ:
878  case ISD::SETUNE:
879    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
880    break;
881  }
882
883  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
884    uint64_t C2 = N2C->getValue();
885    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
886      uint64_t C1 = N1C->getValue();
887
888      // Sign extend the operands if required
889      if (ISD::isSignedIntSetCC(Cond)) {
890        C1 = N1C->getSignExtended();
891        C2 = N2C->getSignExtended();
892      }
893
894      switch (Cond) {
895      default: assert(0 && "Unknown integer setcc!");
896      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
897      case ISD::SETNE:  return getConstant(C1 != C2, VT);
898      case ISD::SETULT: return getConstant(C1 <  C2, VT);
899      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
900      case ISD::SETULE: return getConstant(C1 <= C2, VT);
901      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
902      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
903      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
904      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
905      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
906      }
907    }
908  }
909  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
910    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
911      double C1 = N1C->getValue(), C2 = N2C->getValue();
912
913      switch (Cond) {
914      default: break; // FIXME: Implement the rest of these!
915      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
916      case ISD::SETNE:  return getConstant(C1 != C2, VT);
917      case ISD::SETLT:  return getConstant(C1 < C2, VT);
918      case ISD::SETGT:  return getConstant(C1 > C2, VT);
919      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
920      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
921      }
922    } else {
923      // Ensure that the constant occurs on the RHS.
924      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
925    }
926
927  // Could not fold it.
928  return SDOperand();
929}
930
931
932/// getNode - Gets or creates the specified node.
933///
934SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
935  FoldingSetNodeID ID;
936  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
937  void *IP = 0;
938  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
939    return SDOperand(E, 0);
940  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
941  CSEMap.InsertNode(N, IP);
942
943  AllNodes.push_back(N);
944  return SDOperand(N, 0);
945}
946
947SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
948                                SDOperand Operand) {
949  unsigned Tmp1;
950  // Constant fold unary operations with an integer constant operand.
951  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
952    uint64_t Val = C->getValue();
953    switch (Opcode) {
954    default: break;
955    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
956    case ISD::ANY_EXTEND:
957    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
958    case ISD::TRUNCATE:    return getConstant(Val, VT);
959    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
960    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
961    case ISD::BIT_CONVERT:
962      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
963        return getConstantFP(BitsToFloat(Val), VT);
964      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
965        return getConstantFP(BitsToDouble(Val), VT);
966      break;
967    case ISD::BSWAP:
968      switch(VT) {
969      default: assert(0 && "Invalid bswap!"); break;
970      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
971      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
972      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
973      }
974      break;
975    case ISD::CTPOP:
976      switch(VT) {
977      default: assert(0 && "Invalid ctpop!"); break;
978      case MVT::i1: return getConstant(Val != 0, VT);
979      case MVT::i8:
980        Tmp1 = (unsigned)Val & 0xFF;
981        return getConstant(CountPopulation_32(Tmp1), VT);
982      case MVT::i16:
983        Tmp1 = (unsigned)Val & 0xFFFF;
984        return getConstant(CountPopulation_32(Tmp1), VT);
985      case MVT::i32:
986        return getConstant(CountPopulation_32((unsigned)Val), VT);
987      case MVT::i64:
988        return getConstant(CountPopulation_64(Val), VT);
989      }
990    case ISD::CTLZ:
991      switch(VT) {
992      default: assert(0 && "Invalid ctlz!"); break;
993      case MVT::i1: return getConstant(Val == 0, VT);
994      case MVT::i8:
995        Tmp1 = (unsigned)Val & 0xFF;
996        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
997      case MVT::i16:
998        Tmp1 = (unsigned)Val & 0xFFFF;
999        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1000      case MVT::i32:
1001        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1002      case MVT::i64:
1003        return getConstant(CountLeadingZeros_64(Val), VT);
1004      }
1005    case ISD::CTTZ:
1006      switch(VT) {
1007      default: assert(0 && "Invalid cttz!"); break;
1008      case MVT::i1: return getConstant(Val == 0, VT);
1009      case MVT::i8:
1010        Tmp1 = (unsigned)Val | 0x100;
1011        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1012      case MVT::i16:
1013        Tmp1 = (unsigned)Val | 0x10000;
1014        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1015      case MVT::i32:
1016        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1017      case MVT::i64:
1018        return getConstant(CountTrailingZeros_64(Val), VT);
1019      }
1020    }
1021  }
1022
1023  // Constant fold unary operations with an floating point constant operand.
1024  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1025    switch (Opcode) {
1026    case ISD::FNEG:
1027      return getConstantFP(-C->getValue(), VT);
1028    case ISD::FABS:
1029      return getConstantFP(fabs(C->getValue()), VT);
1030    case ISD::FP_ROUND:
1031    case ISD::FP_EXTEND:
1032      return getConstantFP(C->getValue(), VT);
1033    case ISD::FP_TO_SINT:
1034      return getConstant((int64_t)C->getValue(), VT);
1035    case ISD::FP_TO_UINT:
1036      return getConstant((uint64_t)C->getValue(), VT);
1037    case ISD::BIT_CONVERT:
1038      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1039        return getConstant(FloatToBits(C->getValue()), VT);
1040      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1041        return getConstant(DoubleToBits(C->getValue()), VT);
1042      break;
1043    }
1044
1045  unsigned OpOpcode = Operand.Val->getOpcode();
1046  switch (Opcode) {
1047  case ISD::TokenFactor:
1048    return Operand;         // Factor of one node?  No factor.
1049  case ISD::FP_ROUND:
1050  case ISD::FP_EXTEND:
1051    assert(MVT::isFloatingPoint(VT) &&
1052           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1053    break;
1054  case ISD::SIGN_EXTEND:
1055    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1056           "Invalid SIGN_EXTEND!");
1057    if (Operand.getValueType() == VT) return Operand;   // noop extension
1058    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1059    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1060      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1061    break;
1062  case ISD::ZERO_EXTEND:
1063    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1064           "Invalid ZERO_EXTEND!");
1065    if (Operand.getValueType() == VT) return Operand;   // noop extension
1066    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1067    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1068      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1069    break;
1070  case ISD::ANY_EXTEND:
1071    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1072           "Invalid ANY_EXTEND!");
1073    if (Operand.getValueType() == VT) return Operand;   // noop extension
1074    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1075    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1076      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1077      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1078    break;
1079  case ISD::TRUNCATE:
1080    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1081           "Invalid TRUNCATE!");
1082    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1083    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1084    if (OpOpcode == ISD::TRUNCATE)
1085      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1086    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1087             OpOpcode == ISD::ANY_EXTEND) {
1088      // If the source is smaller than the dest, we still need an extend.
1089      if (Operand.Val->getOperand(0).getValueType() < VT)
1090        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1091      else if (Operand.Val->getOperand(0).getValueType() > VT)
1092        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1093      else
1094        return Operand.Val->getOperand(0);
1095    }
1096    break;
1097  case ISD::BIT_CONVERT:
1098    // Basic sanity checking.
1099    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1100           && "Cannot BIT_CONVERT between types of different sizes!");
1101    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1102    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1103      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1104    if (OpOpcode == ISD::UNDEF)
1105      return getNode(ISD::UNDEF, VT);
1106    break;
1107  case ISD::SCALAR_TO_VECTOR:
1108    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1109           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1110           "Illegal SCALAR_TO_VECTOR node!");
1111    break;
1112  case ISD::FNEG:
1113    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1114      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1115                     Operand.Val->getOperand(0));
1116    if (OpOpcode == ISD::FNEG)  // --X -> X
1117      return Operand.Val->getOperand(0);
1118    break;
1119  case ISD::FABS:
1120    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1121      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1122    break;
1123  }
1124
1125  SDNode *N;
1126  SDVTList VTs = getVTList(VT);
1127  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1128    FoldingSetNodeID ID;
1129    SDOperand Ops[1] = { Operand };
1130    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1131    void *IP = 0;
1132    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1133      return SDOperand(E, 0);
1134    N = new UnarySDNode(Opcode, VTs, Operand);
1135    CSEMap.InsertNode(N, IP);
1136  } else {
1137    N = new UnarySDNode(Opcode, VTs, Operand);
1138  }
1139  AllNodes.push_back(N);
1140  return SDOperand(N, 0);
1141}
1142
1143
1144
1145SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1146                                SDOperand N1, SDOperand N2) {
1147#ifndef NDEBUG
1148  switch (Opcode) {
1149  case ISD::TokenFactor:
1150    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1151           N2.getValueType() == MVT::Other && "Invalid token factor!");
1152    break;
1153  case ISD::AND:
1154  case ISD::OR:
1155  case ISD::XOR:
1156  case ISD::UDIV:
1157  case ISD::UREM:
1158  case ISD::MULHU:
1159  case ISD::MULHS:
1160    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1161    // fall through
1162  case ISD::ADD:
1163  case ISD::SUB:
1164  case ISD::MUL:
1165  case ISD::SDIV:
1166  case ISD::SREM:
1167    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1168    // fall through.
