SelectionDAG.cpp revision 50284d81f863a6576582e1a171a22eb0f012ddf3
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/SetVector.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/StringExtras.h"
39#include <algorithm>
40#include <cmath>
41using namespace llvm;
42
43/// makeVTList - Return an instance of the SDVTList struct initialized with the
44/// specified members.
45static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
46  SDVTList Res = {VTs, NumVTs};
47  return Res;
48}
49
50static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
51  switch (VT.getSimpleVT()) {
52  default: assert(0 && "Unknown FP format");
53  case MVT::f32:     return &APFloat::IEEEsingle;
54  case MVT::f64:     return &APFloat::IEEEdouble;
55  case MVT::f80:     return &APFloat::x87DoubleExtended;
56  case MVT::f128:    return &APFloat::IEEEquad;
57  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
58  }
59}
60
61SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
62
63//===----------------------------------------------------------------------===//
64//                              ConstantFPSDNode Class
65//===----------------------------------------------------------------------===//
66
67/// isExactlyValue - We don't rely on operator== working on double values, as
68/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
69/// As such, this method can be used to do an exact bit-for-bit comparison of
70/// two floating point values.
71bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
72  return getValueAPF().bitwiseIsEqual(V);
73}
74
75bool ConstantFPSDNode::isValueValidForType(MVT VT,
76                                           const APFloat& Val) {
77  assert(VT.isFloatingPoint() && "Can only convert between FP types");
78
79  // PPC long double cannot be converted to any other type.
80  if (VT == MVT::ppcf128 ||
81      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
82    return false;
83
84  // convert modifies in place, so make a copy.
85  APFloat Val2 = APFloat(Val);
86  return Val2.convert(*MVTToAPFloatSemantics(VT),
87                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
88}
89
90//===----------------------------------------------------------------------===//
91//                              ISD Namespace
92//===----------------------------------------------------------------------===//
93
94/// isBuildVectorAllOnes - Return true if the specified node is a
95/// BUILD_VECTOR where all of the elements are ~0 or undef.
96bool ISD::isBuildVectorAllOnes(const SDNode *N) {
97  // Look through a bit convert.
98  if (N->getOpcode() == ISD::BIT_CONVERT)
99    N = N->getOperand(0).getNode();
100
101  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
102
103  unsigned i = 0, e = N->getNumOperands();
104
105  // Skip over all of the undef values.
106  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
107    ++i;
108
109  // Do not accept an all-undef vector.
110  if (i == e) return false;
111
112  // Do not accept build_vectors that aren't all constants or which have non-~0
113  // elements.
114  SDValue NotZero = N->getOperand(i);
115  if (isa<ConstantSDNode>(NotZero)) {
116    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
117      return false;
118  } else if (isa<ConstantFPSDNode>(NotZero)) {
119    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
120                convertToAPInt().isAllOnesValue())
121      return false;
122  } else
123    return false;
124
125  // Okay, we have at least one ~0 value, check to see if the rest match or are
126  // undefs.
127  for (++i; i != e; ++i)
128    if (N->getOperand(i) != NotZero &&
129        N->getOperand(i).getOpcode() != ISD::UNDEF)
130      return false;
131  return true;
132}
133
134
135/// isBuildVectorAllZeros - Return true if the specified node is a
136/// BUILD_VECTOR where all of the elements are 0 or undef.
137bool ISD::isBuildVectorAllZeros(const SDNode *N) {
138  // Look through a bit convert.
139  if (N->getOpcode() == ISD::BIT_CONVERT)
140    N = N->getOperand(0).getNode();
141
142  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
143
144  unsigned i = 0, e = N->getNumOperands();
145
146  // Skip over all of the undef values.
147  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
148    ++i;
149
150  // Do not accept an all-undef vector.
151  if (i == e) return false;
152
153  // Do not accept build_vectors that aren't all constants or which have non-~0
154  // elements.
155  SDValue Zero = N->getOperand(i);
156  if (isa<ConstantSDNode>(Zero)) {
157    if (!cast<ConstantSDNode>(Zero)->isNullValue())
158      return false;
159  } else if (isa<ConstantFPSDNode>(Zero)) {
160    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
161      return false;
162  } else
163    return false;
164
165  // Okay, we have at least one ~0 value, check to see if the rest match or are
166  // undefs.
167  for (++i; i != e; ++i)
168    if (N->getOperand(i) != Zero &&
169        N->getOperand(i).getOpcode() != ISD::UNDEF)
170      return false;
171  return true;
172}
173
174/// isScalarToVector - Return true if the specified node is a
175/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
176/// element is not an undef.
177bool ISD::isScalarToVector(const SDNode *N) {
178  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
179    return true;
180
181  if (N->getOpcode() != ISD::BUILD_VECTOR)
182    return false;
183  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
184    return false;
185  unsigned NumElems = N->getNumOperands();
186  for (unsigned i = 1; i < NumElems; ++i) {
187    SDValue V = N->getOperand(i);
188    if (V.getOpcode() != ISD::UNDEF)
189      return false;
190  }
191  return true;
192}
193
194
195/// isDebugLabel - Return true if the specified node represents a debug
196/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
197bool ISD::isDebugLabel(const SDNode *N) {
198  SDValue Zero;
199  if (N->getOpcode() == ISD::DBG_LABEL)
200    return true;
201  if (N->isMachineOpcode() &&
202      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
203    return true;
204  return false;
205}
206
207/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208/// when given the operation for (X op Y).
209ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
210  // To perform this operation, we just need to swap the L and G bits of the
211  // operation.
212  unsigned OldL = (Operation >> 2) & 1;
213  unsigned OldG = (Operation >> 1) & 1;
214  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
215                       (OldL << 1) |       // New G bit
216                       (OldG << 2));        // New L bit.
217}
218
219/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220/// 'op' is a valid SetCC operation.
221ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
222  unsigned Operation = Op;
223  if (isInteger)
224    Operation ^= 7;   // Flip L, G, E bits, but not U.
225  else
226    Operation ^= 15;  // Flip all of the condition bits.
227  if (Operation > ISD::SETTRUE2)
228    Operation &= ~8;     // Don't let N and U bits get set.
229  return ISD::CondCode(Operation);
230}
231
232
233/// isSignedOp - For an integer comparison, return 1 if the comparison is a
234/// signed operation and 2 if the result is an unsigned comparison.  Return zero
235/// if the operation does not depend on the sign of the input (setne and seteq).
236static int isSignedOp(ISD::CondCode Opcode) {
237  switch (Opcode) {
238  default: assert(0 && "Illegal integer setcc operation!");
239  case ISD::SETEQ:
240  case ISD::SETNE: return 0;
241  case ISD::SETLT:
242  case ISD::SETLE:
243  case ISD::SETGT:
244  case ISD::SETGE: return 1;
245  case ISD::SETULT:
246  case ISD::SETULE:
247  case ISD::SETUGT:
248  case ISD::SETUGE: return 2;
249  }
250}
251
252/// getSetCCOrOperation - Return the result of a logical OR between different
253/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
254/// returns SETCC_INVALID if it is not possible to represent the resultant
255/// comparison.
256ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
257                                       bool isInteger) {
258  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
259    // Cannot fold a signed integer setcc with an unsigned integer setcc.
260    return ISD::SETCC_INVALID;
261
262  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
263
264  // If the N and U bits get set then the resultant comparison DOES suddenly
265  // care about orderedness, and is true when ordered.
266  if (Op > ISD::SETTRUE2)
267    Op &= ~16;     // Clear the U bit if the N bit is set.
268
269  // Canonicalize illegal integer setcc's.
270  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
271    Op = ISD::SETNE;
272
273  return ISD::CondCode(Op);
274}
275
276/// getSetCCAndOperation - Return the result of a logical AND between different
277/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
278/// function returns zero if it is not possible to represent the resultant
279/// comparison.
280ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
281                                        bool isInteger) {
282  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
283    // Cannot fold a signed setcc with an unsigned setcc.
284    return ISD::SETCC_INVALID;
285
286  // Combine all of the condition bits.
287  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
288
289  // Canonicalize illegal integer setcc's.
290  if (isInteger) {
291    switch (Result) {
292    default: break;
293    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
294    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
295    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
296    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
297    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
298    }
299  }
300
301  return Result;
302}
303
304const TargetMachine &SelectionDAG::getTarget() const {
305  return MF->getTarget();
306}
307
308//===----------------------------------------------------------------------===//
309//                           SDNode Profile Support
310//===----------------------------------------------------------------------===//
311
312/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
313///
314static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
315  ID.AddInteger(OpC);
316}
317
318/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
319/// solely with their pointer.
320static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
321  ID.AddPointer(VTList.VTs);
322}
323
324/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
325///
326static void AddNodeIDOperands(FoldingSetNodeID &ID,
327                              const SDValue *Ops, unsigned NumOps) {
328  for (; NumOps; --NumOps, ++Ops) {
329    ID.AddPointer(Ops->getNode());
330    ID.AddInteger(Ops->getResNo());
331  }
332}
333
334/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
335///
336static void AddNodeIDOperands(FoldingSetNodeID &ID,
337                              const SDUse *Ops, unsigned NumOps) {
338  for (; NumOps; --NumOps, ++Ops) {
339    ID.AddPointer(Ops->getVal());
340    ID.AddInteger(Ops->getSDValue().getResNo());
341  }
342}
343
344static void AddNodeIDNode(FoldingSetNodeID &ID,
345                          unsigned short OpC, SDVTList VTList,
346                          const SDValue *OpList, unsigned N) {
347  AddNodeIDOpcode(ID, OpC);
348  AddNodeIDValueTypes(ID, VTList);
349  AddNodeIDOperands(ID, OpList, N);
350}
351
352
353/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
354/// data.
355static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
356  AddNodeIDOpcode(ID, N->getOpcode());
357  // Add the return value info.
358  AddNodeIDValueTypes(ID, N->getVTList());
359  // Add the operand info.
360  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
361
362  // Handle SDNode leafs with special info.
363  switch (N->getOpcode()) {
364  default: break;  // Normal nodes don't need extra info.
