SelectionDAG.cpp revision 4a544a79bd735967f1d33fe675ae4566dbd17813
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetSelectionDAGInfo.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetIntrinsicInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/ManagedStatic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Support/Mutex.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallSet.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64  switch (VT.getSimpleVT().SimpleTy) {
65  default: llvm_unreachable("Unknown FP format");
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76//===----------------------------------------------------------------------===//
77//                              ConstantFPSDNode Class
78//===----------------------------------------------------------------------===//
79
80/// isExactlyValue - We don't rely on operator== working on double values, as
81/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82/// As such, this method can be used to do an exact bit-for-bit comparison of
83/// two floating point values.
84bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85  return getValueAPF().bitwiseIsEqual(V);
86}
87
88bool ConstantFPSDNode::isValueValidForType(EVT VT,
89                                           const APFloat& Val) {
90  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92  // PPC long double cannot be converted to any other type.
93  if (VT == MVT::ppcf128 ||
94      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95    return false;
96
97  // convert modifies in place, so make a copy.
98  APFloat Val2 = APFloat(Val);
99  bool losesInfo;
100  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101                      &losesInfo);
102  return !losesInfo;
103}
104
105//===----------------------------------------------------------------------===//
106//                              ISD Namespace
107//===----------------------------------------------------------------------===//
108
109/// isBuildVectorAllOnes - Return true if the specified node is a
110/// BUILD_VECTOR where all of the elements are ~0 or undef.
111bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112  // Look through a bit convert.
113  if (N->getOpcode() == ISD::BITCAST)
114    N = N->getOperand(0).getNode();
115
116  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118  unsigned i = 0, e = N->getNumOperands();
119
120  // Skip over all of the undef values.
121  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122    ++i;
123
124  // Do not accept an all-undef vector.
125  if (i == e) return false;
126
127  // Do not accept build_vectors that aren't all constants or which have non-~0
128  // elements.
129  SDValue NotZero = N->getOperand(i);
130  if (isa<ConstantSDNode>(NotZero)) {
131    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132      return false;
133  } else if (isa<ConstantFPSDNode>(NotZero)) {
134    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135                bitcastToAPInt().isAllOnesValue())
136      return false;
137  } else
138    return false;
139
140  // Okay, we have at least one ~0 value, check to see if the rest match or are
141  // undefs.
142  for (++i; i != e; ++i)
143    if (N->getOperand(i) != NotZero &&
144        N->getOperand(i).getOpcode() != ISD::UNDEF)
145      return false;
146  return true;
147}
148
149
150/// isBuildVectorAllZeros - Return true if the specified node is a
151/// BUILD_VECTOR where all of the elements are 0 or undef.
152bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153  // Look through a bit convert.
154  if (N->getOpcode() == ISD::BITCAST)
155    N = N->getOperand(0).getNode();
156
157  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159  unsigned i = 0, e = N->getNumOperands();
160
161  // Skip over all of the undef values.
162  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163    ++i;
164
165  // Do not accept an all-undef vector.
166  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  if (NumElems == 1)
202    return false;
203  for (unsigned i = 1; i < NumElems; ++i) {
204    SDValue V = N->getOperand(i);
205    if (V.getOpcode() != ISD::UNDEF)
206      return false;
207  }
208  return true;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: llvm_unreachable("Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX:
436  case ISD::ATOMIC_LOAD:
437  case ISD::ATOMIC_STORE: {
438    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
439    ID.AddInteger(AT->getMemoryVT().getRawBits());
440    ID.AddInteger(AT->getRawSubclassData());
441    break;
442  }
443  case ISD::VECTOR_SHUFFLE: {
444    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
445    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
446         i != e; ++i)
447      ID.AddInteger(SVN->getMaskElt(i));
448    break;
449  }
450  case ISD::TargetBlockAddress:
451  case ISD::BlockAddress: {
452    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
453    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
454    break;
455  }
456  } // end switch (N->getOpcode())
457}
458
459/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
460/// data.
461static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
462  AddNodeIDOpcode(ID, N->getOpcode());
463  // Add the return value info.
464  AddNodeIDValueTypes(ID, N->getVTList());
465  // Add the operand info.
466  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
467
468  // Handle SDNode leafs with special info.
469  AddNodeIDCustom(ID, N);
470}
471
472/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
473/// the CSE map that carries volatility, temporalness, indexing mode, and
474/// extension/truncation information.
475///
476static inline unsigned
477encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
478                     bool isNonTemporal) {
479  assert((ConvType & 3) == ConvType &&
480         "ConvType may not require more than 2 bits!");
481  assert((AM & 7) == AM &&
482         "AM may not require more than 3 bits!");
483  return ConvType |
484         (AM << 2) |
485         (isVolatile << 5) |
486         (isNonTemporal << 6);
487}
488
489//===----------------------------------------------------------------------===//
490//                              SelectionDAG Class
491//===----------------------------------------------------------------------===//
492
493/// doNotCSE - Return true if CSE should not be performed for this node.
494static bool doNotCSE(SDNode *N) {
495  if (N->getValueType(0) == MVT::Glue)
496    return true; // Never CSE anything that produces a flag.
497
498  switch (N->getOpcode()) {
499  default: break;
500  case ISD::HANDLENODE:
501  case ISD::EH_LABEL:
502    return true;   // Never CSE these nodes.
503  }
504
505  // Check that remaining values produced are not flags.
506  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
507    if (N->getValueType(i) == MVT::Glue)
508      return true; // Never CSE anything that produces a flag.
509
510  return false;
511}
512
513/// RemoveDeadNodes - This method deletes all unreachable nodes in the
514/// SelectionDAG.
515void SelectionDAG::RemoveDeadNodes() {
516  // Create a dummy node (which is not added to allnodes), that adds a reference
517  // to the root node, preventing it from being deleted.
518  HandleSDNode Dummy(getRoot());
519
520  SmallVector<SDNode*, 128> DeadNodes;
521
522  // Add all obviously-dead nodes to the DeadNodes worklist.
523  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
524    if (I->use_empty())
525      DeadNodes.push_back(I);
526
527  RemoveDeadNodes(DeadNodes);
528
529  // If the root changed (e.g. it was a dead load, update the root).
530  setRoot(Dummy.getValue());
531}
532
533/// RemoveDeadNodes - This method deletes the unreachable nodes in the
534/// given list, and any nodes that become unreachable as a result.
535void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
536                                   DAGUpdateListener *UpdateListener) {
537
538  // Process the worklist, deleting the nodes and adding their uses to the
539  // worklist.
540  while (!DeadNodes.empty()) {
541    SDNode *N = DeadNodes.pop_back_val();
542
543    if (UpdateListener)
544      UpdateListener->NodeDeleted(N, 0);
545
546    // Take the node out of the appropriate CSE map.
547    RemoveNodeFromCSEMaps(N);
548
549    // Next, brutally remove the operand list.  This is safe to do, as there are
550    // no cycles in the graph.
551    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
552      SDUse &Use = *I++;
553      SDNode *Operand = Use.getNode();
554      Use.set(SDValue());
555
556      // Now that we removed this operand, see if there are no uses of it left.
557      if (Operand->use_empty())
558        DeadNodes.push_back(Operand);
559    }
560
561    DeallocateNode(N);
562  }
563}
564
565void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
566  SmallVector<SDNode*, 16> DeadNodes(1, N);
567  RemoveDeadNodes(DeadNodes, UpdateListener);
568}
569
570void SelectionDAG::DeleteNode(SDNode *N) {
571  // First take this out of the appropriate CSE map.
572  RemoveNodeFromCSEMaps(N);
573
574  // Finally, remove uses due to operands of this node, remove from the
575  // AllNodes list, and delete the node.
576  DeleteNodeNotInCSEMaps(N);
577}
578
579void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
580  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
581  assert(N->use_empty() && "Cannot delete a node that is not dead!");
582
583  // Drop all of the operands and decrement used node's use counts.
584  N->DropOperands();
585
586  DeallocateNode(N);
587}
588
589void SelectionDAG::DeallocateNode(SDNode *N) {
590  if (N->OperandsNeedDelete)
591    delete[] N->OperandList;
592
593  // Set the opcode to DELETED_NODE to help catch bugs when node
594  // memory is reallocated.
595  N->NodeType = ISD::DELETED_NODE;
596
597  NodeAllocator.Deallocate(AllNodes.remove(N));
598
599  // Remove the ordering of this node.
600  Ordering->remove(N);
601
602  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
603  ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
604  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
605    DbgVals[i]->setIsInvalidated();
606}
607
608/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
609/// correspond to it.  This is useful when we're about to delete or repurpose
610/// the node.  We don't want future request for structurally identical nodes
611/// to return N anymore.
612bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
613  bool Erased = false;
614  switch (N->getOpcode()) {
615  case ISD::HANDLENODE: return false;  // noop.
616  case ISD::CONDCODE:
617    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618           "Cond code doesn't exist!");
619    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621    break;
622  case ISD::ExternalSymbol:
623    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::TargetExternalSymbol: {
626    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627    Erased = TargetExternalSymbols.erase(
628               std::pair<std::string,unsigned char>(ESN->getSymbol(),
629                                                    ESN->getTargetFlags()));
630    break;
631  }
632  case ISD::VALUETYPE: {
633    EVT VT = cast<VTSDNode>(N)->getVT();
634    if (VT.isExtended()) {
635      Erased = ExtendedValueTypeNodes.erase(VT);
636    } else {
637      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639    }
640    break;
641  }
642  default:
643    // Remove it from the CSE Map.
644    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
645    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748#ifndef NDEBUG
749/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
750static void VerifyNodeCommon(SDNode *N) {
751  switch (N->getOpcode()) {
752  default:
753    break;
754  case ISD::BUILD_PAIR: {
755    EVT VT = N->getValueType(0);
756    assert(N->getNumValues() == 1 && "Too many results!");
757    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
758           "Wrong return type!");
759    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
760    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
761           "Mismatched operand types!");
762    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
763           "Wrong operand type!");
764    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
765           "Wrong return type size");
766    break;
767  }
768  case ISD::BUILD_VECTOR: {
769    assert(N->getNumValues() == 1 && "Too many results!");
770    assert(N->getValueType(0).isVector() && "Wrong return type!");
771    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
772           "Wrong number of operands!");
773    EVT EltVT = N->getValueType(0).getVectorElementType();
774    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
775      assert((I->getValueType() == EltVT ||
776             (EltVT.isInteger() && I->getValueType().isInteger() &&
777              EltVT.bitsLE(I->getValueType()))) &&
778            "Wrong operand type!");
779    break;
780  }
781  }
782}
783
784/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
785static void VerifySDNode(SDNode *N) {
786  // The SDNode allocators cannot be used to allocate nodes with fields that are
787  // not present in an SDNode!
788  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
789  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
790  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
791  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
792  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
793  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
794  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
795  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
796  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
797  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
798  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
799  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
800  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
801  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
802  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
803  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
804  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
805  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
806  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
807
808  VerifyNodeCommon(N);
809}
810
811/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
812/// invalid.
813static void VerifyMachineNode(SDNode *N) {
814  // The MachineNode allocators cannot be used to allocate nodes with fields
815  // that are not present in a MachineNode!
816  // Currently there are no such nodes.
817
818  VerifyNodeCommon(N);
819}
820#endif // NDEBUG
821
822/// getEVTAlignment - Compute the default alignment value for the
823/// given type.
824///
825unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
826  Type *Ty = VT == MVT::iPTR ?
827                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
828                   VT.getTypeForEVT(*getContext());
829
830  return TLI.getTargetData()->getABITypeAlignment(Ty);
831}
832
833// EntryNode could meaningfully have debug info if we can find it...
834SelectionDAG::SelectionDAG(const TargetMachine &tm)
835  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
836    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
837    Root(getEntryNode()), Ordering(0) {
838  AllNodes.push_back(&EntryNode);
839  Ordering = new SDNodeOrdering();
840  DbgInfo = new SDDbgInfo();
841}
842
843void SelectionDAG::init(MachineFunction &mf) {
844  MF = &mf;
845  Context = &mf.getFunction()->getContext();
846}
847
848SelectionDAG::~SelectionDAG() {
849  allnodes_clear();
850  delete Ordering;
851  delete DbgInfo;
852}
853
854void SelectionDAG::allnodes_clear() {
855  assert(&*AllNodes.begin() == &EntryNode);
856  AllNodes.remove(AllNodes.begin());
857  while (!AllNodes.empty())
858    DeallocateNode(AllNodes.begin());
859}
860
861void SelectionDAG::clear() {
862  allnodes_clear();
863  OperandAllocator.Reset();
864  CSEMap.clear();
865
866  ExtendedValueTypeNodes.clear();
867  ExternalSymbols.clear();
868  TargetExternalSymbols.clear();
869  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
870            static_cast<CondCodeSDNode*>(0));
871  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
872            static_cast<SDNode*>(0));
873
874  EntryNode.UseList = 0;
875  AllNodes.push_back(&EntryNode);
876  Root = getEntryNode();
877  Ordering->clear();
878  DbgInfo->clear();
879}
880
881SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
882  return VT.bitsGT(Op.getValueType()) ?
883    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
884    getNode(ISD::TRUNCATE, DL, VT, Op);
885}
886
887SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
888  return VT.bitsGT(Op.getValueType()) ?
889    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
890    getNode(ISD::TRUNCATE, DL, VT, Op);
891}
892
893SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
894  assert(!VT.isVector() &&
895         "getZeroExtendInReg should use the vector element type instead of "
896         "the vector type!");
897  if (Op.getValueType() == VT) return Op;
898  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
899  APInt Imm = APInt::getLowBitsSet(BitWidth,
900                                   VT.getSizeInBits());
901  return getNode(ISD::AND, DL, Op.getValueType(), Op,
902                 getConstant(Imm, Op.getValueType()));
903}
904
905/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
906///
907SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
908  EVT EltVT = VT.getScalarType();
909  SDValue NegOne =
910    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
911  return getNode(ISD::XOR, DL, VT, Val, NegOne);
912}
913
914SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
915  EVT EltVT = VT.getScalarType();
916  assert((EltVT.getSizeInBits() >= 64 ||
917         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
918         "getConstant with a uint64_t value that doesn't fit in the type!");
919  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
920}
921
922SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
923  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
924}
925
926SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
927  assert(VT.isInteger() && "Cannot create FP integer constant!");
928
929  EVT EltVT = VT.getScalarType();
930  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
931         "APInt size does not match type size!");
932
933  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
934  FoldingSetNodeID ID;
935  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
936  ID.AddPointer(&Val);
937  void *IP = 0;
938  SDNode *N = NULL;
939  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
940    if (!VT.isVector())
941      return SDValue(N, 0);
942
943  if (!N) {
944    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
945    CSEMap.InsertNode(N, IP);
946    AllNodes.push_back(N);
947  }
948
949  SDValue Result(N, 0);
950  if (VT.isVector()) {
951    SmallVector<SDValue, 8> Ops;
952    Ops.assign(VT.getVectorNumElements(), Result);
953    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
954  }
955  return Result;
956}
957
958SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
959  return getConstant(Val, TLI.getPointerTy(), isTarget);
960}
961
962
963SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
964  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
965}
966
967SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
968  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
969
970  EVT EltVT = VT.getScalarType();
971
972  // Do the map lookup using the actual bit pattern for the floating point
973  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
974  // we don't have issues with SNANs.
975  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
976  FoldingSetNodeID ID;
977  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
978  ID.AddPointer(&V);
979  void *IP = 0;
980  SDNode *N = NULL;
981  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
982    if (!VT.isVector())
983      return SDValue(N, 0);
984
985  if (!N) {
986    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
987    CSEMap.InsertNode(N, IP);
988    AllNodes.push_back(N);
989  }
990
991  SDValue Result(N, 0);
992  if (VT.isVector()) {
993    SmallVector<SDValue, 8> Ops;
994    Ops.assign(VT.getVectorNumElements(), Result);
995    // FIXME DebugLoc info might be appropriate here
996    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
997  }
998  return Result;
999}
1000
1001SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1002  EVT EltVT = VT.getScalarType();
1003  if (EltVT==MVT::f32)
1004    return getConstantFP(APFloat((float)Val), VT, isTarget);
1005  else if (EltVT==MVT::f64)
1006    return getConstantFP(APFloat(Val), VT, isTarget);
1007  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1008    bool ignored;
1009    APFloat apf = APFloat(Val);
1010    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1011                &ignored);
1012    return getConstantFP(apf, VT, isTarget);
1013  } else {
1014    assert(0 && "Unsupported type in getConstantFP");
1015    return SDValue();
1016  }
1017}
1018
1019SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1020                                       EVT VT, int64_t Offset,
1021                                       bool isTargetGA,
1022                                       unsigned char TargetFlags) {
1023  assert((TargetFlags == 0 || isTargetGA) &&
1024         "Cannot set target flags on target-independent globals");
1025
1026  // Truncate (with sign-extension) the offset value to the pointer size.
1027  EVT PTy = TLI.getPointerTy();
1028  unsigned BitWidth = PTy.getSizeInBits();
1029  if (BitWidth < 64)
1030    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1031
1032  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1033  if (!GVar) {
1034    // If GV is an alias then use the aliasee for determining thread-localness.
1035    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1036      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1037  }
1038
1039  unsigned Opc;
1040  if (GVar && GVar->isThreadLocal())
1041    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1042  else
1043    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1044
1045  FoldingSetNodeID ID;
1046  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1047  ID.AddPointer(GV);
1048  ID.AddInteger(Offset);
1049  ID.AddInteger(TargetFlags);
1050  void *IP = 0;
1051  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1052    return SDValue(E, 0);
1053
1054  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1055                                                      Offset, TargetFlags);
1056  CSEMap.InsertNode(N, IP);
1057  AllNodes.push_back(N);
1058  return SDValue(N, 0);
1059}
1060
1061SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1062  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1063  FoldingSetNodeID ID;
1064  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1065  ID.AddInteger(FI);
1066  void *IP = 0;
1067  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1068    return SDValue(E, 0);
1069
1070  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1071  CSEMap.InsertNode(N, IP);
1072  AllNodes.push_back(N);
1073  return SDValue(N, 0);
1074}
1075
1076SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1077                                   unsigned char TargetFlags) {
1078  assert((TargetFlags == 0 || isTarget) &&
1079         "Cannot set target flags on target-independent jump tables");
1080  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1081  FoldingSetNodeID ID;
1082  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1083  ID.AddInteger(JTI);
1084  ID.AddInteger(TargetFlags);
1085  void *IP = 0;
1086  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1087    return SDValue(E, 0);
1088
1089  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1090                                                  TargetFlags);
1091  CSEMap.InsertNode(N, IP);
1092  AllNodes.push_back(N);
1093  return SDValue(N, 0);
1094}
1095
1096SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1097                                      unsigned Alignment, int Offset,
1098                                      bool isTarget,
1099                                      unsigned char TargetFlags) {
1100  assert((TargetFlags == 0 || isTarget) &&
1101         "Cannot set target flags on target-independent globals");
1102  if (Alignment == 0)
1103    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1104  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1105  FoldingSetNodeID ID;
1106  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1107  ID.AddInteger(Alignment);
1108  ID.AddInteger(Offset);
1109  ID.AddPointer(C);
1110  ID.AddInteger(TargetFlags);
1111  void *IP = 0;
1112  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1113    return SDValue(E, 0);
1114
1115  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1116                                                     Alignment, TargetFlags);
1117  CSEMap.InsertNode(N, IP);
1118  AllNodes.push_back(N);
1119  return SDValue(N, 0);
1120}
1121
1122
1123SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1124                                      unsigned Alignment, int Offset,
1125                                      bool isTarget,
1126                                      unsigned char TargetFlags) {
1127  assert((TargetFlags == 0 || isTarget) &&
1128         "Cannot set target flags on target-independent globals");
1129  if (Alignment == 0)
1130    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1131  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1132  FoldingSetNodeID ID;
1133  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1134  ID.AddInteger(Alignment);
1135  ID.AddInteger(Offset);
1136  C->AddSelectionDAGCSEId(ID);
1137  ID.AddInteger(TargetFlags);
1138  void *IP = 0;
1139  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1140    return SDValue(E, 0);
1141
1142  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1143                                                     Alignment, TargetFlags);
1144  CSEMap.InsertNode(N, IP);
1145  AllNodes.push_back(N);
1146  return SDValue(N, 0);
1147}
1148
1149SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1150  FoldingSetNodeID ID;
1151  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1152  ID.AddPointer(MBB);
1153  void *IP = 0;
1154  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1155    return SDValue(E, 0);
1156
1157  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1158  CSEMap.InsertNode(N, IP);
1159  AllNodes.push_back(N);
1160  return SDValue(N, 0);
1161}
1162
1163SDValue SelectionDAG::getValueType(EVT VT) {
1164  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1165      ValueTypeNodes.size())
1166    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1167
1168  SDNode *&N = VT.isExtended() ?
1169    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1170
1171  if (N) return SDValue(N, 0);
1172  N = new (NodeAllocator) VTSDNode(VT);
1173  AllNodes.push_back(N);
1174  return SDValue(N, 0);
1175}
1176
1177SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1178  SDNode *&N = ExternalSymbols[Sym];
1179  if (N) return SDValue(N, 0);
1180  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1181  AllNodes.push_back(N);
1182  return SDValue(N, 0);
1183}
1184
1185SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1186                                              unsigned char TargetFlags) {
1187  SDNode *&N =
1188    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1189                                                               TargetFlags)];
1190  if (N) return SDValue(N, 0);
1191  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1192  AllNodes.push_back(N);
1193  return SDValue(N, 0);
1194}
1195
1196SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1197  if ((unsigned)Cond >= CondCodeNodes.size())
1198    CondCodeNodes.resize(Cond+1);
1199
1200  if (CondCodeNodes[Cond] == 0) {
1201    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1202    CondCodeNodes[Cond] = N;
1203    AllNodes.push_back(N);
1204  }
1205
1206  return SDValue(CondCodeNodes[Cond], 0);
1207}
1208
1209// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1210// the shuffle mask M that point at N1 to point at N2, and indices that point
1211// N2 to point at N1.
1212static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1213  std::swap(N1, N2);
1214  int NElts = M.size();
1215  for (int i = 0; i != NElts; ++i) {
1216    if (M[i] >= NElts)
1217      M[i] -= NElts;
1218    else if (M[i] >= 0)
1219      M[i] += NElts;
1220  }
1221}
1222
1223SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1224                                       SDValue N2, const int *Mask) {
1225  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1226  assert(VT.isVector() && N1.getValueType().isVector() &&
1227         "Vector Shuffle VTs must be a vectors");
1228  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1229         && "Vector Shuffle VTs must have same element type");
1230
1231  // Canonicalize shuffle undef, undef -> undef
1232  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1233    return getUNDEF(VT);
1234
1235  // Validate that all indices in Mask are within the range of the elements
1236  // input to the shuffle.
1237  unsigned NElts = VT.getVectorNumElements();
1238  SmallVector<int, 8> MaskVec;
1239  for (unsigned i = 0; i != NElts; ++i) {
1240    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1241    MaskVec.push_back(Mask[i]);
1242  }
1243
1244  // Canonicalize shuffle v, v -> v, undef
1245  if (N1 == N2) {
1246    N2 = getUNDEF(VT);
1247    for (unsigned i = 0; i != NElts; ++i)
1248      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1249  }
1250
1251  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1252  if (N1.getOpcode() == ISD::UNDEF)
1253    commuteShuffle(N1, N2, MaskVec);
1254
1255  // Canonicalize all index into lhs, -> shuffle lhs, undef
1256  // Canonicalize all index into rhs, -> shuffle rhs, undef
1257  bool AllLHS = true, AllRHS = true;
1258  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1259  for (unsigned i = 0; i != NElts; ++i) {
1260    if (MaskVec[i] >= (int)NElts) {
1261      if (N2Undef)
1262        MaskVec[i] = -1;
1263      else
1264        AllLHS = false;
1265    } else if (MaskVec[i] >= 0) {
1266      AllRHS = false;
1267    }
1268  }
1269  if (AllLHS && AllRHS)
1270    return getUNDEF(VT);
1271  if (AllLHS && !N2Undef)
1272    N2 = getUNDEF(VT);
1273  if (AllRHS) {
1274    N1 = getUNDEF(VT);
1275    commuteShuffle(N1, N2, MaskVec);
1276  }
1277
1278  // If Identity shuffle, or all shuffle in to undef, return that node.
1279  bool AllUndef = true;
1280  bool Identity = true;
1281  for (unsigned i = 0; i != NElts; ++i) {
1282    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1283    if (MaskVec[i] >= 0) AllUndef = false;
1284  }
1285  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1286    return N1;
1287  if (AllUndef)
1288    return getUNDEF(VT);
1289
1290  FoldingSetNodeID ID;
1291  SDValue Ops[2] = { N1, N2 };
1292  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1293  for (unsigned i = 0; i != NElts; ++i)
1294    ID.AddInteger(MaskVec[i]);
1295
1296  void* IP = 0;
1297  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1298    return SDValue(E, 0);
1299
1300  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1301  // SDNode doesn't have access to it.  This memory will be "leaked" when
1302  // the node is deallocated, but recovered when the NodeAllocator is released.