1169  case ISD::FADD:
1170  case ISD::FSUB:
1171  case ISD::FMUL:
1172  case ISD::FDIV:
1173  case ISD::FREM:
1174    assert(N1.getValueType() == N2.getValueType() &&
1175           N1.getValueType() == VT && "Binary operator types must match!");
1176    break;
1177  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1178    assert(N1.getValueType() == VT &&
1179           MVT::isFloatingPoint(N1.getValueType()) &&
1180           MVT::isFloatingPoint(N2.getValueType()) &&
1181           "Invalid FCOPYSIGN!");
1182    break;
1183  case ISD::SHL:
1184  case ISD::SRA:
1185  case ISD::SRL:
1186  case ISD::ROTL:
1187  case ISD::ROTR:
1188    assert(VT == N1.getValueType() &&
1189           "Shift operators return type must be the same as their first arg");
1190    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1191           VT != MVT::i1 && "Shifts only work on integers");
1192    break;
1193  case ISD::FP_ROUND_INREG: {
1194    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1195    assert(VT == N1.getValueType() && "Not an inreg round!");
1196    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1197           "Cannot FP_ROUND_INREG integer types");
1198    assert(EVT <= VT && "Not rounding down!");
1199    break;
1200  }
1201  case ISD::AssertSext:
1202  case ISD::AssertZext:
1203  case ISD::SIGN_EXTEND_INREG: {
1204    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1205    assert(VT == N1.getValueType() && "Not an inreg extend!");
1206    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1207           "Cannot *_EXTEND_INREG FP types");
1208    assert(EVT <= VT && "Not extending!");
1209  }
1210
1211  default: break;
1212  }
1213#endif
1214
1215  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1216  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1217  if (N1C) {
1218    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1219      int64_t Val = N1C->getValue();
1220      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1221      Val <<= 64-FromBits;
1222      Val >>= 64-FromBits;
1223      return getConstant(Val, VT);
1224    }
1225
1226    if (N2C) {
1227      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1228      switch (Opcode) {
1229      case ISD::ADD: return getConstant(C1 + C2, VT);
1230      case ISD::SUB: return getConstant(C1 - C2, VT);
1231      case ISD::MUL: return getConstant(C1 * C2, VT);
1232      case ISD::UDIV:
1233        if (C2) return getConstant(C1 / C2, VT);
1234        break;
1235      case ISD::UREM :
1236        if (C2) return getConstant(C1 % C2, VT);
1237        break;
1238      case ISD::SDIV :
1239        if (C2) return getConstant(N1C->getSignExtended() /
1240                                   N2C->getSignExtended(), VT);
1241        break;
1242      case ISD::SREM :
1243        if (C2) return getConstant(N1C->getSignExtended() %
1244                                   N2C->getSignExtended(), VT);
1245        break;
1246      case ISD::AND  : return getConstant(C1 & C2, VT);
1247      case ISD::OR   : return getConstant(C1 | C2, VT);
1248      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1249      case ISD::SHL  : return getConstant(C1 << C2, VT);
1250      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1251      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1252      case ISD::ROTL :
1253        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1254                           VT);
1255      case ISD::ROTR :
1256        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1257                           VT);
1258      default: break;
1259      }
1260    } else {      // Cannonicalize constant to RHS if commutative
1261      if (isCommutativeBinOp(Opcode)) {
1262        std::swap(N1C, N2C);
1263        std::swap(N1, N2);
1264      }
1265    }
1266  }
1267
1268  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1269  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1270  if (N1CFP) {
1271    if (N2CFP) {
1272      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1273      switch (Opcode) {
1274      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1275      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1276      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1277      case ISD::FDIV:
1278        if (C2) return getConstantFP(C1 / C2, VT);
1279        break;
1280      case ISD::FREM :
1281        if (C2) return getConstantFP(fmod(C1, C2), VT);
1282        break;
1283      case ISD::FCOPYSIGN: {
1284        union {
1285          double   F;
1286          uint64_t I;
1287        } u1;
1288        union {
1289          double  F;
1290          int64_t I;
1291        } u2;
1292        u1.F = C1;
1293        u2.F = C2;
1294        if (u2.I < 0)  // Sign bit of RHS set?
1295          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1296        else
1297          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1298        return getConstantFP(u1.F, VT);
1299      }
1300      default: break;
1301      }
1302    } else {      // Cannonicalize constant to RHS if commutative
1303      if (isCommutativeBinOp(Opcode)) {
1304        std::swap(N1CFP, N2CFP);
1305        std::swap(N1, N2);
1306      }
1307    }
1308  }
1309
1310  // Canonicalize an UNDEF to the RHS, even over a constant.
1311  if (N1.getOpcode() == ISD::UNDEF) {
1312    if (isCommutativeBinOp(Opcode)) {
1313      std::swap(N1, N2);
1314    } else {
1315      switch (Opcode) {
1316      case ISD::FP_ROUND_INREG:
1317      case ISD::SIGN_EXTEND_INREG:
1318      case ISD::SUB:
1319      case ISD::FSUB:
1320      case ISD::FDIV:
1321      case ISD::FREM:
1322      case ISD::SRA:
1323        return N1;     // fold op(undef, arg2) -> undef
1324      case ISD::UDIV:
1325      case ISD::SDIV:
1326      case ISD::UREM:
1327      case ISD::SREM:
1328      case ISD::SRL:
1329      case ISD::SHL:
1330        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1331      }
1332    }
1333  }
1334
1335  // Fold a bunch of operators when the RHS is undef.
1336  if (N2.getOpcode() == ISD::UNDEF) {
1337    switch (Opcode) {
1338    case ISD::ADD:
1339    case ISD::ADDC:
1340    case ISD::ADDE:
1341    case ISD::SUB:
1342    case ISD::FADD:
1343    case ISD::FSUB:
1344    case ISD::FMUL:
1345    case ISD::FDIV:
1346    case ISD::FREM:
1347    case ISD::UDIV:
1348    case ISD::SDIV:
1349    case ISD::UREM:
1350    case ISD::SREM:
1351    case ISD::XOR:
1352      return N2;       // fold op(arg1, undef) -> undef
1353    case ISD::MUL:
1354    case ISD::AND:
1355    case ISD::SRL:
1356    case ISD::SHL:
1357      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1358    case ISD::OR:
1359      return getConstant(MVT::getIntVTBitMask(VT), VT);
1360    case ISD::SRA:
1361      return N1;
1362    }
1363  }
1364
1365  // Fold operations.
1366  switch (Opcode) {
1367  case ISD::TokenFactor:
1368    // Fold trivial token factors.
1369    if (N1.getOpcode() == ISD::EntryToken) return N2;
1370    if (N2.getOpcode() == ISD::EntryToken) return N1;
1371    break;
1372
1373  case ISD::AND:
1374    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1375    // worth handling here.
1376    if (N2C && N2C->getValue() == 0)
1377      return N2;
1378    break;
1379  case ISD::OR:
1380  case ISD::XOR:
1381    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1382    // worth handling here.
1383    if (N2C && N2C->getValue() == 0)
1384      return N1;
1385    break;
1386  case ISD::FP_ROUND_INREG:
1387    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1388    break;
1389  case ISD::SIGN_EXTEND_INREG: {
1390    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1391    if (EVT == VT) return N1;  // Not actually extending
1392    break;
1393  }
1394  case ISD::EXTRACT_ELEMENT:
1395    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1396
1397    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
1398    // 64-bit integers into 32-bit parts.  Instead of building the extract of
1399    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
1400    if (N1.getOpcode() == ISD::BUILD_PAIR)
1401      return N1.getOperand(N2C->getValue());
1402
1403    // EXTRACT_ELEMENT of a constant int is also very common.
1404    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
1405      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
1406      return getConstant(C->getValue() >> Shift, VT);
1407    }
1408    break;
1409
1410  // FIXME: figure out how to safely handle things like
1411  // int foo(int x) { return 1 << (x & 255); }
1412  // int bar() { return foo(256); }
1413#if 0
1414  case ISD::SHL:
1415  case ISD::SRL:
1416  case ISD::SRA:
1417    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1418        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1419      return getNode(Opcode, VT, N1, N2.getOperand(0));
1420    else if (N2.getOpcode() == ISD::AND)
1421      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1422        // If the and is only masking out bits that cannot effect the shift,
1423        // eliminate the and.
1424        unsigned NumBits = MVT::getSizeInBits(VT);
1425        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1426          return getNode(Opcode, VT, N1, N2.getOperand(0));
1427      }
1428    break;
1429#endif
1430  }
1431
1432  // Memoize this node if possible.
1433  SDNode *N;
1434  SDVTList VTs = getVTList(VT);
1435  if (VT != MVT::Flag) {
1436    SDOperand Ops[] = { N1, N2 };
1437    FoldingSetNodeID ID;
1438    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
1439    void *IP = 0;
1440    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1441      return SDOperand(E, 0);
1442    N = new BinarySDNode(Opcode, VTs, N1, N2);
1443    CSEMap.InsertNode(N, IP);
1444  } else {
1445    N = new BinarySDNode(Opcode, VTs, N1, N2);
1446  }
1447
1448  AllNodes.push_back(N);
1449  return SDOperand(N, 0);
1450}
1451
1452SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1453                                SDOperand N1, SDOperand N2, SDOperand N3) {
1454  // Perform various simplifications.