365  case ISD::ARG_FLAGS:
366    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
367    break;
368  case ISD::TargetConstant:
369  case ISD::Constant:
370    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
371    break;
372  case ISD::TargetConstantFP:
373  case ISD::ConstantFP: {
374    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
375    break;
376  }
377  case ISD::TargetGlobalAddress:
378  case ISD::GlobalAddress:
379  case ISD::TargetGlobalTLSAddress:
380  case ISD::GlobalTLSAddress: {
381    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
382    ID.AddPointer(GA->getGlobal());
383    ID.AddInteger(GA->getOffset());
384    break;
385  }
386  case ISD::BasicBlock:
387    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
388    break;
389  case ISD::Register:
390    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
391    break;
392  case ISD::DBG_STOPPOINT: {
393    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
394    ID.AddInteger(DSP->getLine());
395    ID.AddInteger(DSP->getColumn());
396    ID.AddPointer(DSP->getCompileUnit());
397    break;
398  }
399  case ISD::SRCVALUE:
400    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
401    break;
402  case ISD::MEMOPERAND: {
403    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
404    MO.Profile(ID);
405    break;
406  }
407  case ISD::FrameIndex:
408  case ISD::TargetFrameIndex:
409    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
410    break;
411  case ISD::JumpTable:
412  case ISD::TargetJumpTable:
413    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
414    break;
415  case ISD::ConstantPool:
416  case ISD::TargetConstantPool: {
417    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
418    ID.AddInteger(CP->getAlignment());
419    ID.AddInteger(CP->getOffset());
420    if (CP->isMachineConstantPoolEntry())
421      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
422    else
423      ID.AddPointer(CP->getConstVal());
424    break;
425  }
426  case ISD::CALL: {
427    const CallSDNode *Call = cast<CallSDNode>(N);
428    ID.AddInteger(Call->getCallingConv());
429    ID.AddInteger(Call->isVarArg());
430    break;
431  }
432  case ISD::LOAD: {
433    const LoadSDNode *LD = cast<LoadSDNode>(N);
434    ID.AddInteger(LD->getAddressingMode());
435    ID.AddInteger(LD->getExtensionType());
436    ID.AddInteger(LD->getMemoryVT().getRawBits());
437    ID.AddInteger(LD->getRawFlags());
438    break;
439  }
440  case ISD::STORE: {
441    const StoreSDNode *ST = cast<StoreSDNode>(N);
442    ID.AddInteger(ST->getAddressingMode());
443    ID.AddInteger(ST->isTruncatingStore());
444    ID.AddInteger(ST->getMemoryVT().getRawBits());
445    ID.AddInteger(ST->getRawFlags());
446    break;
447  }
448  case ISD::ATOMIC_CMP_SWAP_8:
449  case ISD::ATOMIC_SWAP_8:
450  case ISD::ATOMIC_LOAD_ADD_8:
451  case ISD::ATOMIC_LOAD_SUB_8:
452  case ISD::ATOMIC_LOAD_AND_8:
453  case ISD::ATOMIC_LOAD_OR_8:
454  case ISD::ATOMIC_LOAD_XOR_8:
455  case ISD::ATOMIC_LOAD_NAND_8:
456  case ISD::ATOMIC_LOAD_MIN_8:
457  case ISD::ATOMIC_LOAD_MAX_8:
458  case ISD::ATOMIC_LOAD_UMIN_8:
459  case ISD::ATOMIC_LOAD_UMAX_8:
460  case ISD::ATOMIC_CMP_SWAP_16:
461  case ISD::ATOMIC_SWAP_16:
462  case ISD::ATOMIC_LOAD_ADD_16:
463  case ISD::ATOMIC_LOAD_SUB_16:
464  case ISD::ATOMIC_LOAD_AND_16:
465  case ISD::ATOMIC_LOAD_OR_16:
466  case ISD::ATOMIC_LOAD_XOR_16:
467  case ISD::ATOMIC_LOAD_NAND_16:
468  case ISD::ATOMIC_LOAD_MIN_16:
469  case ISD::ATOMIC_LOAD_MAX_16:
470  case ISD::ATOMIC_LOAD_UMIN_16:
471  case ISD::ATOMIC_LOAD_UMAX_16:
472  case ISD::ATOMIC_CMP_SWAP_32:
473  case ISD::ATOMIC_SWAP_32:
474  case ISD::ATOMIC_LOAD_ADD_32:
475  case ISD::ATOMIC_LOAD_SUB_32:
476  case ISD::ATOMIC_LOAD_AND_32:
477  case ISD::ATOMIC_LOAD_OR_32:
478  case ISD::ATOMIC_LOAD_XOR_32:
479  case ISD::ATOMIC_LOAD_NAND_32:
480  case ISD::ATOMIC_LOAD_MIN_32:
481  case ISD::ATOMIC_LOAD_MAX_32:
482  case ISD::ATOMIC_LOAD_UMIN_32:
483  case ISD::ATOMIC_LOAD_UMAX_32:
484  case ISD::ATOMIC_CMP_SWAP_64:
485  case ISD::ATOMIC_SWAP_64:
486  case ISD::ATOMIC_LOAD_ADD_64:
487  case ISD::ATOMIC_LOAD_SUB_64:
488  case ISD::ATOMIC_LOAD_AND_64:
489  case ISD::ATOMIC_LOAD_OR_64:
490  case ISD::ATOMIC_LOAD_XOR_64:
491  case ISD::ATOMIC_LOAD_NAND_64:
492  case ISD::ATOMIC_LOAD_MIN_64:
493  case ISD::ATOMIC_LOAD_MAX_64:
494  case ISD::ATOMIC_LOAD_UMIN_64:
495  case ISD::ATOMIC_LOAD_UMAX_64: {
496    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
497    ID.AddInteger(AT->getRawFlags());
498    break;
499  }
500  } // end switch (N->getOpcode())
501}
502
503/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
504/// the CSE map that carries both alignment and volatility information.
505///
506static unsigned encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
507  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
508}
509
510//===----------------------------------------------------------------------===//
511//                              SelectionDAG Class
512//===----------------------------------------------------------------------===//
513
514/// RemoveDeadNodes - This method deletes all unreachable nodes in the
515/// SelectionDAG.
516void SelectionDAG::RemoveDeadNodes() {
517  // Create a dummy node (which is not added to allnodes), that adds a reference
518  // to the root node, preventing it from being deleted.
519  HandleSDNode Dummy(getRoot());
520
521  SmallVector<SDNode*, 128> DeadNodes;
522
523  // Add all obviously-dead nodes to the DeadNodes worklist.
524  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
525    if (I->use_empty())
526      DeadNodes.push_back(I);
527
528  RemoveDeadNodes(DeadNodes);
529
530  // If the root changed (e.g. it was a dead load, update the root).
531  setRoot(Dummy.getValue());
532}
533
534/// RemoveDeadNodes - This method deletes the unreachable nodes in the
535/// given list, and any nodes that become unreachable as a result.
536void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
537                                   DAGUpdateListener *UpdateListener) {
538
539  // Process the worklist, deleting the nodes and adding their uses to the
540  // worklist.
541  while (!DeadNodes.empty()) {
542    SDNode *N = DeadNodes.back();
543    DeadNodes.pop_back();
544
545    if (UpdateListener)
546      UpdateListener->NodeDeleted(N, 0);
547
548    // Take the node out of the appropriate CSE map.
549    RemoveNodeFromCSEMaps(N);
550
551    // Next, brutally remove the operand list.  This is safe to do, as there are
552    // no cycles in the graph.
553    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
554      SDNode *Operand = I->getVal();
555      Operand->removeUser(std::distance(N->op_begin(), I), N);
556
557      // Now that we removed this operand, see if there are no uses of it left.
558      if (Operand->use_empty())
559        DeadNodes.push_back(Operand);
560    }
561    if (N->OperandsNeedDelete) {
562      delete[] N->OperandList;
563    }
564    N->OperandList = 0;
565    N->NumOperands = 0;
566
567    // Finally, remove N itself.
568    NodeAllocator.Deallocate(AllNodes.remove(N));
569  }
570}
571
572void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
573  SmallVector<SDNode*, 16> DeadNodes(1, N);
574  RemoveDeadNodes(DeadNodes, UpdateListener);
575}
576
577void SelectionDAG::DeleteNode(SDNode *N) {
578  assert(N->use_empty() && "Cannot delete a node that is not dead!");
579
580  // First take this out of the appropriate CSE map.
581  RemoveNodeFromCSEMaps(N);
582
583  // Finally, remove uses due to operands of this node, remove from the
584  // AllNodes list, and delete the node.
585  DeleteNodeNotInCSEMaps(N);
586}
587
588void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
589
590  // Drop all of the operands and decrement used nodes use counts.
591  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
592    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
593  if (N->OperandsNeedDelete)
594    delete[] N->OperandList;
595
596  assert(N != AllNodes.begin());
597  NodeAllocator.Deallocate(AllNodes.remove(N));
598}
599
600/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
601/// correspond to it.  This is useful when we're about to delete or repurpose
602/// the node.  We don't want future request for structurally identical nodes
603/// to return N anymore.
604bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
605  bool Erased = false;
606  switch (N->getOpcode()) {
607  case ISD::EntryToken:
608    assert(0 && "EntryToken should not be in CSEMaps!");
609    return false;
610  case ISD::HANDLENODE: return false;  // noop.
611  case ISD::CONDCODE:
612    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
613           "Cond code doesn't exist!");
614    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
615    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
616    break;
617  case ISD::ExternalSymbol:
618    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
619    break;
620  case ISD::TargetExternalSymbol:
621    Erased =
622      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
623    break;
624  case ISD::VALUETYPE: {
625    MVT VT = cast<VTSDNode>(N)->getVT();
626    if (VT.isExtended()) {
627      Erased = ExtendedValueTypeNodes.erase(VT);
628    } else {
629      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
630      ValueTypeNodes[VT.getSimpleVT()] = 0;
631    }
632    break;
633  }
634  default:
635    // Remove it from the CSE Map.
636    Erased = CSEMap.RemoveNode(N);
637    break;
638  }
639#ifndef NDEBUG
640  // Verify that the node was actually in one of the CSE maps, unless it has a
641  // flag result (which cannot be CSE'd) or is one of the special cases that are
642  // not subject to CSE.
643  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
644      !N->isMachineOpcode() &&
645      N->getOpcode() != ISD::DBG_LABEL &&
646      N->getOpcode() != ISD::DBG_STOPPOINT &&
647      N->getOpcode() != ISD::EH_LABEL &&
648      N->getOpcode() != ISD::DECLARE) {
649    N->dump(this);
650    cerr << "\n";
651    assert(0 && "Node is not in map!");
652  }
653#endif
654  return Erased;
655}
656
657/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
658/// has been taken out and modified in some way.  If the specified node already
659/// exists in the CSE maps, do not modify the maps, but return the existing node
660/// instead.  If it doesn't exist, add it and return null.