1303  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1304  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1305
1306  ShuffleVectorSDNode *N =
1307    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1308  CSEMap.InsertNode(N, IP);
1309  AllNodes.push_back(N);
1310  return SDValue(N, 0);
1311}
1312
1313SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1314                                       SDValue Val, SDValue DTy,
1315                                       SDValue STy, SDValue Rnd, SDValue Sat,
1316                                       ISD::CvtCode Code) {
1317  // If the src and dest types are the same and the conversion is between
1318  // integer types of the same sign or two floats, no conversion is necessary.
1319  if (DTy == STy &&
1320      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1321    return Val;
1322
1323  FoldingSetNodeID ID;
1324  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1325  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1326  void* IP = 0;
1327  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1328    return SDValue(E, 0);
1329
1330  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1331                                                           Code);
1332  CSEMap.InsertNode(N, IP);
1333  AllNodes.push_back(N);
1334  return SDValue(N, 0);
1335}
1336
1337SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1338  FoldingSetNodeID ID;
1339  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1340  ID.AddInteger(RegNo);
1341  void *IP = 0;
1342  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1343    return SDValue(E, 0);
1344
1345  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1346  CSEMap.InsertNode(N, IP);
1347  AllNodes.push_back(N);
1348  return SDValue(N, 0);
1349}
1350
1351SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1352  FoldingSetNodeID ID;
1353  SDValue Ops[] = { Root };
1354  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1355  ID.AddPointer(Label);
1356  void *IP = 0;
1357  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1358    return SDValue(E, 0);
1359
1360  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1361  CSEMap.InsertNode(N, IP);
1362  AllNodes.push_back(N);
1363  return SDValue(N, 0);
1364}
1365
1366
1367SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1368                                      bool isTarget,
1369                                      unsigned char TargetFlags) {
1370  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1371
1372  FoldingSetNodeID ID;
1373  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1374  ID.AddPointer(BA);
1375  ID.AddInteger(TargetFlags);
1376  void *IP = 0;
1377  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1378    return SDValue(E, 0);
1379
1380  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1381  CSEMap.InsertNode(N, IP);
1382  AllNodes.push_back(N);
1383  return SDValue(N, 0);
1384}
1385
1386SDValue SelectionDAG::getSrcValue(const Value *V) {
1387  assert((!V || V->getType()->isPointerTy()) &&
1388         "SrcValue is not a pointer?");
1389
1390  FoldingSetNodeID ID;
1391  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1392  ID.AddPointer(V);
1393
1394  void *IP = 0;
1395  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1396    return SDValue(E, 0);
1397
1398  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1399  CSEMap.InsertNode(N, IP);
1400  AllNodes.push_back(N);
1401  return SDValue(N, 0);
1402}
1403
1404/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1405SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1406  FoldingSetNodeID ID;
1407  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1408  ID.AddPointer(MD);
1409
1410  void *IP = 0;
1411  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1412    return SDValue(E, 0);
1413
1414  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1415  CSEMap.InsertNode(N, IP);
1416  AllNodes.push_back(N);
1417  return SDValue(N, 0);
1418}
1419
1420
1421/// getShiftAmountOperand - Return the specified value casted to
1422/// the target's desired shift amount type.
1423SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1424  EVT OpTy = Op.getValueType();
1425  MVT ShTy = TLI.getShiftAmountTy(LHSTy);
1426  if (OpTy == ShTy || OpTy.isVector()) return Op;
1427
1428  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1429  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1430}
1431
1432/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1433/// specified value type.
1434SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1435  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1436  unsigned ByteSize = VT.getStoreSize();
1437  Type *Ty = VT.getTypeForEVT(*getContext());
1438  unsigned StackAlign =
1439  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1440
1441  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1442  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1443}
1444
1445/// CreateStackTemporary - Create a stack temporary suitable for holding
1446/// either of the specified value types.
1447SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1448  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1449                            VT2.getStoreSizeInBits())/8;
1450  Type *Ty1 = VT1.getTypeForEVT(*getContext());
1451  Type *Ty2 = VT2.getTypeForEVT(*getContext());
1452  const TargetData *TD = TLI.getTargetData();
1453  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1454                            TD->getPrefTypeAlignment(Ty2));
1455
1456  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1457  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1458  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1459}
1460
1461SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1462                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1463  // These setcc operations always fold.
1464  switch (Cond) {
1465  default: break;
1466  case ISD::SETFALSE:
1467  case ISD::SETFALSE2: return getConstant(0, VT);
1468  case ISD::SETTRUE:
1469  case ISD::SETTRUE2:  return getConstant(1, VT);
1470
1471  case ISD::SETOEQ:
1472  case ISD::SETOGT:
1473  case ISD::SETOGE:
1474  case ISD::SETOLT:
1475  case ISD::SETOLE:
1476  case ISD::SETONE:
1477  case ISD::SETO:
1478  case ISD::SETUO:
1479  case ISD::SETUEQ:
1480  case ISD::SETUNE:
1481    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1482    break;
1483  }
1484
1485  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1486    const APInt &C2 = N2C->getAPIntValue();
1487    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1488      const APInt &C1 = N1C->getAPIntValue();
1489
1490      switch (Cond) {
1491      default: llvm_unreachable("Unknown integer setcc!");
1492      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1493      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1494      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1495      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1496      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1497      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1498      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1499      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1500      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1501      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1502      }
1503    }
1504  }
1505  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1506    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1507      // No compile time operations on this type yet.
1508      if (N1C->getValueType(0) == MVT::ppcf128)
1509        return SDValue();
1510
1511      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1512      switch (Cond) {
1513      default: break;
1514      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1515                          return getUNDEF(VT);
1516                        // fall through
1517      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1518      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1519                          return getUNDEF(VT);
1520                        // fall through
1521      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1522                                           R==APFloat::cmpLessThan, VT);
1523      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1524                          return getUNDEF(VT);
1525                        // fall through
1526      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1527      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1528                          return getUNDEF(VT);
1529                        // fall through
1530      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1531      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1532                          return getUNDEF(VT);
1533                        // fall through
1534      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1535                                           R==APFloat::cmpEqual, VT);
1536      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1537                          return getUNDEF(VT);
1538                        // fall through
1539      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1540                                           R==APFloat::cmpEqual, VT);
1541      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1542      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1543      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1544                                           R==APFloat::cmpEqual, VT);
1545      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1546      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1547                                           R==APFloat::cmpLessThan, VT);
1548      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1549                                           R==APFloat::cmpUnordered, VT);
1550      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1551      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1552      }
1553    } else {
1554      // Ensure that the constant occurs on the RHS.
1555      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1556    }
1557  }
1558
1559  // Could not fold it.
1560  return SDValue();
1561}
1562
1563/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1564/// use this predicate to simplify operations downstream.
1565bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1566  // This predicate is not safe for vector operations.
1567  if (Op.getValueType().isVector())
1568    return false;
1569
1570  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1571  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1572}
1573
1574/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1575/// this predicate to simplify operations downstream.  Mask is known to be zero
1576/// for bits that V cannot have.
1577bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1578                                     unsigned Depth) const {
1579  APInt KnownZero, KnownOne;
1580  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1581  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1582  return (KnownZero & Mask) == Mask;
1583}
1584
1585/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1586/// known to be either zero or one and return them in the KnownZero/KnownOne
1587/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1588/// processing.
1589void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1590                                     APInt &KnownZero, APInt &KnownOne,
1591                                     unsigned Depth) const {
1592  unsigned BitWidth = Mask.getBitWidth();
1593  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1594         "Mask size mismatches value type size!");
1595
1596  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1597  if (Depth == 6 || Mask == 0)
1598    return;  // Limit search depth.
1599
1600  APInt KnownZero2, KnownOne2;
1601
1602  switch (Op.getOpcode()) {
1603  case ISD::Constant:
1604    // We know all of the bits for a constant!
1605    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1606    KnownZero = ~KnownOne & Mask;
1607    return;
1608  case ISD::AND:
1609    // If either the LHS or the RHS are Zero, the result is zero.
1610    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1611    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1612                      KnownZero2, KnownOne2, Depth+1);
1613    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1614    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1615
1616    // Output known-1 bits are only known if set in both the LHS & RHS.
1617    KnownOne &= KnownOne2;
1618    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1619    KnownZero |= KnownZero2;
1620    return;
1621  case ISD::OR:
1622    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1623    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1624                      KnownZero2, KnownOne2, Depth+1);
1625    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1626    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1627
1628    // Output known-0 bits are only known if clear in both the LHS & RHS.
1629    KnownZero &= KnownZero2;
1630    // Output known-1 are known to be set if set in either the LHS | RHS.
1631    KnownOne |= KnownOne2;
1632    return;
1633  case ISD::XOR: {
1634    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1635    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1636    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1637    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1638
1639    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1640    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1641    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1642    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1643    KnownZero = KnownZeroOut;
1644    return;
1645  }
1646  case ISD::MUL: {
1647    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1648    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1649    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1650    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1651    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1652
1653    // If low bits are zero in either operand, output low known-0 bits.
1654    // Also compute a conserative estimate for high known-0 bits.
1655    // More trickiness is possible, but this is sufficient for the
1656    // interesting case of alignment computation.
1657    KnownOne.clearAllBits();
1658    unsigned TrailZ = KnownZero.countTrailingOnes() +
1659                      KnownZero2.countTrailingOnes();
1660    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1661                               KnownZero2.countLeadingOnes(),
1662                               BitWidth) - BitWidth;
1663
1664    TrailZ = std::min(TrailZ, BitWidth);
1665    LeadZ = std::min(LeadZ, BitWidth);
1666    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1667                APInt::getHighBitsSet(BitWidth, LeadZ);
1668    KnownZero &= Mask;
1669    return;
1670  }
1671  case ISD::UDIV: {
1672    // For the purposes of computing leading zeros we can conservatively
1673    // treat a udiv as a logical right shift by the power of 2 known to
1674    // be less than the denominator.
1675    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1676    ComputeMaskedBits(Op.getOperand(0),
1677                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1678    unsigned LeadZ = KnownZero2.countLeadingOnes();
1679
1680    KnownOne2.clearAllBits();
1681    KnownZero2.clearAllBits();
1682    ComputeMaskedBits(Op.getOperand(1),
1683                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1684    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1685    if (RHSUnknownLeadingOnes != BitWidth)
1686      LeadZ = std::min(BitWidth,
1687                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1688
1689    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1690    return;
1691  }
1692  case ISD::SELECT:
1693    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1694    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1695    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1696    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1697
1698    // Only known if known in both the LHS and RHS.
1699    KnownOne &= KnownOne2;
1700    KnownZero &= KnownZero2;
1701    return;
1702  case ISD::SELECT_CC:
1703    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1704    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1705    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1706    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1707
1708    // Only known if known in both the LHS and RHS.
1709    KnownOne &= KnownOne2;
1710    KnownZero &= KnownZero2;
1711    return;
1712  case ISD::SADDO:
1713  case ISD::UADDO:
1714  case ISD::SSUBO:
1715  case ISD::USUBO:
1716  case ISD::SMULO:
1717  case ISD::UMULO:
1718    if (Op.getResNo() != 1)
1719      return;
1720    // The boolean result conforms to getBooleanContents.  Fall through.
1721  case ISD::SETCC:
1722    // If we know the result of a setcc has the top bits zero, use this info.
1723    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1724        BitWidth > 1)
1725      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1726    return;
1727  case ISD::SHL:
1728    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1729    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1730      unsigned ShAmt = SA->getZExtValue();
1731
1732      // If the shift count is an invalid immediate, don't do anything.
1733      if (ShAmt >= BitWidth)
1734        return;
1735
1736      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1737                        KnownZero, KnownOne, Depth+1);
1738      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1739      KnownZero <<= ShAmt;
1740      KnownOne  <<= ShAmt;
1741      // low bits known zero.
1742      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1743    }
1744    return;
1745  case ISD::SRL:
1746    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1747    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1748      unsigned ShAmt = SA->getZExtValue();
1749
1750      // If the shift count is an invalid immediate, don't do anything.
1751      if (ShAmt >= BitWidth)
1752        return;
1753
1754      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1755                        KnownZero, KnownOne, Depth+1);
1756      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1757      KnownZero = KnownZero.lshr(ShAmt);
1758      KnownOne  = KnownOne.lshr(ShAmt);
1759
1760      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1761      KnownZero |= HighBits;  // High bits known zero.
1762    }
1763    return;
1764  case ISD::SRA:
1765    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1766      unsigned ShAmt = SA->getZExtValue();
1767
1768      // If the shift count is an invalid immediate, don't do anything.
1769      if (ShAmt >= BitWidth)
1770        return;
1771
1772      APInt InDemandedMask = (Mask << ShAmt);
1773      // If any of the demanded bits are produced by the sign extension, we also
1774      // demand the input sign bit.
1775      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1776      if (HighBits.getBoolValue())
1777        InDemandedMask |= APInt::getSignBit(BitWidth);
1778
1779      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1780                        Depth+1);
1781      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1782      KnownZero = KnownZero.lshr(ShAmt);
1783      KnownOne  = KnownOne.lshr(ShAmt);
1784
1785      // Handle the sign bits.
1786      APInt SignBit = APInt::getSignBit(BitWidth);
1787      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1788
1789      if (KnownZero.intersects(SignBit)) {
1790        KnownZero |= HighBits;  // New bits are known zero.
1791      } else if (KnownOne.intersects(SignBit)) {
1792        KnownOne  |= HighBits;  // New bits are known one.
1793      }
1794    }
1795    return;
1796  case ISD::SIGN_EXTEND_INREG: {
1797    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1798    unsigned EBits = EVT.getScalarType().getSizeInBits();
1799
1800    // Sign extension.  Compute the demanded bits in the result that are not
1801    // present in the input.
1802    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1803
1804    APInt InSignBit = APInt::getSignBit(EBits);
1805    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1806
1807    // If the sign extended bits are demanded, we know that the sign
1808    // bit is demanded.
1809    InSignBit = InSignBit.zext(BitWidth);
1810    if (NewBits.getBoolValue())
1811      InputDemandedBits |= InSignBit;
1812
1813    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1814                      KnownZero, KnownOne, Depth+1);
1815    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1816
1817    // If the sign bit of the input is known set or clear, then we know the
1818    // top bits of the result.
1819    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1820      KnownZero |= NewBits;
1821      KnownOne  &= ~NewBits;
1822    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1823      KnownOne  |= NewBits;
1824      KnownZero &= ~NewBits;
1825    } else {                              // Input sign bit unknown
1826      KnownZero &= ~NewBits;
1827      KnownOne  &= ~NewBits;
1828    }
1829    return;
1830  }
1831  case ISD::CTTZ:
1832  case ISD::CTLZ:
1833  case ISD::CTPOP: {
1834    unsigned LowBits = Log2_32(BitWidth)+1;
1835    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1836    KnownOne.clearAllBits();
1837    return;
1838  }
1839  case ISD::LOAD: {
1840    if (ISD::isZEXTLoad(Op.getNode())) {
1841      LoadSDNode *LD = cast<LoadSDNode>(Op);
1842      EVT VT = LD->getMemoryVT();
1843      unsigned MemBits = VT.getScalarType().getSizeInBits();
1844      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1845    }
1846    return;
1847  }
1848  case ISD::ZERO_EXTEND: {
1849    EVT InVT = Op.getOperand(0).getValueType();
1850    unsigned InBits = InVT.getScalarType().getSizeInBits();
1851    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1852    APInt InMask    = Mask.trunc(InBits);
1853    KnownZero = KnownZero.trunc(InBits);
1854    KnownOne = KnownOne.trunc(InBits);
1855    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1856    KnownZero = KnownZero.zext(BitWidth);
1857    KnownOne = KnownOne.zext(BitWidth);
1858    KnownZero |= NewBits;
1859    return;
1860  }
1861  case ISD::SIGN_EXTEND: {
1862    EVT InVT = Op.getOperand(0).getValueType();
1863    unsigned InBits = InVT.getScalarType().getSizeInBits();
1864    APInt InSignBit = APInt::getSignBit(InBits);
1865    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1866    APInt InMask = Mask.trunc(InBits);
1867
1868    // If any of the sign extended bits are demanded, we know that the sign
1869    // bit is demanded. Temporarily set this bit in the mask for our callee.
1870    if (NewBits.getBoolValue())
1871      InMask |= InSignBit;
1872
1873    KnownZero = KnownZero.trunc(InBits);
1874    KnownOne = KnownOne.trunc(InBits);
1875    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1876
1877    // Note if the sign bit is known to be zero or one.
1878    bool SignBitKnownZero = KnownZero.isNegative();
1879    bool SignBitKnownOne  = KnownOne.isNegative();
1880    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1881           "Sign bit can't be known to be both zero and one!");
1882
1883    // If the sign bit wasn't actually demanded by our caller, we don't
1884    // want it set in the KnownZero and KnownOne result values. Reset the
1885    // mask and reapply it to the result values.
1886    InMask = Mask.trunc(InBits);
1887    KnownZero &= InMask;
1888    KnownOne  &= InMask;
1889
1890    KnownZero = KnownZero.zext(BitWidth);
1891    KnownOne = KnownOne.zext(BitWidth);
1892
1893    // If the sign bit is known zero or one, the top bits match.
1894    if (SignBitKnownZero)
1895      KnownZero |= NewBits;
1896    else if (SignBitKnownOne)
1897      KnownOne  |= NewBits;
1898    return;
1899  }
1900  case ISD::ANY_EXTEND: {
1901    EVT InVT = Op.getOperand(0).getValueType();
1902    unsigned InBits = InVT.getScalarType().getSizeInBits();
1903    APInt InMask = Mask.trunc(InBits);
1904    KnownZero = KnownZero.trunc(InBits);
1905    KnownOne = KnownOne.trunc(InBits);
1906    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1907    KnownZero = KnownZero.zext(BitWidth);
1908    KnownOne = KnownOne.zext(BitWidth);
1909    return;
1910  }
1911  case ISD::TRUNCATE: {
1912    EVT InVT = Op.getOperand(0).getValueType();
1913    unsigned InBits = InVT.getScalarType().getSizeInBits();
1914    APInt InMask = Mask.zext(InBits);
1915    KnownZero = KnownZero.zext(InBits);
1916    KnownOne = KnownOne.zext(InBits);
1917    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1918    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1919    KnownZero = KnownZero.trunc(BitWidth);
1920    KnownOne = KnownOne.trunc(BitWidth);
1921    break;
1922  }
1923  case ISD::AssertZext: {
1924    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1925    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1926    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1927                      KnownOne, Depth+1);
1928    KnownZero |= (~InMask) & Mask;
1929    return;
1930  }
1931  case ISD::FGETSIGN:
1932    // All bits are zero except the low bit.
1933    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1934    return;
1935
1936  case ISD::SUB: {
1937    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1938      // We know that the top bits of C-X are clear if X contains less bits
1939      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1940      // positive if we can prove that X is >= 0 and < 16.
1941      if (CLHS->getAPIntValue().isNonNegative()) {
1942        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1943        // NLZ can't be BitWidth with no sign bit
1944        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1945        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1946                          Depth+1);
1947
1948        // If all of the MaskV bits are known to be zero, then we know the
1949        // output top bits are zero, because we now know that the output is
1950        // from [0-C].
1951        if ((KnownZero2 & MaskV) == MaskV) {
1952          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1953          // Top bits known zero.
1954          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1955        }
1956      }
1957    }
1958  }
1959  // fall through
1960  case ISD::ADD:
1961  case ISD::ADDE: {
1962    // Output known-0 bits are known if clear or set in both the low clear bits
1963    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1964    // low 3 bits clear.
1965    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1966                                       BitWidth - Mask.countLeadingZeros());
1967    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1968    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1969    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1970
1971    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1972    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1973    KnownZeroOut = std::min(KnownZeroOut,
1974                            KnownZero2.countTrailingOnes());
1975
1976    if (Op.getOpcode() == ISD::ADD) {
1977      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1978      return;
1979    }
1980
1981    // With ADDE, a carry bit may be added in, so we can only use this
1982    // information if we know (at least) that the low two bits are clear.  We
1983    // then return to the caller that the low bit is unknown but that other bits
1984    // are known zero.
1985    if (KnownZeroOut >= 2) // ADDE
1986      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
1987    return;
1988  }
1989  case ISD::SREM:
1990    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1991      const APInt &RA = Rem->getAPIntValue().abs();
1992      if (RA.isPowerOf2()) {
1993        APInt LowBits = RA - 1;
1994        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1995        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1996
1997        // The low bits of the first operand are unchanged by the srem.
1998        KnownZero = KnownZero2 & LowBits;
1999        KnownOne = KnownOne2 & LowBits;
2000
2001        // If the first operand is non-negative or has all low bits zero, then
2002        // the upper bits are all zero.
2003        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2004          KnownZero |= ~LowBits;
2005
2006        // If the first operand is negative and not all low bits are zero, then
2007        // the upper bits are all one.
2008        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2009          KnownOne |= ~LowBits;
2010
2011        KnownZero &= Mask;
2012        KnownOne &= Mask;
2013
2014        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2015      }
2016    }
2017    return;
2018  case ISD::UREM: {
2019    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2020      const APInt &RA = Rem->getAPIntValue();
2021      if (RA.isPowerOf2()) {
2022        APInt LowBits = (RA - 1);
2023        APInt Mask2 = LowBits & Mask;
2024        KnownZero |= ~LowBits & Mask;
2025        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2026        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2027        break;
2028      }
2029    }
2030
2031    // Since the result is less than or equal to either operand, any leading
2032    // zero bits in either operand must also exist in the result.
2033    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2034    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2035                      Depth+1);
2036    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2037                      Depth+1);
2038
2039    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2040                                KnownZero2.countLeadingOnes());
2041    KnownOne.clearAllBits();
2042    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2043    return;
2044  }
2045  case ISD::FrameIndex:
2046  case ISD::TargetFrameIndex:
2047    if (unsigned Align = InferPtrAlignment(Op)) {
2048      // The low bits are known zero if the pointer is aligned.
2049      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2050      return;
2051    }
2052    break;
2053
2054  default:
2055    if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2056      break;
2057    // Fallthrough
2058  case ISD::INTRINSIC_WO_CHAIN:
2059  case ISD::INTRINSIC_W_CHAIN:
2060  case ISD::INTRINSIC_VOID:
2061    // Allow the target to implement this method for its nodes.
2062    TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2063                                       Depth);
2064    return;
2065  }
2066}
2067
2068/// ComputeNumSignBits - Return the number of times the sign bit of the
2069/// register is replicated into the other bits.  We know that at least 1 bit
2070/// is always equal to the sign bit (itself), but other cases can give us
2071/// information.  For example, immediately after an "SRA X, 2", we know that
2072/// the top 3 bits are all equal to each other, so we return 3.
2073unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2074  EVT VT = Op.getValueType();
2075  assert(VT.isInteger() && "Invalid VT!");
2076  unsigned VTBits = VT.getScalarType().getSizeInBits();
2077  unsigned Tmp, Tmp2;
2078  unsigned FirstAnswer = 1;
2079
2080  if (Depth == 6)
2081    return 1;  // Limit search depth.
2082
2083  switch (Op.getOpcode()) {
2084  default: break;
2085  case ISD::AssertSext:
2086    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2087    return VTBits-Tmp+1;
2088  case ISD::AssertZext:
2089    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2090    return VTBits-Tmp;
2091
2092  case ISD::Constant: {
2093    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2094    return Val.getNumSignBits();
2095  }
2096
2097  case ISD::SIGN_EXTEND:
2098    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2099    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2100
2101  case ISD::SIGN_EXTEND_INREG:
2102    // Max of the input and what this extends.
2103    Tmp =
2104      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2105    Tmp = VTBits-Tmp+1;
2106
2107    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2108    return std::max(Tmp, Tmp2);
2109
2110  case ISD::SRA:
2111    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2112    // SRA X, C   -> adds C sign bits.
2113    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2114      Tmp += C->getZExtValue();
2115      if (Tmp > VTBits) Tmp = VTBits;
2116    }
2117    return Tmp;
2118  case ISD::SHL:
2119    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2120      // shl destroys sign bits.
2121      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2122      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2123          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2124      return Tmp - C->getZExtValue();
2125    }
2126    break;
2127  case ISD::AND:
2128  case ISD::OR:
2129  case ISD::XOR:    // NOT is handled here.
2130    // Logical binary ops preserve the number of sign bits at the worst.