1455  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1456  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1457  switch (Opcode) {
1458  case ISD::SETCC: {
1459    // Use FoldSetCC to simplify SETCC's.
1460    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1461    if (Simp.Val) return Simp;
1462    break;
1463  }
1464  case ISD::SELECT:
1465    if (N1C)
1466      if (N1C->getValue())
1467        return N2;             // select true, X, Y -> X
1468      else
1469        return N3;             // select false, X, Y -> Y
1470
1471    if (N2 == N3) return N2;   // select C, X, X -> X
1472    break;
1473  case ISD::BRCOND:
1474    if (N2C)
1475      if (N2C->getValue()) // Unconditional branch
1476        return getNode(ISD::BR, MVT::Other, N1, N3);
1477      else
1478        return N1;         // Never-taken branch
1479    break;
1480  case ISD::VECTOR_SHUFFLE:
1481    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1482           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1483           N3.getOpcode() == ISD::BUILD_VECTOR &&
1484           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1485           "Illegal VECTOR_SHUFFLE node!");
1486    break;
1487  case ISD::VBIT_CONVERT:
1488    // Fold vbit_convert nodes from a type to themselves.
1489    if (N1.getValueType() == MVT::Vector) {
1490      assert(isa<ConstantSDNode>(*(N1.Val->op_end()-2)) &&
1491             isa<VTSDNode>(*(N1.Val->op_end()-1)) && "Malformed vector input!");
1492      if (*(N1.Val->op_end()-2) == N2 && *(N1.Val->op_end()-1) == N3)
1493        return N1;
1494    }
1495    break;
1496  }
1497
1498  // Memoize node if it doesn't produce a flag.
1499  SDNode *N;
1500  SDVTList VTs = getVTList(VT);
1501  if (VT != MVT::Flag) {
1502    SDOperand Ops[] = { N1, N2, N3 };
1503    FoldingSetNodeID ID;
1504    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
1505    void *IP = 0;
1506    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1507      return SDOperand(E, 0);
1508    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
1509    CSEMap.InsertNode(N, IP);
1510  } else {
1511    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
1512  }
1513  AllNodes.push_back(N);
1514  return SDOperand(N, 0);
1515}
1516
1517SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1518                                SDOperand N1, SDOperand N2, SDOperand N3,
1519                                SDOperand N4) {
1520  SDOperand Ops[] = { N1, N2, N3, N4 };
1521  return getNode(Opcode, VT, Ops, 4);
1522}
1523
1524SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1525                                SDOperand N1, SDOperand N2, SDOperand N3,
1526                                SDOperand N4, SDOperand N5) {
1527  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1528  return getNode(Opcode, VT, Ops, 5);
1529}
1530
1531SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1532                                SDOperand Chain, SDOperand Ptr,
1533                                const Value *SV, int SVOffset,
1534                                bool isVolatile) {
1535  // FIXME: Alignment == 1 for now.
1536  unsigned Alignment = 1;
1537  SDVTList VTs = getVTList(VT, MVT::Other);
1538  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1539  SDOperand Ops[] = { Chain, Ptr, Undef };
1540  FoldingSetNodeID ID;
1541  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1542  ID.AddInteger(ISD::UNINDEXED);
1543  ID.AddInteger(ISD::NON_EXTLOAD);
1544  ID.AddInteger(VT);
1545  ID.AddPointer(SV);
1546  ID.AddInteger(SVOffset);
1547  ID.AddInteger(Alignment);
1548  ID.AddInteger(isVolatile);
1549  void *IP = 0;
1550  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1551    return SDOperand(E, 0);
1552  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
1553                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
1554                             isVolatile);
1555  CSEMap.InsertNode(N, IP);
1556  AllNodes.push_back(N);
1557  return SDOperand(N, 0);
1558}
1559
1560SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
1561                                   SDOperand Chain, SDOperand Ptr,
1562                                   const Value *SV,
1563                                   int SVOffset, MVT::ValueType EVT,
1564                                   bool isVolatile) {
1565  // If they are asking for an extending load from/to the same thing, return a
1566  // normal load.
1567  if (VT == EVT)
1568    ExtType = ISD::NON_EXTLOAD;
1569
1570  if (MVT::isVector(VT))
1571    assert(EVT == MVT::getVectorBaseType(VT) && "Invalid vector extload!");
1572  else
1573    assert(EVT < VT && "Should only be an extending load, not truncating!");
1574  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
1575         "Cannot sign/zero extend a FP/Vector load!");
1576  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
1577         "Cannot convert from FP to Int or Int -> FP!");
1578
1579  // FIXME: Alignment == 1 for now.
1580  unsigned Alignment = 1;
1581  SDVTList VTs = getVTList(VT, MVT::Other);
1582  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1583  SDOperand Ops[] = { Chain, Ptr, Undef };
1584  FoldingSetNodeID ID;
1585  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1586  ID.AddInteger(ISD::UNINDEXED);
1587  ID.AddInteger(ExtType);
1588  ID.AddInteger(EVT);
1589  ID.AddPointer(SV);
1590  ID.AddInteger(SVOffset);
1591  ID.AddInteger(Alignment);
1592  ID.AddInteger(isVolatile);
1593  void *IP = 0;
1594  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1595    return SDOperand(E, 0);
1596  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
1597                             SV, SVOffset, Alignment, isVolatile);
1598  CSEMap.InsertNode(N, IP);
1599  AllNodes.push_back(N);
1600  return SDOperand(N, 0);
1601}
1602
1603SDOperand
1604SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
1605                             SDOperand Offset, ISD::MemIndexedMode AM) {
1606  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
1607  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
1608         "Load is already a indexed load!");
1609  MVT::ValueType VT = OrigLoad.getValueType();
1610  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
1611  SDOperand Ops[] = { LD->getChain(), Base, Offset };
1612  FoldingSetNodeID ID;
1613  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1614  ID.AddInteger(AM);
1615  ID.AddInteger(LD->getExtensionType());
1616  ID.AddInteger(LD->getLoadedVT());
1617  ID.AddPointer(LD->getSrcValue());
1618  ID.AddInteger(LD->getSrcValueOffset());
1619  ID.AddInteger(LD->getAlignment());
1620  ID.AddInteger(LD->isVolatile());
1621  void *IP = 0;
1622  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1623    return SDOperand(E, 0);
1624  SDNode *N = new LoadSDNode(Ops, VTs, AM,
1625                             LD->getExtensionType(), LD->getLoadedVT(),
1626                             LD->getSrcValue(), LD->getSrcValueOffset(),
1627                             LD->getAlignment(), LD->isVolatile());
1628  CSEMap.InsertNode(N, IP);
1629  AllNodes.push_back(N);
1630  return SDOperand(N, 0);
1631}
1632
1633SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1634                                   SDOperand Chain, SDOperand Ptr,
1635                                   SDOperand SV) {
1636  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1637                      getValueType(EVT) };
1638  return getNode(ISD::VLOAD, getVTList(MVT::Vector, MVT::Other), Ops, 5);
1639}
1640
1641SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
1642                                 SDOperand Ptr, const Value *SV, int SVOffset,
1643                                 bool isVolatile) {
1644  MVT::ValueType VT = Val.getValueType();
1645
1646  // FIXME: Alignment == 1 for now.
1647  unsigned Alignment = 1;
1648  SDVTList VTs = getVTList(MVT::Other);
1649  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1650  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
1651  FoldingSetNodeID ID;
1652  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1653  ID.AddInteger(ISD::UNINDEXED);
1654  ID.AddInteger(false);
1655  ID.AddInteger(VT);
1656  ID.AddPointer(SV);
1657  ID.AddInteger(SVOffset);
1658  ID.AddInteger(Alignment);
1659  ID.AddInteger(isVolatile);
1660  void *IP = 0;
1661  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1662    return SDOperand(E, 0);
1663  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
1664                              VT, SV, SVOffset, Alignment, isVolatile);
1665  CSEMap.InsertNode(N, IP);
1666  AllNodes.push_back(N);
1667  return SDOperand(N, 0);
1668}
1669
1670SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
1671                                      SDOperand Ptr, const Value *SV,
1672                                      int SVOffset, MVT::ValueType SVT,
1673                                      bool isVolatile) {
1674  MVT::ValueType VT = Val.getValueType();
1675  bool isTrunc = VT != SVT;
1676
1677  assert(VT > SVT && "Not a truncation?");
1678  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
1679         "Can't do FP-INT conversion!");
1680
1681  // FIXME: Alignment == 1 for now.