661///
662SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
663  assert(N->getNumOperands() && "This is a leaf node!");
664
665  if (N->getValueType(0) == MVT::Flag)
666    return 0;   // Never CSE anything that produces a flag.
667
668  switch (N->getOpcode()) {
669  default: break;
670  case ISD::HANDLENODE:
671  case ISD::DBG_LABEL:
672  case ISD::DBG_STOPPOINT:
673  case ISD::EH_LABEL:
674  case ISD::DECLARE:
675    return 0;    // Never add these nodes.
676  }
677
678  // Check that remaining values produced are not flags.
679  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
680    if (N->getValueType(i) == MVT::Flag)
681      return 0;   // Never CSE anything that produces a flag.
682
683  SDNode *New = CSEMap.GetOrInsertNode(N);
684  if (New != N) return New;  // Node already existed.
685  return 0;
686}
687
688/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
689/// were replaced with those specified.  If this node is never memoized,
690/// return null, otherwise return a pointer to the slot it would take.  If a
691/// node already exists with these operands, the slot will be non-null.
692SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
693                                           void *&InsertPos) {
694  if (N->getValueType(0) == MVT::Flag)
695    return 0;   // Never CSE anything that produces a flag.
696
697  switch (N->getOpcode()) {
698  default: break;
699  case ISD::HANDLENODE:
700  case ISD::DBG_LABEL:
701  case ISD::DBG_STOPPOINT:
702  case ISD::EH_LABEL:
703    return 0;    // Never add these nodes.
704  }
705
706  // Check that remaining values produced are not flags.
707  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
708    if (N->getValueType(i) == MVT::Flag)
709      return 0;   // Never CSE anything that produces a flag.
710
711  SDValue Ops[] = { Op };
712  FoldingSetNodeID ID;
713  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
714  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
715}
716
717/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
718/// were replaced with those specified.  If this node is never memoized,
719/// return null, otherwise return a pointer to the slot it would take.  If a
720/// node already exists with these operands, the slot will be non-null.
721SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
722                                           SDValue Op1, SDValue Op2,
723                                           void *&InsertPos) {
724  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
725
726  // Check that remaining values produced are not flags.
727  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
728    if (N->getValueType(i) == MVT::Flag)
729      return 0;   // Never CSE anything that produces a flag.
730
731  SDValue Ops[] = { Op1, Op2 };
732  FoldingSetNodeID ID;
733  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
734  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
735}
736
737
738/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
739/// were replaced with those specified.  If this node is never memoized,
740/// return null, otherwise return a pointer to the slot it would take.  If a
741/// node already exists with these operands, the slot will be non-null.
742SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
743                                           const SDValue *Ops,unsigned NumOps,
744                                           void *&InsertPos) {
745  if (N->getValueType(0) == MVT::Flag)
746    return 0;   // Never CSE anything that produces a flag.
747
748  switch (N->getOpcode()) {
749  default: break;
750  case ISD::HANDLENODE:
751  case ISD::DBG_LABEL:
752  case ISD::DBG_STOPPOINT:
753  case ISD::EH_LABEL:
754  case ISD::DECLARE:
755    return 0;    // Never add these nodes.
756  }
757
758  // Check that remaining values produced are not flags.
759  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
760    if (N->getValueType(i) == MVT::Flag)
761      return 0;   // Never CSE anything that produces a flag.
762
763  FoldingSetNodeID ID;
764  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
765
766  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
767    ID.AddInteger(LD->getAddressingMode());
768    ID.AddInteger(LD->getExtensionType());
769    ID.AddInteger(LD->getMemoryVT().getRawBits());
770    ID.AddInteger(LD->getRawFlags());
771  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
772    ID.AddInteger(ST->getAddressingMode());
773    ID.AddInteger(ST->isTruncatingStore());
774    ID.AddInteger(ST->getMemoryVT().getRawBits());
775    ID.AddInteger(ST->getRawFlags());
776  }
777
778  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
779}
780
781/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
782void SelectionDAG::VerifyNode(SDNode *N) {
783  switch (N->getOpcode()) {
784  default:
785    break;
786  case ISD::BUILD_VECTOR: {
787    assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!");
788    assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!");
789    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
790           "Wrong number of BUILD_VECTOR operands!");
791    MVT EltVT = N->getValueType(0).getVectorElementType();
792    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
793      assert(I->getSDValue().getValueType() == EltVT &&
794             "Wrong BUILD_VECTOR operand type!");
795    break;
796  }
797  }
798}
799
800/// getMVTAlignment - Compute the default alignment value for the
801/// given type.
802///
803unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
804  const Type *Ty = VT == MVT::iPTR ?
805                   PointerType::get(Type::Int8Ty, 0) :
806                   VT.getTypeForMVT();
807
808  return TLI.getTargetData()->getABITypeAlignment(Ty);
809}
810
811SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
812  : TLI(tli), FLI(fli),
813    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
814    Root(getEntryNode()) {
815  AllNodes.push_back(&EntryNode);
816}
817
818void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
819  MF = &mf;
820  MMI = mmi;
821}
822
823SelectionDAG::~SelectionDAG() {
824  allnodes_clear();
825}
826
827void SelectionDAG::allnodes_clear() {
828  assert(&*AllNodes.begin() == &EntryNode);
829  AllNodes.remove(AllNodes.begin());
830  while (!AllNodes.empty()) {
831    SDNode *N = AllNodes.remove(AllNodes.begin());
832    N->SetNextInBucket(0);
833    if (N->OperandsNeedDelete)
834      delete [] N->OperandList;
835    NodeAllocator.Deallocate(N);
836  }
837}
838
839void SelectionDAG::clear() {
840  allnodes_clear();
841  OperandAllocator.Reset();
842  CSEMap.clear();
843
844  ExtendedValueTypeNodes.clear();
845  ExternalSymbols.clear();
846  TargetExternalSymbols.clear();
847  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
848            static_cast<CondCodeSDNode*>(0));
849  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
850            static_cast<SDNode*>(0));
851
852  EntryNode.Uses = 0;
853  AllNodes.push_back(&EntryNode);
854  Root = getEntryNode();
855}
856
857SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
858  if (Op.getValueType() == VT) return Op;
859  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
860                                   VT.getSizeInBits());
861  return getNode(ISD::AND, Op.getValueType(), Op,
862                 getConstant(Imm, Op.getValueType()));
863}
864
865SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
866  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
867  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
868}
869
870SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
871  return getConstant(*ConstantInt::get(Val), VT, isT);
872}
873
874SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
875  assert(VT.isInteger() && "Cannot create FP integer constant!");
876
877  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
878  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
879         "APInt size does not match type size!");
880
881  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
882  FoldingSetNodeID ID;
883  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
884  ID.AddPointer(&Val);
885  void *IP = 0;
886  SDNode *N = NULL;
887  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
888    if (!VT.isVector())
889      return SDValue(N, 0);
890  if (!N) {
891    N = NodeAllocator.Allocate<ConstantSDNode>();
892    new (N) ConstantSDNode(isT, &Val, EltVT);
893    CSEMap.InsertNode(N, IP);
894    AllNodes.push_back(N);
895  }
896
897  SDValue Result(N, 0);
898  if (VT.isVector()) {
899    SmallVector<SDValue, 8> Ops;
900    Ops.assign(VT.getVectorNumElements(), Result);
901    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
902  }
903  return Result;
904}
905
906SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
907  return getConstant(Val, TLI.getPointerTy(), isTarget);
908}
909
910
911SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
912  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
913}
914
915SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
916  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
917
918  MVT EltVT =
919    VT.isVector() ? VT.getVectorElementType() : VT;
920
921  // Do the map lookup using the actual bit pattern for the floating point
922  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
923  // we don't have issues with SNANs.
924  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
925  FoldingSetNodeID ID;
926  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
927  ID.AddPointer(&V);
928  void *IP = 0;
929  SDNode *N = NULL;
930  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
931    if (!VT.isVector())
932      return SDValue(N, 0);
933  if (!N) {
934    N = NodeAllocator.Allocate<ConstantFPSDNode>();
935    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
936    CSEMap.InsertNode(N, IP);
937    AllNodes.push_back(N);
938  }
939
940  SDValue Result(N, 0);
941  if (VT.isVector()) {
942    SmallVector<SDValue, 8> Ops;
943    Ops.assign(VT.getVectorNumElements(), Result);
944    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
945  }
946  return Result;
947}
948
949SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
950  MVT EltVT =
951    VT.isVector() ? VT.getVectorElementType() : VT;
952  if (EltVT==MVT::f32)
953    return getConstantFP(APFloat((float)Val), VT, isTarget);
954  else
955    return getConstantFP(APFloat(Val), VT, isTarget);
956}
957
958SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
959                                       MVT VT, int Offset,
960                                       bool isTargetGA) {
961  unsigned Opc;
962
963  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
964  if (!GVar) {
965    // If GV is an alias then use the aliasee for determining thread-localness.