2131    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2132    if (Tmp != 1) {
2133      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2134      FirstAnswer = std::min(Tmp, Tmp2);
2135      // We computed what we know about the sign bits as our first
2136      // answer. Now proceed to the generic code that uses
2137      // ComputeMaskedBits, and pick whichever answer is better.
2138    }
2139    break;
2140
2141  case ISD::SELECT:
2142    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2143    if (Tmp == 1) return 1;  // Early out.
2144    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2145    return std::min(Tmp, Tmp2);
2146
2147  case ISD::SADDO:
2148  case ISD::UADDO:
2149  case ISD::SSUBO:
2150  case ISD::USUBO:
2151  case ISD::SMULO:
2152  case ISD::UMULO:
2153    if (Op.getResNo() != 1)
2154      break;
2155    // The boolean result conforms to getBooleanContents.  Fall through.
2156  case ISD::SETCC:
2157    // If setcc returns 0/-1, all bits are sign bits.
2158    if (TLI.getBooleanContents() ==
2159        TargetLowering::ZeroOrNegativeOneBooleanContent)
2160      return VTBits;
2161    break;
2162  case ISD::ROTL:
2163  case ISD::ROTR:
2164    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2165      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2166
2167      // Handle rotate right by N like a rotate left by 32-N.
2168      if (Op.getOpcode() == ISD::ROTR)
2169        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2170
2171      // If we aren't rotating out all of the known-in sign bits, return the
2172      // number that are left.  This handles rotl(sext(x), 1) for example.
2173      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2174      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2175    }
2176    break;
2177  case ISD::ADD:
2178    // Add can have at most one carry bit.  Thus we know that the output
2179    // is, at worst, one more bit than the inputs.
2180    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2181    if (Tmp == 1) return 1;  // Early out.
2182
2183    // Special case decrementing a value (ADD X, -1):
2184    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2185      if (CRHS->isAllOnesValue()) {
2186        APInt KnownZero, KnownOne;
2187        APInt Mask = APInt::getAllOnesValue(VTBits);
2188        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2189
2190        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2191        // sign bits set.
2192        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2193          return VTBits;
2194
2195        // If we are subtracting one from a positive number, there is no carry
2196        // out of the result.
2197        if (KnownZero.isNegative())
2198          return Tmp;
2199      }
2200
2201    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2202    if (Tmp2 == 1) return 1;
2203      return std::min(Tmp, Tmp2)-1;
2204    break;
2205
2206  case ISD::SUB:
2207    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2208    if (Tmp2 == 1) return 1;
2209
2210    // Handle NEG.
2211    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2212      if (CLHS->isNullValue()) {
2213        APInt KnownZero, KnownOne;
2214        APInt Mask = APInt::getAllOnesValue(VTBits);
2215        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2216        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2217        // sign bits set.
2218        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2219          return VTBits;
2220
2221        // If the input is known to be positive (the sign bit is known clear),
2222        // the output of the NEG has the same number of sign bits as the input.
2223        if (KnownZero.isNegative())
2224          return Tmp2;
2225
2226        // Otherwise, we treat this like a SUB.
2227      }
2228
2229    // Sub can have at most one carry bit.  Thus we know that the output
2230    // is, at worst, one more bit than the inputs.
2231    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2232    if (Tmp == 1) return 1;  // Early out.
2233      return std::min(Tmp, Tmp2)-1;
2234    break;
2235  case ISD::TRUNCATE:
2236    // FIXME: it's tricky to do anything useful for this, but it is an important
2237    // case for targets like X86.
2238    break;
2239  }
2240
2241  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2242  if (Op.getOpcode() == ISD::LOAD) {
2243    LoadSDNode *LD = cast<LoadSDNode>(Op);
2244    unsigned ExtType = LD->getExtensionType();
2245    switch (ExtType) {
2246    default: break;
2247    case ISD::SEXTLOAD:    // '17' bits known
2248      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2249      return VTBits-Tmp+1;
2250    case ISD::ZEXTLOAD:    // '16' bits known
2251      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2252      return VTBits-Tmp;
2253    }
2254  }
2255
2256  // Allow the target to implement this method for its nodes.
2257  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2258      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2259      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2260      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2261    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2262    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2263  }
2264
2265  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2266  // use this information.
2267  APInt KnownZero, KnownOne;
2268  APInt Mask = APInt::getAllOnesValue(VTBits);
2269  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2270
2271  if (KnownZero.isNegative()) {        // sign bit is 0
2272    Mask = KnownZero;
2273  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2274    Mask = KnownOne;
2275  } else {
2276    // Nothing known.
2277    return FirstAnswer;
2278  }
2279
2280  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2281  // the number of identical bits in the top of the input value.
2282  Mask = ~Mask;
2283  Mask <<= Mask.getBitWidth()-VTBits;
2284  // Return # leading zeros.  We use 'min' here in case Val was zero before
2285  // shifting.  We don't want to return '64' as for an i32 "0".
2286  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2287}
2288
2289/// isBaseWithConstantOffset - Return true if the specified operand is an
2290/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2291/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2292/// semantics as an ADD.  This handles the equivalence:
2293///     X|Cst == X+Cst iff X&Cst = 0.
2294bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2295  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2296      !isa<ConstantSDNode>(Op.getOperand(1)))
2297    return false;
2298
2299  if (Op.getOpcode() == ISD::OR &&
2300      !MaskedValueIsZero(Op.getOperand(0),
2301                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2302    return false;
2303
2304  return true;
2305}
2306
2307
2308bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2309  // If we're told that NaNs won't happen, assume they won't.
2310  if (NoNaNsFPMath)
2311    return true;
2312
2313  // If the value is a constant, we can obviously see if it is a NaN or not.
2314  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2315    return !C->getValueAPF().isNaN();
2316
2317  // TODO: Recognize more cases here.
2318
2319  return false;
2320}
2321
2322bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2323  // If the value is a constant, we can obviously see if it is a zero or not.
2324  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2325    return !C->isZero();
2326
2327  // TODO: Recognize more cases here.
2328  switch (Op.getOpcode()) {
2329  default: break;
2330  case ISD::OR:
2331    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2332      return !C->isNullValue();
2333    break;
2334  }
2335
2336  return false;
2337}
2338
2339bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2340  // Check the obvious case.
2341  if (A == B) return true;
2342
2343  // For for negative and positive zero.
2344  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2345    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2346      if (CA->isZero() && CB->isZero()) return true;
2347
2348  // Otherwise they may not be equal.
2349  return false;
2350}
2351
2352/// getNode - Gets or creates the specified node.
2353///
2354SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2355  FoldingSetNodeID ID;
2356  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2357  void *IP = 0;
2358  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2359    return SDValue(E, 0);
2360
2361  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2362  CSEMap.InsertNode(N, IP);
2363
2364  AllNodes.push_back(N);
2365#ifndef NDEBUG
2366  VerifySDNode(N);
2367#endif
2368  return SDValue(N, 0);
2369}
2370
2371SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2372                              EVT VT, SDValue Operand) {
2373  // Constant fold unary operations with an integer constant operand.
2374  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2375    const APInt &Val = C->getAPIntValue();
2376    switch (Opcode) {
2377    default: break;
2378    case ISD::SIGN_EXTEND:
2379      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2380    case ISD::ANY_EXTEND:
2381    case ISD::ZERO_EXTEND:
2382    case ISD::TRUNCATE:
2383      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2384    case ISD::UINT_TO_FP:
2385    case ISD::SINT_TO_FP: {
2386      // No compile time operations on ppcf128.
2387      if (VT == MVT::ppcf128) break;
2388      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2389      (void)apf.convertFromAPInt(Val,
2390                                 Opcode==ISD::SINT_TO_FP,
2391                                 APFloat::rmNearestTiesToEven);
2392      return getConstantFP(apf, VT);
2393    }
2394    case ISD::BITCAST:
2395      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2396        return getConstantFP(Val.bitsToFloat(), VT);
2397      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2398        return getConstantFP(Val.bitsToDouble(), VT);
2399      break;
2400    case ISD::BSWAP:
2401      return getConstant(Val.byteSwap(), VT);
2402    case ISD::CTPOP:
2403      return getConstant(Val.countPopulation(), VT);
2404    case ISD::CTLZ:
2405      return getConstant(Val.countLeadingZeros(), VT);
2406    case ISD::CTTZ:
2407      return getConstant(Val.countTrailingZeros(), VT);
2408    }
2409  }
2410
2411  // Constant fold unary operations with a floating point constant operand.
2412  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2413    APFloat V = C->getValueAPF();    // make copy
2414    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2415      switch (Opcode) {
2416      case ISD::FNEG:
2417        V.changeSign();
2418        return getConstantFP(V, VT);
2419      case ISD::FABS:
2420        V.clearSign();
2421        return getConstantFP(V, VT);
2422      case ISD::FP_ROUND:
2423      case ISD::FP_EXTEND: {
2424        bool ignored;
2425        // This can return overflow, underflow, or inexact; we don't care.
2426        // FIXME need to be more flexible about rounding mode.
2427        (void)V.convert(*EVTToAPFloatSemantics(VT),
2428                        APFloat::rmNearestTiesToEven, &ignored);
2429        return getConstantFP(V, VT);
2430      }
2431      case ISD::FP_TO_SINT:
2432      case ISD::FP_TO_UINT: {
2433        integerPart x[2];
2434        bool ignored;
2435        assert(integerPartWidth >= 64);
2436        // FIXME need to be more flexible about rounding mode.
2437        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2438                              Opcode==ISD::FP_TO_SINT,
2439                              APFloat::rmTowardZero, &ignored);
2440        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2441          break;
2442        APInt api(VT.getSizeInBits(), x);
2443        return getConstant(api, VT);
2444      }
2445      case ISD::BITCAST:
2446        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2447          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2448        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2449          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2450        break;
2451      }
2452    }
2453  }
2454
2455  unsigned OpOpcode = Operand.getNode()->getOpcode();
2456  switch (Opcode) {
2457  case ISD::TokenFactor:
2458  case ISD::MERGE_VALUES:
2459  case ISD::CONCAT_VECTORS:
2460    return Operand;         // Factor, merge or concat of one node?  No need.
2461  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2462  case ISD::FP_EXTEND:
2463    assert(VT.isFloatingPoint() &&
2464           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2465    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2466    assert((!VT.isVector() ||
2467            VT.getVectorNumElements() ==
2468            Operand.getValueType().getVectorNumElements()) &&
2469           "Vector element count mismatch!");
2470    if (Operand.getOpcode() == ISD::UNDEF)
2471      return getUNDEF(VT);
2472    break;
2473  case ISD::SIGN_EXTEND:
2474    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2475           "Invalid SIGN_EXTEND!");
2476    if (Operand.getValueType() == VT) return Operand;   // noop extension
2477    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2478           "Invalid sext node, dst < src!");
2479    assert((!VT.isVector() ||
2480            VT.getVectorNumElements() ==
2481            Operand.getValueType().getVectorNumElements()) &&
2482           "Vector element count mismatch!");
2483    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2484      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2485    else if (OpOpcode == ISD::UNDEF)
2486      // sext(undef) = 0, because the top bits will all be the same.
2487      return getConstant(0, VT);
2488    break;
2489  case ISD::ZERO_EXTEND:
2490    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2491           "Invalid ZERO_EXTEND!");
2492    if (Operand.getValueType() == VT) return Operand;   // noop extension
2493    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2494           "Invalid zext node, dst < src!");
2495    assert((!VT.isVector() ||
2496            VT.getVectorNumElements() ==
2497            Operand.getValueType().getVectorNumElements()) &&
2498           "Vector element count mismatch!");
2499    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2500      return getNode(ISD::ZERO_EXTEND, DL, VT,
2501                     Operand.getNode()->getOperand(0));
2502    else if (OpOpcode == ISD::UNDEF)
2503      // zext(undef) = 0, because the top bits will be zero.
2504      return getConstant(0, VT);
2505    break;
2506  case ISD::ANY_EXTEND:
2507    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2508           "Invalid ANY_EXTEND!");
2509    if (Operand.getValueType() == VT) return Operand;   // noop extension
2510    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2511           "Invalid anyext node, dst < src!");
2512    assert((!VT.isVector() ||
2513            VT.getVectorNumElements() ==
2514            Operand.getValueType().getVectorNumElements()) &&
2515           "Vector element count mismatch!");
2516
2517    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2518        OpOpcode == ISD::ANY_EXTEND)
2519      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2520      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2521    else if (OpOpcode == ISD::UNDEF)
2522      return getUNDEF(VT);
2523
2524    // (ext (trunx x)) -> x
2525    if (OpOpcode == ISD::TRUNCATE) {
2526      SDValue OpOp = Operand.getNode()->getOperand(0);
2527      if (OpOp.getValueType() == VT)
2528        return OpOp;
2529    }
2530    break;
2531  case ISD::TRUNCATE:
2532    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2533           "Invalid TRUNCATE!");
2534    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2535    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2536           "Invalid truncate node, src < dst!");
2537    assert((!VT.isVector() ||
2538            VT.getVectorNumElements() ==
2539            Operand.getValueType().getVectorNumElements()) &&
2540           "Vector element count mismatch!");
2541    if (OpOpcode == ISD::TRUNCATE)
2542      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2543    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2544             OpOpcode == ISD::ANY_EXTEND) {
2545      // If the source is smaller than the dest, we still need an extend.
2546      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2547            .bitsLT(VT.getScalarType()))
2548        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2549      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2550        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2551      else
2552        return Operand.getNode()->getOperand(0);
2553    }
2554    break;
2555  case ISD::BITCAST:
2556    // Basic sanity checking.
2557    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2558           && "Cannot BITCAST between types of different sizes!");
2559    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2560    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2561      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2562    if (OpOpcode == ISD::UNDEF)
2563      return getUNDEF(VT);
2564    break;
2565  case ISD::SCALAR_TO_VECTOR:
2566    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2567           (VT.getVectorElementType() == Operand.getValueType() ||
2568            (VT.getVectorElementType().isInteger() &&
2569             Operand.getValueType().isInteger() &&
2570             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2571           "Illegal SCALAR_TO_VECTOR node!");
2572    if (OpOpcode == ISD::UNDEF)
2573      return getUNDEF(VT);
2574    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2575    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2576        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2577        Operand.getConstantOperandVal(1) == 0 &&
2578        Operand.getOperand(0).getValueType() == VT)
2579      return Operand.getOperand(0);
2580    break;
2581  case ISD::FNEG:
2582    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2583    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2584      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2585                     Operand.getNode()->getOperand(0));
2586    if (OpOpcode == ISD::FNEG)  // --X -> X
2587      return Operand.getNode()->getOperand(0);
2588    break;
2589  case ISD::FABS:
2590    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2591      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2592    break;
2593  }
2594
2595  SDNode *N;
2596  SDVTList VTs = getVTList(VT);
2597  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2598    FoldingSetNodeID ID;
2599    SDValue Ops[1] = { Operand };
2600    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2601    void *IP = 0;
2602    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2603      return SDValue(E, 0);
2604
2605    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2606    CSEMap.InsertNode(N, IP);
2607  } else {
2608    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2609  }
2610
2611  AllNodes.push_back(N);
2612#ifndef NDEBUG
2613  VerifySDNode(N);
2614#endif
2615  return SDValue(N, 0);
2616}
2617
2618SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2619                                             EVT VT,
2620                                             ConstantSDNode *Cst1,
2621                                             ConstantSDNode *Cst2) {
2622  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2623
2624  switch (Opcode) {
2625  case ISD::ADD:  return getConstant(C1 + C2, VT);
2626  case ISD::SUB:  return getConstant(C1 - C2, VT);
2627  case ISD::MUL:  return getConstant(C1 * C2, VT);
2628  case ISD::UDIV:
2629    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2630    break;
2631  case ISD::UREM:
2632    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2633    break;
2634  case ISD::SDIV:
2635    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2636    break;
2637  case ISD::SREM:
2638    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2639    break;
2640  case ISD::AND:  return getConstant(C1 & C2, VT);
2641  case ISD::OR:   return getConstant(C1 | C2, VT);
2642  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2643  case ISD::SHL:  return getConstant(C1 << C2, VT);
2644  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2645  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2646  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2647  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2648  default: break;
2649  }
2650
2651  return SDValue();
2652}
2653
2654SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2655                              SDValue N1, SDValue N2) {
2656  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2657  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2658  switch (Opcode) {
2659  default: break;
2660  case ISD::TokenFactor:
2661    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2662           N2.getValueType() == MVT::Other && "Invalid token factor!");
2663    // Fold trivial token factors.
2664    if (N1.getOpcode() == ISD::EntryToken) return N2;
2665    if (N2.getOpcode() == ISD::EntryToken) return N1;
2666    if (N1 == N2) return N1;
2667    break;
2668  case ISD::CONCAT_VECTORS:
2669    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2670    // one big BUILD_VECTOR.
2671    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2672        N2.getOpcode() == ISD::BUILD_VECTOR) {
2673      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2674                                    N1.getNode()->op_end());
2675      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2676      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2677    }
2678    break;
2679  case ISD::AND:
2680    assert(VT.isInteger() && "This operator does not apply to FP types!");
2681    assert(N1.getValueType() == N2.getValueType() &&
2682           N1.getValueType() == VT && "Binary operator types must match!");
2683    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2684    // worth handling here.
2685    if (N2C && N2C->isNullValue())
2686      return N2;
2687    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2688      return N1;
2689    break;
2690  case ISD::OR:
2691  case ISD::XOR:
2692  case ISD::ADD:
2693  case ISD::SUB:
2694    assert(VT.isInteger() && "This operator does not apply to FP types!");
2695    assert(N1.getValueType() == N2.getValueType() &&
2696           N1.getValueType() == VT && "Binary operator types must match!");
2697    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2698    // it's worth handling here.
2699    if (N2C && N2C->isNullValue())
2700      return N1;
2701    break;
2702  case ISD::UDIV:
2703  case ISD::UREM:
2704  case ISD::MULHU:
2705  case ISD::MULHS:
2706  case ISD::MUL:
2707  case ISD::SDIV:
2708  case ISD::SREM:
2709    assert(VT.isInteger() && "This operator does not apply to FP types!");
2710    assert(N1.getValueType() == N2.getValueType() &&
2711           N1.getValueType() == VT && "Binary operator types must match!");
2712    break;
2713  case ISD::FADD:
2714  case ISD::FSUB:
2715  case ISD::FMUL:
2716  case ISD::FDIV:
2717  case ISD::FREM:
2718    if (UnsafeFPMath) {
2719      if (Opcode == ISD::FADD) {
2720        // 0+x --> x
2721        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2722          if (CFP->getValueAPF().isZero())
2723            return N2;
2724        // x+0 --> x
2725        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2726          if (CFP->getValueAPF().isZero())
2727            return N1;
2728      } else if (Opcode == ISD::FSUB) {
2729        // x-0 --> x
2730        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2731          if (CFP->getValueAPF().isZero())
2732            return N1;
2733      }
2734    }
2735    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2736    assert(N1.getValueType() == N2.getValueType() &&
2737           N1.getValueType() == VT && "Binary operator types must match!");
2738    break;
2739  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2740    assert(N1.getValueType() == VT &&
2741           N1.getValueType().isFloatingPoint() &&
2742           N2.getValueType().isFloatingPoint() &&
2743           "Invalid FCOPYSIGN!");
2744    break;
2745  case ISD::SHL:
2746  case ISD::SRA:
2747  case ISD::SRL:
2748  case ISD::ROTL:
2749  case ISD::ROTR:
2750    assert(VT == N1.getValueType() &&
2751           "Shift operators return type must be the same as their first arg");
2752    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2753           "Shifts only work on integers");
2754    // Verify that the shift amount VT is bit enough to hold valid shift
2755    // amounts.  This catches things like trying to shift an i1024 value by an
2756    // i8, which is easy to fall into in generic code that uses
2757    // TLI.getShiftAmount().
2758    assert(N2.getValueType().getSizeInBits() >=
2759                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2760           "Invalid use of small shift amount with oversized value!");
2761
2762    // Always fold shifts of i1 values so the code generator doesn't need to
2763    // handle them.  Since we know the size of the shift has to be less than the
2764    // size of the value, the shift/rotate count is guaranteed to be zero.
2765    if (VT == MVT::i1)
2766      return N1;
2767    if (N2C && N2C->isNullValue())
2768      return N1;
2769    break;
2770  case ISD::FP_ROUND_INREG: {
2771    EVT EVT = cast<VTSDNode>(N2)->getVT();
2772    assert(VT == N1.getValueType() && "Not an inreg round!");
2773    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2774           "Cannot FP_ROUND_INREG integer types");
2775    assert(EVT.isVector() == VT.isVector() &&
2776           "FP_ROUND_INREG type should be vector iff the operand "
2777           "type is vector!");
2778    assert((!EVT.isVector() ||
2779            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2780           "Vector element counts must match in FP_ROUND_INREG");
2781    assert(EVT.bitsLE(VT) && "Not rounding down!");
2782    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2783    break;
2784  }
2785  case ISD::FP_ROUND:
2786    assert(VT.isFloatingPoint() &&
2787           N1.getValueType().isFloatingPoint() &&
2788           VT.bitsLE(N1.getValueType()) &&
2789           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2790    if (N1.getValueType() == VT) return N1;  // noop conversion.
2791    break;
2792  case ISD::AssertSext:
2793  case ISD::AssertZext: {
2794    EVT EVT = cast<VTSDNode>(N2)->getVT();
2795    assert(VT == N1.getValueType() && "Not an inreg extend!");
2796    assert(VT.isInteger() && EVT.isInteger() &&
2797           "Cannot *_EXTEND_INREG FP types");
2798    assert(!EVT.isVector() &&
2799           "AssertSExt/AssertZExt type should be the vector element type "
2800           "rather than the vector type!");
2801    assert(EVT.bitsLE(VT) && "Not extending!");
2802    if (VT == EVT) return N1; // noop assertion.
2803    break;
2804  }
2805  case ISD::SIGN_EXTEND_INREG: {
2806    EVT EVT = cast<VTSDNode>(N2)->getVT();
2807    assert(VT == N1.getValueType() && "Not an inreg extend!");
2808    assert(VT.isInteger() && EVT.isInteger() &&
2809           "Cannot *_EXTEND_INREG FP types");
2810    assert(EVT.isVector() == VT.isVector() &&
2811           "SIGN_EXTEND_INREG type should be vector iff the operand "
2812           "type is vector!");
2813    assert((!EVT.isVector() ||
2814            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2815           "Vector element counts must match in SIGN_EXTEND_INREG");
2816    assert(EVT.bitsLE(VT) && "Not extending!");
2817    if (EVT == VT) return N1;  // Not actually extending
2818
2819    if (N1C) {
2820      APInt Val = N1C->getAPIntValue();
2821      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2822      Val <<= Val.getBitWidth()-FromBits;
2823      Val = Val.ashr(Val.getBitWidth()-FromBits);
2824      return getConstant(Val, VT);
2825    }
2826    break;
2827  }
2828  case ISD::EXTRACT_VECTOR_ELT:
2829    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2830    if (N1.getOpcode() == ISD::UNDEF)
2831      return getUNDEF(VT);
2832
2833    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2834    // expanding copies of large vectors from registers.
2835    if (N2C &&
2836        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2837        N1.getNumOperands() > 0) {
2838      unsigned Factor =
2839        N1.getOperand(0).getValueType().getVectorNumElements();
2840      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2841                     N1.getOperand(N2C->getZExtValue() / Factor),
2842                     getConstant(N2C->getZExtValue() % Factor,
2843                                 N2.getValueType()));
2844    }
2845
2846    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2847    // expanding large vector constants.
2848    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2849      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2850      EVT VEltTy = N1.getValueType().getVectorElementType();
2851      if (Elt.getValueType() != VEltTy) {
2852        // If the vector element type is not legal, the BUILD_VECTOR operands
2853        // are promoted and implicitly truncated.  Make that explicit here.
2854        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2855      }
2856      if (VT != VEltTy) {
2857        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2858        // result is implicitly extended.
2859        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2860      }
2861      return Elt;
2862    }
2863
2864    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2865    // operations are lowered to scalars.
2866    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2867      // If the indices are the same, return the inserted element else
2868      // if the indices are known different, extract the element from
2869      // the original vector.
2870      SDValue N1Op2 = N1.getOperand(2);
2871      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2872
2873      if (N1Op2C && N2C) {
2874        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2875          if (VT == N1.getOperand(1).getValueType())
2876            return N1.getOperand(1);
2877          else
2878            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2879        }
2880
2881        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2882      }
2883    }
2884    break;
2885  case ISD::EXTRACT_ELEMENT:
2886    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2887    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2888           (N1.getValueType().isInteger() == VT.isInteger()) &&
2889           N1.getValueType() != VT &&
2890           "Wrong types for EXTRACT_ELEMENT!");
2891
2892    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2893    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2894    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2895    if (N1.getOpcode() == ISD::BUILD_PAIR)
2896      return N1.getOperand(N2C->getZExtValue());
2897
2898    // EXTRACT_ELEMENT of a constant int is also very common.