1682  unsigned Alignment = 1;
1683  SDVTList VTs = getVTList(MVT::Other);
1684  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1685  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
1686  FoldingSetNodeID ID;
1687  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1688  ID.AddInteger(ISD::UNINDEXED);
1689  ID.AddInteger(isTrunc);
1690  ID.AddInteger(SVT);
1691  ID.AddPointer(SV);
1692  ID.AddInteger(SVOffset);
1693  ID.AddInteger(Alignment);
1694  ID.AddInteger(isVolatile);
1695  void *IP = 0;
1696  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1697    return SDOperand(E, 0);
1698  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
1699                              SVT, SV, SVOffset, Alignment, isVolatile);
1700  CSEMap.InsertNode(N, IP);
1701  AllNodes.push_back(N);
1702  return SDOperand(N, 0);
1703}
1704
1705SDOperand
1706SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
1707                              SDOperand Offset, ISD::MemIndexedMode AM) {
1708  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
1709  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
1710         "Store is already a indexed store!");
1711  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
1712  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
1713  FoldingSetNodeID ID;
1714  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1715  ID.AddInteger(AM);
1716  ID.AddInteger(ST->isTruncatingStore());
1717  ID.AddInteger(ST->getStoredVT());
1718  ID.AddPointer(ST->getSrcValue());
1719  ID.AddInteger(ST->getSrcValueOffset());
1720  ID.AddInteger(ST->getAlignment());
1721  ID.AddInteger(ST->isVolatile());
1722  void *IP = 0;
1723  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1724    return SDOperand(E, 0);
1725  SDNode *N = new StoreSDNode(Ops, VTs, AM,
1726                              ST->isTruncatingStore(), ST->getStoredVT(),
1727                              ST->getSrcValue(), ST->getSrcValueOffset(),
1728                              ST->getAlignment(), ST->isVolatile());
1729  CSEMap.InsertNode(N, IP);
1730  AllNodes.push_back(N);
1731  return SDOperand(N, 0);
1732}
1733
1734SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1735                                 SDOperand Chain, SDOperand Ptr,
1736                                 SDOperand SV) {
1737  SDOperand Ops[] = { Chain, Ptr, SV };
1738  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
1739}
1740
1741SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1742                                const SDOperand *Ops, unsigned NumOps) {
1743  switch (NumOps) {
1744  case 0: return getNode(Opcode, VT);
1745  case 1: return getNode(Opcode, VT, Ops[0]);
1746  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1747  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1748  default: break;
1749  }
1750
1751  switch (Opcode) {
1752  default: break;
1753  case ISD::SELECT_CC: {
1754    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1755    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1756           "LHS and RHS of condition must have same type!");
1757    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1758           "True and False arms of SelectCC must have same type!");
1759    assert(Ops[2].getValueType() == VT &&
1760           "select_cc node must be of same type as true and false value!");
1761    break;
1762  }
1763  case ISD::BR_CC: {
1764    assert(NumOps == 5 && "BR_CC takes 5 operands!");
1765    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1766           "LHS/RHS of comparison should match types!");
1767    break;
1768  }
1769  }
1770
1771  // Memoize nodes.
1772  SDNode *N;
1773  SDVTList VTs = getVTList(VT);
1774  if (VT != MVT::Flag) {
1775    FoldingSetNodeID ID;
1776    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
1777    void *IP = 0;
1778    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1779      return SDOperand(E, 0);
1780    N = new SDNode(Opcode, VTs, Ops, NumOps);
1781    CSEMap.InsertNode(N, IP);
1782  } else {
1783    N = new SDNode(Opcode, VTs, Ops, NumOps);
1784  }
1785  AllNodes.push_back(N);
1786  return SDOperand(N, 0);
1787}
1788
1789SDOperand SelectionDAG::getNode(unsigned Opcode,
1790                                std::vector<MVT::ValueType> &ResultTys,
1791                                const SDOperand *Ops, unsigned NumOps) {
1792  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
1793                 Ops, NumOps);
1794}
1795
1796SDOperand SelectionDAG::getNode(unsigned Opcode,
1797                                const MVT::ValueType *VTs, unsigned NumVTs,
1798                                const SDOperand *Ops, unsigned NumOps) {
1799  if (NumVTs == 1)
1800    return getNode(Opcode, VTs[0], Ops, NumOps);
1801  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
1802}
1803
1804SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
1805                                const SDOperand *Ops, unsigned NumOps) {
1806  if (VTList.NumVTs == 1)
1807    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
1808
1809  switch (Opcode) {
1810  // FIXME: figure out how to safely handle things like
1811  // int foo(int x) { return 1 << (x & 255); }
1812  // int bar() { return foo(256); }
1813#if 0
1814  case ISD::SRA_PARTS:
1815  case ISD::SRL_PARTS:
1816  case ISD::SHL_PARTS:
1817    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1818        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1819      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1820    else if (N3.getOpcode() == ISD::AND)
1821      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1822        // If the and is only masking out bits that cannot effect the shift,
1823        // eliminate the and.
1824        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1825        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1826          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1827      }
1828    break;
1829#endif
1830  }
1831
1832  // Memoize the node unless it returns a flag.
1833  SDNode *N;
1834  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
1835    FoldingSetNodeID ID;
1836    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
1837    void *IP = 0;
1838    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1839      return SDOperand(E, 0);
1840    if (NumOps == 1)
1841      N = new UnarySDNode(Opcode, VTList, Ops[0]);
1842    else if (NumOps == 2)
1843      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
1844    else if (NumOps == 3)
1845      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
1846    else
1847      N = new SDNode(Opcode, VTList, Ops, NumOps);
1848    CSEMap.InsertNode(N, IP);
1849  } else {
1850    if (NumOps == 1)
1851      N = new UnarySDNode(Opcode, VTList, Ops[0]);
1852    else if (NumOps == 2)
1853      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
1854    else if (NumOps == 3)
1855      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
1856    else
1857      N = new SDNode(Opcode, VTList, Ops, NumOps);
1858  }
1859  AllNodes.push_back(N);
1860  return SDOperand(N, 0);
1861}
1862
1863SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
1864  return makeVTList(SDNode::getValueTypeList(VT), 1);
1865}
1866
1867SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
1868  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1869       E = VTList.end(); I != E; ++I) {
1870    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1871      return makeVTList(&(*I)[0], 2);
1872  }
1873  std::vector<MVT::ValueType> V;
1874  V.push_back(VT1);
1875  V.push_back(VT2);
1876  VTList.push_front(V);
1877  return makeVTList(&(*VTList.begin())[0], 2);
1878}
1879SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
1880                                 MVT::ValueType VT3) {
1881  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1882       E = VTList.end(); I != E; ++I) {
1883    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
1884        (*I)[2] == VT3)
1885      return makeVTList(&(*I)[0], 3);
1886  }
1887  std::vector<MVT::ValueType> V;
1888  V.push_back(VT1);
1889  V.push_back(VT2);
1890  V.push_back(VT3);
1891  VTList.push_front(V);
1892  return makeVTList(&(*VTList.begin())[0], 3);
1893}
1894
1895SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
1896  switch (NumVTs) {
1897    case 0: assert(0 && "Cannot have nodes without results!");
1898    case 1: return makeVTList(SDNode::getValueTypeList(VTs[0]), 1);
1899    case 2: return getVTList(VTs[0], VTs[1]);
1900    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
1901    default: break;
1902  }
1903
1904  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1905       E = VTList.end(); I != E; ++I) {
1906    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
1907
1908    bool NoMatch = false;
1909    for (unsigned i = 2; i != NumVTs; ++i)
1910      if (VTs[i] != (*I)[i]) {
1911        NoMatch = true;
1912        break;
1913      }
1914    if (!NoMatch)
1915      return makeVTList(&*I->begin(), NumVTs);
1916  }
1917
1918  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
1919  return makeVTList(&*VTList.begin()->begin(), NumVTs);
1920}
1921
1922
1923/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1924/// specified operands.  If the resultant node already exists in the DAG,
1925/// this does not modify the specified node, instead it returns the node that
1926/// already exists.  If the resultant node does not exist in the DAG, the
1927/// input node is returned.  As a degenerate case, if you specify the same
1928/// input operands as the node already has, the input node is returned.
1929SDOperand SelectionDAG::
1930UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1931  SDNode *N = InN.Val;
1932  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1933
1934  // Check to see if there is no change.
1935  if (Op == N->getOperand(0)) return InN;
1936
1937  // See if the modified node already exists.
1938  void *InsertPos = 0;
1939  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1940    return SDOperand(Existing, InN.ResNo);
1941
1942  // Nope it doesn't.  Remove the node from it's current place in the maps.
1943  if (InsertPos)
1944    RemoveNodeFromCSEMaps(N);
1945
1946  // Now we update the operands.
1947  N->OperandList[0].Val->removeUser(N);
1948  Op.Val->addUser(N);
1949  N->OperandList[0] = Op;
1950
1951  // If this gets put into a CSE map, add it.
1952  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1953  return InN;
1954}
1955
1956SDOperand SelectionDAG::
1957UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1958  SDNode *N = InN.Val;
1959  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1960
1961  // Check to see if there is no change.