966    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
967      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
968  }
969
970  if (GVar && GVar->isThreadLocal())
971    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
972  else
973    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
974
975  FoldingSetNodeID ID;
976  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
977  ID.AddPointer(GV);
978  ID.AddInteger(Offset);
979  void *IP = 0;
980  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
981   return SDValue(E, 0);
982  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
983  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
984  CSEMap.InsertNode(N, IP);
985  AllNodes.push_back(N);
986  return SDValue(N, 0);
987}
988
989SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
990  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
991  FoldingSetNodeID ID;
992  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
993  ID.AddInteger(FI);
994  void *IP = 0;
995  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
996    return SDValue(E, 0);
997  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
998  new (N) FrameIndexSDNode(FI, VT, isTarget);
999  CSEMap.InsertNode(N, IP);
1000  AllNodes.push_back(N);
1001  return SDValue(N, 0);
1002}
1003
1004SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1005  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1006  FoldingSetNodeID ID;
1007  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1008  ID.AddInteger(JTI);
1009  void *IP = 0;
1010  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1011    return SDValue(E, 0);
1012  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1013  new (N) JumpTableSDNode(JTI, VT, isTarget);
1014  CSEMap.InsertNode(N, IP);
1015  AllNodes.push_back(N);
1016  return SDValue(N, 0);
1017}
1018
1019SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1020                                      unsigned Alignment, int Offset,
1021                                      bool isTarget) {
1022  if (Alignment == 0)
1023    Alignment =
1024      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1025  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1026  FoldingSetNodeID ID;
1027  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1028  ID.AddInteger(Alignment);
1029  ID.AddInteger(Offset);
1030  ID.AddPointer(C);
1031  void *IP = 0;
1032  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1033    return SDValue(E, 0);
1034  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1035  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1036  CSEMap.InsertNode(N, IP);
1037  AllNodes.push_back(N);
1038  return SDValue(N, 0);
1039}
1040
1041
1042SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1043                                      unsigned Alignment, int Offset,
1044                                      bool isTarget) {
1045  if (Alignment == 0)
1046    Alignment =
1047      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1048  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1049  FoldingSetNodeID ID;
1050  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1051  ID.AddInteger(Alignment);
1052  ID.AddInteger(Offset);
1053  C->AddSelectionDAGCSEId(ID);
1054  void *IP = 0;
1055  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1056    return SDValue(E, 0);
1057  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1058  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1059  CSEMap.InsertNode(N, IP);
1060  AllNodes.push_back(N);
1061  return SDValue(N, 0);
1062}
1063
1064
1065SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1066  FoldingSetNodeID ID;
1067  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1068  ID.AddPointer(MBB);
1069  void *IP = 0;
1070  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1071    return SDValue(E, 0);
1072  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1073  new (N) BasicBlockSDNode(MBB);
1074  CSEMap.InsertNode(N, IP);
1075  AllNodes.push_back(N);
1076  return SDValue(N, 0);
1077}
1078
1079SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1080  FoldingSetNodeID ID;
1081  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1082  ID.AddInteger(Flags.getRawBits());
1083  void *IP = 0;
1084  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085    return SDValue(E, 0);
1086  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1087  new (N) ARG_FLAGSSDNode(Flags);
1088  CSEMap.InsertNode(N, IP);
1089  AllNodes.push_back(N);
1090  return SDValue(N, 0);
1091}
1092
1093SDValue SelectionDAG::getValueType(MVT VT) {
1094  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1095    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1096
1097  SDNode *&N = VT.isExtended() ?
1098    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1099
1100  if (N) return SDValue(N, 0);
1101  N = NodeAllocator.Allocate<VTSDNode>();
1102  new (N) VTSDNode(VT);
1103  AllNodes.push_back(N);
1104  return SDValue(N, 0);
1105}
1106
1107SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1108  SDNode *&N = ExternalSymbols[Sym];
1109  if (N) return SDValue(N, 0);
1110  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1111  new (N) ExternalSymbolSDNode(false, Sym, VT);
1112  AllNodes.push_back(N);
1113  return SDValue(N, 0);
1114}
1115
1116SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1117  SDNode *&N = TargetExternalSymbols[Sym];
1118  if (N) return SDValue(N, 0);
1119  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1120  new (N) ExternalSymbolSDNode(true, Sym, VT);
1121  AllNodes.push_back(N);
1122  return SDValue(N, 0);
1123}
1124
1125SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1126  if ((unsigned)Cond >= CondCodeNodes.size())
1127    CondCodeNodes.resize(Cond+1);
1128
1129  if (CondCodeNodes[Cond] == 0) {
1130    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1131    new (N) CondCodeSDNode(Cond);
1132    CondCodeNodes[Cond] = N;
1133    AllNodes.push_back(N);
1134  }
1135  return SDValue(CondCodeNodes[Cond], 0);
1136}
1137
1138SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1139  FoldingSetNodeID ID;
1140  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1141  ID.AddInteger(RegNo);
1142  void *IP = 0;
1143  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1144    return SDValue(E, 0);
1145  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1146  new (N) RegisterSDNode(RegNo, VT);
1147  CSEMap.InsertNode(N, IP);
1148  AllNodes.push_back(N);
1149  return SDValue(N, 0);
1150}
1151
1152SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1153                                        unsigned Line, unsigned Col,
1154                                        const CompileUnitDesc *CU) {
1155  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1156  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1157  AllNodes.push_back(N);
1158  return SDValue(N, 0);
1159}
1160
1161SDValue SelectionDAG::getLabel(unsigned Opcode,
1162                               SDValue Root,
1163                               unsigned LabelID) {
1164  FoldingSetNodeID ID;
1165  SDValue Ops[] = { Root };
1166  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1167  ID.AddInteger(LabelID);
1168  void *IP = 0;
1169  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1170    return SDValue(E, 0);
1171  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1172  new (N) LabelSDNode(Opcode, Root, LabelID);
1173  CSEMap.InsertNode(N, IP);
1174  AllNodes.push_back(N);
1175  return SDValue(N, 0);
1176}
1177
1178SDValue SelectionDAG::getSrcValue(const Value *V) {
1179  assert((!V || isa<PointerType>(V->getType())) &&
1180         "SrcValue is not a pointer?");
1181
1182  FoldingSetNodeID ID;
1183  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1184  ID.AddPointer(V);
1185
1186  void *IP = 0;
1187  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1188    return SDValue(E, 0);
1189
1190  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1191  new (N) SrcValueSDNode(V);
1192  CSEMap.InsertNode(N, IP);
1193  AllNodes.push_back(N);
1194  return SDValue(N, 0);
1195}
1196
1197SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1198  const Value *v = MO.getValue();
1199  assert((!v || isa<PointerType>(v->getType())) &&
1200         "SrcValue is not a pointer?");
1201
1202  FoldingSetNodeID ID;
1203  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1204  MO.Profile(ID);
1205
1206  void *IP = 0;
1207  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1208    return SDValue(E, 0);
1209
1210  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1211  new (N) MemOperandSDNode(MO);
1212  CSEMap.InsertNode(N, IP);
1213  AllNodes.push_back(N);
1214  return SDValue(N, 0);
1215}
1216
1217/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1218/// specified value type.
1219SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1220  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1221  unsigned ByteSize = VT.getSizeInBits()/8;
1222  const Type *Ty = VT.getTypeForMVT();
1223  unsigned StackAlign =
1224  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1225
1226  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1227  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1228}
1229
1230SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1231                                SDValue N2, ISD::CondCode Cond) {
1232  // These setcc operations always fold.
1233  switch (Cond) {
1234  default: break;
1235  case ISD::SETFALSE:
1236  case ISD::SETFALSE2: return getConstant(0, VT);
1237  case ISD::SETTRUE:
1238  case ISD::SETTRUE2:  return getConstant(1, VT);
1239
1240  case ISD::SETOEQ:
1241  case ISD::SETOGT:
1242  case ISD::SETOGE:
1243  case ISD::SETOLT:
1244  case ISD::SETOLE:
1245  case ISD::SETONE:
1246  case ISD::SETO:
1247  case ISD::SETUO:
1248  case ISD::SETUEQ:
1249  case ISD::SETUNE:
1250    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1251    break;
1252  }
1253
1254  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1255    const APInt &C2 = N2C->getAPIntValue();
1256    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1257      const APInt &C1 = N1C->getAPIntValue();
1258
1259      switch (Cond) {
1260      default: assert(0 && "Unknown integer setcc!");
1261      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1262      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1263      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1264      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1265      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1266      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1267      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1268      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1269      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1270      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1271      }
1272    }
1273  }
1274  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1275    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1276      // No compile time operations on this type yet.
1277      if (N1C->getValueType(0) == MVT::ppcf128)
1278        return SDValue();
1279
1280      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1281      switch (Cond) {
1282      default: break;
1283      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1284                          return getNode(ISD::UNDEF, VT);
1285                        // fall through
1286      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1287      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1288                          return getNode(ISD::UNDEF, VT);
1289                        // fall through
1290      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1291                                           R==APFloat::cmpLessThan, VT);
1292      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1293                          return getNode(ISD::UNDEF, VT);
1294                        // fall through
1295      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1296      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1297                          return getNode(ISD::UNDEF, VT);
1298                        // fall through
1299      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1300      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1301                          return getNode(ISD::UNDEF, VT);
1302                        // fall through
1303      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1304                                           R==APFloat::cmpEqual, VT);
1305      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1306                          return getNode(ISD::UNDEF, VT);
1307                        // fall through
1308      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1309                                           R==APFloat::cmpEqual, VT);
1310      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1311      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1312      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1313                                           R==APFloat::cmpEqual, VT);
1314      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1315      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1316                                           R==APFloat::cmpLessThan, VT);
1317      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1318                                           R==APFloat::cmpUnordered, VT);
1319      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1320      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1321      }
1322    } else {
1323      // Ensure that the constant occurs on the RHS.
1324      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1325    }
1326  }
1327
1328  // Could not fold it.
1329  return SDValue();
1330}
1331
1332/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1333/// use this predicate to simplify operations downstream.
1334bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1335  unsigned BitWidth = Op.getValueSizeInBits();
1336  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1337}
1338
1339/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1340/// this predicate to simplify operations downstream.  Mask is known to be zero
1341/// for bits that V cannot have.
1342bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1343                                     unsigned Depth) const {
1344  APInt KnownZero, KnownOne;
1345  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1346  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1347  return (KnownZero & Mask) == Mask;
1348}
1349
1350/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1351/// known to be either zero or one and return them in the KnownZero/KnownOne
1352/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1353/// processing.
1354void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1355                                     APInt &KnownZero, APInt &KnownOne,
1356                                     unsigned Depth) const {
1357  unsigned BitWidth = Mask.getBitWidth();
1358  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1359         "Mask size mismatches value type size!");
1360
1361  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1362  if (Depth == 6 || Mask == 0)
1363    return;  // Limit search depth.
1364
1365  APInt KnownZero2, KnownOne2;
1366
1367  switch (Op.getOpcode()) {
1368  case ISD::Constant:
1369    // We know all of the bits for a constant!
1370    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1371    KnownZero = ~KnownOne & Mask;
1372    return;
1373  case ISD::AND:
1374    // If either the LHS or the RHS are Zero, the result is zero.
1375    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1376    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1377                      KnownZero2, KnownOne2, Depth+1);
1378    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1379    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1380
1381    // Output known-1 bits are only known if set in both the LHS & RHS.
1382    KnownOne &= KnownOne2;
1383    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1384    KnownZero |= KnownZero2;
1385    return;
1386  case ISD::OR:
1387    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1388    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1389                      KnownZero2, KnownOne2, Depth+1);
1390    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1391    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1392
1393    // Output known-0 bits are only known if clear in both the LHS & RHS.
1394    KnownZero &= KnownZero2;
1395    // Output known-1 are known to be set if set in either the LHS | RHS.
1396    KnownOne |= KnownOne2;
1397    return;
1398  case ISD::XOR: {
1399    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1400    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1401    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1402    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1403
1404    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1405    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1406    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1407    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1408    KnownZero = KnownZeroOut;
1409    return;
1410  }
1411  case ISD::MUL: {
1412    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1413    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1414    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1415    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1416    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1417
1418    // If low bits are zero in either operand, output low known-0 bits.