2899    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2900      unsigned ElementSize = VT.getSizeInBits();
2901      unsigned Shift = ElementSize * N2C->getZExtValue();
2902      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2903      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2904    }
2905    break;
2906  case ISD::EXTRACT_SUBVECTOR: {
2907    SDValue Index = N2;
2908    if (VT.isSimple() && N1.getValueType().isSimple()) {
2909      assert(VT.isVector() && N1.getValueType().isVector() &&
2910             "Extract subvector VTs must be a vectors!");
2911      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2912             "Extract subvector VTs must have the same element type!");
2913      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2914             "Extract subvector must be from larger vector to smaller vector!");
2915
2916      if (isa<ConstantSDNode>(Index.getNode())) {
2917        assert((VT.getVectorNumElements() +
2918                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2919                <= N1.getValueType().getVectorNumElements())
2920               && "Extract subvector overflow!");
2921      }
2922
2923      // Trivial extraction.
2924      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2925        return N1;
2926    }
2927    break;
2928  }
2929  }
2930
2931  if (N1C) {
2932    if (N2C) {
2933      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2934      if (SV.getNode()) return SV;
2935    } else {      // Cannonicalize constant to RHS if commutative
2936      if (isCommutativeBinOp(Opcode)) {
2937        std::swap(N1C, N2C);
2938        std::swap(N1, N2);
2939      }
2940    }
2941  }
2942
2943  // Constant fold FP operations.
2944  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2945  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2946  if (N1CFP) {
2947    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2948      // Cannonicalize constant to RHS if commutative
2949      std::swap(N1CFP, N2CFP);
2950      std::swap(N1, N2);
2951    } else if (N2CFP && VT != MVT::ppcf128) {
2952      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2953      APFloat::opStatus s;
2954      switch (Opcode) {
2955      case ISD::FADD:
2956        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2957        if (s != APFloat::opInvalidOp)
2958          return getConstantFP(V1, VT);
2959        break;
2960      case ISD::FSUB:
2961        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2962        if (s!=APFloat::opInvalidOp)
2963          return getConstantFP(V1, VT);
2964        break;
2965      case ISD::FMUL:
2966        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2967        if (s!=APFloat::opInvalidOp)
2968          return getConstantFP(V1, VT);
2969        break;
2970      case ISD::FDIV:
2971        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2972        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2973          return getConstantFP(V1, VT);
2974        break;
2975      case ISD::FREM :
2976        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2977        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2978          return getConstantFP(V1, VT);
2979        break;
2980      case ISD::FCOPYSIGN:
2981        V1.copySign(V2);
2982        return getConstantFP(V1, VT);
2983      default: break;
2984      }
2985    }
2986  }
2987
2988  // Canonicalize an UNDEF to the RHS, even over a constant.
2989  if (N1.getOpcode() == ISD::UNDEF) {
2990    if (isCommutativeBinOp(Opcode)) {
2991      std::swap(N1, N2);
2992    } else {
2993      switch (Opcode) {
2994      case ISD::FP_ROUND_INREG:
2995      case ISD::SIGN_EXTEND_INREG:
2996      case ISD::SUB:
2997      case ISD::FSUB:
2998      case ISD::FDIV:
2999      case ISD::FREM:
3000      case ISD::SRA:
3001        return N1;     // fold op(undef, arg2) -> undef
3002      case ISD::UDIV:
3003      case ISD::SDIV:
3004      case ISD::UREM:
3005      case ISD::SREM:
3006      case ISD::SRL:
3007      case ISD::SHL:
3008        if (!VT.isVector())
3009          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3010        // For vectors, we can't easily build an all zero vector, just return
3011        // the LHS.
3012        return N2;
3013      }
3014    }
3015  }
3016
3017  // Fold a bunch of operators when the RHS is undef.
3018  if (N2.getOpcode() == ISD::UNDEF) {
3019    switch (Opcode) {
3020    case ISD::XOR:
3021      if (N1.getOpcode() == ISD::UNDEF)
3022        // Handle undef ^ undef -> 0 special case. This is a common
3023        // idiom (misuse).
3024        return getConstant(0, VT);
3025      // fallthrough
3026    case ISD::ADD:
3027    case ISD::ADDC:
3028    case ISD::ADDE:
3029    case ISD::SUB:
3030    case ISD::UDIV:
3031    case ISD::SDIV:
3032    case ISD::UREM:
3033    case ISD::SREM:
3034      return N2;       // fold op(arg1, undef) -> undef
3035    case ISD::FADD:
3036    case ISD::FSUB:
3037    case ISD::FMUL:
3038    case ISD::FDIV:
3039    case ISD::FREM:
3040      if (UnsafeFPMath)
3041        return N2;
3042      break;
3043    case ISD::MUL:
3044    case ISD::AND:
3045    case ISD::SRL:
3046    case ISD::SHL:
3047      if (!VT.isVector())
3048        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3049      // For vectors, we can't easily build an all zero vector, just return
3050      // the LHS.
3051      return N1;
3052    case ISD::OR:
3053      if (!VT.isVector())
3054        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3055      // For vectors, we can't easily build an all one vector, just return
3056      // the LHS.
3057      return N1;
3058    case ISD::SRA:
3059      return N1;
3060    }
3061  }
3062
3063  // Memoize this node if possible.
3064  SDNode *N;
3065  SDVTList VTs = getVTList(VT);
3066  if (VT != MVT::Glue) {
3067    SDValue Ops[] = { N1, N2 };
3068    FoldingSetNodeID ID;
3069    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3070    void *IP = 0;
3071    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3072      return SDValue(E, 0);
3073
3074    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3075    CSEMap.InsertNode(N, IP);
3076  } else {
3077    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3078  }
3079
3080  AllNodes.push_back(N);
3081#ifndef NDEBUG
3082  VerifySDNode(N);
3083#endif
3084  return SDValue(N, 0);
3085}
3086
3087SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3088                              SDValue N1, SDValue N2, SDValue N3) {
3089  // Perform various simplifications.
3090  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3091  switch (Opcode) {
3092  case ISD::CONCAT_VECTORS:
3093    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3094    // one big BUILD_VECTOR.
3095    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3096        N2.getOpcode() == ISD::BUILD_VECTOR &&
3097        N3.getOpcode() == ISD::BUILD_VECTOR) {
3098      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3099                                    N1.getNode()->op_end());
3100      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3101      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3102      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3103    }
3104    break;
3105  case ISD::SETCC: {
3106    // Use FoldSetCC to simplify SETCC's.
3107    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3108    if (Simp.getNode()) return Simp;
3109    break;
3110  }
3111  case ISD::SELECT:
3112    if (N1C) {
3113     if (N1C->getZExtValue())
3114        return N2;             // select true, X, Y -> X
3115      else
3116        return N3;             // select false, X, Y -> Y
3117    }
3118
3119    if (N2 == N3) return N2;   // select C, X, X -> X
3120    break;
3121  case ISD::VECTOR_SHUFFLE:
3122    llvm_unreachable("should use getVectorShuffle constructor!");
3123    break;
3124  case ISD::INSERT_SUBVECTOR: {
3125    SDValue Index = N3;
3126    if (VT.isSimple() && N1.getValueType().isSimple()
3127        && N2.getValueType().isSimple()) {
3128      assert(VT.isVector() && N1.getValueType().isVector() &&
3129             N2.getValueType().isVector() &&
3130             "Insert subvector VTs must be a vectors");
3131      assert(VT == N1.getValueType() &&
3132             "Dest and insert subvector source types must match!");
3133      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3134             "Insert subvector must be from smaller vector to larger vector!");
3135      if (isa<ConstantSDNode>(Index.getNode())) {
3136        assert((N2.getValueType().getVectorNumElements() +
3137                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3138                <= VT.getVectorNumElements())
3139               && "Insert subvector overflow!");
3140      }
3141
3142      // Trivial insertion.
3143      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3144        return N2;
3145    }
3146    break;
3147  }
3148  case ISD::BITCAST:
3149    // Fold bit_convert nodes from a type to themselves.
3150    if (N1.getValueType() == VT)
3151      return N1;
3152    break;
3153  }
3154
3155  // Memoize node if it doesn't produce a flag.
3156  SDNode *N;
3157  SDVTList VTs = getVTList(VT);
3158  if (VT != MVT::Glue) {
3159    SDValue Ops[] = { N1, N2, N3 };
3160    FoldingSetNodeID ID;
3161    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3162    void *IP = 0;
3163    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3164      return SDValue(E, 0);
3165
3166    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3167    CSEMap.InsertNode(N, IP);
3168  } else {
3169    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3170  }
3171
3172  AllNodes.push_back(N);
3173#ifndef NDEBUG
3174  VerifySDNode(N);
3175#endif
3176  return SDValue(N, 0);
3177}
3178
3179SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3180                              SDValue N1, SDValue N2, SDValue N3,
3181                              SDValue N4) {
3182  SDValue Ops[] = { N1, N2, N3, N4 };
3183  return getNode(Opcode, DL, VT, Ops, 4);
3184}
3185
3186SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3187                              SDValue N1, SDValue N2, SDValue N3,
3188                              SDValue N4, SDValue N5) {
3189  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3190  return getNode(Opcode, DL, VT, Ops, 5);
3191}
3192
3193/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3194/// the incoming stack arguments to be loaded from the stack.
3195SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3196  SmallVector<SDValue, 8> ArgChains;
3197
3198  // Include the original chain at the beginning of the list. When this is
3199  // used by target LowerCall hooks, this helps legalize find the
3200  // CALLSEQ_BEGIN node.
3201  ArgChains.push_back(Chain);
3202
3203  // Add a chain value for each stack argument.
3204  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3205       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3206    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3207      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3208        if (FI->getIndex() < 0)
3209          ArgChains.push_back(SDValue(L, 1));
3210
3211  // Build a tokenfactor for all the chains.
3212  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3213                 &ArgChains[0], ArgChains.size());
3214}
3215
3216/// SplatByte - Distribute ByteVal over NumBits bits.
3217static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3218  APInt Val = APInt(NumBits, ByteVal);
3219  unsigned Shift = 8;
3220  for (unsigned i = NumBits; i > 8; i >>= 1) {
3221    Val = (Val << Shift) | Val;
3222    Shift <<= 1;
3223  }
3224  return Val;
3225}
3226
3227/// getMemsetValue - Vectorized representation of the memset value
3228/// operand.
3229static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3230                              DebugLoc dl) {
3231  assert(Value.getOpcode() != ISD::UNDEF);
3232
3233  unsigned NumBits = VT.getScalarType().getSizeInBits();
3234  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3235    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3236    if (VT.isInteger())
3237      return DAG.getConstant(Val, VT);
3238    return DAG.getConstantFP(APFloat(Val), VT);
3239  }
3240
3241  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3242  if (NumBits > 8) {
3243    // Use a multiplication with 0x010101... to extend the input to the
3244    // required length.
3245    APInt Magic = SplatByte(NumBits, 0x01);
3246    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3247  }
3248
3249  return Value;
3250}
3251
3252/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3253/// used when a memcpy is turned into a memset when the source is a constant
3254/// string ptr.
3255static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3256                                  const TargetLowering &TLI,
3257                                  std::string &Str, unsigned Offset) {
3258  // Handle vector with all elements zero.
3259  if (Str.empty()) {
3260    if (VT.isInteger())
3261      return DAG.getConstant(0, VT);
3262    else if (VT == MVT::f32 || VT == MVT::f64)
3263      return DAG.getConstantFP(0.0, VT);
3264    else if (VT.isVector()) {
3265      unsigned NumElts = VT.getVectorNumElements();
3266      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3267      return DAG.getNode(ISD::BITCAST, dl, VT,
3268                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3269                                                             EltVT, NumElts)));
3270    } else
3271      llvm_unreachable("Expected type!");
3272  }
3273
3274  assert(!VT.isVector() && "Can't handle vector type here!");
3275  unsigned NumBits = VT.getSizeInBits();
3276  unsigned MSB = NumBits / 8;
3277  uint64_t Val = 0;
3278  if (TLI.isLittleEndian())
3279    Offset = Offset + MSB - 1;
3280  for (unsigned i = 0; i != MSB; ++i) {
3281    Val = (Val << 8) | (unsigned char)Str[Offset];
3282    Offset += TLI.isLittleEndian() ? -1 : 1;
3283  }
3284  return DAG.getConstant(Val, VT);
3285}
3286
3287/// getMemBasePlusOffset - Returns base and offset node for the
3288///
3289static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3290                                      SelectionDAG &DAG) {
3291  EVT VT = Base.getValueType();
3292  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3293                     VT, Base, DAG.getConstant(Offset, VT));
3294}
3295
3296/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3297///
3298static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3299  unsigned SrcDelta = 0;
3300  GlobalAddressSDNode *G = NULL;
3301  if (Src.getOpcode() == ISD::GlobalAddress)
3302    G = cast<GlobalAddressSDNode>(Src);
3303  else if (Src.getOpcode() == ISD::ADD &&
3304           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3305           Src.getOperand(1).getOpcode() == ISD::Constant) {
3306    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3307    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3308  }
3309  if (!G)
3310    return false;
3311
3312  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3313  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3314    return true;
3315
3316  return false;
3317}
3318
3319/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3320/// to replace the memset / memcpy. Return true if the number of memory ops
3321/// is below the threshold. It returns the types of the sequence of
3322/// memory ops to perform memset / memcpy by reference.
3323static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3324                                     unsigned Limit, uint64_t Size,
3325                                     unsigned DstAlign, unsigned SrcAlign,
3326                                     bool NonScalarIntSafe,
3327                                     bool MemcpyStrSrc,
3328                                     SelectionDAG &DAG,
3329                                     const TargetLowering &TLI) {
3330  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3331         "Expecting memcpy / memset source to meet alignment requirement!");
3332  // If 'SrcAlign' is zero, that means the memory operation does not need to
3333  // load the value, i.e. memset or memcpy from constant string. Otherwise,
3334  // it's the inferred alignment of the source. 'DstAlign', on the other hand,
3335  // is the specified alignment of the memory operation. If it is zero, that
3336  // means it's possible to change the alignment of the destination.
3337  // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
3338  // not need to be loaded.
3339  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3340                                   NonScalarIntSafe, MemcpyStrSrc,
3341                                   DAG.getMachineFunction());
3342
3343  if (VT == MVT::Other) {
3344    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3345        TLI.allowsUnalignedMemoryAccesses(VT)) {
3346      VT = TLI.getPointerTy();
3347    } else {
3348      switch (DstAlign & 7) {
3349      case 0:  VT = MVT::i64; break;
3350      case 4:  VT = MVT::i32; break;
3351      case 2:  VT = MVT::i16; break;
3352      default: VT = MVT::i8;  break;
3353      }
3354    }
3355
3356    MVT LVT = MVT::i64;
3357    while (!TLI.isTypeLegal(LVT))
3358      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3359    assert(LVT.isInteger());
3360
3361    if (VT.bitsGT(LVT))
3362      VT = LVT;
3363  }
3364
3365  unsigned NumMemOps = 0;
3366  while (Size != 0) {
3367    unsigned VTSize = VT.getSizeInBits() / 8;
3368    while (VTSize > Size) {
3369      // For now, only use non-vector load / store's for the left-over pieces.
3370      if (VT.isVector() || VT.isFloatingPoint()) {
3371        VT = MVT::i64;
3372        while (!TLI.isTypeLegal(VT))
3373          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3374        VTSize = VT.getSizeInBits() / 8;
3375      } else {
3376        // This can result in a type that is not legal on the target, e.g.
3377        // 1 or 2 bytes on PPC.
3378        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3379        VTSize >>= 1;
3380      }
3381    }
3382
3383    if (++NumMemOps > Limit)
3384      return false;
3385    MemOps.push_back(VT);
3386    Size -= VTSize;
3387  }
3388
3389  return true;
3390}
3391
3392static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3393                                       SDValue Chain, SDValue Dst,
3394                                       SDValue Src, uint64_t Size,
3395                                       unsigned Align, bool isVol,
3396                                       bool AlwaysInline,
3397                                       MachinePointerInfo DstPtrInfo,
3398                                       MachinePointerInfo SrcPtrInfo) {
3399  // Turn a memcpy of undef to nop.
3400  if (Src.getOpcode() == ISD::UNDEF)
3401    return Chain;
3402
3403  // Expand memcpy to a series of load and store ops if the size operand falls
3404  // below a certain threshold.
3405  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3406  // rather than maybe a humongous number of loads and stores.
3407  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3408  std::vector<EVT> MemOps;
3409  bool DstAlignCanChange = false;
3410  MachineFunction &MF = DAG.getMachineFunction();
3411  MachineFrameInfo *MFI = MF.getFrameInfo();
3412  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3413  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3414  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3415    DstAlignCanChange = true;
3416  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3417  if (Align > SrcAlign)
3418    SrcAlign = Align;
3419  std::string Str;
3420  bool CopyFromStr = isMemSrcFromString(Src, Str);
3421  bool isZeroStr = CopyFromStr && Str.empty();
3422  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3423
3424  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3425                                (DstAlignCanChange ? 0 : Align),
3426                                (isZeroStr ? 0 : SrcAlign),
3427                                true, CopyFromStr, DAG, TLI))
3428    return SDValue();
3429
3430  if (DstAlignCanChange) {
3431    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3432    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3433    if (NewAlign > Align) {
3434      // Give the stack frame object a larger alignment if needed.
3435      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3436        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3437      Align = NewAlign;
3438    }
3439  }
3440
3441  SmallVector<SDValue, 8> OutChains;
3442  unsigned NumMemOps = MemOps.size();
3443  uint64_t SrcOff = 0, DstOff = 0;
3444  for (unsigned i = 0; i != NumMemOps; ++i) {
3445    EVT VT = MemOps[i];
3446    unsigned VTSize = VT.getSizeInBits() / 8;
3447    SDValue Value, Store;
3448
3449    if (CopyFromStr &&
3450        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3451      // It's unlikely a store of a vector immediate can be done in a single
3452      // instruction. It would require a load from a constantpool first.
3453      // We only handle zero vectors here.
3454      // FIXME: Handle other cases where store of vector immediate is done in
3455      // a single instruction.
3456      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3457      Store = DAG.getStore(Chain, dl, Value,
3458                           getMemBasePlusOffset(Dst, DstOff, DAG),
3459                           DstPtrInfo.getWithOffset(DstOff), isVol,
3460                           false, Align);
3461    } else {
3462      // The type might not be legal for the target.  This should only happen
3463      // if the type is smaller than a legal type, as on PPC, so the right
3464      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3465      // to Load/Store if NVT==VT.
3466      // FIXME does the case above also need this?
3467      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3468      assert(NVT.bitsGE(VT));
3469      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3470                             getMemBasePlusOffset(Src, SrcOff, DAG),
3471                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3472                             MinAlign(SrcAlign, SrcOff));
3473      Store = DAG.getTruncStore(Chain, dl, Value,
3474                                getMemBasePlusOffset(Dst, DstOff, DAG),
3475                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3476                                false, Align);
3477    }
3478    OutChains.push_back(Store);
3479    SrcOff += VTSize;
3480    DstOff += VTSize;
3481  }
3482
3483  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3484                     &OutChains[0], OutChains.size());
3485}
3486
3487static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3488                                        SDValue Chain, SDValue Dst,
3489                                        SDValue Src, uint64_t Size,
3490                                        unsigned Align,  bool isVol,
3491                                        bool AlwaysInline,
3492                                        MachinePointerInfo DstPtrInfo,
3493                                        MachinePointerInfo SrcPtrInfo) {
3494  // Turn a memmove of undef to nop.
3495  if (Src.getOpcode() == ISD::UNDEF)
3496    return Chain;
3497
3498  // Expand memmove to a series of load and store ops if the size operand falls
3499  // below a certain threshold.
3500  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3501  std::vector<EVT> MemOps;
3502  bool DstAlignCanChange = false;
3503  MachineFunction &MF = DAG.getMachineFunction();
3504  MachineFrameInfo *MFI = MF.getFrameInfo();
3505  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3506  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3507  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3508    DstAlignCanChange = true;
3509  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3510  if (Align > SrcAlign)
3511    SrcAlign = Align;
3512  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3513
3514  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3515                                (DstAlignCanChange ? 0 : Align),
3516                                SrcAlign, true, false, DAG, TLI))
3517    return SDValue();
3518
3519  if (DstAlignCanChange) {
3520    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3521    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3522    if (NewAlign > Align) {
3523      // Give the stack frame object a larger alignment if needed.
3524      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3525        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3526      Align = NewAlign;
3527    }
3528  }
3529
3530  uint64_t SrcOff = 0, DstOff = 0;
3531  SmallVector<SDValue, 8> LoadValues;
3532  SmallVector<SDValue, 8> LoadChains;
3533  SmallVector<SDValue, 8> OutChains;
3534  unsigned NumMemOps = MemOps.size();
3535  for (unsigned i = 0; i < NumMemOps; i++) {
3536    EVT VT = MemOps[i];
3537    unsigned VTSize = VT.getSizeInBits() / 8;
3538    SDValue Value, Store;
3539
3540    Value = DAG.getLoad(VT, dl, Chain,
3541                        getMemBasePlusOffset(Src, SrcOff, DAG),
3542                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3543                        false, SrcAlign);
3544    LoadValues.push_back(Value);
3545    LoadChains.push_back(Value.getValue(1));
3546    SrcOff += VTSize;
3547  }
3548  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3549                      &LoadChains[0], LoadChains.size());
3550  OutChains.clear();
3551  for (unsigned i = 0; i < NumMemOps; i++) {
3552    EVT VT = MemOps[i];
3553    unsigned VTSize = VT.getSizeInBits() / 8;
3554    SDValue Value, Store;
3555
3556    Store = DAG.getStore(Chain, dl, LoadValues[i],
3557                         getMemBasePlusOffset(Dst, DstOff, DAG),
3558                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3559    OutChains.push_back(Store);
3560    DstOff += VTSize;
3561  }
3562
3563  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3564                     &OutChains[0], OutChains.size());
3565}
3566
3567static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3568                               SDValue Chain, SDValue Dst,
3569                               SDValue Src, uint64_t Size,
3570                               unsigned Align, bool isVol,
3571                               MachinePointerInfo DstPtrInfo) {
3572  // Turn a memset of undef to nop.
3573  if (Src.getOpcode() == ISD::UNDEF)
3574    return Chain;
3575
3576  // Expand memset to a series of load/store ops if the size operand
3577  // falls below a certain threshold.
3578  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3579  std::vector<EVT> MemOps;
3580  bool DstAlignCanChange = false;
3581  MachineFunction &MF = DAG.getMachineFunction();
3582  MachineFrameInfo *MFI = MF.getFrameInfo();
3583  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3584  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3585  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3586    DstAlignCanChange = true;
3587  bool NonScalarIntSafe =
3588    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3589  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3590                                Size, (DstAlignCanChange ? 0 : Align), 0,
3591                                NonScalarIntSafe, false, DAG, TLI))
3592    return SDValue();
3593
3594  if (DstAlignCanChange) {
3595    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3596    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3597    if (NewAlign > Align) {
3598      // Give the stack frame object a larger alignment if needed.
3599      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3600        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3601      Align = NewAlign;
3602    }
3603  }
3604
3605  SmallVector<SDValue, 8> OutChains;
3606  uint64_t DstOff = 0;
3607  unsigned NumMemOps = MemOps.size();
3608
3609  // Find the largest store and generate the bit pattern for it.
3610  EVT LargestVT = MemOps[0];
3611  for (unsigned i = 1; i < NumMemOps; i++)
3612    if (MemOps[i].bitsGT(LargestVT))
3613      LargestVT = MemOps[i];
3614  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3615
3616  for (unsigned i = 0; i < NumMemOps; i++) {
3617    EVT VT = MemOps[i];
3618
3619    // If this store is smaller than the largest store see whether we can get
3620    // the smaller value for free with a truncate.
3621    SDValue Value = MemSetValue;
3622    if (VT.bitsLT(LargestVT)) {
3623      if (!LargestVT.isVector() && !VT.isVector() &&
3624          TLI.isTruncateFree(LargestVT, VT))
3625        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3626      else
3627        Value = getMemsetValue(Src, VT, DAG, dl);
3628    }
3629    assert(Value.getValueType() == VT && "Value with wrong type.");
3630    SDValue Store = DAG.getStore(Chain, dl, Value,
3631                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3632                                 DstPtrInfo.getWithOffset(DstOff),
3633                                 isVol, false, Align);
3634    OutChains.push_back(Store);
3635    DstOff += VT.getSizeInBits() / 8;
3636  }
3637
3638  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3639                     &OutChains[0], OutChains.size());
3640}
3641
3642SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3643                                SDValue Src, SDValue Size,
3644                                unsigned Align, bool isVol, bool AlwaysInline,
3645                                MachinePointerInfo DstPtrInfo,
3646                                MachinePointerInfo SrcPtrInfo) {
3647
3648  // Check to see if we should lower the memcpy to loads and stores first.