1962  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1963    return InN;   // No operands changed, just return the input node.
1964
1965  // See if the modified node already exists.
1966  void *InsertPos = 0;
1967  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
1968    return SDOperand(Existing, InN.ResNo);
1969
1970  // Nope it doesn't.  Remove the node from it's current place in the maps.
1971  if (InsertPos)
1972    RemoveNodeFromCSEMaps(N);
1973
1974  // Now we update the operands.
1975  if (N->OperandList[0] != Op1) {
1976    N->OperandList[0].Val->removeUser(N);
1977    Op1.Val->addUser(N);
1978    N->OperandList[0] = Op1;
1979  }
1980  if (N->OperandList[1] != Op2) {
1981    N->OperandList[1].Val->removeUser(N);
1982    Op2.Val->addUser(N);
1983    N->OperandList[1] = Op2;
1984  }
1985
1986  // If this gets put into a CSE map, add it.
1987  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1988  return InN;
1989}
1990
1991SDOperand SelectionDAG::
1992UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1993  SDOperand Ops[] = { Op1, Op2, Op3 };
1994  return UpdateNodeOperands(N, Ops, 3);
1995}
1996
1997SDOperand SelectionDAG::
1998UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1999                   SDOperand Op3, SDOperand Op4) {
2000  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2001  return UpdateNodeOperands(N, Ops, 4);
2002}
2003
2004SDOperand SelectionDAG::
2005UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2006                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2007  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2008  return UpdateNodeOperands(N, Ops, 5);
2009}
2010
2011
2012SDOperand SelectionDAG::
2013UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2014  SDNode *N = InN.Val;
2015  assert(N->getNumOperands() == NumOps &&
2016         "Update with wrong number of operands");
2017
2018  // Check to see if there is no change.
2019  bool AnyChange = false;
2020  for (unsigned i = 0; i != NumOps; ++i) {
2021    if (Ops[i] != N->getOperand(i)) {
2022      AnyChange = true;
2023      break;
2024    }
2025  }
2026
2027  // No operands changed, just return the input node.
2028  if (!AnyChange) return InN;
2029
2030  // See if the modified node already exists.
2031  void *InsertPos = 0;
2032  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2033    return SDOperand(Existing, InN.ResNo);
2034
2035  // Nope it doesn't.  Remove the node from it's current place in the maps.
2036  if (InsertPos)
2037    RemoveNodeFromCSEMaps(N);
2038
2039  // Now we update the operands.
2040  for (unsigned i = 0; i != NumOps; ++i) {
2041    if (N->OperandList[i] != Ops[i]) {
2042      N->OperandList[i].Val->removeUser(N);
2043      Ops[i].Val->addUser(N);
2044      N->OperandList[i] = Ops[i];
2045    }
2046  }
2047
2048  // If this gets put into a CSE map, add it.
2049  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2050  return InN;
2051}
2052
2053
2054/// MorphNodeTo - This frees the operands of the current node, resets the
2055/// opcode, types, and operands to the specified value.  This should only be
2056/// used by the SelectionDAG class.
2057void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2058                         const SDOperand *Ops, unsigned NumOps) {
2059  NodeType = Opc;
2060  ValueList = L.VTs;
2061  NumValues = L.NumVTs;
2062
2063  // Clear the operands list, updating used nodes to remove this from their
2064  // use list.
2065  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2066    I->Val->removeUser(this);
2067
2068  // If NumOps is larger than the # of operands we currently have, reallocate
2069  // the operand list.
2070  if (NumOps > NumOperands) {
2071    if (OperandsNeedDelete)
2072      delete [] OperandList;
2073    OperandList = new SDOperand[NumOps];
2074    OperandsNeedDelete = true;
2075  }
2076
2077  // Assign the new operands.
2078  NumOperands = NumOps;
2079
2080  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2081    OperandList[i] = Ops[i];
2082    SDNode *N = OperandList[i].Val;
2083    N->Uses.push_back(this);
2084  }
2085}
2086
2087/// SelectNodeTo - These are used for target selectors to *mutate* the
2088/// specified node to have the specified return type, Target opcode, and
2089/// operands.  Note that target opcodes are stored as
2090/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2091///
2092/// Note that SelectNodeTo returns the resultant node.  If there is already a
2093/// node of the specified opcode and operands, it returns that node instead of
2094/// the current one.
2095SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2096                                   MVT::ValueType VT) {
2097  SDVTList VTs = getVTList(VT);
2098  FoldingSetNodeID ID;
2099  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2100  void *IP = 0;
2101  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2102    return ON;
2103
2104  RemoveNodeFromCSEMaps(N);
2105
2106  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2107
2108  CSEMap.InsertNode(N, IP);
2109  return N;
2110}
2111
2112SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2113                                   MVT::ValueType VT, SDOperand Op1) {
2114  // If an identical node already exists, use it.
2115  SDVTList VTs = getVTList(VT);
2116  SDOperand Ops[] = { Op1 };
2117
2118  FoldingSetNodeID ID;
2119  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2120  void *IP = 0;
2121  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2122    return ON;
2123
2124  RemoveNodeFromCSEMaps(N);
2125  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2126  CSEMap.InsertNode(N, IP);
2127  return N;
2128}
2129
2130SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2131                                   MVT::ValueType VT, SDOperand Op1,
2132                                   SDOperand Op2) {
2133  // If an identical node already exists, use it.
2134  SDVTList VTs = getVTList(VT);
2135  SDOperand Ops[] = { Op1, Op2 };
2136
2137  FoldingSetNodeID ID;
2138  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2139  void *IP = 0;
2140  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2141    return ON;
2142
2143  RemoveNodeFromCSEMaps(N);
2144
2145  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2146
2147  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2148  return N;
2149}
2150
2151SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2152                                   MVT::ValueType VT, SDOperand Op1,
2153                                   SDOperand Op2, SDOperand Op3) {
2154  // If an identical node already exists, use it.
2155  SDVTList VTs = getVTList(VT);
2156  SDOperand Ops[] = { Op1, Op2, Op3 };
2157  FoldingSetNodeID ID;
2158  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2159  void *IP = 0;
2160  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2161    return ON;
2162
2163  RemoveNodeFromCSEMaps(N);
2164
2165  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2166
2167  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2168  return N;
2169}
2170
2171SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2172                                   MVT::ValueType VT, const SDOperand *Ops,
2173                                   unsigned NumOps) {
2174  // If an identical node already exists, use it.
2175  SDVTList VTs = getVTList(VT);
2176  FoldingSetNodeID ID;
2177  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2178  void *IP = 0;
2179  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2180    return ON;
2181
2182  RemoveNodeFromCSEMaps(N);
2183  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2184
2185  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2186  return N;
2187}
2188
2189SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2190                                   MVT::ValueType VT1, MVT::ValueType VT2,
2191                                   SDOperand Op1, SDOperand Op2) {
2192  SDVTList VTs = getVTList(VT1, VT2);
2193  FoldingSetNodeID ID;
2194  SDOperand Ops[] = { Op1, Op2 };
2195  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2196  void *IP = 0;
2197  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2198    return ON;
2199
2200  RemoveNodeFromCSEMaps(N);
2201  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2202  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2203  return N;
2204}
2205
2206SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2207                                   MVT::ValueType VT1, MVT::ValueType VT2,
2208                                   SDOperand Op1, SDOperand Op2,
2209                                   SDOperand Op3) {
2210  // If an identical node already exists, use it.
2211  SDVTList VTs = getVTList(VT1, VT2);
2212  SDOperand Ops[] = { Op1, Op2, Op3 };
2213  FoldingSetNodeID ID;
2214  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2215  void *IP = 0;
2216  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2217    return ON;
2218
2219  RemoveNodeFromCSEMaps(N);
2220
2221  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2222  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2223  return N;
2224}
2225
2226
2227/// getTargetNode - These are used for target selectors to create a new node
2228/// with specified return type(s), target opcode, and operands.
2229///
2230/// Note that getTargetNode returns the resultant node.  If there is already a
2231/// node of the specified opcode and operands, it returns that node instead of
2232/// the current one.
2233SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2234  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2235}
2236SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2237                                    SDOperand Op1) {
2238  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2239}
2240SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2241                                    SDOperand Op1, SDOperand Op2) {
2242  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2243}
2244SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2245                                    SDOperand Op1, SDOperand Op2,
2246                                    SDOperand Op3) {
2247  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2248}
2249SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2250                                    const SDOperand *Ops, unsigned NumOps) {
2251  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2252}
2253SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2254                                    MVT::ValueType VT2, SDOperand Op1) {
2255  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2256  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2257}
2258SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2259                                    MVT::ValueType VT2, SDOperand Op1,
2260                                    SDOperand Op2) {
2261  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2262  SDOperand Ops[] = { Op1, Op2 };
2263  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2264}
2265SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2266                                    MVT::ValueType VT2, SDOperand Op1,
2267                                    SDOperand Op2, SDOperand Op3) {
2268  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2269  SDOperand Ops[] = { Op1, Op2, Op3 };
2270  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2271}
2272SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2273                                    MVT::ValueType VT2,
2274                                    const SDOperand *Ops, unsigned NumOps) {
2275  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2276  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2277}
2278SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2279                                    MVT::ValueType VT2, MVT::ValueType VT3,
2280                                    SDOperand Op1, SDOperand Op2) {
2281  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2282  SDOperand Ops[] = { Op1, Op2 };
2283  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2284}
2285SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2286                                    MVT::ValueType VT2, MVT::ValueType VT3,
2287                                    const SDOperand *Ops, unsigned NumOps) {
2288  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2289  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2290}
2291
2292/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2293/// This can cause recursive merging of nodes in the DAG.