1419    // Also compute a conserative estimate for high known-0 bits.
1420    // More trickiness is possible, but this is sufficient for the
1421    // interesting case of alignment computation.
1422    KnownOne.clear();
1423    unsigned TrailZ = KnownZero.countTrailingOnes() +
1424                      KnownZero2.countTrailingOnes();
1425    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1426                               KnownZero2.countLeadingOnes(),
1427                               BitWidth) - BitWidth;
1428
1429    TrailZ = std::min(TrailZ, BitWidth);
1430    LeadZ = std::min(LeadZ, BitWidth);
1431    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1432                APInt::getHighBitsSet(BitWidth, LeadZ);
1433    KnownZero &= Mask;
1434    return;
1435  }
1436  case ISD::UDIV: {
1437    // For the purposes of computing leading zeros we can conservatively
1438    // treat a udiv as a logical right shift by the power of 2 known to
1439    // be less than the denominator.
1440    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1441    ComputeMaskedBits(Op.getOperand(0),
1442                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1443    unsigned LeadZ = KnownZero2.countLeadingOnes();
1444
1445    KnownOne2.clear();
1446    KnownZero2.clear();
1447    ComputeMaskedBits(Op.getOperand(1),
1448                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1449    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1450    if (RHSUnknownLeadingOnes != BitWidth)
1451      LeadZ = std::min(BitWidth,
1452                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1453
1454    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1455    return;
1456  }
1457  case ISD::SELECT:
1458    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1459    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1460    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1461    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1462
1463    // Only known if known in both the LHS and RHS.
1464    KnownOne &= KnownOne2;
1465    KnownZero &= KnownZero2;
1466    return;
1467  case ISD::SELECT_CC:
1468    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1469    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1470    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1471    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1472
1473    // Only known if known in both the LHS and RHS.
1474    KnownOne &= KnownOne2;
1475    KnownZero &= KnownZero2;
1476    return;
1477  case ISD::SETCC:
1478    // If we know the result of a setcc has the top bits zero, use this info.
1479    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1480        BitWidth > 1)
1481      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1482    return;
1483  case ISD::SHL:
1484    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1485    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1486      unsigned ShAmt = SA->getZExtValue();
1487
1488      // If the shift count is an invalid immediate, don't do anything.
1489      if (ShAmt >= BitWidth)
1490        return;
1491
1492      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1493                        KnownZero, KnownOne, Depth+1);
1494      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1495      KnownZero <<= ShAmt;
1496      KnownOne  <<= ShAmt;
1497      // low bits known zero.
1498      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1499    }
1500    return;
1501  case ISD::SRL:
1502    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1503    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1504      unsigned ShAmt = SA->getZExtValue();
1505
1506      // If the shift count is an invalid immediate, don't do anything.
1507      if (ShAmt >= BitWidth)
1508        return;
1509
1510      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1511                        KnownZero, KnownOne, Depth+1);
1512      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1513      KnownZero = KnownZero.lshr(ShAmt);
1514      KnownOne  = KnownOne.lshr(ShAmt);
1515
1516      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1517      KnownZero |= HighBits;  // High bits known zero.
1518    }
1519    return;
1520  case ISD::SRA:
1521    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1522      unsigned ShAmt = SA->getZExtValue();
1523
1524      // If the shift count is an invalid immediate, don't do anything.
1525      if (ShAmt >= BitWidth)
1526        return;
1527
1528      APInt InDemandedMask = (Mask << ShAmt);
1529      // If any of the demanded bits are produced by the sign extension, we also
1530      // demand the input sign bit.
1531      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1532      if (HighBits.getBoolValue())
1533        InDemandedMask |= APInt::getSignBit(BitWidth);
1534
1535      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1536                        Depth+1);
1537      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1538      KnownZero = KnownZero.lshr(ShAmt);
1539      KnownOne  = KnownOne.lshr(ShAmt);
1540
1541      // Handle the sign bits.
1542      APInt SignBit = APInt::getSignBit(BitWidth);
1543      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1544
1545      if (KnownZero.intersects(SignBit)) {
1546        KnownZero |= HighBits;  // New bits are known zero.
1547      } else if (KnownOne.intersects(SignBit)) {
1548        KnownOne  |= HighBits;  // New bits are known one.
1549      }
1550    }
1551    return;
1552  case ISD::SIGN_EXTEND_INREG: {
1553    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1554    unsigned EBits = EVT.getSizeInBits();
1555
1556    // Sign extension.  Compute the demanded bits in the result that are not
1557    // present in the input.
1558    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1559
1560    APInt InSignBit = APInt::getSignBit(EBits);
1561    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1562
1563    // If the sign extended bits are demanded, we know that the sign
1564    // bit is demanded.
1565    InSignBit.zext(BitWidth);
1566    if (NewBits.getBoolValue())
1567      InputDemandedBits |= InSignBit;
1568
1569    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1570                      KnownZero, KnownOne, Depth+1);
1571    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1572
1573    // If the sign bit of the input is known set or clear, then we know the
1574    // top bits of the result.
1575    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1576      KnownZero |= NewBits;
1577      KnownOne  &= ~NewBits;
1578    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1579      KnownOne  |= NewBits;
1580      KnownZero &= ~NewBits;
1581    } else {                              // Input sign bit unknown
1582      KnownZero &= ~NewBits;
1583      KnownOne  &= ~NewBits;
1584    }
1585    return;
1586  }
1587  case ISD::CTTZ:
1588  case ISD::CTLZ:
1589  case ISD::CTPOP: {
1590    unsigned LowBits = Log2_32(BitWidth)+1;
1591    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1592    KnownOne.clear();
1593    return;
1594  }
1595  case ISD::LOAD: {
1596    if (ISD::isZEXTLoad(Op.getNode())) {
1597      LoadSDNode *LD = cast<LoadSDNode>(Op);
1598      MVT VT = LD->getMemoryVT();
1599      unsigned MemBits = VT.getSizeInBits();
1600      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1601    }
1602    return;
1603  }
1604  case ISD::ZERO_EXTEND: {
1605    MVT InVT = Op.getOperand(0).getValueType();
1606    unsigned InBits = InVT.getSizeInBits();
1607    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1608    APInt InMask    = Mask;
1609    InMask.trunc(InBits);
1610    KnownZero.trunc(InBits);
1611    KnownOne.trunc(InBits);
1612    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1613    KnownZero.zext(BitWidth);
1614    KnownOne.zext(BitWidth);
1615    KnownZero |= NewBits;
1616    return;
1617  }
1618  case ISD::SIGN_EXTEND: {
1619    MVT InVT = Op.getOperand(0).getValueType();
1620    unsigned InBits = InVT.getSizeInBits();
1621    APInt InSignBit = APInt::getSignBit(InBits);
1622    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1623    APInt InMask = Mask;
1624    InMask.trunc(InBits);
1625
1626    // If any of the sign extended bits are demanded, we know that the sign
1627    // bit is demanded. Temporarily set this bit in the mask for our callee.
1628    if (NewBits.getBoolValue())
1629      InMask |= InSignBit;
1630
1631    KnownZero.trunc(InBits);
1632    KnownOne.trunc(InBits);
1633    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1634
1635    // Note if the sign bit is known to be zero or one.
1636    bool SignBitKnownZero = KnownZero.isNegative();
1637    bool SignBitKnownOne  = KnownOne.isNegative();
1638    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1639           "Sign bit can't be known to be both zero and one!");
1640
1641    // If the sign bit wasn't actually demanded by our caller, we don't
1642    // want it set in the KnownZero and KnownOne result values. Reset the
1643    // mask and reapply it to the result values.
1644    InMask = Mask;
1645    InMask.trunc(InBits);
1646    KnownZero &= InMask;
1647    KnownOne  &= InMask;
1648
1649    KnownZero.zext(BitWidth);
1650    KnownOne.zext(BitWidth);
1651
1652    // If the sign bit is known zero or one, the top bits match.
1653    if (SignBitKnownZero)
1654      KnownZero |= NewBits;
1655    else if (SignBitKnownOne)
1656      KnownOne  |= NewBits;
1657    return;
1658  }
1659  case ISD::ANY_EXTEND: {
1660    MVT InVT = Op.getOperand(0).getValueType();
1661    unsigned InBits = InVT.getSizeInBits();
1662    APInt InMask = Mask;
1663    InMask.trunc(InBits);
1664    KnownZero.trunc(InBits);
1665    KnownOne.trunc(InBits);
1666    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1667    KnownZero.zext(BitWidth);
1668    KnownOne.zext(BitWidth);
1669    return;
1670  }
1671  case ISD::TRUNCATE: {
1672    MVT InVT = Op.getOperand(0).getValueType();
1673    unsigned InBits = InVT.getSizeInBits();
1674    APInt InMask = Mask;
1675    InMask.zext(InBits);
1676    KnownZero.zext(InBits);
1677    KnownOne.zext(InBits);
1678    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1679    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1680    KnownZero.trunc(BitWidth);
1681    KnownOne.trunc(BitWidth);
1682    break;
1683  }
1684  case ISD::AssertZext: {
1685    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1686    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1687    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1688                      KnownOne, Depth+1);
1689    KnownZero |= (~InMask) & Mask;
1690    return;
1691  }
1692  case ISD::FGETSIGN:
1693    // All bits are zero except the low bit.
1694    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1695    return;
1696
1697  case ISD::SUB: {
1698    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1699      // We know that the top bits of C-X are clear if X contains less bits
1700      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1701      // positive if we can prove that X is >= 0 and < 16.
1702      if (CLHS->getAPIntValue().isNonNegative()) {
1703        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1704        // NLZ can't be BitWidth with no sign bit
1705        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1706        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1707                          Depth+1);
1708
1709        // If all of the MaskV bits are known to be zero, then we know the
1710        // output top bits are zero, because we now know that the output is
1711        // from [0-C].
1712        if ((KnownZero2 & MaskV) == MaskV) {
1713          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1714          // Top bits known zero.
1715          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1716        }
1717      }
1718    }
1719  }
1720  // fall through
1721  case ISD::ADD: {
1722    // Output known-0 bits are known if clear or set in both the low clear bits
1723    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1724    // low 3 bits clear.