3649  // For cases within the target-specified limits, this is the best choice.
3650  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3651  if (ConstantSize) {
3652    // Memcpy with size zero? Just return the original chain.
3653    if (ConstantSize->isNullValue())
3654      return Chain;
3655
3656    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3657                                             ConstantSize->getZExtValue(),Align,
3658                                isVol, false, DstPtrInfo, SrcPtrInfo);
3659    if (Result.getNode())
3660      return Result;
3661  }
3662
3663  // Then check to see if we should lower the memcpy with target-specific
3664  // code. If the target chooses to do this, this is the next best.
3665  SDValue Result =
3666    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3667                                isVol, AlwaysInline,
3668                                DstPtrInfo, SrcPtrInfo);
3669  if (Result.getNode())
3670    return Result;
3671
3672  // If we really need inline code and the target declined to provide it,
3673  // use a (potentially long) sequence of loads and stores.
3674  if (AlwaysInline) {
3675    assert(ConstantSize && "AlwaysInline requires a constant size!");
3676    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3677                                   ConstantSize->getZExtValue(), Align, isVol,
3678                                   true, DstPtrInfo, SrcPtrInfo);
3679  }
3680
3681  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3682  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3683  // respect volatile, so they may do things like read or write memory
3684  // beyond the given memory regions. But fixing this isn't easy, and most
3685  // people don't care.
3686
3687  // Emit a library call.
3688  TargetLowering::ArgListTy Args;
3689  TargetLowering::ArgListEntry Entry;
3690  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3691  Entry.Node = Dst; Args.push_back(Entry);
3692  Entry.Node = Src; Args.push_back(Entry);
3693  Entry.Node = Size; Args.push_back(Entry);
3694  // FIXME: pass in DebugLoc
3695  std::pair<SDValue,SDValue> CallResult =
3696    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3697                    false, false, false, false, 0,
3698                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3699                    /*isReturnValueUsed=*/false,
3700                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3701                                      TLI.getPointerTy()),
3702                    Args, *this, dl);
3703  return CallResult.second;
3704}
3705
3706SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3707                                 SDValue Src, SDValue Size,
3708                                 unsigned Align, bool isVol,
3709                                 MachinePointerInfo DstPtrInfo,
3710                                 MachinePointerInfo SrcPtrInfo) {
3711
3712  // Check to see if we should lower the memmove to loads and stores first.
3713  // For cases within the target-specified limits, this is the best choice.
3714  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3715  if (ConstantSize) {
3716    // Memmove with size zero? Just return the original chain.
3717    if (ConstantSize->isNullValue())
3718      return Chain;
3719
3720    SDValue Result =
3721      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3722                               ConstantSize->getZExtValue(), Align, isVol,
3723                               false, DstPtrInfo, SrcPtrInfo);
3724    if (Result.getNode())
3725      return Result;
3726  }
3727
3728  // Then check to see if we should lower the memmove with target-specific
3729  // code. If the target chooses to do this, this is the next best.
3730  SDValue Result =
3731    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3732                                 DstPtrInfo, SrcPtrInfo);
3733  if (Result.getNode())
3734    return Result;
3735
3736  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3737  // not be safe.  See memcpy above for more details.
3738
3739  // Emit a library call.
3740  TargetLowering::ArgListTy Args;
3741  TargetLowering::ArgListEntry Entry;
3742  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3743  Entry.Node = Dst; Args.push_back(Entry);
3744  Entry.Node = Src; Args.push_back(Entry);
3745  Entry.Node = Size; Args.push_back(Entry);
3746  // FIXME:  pass in DebugLoc
3747  std::pair<SDValue,SDValue> CallResult =
3748    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3749                    false, false, false, false, 0,
3750                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3751                    /*isReturnValueUsed=*/false,
3752                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3753                                      TLI.getPointerTy()),
3754                    Args, *this, dl);
3755  return CallResult.second;
3756}
3757
3758SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3759                                SDValue Src, SDValue Size,
3760                                unsigned Align, bool isVol,
3761                                MachinePointerInfo DstPtrInfo) {
3762
3763  // Check to see if we should lower the memset to stores first.
3764  // For cases within the target-specified limits, this is the best choice.
3765  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3766  if (ConstantSize) {
3767    // Memset with size zero? Just return the original chain.
3768    if (ConstantSize->isNullValue())
3769      return Chain;
3770
3771    SDValue Result =
3772      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3773                      Align, isVol, DstPtrInfo);
3774
3775    if (Result.getNode())
3776      return Result;
3777  }
3778
3779  // Then check to see if we should lower the memset with target-specific
3780  // code. If the target chooses to do this, this is the next best.
3781  SDValue Result =
3782    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3783                                DstPtrInfo);
3784  if (Result.getNode())
3785    return Result;
3786
3787  // Emit a library call.
3788  Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3789  TargetLowering::ArgListTy Args;
3790  TargetLowering::ArgListEntry Entry;
3791  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3792  Args.push_back(Entry);
3793  // Extend or truncate the argument to be an i32 value for the call.
3794  if (Src.getValueType().bitsGT(MVT::i32))
3795    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3796  else
3797    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3798  Entry.Node = Src;
3799  Entry.Ty = Type::getInt32Ty(*getContext());
3800  Entry.isSExt = true;
3801  Args.push_back(Entry);
3802  Entry.Node = Size;
3803  Entry.Ty = IntPtrTy;
3804  Entry.isSExt = false;
3805  Args.push_back(Entry);
3806  // FIXME: pass in DebugLoc
3807  std::pair<SDValue,SDValue> CallResult =
3808    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3809                    false, false, false, false, 0,
3810                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3811                    /*isReturnValueUsed=*/false,
3812                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3813                                      TLI.getPointerTy()),
3814                    Args, *this, dl);
3815  return CallResult.second;
3816}
3817
3818SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3819                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3820                                SDValue Swp, MachinePointerInfo PtrInfo,
3821                                unsigned Alignment,
3822                                AtomicOrdering Ordering,
3823                                SynchronizationScope SynchScope) {
3824  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3825    Alignment = getEVTAlignment(MemVT);
3826
3827  MachineFunction &MF = getMachineFunction();
3828  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3829
3830  // For now, atomics are considered to be volatile always.
3831  Flags |= MachineMemOperand::MOVolatile;
3832
3833  MachineMemOperand *MMO =
3834    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3835
3836  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
3837                   Ordering, SynchScope);
3838}
3839
3840SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3841                                SDValue Chain,
3842                                SDValue Ptr, SDValue Cmp,
3843                                SDValue Swp, MachineMemOperand *MMO,
3844                                AtomicOrdering Ordering,
3845                                SynchronizationScope SynchScope) {
3846  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3847  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3848
3849  EVT VT = Cmp.getValueType();
3850
3851  SDVTList VTs = getVTList(VT, MVT::Other);
3852  FoldingSetNodeID ID;
3853  ID.AddInteger(MemVT.getRawBits());
3854  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3855  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3856  void* IP = 0;
3857  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3858    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3859    return SDValue(E, 0);
3860  }
3861  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3862                                               Ptr, Cmp, Swp, MMO, Ordering,
3863                                               SynchScope);
3864  CSEMap.InsertNode(N, IP);
3865  AllNodes.push_back(N);
3866  return SDValue(N, 0);
3867}
3868
3869SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3870                                SDValue Chain,
3871                                SDValue Ptr, SDValue Val,
3872                                const Value* PtrVal,
3873                                unsigned Alignment,
3874                                AtomicOrdering Ordering,
3875                                SynchronizationScope SynchScope) {
3876  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3877    Alignment = getEVTAlignment(MemVT);
3878
3879  MachineFunction &MF = getMachineFunction();
3880  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3881
3882  // For now, atomics are considered to be volatile always.
3883  Flags |= MachineMemOperand::MOVolatile;
3884
3885  MachineMemOperand *MMO =
3886    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3887                            MemVT.getStoreSize(), Alignment);
3888
3889  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
3890                   Ordering, SynchScope);
3891}
3892
3893SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3894                                SDValue Chain,
3895                                SDValue Ptr, SDValue Val,
3896                                MachineMemOperand *MMO,
3897                                AtomicOrdering Ordering,
3898                                SynchronizationScope SynchScope) {
3899  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3900          Opcode == ISD::ATOMIC_LOAD_SUB ||
3901          Opcode == ISD::ATOMIC_LOAD_AND ||
3902          Opcode == ISD::ATOMIC_LOAD_OR ||
3903          Opcode == ISD::ATOMIC_LOAD_XOR ||
3904          Opcode == ISD::ATOMIC_LOAD_NAND ||
3905          Opcode == ISD::ATOMIC_LOAD_MIN ||
3906          Opcode == ISD::ATOMIC_LOAD_MAX ||
3907          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3908          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3909          Opcode == ISD::ATOMIC_SWAP ||
3910          Opcode == ISD::ATOMIC_STORE) &&
3911         "Invalid Atomic Op");
3912
3913  EVT VT = Val.getValueType();
3914
3915  SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
3916                                               getVTList(VT, MVT::Other);
3917  FoldingSetNodeID ID;
3918  ID.AddInteger(MemVT.getRawBits());
3919  SDValue Ops[] = {Chain, Ptr, Val};
3920  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3921  void* IP = 0;
3922  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3923    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3924    return SDValue(E, 0);
3925  }
3926  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3927                                               Ptr, Val, MMO,
3928                                               Ordering, SynchScope);
3929  CSEMap.InsertNode(N, IP);
3930  AllNodes.push_back(N);
3931  return SDValue(N, 0);
3932}
3933
3934SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3935                                EVT VT, SDValue Chain,
3936                                SDValue Ptr,
3937                                const Value* PtrVal,
3938                                unsigned Alignment,
3939                                AtomicOrdering Ordering,
3940                                SynchronizationScope SynchScope) {
3941  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3942    Alignment = getEVTAlignment(MemVT);
3943
3944  MachineFunction &MF = getMachineFunction();
3945  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3946
3947  // For now, atomics are considered to be volatile always.
3948  Flags |= MachineMemOperand::MOVolatile;
3949
3950  MachineMemOperand *MMO =
3951    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3952                            MemVT.getStoreSize(), Alignment);
3953
3954  return getAtomic(Opcode, dl, MemVT, VT, Chain, Ptr, MMO,
3955                   Ordering, SynchScope);
3956}
3957
3958SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3959                                EVT VT, SDValue Chain,
3960                                SDValue Ptr,
3961                                MachineMemOperand *MMO,
3962                                AtomicOrdering Ordering,
3963                                SynchronizationScope SynchScope) {
3964  assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
3965
3966  SDVTList VTs = getVTList(VT, MVT::Other);
3967  FoldingSetNodeID ID;
3968  ID.AddInteger(MemVT.getRawBits());
3969  SDValue Ops[] = {Chain, Ptr};
3970  AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3971  void* IP = 0;
3972  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3973    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3974    return SDValue(E, 0);
3975  }
3976  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3977                                               Ptr, MMO, Ordering, SynchScope);
3978  CSEMap.InsertNode(N, IP);
3979  AllNodes.push_back(N);
3980  return SDValue(N, 0);
3981}
3982
3983/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3984SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3985                                     DebugLoc dl) {
3986  if (NumOps == 1)
3987    return Ops[0];
3988
3989  SmallVector<EVT, 4> VTs;
3990  VTs.reserve(NumOps);
3991  for (unsigned i = 0; i < NumOps; ++i)
3992    VTs.push_back(Ops[i].getValueType());
3993  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3994                 Ops, NumOps);
3995}
3996
3997SDValue
3998SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3999                                  const EVT *VTs, unsigned NumVTs,
4000                                  const SDValue *Ops, unsigned NumOps,
4001                                  EVT MemVT, MachinePointerInfo PtrInfo,
4002                                  unsigned Align, bool Vol,
4003                                  bool ReadMem, bool WriteMem) {
4004  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
4005                             MemVT, PtrInfo, Align, Vol,
4006                             ReadMem, WriteMem);
4007}
4008
4009SDValue
4010SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4011                                  const SDValue *Ops, unsigned NumOps,
4012                                  EVT MemVT, MachinePointerInfo PtrInfo,
4013                                  unsigned Align, bool Vol,
4014                                  bool ReadMem, bool WriteMem) {
4015  if (Align == 0)  // Ensure that codegen never sees alignment 0
4016    Align = getEVTAlignment(MemVT);
4017
4018  MachineFunction &MF = getMachineFunction();
4019  unsigned Flags = 0;
4020  if (WriteMem)
4021    Flags |= MachineMemOperand::MOStore;
4022  if (ReadMem)
4023    Flags |= MachineMemOperand::MOLoad;
4024  if (Vol)
4025    Flags |= MachineMemOperand::MOVolatile;
4026  MachineMemOperand *MMO =
4027    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
4028
4029  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
4030}
4031
4032SDValue
4033SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4034                                  const SDValue *Ops, unsigned NumOps,
4035                                  EVT MemVT, MachineMemOperand *MMO) {
4036  assert((Opcode == ISD::INTRINSIC_VOID ||
4037          Opcode == ISD::INTRINSIC_W_CHAIN ||
4038          Opcode == ISD::PREFETCH ||
4039          (Opcode <= INT_MAX &&
4040           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
4041         "Opcode is not a memory-accessing opcode!");
4042
4043  // Memoize the node unless it returns a flag.
4044  MemIntrinsicSDNode *N;
4045  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4046    FoldingSetNodeID ID;
4047    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4048    void *IP = 0;
4049    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4050      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
4051      return SDValue(E, 0);
4052    }
4053
4054    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4055                                               MemVT, MMO);
4056    CSEMap.InsertNode(N, IP);
4057  } else {
4058    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4059                                               MemVT, MMO);
4060  }
4061  AllNodes.push_back(N);
4062  return SDValue(N, 0);
4063}
4064
4065/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4066/// MachinePointerInfo record from it.  This is particularly useful because the
4067/// code generator has many cases where it doesn't bother passing in a
4068/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4069static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4070  // If this is FI+Offset, we can model it.
4071  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4072    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4073
4074  // If this is (FI+Offset1)+Offset2, we can model it.
4075  if (Ptr.getOpcode() != ISD::ADD ||
4076      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4077      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4078    return MachinePointerInfo();
4079
4080  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4081  return MachinePointerInfo::getFixedStack(FI, Offset+
4082                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4083}
4084
4085/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4086/// MachinePointerInfo record from it.  This is particularly useful because the
4087/// code generator has many cases where it doesn't bother passing in a
4088/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4089static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4090  // If the 'Offset' value isn't a constant, we can't handle this.
4091  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4092    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4093  if (OffsetOp.getOpcode() == ISD::UNDEF)
4094    return InferPointerInfo(Ptr);
4095  return MachinePointerInfo();
4096}
4097
4098
4099SDValue
4100SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4101                      EVT VT, DebugLoc dl, SDValue Chain,
4102                      SDValue Ptr, SDValue Offset,
4103                      MachinePointerInfo PtrInfo, EVT MemVT,
4104                      bool isVolatile, bool isNonTemporal,
4105                      unsigned Alignment, const MDNode *TBAAInfo) {
4106  assert(Chain.getValueType() == MVT::Other &&
4107        "Invalid chain type");
4108  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4109    Alignment = getEVTAlignment(VT);
4110
4111  unsigned Flags = MachineMemOperand::MOLoad;
4112  if (isVolatile)
4113    Flags |= MachineMemOperand::MOVolatile;
4114  if (isNonTemporal)
4115    Flags |= MachineMemOperand::MONonTemporal;
4116
4117  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4118  // clients.
4119  if (PtrInfo.V == 0)
4120    PtrInfo = InferPointerInfo(Ptr, Offset);
4121
4122  MachineFunction &MF = getMachineFunction();
4123  MachineMemOperand *MMO =
4124    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4125                            TBAAInfo);
4126  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4127}
4128
4129SDValue
4130SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4131                      EVT VT, DebugLoc dl, SDValue Chain,
4132                      SDValue Ptr, SDValue Offset, EVT MemVT,
4133                      MachineMemOperand *MMO) {
4134  if (VT == MemVT) {
4135    ExtType = ISD::NON_EXTLOAD;
4136  } else if (ExtType == ISD::NON_EXTLOAD) {
4137    assert(VT == MemVT && "Non-extending load from different memory type!");
4138  } else {
4139    // Extending load.
4140    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4141           "Should only be an extending load, not truncating!");
4142    assert(VT.isInteger() == MemVT.isInteger() &&
4143           "Cannot convert from FP to Int or Int -> FP!");
4144    assert(VT.isVector() == MemVT.isVector() &&
4145           "Cannot use trunc store to convert to or from a vector!");
4146    assert((!VT.isVector() ||
4147            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4148           "Cannot use trunc store to change the number of vector elements!");
4149  }
4150
4151  bool Indexed = AM != ISD::UNINDEXED;
4152  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4153         "Unindexed load with an offset!");
4154
4155  SDVTList VTs = Indexed ?
4156    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4157  SDValue Ops[] = { Chain, Ptr, Offset };
4158  FoldingSetNodeID ID;
4159  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4160  ID.AddInteger(MemVT.getRawBits());
4161  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4162                                     MMO->isNonTemporal()));
4163  void *IP = 0;
4164  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4165    cast<LoadSDNode>(E)->refineAlignment(MMO);
4166    return SDValue(E, 0);
4167  }
4168  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4169                                             MemVT, MMO);
4170  CSEMap.InsertNode(N, IP);
4171  AllNodes.push_back(N);
4172  return SDValue(N, 0);
4173}
4174
4175SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4176                              SDValue Chain, SDValue Ptr,
4177                              MachinePointerInfo PtrInfo,
4178                              bool isVolatile, bool isNonTemporal,
4179                              unsigned Alignment, const MDNode *TBAAInfo) {
4180  SDValue Undef = getUNDEF(Ptr.getValueType());
4181  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4182                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4183}
4184
4185SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4186                                 SDValue Chain, SDValue Ptr,
4187                                 MachinePointerInfo PtrInfo, EVT MemVT,
4188                                 bool isVolatile, bool isNonTemporal,
4189                                 unsigned Alignment, const MDNode *TBAAInfo) {
4190  SDValue Undef = getUNDEF(Ptr.getValueType());
4191  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4192                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4193                 TBAAInfo);
4194}
4195
4196
4197SDValue
4198SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4199                             SDValue Offset, ISD::MemIndexedMode AM) {
4200  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4201  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4202         "Load is already a indexed load!");
4203  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4204                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4205                 LD->getMemoryVT(),
4206                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4207}
4208
4209SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4210                               SDValue Ptr, MachinePointerInfo PtrInfo,
4211                               bool isVolatile, bool isNonTemporal,
4212                               unsigned Alignment, const MDNode *TBAAInfo) {
4213  assert(Chain.getValueType() == MVT::Other &&
4214        "Invalid chain type");
4215  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4216    Alignment = getEVTAlignment(Val.getValueType());
4217
4218  unsigned Flags = MachineMemOperand::MOStore;
4219  if (isVolatile)
4220    Flags |= MachineMemOperand::MOVolatile;
4221  if (isNonTemporal)
4222    Flags |= MachineMemOperand::MONonTemporal;
4223
4224  if (PtrInfo.V == 0)
4225    PtrInfo = InferPointerInfo(Ptr);
4226
4227  MachineFunction &MF = getMachineFunction();
4228  MachineMemOperand *MMO =
4229    MF.getMachineMemOperand(PtrInfo, Flags,
4230                            Val.getValueType().getStoreSize(), Alignment,
4231                            TBAAInfo);
4232
4233  return getStore(Chain, dl, Val, Ptr, MMO);
4234}
4235
4236SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4237                               SDValue Ptr, MachineMemOperand *MMO) {
4238  assert(Chain.getValueType() == MVT::Other &&
4239        "Invalid chain type");
4240  EVT VT = Val.getValueType();
4241  SDVTList VTs = getVTList(MVT::Other);
4242  SDValue Undef = getUNDEF(Ptr.getValueType());
4243  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4244  FoldingSetNodeID ID;
4245  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4246  ID.AddInteger(VT.getRawBits());
4247  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4248                                     MMO->isNonTemporal()));
4249  void *IP = 0;
4250  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4251    cast<StoreSDNode>(E)->refineAlignment(MMO);
4252    return SDValue(E, 0);
4253  }
4254  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4255                                              false, VT, MMO);
4256  CSEMap.InsertNode(N, IP);
4257  AllNodes.push_back(N);
4258  return SDValue(N, 0);
4259}
4260
4261SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4262                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4263                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4264                                    unsigned Alignment,
4265                                    const MDNode *TBAAInfo) {
4266  assert(Chain.getValueType() == MVT::Other &&
4267        "Invalid chain type");
4268  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4269    Alignment = getEVTAlignment(SVT);
4270
4271  unsigned Flags = MachineMemOperand::MOStore;
4272  if (isVolatile)
4273    Flags |= MachineMemOperand::MOVolatile;
4274  if (isNonTemporal)
4275    Flags |= MachineMemOperand::MONonTemporal;
4276
4277  if (PtrInfo.V == 0)
4278    PtrInfo = InferPointerInfo(Ptr);
4279
4280  MachineFunction &MF = getMachineFunction();
4281  MachineMemOperand *MMO =
4282    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4283                            TBAAInfo);
4284
4285  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4286}
4287
4288SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4289                                    SDValue Ptr, EVT SVT,
4290                                    MachineMemOperand *MMO) {
4291  EVT VT = Val.getValueType();
4292
4293  assert(Chain.getValueType() == MVT::Other &&
4294        "Invalid chain type");
4295  if (VT == SVT)
4296    return getStore(Chain, dl, Val, Ptr, MMO);
4297
4298  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4299         "Should only be a truncating store, not extending!");
4300  assert(VT.isInteger() == SVT.isInteger() &&
4301         "Can't do FP-INT conversion!");
4302  assert(VT.isVector() == SVT.isVector() &&
4303         "Cannot use trunc store to convert to or from a vector!");
4304  assert((!VT.isVector() ||
4305          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4306         "Cannot use trunc store to change the number of vector elements!");
4307
4308  SDVTList VTs = getVTList(MVT::Other);
4309  SDValue Undef = getUNDEF(Ptr.getValueType());
4310  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4311  FoldingSetNodeID ID;
4312  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4313  ID.AddInteger(SVT.getRawBits());
4314  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4315                                     MMO->isNonTemporal()));
4316  void *IP = 0;
4317  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4318    cast<StoreSDNode>(E)->refineAlignment(MMO);
4319    return SDValue(E, 0);
4320  }
4321  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4322                                              true, SVT, MMO);
4323  CSEMap.InsertNode(N, IP);
4324  AllNodes.push_back(N);
4325  return SDValue(N, 0);
4326}
4327
4328SDValue
4329SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4330                              SDValue Offset, ISD::MemIndexedMode AM) {
4331  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4332  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4333         "Store is already a indexed store!");
4334  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4335  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4336  FoldingSetNodeID ID;
4337  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4338  ID.AddInteger(ST->getMemoryVT().getRawBits());
4339  ID.AddInteger(ST->getRawSubclassData());
4340  void *IP = 0;
4341  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4342    return SDValue(E, 0);
4343
4344  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4345                                              ST->isTruncatingStore(),
4346                                              ST->getMemoryVT(),
4347                                              ST->getMemOperand());
4348  CSEMap.InsertNode(N, IP);
4349  AllNodes.push_back(N);
4350  return SDValue(N, 0);
4351}
4352
4353SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4354                               SDValue Chain, SDValue Ptr,
4355                               SDValue SV,
4356                               unsigned Align) {
4357  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4358  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4359}
4360
4361SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4362                              const SDUse *Ops, unsigned NumOps) {
4363  switch (NumOps) {
4364  case 0: return getNode(Opcode, DL, VT);
4365  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4366  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4367  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4368  default: break;
4369  }
4370
4371  // Copy from an SDUse array into an SDValue array for use with
4372  // the regular getNode logic.
4373  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4374  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4375}
4376
4377SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4378                              const SDValue *Ops, unsigned NumOps) {
4379  switch (NumOps) {
4380  case 0: return getNode(Opcode, DL, VT);
4381  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4382  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4383  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4384  default: break;
4385  }
4386
4387  switch (Opcode) {
4388  default: break;
4389  case ISD::SELECT_CC: {
4390    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4391    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4392           "LHS and RHS of condition must have same type!");
4393    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4394           "True and False arms of SelectCC must have same type!");
4395    assert(Ops[2].getValueType() == VT &&
4396           "select_cc node must be of same type as true and false value!");
4397    break;
4398  }
4399  case ISD::BR_CC: {
4400    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4401    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4402           "LHS/RHS of comparison should match types!");
4403    break;
4404  }
4405  }
4406
4407  // Memoize nodes.