2294///
2295/// This version assumes From/To have a single result value.
2296///
2297void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2298                                      std::vector<SDNode*> *Deleted) {
2299  SDNode *From = FromN.Val, *To = ToN.Val;
2300  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2301         "Cannot replace with this method!");
2302  assert(From != To && "Cannot replace uses of with self");
2303
2304  while (!From->use_empty()) {
2305    // Process users until they are all gone.
2306    SDNode *U = *From->use_begin();
2307
2308    // This node is about to morph, remove its old self from the CSE maps.
2309    RemoveNodeFromCSEMaps(U);
2310
2311    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2312         I != E; ++I)
2313      if (I->Val == From) {
2314        From->removeUser(U);
2315        I->Val = To;
2316        To->addUser(U);
2317      }
2318
2319    // Now that we have modified U, add it back to the CSE maps.  If it already
2320    // exists there, recursively merge the results together.
2321    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2322      ReplaceAllUsesWith(U, Existing, Deleted);
2323      // U is now dead.
2324      if (Deleted) Deleted->push_back(U);
2325      DeleteNodeNotInCSEMaps(U);
2326    }
2327  }
2328}
2329
2330/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2331/// This can cause recursive merging of nodes in the DAG.
2332///
2333/// This version assumes From/To have matching types and numbers of result
2334/// values.
2335///
2336void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2337                                      std::vector<SDNode*> *Deleted) {
2338  assert(From != To && "Cannot replace uses of with self");
2339  assert(From->getNumValues() == To->getNumValues() &&
2340         "Cannot use this version of ReplaceAllUsesWith!");
2341  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2342    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2343    return;
2344  }
2345
2346  while (!From->use_empty()) {
2347    // Process users until they are all gone.
2348    SDNode *U = *From->use_begin();
2349
2350    // This node is about to morph, remove its old self from the CSE maps.
2351    RemoveNodeFromCSEMaps(U);
2352
2353    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2354         I != E; ++I)
2355      if (I->Val == From) {
2356        From->removeUser(U);
2357        I->Val = To;
2358        To->addUser(U);
2359      }
2360
2361    // Now that we have modified U, add it back to the CSE maps.  If it already
2362    // exists there, recursively merge the results together.
2363    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2364      ReplaceAllUsesWith(U, Existing, Deleted);
2365      // U is now dead.
2366      if (Deleted) Deleted->push_back(U);
2367      DeleteNodeNotInCSEMaps(U);
2368    }
2369  }
2370}
2371
2372/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2373/// This can cause recursive merging of nodes in the DAG.
2374///
2375/// This version can replace From with any result values.  To must match the
2376/// number and types of values returned by From.
2377void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2378                                      const SDOperand *To,
2379                                      std::vector<SDNode*> *Deleted) {
2380  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
2381    // Degenerate case handled above.
2382    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2383    return;
2384  }
2385
2386  while (!From->use_empty()) {
2387    // Process users until they are all gone.
2388    SDNode *U = *From->use_begin();
2389
2390    // This node is about to morph, remove its old self from the CSE maps.
2391    RemoveNodeFromCSEMaps(U);
2392
2393    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2394         I != E; ++I)
2395      if (I->Val == From) {
2396        const SDOperand &ToOp = To[I->ResNo];
2397        From->removeUser(U);
2398        *I = ToOp;
2399        ToOp.Val->addUser(U);
2400      }
2401
2402    // Now that we have modified U, add it back to the CSE maps.  If it already
2403    // exists there, recursively merge the results together.
2404    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2405      ReplaceAllUsesWith(U, Existing, Deleted);
2406      // U is now dead.
2407      if (Deleted) Deleted->push_back(U);
2408      DeleteNodeNotInCSEMaps(U);
2409    }
2410  }
2411}
2412
2413/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2414/// uses of other values produced by From.Val alone.  The Deleted vector is
2415/// handled the same was as for ReplaceAllUsesWith.
2416void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2417                                             std::vector<SDNode*> &Deleted) {
2418  assert(From != To && "Cannot replace a value with itself");
2419  // Handle the simple, trivial, case efficiently.
2420  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2421    ReplaceAllUsesWith(From, To, &Deleted);
2422    return;
2423  }
2424
2425  // Get all of the users of From.Val.  We want these in a nice,
2426  // deterministically ordered and uniqued set, so we use a SmallSetVector.
2427  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
2428
2429  while (!Users.empty()) {
2430    // We know that this user uses some value of From.  If it is the right
2431    // value, update it.
2432    SDNode *User = Users.back();
2433    Users.pop_back();
2434
2435    for (SDOperand *Op = User->OperandList,
2436         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2437      if (*Op == From) {
2438        // Okay, we know this user needs to be updated.  Remove its old self
2439        // from the CSE maps.
2440        RemoveNodeFromCSEMaps(User);
2441
2442        // Update all operands that match "From".
2443        for (; Op != E; ++Op) {
2444          if (*Op == From) {
2445            From.Val->removeUser(User);
2446            *Op = To;
2447            To.Val->addUser(User);
2448          }
2449        }
2450
2451        // Now that we have modified User, add it back to the CSE maps.  If it
2452        // already exists there, recursively merge the results together.
2453        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2454          unsigned NumDeleted = Deleted.size();
2455          ReplaceAllUsesWith(User, Existing, &Deleted);
2456
2457          // User is now dead.
2458          Deleted.push_back(User);
2459          DeleteNodeNotInCSEMaps(User);
2460
2461          // We have to be careful here, because ReplaceAllUsesWith could have
2462          // deleted a user of From, which means there may be dangling pointers
2463          // in the "Users" setvector.  Scan over the deleted node pointers and
2464          // remove them from the setvector.
2465          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2466            Users.remove(Deleted[i]);
2467        }
2468        break;   // Exit the operand scanning loop.
2469      }
2470    }
2471  }
2472}
2473
2474
2475/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2476/// their allnodes order. It returns the maximum id.
2477unsigned SelectionDAG::AssignNodeIds() {
2478  unsigned Id = 0;
2479  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2480    SDNode *N = I;
2481    N->setNodeId(Id++);
2482  }
2483  return Id;
2484}
2485
2486/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2487/// based on their topological order. It returns the maximum id and a vector
2488/// of the SDNodes* in assigned order by reference.
2489unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2490  unsigned DAGSize = AllNodes.size();
2491  std::vector<unsigned> InDegree(DAGSize);
2492  std::vector<SDNode*> Sources;
2493
2494  // Use a two pass approach to avoid using a std::map which is slow.
2495  unsigned Id = 0;
2496  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2497    SDNode *N = I;
2498    N->setNodeId(Id++);
2499    unsigned Degree = N->use_size();
2500    InDegree[N->getNodeId()] = Degree;
2501    if (Degree == 0)
2502      Sources.push_back(N);
2503  }
2504
2505  TopOrder.clear();
2506  while (!Sources.empty()) {
2507    SDNode *N = Sources.back();
2508    Sources.pop_back();
2509    TopOrder.push_back(N);
2510    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2511      SDNode *P = I->Val;
2512      unsigned Degree = --InDegree[P->getNodeId()];
2513      if (Degree == 0)
2514        Sources.push_back(P);
2515    }
2516  }
2517
2518  // Second pass, assign the actual topological order as node ids.
2519  Id = 0;
2520  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2521       TI != TE; ++TI)
2522    (*TI)->setNodeId(Id++);
2523
2524  return Id;
2525}
2526
2527
2528
2529//===----------------------------------------------------------------------===//
2530//                              SDNode Class
2531//===----------------------------------------------------------------------===//
2532
2533// Out-of-line virtual method to give class a home.
2534void SDNode::ANCHOR() {}
2535void UnarySDNode::ANCHOR() {}
2536void BinarySDNode::ANCHOR() {}
2537void TernarySDNode::ANCHOR() {}
2538void HandleSDNode::ANCHOR() {}
2539void StringSDNode::ANCHOR() {}
2540void ConstantSDNode::ANCHOR() {}
2541void ConstantFPSDNode::ANCHOR() {}
2542void GlobalAddressSDNode::ANCHOR() {}
2543void FrameIndexSDNode::ANCHOR() {}
2544void JumpTableSDNode::ANCHOR() {}
2545void ConstantPoolSDNode::ANCHOR() {}
2546void BasicBlockSDNode::ANCHOR() {}
2547void SrcValueSDNode::ANCHOR() {}
2548void RegisterSDNode::ANCHOR() {}
2549void ExternalSymbolSDNode::ANCHOR() {}
2550void CondCodeSDNode::ANCHOR() {}
2551void VTSDNode::ANCHOR() {}
2552void LoadSDNode::ANCHOR() {}
2553void StoreSDNode::ANCHOR() {}
2554
2555HandleSDNode::~HandleSDNode() {
2556  SDVTList VTs = { 0, 0 };
2557  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
2558}
2559
2560
2561/// Profile - Gather unique data for the node.