1725    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1726    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1727    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1728    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1729
1730    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1731    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1732    KnownZeroOut = std::min(KnownZeroOut,
1733                            KnownZero2.countTrailingOnes());
1734
1735    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1736    return;
1737  }
1738  case ISD::SREM:
1739    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1740      const APInt &RA = Rem->getAPIntValue();
1741      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1742        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1743        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1744        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1745
1746        // If the sign bit of the first operand is zero, the sign bit of
1747        // the result is zero. If the first operand has no one bits below
1748        // the second operand's single 1 bit, its sign will be zero.
1749        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1750          KnownZero2 |= ~LowBits;
1751
1752        KnownZero |= KnownZero2 & Mask;
1753
1754        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1755      }
1756    }
1757    return;
1758  case ISD::UREM: {
1759    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1760      const APInt &RA = Rem->getAPIntValue();
1761      if (RA.isPowerOf2()) {
1762        APInt LowBits = (RA - 1);
1763        APInt Mask2 = LowBits & Mask;
1764        KnownZero |= ~LowBits & Mask;
1765        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1766        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1767        break;
1768      }
1769    }
1770
1771    // Since the result is less than or equal to either operand, any leading
1772    // zero bits in either operand must also exist in the result.
1773    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1774    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1775                      Depth+1);
1776    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1777                      Depth+1);
1778
1779    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1780                                KnownZero2.countLeadingOnes());
1781    KnownOne.clear();
1782    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1783    return;
1784  }
1785  default:
1786    // Allow the target to implement this method for its nodes.
1787    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1788  case ISD::INTRINSIC_WO_CHAIN:
1789  case ISD::INTRINSIC_W_CHAIN:
1790  case ISD::INTRINSIC_VOID:
1791      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1792    }
1793    return;
1794  }
1795}
1796
1797/// ComputeNumSignBits - Return the number of times the sign bit of the
1798/// register is replicated into the other bits.  We know that at least 1 bit
1799/// is always equal to the sign bit (itself), but other cases can give us
1800/// information.  For example, immediately after an "SRA X, 2", we know that
1801/// the top 3 bits are all equal to each other, so we return 3.
1802unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1803  MVT VT = Op.getValueType();
1804  assert(VT.isInteger() && "Invalid VT!");
1805  unsigned VTBits = VT.getSizeInBits();
1806  unsigned Tmp, Tmp2;
1807  unsigned FirstAnswer = 1;
1808
1809  if (Depth == 6)
1810    return 1;  // Limit search depth.
1811
1812  switch (Op.getOpcode()) {
1813  default: break;
1814  case ISD::AssertSext:
1815    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1816    return VTBits-Tmp+1;
1817  case ISD::AssertZext:
1818    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1819    return VTBits-Tmp;
1820
1821  case ISD::Constant: {
1822    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1823    // If negative, return # leading ones.
1824    if (Val.isNegative())
1825      return Val.countLeadingOnes();
1826
1827    // Return # leading zeros.
1828    return Val.countLeadingZeros();
1829  }
1830
1831  case ISD::SIGN_EXTEND:
1832    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1833    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1834
1835  case ISD::SIGN_EXTEND_INREG:
1836    // Max of the input and what this extends.
1837    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1838    Tmp = VTBits-Tmp+1;
1839
1840    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1841    return std::max(Tmp, Tmp2);
1842
1843  case ISD::SRA:
1844    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1845    // SRA X, C   -> adds C sign bits.
1846    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1847      Tmp += C->getZExtValue();
1848      if (Tmp > VTBits) Tmp = VTBits;
1849    }
1850    return Tmp;
1851  case ISD::SHL:
1852    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1853      // shl destroys sign bits.
1854      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1855      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1856          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1857      return Tmp - C->getZExtValue();
1858    }
1859    break;
1860  case ISD::AND:
1861  case ISD::OR:
1862  case ISD::XOR:    // NOT is handled here.
1863    // Logical binary ops preserve the number of sign bits at the worst.
1864    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1865    if (Tmp != 1) {
1866      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1867      FirstAnswer = std::min(Tmp, Tmp2);
1868      // We computed what we know about the sign bits as our first
1869      // answer. Now proceed to the generic code that uses
1870      // ComputeMaskedBits, and pick whichever answer is better.
1871    }
1872    break;
1873
1874  case ISD::SELECT:
1875    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1876    if (Tmp == 1) return 1;  // Early out.
1877    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1878    return std::min(Tmp, Tmp2);
1879
1880  case ISD::SETCC:
1881    // If setcc returns 0/-1, all bits are sign bits.
1882    if (TLI.getSetCCResultContents() ==
1883        TargetLowering::ZeroOrNegativeOneSetCCResult)
1884      return VTBits;
1885    break;
1886  case ISD::ROTL:
1887  case ISD::ROTR:
1888    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1889      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1890
1891      // Handle rotate right by N like a rotate left by 32-N.
1892      if (Op.getOpcode() == ISD::ROTR)
1893        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1894
1895      // If we aren't rotating out all of the known-in sign bits, return the
1896      // number that are left.  This handles rotl(sext(x), 1) for example.
1897      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1898      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1899    }
1900    break;
1901  case ISD::ADD:
1902    // Add can have at most one carry bit.  Thus we know that the output
1903    // is, at worst, one more bit than the inputs.
1904    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1905    if (Tmp == 1) return 1;  // Early out.
1906
1907    // Special case decrementing a value (ADD X, -1):
1908    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1909      if (CRHS->isAllOnesValue()) {
1910        APInt KnownZero, KnownOne;
1911        APInt Mask = APInt::getAllOnesValue(VTBits);
1912        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1913
1914        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1915        // sign bits set.
1916        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1917          return VTBits;
1918
1919        // If we are subtracting one from a positive number, there is no carry
1920        // out of the result.
1921        if (KnownZero.isNegative())
1922          return Tmp;
1923      }
1924
1925    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1926    if (Tmp2 == 1) return 1;
1927      return std::min(Tmp, Tmp2)-1;
1928    break;
1929
1930  case ISD::SUB:
1931    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1932    if (Tmp2 == 1) return 1;
1933
1934    // Handle NEG.
1935    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1936      if (CLHS->isNullValue()) {
1937        APInt KnownZero, KnownOne;
1938        APInt Mask = APInt::getAllOnesValue(VTBits);
1939        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1940        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1941        // sign bits set.
1942        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1943          return VTBits;
1944
1945        // If the input is known to be positive (the sign bit is known clear),
1946        // the output of the NEG has the same number of sign bits as the input.
1947        if (KnownZero.isNegative())
1948          return Tmp2;
1949
1950        // Otherwise, we treat this like a SUB.
1951      }
1952
1953    // Sub can have at most one carry bit.  Thus we know that the output
1954    // is, at worst, one more bit than the inputs.
1955    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1956    if (Tmp == 1) return 1;  // Early out.
1957      return std::min(Tmp, Tmp2)-1;
1958    break;
1959  case ISD::TRUNCATE:
1960    // FIXME: it's tricky to do anything useful for this, but it is an important
1961    // case for targets like X86.
1962    break;
1963  }
1964
1965  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1966  if (Op.getOpcode() == ISD::LOAD) {
1967    LoadSDNode *LD = cast<LoadSDNode>(Op);
1968    unsigned ExtType = LD->getExtensionType();
1969    switch (ExtType) {
1970    default: break;
1971    case ISD::SEXTLOAD:    // '17' bits known
1972      Tmp = LD->getMemoryVT().getSizeInBits();
1973      return VTBits-Tmp+1;
1974    case ISD::ZEXTLOAD:    // '16' bits known
1975      Tmp = LD->getMemoryVT().getSizeInBits();
1976      return VTBits-Tmp;
1977    }
1978  }
1979
1980  // Allow the target to implement this method for its nodes.
1981  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1982      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1983      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1984      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1985    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1986    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1987  }
1988
1989  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1990  // use this information.
1991  APInt KnownZero, KnownOne;
1992  APInt Mask = APInt::getAllOnesValue(VTBits);
1993  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1994
1995  if (KnownZero.isNegative()) {        // sign bit is 0
1996    Mask = KnownZero;
1997  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1998    Mask = KnownOne;
1999  } else {
2000    // Nothing known.
2001    return FirstAnswer;
2002  }
2003
2004  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2005  // the number of identical bits in the top of the input value.
2006  Mask = ~Mask;
2007  Mask <<= Mask.getBitWidth()-VTBits;
2008  // Return # leading zeros.  We use 'min' here in case Val was zero before
2009  // shifting.  We don't want to return '64' as for an i32 "0".
2010  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2011}
2012
2013
2014bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2015  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2016  if (!GA) return false;
2017  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2018  if (!GV) return false;
2019  MachineModuleInfo *MMI = getMachineModuleInfo();
2020  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2021}
2022
2023
2024/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2025/// element of the result of the vector shuffle.
2026SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2027  MVT VT = N->getValueType(0);
2028  SDValue PermMask = N->getOperand(2);
2029  SDValue Idx = PermMask.getOperand(i);
2030  if (Idx.getOpcode() == ISD::UNDEF)
2031    return getNode(ISD::UNDEF, VT.getVectorElementType());
2032  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2033  unsigned NumElems = PermMask.getNumOperands();
2034  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2035  Index %= NumElems;
2036
2037  if (V.getOpcode() == ISD::BIT_CONVERT) {
2038    V = V.getOperand(0);
2039    if (V.getValueType().getVectorNumElements() != NumElems)
2040      return SDValue();
2041  }
2042  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2043    return (Index == 0) ? V.getOperand(0)
2044                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2045  if (V.getOpcode() == ISD::BUILD_VECTOR)
2046    return V.getOperand(Index);
2047  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2048    return getShuffleScalarElt(V.getNode(), Index);
2049  return SDValue();
2050}
2051
2052
2053/// getNode - Gets or creates the specified node.
2054///
2055SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2056  FoldingSetNodeID ID;
2057  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2058  void *IP = 0;
2059  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2060    return SDValue(E, 0);
2061  SDNode *N = NodeAllocator.Allocate<SDNode>();
2062  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2063  CSEMap.InsertNode(N, IP);
2064
2065  AllNodes.push_back(N);
2066#ifndef NDEBUG
2067  VerifyNode(N);
2068#endif
2069  return SDValue(N, 0);
2070}
2071
2072SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2073  // Constant fold unary operations with an integer constant operand.
2074  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2075    const APInt &Val = C->getAPIntValue();
2076    unsigned BitWidth = VT.getSizeInBits();
2077    switch (Opcode) {
2078    default: break;
2079    case ISD::SIGN_EXTEND:
2080      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2081    case ISD::ANY_EXTEND:
2082    case ISD::ZERO_EXTEND:
2083    case ISD::TRUNCATE:
2084      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2085    case ISD::UINT_TO_FP:
2086    case ISD::SINT_TO_FP: {
2087      const uint64_t zero[] = {0, 0};
2088      // No compile time operations on this type.