4408  SDNode *N;
4409  SDVTList VTs = getVTList(VT);
4410
4411  if (VT != MVT::Glue) {
4412    FoldingSetNodeID ID;
4413    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4414    void *IP = 0;
4415
4416    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4417      return SDValue(E, 0);
4418
4419    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4420    CSEMap.InsertNode(N, IP);
4421  } else {
4422    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4423  }
4424
4425  AllNodes.push_back(N);
4426#ifndef NDEBUG
4427  VerifySDNode(N);
4428#endif
4429  return SDValue(N, 0);
4430}
4431
4432SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4433                              const std::vector<EVT> &ResultTys,
4434                              const SDValue *Ops, unsigned NumOps) {
4435  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4436                 Ops, NumOps);
4437}
4438
4439SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4440                              const EVT *VTs, unsigned NumVTs,
4441                              const SDValue *Ops, unsigned NumOps) {
4442  if (NumVTs == 1)
4443    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4444  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4445}
4446
4447SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4448                              const SDValue *Ops, unsigned NumOps) {
4449  if (VTList.NumVTs == 1)
4450    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4451
4452#if 0
4453  switch (Opcode) {
4454  // FIXME: figure out how to safely handle things like
4455  // int foo(int x) { return 1 << (x & 255); }
4456  // int bar() { return foo(256); }
4457  case ISD::SRA_PARTS:
4458  case ISD::SRL_PARTS:
4459  case ISD::SHL_PARTS:
4460    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4461        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4462      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4463    else if (N3.getOpcode() == ISD::AND)
4464      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4465        // If the and is only masking out bits that cannot effect the shift,
4466        // eliminate the and.
4467        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4468        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4469          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4470      }
4471    break;
4472  }
4473#endif
4474
4475  // Memoize the node unless it returns a flag.
4476  SDNode *N;
4477  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4478    FoldingSetNodeID ID;
4479    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4480    void *IP = 0;
4481    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4482      return SDValue(E, 0);
4483
4484    if (NumOps == 1) {
4485      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4486    } else if (NumOps == 2) {
4487      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4488    } else if (NumOps == 3) {
4489      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4490                                            Ops[2]);
4491    } else {
4492      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4493    }
4494    CSEMap.InsertNode(N, IP);
4495  } else {
4496    if (NumOps == 1) {
4497      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4498    } else if (NumOps == 2) {
4499      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4500    } else if (NumOps == 3) {
4501      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4502                                            Ops[2]);
4503    } else {
4504      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4505    }
4506  }
4507  AllNodes.push_back(N);
4508#ifndef NDEBUG
4509  VerifySDNode(N);
4510#endif
4511  return SDValue(N, 0);
4512}
4513
4514SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4515  return getNode(Opcode, DL, VTList, 0, 0);
4516}
4517
4518SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4519                              SDValue N1) {
4520  SDValue Ops[] = { N1 };
4521  return getNode(Opcode, DL, VTList, Ops, 1);
4522}
4523
4524SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4525                              SDValue N1, SDValue N2) {
4526  SDValue Ops[] = { N1, N2 };
4527  return getNode(Opcode, DL, VTList, Ops, 2);
4528}
4529
4530SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4531                              SDValue N1, SDValue N2, SDValue N3) {
4532  SDValue Ops[] = { N1, N2, N3 };
4533  return getNode(Opcode, DL, VTList, Ops, 3);
4534}
4535
4536SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4537                              SDValue N1, SDValue N2, SDValue N3,
4538                              SDValue N4) {
4539  SDValue Ops[] = { N1, N2, N3, N4 };
4540  return getNode(Opcode, DL, VTList, Ops, 4);
4541}
4542
4543SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4544                              SDValue N1, SDValue N2, SDValue N3,
4545                              SDValue N4, SDValue N5) {
4546  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4547  return getNode(Opcode, DL, VTList, Ops, 5);
4548}
4549
4550SDVTList SelectionDAG::getVTList(EVT VT) {
4551  return makeVTList(SDNode::getValueTypeList(VT), 1);
4552}
4553
4554SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4555  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4556       E = VTList.rend(); I != E; ++I)
4557    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4558      return *I;
4559
4560  EVT *Array = Allocator.Allocate<EVT>(2);
4561  Array[0] = VT1;
4562  Array[1] = VT2;
4563  SDVTList Result = makeVTList(Array, 2);
4564  VTList.push_back(Result);
4565  return Result;
4566}
4567
4568SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4569  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4570       E = VTList.rend(); I != E; ++I)
4571    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4572                          I->VTs[2] == VT3)
4573      return *I;
4574
4575  EVT *Array = Allocator.Allocate<EVT>(3);
4576  Array[0] = VT1;
4577  Array[1] = VT2;
4578  Array[2] = VT3;
4579  SDVTList Result = makeVTList(Array, 3);
4580  VTList.push_back(Result);
4581  return Result;
4582}
4583
4584SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4585  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4586       E = VTList.rend(); I != E; ++I)
4587    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4588                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4589      return *I;
4590
4591  EVT *Array = Allocator.Allocate<EVT>(4);
4592  Array[0] = VT1;
4593  Array[1] = VT2;
4594  Array[2] = VT3;
4595  Array[3] = VT4;
4596  SDVTList Result = makeVTList(Array, 4);
4597  VTList.push_back(Result);
4598  return Result;
4599}
4600
4601SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4602  switch (NumVTs) {
4603    case 0: llvm_unreachable("Cannot have nodes without results!");
4604    case 1: return getVTList(VTs[0]);
4605    case 2: return getVTList(VTs[0], VTs[1]);
4606    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4607    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4608    default: break;
4609  }
4610
4611  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4612       E = VTList.rend(); I != E; ++I) {
4613    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4614      continue;
4615
4616    bool NoMatch = false;
4617    for (unsigned i = 2; i != NumVTs; ++i)
4618      if (VTs[i] != I->VTs[i]) {
4619        NoMatch = true;
4620        break;
4621      }
4622    if (!NoMatch)
4623      return *I;
4624  }
4625
4626  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4627  std::copy(VTs, VTs+NumVTs, Array);
4628  SDVTList Result = makeVTList(Array, NumVTs);
4629  VTList.push_back(Result);
4630  return Result;
4631}
4632
4633
4634/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4635/// specified operands.  If the resultant node already exists in the DAG,
4636/// this does not modify the specified node, instead it returns the node that
4637/// already exists.  If the resultant node does not exist in the DAG, the
4638/// input node is returned.  As a degenerate case, if you specify the same
4639/// input operands as the node already has, the input node is returned.
4640SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4641  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4642
4643  // Check to see if there is no change.
4644  if (Op == N->getOperand(0)) return N;
4645
4646  // See if the modified node already exists.
4647  void *InsertPos = 0;
4648  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4649    return Existing;
4650
4651  // Nope it doesn't.  Remove the node from its current place in the maps.
4652  if (InsertPos)
4653    if (!RemoveNodeFromCSEMaps(N))
4654      InsertPos = 0;
4655
4656  // Now we update the operands.
4657  N->OperandList[0].set(Op);
4658
4659  // If this gets put into a CSE map, add it.
4660  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4661  return N;
4662}
4663
4664SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4665  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4666
4667  // Check to see if there is no change.
4668  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4669    return N;   // No operands changed, just return the input node.
4670
4671  // See if the modified node already exists.
4672  void *InsertPos = 0;
4673  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4674    return Existing;
4675
4676  // Nope it doesn't.  Remove the node from its current place in the maps.
4677  if (InsertPos)
4678    if (!RemoveNodeFromCSEMaps(N))
4679      InsertPos = 0;
4680
4681  // Now we update the operands.
4682  if (N->OperandList[0] != Op1)
4683    N->OperandList[0].set(Op1);
4684  if (N->OperandList[1] != Op2)
4685    N->OperandList[1].set(Op2);
4686
4687  // If this gets put into a CSE map, add it.
4688  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4689  return N;
4690}
4691
4692SDNode *SelectionDAG::
4693UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4694  SDValue Ops[] = { Op1, Op2, Op3 };
4695  return UpdateNodeOperands(N, Ops, 3);
4696}
4697
4698SDNode *SelectionDAG::
4699UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4700                   SDValue Op3, SDValue Op4) {
4701  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4702  return UpdateNodeOperands(N, Ops, 4);
4703}
4704
4705SDNode *SelectionDAG::
4706UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4707                   SDValue Op3, SDValue Op4, SDValue Op5) {
4708  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4709  return UpdateNodeOperands(N, Ops, 5);
4710}
4711
4712SDNode *SelectionDAG::
4713UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4714  assert(N->getNumOperands() == NumOps &&
4715         "Update with wrong number of operands");
4716
4717  // Check to see if there is no change.
4718  bool AnyChange = false;
4719  for (unsigned i = 0; i != NumOps; ++i) {
4720    if (Ops[i] != N->getOperand(i)) {
4721      AnyChange = true;
4722      break;
4723    }
4724  }
4725
4726  // No operands changed, just return the input node.
4727  if (!AnyChange) return N;
4728
4729  // See if the modified node already exists.
4730  void *InsertPos = 0;
4731  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4732    return Existing;
4733
4734  // Nope it doesn't.  Remove the node from its current place in the maps.
4735  if (InsertPos)
4736    if (!RemoveNodeFromCSEMaps(N))
4737      InsertPos = 0;
4738
4739  // Now we update the operands.
4740  for (unsigned i = 0; i != NumOps; ++i)
4741    if (N->OperandList[i] != Ops[i])
4742      N->OperandList[i].set(Ops[i]);
4743
4744  // If this gets put into a CSE map, add it.
4745  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4746  return N;
4747}
4748
4749/// DropOperands - Release the operands and set this node to have
4750/// zero operands.
4751void SDNode::DropOperands() {
4752  // Unlike the code in MorphNodeTo that does this, we don't need to
4753  // watch for dead nodes here.
4754  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4755    SDUse &Use = *I++;
4756    Use.set(SDValue());
4757  }
4758}
4759
4760/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4761/// machine opcode.
4762///
4763SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4764                                   EVT VT) {
4765  SDVTList VTs = getVTList(VT);
4766  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4767}
4768
4769SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4770                                   EVT VT, SDValue Op1) {
4771  SDVTList VTs = getVTList(VT);
4772  SDValue Ops[] = { Op1 };
4773  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4774}
4775
4776SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4777                                   EVT VT, SDValue Op1,
4778                                   SDValue Op2) {
4779  SDVTList VTs = getVTList(VT);
4780  SDValue Ops[] = { Op1, Op2 };
4781  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4782}
4783
4784SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4785                                   EVT VT, SDValue Op1,
4786                                   SDValue Op2, SDValue Op3) {
4787  SDVTList VTs = getVTList(VT);
4788  SDValue Ops[] = { Op1, Op2, Op3 };
4789  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4790}
4791
4792SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4793                                   EVT VT, const SDValue *Ops,
4794                                   unsigned NumOps) {
4795  SDVTList VTs = getVTList(VT);
4796  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4797}
4798
4799SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4800                                   EVT VT1, EVT VT2, const SDValue *Ops,
4801                                   unsigned NumOps) {
4802  SDVTList VTs = getVTList(VT1, VT2);
4803  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4804}
4805
4806SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4807                                   EVT VT1, EVT VT2) {
4808  SDVTList VTs = getVTList(VT1, VT2);
4809  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4810}
4811
4812SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4813                                   EVT VT1, EVT VT2, EVT VT3,
4814                                   const SDValue *Ops, unsigned NumOps) {
4815  SDVTList VTs = getVTList(VT1, VT2, VT3);
4816  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4817}
4818
4819SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4820                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4821                                   const SDValue *Ops, unsigned NumOps) {
4822  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4823  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4824}
4825
4826SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4827                                   EVT VT1, EVT VT2,
4828                                   SDValue Op1) {
4829  SDVTList VTs = getVTList(VT1, VT2);
4830  SDValue Ops[] = { Op1 };
4831  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4832}
4833
4834SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4835                                   EVT VT1, EVT VT2,
4836                                   SDValue Op1, SDValue Op2) {
4837  SDVTList VTs = getVTList(VT1, VT2);
4838  SDValue Ops[] = { Op1, Op2 };
4839  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4840}
4841
4842SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4843                                   EVT VT1, EVT VT2,
4844                                   SDValue Op1, SDValue Op2,
4845                                   SDValue Op3) {
4846  SDVTList VTs = getVTList(VT1, VT2);
4847  SDValue Ops[] = { Op1, Op2, Op3 };
4848  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4849}
4850
4851SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4852                                   EVT VT1, EVT VT2, EVT VT3,
4853                                   SDValue Op1, SDValue Op2,
4854                                   SDValue Op3) {
4855  SDVTList VTs = getVTList(VT1, VT2, VT3);
4856  SDValue Ops[] = { Op1, Op2, Op3 };
4857  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4858}
4859
4860SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4861                                   SDVTList VTs, const SDValue *Ops,
4862                                   unsigned NumOps) {
4863  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4864  // Reset the NodeID to -1.
4865  N->setNodeId(-1);
4866  return N;
4867}
4868
4869/// MorphNodeTo - This *mutates* the specified node to have the specified
4870/// return type, opcode, and operands.
4871///
4872/// Note that MorphNodeTo returns the resultant node.  If there is already a
4873/// node of the specified opcode and operands, it returns that node instead of
4874/// the current one.  Note that the DebugLoc need not be the same.
4875///
4876/// Using MorphNodeTo is faster than creating a new node and swapping it in
4877/// with ReplaceAllUsesWith both because it often avoids allocating a new
4878/// node, and because it doesn't require CSE recalculation for any of
4879/// the node's users.
4880///
4881SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4882                                  SDVTList VTs, const SDValue *Ops,
4883                                  unsigned NumOps) {
4884  // If an identical node already exists, use it.
4885  void *IP = 0;
4886  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4887    FoldingSetNodeID ID;
4888    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4889    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4890      return ON;
4891  }
4892
4893  if (!RemoveNodeFromCSEMaps(N))
4894    IP = 0;
4895
4896  // Start the morphing.
4897  N->NodeType = Opc;
4898  N->ValueList = VTs.VTs;
4899  N->NumValues = VTs.NumVTs;
4900
4901  // Clear the operands list, updating used nodes to remove this from their
4902  // use list.  Keep track of any operands that become dead as a result.
4903  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4904  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4905    SDUse &Use = *I++;
4906    SDNode *Used = Use.getNode();
4907    Use.set(SDValue());
4908    if (Used->use_empty())
4909      DeadNodeSet.insert(Used);
4910  }
4911
4912  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4913    // Initialize the memory references information.
4914    MN->setMemRefs(0, 0);
4915    // If NumOps is larger than the # of operands we can have in a
4916    // MachineSDNode, reallocate the operand list.
4917    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4918      if (MN->OperandsNeedDelete)
4919        delete[] MN->OperandList;
4920      if (NumOps > array_lengthof(MN->LocalOperands))
4921        // We're creating a final node that will live unmorphed for the
4922        // remainder of the current SelectionDAG iteration, so we can allocate
4923        // the operands directly out of a pool with no recycling metadata.
4924        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4925                         Ops, NumOps);
4926      else
4927        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4928      MN->OperandsNeedDelete = false;
4929    } else
4930      MN->InitOperands(MN->OperandList, Ops, NumOps);
4931  } else {
4932    // If NumOps is larger than the # of operands we currently have, reallocate
4933    // the operand list.
4934    if (NumOps > N->NumOperands) {
4935      if (N->OperandsNeedDelete)
4936        delete[] N->OperandList;
4937      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4938      N->OperandsNeedDelete = true;
4939    } else
4940      N->InitOperands(N->OperandList, Ops, NumOps);
4941  }
4942
4943  // Delete any nodes that are still dead after adding the uses for the
4944  // new operands.
4945  if (!DeadNodeSet.empty()) {
4946    SmallVector<SDNode *, 16> DeadNodes;
4947    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4948         E = DeadNodeSet.end(); I != E; ++I)
4949      if ((*I)->use_empty())
4950        DeadNodes.push_back(*I);
4951    RemoveDeadNodes(DeadNodes);
4952  }
4953
4954  if (IP)
4955    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4956  return N;
4957}
4958
4959
4960/// getMachineNode - These are used for target selectors to create a new node
4961/// with specified return type(s), MachineInstr opcode, and operands.
4962///
4963/// Note that getMachineNode returns the resultant node.  If there is already a
4964/// node of the specified opcode and operands, it returns that node instead of
4965/// the current one.
4966MachineSDNode *
4967SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4968  SDVTList VTs = getVTList(VT);
4969  return getMachineNode(Opcode, dl, VTs, 0, 0);
4970}
4971
4972MachineSDNode *
4973SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4974  SDVTList VTs = getVTList(VT);
4975  SDValue Ops[] = { Op1 };
4976  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4977}
4978
4979MachineSDNode *
4980SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4981                             SDValue Op1, SDValue Op2) {
4982  SDVTList VTs = getVTList(VT);
4983  SDValue Ops[] = { Op1, Op2 };
4984  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4985}
4986
4987MachineSDNode *
4988SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4989                             SDValue Op1, SDValue Op2, SDValue Op3) {
4990  SDVTList VTs = getVTList(VT);
4991  SDValue Ops[] = { Op1, Op2, Op3 };
4992  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4993}
4994
4995MachineSDNode *
4996SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4997                             const SDValue *Ops, unsigned NumOps) {
4998  SDVTList VTs = getVTList(VT);
4999  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5000}
5001
5002MachineSDNode *
5003SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
5004  SDVTList VTs = getVTList(VT1, VT2);
5005  return getMachineNode(Opcode, dl, VTs, 0, 0);
5006}
5007
5008MachineSDNode *
5009SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5010                             EVT VT1, EVT VT2, SDValue Op1) {
5011  SDVTList VTs = getVTList(VT1, VT2);
5012  SDValue Ops[] = { Op1 };
5013  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5014}
5015
5016MachineSDNode *
5017SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5018                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
5019  SDVTList VTs = getVTList(VT1, VT2);
5020  SDValue Ops[] = { Op1, Op2 };
5021  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5022}
5023
5024MachineSDNode *
5025SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5026                             EVT VT1, EVT VT2, SDValue Op1,
5027                             SDValue Op2, SDValue Op3) {
5028  SDVTList VTs = getVTList(VT1, VT2);
5029  SDValue Ops[] = { Op1, Op2, Op3 };
5030  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5031}
5032
5033MachineSDNode *
5034SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5035                             EVT VT1, EVT VT2,
5036                             const SDValue *Ops, unsigned NumOps) {
5037  SDVTList VTs = getVTList(VT1, VT2);
5038  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5039}
5040
5041MachineSDNode *
5042SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5043                             EVT VT1, EVT VT2, EVT VT3,
5044                             SDValue Op1, SDValue Op2) {
5045  SDVTList VTs = getVTList(VT1, VT2, VT3);
5046  SDValue Ops[] = { Op1, Op2 };
5047  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5048}
5049
5050MachineSDNode *
5051SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5052                             EVT VT1, EVT VT2, EVT VT3,
5053                             SDValue Op1, SDValue Op2, SDValue Op3) {
5054  SDVTList VTs = getVTList(VT1, VT2, VT3);
5055  SDValue Ops[] = { Op1, Op2, Op3 };
5056  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5057}
5058
5059MachineSDNode *
5060SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5061                             EVT VT1, EVT VT2, EVT VT3,
5062                             const SDValue *Ops, unsigned NumOps) {
5063  SDVTList VTs = getVTList(VT1, VT2, VT3);
5064  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5065}
5066
5067MachineSDNode *
5068SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
5069                             EVT VT2, EVT VT3, EVT VT4,
5070                             const SDValue *Ops, unsigned NumOps) {
5071  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5072  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5073}
5074
5075MachineSDNode *
5076SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5077                             const std::vector<EVT> &ResultTys,
5078                             const SDValue *Ops, unsigned NumOps) {
5079  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5080  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5081}
5082
5083MachineSDNode *
5084SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5085                             const SDValue *Ops, unsigned NumOps) {
5086  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5087  MachineSDNode *N;
5088  void *IP = 0;
5089
5090  if (DoCSE) {
5091    FoldingSetNodeID ID;
5092    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5093    IP = 0;
5094    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5095      return cast<MachineSDNode>(E);
5096  }
5097
5098  // Allocate a new MachineSDNode.
5099  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5100
5101  // Initialize the operands list.
5102  if (NumOps > array_lengthof(N->LocalOperands))
5103    // We're creating a final node that will live unmorphed for the
5104    // remainder of the current SelectionDAG iteration, so we can allocate
5105    // the operands directly out of a pool with no recycling metadata.
5106    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5107                    Ops, NumOps);
5108  else
5109    N->InitOperands(N->LocalOperands, Ops, NumOps);
5110  N->OperandsNeedDelete = false;
5111
5112  if (DoCSE)
5113    CSEMap.InsertNode(N, IP);
5114
5115  AllNodes.push_back(N);
5116#ifndef NDEBUG
5117  VerifyMachineNode(N);
5118#endif
5119  return N;
5120}
5121
5122/// getTargetExtractSubreg - A convenience function for creating
5123/// TargetOpcode::EXTRACT_SUBREG nodes.
5124SDValue
5125SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5126                                     SDValue Operand) {
5127  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5128  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5129                                  VT, Operand, SRIdxVal);
5130  return SDValue(Subreg, 0);
5131}
5132
5133/// getTargetInsertSubreg - A convenience function for creating
5134/// TargetOpcode::INSERT_SUBREG nodes.
5135SDValue
5136SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5137                                    SDValue Operand, SDValue Subreg) {
5138  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5139  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5140                                  VT, Operand, Subreg, SRIdxVal);
5141  return SDValue(Result, 0);
5142}
5143
5144/// getNodeIfExists - Get the specified node if it's already available, or
5145/// else return NULL.
5146SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5147                                      const SDValue *Ops, unsigned NumOps) {
5148  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5149    FoldingSetNodeID ID;
5150    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5151    void *IP = 0;
5152    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5153      return E;
5154  }
5155  return NULL;
5156}
5157
5158/// getDbgValue - Creates a SDDbgValue node.
5159///
5160SDDbgValue *
5161SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5162                          DebugLoc DL, unsigned O) {
5163  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5164}
5165
5166SDDbgValue *
5167SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5168                          DebugLoc DL, unsigned O) {
5169  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5170}
5171
5172SDDbgValue *
5173SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5174                          DebugLoc DL, unsigned O) {
5175  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5176}
5177
5178namespace {
5179
5180/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5181/// pointed to by a use iterator is deleted, increment the use iterator
5182/// so that it doesn't dangle.
5183///
5184/// This class also manages a "downlink" DAGUpdateListener, to forward
5185/// messages to ReplaceAllUsesWith's callers.
5186///
5187class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5188  SelectionDAG::DAGUpdateListener *DownLink;
5189  SDNode::use_iterator &UI;
5190  SDNode::use_iterator &UE;
5191
5192  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5193    // Increment the iterator as needed.
5194    while (UI != UE && N == *UI)
5195      ++UI;
5196
5197    // Then forward the message.
5198    if (DownLink) DownLink->NodeDeleted(N, E);
5199  }
5200
5201  virtual void NodeUpdated(SDNode *N) {
5202    // Just forward the message.
5203    if (DownLink) DownLink->NodeUpdated(N);
5204  }
5205
5206public:
5207  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5208                     SDNode::use_iterator &ui,
5209                     SDNode::use_iterator &ue)
5210    : DownLink(dl), UI(ui), UE(ue) {}
5211};
5212
5213}
5214
5215/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5216/// This can cause recursive merging of nodes in the DAG.
5217///
5218/// This version assumes From has a single result value.
5219///
5220void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5221                                      DAGUpdateListener *UpdateListener) {
5222  SDNode *From = FromN.getNode();
5223  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5224         "Cannot replace with this method!");
5225  assert(From != To.getNode() && "Cannot replace uses of with self");
5226
5227  // Iterate over all the existing uses of From. New uses will be added
5228  // to the beginning of the use list, which we avoid visiting.
5229  // This specifically avoids visiting uses of From that arise while the
5230  // replacement is happening, because any such uses would be the result
5231  // of CSE: If an existing node looks like From after one of its operands
5232  // is replaced by To, we don't want to replace of all its users with To
5233  // too. See PR3018 for more info.
5234  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5235  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5236  while (UI != UE) {
5237    SDNode *User = *UI;
5238
5239    // This node is about to morph, remove its old self from the CSE maps.
5240    RemoveNodeFromCSEMaps(User);
5241
5242    // A user can appear in a use list multiple times, and when this
5243    // happens the uses are usually next to each other in the list.