2562///
2563void SDNode::Profile(FoldingSetNodeID &ID) {
2564  AddNodeIDNode(ID, this);
2565}
2566
2567/// getValueTypeList - Return a pointer to the specified value type.
2568///
2569MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2570  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2571  VTs[VT] = VT;
2572  return &VTs[VT];
2573}
2574
2575/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2576/// indicated value.  This method ignores uses of other values defined by this
2577/// operation.
2578bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2579  assert(Value < getNumValues() && "Bad value!");
2580
2581  // If there is only one value, this is easy.
2582  if (getNumValues() == 1)
2583    return use_size() == NUses;
2584  if (Uses.size() < NUses) return false;
2585
2586  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2587
2588  SmallPtrSet<SDNode*, 32> UsersHandled;
2589
2590  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
2591    SDNode *User = *UI;
2592    if (User->getNumOperands() == 1 ||
2593        UsersHandled.insert(User))     // First time we've seen this?
2594      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2595        if (User->getOperand(i) == TheValue) {
2596          if (NUses == 0)
2597            return false;   // too many uses
2598          --NUses;
2599        }
2600  }
2601
2602  // Found exactly the right number of uses?
2603  return NUses == 0;
2604}
2605
2606
2607/// isOnlyUse - Return true if this node is the only use of N.
2608///
2609bool SDNode::isOnlyUse(SDNode *N) const {
2610  bool Seen = false;
2611  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2612    SDNode *User = *I;
2613    if (User == this)
2614      Seen = true;
2615    else
2616      return false;
2617  }
2618
2619  return Seen;
2620}
2621
2622/// isOperand - Return true if this node is an operand of N.
2623///
2624bool SDOperand::isOperand(SDNode *N) const {
2625  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2626    if (*this == N->getOperand(i))
2627      return true;
2628  return false;
2629}
2630
2631bool SDNode::isOperand(SDNode *N) const {
2632  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2633    if (this == N->OperandList[i].Val)
2634      return true;
2635  return false;
2636}
2637
2638static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
2639                            SmallPtrSet<SDNode *, 32> &Visited) {
2640  if (found || !Visited.insert(N))
2641    return;
2642
2643  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
2644    SDNode *Op = N->getOperand(i).Val;
2645    if (Op == P) {
2646      found = true;
2647      return;
2648    }
2649    findPredecessor(Op, P, found, Visited);
2650  }
2651}
2652
2653/// isPredecessor - Return true if this node is a predecessor of N. This node
2654/// is either an operand of N or it can be reached by recursively traversing
2655/// up the operands.
2656/// NOTE: this is an expensive method. Use it carefully.
2657bool SDNode::isPredecessor(SDNode *N) const {
2658  SmallPtrSet<SDNode *, 32> Visited;
2659  bool found = false;
2660  findPredecessor(N, this, found, Visited);
2661  return found;
2662}
2663
2664uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
2665  assert(Num < NumOperands && "Invalid child # of SDNode!");
2666  return cast<ConstantSDNode>(OperandList[Num])->getValue();
2667}
2668
2669std::string SDNode::getOperationName(const SelectionDAG *G) const {
2670  switch (getOpcode()) {
2671  default:
2672    if (getOpcode() < ISD::BUILTIN_OP_END)
2673      return "<<Unknown DAG Node>>";
2674    else {
2675      if (G) {
2676        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2677          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2678            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2679
2680        TargetLowering &TLI = G->getTargetLoweringInfo();
2681        const char *Name =
2682          TLI.getTargetNodeName(getOpcode());
2683        if (Name) return Name;
2684      }
2685
2686      return "<<Unknown Target Node>>";
2687    }
2688
2689  case ISD::PCMARKER:      return "PCMarker";
2690  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2691  case ISD::SRCVALUE:      return "SrcValue";
2692  case ISD::EntryToken:    return "EntryToken";
2693  case ISD::TokenFactor:   return "TokenFactor";
2694  case ISD::AssertSext:    return "AssertSext";
2695  case ISD::AssertZext:    return "AssertZext";
2696
2697  case ISD::STRING:        return "String";
2698  case ISD::BasicBlock:    return "BasicBlock";
2699  case ISD::VALUETYPE:     return "ValueType";
2700  case ISD::Register:      return "Register";
2701
2702  case ISD::Constant:      return "Constant";
2703  case ISD::ConstantFP:    return "ConstantFP";
2704  case ISD::GlobalAddress: return "GlobalAddress";
2705  case ISD::FrameIndex:    return "FrameIndex";
2706  case ISD::JumpTable:     return "JumpTable";
2707  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
2708  case ISD::RETURNADDR: return "RETURNADDR";
2709  case ISD::FRAMEADDR: return "FRAMEADDR";
2710  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
2711  case ISD::EHSELECTION: return "EHSELECTION";
2712  case ISD::ConstantPool:  return "ConstantPool";
2713  case ISD::ExternalSymbol: return "ExternalSymbol";
2714  case ISD::INTRINSIC_WO_CHAIN: {
2715    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2716    return Intrinsic::getName((Intrinsic::ID)IID);
2717  }
2718  case ISD::INTRINSIC_VOID:
2719  case ISD::INTRINSIC_W_CHAIN: {
2720    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2721    return Intrinsic::getName((Intrinsic::ID)IID);
2722  }
2723
2724  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2725  case ISD::TargetConstant: return "TargetConstant";
2726  case ISD::TargetConstantFP:return "TargetConstantFP";
2727  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2728  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2729  case ISD::TargetJumpTable:  return "TargetJumpTable";
2730  case ISD::TargetConstantPool:  return "TargetConstantPool";
2731  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2732
2733  case ISD::CopyToReg:     return "CopyToReg";
2734  case ISD::CopyFromReg:   return "CopyFromReg";
2735  case ISD::UNDEF:         return "undef";
2736  case ISD::MERGE_VALUES:  return "mergevalues";
2737  case ISD::INLINEASM:     return "inlineasm";
2738  case ISD::LABEL:         return "label";
2739  case ISD::HANDLENODE:    return "handlenode";
2740  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2741  case ISD::CALL:          return "call";
2742
2743  // Unary operators
2744  case ISD::FABS:   return "fabs";
2745  case ISD::FNEG:   return "fneg";
2746  case ISD::FSQRT:  return "fsqrt";
2747  case ISD::FSIN:   return "fsin";
2748  case ISD::FCOS:   return "fcos";
2749  case ISD::FPOWI:  return "fpowi";
2750
2751  // Binary operators
2752  case ISD::ADD:    return "add";
2753  case ISD::SUB:    return "sub";
2754  case ISD::MUL:    return "mul";
2755  case ISD::MULHU:  return "mulhu";
2756  case ISD::MULHS:  return "mulhs";
2757  case ISD::SDIV:   return "sdiv";
2758  case ISD::UDIV:   return "udiv";
2759  case ISD::SREM:   return "srem";
2760  case ISD::UREM:   return "urem";
2761  case ISD::AND:    return "and";
2762  case ISD::OR:     return "or";
2763  case ISD::XOR:    return "xor";
2764  case ISD::SHL:    return "shl";
2765  case ISD::SRA:    return "sra";
2766  case ISD::SRL:    return "srl";
2767  case ISD::ROTL:   return "rotl";
2768  case ISD::ROTR:   return "rotr";
2769  case ISD::FADD:   return "fadd";
2770  case ISD::FSUB:   return "fsub";
2771  case ISD::FMUL:   return "fmul";
2772  case ISD::FDIV:   return "fdiv";
2773  case ISD::FREM:   return "frem";
2774  case ISD::FCOPYSIGN: return "fcopysign";
2775  case ISD::VADD:   return "vadd";
2776  case ISD::VSUB:   return "vsub";
2777  case ISD::VMUL:   return "vmul";
2778  case ISD::VSDIV:  return "vsdiv";
2779  case ISD::VUDIV:  return "vudiv";
2780  case ISD::VAND:   return "vand";
2781  case ISD::VOR:    return "vor";
2782  case ISD::VXOR:   return "vxor";
2783
2784  case ISD::SETCC:       return "setcc";
2785  case ISD::SELECT:      return "select";
2786  case ISD::SELECT_CC:   return "select_cc";
2787  case ISD::VSELECT:     return "vselect";
2788  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2789  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2790  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2791  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2792  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2793  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2794  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2795  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2796  case ISD::VBIT_CONVERT:        return "vbit_convert";
2797  case ISD::CARRY_FALSE:         return "carry_false";
2798  case ISD::ADDC:        return "addc";
2799  case ISD::ADDE:        return "adde";
2800  case ISD::SUBC:        return "subc";
2801  case ISD::SUBE:        return "sube";
2802  case ISD::SHL_PARTS:   return "shl_parts";
2803  case ISD::SRA_PARTS:   return "sra_parts";
2804  case ISD::SRL_PARTS:   return "srl_parts";
2805
2806  // Conversion operators.