2089      if (VT==MVT::ppcf128)
2090        break;
2091      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2092      (void)apf.convertFromAPInt(Val,
2093                                 Opcode==ISD::SINT_TO_FP,
2094                                 APFloat::rmNearestTiesToEven);
2095      return getConstantFP(apf, VT);
2096    }
2097    case ISD::BIT_CONVERT:
2098      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2099        return getConstantFP(Val.bitsToFloat(), VT);
2100      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2101        return getConstantFP(Val.bitsToDouble(), VT);
2102      break;
2103    case ISD::BSWAP:
2104      return getConstant(Val.byteSwap(), VT);
2105    case ISD::CTPOP:
2106      return getConstant(Val.countPopulation(), VT);
2107    case ISD::CTLZ:
2108      return getConstant(Val.countLeadingZeros(), VT);
2109    case ISD::CTTZ:
2110      return getConstant(Val.countTrailingZeros(), VT);
2111    }
2112  }
2113
2114  // Constant fold unary operations with a floating point constant operand.
2115  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2116    APFloat V = C->getValueAPF();    // make copy
2117    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2118      switch (Opcode) {
2119      case ISD::FNEG:
2120        V.changeSign();
2121        return getConstantFP(V, VT);
2122      case ISD::FABS:
2123        V.clearSign();
2124        return getConstantFP(V, VT);
2125      case ISD::FP_ROUND:
2126      case ISD::FP_EXTEND:
2127        // This can return overflow, underflow, or inexact; we don't care.
2128        // FIXME need to be more flexible about rounding mode.
2129        (void)V.convert(*MVTToAPFloatSemantics(VT),
2130                        APFloat::rmNearestTiesToEven);
2131        return getConstantFP(V, VT);
2132      case ISD::FP_TO_SINT:
2133      case ISD::FP_TO_UINT: {
2134        integerPart x;
2135        assert(integerPartWidth >= 64);
2136        // FIXME need to be more flexible about rounding mode.
2137        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2138                              Opcode==ISD::FP_TO_SINT,
2139                              APFloat::rmTowardZero);
2140        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2141          break;
2142        return getConstant(x, VT);
2143      }
2144      case ISD::BIT_CONVERT:
2145        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2146          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
2147        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2148          return getConstant(V.convertToAPInt().getZExtValue(), VT);
2149        break;
2150      }
2151    }
2152  }
2153
2154  unsigned OpOpcode = Operand.getNode()->getOpcode();
2155  switch (Opcode) {
2156  case ISD::TokenFactor:
2157  case ISD::CONCAT_VECTORS:
2158    return Operand;         // Factor or concat of one node?  No need.
2159  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2160  case ISD::FP_EXTEND:
2161    assert(VT.isFloatingPoint() &&
2162           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2163    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2164    if (Operand.getOpcode() == ISD::UNDEF)
2165      return getNode(ISD::UNDEF, VT);
2166    break;
2167  case ISD::SIGN_EXTEND:
2168    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2169           "Invalid SIGN_EXTEND!");
2170    if (Operand.getValueType() == VT) return Operand;   // noop extension
2171    assert(Operand.getValueType().bitsLT(VT)
2172           && "Invalid sext node, dst < src!");
2173    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2174      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2175    break;
2176  case ISD::ZERO_EXTEND:
2177    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2178           "Invalid ZERO_EXTEND!");
2179    if (Operand.getValueType() == VT) return Operand;   // noop extension
2180    assert(Operand.getValueType().bitsLT(VT)
2181           && "Invalid zext node, dst < src!");
2182    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2183      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2184    break;
2185  case ISD::ANY_EXTEND:
2186    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2187           "Invalid ANY_EXTEND!");
2188    if (Operand.getValueType() == VT) return Operand;   // noop extension
2189    assert(Operand.getValueType().bitsLT(VT)
2190           && "Invalid anyext node, dst < src!");
2191    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2192      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2193      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2194    break;
2195  case ISD::TRUNCATE:
2196    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2197           "Invalid TRUNCATE!");
2198    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2199    assert(Operand.getValueType().bitsGT(VT)
2200           && "Invalid truncate node, src < dst!");
2201    if (OpOpcode == ISD::TRUNCATE)
2202      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2203    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2204             OpOpcode == ISD::ANY_EXTEND) {
2205      // If the source is smaller than the dest, we still need an extend.
2206      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2207        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2208      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2209        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2210      else
2211        return Operand.getNode()->getOperand(0);
2212    }
2213    break;
2214  case ISD::BIT_CONVERT:
2215    // Basic sanity checking.
2216    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2217           && "Cannot BIT_CONVERT between types of different sizes!");
2218    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2219    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2220      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2221    if (OpOpcode == ISD::UNDEF)
2222      return getNode(ISD::UNDEF, VT);
2223    break;
2224  case ISD::SCALAR_TO_VECTOR:
2225    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2226           VT.getVectorElementType() == Operand.getValueType() &&
2227           "Illegal SCALAR_TO_VECTOR node!");
2228    if (OpOpcode == ISD::UNDEF)
2229      return getNode(ISD::UNDEF, VT);
2230    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2231    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2232        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2233        Operand.getConstantOperandVal(1) == 0 &&
2234        Operand.getOperand(0).getValueType() == VT)
2235      return Operand.getOperand(0);
2236    break;
2237  case ISD::FNEG:
2238    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2239      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2240                     Operand.getNode()->getOperand(0));
2241    if (OpOpcode == ISD::FNEG)  // --X -> X
2242      return Operand.getNode()->getOperand(0);
2243    break;
2244  case ISD::FABS:
2245    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2246      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2247    break;
2248  }
2249
2250  SDNode *N;
2251  SDVTList VTs = getVTList(VT);
2252  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2253    FoldingSetNodeID ID;
2254    SDValue Ops[1] = { Operand };
2255    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2256    void *IP = 0;
2257    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2258      return SDValue(E, 0);
2259    N = NodeAllocator.Allocate<UnarySDNode>();
2260    new (N) UnarySDNode(Opcode, VTs, Operand);
2261    CSEMap.InsertNode(N, IP);
2262  } else {
2263    N = NodeAllocator.Allocate<UnarySDNode>();
2264    new (N) UnarySDNode(Opcode, VTs, Operand);
2265  }
2266
2267  AllNodes.push_back(N);
2268#ifndef NDEBUG
2269  VerifyNode(N);
2270#endif
2271  return SDValue(N, 0);
2272}
2273
2274SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2275                              SDValue N1, SDValue N2) {
2276  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2277  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2278  switch (Opcode) {
2279  default: break;
2280  case ISD::TokenFactor:
2281    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2282           N2.getValueType() == MVT::Other && "Invalid token factor!");
2283    // Fold trivial token factors.
2284    if (N1.getOpcode() == ISD::EntryToken) return N2;
2285    if (N2.getOpcode() == ISD::EntryToken) return N1;
2286    break;
2287  case ISD::CONCAT_VECTORS:
2288    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2289    // one big BUILD_VECTOR.
2290    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2291        N2.getOpcode() == ISD::BUILD_VECTOR) {
2292      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2293      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2294      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2295    }
2296    break;
2297  case ISD::AND:
2298    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2299           N1.getValueType() == VT && "Binary operator types must match!");
2300    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2301    // worth handling here.
2302    if (N2C && N2C->isNullValue())
2303      return N2;
2304    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2305      return N1;
2306    break;
2307  case ISD::OR:
2308  case ISD::XOR:
2309  case ISD::ADD:
2310  case ISD::SUB:
2311    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2312           N1.getValueType() == VT && "Binary operator types must match!");
2313    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2314    // it's worth handling here.
2315    if (N2C && N2C->isNullValue())
2316      return N1;
2317    break;
2318  case ISD::UDIV:
2319  case ISD::UREM:
2320  case ISD::MULHU:
2321  case ISD::MULHS:
2322    assert(VT.isInteger() && "This operator does not apply to FP types!");
2323    // fall through
2324  case ISD::MUL:
2325  case ISD::SDIV:
2326  case ISD::SREM:
2327  case ISD::FADD:
2328  case ISD::FSUB:
2329  case ISD::FMUL:
2330  case ISD::FDIV:
2331  case ISD::FREM:
2332    assert(N1.getValueType() == N2.getValueType() &&
2333           N1.getValueType() == VT && "Binary operator types must match!");
2334    break;
2335  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2336    assert(N1.getValueType() == VT &&
2337           N1.getValueType().isFloatingPoint() &&
2338           N2.getValueType().isFloatingPoint() &&
2339           "Invalid FCOPYSIGN!");
2340    break;
2341  case ISD::SHL:
2342  case ISD::SRA:
2343  case ISD::SRL:
2344  case ISD::ROTL:
2345  case ISD::ROTR:
2346    assert(VT == N1.getValueType() &&
2347           "Shift operators return type must be the same as their first arg");
2348    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2349           "Shifts only work on integers");
2350
2351    // Always fold shifts of i1 values so the code generator doesn't need to
2352    // handle them.  Since we know the size of the shift has to be less than the
2353    // size of the value, the shift/rotate count is guaranteed to be zero.
2354    if (VT == MVT::i1)
2355      return N1;
2356    break;
2357  case ISD::FP_ROUND_INREG: {
2358    MVT EVT = cast<VTSDNode>(N2)->getVT();
2359    assert(VT == N1.getValueType() && "Not an inreg round!");
2360    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2361           "Cannot FP_ROUND_INREG integer types");
2362    assert(EVT.bitsLE(VT) && "Not rounding down!");
2363    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2364    break;
2365  }
2366  case ISD::FP_ROUND:
2367    assert(VT.isFloatingPoint() &&
2368           N1.getValueType().isFloatingPoint() &&
2369           VT.bitsLE(N1.getValueType()) &&
2370           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2371    if (N1.getValueType() == VT) return N1;  // noop conversion.
2372    break;
2373  case ISD::AssertSext:
2374  case ISD::AssertZext: {
2375    MVT EVT = cast<VTSDNode>(N2)->getVT();
2376    assert(VT == N1.getValueType() && "Not an inreg extend!");
2377    assert(VT.isInteger() && EVT.isInteger() &&
2378           "Cannot *_EXTEND_INREG FP types");
2379    assert(EVT.bitsLE(VT) && "Not extending!");
2380    if (VT == EVT) return N1; // noop assertion.