5244    // To help reduce the number of CSE recomputations, process all
5245    // the uses of this user that we can find this way.
5246    do {
5247      SDUse &Use = UI.getUse();
5248      ++UI;
5249      Use.set(To);
5250    } while (UI != UE && *UI == User);
5251
5252    // Now that we have modified User, add it back to the CSE maps.  If it
5253    // already exists there, recursively merge the results together.
5254    AddModifiedNodeToCSEMaps(User, &Listener);
5255  }
5256}
5257
5258/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5259/// This can cause recursive merging of nodes in the DAG.
5260///
5261/// This version assumes that for each value of From, there is a
5262/// corresponding value in To in the same position with the same type.
5263///
5264void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5265                                      DAGUpdateListener *UpdateListener) {
5266#ifndef NDEBUG
5267  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5268    assert((!From->hasAnyUseOfValue(i) ||
5269            From->getValueType(i) == To->getValueType(i)) &&
5270           "Cannot use this version of ReplaceAllUsesWith!");
5271#endif
5272
5273  // Handle the trivial case.
5274  if (From == To)
5275    return;
5276
5277  // Iterate over just the existing users of From. See the comments in
5278  // the ReplaceAllUsesWith above.
5279  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5280  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5281  while (UI != UE) {
5282    SDNode *User = *UI;
5283
5284    // This node is about to morph, remove its old self from the CSE maps.
5285    RemoveNodeFromCSEMaps(User);
5286
5287    // A user can appear in a use list multiple times, and when this
5288    // happens the uses are usually next to each other in the list.
5289    // To help reduce the number of CSE recomputations, process all
5290    // the uses of this user that we can find this way.
5291    do {
5292      SDUse &Use = UI.getUse();
5293      ++UI;
5294      Use.setNode(To);
5295    } while (UI != UE && *UI == User);
5296
5297    // Now that we have modified User, add it back to the CSE maps.  If it
5298    // already exists there, recursively merge the results together.
5299    AddModifiedNodeToCSEMaps(User, &Listener);
5300  }
5301}
5302
5303/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5304/// This can cause recursive merging of nodes in the DAG.
5305///
5306/// This version can replace From with any result values.  To must match the
5307/// number and types of values returned by From.
5308void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5309                                      const SDValue *To,
5310                                      DAGUpdateListener *UpdateListener) {
5311  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5312    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5313
5314  // Iterate over just the existing users of From. See the comments in
5315  // the ReplaceAllUsesWith above.
5316  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5317  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5318  while (UI != UE) {
5319    SDNode *User = *UI;
5320
5321    // This node is about to morph, remove its old self from the CSE maps.
5322    RemoveNodeFromCSEMaps(User);
5323
5324    // A user can appear in a use list multiple times, and when this
5325    // happens the uses are usually next to each other in the list.
5326    // To help reduce the number of CSE recomputations, process all
5327    // the uses of this user that we can find this way.
5328    do {
5329      SDUse &Use = UI.getUse();
5330      const SDValue &ToOp = To[Use.getResNo()];
5331      ++UI;
5332      Use.set(ToOp);
5333    } while (UI != UE && *UI == User);
5334
5335    // Now that we have modified User, add it back to the CSE maps.  If it
5336    // already exists there, recursively merge the results together.
5337    AddModifiedNodeToCSEMaps(User, &Listener);
5338  }
5339}
5340
5341/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5342/// uses of other values produced by From.getNode() alone.  The Deleted
5343/// vector is handled the same way as for ReplaceAllUsesWith.
5344void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5345                                             DAGUpdateListener *UpdateListener){
5346  // Handle the really simple, really trivial case efficiently.
5347  if (From == To) return;
5348
5349  // Handle the simple, trivial, case efficiently.
5350  if (From.getNode()->getNumValues() == 1) {
5351    ReplaceAllUsesWith(From, To, UpdateListener);
5352    return;
5353  }
5354
5355  // Iterate over just the existing users of From. See the comments in
5356  // the ReplaceAllUsesWith above.
5357  SDNode::use_iterator UI = From.getNode()->use_begin(),
5358                       UE = From.getNode()->use_end();
5359  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5360  while (UI != UE) {
5361    SDNode *User = *UI;
5362    bool UserRemovedFromCSEMaps = false;
5363
5364    // A user can appear in a use list multiple times, and when this
5365    // happens the uses are usually next to each other in the list.
5366    // To help reduce the number of CSE recomputations, process all
5367    // the uses of this user that we can find this way.
5368    do {
5369      SDUse &Use = UI.getUse();
5370
5371      // Skip uses of different values from the same node.
5372      if (Use.getResNo() != From.getResNo()) {
5373        ++UI;
5374        continue;
5375      }
5376
5377      // If this node hasn't been modified yet, it's still in the CSE maps,
5378      // so remove its old self from the CSE maps.
5379      if (!UserRemovedFromCSEMaps) {
5380        RemoveNodeFromCSEMaps(User);
5381        UserRemovedFromCSEMaps = true;
5382      }
5383
5384      ++UI;
5385      Use.set(To);
5386    } while (UI != UE && *UI == User);
5387
5388    // We are iterating over all uses of the From node, so if a use
5389    // doesn't use the specific value, no changes are made.
5390    if (!UserRemovedFromCSEMaps)
5391      continue;
5392
5393    // Now that we have modified User, add it back to the CSE maps.  If it
5394    // already exists there, recursively merge the results together.
5395    AddModifiedNodeToCSEMaps(User, &Listener);
5396  }
5397}
5398
5399namespace {
5400  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5401  /// to record information about a use.
5402  struct UseMemo {
5403    SDNode *User;
5404    unsigned Index;
5405    SDUse *Use;
5406  };
5407
5408  /// operator< - Sort Memos by User.
5409  bool operator<(const UseMemo &L, const UseMemo &R) {
5410    return (intptr_t)L.User < (intptr_t)R.User;
5411  }
5412}
5413
5414/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5415/// uses of other values produced by From.getNode() alone.  The same value
5416/// may appear in both the From and To list.  The Deleted vector is
5417/// handled the same way as for ReplaceAllUsesWith.
5418void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5419                                              const SDValue *To,
5420                                              unsigned Num,
5421                                              DAGUpdateListener *UpdateListener){
5422  // Handle the simple, trivial case efficiently.
5423  if (Num == 1)
5424    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5425
5426  // Read up all the uses and make records of them. This helps
5427  // processing new uses that are introduced during the
5428  // replacement process.
5429  SmallVector<UseMemo, 4> Uses;
5430  for (unsigned i = 0; i != Num; ++i) {
5431    unsigned FromResNo = From[i].getResNo();
5432    SDNode *FromNode = From[i].getNode();
5433    for (SDNode::use_iterator UI = FromNode->use_begin(),
5434         E = FromNode->use_end(); UI != E; ++UI) {
5435      SDUse &Use = UI.getUse();
5436      if (Use.getResNo() == FromResNo) {
5437        UseMemo Memo = { *UI, i, &Use };
5438        Uses.push_back(Memo);
5439      }
5440    }
5441  }
5442
5443  // Sort the uses, so that all the uses from a given User are together.
5444  std::sort(Uses.begin(), Uses.end());
5445
5446  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5447       UseIndex != UseIndexEnd; ) {
5448    // We know that this user uses some value of From.  If it is the right
5449    // value, update it.
5450    SDNode *User = Uses[UseIndex].User;
5451
5452    // This node is about to morph, remove its old self from the CSE maps.
5453    RemoveNodeFromCSEMaps(User);
5454
5455    // The Uses array is sorted, so all the uses for a given User
5456    // are next to each other in the list.
5457    // To help reduce the number of CSE recomputations, process all
5458    // the uses of this user that we can find this way.
5459    do {
5460      unsigned i = Uses[UseIndex].Index;
5461      SDUse &Use = *Uses[UseIndex].Use;
5462      ++UseIndex;
5463
5464      Use.set(To[i]);
5465    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5466
5467    // Now that we have modified User, add it back to the CSE maps.  If it
5468    // already exists there, recursively merge the results together.
5469    AddModifiedNodeToCSEMaps(User, UpdateListener);
5470  }
5471}
5472
5473/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5474/// based on their topological order. It returns the maximum id and a vector
5475/// of the SDNodes* in assigned order by reference.
5476unsigned SelectionDAG::AssignTopologicalOrder() {
5477
5478  unsigned DAGSize = 0;
5479
5480  // SortedPos tracks the progress of the algorithm. Nodes before it are
5481  // sorted, nodes after it are unsorted. When the algorithm completes
5482  // it is at the end of the list.
5483  allnodes_iterator SortedPos = allnodes_begin();
5484
5485  // Visit all the nodes. Move nodes with no operands to the front of
5486  // the list immediately. Annotate nodes that do have operands with their
5487  // operand count. Before we do this, the Node Id fields of the nodes
5488  // may contain arbitrary values. After, the Node Id fields for nodes
5489  // before SortedPos will contain the topological sort index, and the
5490  // Node Id fields for nodes At SortedPos and after will contain the
5491  // count of outstanding operands.
5492  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5493    SDNode *N = I++;
5494    checkForCycles(N);
5495    unsigned Degree = N->getNumOperands();
5496    if (Degree == 0) {
5497      // A node with no uses, add it to the result array immediately.
5498      N->setNodeId(DAGSize++);
5499      allnodes_iterator Q = N;
5500      if (Q != SortedPos)
5501        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5502      assert(SortedPos != AllNodes.end() && "Overran node list");
5503      ++SortedPos;
5504    } else {
5505      // Temporarily use the Node Id as scratch space for the degree count.
5506      N->setNodeId(Degree);
5507    }
5508  }
5509
5510  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5511  // such that by the time the end is reached all nodes will be sorted.
5512  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5513    SDNode *N = I;
5514    checkForCycles(N);
5515    // N is in sorted position, so all its uses have one less operand
5516    // that needs to be sorted.
5517    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5518         UI != UE; ++UI) {
5519      SDNode *P = *UI;
5520      unsigned Degree = P->getNodeId();
5521      assert(Degree != 0 && "Invalid node degree");
5522      --Degree;
5523      if (Degree == 0) {
5524        // All of P's operands are sorted, so P may sorted now.
5525        P->setNodeId(DAGSize++);
5526        if (P != SortedPos)
5527          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5528        assert(SortedPos != AllNodes.end() && "Overran node list");
5529        ++SortedPos;
5530      } else {
5531        // Update P's outstanding operand count.
5532        P->setNodeId(Degree);
5533      }
5534    }
5535    if (I == SortedPos) {
5536#ifndef NDEBUG
5537      SDNode *S = ++I;
5538      dbgs() << "Overran sorted position:\n";
5539      S->dumprFull();
5540#endif
5541      llvm_unreachable(0);
5542    }
5543  }
5544
5545  assert(SortedPos == AllNodes.end() &&
5546         "Topological sort incomplete!");
5547  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5548         "First node in topological sort is not the entry token!");
5549  assert(AllNodes.front().getNodeId() == 0 &&
5550         "First node in topological sort has non-zero id!");
5551  assert(AllNodes.front().getNumOperands() == 0 &&
5552         "First node in topological sort has operands!");
5553  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5554         "Last node in topologic sort has unexpected id!");
5555  assert(AllNodes.back().use_empty() &&
5556         "Last node in topologic sort has users!");
5557  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5558  return DAGSize;
5559}
5560
5561/// AssignOrdering - Assign an order to the SDNode.
5562void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5563  assert(SD && "Trying to assign an order to a null node!");
5564  Ordering->add(SD, Order);
5565}
5566
5567/// GetOrdering - Get the order for the SDNode.
5568unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5569  assert(SD && "Trying to get the order of a null node!");
5570  return Ordering->getOrder(SD);
5571}
5572
5573/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5574/// value is produced by SD.
5575void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5576  DbgInfo->add(DB, SD, isParameter);
5577  if (SD)
5578    SD->setHasDebugValue(true);
5579}
5580
5581/// TransferDbgValues - Transfer SDDbgValues.
5582void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5583  if (From == To || !From.getNode()->getHasDebugValue())
5584    return;
5585  SDNode *FromNode = From.getNode();
5586  SDNode *ToNode = To.getNode();
5587  ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
5588  SmallVector<SDDbgValue *, 2> ClonedDVs;
5589  for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
5590       I != E; ++I) {
5591    SDDbgValue *Dbg = *I;
5592    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5593      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5594                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5595                                      Dbg->getOrder());
5596      ClonedDVs.push_back(Clone);
5597    }
5598  }
5599  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5600         E = ClonedDVs.end(); I != E; ++I)
5601    AddDbgValue(*I, ToNode, false);
5602}
5603
5604//===----------------------------------------------------------------------===//
5605//                              SDNode Class
5606//===----------------------------------------------------------------------===//
5607
5608HandleSDNode::~HandleSDNode() {
5609  DropOperands();
5610}
5611
5612GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5613                                         const GlobalValue *GA,
5614                                         EVT VT, int64_t o, unsigned char TF)
5615  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5616  TheGlobal = GA;
5617}
5618
5619MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5620                     MachineMemOperand *mmo)
5621 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5622  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5623                                      MMO->isNonTemporal());
5624  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5625  assert(isNonTemporal() == MMO->isNonTemporal() &&
5626         "Non-temporal encoding error!");
5627  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5628}
5629
5630MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5631                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5632                     MachineMemOperand *mmo)
5633   : SDNode(Opc, dl, VTs, Ops, NumOps),
5634     MemoryVT(memvt), MMO(mmo) {
5635  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5636                                      MMO->isNonTemporal());
5637  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5638  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5639}
5640
5641/// Profile - Gather unique data for the node.
5642///
5643void SDNode::Profile(FoldingSetNodeID &ID) const {
5644  AddNodeIDNode(ID, this);
5645}
5646
5647namespace {
5648  struct EVTArray {
5649    std::vector<EVT> VTs;
5650
5651    EVTArray() {
5652      VTs.reserve(MVT::LAST_VALUETYPE);
5653      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5654        VTs.push_back(MVT((MVT::SimpleValueType)i));
5655    }
5656  };
5657}
5658
5659static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5660static ManagedStatic<EVTArray> SimpleVTArray;
5661static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5662
5663/// getValueTypeList - Return a pointer to the specified value type.
5664///
5665const EVT *SDNode::getValueTypeList(EVT VT) {
5666  if (VT.isExtended()) {
5667    sys::SmartScopedLock<true> Lock(*VTMutex);
5668    return &(*EVTs->insert(VT).first);
5669  } else {
5670    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5671           "Value type out of range!");
5672    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5673  }
5674}
5675
5676/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5677/// indicated value.  This method ignores uses of other values defined by this
5678/// operation.
5679bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5680  assert(Value < getNumValues() && "Bad value!");
5681
5682  // TODO: Only iterate over uses of a given value of the node
5683  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5684    if (UI.getUse().getResNo() == Value) {
5685      if (NUses == 0)
5686        return false;
5687      --NUses;
5688    }
5689  }
5690
5691  // Found exactly the right number of uses?
5692  return NUses == 0;
5693}
5694
5695
5696/// hasAnyUseOfValue - Return true if there are any use of the indicated
5697/// value. This method ignores uses of other values defined by this operation.
5698bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5699  assert(Value < getNumValues() && "Bad value!");
5700
5701  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5702    if (UI.getUse().getResNo() == Value)
5703      return true;
5704
5705  return false;
5706}
5707
5708
5709/// isOnlyUserOf - Return true if this node is the only use of N.
5710///
5711bool SDNode::isOnlyUserOf(SDNode *N) const {
5712  bool Seen = false;
5713  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5714    SDNode *User = *I;
5715    if (User == this)
5716      Seen = true;
5717    else
5718      return false;
5719  }
5720
5721  return Seen;
5722}
5723
5724/// isOperand - Return true if this node is an operand of N.
5725///
5726bool SDValue::isOperandOf(SDNode *N) const {
5727  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5728    if (*this == N->getOperand(i))
5729      return true;
5730  return false;
5731}
5732
5733bool SDNode::isOperandOf(SDNode *N) const {
5734  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5735    if (this == N->OperandList[i].getNode())
5736      return true;
5737  return false;
5738}
5739
5740/// reachesChainWithoutSideEffects - Return true if this operand (which must
5741/// be a chain) reaches the specified operand without crossing any
5742/// side-effecting instructions on any chain path.  In practice, this looks
5743/// through token factors and non-volatile loads.  In order to remain efficient,
5744/// this only looks a couple of nodes in, it does not do an exhaustive search.
5745bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5746                                               unsigned Depth) const {
5747  if (*this == Dest) return true;
5748
5749  // Don't search too deeply, we just want to be able to see through
5750  // TokenFactor's etc.
5751  if (Depth == 0) return false;
5752
5753  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5754  // of the operands of the TF does not reach dest, then we cannot do the xform.
5755  if (getOpcode() == ISD::TokenFactor) {
5756    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5757      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5758        return false;
5759    return true;
5760  }
5761
5762  // Loads don't have side effects, look through them.
5763  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5764    if (!Ld->isVolatile())
5765      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5766  }
5767  return false;
5768}
5769
5770/// hasPredecessor - Return true if N is a predecessor of this node.
5771/// N is either an operand of this node, or can be reached by recursively
5772/// traversing up the operands.
5773/// NOTE: This is an expensive method. Use it carefully.
5774bool SDNode::hasPredecessor(const SDNode *N) const {
5775  SmallPtrSet<const SDNode *, 32> Visited;
5776  SmallVector<const SDNode *, 16> Worklist;
5777  return hasPredecessorHelper(N, Visited, Worklist);
5778}
5779
5780bool SDNode::hasPredecessorHelper(const SDNode *N,
5781                                  SmallPtrSet<const SDNode *, 32> &Visited,
5782                                  SmallVector<const SDNode *, 16> &Worklist) const {
5783  if (Visited.empty()) {
5784    Worklist.push_back(this);
5785  } else {
5786    // Take a look in the visited set. If we've already encountered this node
5787    // we needn't search further.
5788    if (Visited.count(N))
5789      return true;
5790  }
5791
5792  // Haven't visited N yet. Continue the search.
5793  while (!Worklist.empty()) {
5794    const SDNode *M = Worklist.pop_back_val();
5795    for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
5796      SDNode *Op = M->getOperand(i).getNode();
5797      if (Visited.insert(Op))
5798        Worklist.push_back(Op);
5799      if (Op == N)
5800        return true;
5801    }
5802  }
5803
5804  return false;
5805}
5806
5807uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5808  assert(Num < NumOperands && "Invalid child # of SDNode!");
5809  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5810}
5811
5812std::string SDNode::getOperationName(const SelectionDAG *G) const {
5813  switch (getOpcode()) {
5814  default:
5815    if (getOpcode() < ISD::BUILTIN_OP_END)
5816      return "<<Unknown DAG Node>>";
5817    if (isMachineOpcode()) {
5818      if (G)
5819        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5820          if (getMachineOpcode() < TII->getNumOpcodes())
5821            return TII->get(getMachineOpcode()).getName();
5822      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5823    }
5824    if (G) {
5825      const TargetLowering &TLI = G->getTargetLoweringInfo();
5826      const char *Name = TLI.getTargetNodeName(getOpcode());
5827      if (Name) return Name;
5828      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5829    }
5830    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5831
5832#ifndef NDEBUG
5833  case ISD::DELETED_NODE:
5834    return "<<Deleted Node!>>";
5835#endif
5836  case ISD::PREFETCH:      return "Prefetch";
5837  case ISD::MEMBARRIER:    return "MemBarrier";
5838  case ISD::ATOMIC_FENCE:    return "AtomicFence";
5839  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5840  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5841  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5842  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5843  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5844  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5845  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5846  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5847  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5848  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5849  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5850  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5851  case ISD::ATOMIC_LOAD:        return "AtomicLoad";
5852  case ISD::ATOMIC_STORE:       return "AtomicStore";
5853  case ISD::PCMARKER:      return "PCMarker";
5854  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5855  case ISD::SRCVALUE:      return "SrcValue";
5856  case ISD::MDNODE_SDNODE: return "MDNode";
5857  case ISD::EntryToken:    return "EntryToken";
5858  case ISD::TokenFactor:   return "TokenFactor";
5859  case ISD::AssertSext:    return "AssertSext";
5860  case ISD::AssertZext:    return "AssertZext";
5861
5862  case ISD::BasicBlock:    return "BasicBlock";
5863  case ISD::VALUETYPE:     return "ValueType";
5864  case ISD::Register:      return "Register";
5865
5866  case ISD::Constant:      return "Constant";
5867  case ISD::ConstantFP:    return "ConstantFP";
5868  case ISD::GlobalAddress: return "GlobalAddress";
5869  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5870  case ISD::FrameIndex:    return "FrameIndex";
5871  case ISD::JumpTable:     return "JumpTable";
5872  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5873  case ISD::RETURNADDR: return "RETURNADDR";
5874  case ISD::FRAMEADDR: return "FRAMEADDR";
5875  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5876  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5877  case ISD::LSDAADDR: return "LSDAADDR";
5878  case ISD::EHSELECTION: return "EHSELECTION";
5879  case ISD::EH_RETURN: return "EH_RETURN";
5880  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5881  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5882  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5883  case ISD::ConstantPool:  return "ConstantPool";
5884  case ISD::ExternalSymbol: return "ExternalSymbol";
5885  case ISD::BlockAddress:  return "BlockAddress";
5886  case ISD::INTRINSIC_WO_CHAIN:
5887  case ISD::INTRINSIC_VOID:
5888  case ISD::INTRINSIC_W_CHAIN: {
5889    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5890    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5891    if (IID < Intrinsic::num_intrinsics)
5892      return Intrinsic::getName((Intrinsic::ID)IID);
5893    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5894      return TII->getName(IID);
5895    llvm_unreachable("Invalid intrinsic ID");
5896  }
5897
5898  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5899  case ISD::TargetConstant: return "TargetConstant";
5900  case ISD::TargetConstantFP:return "TargetConstantFP";
5901  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5902  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5903  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5904  case ISD::TargetJumpTable:  return "TargetJumpTable";
5905  case ISD::TargetConstantPool:  return "TargetConstantPool";
5906  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5907  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5908
5909  case ISD::CopyToReg:     return "CopyToReg";
5910  case ISD::CopyFromReg:   return "CopyFromReg";
5911  case ISD::UNDEF:         return "undef";
5912  case ISD::MERGE_VALUES:  return "merge_values";
5913  case ISD::INLINEASM:     return "inlineasm";
5914  case ISD::EH_LABEL:      return "eh_label";
5915  case ISD::HANDLENODE:    return "handlenode";
5916
5917  // Unary operators
5918  case ISD::FABS:   return "fabs";
5919  case ISD::FNEG:   return "fneg";
5920  case ISD::FSQRT:  return "fsqrt";
5921  case ISD::FSIN:   return "fsin";
5922  case ISD::FCOS:   return "fcos";
5923  case ISD::FTRUNC: return "ftrunc";
5924  case ISD::FFLOOR: return "ffloor";
5925  case ISD::FCEIL:  return "fceil";
5926  case ISD::FRINT:  return "frint";
5927  case ISD::FNEARBYINT: return "fnearbyint";
5928  case ISD::FEXP:   return "fexp";
5929  case ISD::FEXP2:  return "fexp2";
5930  case ISD::FLOG:   return "flog";
5931  case ISD::FLOG2:  return "flog2";
5932  case ISD::FLOG10: return "flog10";
5933
5934  // Binary operators
5935  case ISD::ADD:    return "add";
5936  case ISD::SUB:    return "sub";
5937  case ISD::MUL:    return "mul";
5938  case ISD::MULHU:  return "mulhu";
5939  case ISD::MULHS:  return "mulhs";
5940  case ISD::SDIV:   return "sdiv";
5941  case ISD::UDIV:   return "udiv";
5942  case ISD::SREM:   return "srem";
5943  case ISD::UREM:   return "urem";
5944  case ISD::SMUL_LOHI:  return "smul_lohi";
5945  case ISD::UMUL_LOHI:  return "umul_lohi";
5946  case ISD::SDIVREM:    return "sdivrem";
5947  case ISD::UDIVREM:    return "udivrem";
5948  case ISD::AND:    return "and";
5949  case ISD::OR:     return "or";
5950  case ISD::XOR:    return "xor";
5951  case ISD::SHL:    return "shl";
5952  case ISD::SRA:    return "sra";
5953  case ISD::SRL:    return "srl";
5954  case ISD::ROTL:   return "rotl";
5955  case ISD::ROTR:   return "rotr";
5956  case ISD::FADD:   return "fadd";
5957  case ISD::FSUB:   return "fsub";
5958  case ISD::FMUL:   return "fmul";
5959  case ISD::FDIV:   return "fdiv";
5960  case ISD::FMA:    return "fma";
5961  case ISD::FREM:   return "frem";
5962  case ISD::FCOPYSIGN: return "fcopysign";
5963  case ISD::FGETSIGN:  return "fgetsign";
5964  case ISD::FPOW:   return "fpow";
5965
5966  case ISD::FPOWI:  return "fpowi";
5967  case ISD::SETCC:       return "setcc";
5968  case ISD::VSETCC:      return "vsetcc";
5969  case ISD::SELECT:      return "select";
5970  case ISD::SELECT_CC:   return "select_cc";
5971  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5972  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5973  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5974  case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
5975  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5976  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5977  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5978  case ISD::CARRY_FALSE:         return "carry_false";
5979  case ISD::ADDC:        return "addc";
5980  case ISD::ADDE:        return "adde";
5981  case ISD::SADDO:       return "saddo";
5982  case ISD::UADDO:       return "uaddo";
5983  case ISD::SSUBO:       return "ssubo";
5984  case ISD::USUBO:       return "usubo";
5985  case ISD::SMULO:       return "smulo";
5986  case ISD::UMULO:       return "umulo";
5987  case ISD::SUBC:        return "subc";
5988  case ISD::SUBE:        return "sube";
5989  case ISD::SHL_PARTS:   return "shl_parts";
5990  case ISD::SRA_PARTS:   return "sra_parts";
5991  case ISD::SRL_PARTS:   return "srl_parts";
5992
5993  // Conversion operators.