2807  case ISD::SIGN_EXTEND: return "sign_extend";
2808  case ISD::ZERO_EXTEND: return "zero_extend";
2809  case ISD::ANY_EXTEND:  return "any_extend";
2810  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2811  case ISD::TRUNCATE:    return "truncate";
2812  case ISD::FP_ROUND:    return "fp_round";
2813  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2814  case ISD::FP_EXTEND:   return "fp_extend";
2815
2816  case ISD::SINT_TO_FP:  return "sint_to_fp";
2817  case ISD::UINT_TO_FP:  return "uint_to_fp";
2818  case ISD::FP_TO_SINT:  return "fp_to_sint";
2819  case ISD::FP_TO_UINT:  return "fp_to_uint";
2820  case ISD::BIT_CONVERT: return "bit_convert";
2821
2822    // Control flow instructions
2823  case ISD::BR:      return "br";
2824  case ISD::BRIND:   return "brind";
2825  case ISD::BR_JT:   return "br_jt";
2826  case ISD::BRCOND:  return "brcond";
2827  case ISD::BR_CC:   return "br_cc";
2828  case ISD::RET:     return "ret";
2829  case ISD::CALLSEQ_START:  return "callseq_start";
2830  case ISD::CALLSEQ_END:    return "callseq_end";
2831
2832    // Other operators
2833  case ISD::LOAD:               return "load";
2834  case ISD::STORE:              return "store";
2835  case ISD::VLOAD:              return "vload";
2836  case ISD::VAARG:              return "vaarg";
2837  case ISD::VACOPY:             return "vacopy";
2838  case ISD::VAEND:              return "vaend";
2839  case ISD::VASTART:            return "vastart";
2840  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2841  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2842  case ISD::BUILD_PAIR:         return "build_pair";
2843  case ISD::STACKSAVE:          return "stacksave";
2844  case ISD::STACKRESTORE:       return "stackrestore";
2845
2846  // Block memory operations.
2847  case ISD::MEMSET:  return "memset";
2848  case ISD::MEMCPY:  return "memcpy";
2849  case ISD::MEMMOVE: return "memmove";
2850
2851  // Bit manipulation
2852  case ISD::BSWAP:   return "bswap";
2853  case ISD::CTPOP:   return "ctpop";
2854  case ISD::CTTZ:    return "cttz";
2855  case ISD::CTLZ:    return "ctlz";
2856
2857  // Debug info
2858  case ISD::LOCATION: return "location";
2859  case ISD::DEBUG_LOC: return "debug_loc";
2860
2861  case ISD::CONDCODE:
2862    switch (cast<CondCodeSDNode>(this)->get()) {
2863    default: assert(0 && "Unknown setcc condition!");
2864    case ISD::SETOEQ:  return "setoeq";
2865    case ISD::SETOGT:  return "setogt";
2866    case ISD::SETOGE:  return "setoge";
2867    case ISD::SETOLT:  return "setolt";
2868    case ISD::SETOLE:  return "setole";
2869    case ISD::SETONE:  return "setone";
2870
2871    case ISD::SETO:    return "seto";
2872    case ISD::SETUO:   return "setuo";
2873    case ISD::SETUEQ:  return "setue";
2874    case ISD::SETUGT:  return "setugt";
2875    case ISD::SETUGE:  return "setuge";
2876    case ISD::SETULT:  return "setult";
2877    case ISD::SETULE:  return "setule";
2878    case ISD::SETUNE:  return "setune";
2879
2880    case ISD::SETEQ:   return "seteq";
2881    case ISD::SETGT:   return "setgt";
2882    case ISD::SETGE:   return "setge";
2883    case ISD::SETLT:   return "setlt";
2884    case ISD::SETLE:   return "setle";
2885    case ISD::SETNE:   return "setne";
2886    }
2887  }
2888}
2889
2890const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
2891  switch (AM) {
2892  default:
2893    return "";
2894  case ISD::PRE_INC:
2895    return "<pre-inc>";
2896  case ISD::PRE_DEC:
2897    return "<pre-dec>";
2898  case ISD::POST_INC:
2899    return "<post-inc>";
2900  case ISD::POST_DEC:
2901    return "<post-dec>";
2902  }
2903}
2904
2905void SDNode::dump() const { dump(0); }
2906void SDNode::dump(const SelectionDAG *G) const {
2907  cerr << (void*)this << ": ";
2908
2909  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2910    if (i) cerr << ",";
2911    if (getValueType(i) == MVT::Other)
2912      cerr << "ch";
2913    else
2914      cerr << MVT::getValueTypeString(getValueType(i));
2915  }
2916  cerr << " = " << getOperationName(G);
2917
2918  cerr << " ";
2919  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2920    if (i) cerr << ", ";
2921    cerr << (void*)getOperand(i).Val;
2922    if (unsigned RN = getOperand(i).ResNo)
2923      cerr << ":" << RN;
2924  }
2925
2926  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2927    cerr << "<" << CSDN->getValue() << ">";
2928  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2929    cerr << "<" << CSDN->getValue() << ">";
2930  } else if (const GlobalAddressSDNode *GADN =
2931             dyn_cast<GlobalAddressSDNode>(this)) {
2932    int offset = GADN->getOffset();
2933    cerr << "<";
2934    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
2935    if (offset > 0)
2936      cerr << " + " << offset;
2937    else
2938      cerr << " " << offset;
2939  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2940    cerr << "<" << FIDN->getIndex() << ">";
2941  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
2942    cerr << "<" << JTDN->getIndex() << ">";
2943  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2944    int offset = CP->getOffset();
2945    if (CP->isMachineConstantPoolEntry())
2946      cerr << "<" << *CP->getMachineCPVal() << ">";
2947    else
2948      cerr << "<" << *CP->getConstVal() << ">";
2949    if (offset > 0)
2950      cerr << " + " << offset;
2951    else
2952      cerr << " " << offset;
2953  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2954    cerr << "<";
2955    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2956    if (LBB)
2957      cerr << LBB->getName() << " ";
2958    cerr << (const void*)BBDN->getBasicBlock() << ">";
2959  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2960    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2961      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2962    } else {
2963      cerr << " #" << R->getReg();
2964    }
2965  } else if (const ExternalSymbolSDNode *ES =
2966             dyn_cast<ExternalSymbolSDNode>(this)) {
2967    cerr << "'" << ES->getSymbol() << "'";
2968  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2969    if (M->getValue())
2970      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2971    else
2972      cerr << "<null:" << M->getOffset() << ">";
2973  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2974    cerr << ":" << getValueTypeString(N->getVT());
2975  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
2976    bool doExt = true;
2977    switch (LD->getExtensionType()) {
2978    default: doExt = false; break;
2979    case ISD::EXTLOAD:
2980      cerr << " <anyext ";
2981      break;
2982    case ISD::SEXTLOAD:
2983      cerr << " <sext ";
2984      break;
2985    case ISD::ZEXTLOAD:
2986      cerr << " <zext ";
2987      break;
2988    }
2989    if (doExt)
2990      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
2991
2992    const char *AM = getIndexedModeName(LD->getAddressingMode());
2993    if (AM != "")
2994      cerr << " " << AM;
2995  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
2996    if (ST->isTruncatingStore())
2997      cerr << " <trunc "
2998           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
2999
3000    const char *AM = getIndexedModeName(ST->getAddressingMode());
3001    if (AM != "")
3002      cerr << " " << AM;
3003  }
3004}
3005
3006static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3007  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3008    if (N->getOperand(i).Val->hasOneUse())
3009      DumpNodes(N->getOperand(i).Val, indent+2, G);
3010    else
3011      cerr << "\n" << std::string(indent+2, ' ')
3012           << (void*)N->getOperand(i).Val << ": <multiple use>";
3013
3014
3015  cerr << "\n" << std::string(indent, ' ');
3016  N->dump(G);
3017}
3018
3019void SelectionDAG::dump() const {
3020  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3021  std::vector<const SDNode*> Nodes;
3022  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3023       I != E; ++I)
3024    Nodes.push_back(I);
3025
3026  std::sort(Nodes.begin(), Nodes.end());
3027
3028  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3029    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3030      DumpNodes(Nodes[i], 2, this);
3031  }
3032
3033  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3034
3035  cerr << "\n\n";
3036}
3037
3038const Type *ConstantPoolSDNode::getType() const {
3039  if (isMachineConstantPoolEntry())
3040    return Val.MachineCPVal->getType();
3041  return Val.ConstVal->getType();
3042}
3043