5994  case ISD::SIGN_EXTEND: return "sign_extend";
5995  case ISD::ZERO_EXTEND: return "zero_extend";
5996  case ISD::ANY_EXTEND:  return "any_extend";
5997  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5998  case ISD::TRUNCATE:    return "truncate";
5999  case ISD::FP_ROUND:    return "fp_round";
6000  case ISD::FLT_ROUNDS_: return "flt_rounds";
6001  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
6002  case ISD::FP_EXTEND:   return "fp_extend";
6003
6004  case ISD::SINT_TO_FP:  return "sint_to_fp";
6005  case ISD::UINT_TO_FP:  return "uint_to_fp";
6006  case ISD::FP_TO_SINT:  return "fp_to_sint";
6007  case ISD::FP_TO_UINT:  return "fp_to_uint";
6008  case ISD::BITCAST:     return "bitcast";
6009  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
6010  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
6011
6012  case ISD::CONVERT_RNDSAT: {
6013    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
6014    default: llvm_unreachable("Unknown cvt code!");
6015    case ISD::CVT_FF:  return "cvt_ff";
6016    case ISD::CVT_FS:  return "cvt_fs";
6017    case ISD::CVT_FU:  return "cvt_fu";
6018    case ISD::CVT_SF:  return "cvt_sf";
6019    case ISD::CVT_UF:  return "cvt_uf";
6020    case ISD::CVT_SS:  return "cvt_ss";
6021    case ISD::CVT_SU:  return "cvt_su";
6022    case ISD::CVT_US:  return "cvt_us";
6023    case ISD::CVT_UU:  return "cvt_uu";
6024    }
6025  }
6026
6027    // Control flow instructions
6028  case ISD::BR:      return "br";
6029  case ISD::BRIND:   return "brind";
6030  case ISD::BR_JT:   return "br_jt";
6031  case ISD::BRCOND:  return "brcond";
6032  case ISD::BR_CC:   return "br_cc";
6033  case ISD::CALLSEQ_START:  return "callseq_start";
6034  case ISD::CALLSEQ_END:    return "callseq_end";
6035
6036    // Other operators
6037  case ISD::LOAD:               return "load";
6038  case ISD::STORE:              return "store";
6039  case ISD::VAARG:              return "vaarg";
6040  case ISD::VACOPY:             return "vacopy";
6041  case ISD::VAEND:              return "vaend";
6042  case ISD::VASTART:            return "vastart";
6043  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
6044  case ISD::EXTRACT_ELEMENT:    return "extract_element";
6045  case ISD::BUILD_PAIR:         return "build_pair";
6046  case ISD::STACKSAVE:          return "stacksave";
6047  case ISD::STACKRESTORE:       return "stackrestore";
6048  case ISD::TRAP:               return "trap";
6049
6050  // Bit manipulation
6051  case ISD::BSWAP:   return "bswap";
6052  case ISD::CTPOP:   return "ctpop";
6053  case ISD::CTTZ:    return "cttz";
6054  case ISD::CTLZ:    return "ctlz";
6055
6056  // Trampolines
6057  case ISD::INIT_TRAMPOLINE: return "init_trampoline";
6058  case ISD::ADJUST_TRAMPOLINE: return "adjust_trampoline";
6059
6060  case ISD::CONDCODE:
6061    switch (cast<CondCodeSDNode>(this)->get()) {
6062    default: llvm_unreachable("Unknown setcc condition!");
6063    case ISD::SETOEQ:  return "setoeq";
6064    case ISD::SETOGT:  return "setogt";
6065    case ISD::SETOGE:  return "setoge";
6066    case ISD::SETOLT:  return "setolt";
6067    case ISD::SETOLE:  return "setole";
6068    case ISD::SETONE:  return "setone";
6069
6070    case ISD::SETO:    return "seto";
6071    case ISD::SETUO:   return "setuo";
6072    case ISD::SETUEQ:  return "setue";
6073    case ISD::SETUGT:  return "setugt";
6074    case ISD::SETUGE:  return "setuge";
6075    case ISD::SETULT:  return "setult";
6076    case ISD::SETULE:  return "setule";
6077    case ISD::SETUNE:  return "setune";
6078
6079    case ISD::SETEQ:   return "seteq";
6080    case ISD::SETGT:   return "setgt";
6081    case ISD::SETGE:   return "setge";
6082    case ISD::SETLT:   return "setlt";
6083    case ISD::SETLE:   return "setle";
6084    case ISD::SETNE:   return "setne";
6085    }
6086  }
6087}
6088
6089const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
6090  switch (AM) {
6091  default:
6092    return "";
6093  case ISD::PRE_INC:
6094    return "<pre-inc>";
6095  case ISD::PRE_DEC:
6096    return "<pre-dec>";
6097  case ISD::POST_INC:
6098    return "<post-inc>";
6099  case ISD::POST_DEC:
6100    return "<post-dec>";
6101  }
6102}
6103
6104std::string ISD::ArgFlagsTy::getArgFlagsString() {
6105  std::string S = "< ";
6106
6107  if (isZExt())
6108    S += "zext ";
6109  if (isSExt())
6110    S += "sext ";
6111  if (isInReg())
6112    S += "inreg ";
6113  if (isSRet())
6114    S += "sret ";
6115  if (isByVal())
6116    S += "byval ";
6117  if (isNest())
6118    S += "nest ";
6119  if (getByValAlign())
6120    S += "byval-align:" + utostr(getByValAlign()) + " ";
6121  if (getOrigAlign())
6122    S += "orig-align:" + utostr(getOrigAlign()) + " ";
6123  if (getByValSize())
6124    S += "byval-size:" + utostr(getByValSize()) + " ";
6125  return S + ">";
6126}
6127
6128void SDNode::dump() const { dump(0); }
6129void SDNode::dump(const SelectionDAG *G) const {
6130  print(dbgs(), G);
6131  dbgs() << '\n';
6132}
6133
6134void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6135  OS << (void*)this << ": ";
6136
6137  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6138    if (i) OS << ",";
6139    if (getValueType(i) == MVT::Other)
6140      OS << "ch";
6141    else
6142      OS << getValueType(i).getEVTString();
6143  }
6144  OS << " = " << getOperationName(G);
6145}
6146
6147void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6148  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6149    if (!MN->memoperands_empty()) {
6150      OS << "<";
6151      OS << "Mem:";
6152      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6153           e = MN->memoperands_end(); i != e; ++i) {
6154        OS << **i;
6155        if (llvm::next(i) != e)
6156          OS << " ";
6157      }
6158      OS << ">";
6159    }
6160  } else if (const ShuffleVectorSDNode *SVN =
6161               dyn_cast<ShuffleVectorSDNode>(this)) {
6162    OS << "<";
6163    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6164      int Idx = SVN->getMaskElt(i);
6165      if (i) OS << ",";
6166      if (Idx < 0)
6167        OS << "u";
6168      else
6169        OS << Idx;
6170    }
6171    OS << ">";
6172  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6173    OS << '<' << CSDN->getAPIntValue() << '>';
6174  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6175    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6176      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6177    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6178      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6179    else {
6180      OS << "<APFloat(";
6181      CSDN->getValueAPF().bitcastToAPInt().dump();
6182      OS << ")>";
6183    }
6184  } else if (const GlobalAddressSDNode *GADN =
6185             dyn_cast<GlobalAddressSDNode>(this)) {
6186    int64_t offset = GADN->getOffset();
6187    OS << '<';
6188    WriteAsOperand(OS, GADN->getGlobal());
6189    OS << '>';
6190    if (offset > 0)
6191      OS << " + " << offset;
6192    else
6193      OS << " " << offset;
6194    if (unsigned int TF = GADN->getTargetFlags())
6195      OS << " [TF=" << TF << ']';
6196  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6197    OS << "<" << FIDN->getIndex() << ">";
6198  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6199    OS << "<" << JTDN->getIndex() << ">";
6200    if (unsigned int TF = JTDN->getTargetFlags())
6201      OS << " [TF=" << TF << ']';
6202  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6203    int offset = CP->getOffset();
6204    if (CP->isMachineConstantPoolEntry())
6205      OS << "<" << *CP->getMachineCPVal() << ">";
6206    else
6207      OS << "<" << *CP->getConstVal() << ">";
6208    if (offset > 0)
6209      OS << " + " << offset;
6210    else
6211      OS << " " << offset;
6212    if (unsigned int TF = CP->getTargetFlags())
6213      OS << " [TF=" << TF << ']';
6214  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6215    OS << "<";
6216    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6217    if (LBB)
6218      OS << LBB->getName() << " ";
6219    OS << (const void*)BBDN->getBasicBlock() << ">";
6220  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6221    OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6222  } else if (const ExternalSymbolSDNode *ES =
6223             dyn_cast<ExternalSymbolSDNode>(this)) {
6224    OS << "'" << ES->getSymbol() << "'";
6225    if (unsigned int TF = ES->getTargetFlags())
6226      OS << " [TF=" << TF << ']';
6227  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6228    if (M->getValue())
6229      OS << "<" << M->getValue() << ">";
6230    else
6231      OS << "<null>";
6232  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6233    if (MD->getMD())
6234      OS << "<" << MD->getMD() << ">";
6235    else
6236      OS << "<null>";
6237  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6238    OS << ":" << N->getVT().getEVTString();
6239  }
6240  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6241    OS << "<" << *LD->getMemOperand();
6242
6243    bool doExt = true;
6244    switch (LD->getExtensionType()) {
6245    default: doExt = false; break;
6246    case ISD::EXTLOAD: OS << ", anyext"; break;
6247    case ISD::SEXTLOAD: OS << ", sext"; break;
6248    case ISD::ZEXTLOAD: OS << ", zext"; break;
6249    }
6250    if (doExt)
6251      OS << " from " << LD->getMemoryVT().getEVTString();
6252
6253    const char *AM = getIndexedModeName(LD->getAddressingMode());
6254    if (*AM)
6255      OS << ", " << AM;
6256
6257    OS << ">";
6258  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6259    OS << "<" << *ST->getMemOperand();
6260
6261    if (ST->isTruncatingStore())
6262      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6263
6264    const char *AM = getIndexedModeName(ST->getAddressingMode());
6265    if (*AM)
6266      OS << ", " << AM;
6267
6268    OS << ">";
6269  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6270    OS << "<" << *M->getMemOperand() << ">";
6271  } else if (const BlockAddressSDNode *BA =
6272               dyn_cast<BlockAddressSDNode>(this)) {
6273    OS << "<";
6274    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6275    OS << ", ";
6276    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6277    OS << ">";
6278    if (unsigned int TF = BA->getTargetFlags())
6279      OS << " [TF=" << TF << ']';
6280  }
6281
6282  if (G)
6283    if (unsigned Order = G->GetOrdering(this))
6284      OS << " [ORD=" << Order << ']';
6285
6286  if (getNodeId() != -1)
6287    OS << " [ID=" << getNodeId() << ']';
6288
6289  DebugLoc dl = getDebugLoc();
6290  if (G && !dl.isUnknown()) {
6291    DIScope
6292      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6293    OS << " dbg:";
6294    // Omit the directory, since it's usually long and uninteresting.
6295    if (Scope.Verify())
6296      OS << Scope.getFilename();
6297    else
6298      OS << "<unknown>";
6299    OS << ':' << dl.getLine();
6300    if (dl.getCol() != 0)
6301      OS << ':' << dl.getCol();
6302  }
6303}
6304
6305void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6306  print_types(OS, G);
6307  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6308    if (i) OS << ", "; else OS << " ";
6309    OS << (void*)getOperand(i).getNode();
6310    if (unsigned RN = getOperand(i).getResNo())
6311      OS << ":" << RN;
6312  }
6313  print_details(OS, G);
6314}
6315
6316static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6317                                  const SelectionDAG *G, unsigned depth,
6318                                  unsigned indent)
6319{
6320  if (depth == 0)
6321    return;
6322
6323  OS.indent(indent);
6324
6325  N->print(OS, G);
6326
6327  if (depth < 1)
6328    return;
6329
6330  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6331    // Don't follow chain operands.
6332    if (N->getOperand(i).getValueType() == MVT::Other)
6333      continue;
6334    OS << '\n';
6335    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6336  }
6337}
6338
6339void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6340                            unsigned depth) const {
6341  printrWithDepthHelper(OS, this, G, depth, 0);
6342}
6343
6344void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6345  // Don't print impossibly deep things.
6346  printrWithDepth(OS, G, 10);
6347}
6348
6349void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6350  printrWithDepth(dbgs(), G, depth);
6351}
6352
6353void SDNode::dumprFull(const SelectionDAG *G) const {
6354  // Don't print impossibly deep things.
6355  dumprWithDepth(G, 10);
6356}
6357
6358static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6359  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6360    if (N->getOperand(i).getNode()->hasOneUse())
6361      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6362    else
6363      dbgs() << "\n" << std::string(indent+2, ' ')
6364           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6365
6366
6367  dbgs() << "\n";
6368  dbgs().indent(indent);
6369  N->dump(G);
6370}
6371
6372SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6373  assert(N->getNumValues() == 1 &&
6374         "Can't unroll a vector with multiple results!");
6375
6376  EVT VT = N->getValueType(0);
6377  unsigned NE = VT.getVectorNumElements();
6378  EVT EltVT = VT.getVectorElementType();
6379  DebugLoc dl = N->getDebugLoc();
6380
6381  SmallVector<SDValue, 8> Scalars;
6382  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6383
6384  // If ResNE is 0, fully unroll the vector op.
6385  if (ResNE == 0)
6386    ResNE = NE;
6387  else if (NE > ResNE)
6388    NE = ResNE;
6389
6390  unsigned i;
6391  for (i= 0; i != NE; ++i) {
6392    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6393      SDValue Operand = N->getOperand(j);
6394      EVT OperandVT = Operand.getValueType();
6395      if (OperandVT.isVector()) {
6396        // A vector operand; extract a single element.
6397        EVT OperandEltVT = OperandVT.getVectorElementType();
6398        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6399                              OperandEltVT,
6400                              Operand,
6401                              getConstant(i, TLI.getPointerTy()));
6402      } else {
6403        // A scalar operand; just use it as is.
6404        Operands[j] = Operand;
6405      }
6406    }
6407
6408    switch (N->getOpcode()) {
6409    default:
6410      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6411                                &Operands[0], Operands.size()));
6412      break;
6413    case ISD::SHL:
6414    case ISD::SRA:
6415    case ISD::SRL:
6416    case ISD::ROTL:
6417    case ISD::ROTR:
6418      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6419                                getShiftAmountOperand(Operands[0].getValueType(),
6420                                                      Operands[1])));
6421      break;
6422    case ISD::SIGN_EXTEND_INREG:
6423    case ISD::FP_ROUND_INREG: {
6424      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6425      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6426                                Operands[0],
6427                                getValueType(ExtVT)));
6428    }
6429    }
6430  }
6431
6432  for (; i < ResNE; ++i)
6433    Scalars.push_back(getUNDEF(EltVT));
6434
6435  return getNode(ISD::BUILD_VECTOR, dl,
6436                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6437                 &Scalars[0], Scalars.size());
6438}
6439
6440
6441/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6442/// location that is 'Dist' units away from the location that the 'Base' load
6443/// is loading from.
6444bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6445                                     unsigned Bytes, int Dist) const {
6446  if (LD->getChain() != Base->getChain())
6447    return false;
6448  EVT VT = LD->getValueType(0);
6449  if (VT.getSizeInBits() / 8 != Bytes)
6450    return false;
6451
6452  SDValue Loc = LD->getOperand(1);
6453  SDValue BaseLoc = Base->getOperand(1);
6454  if (Loc.getOpcode() == ISD::FrameIndex) {
6455    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6456      return false;
6457    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6458    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6459    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6460    int FS  = MFI->getObjectSize(FI);
6461    int BFS = MFI->getObjectSize(BFI);
6462    if (FS != BFS || FS != (int)Bytes) return false;
6463    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6464  }
6465
6466  // Handle X+C
6467  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6468      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6469    return true;
6470
6471  const GlobalValue *GV1 = NULL;
6472  const GlobalValue *GV2 = NULL;
6473  int64_t Offset1 = 0;
6474  int64_t Offset2 = 0;
6475  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6476  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6477  if (isGA1 && isGA2 && GV1 == GV2)
6478    return Offset1 == (Offset2 + Dist*Bytes);
6479  return false;
6480}
6481
6482
6483/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6484/// it cannot be inferred.
6485unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6486  // If this is a GlobalAddress + cst, return the alignment.
6487  const GlobalValue *GV;
6488  int64_t GVOffset = 0;
6489  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6490    // If GV has specified alignment, then use it. Otherwise, use the preferred
6491    // alignment.
6492    unsigned Align = GV->getAlignment();
6493    if (!Align) {
6494      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6495        if (GVar->hasInitializer()) {
6496          const TargetData *TD = TLI.getTargetData();
6497          Align = TD->getPreferredAlignment(GVar);
6498        }
6499      }
6500    }
6501    return MinAlign(Align, GVOffset);
6502  }
6503
6504  // If this is a direct reference to a stack slot, use information about the
6505  // stack slot's alignment.
6506  int FrameIdx = 1 << 31;
6507  int64_t FrameOffset = 0;
6508  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6509    FrameIdx = FI->getIndex();
6510  } else if (isBaseWithConstantOffset(Ptr) &&
6511             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6512    // Handle FI+Cst
6513    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6514    FrameOffset = Ptr.getConstantOperandVal(1);
6515  }
6516
6517  if (FrameIdx != (1 << 31)) {
6518    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6519    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6520                                    FrameOffset);
6521    return FIInfoAlign;
6522  }
6523
6524  return 0;
6525}
6526
6527void SelectionDAG::dump() const {
6528  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6529
6530  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6531       I != E; ++I) {
6532    const SDNode *N = I;
6533    if (!N->hasOneUse() && N != getRoot().getNode())
6534      DumpNodes(N, 2, this);
6535  }
6536
6537  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6538
6539  dbgs() << "\n\n";
6540}
6541
6542void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6543  print_types(OS, G);
6544  print_details(OS, G);
6545}
6546
6547typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6548static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6549                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6550  if (!once.insert(N))          // If we've been here before, return now.
6551    return;
6552
6553  // Dump the current SDNode, but don't end the line yet.
6554  OS << std::string(indent, ' ');
6555  N->printr(OS, G);
6556
6557  // Having printed this SDNode, walk the children:
6558  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6559    const SDNode *child = N->getOperand(i).getNode();
6560
6561    if (i) OS << ",";
6562    OS << " ";
6563
6564    if (child->getNumOperands() == 0) {
6565      // This child has no grandchildren; print it inline right here.
6566      child->printr(OS, G);
6567      once.insert(child);
6568    } else {         // Just the address. FIXME: also print the child's opcode.
6569      OS << (void*)child;
6570      if (unsigned RN = N->getOperand(i).getResNo())
6571        OS << ":" << RN;
6572    }
6573  }
6574
6575  OS << "\n";
6576
6577  // Dump children that have grandchildren on their own line(s).
6578  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6579    const SDNode *child = N->getOperand(i).getNode();
6580    DumpNodesr(OS, child, indent+2, G, once);
6581  }
6582}
6583
6584void SDNode::dumpr() const {
6585  VisitedSDNodeSet once;
6586  DumpNodesr(dbgs(), this, 0, 0, once);
6587}
6588
6589void SDNode::dumpr(const SelectionDAG *G) const {
6590  VisitedSDNodeSet once;
6591  DumpNodesr(dbgs(), this, 0, G, once);
6592}
6593
6594
6595// getAddressSpace - Return the address space this GlobalAddress belongs to.
6596unsigned GlobalAddressSDNode::getAddressSpace() const {
6597  return getGlobal()->getType()->getAddressSpace();
6598}
6599
6600
6601Type *ConstantPoolSDNode::getType() const {
6602  if (isMachineConstantPoolEntry())
6603    return Val.MachineCPVal->getType();
6604  return Val.ConstVal->getType();
6605}
6606
6607bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6608                                        APInt &SplatUndef,
6609                                        unsigned &SplatBitSize,
6610                                        bool &HasAnyUndefs,
6611                                        unsigned MinSplatBits,
6612                                        bool isBigEndian) {
6613  EVT VT = getValueType(0);
6614  assert(VT.isVector() && "Expected a vector type");
6615  unsigned sz = VT.getSizeInBits();
6616  if (MinSplatBits > sz)
6617    return false;
6618
6619  SplatValue = APInt(sz, 0);
6620  SplatUndef = APInt(sz, 0);
6621
6622  // Get the bits.  Bits with undefined values (when the corresponding element
6623  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6624  // in SplatValue.  If any of the values are not constant, give up and return
6625  // false.
6626  unsigned int nOps = getNumOperands();
6627  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6628  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6629
6630  for (unsigned j = 0; j < nOps; ++j) {
6631    unsigned i = isBigEndian ? nOps-1-j : j;
6632    SDValue OpVal = getOperand(i);
6633    unsigned BitPos = j * EltBitSize;
6634
6635    if (OpVal.getOpcode() == ISD::UNDEF)
6636      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6637    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6638      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6639                    zextOrTrunc(sz) << BitPos;
6640    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6641      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6642     else
6643      return false;
6644  }
6645
6646  // The build_vector is all constants or undefs.  Find the smallest element
6647  // size that splats the vector.
6648
6649  HasAnyUndefs = (SplatUndef != 0);
6650  while (sz > 8) {
6651
6652    unsigned HalfSize = sz / 2;
6653    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6654    APInt LowValue = SplatValue.trunc(HalfSize);
6655    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6656    APInt LowUndef = SplatUndef.trunc(HalfSize);
6657
6658    // If the two halves do not match (ignoring undef bits), stop here.
6659    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6660        MinSplatBits > HalfSize)
6661      break;
6662
6663    SplatValue = HighValue | LowValue;
6664    SplatUndef = HighUndef & LowUndef;
6665
6666    sz = HalfSize;
6667  }
6668
6669  SplatBitSize = sz;
6670  return true;
6671}
6672
6673bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6674  // Find the first non-undef value in the shuffle mask.
6675  unsigned i, e;
6676  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6677    /* search */;
6678
6679  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6680
6681  // Make sure all remaining elements are either undef or the same as the first
6682  // non-undef value.
6683  for (int Idx = Mask[i]; i != e; ++i)
6684    if (Mask[i] >= 0 && Mask[i] != Idx)
6685      return false;
6686  return true;
6687}
6688
6689#ifdef XDEBUG
6690static void checkForCyclesHelper(const SDNode *N,
6691                                 SmallPtrSet<const SDNode*, 32> &Visited,
6692                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6693  // If this node has already been checked, don't check it again.
6694  if (Checked.count(N))
6695    return;
6696
6697  // If a node has already been visited on this depth-first walk, reject it as
6698  // a cycle.
6699  if (!Visited.insert(N)) {
6700    dbgs() << "Offending node:\n";
6701    N->dumprFull();
6702    errs() << "Detected cycle in SelectionDAG\n";
6703    abort();
6704  }
6705
6706  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6707    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6708
6709  Checked.insert(N);
6710  Visited.erase(N);
6711}
6712#endif
6713
6714void llvm::checkForCycles(const llvm::SDNode *N) {
6715#ifdef XDEBUG
6716  assert(N && "Checking nonexistant SDNode");
6717  SmallPtrSet<const SDNode*, 32> visited;
6718  SmallPtrSet<const SDNode*, 32> checked;
6719  checkForCyclesHelper(N, visited, checked);
6720#endif
6721}
6722
6723void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6724  checkForCycles(DAG->getRoot().getNode());
6725}
6726