2381    break;
2382  }
2383  case ISD::SIGN_EXTEND_INREG: {
2384    MVT EVT = cast<VTSDNode>(N2)->getVT();
2385    assert(VT == N1.getValueType() && "Not an inreg extend!");
2386    assert(VT.isInteger() && EVT.isInteger() &&
2387           "Cannot *_EXTEND_INREG FP types");
2388    assert(EVT.bitsLE(VT) && "Not extending!");
2389    if (EVT == VT) return N1;  // Not actually extending
2390
2391    if (N1C) {
2392      APInt Val = N1C->getAPIntValue();
2393      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2394      Val <<= Val.getBitWidth()-FromBits;
2395      Val = Val.ashr(Val.getBitWidth()-FromBits);
2396      return getConstant(Val, VT);
2397    }
2398    break;
2399  }
2400  case ISD::EXTRACT_VECTOR_ELT:
2401    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2402    if (N1.getOpcode() == ISD::UNDEF)
2403      return getNode(ISD::UNDEF, VT);
2404
2405    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2406    // expanding copies of large vectors from registers.
2407    if (N2C &&
2408        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2409        N1.getNumOperands() > 0) {
2410      unsigned Factor =
2411        N1.getOperand(0).getValueType().getVectorNumElements();
2412      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2413                     N1.getOperand(N2C->getZExtValue() / Factor),
2414                     getConstant(N2C->getZExtValue() % Factor,
2415                                 N2.getValueType()));
2416    }
2417
2418    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2419    // expanding large vector constants.
2420    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2421      return N1.getOperand(N2C->getZExtValue());
2422
2423    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2424    // operations are lowered to scalars.
2425    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2426      if (N1.getOperand(2) == N2)
2427        return N1.getOperand(1);
2428      else
2429        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2430    }
2431    break;
2432  case ISD::EXTRACT_ELEMENT:
2433    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2434    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2435           (N1.getValueType().isInteger() == VT.isInteger()) &&
2436           "Wrong types for EXTRACT_ELEMENT!");
2437
2438    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2439    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2440    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2441    if (N1.getOpcode() == ISD::BUILD_PAIR)
2442      return N1.getOperand(N2C->getZExtValue());
2443
2444    // EXTRACT_ELEMENT of a constant int is also very common.
2445    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2446      unsigned ElementSize = VT.getSizeInBits();
2447      unsigned Shift = ElementSize * N2C->getZExtValue();
2448      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2449      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2450    }
2451    break;
2452  case ISD::EXTRACT_SUBVECTOR:
2453    if (N1.getValueType() == VT) // Trivial extraction.
2454      return N1;
2455    break;
2456  }
2457
2458  if (N1C) {
2459    if (N2C) {
2460      const APInt &C1 = N1C->getAPIntValue(), &C2 = N2C->getAPIntValue();
2461      switch (Opcode) {
2462      case ISD::ADD: return getConstant(C1 + C2, VT);
2463      case ISD::SUB: return getConstant(C1 - C2, VT);
2464      case ISD::MUL: return getConstant(C1 * C2, VT);
2465      case ISD::UDIV:
2466        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2467        break;
2468      case ISD::UREM :
2469        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2470        break;
2471      case ISD::SDIV :
2472        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2473        break;
2474      case ISD::SREM :
2475        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2476        break;
2477      case ISD::AND  : return getConstant(C1 & C2, VT);
2478      case ISD::OR   : return getConstant(C1 | C2, VT);
2479      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2480      case ISD::SHL  : return getConstant(C1 << C2, VT);
2481      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2482      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2483      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2484      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2485      default: break;
2486      }
2487    } else {      // Cannonicalize constant to RHS if commutative
2488      if (isCommutativeBinOp(Opcode)) {
2489        std::swap(N1C, N2C);
2490        std::swap(N1, N2);
2491      }
2492    }
2493  }
2494
2495  // Constant fold FP operations.
2496  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2497  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2498  if (N1CFP) {
2499    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2500      // Cannonicalize constant to RHS if commutative
2501      std::swap(N1CFP, N2CFP);
2502      std::swap(N1, N2);
2503    } else if (N2CFP && VT != MVT::ppcf128) {
2504      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2505      APFloat::opStatus s;
2506      switch (Opcode) {
2507      case ISD::FADD:
2508        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2509        if (s != APFloat::opInvalidOp)
2510          return getConstantFP(V1, VT);
2511        break;
2512      case ISD::FSUB:
2513        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2514        if (s!=APFloat::opInvalidOp)
2515          return getConstantFP(V1, VT);
2516        break;
2517      case ISD::FMUL:
2518        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2519        if (s!=APFloat::opInvalidOp)
2520          return getConstantFP(V1, VT);
2521        break;
2522      case ISD::FDIV:
2523        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2524        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2525          return getConstantFP(V1, VT);
2526        break;
2527      case ISD::FREM :
2528        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2529        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2530          return getConstantFP(V1, VT);
2531        break;
2532      case ISD::FCOPYSIGN:
2533        V1.copySign(V2);
2534        return getConstantFP(V1, VT);
2535      default: break;
2536      }
2537    }
2538  }
2539
2540  // Canonicalize an UNDEF to the RHS, even over a constant.
2541  if (N1.getOpcode() == ISD::UNDEF) {
2542    if (isCommutativeBinOp(Opcode)) {
2543      std::swap(N1, N2);
2544    } else {
2545      switch (Opcode) {
2546      case ISD::FP_ROUND_INREG:
2547      case ISD::SIGN_EXTEND_INREG:
2548      case ISD::SUB:
2549      case ISD::FSUB:
2550      case ISD::FDIV:
2551      case ISD::FREM:
2552      case ISD::SRA:
2553        return N1;     // fold op(undef, arg2) -> undef
2554      case ISD::UDIV:
2555      case ISD::SDIV:
2556      case ISD::UREM:
2557      case ISD::SREM:
2558      case ISD::SRL:
2559      case ISD::SHL:
2560        if (!VT.isVector())
2561          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2562        // For vectors, we can't easily build an all zero vector, just return
2563        // the LHS.
2564        return N2;
2565      }
2566    }
2567  }
2568
2569  // Fold a bunch of operators when the RHS is undef.
2570  if (N2.getOpcode() == ISD::UNDEF) {
2571    switch (Opcode) {
2572    case ISD::XOR:
2573      if (N1.getOpcode() == ISD::UNDEF)
2574        // Handle undef ^ undef -> 0 special case. This is a common
2575        // idiom (misuse).
2576        return getConstant(0, VT);
2577      // fallthrough
2578    case ISD::ADD:
2579    case ISD::ADDC:
2580    case ISD::ADDE:
2581    case ISD::SUB:
2582    case ISD::FADD:
2583    case ISD::FSUB:
2584    case ISD::FMUL:
2585    case ISD::FDIV:
2586    case ISD::FREM:
2587    case ISD::UDIV:
2588    case ISD::SDIV:
2589    case ISD::UREM:
2590    case ISD::SREM:
2591      return N2;       // fold op(arg1, undef) -> undef
2592    case ISD::MUL:
2593    case ISD::AND:
2594    case ISD::SRL:
2595    case ISD::SHL:
2596      if (!VT.isVector())
2597        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2598      // For vectors, we can't easily build an all zero vector, just return
2599      // the LHS.
2600      return N1;
2601    case ISD::OR:
2602      if (!VT.isVector())
2603        return getConstant(VT.getIntegerVTBitMask(), VT);
2604      // For vectors, we can't easily build an all one vector, just return
2605      // the LHS.
2606      return N1;
2607    case ISD::SRA:
2608      return N1;
2609    }
2610  }
2611
2612  // Memoize this node if possible.
2613  SDNode *N;
2614  SDVTList VTs = getVTList(VT);
2615  if (VT != MVT::Flag) {
2616    SDValue Ops[] = { N1, N2 };
2617    FoldingSetNodeID ID;
2618    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2619    void *IP = 0;
2620    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2621      return SDValue(E, 0);
2622    N = NodeAllocator.Allocate<BinarySDNode>();
2623    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2624    CSEMap.InsertNode(N, IP);
2625  } else {
2626    N = NodeAllocator.Allocate<BinarySDNode>();
2627    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2628  }
2629
2630  AllNodes.push_back(N);
2631#ifndef NDEBUG
2632  VerifyNode(N);
2633#endif
2634  return SDValue(N, 0);
2635}
2636
2637SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2638                              SDValue N1, SDValue N2, SDValue N3) {
2639  // Perform various simplifications.
2640  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2641  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2642  switch (Opcode) {
2643  case ISD::CONCAT_VECTORS:
2644    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2645    // one big BUILD_VECTOR.
2646    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2647        N2.getOpcode() == ISD::BUILD_VECTOR &&
2648        N3.getOpcode() == ISD::BUILD_VECTOR) {
2649      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2650      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2651      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2652      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2653    }
2654    break;
2655  case ISD::SETCC: {
2656    // Use FoldSetCC to simplify SETCC's.
2657    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2658    if (Simp.getNode()) return Simp;
2659    break;
2660  }
2661  case ISD::SELECT:
2662    if (N1C) {
2663     if (N1C->getZExtValue())
2664        return N2;             // select true, X, Y -> X
2665      else
2666        return N3;             // select false, X, Y -> Y
2667    }
2668
2669    if (N2 == N3) return N2;   // select C, X, X -> X
2670    break;
2671  case ISD::BRCOND:
2672    if (N2C) {
2673      if (N2C->getZExtValue()) // Unconditional branch
2674        return getNode(ISD::BR, MVT::Other, N1, N3);
2675      else
2676        return N1;         // Never-taken branch
2677    }
2678    break;
2679  case ISD::VECTOR_SHUFFLE:
2680    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2681           VT.isVector() && N3.getValueType().isVector() &&
2682           N3.getOpcode() == ISD::BUILD_VECTOR &&
2683           VT.getVectorNumElements() == N3.getNumOperands() &&
2684           "Illegal VECTOR_SHUFFLE node!");
2685    break;
2686  case ISD::BIT_CONVERT:
2687    // Fold bit_convert nodes from a type to themselves.
2688    if (N1.getValueType() == VT)
2689      return N1;
2690    break;
2691  }
2692
2693  // Memoize node if it doesn't produce a flag.
2694  SDNode *N;
2695  SDVTList VTs = getVTList(VT);
2696  if (VT != MVT::Flag) {
2697    SDValue Ops[] = { N1, N2, N3 };
2698    FoldingSetNodeID ID;
2699    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2700    void *IP = 0;
2701    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2702      return SDValue(E, 0);
2703    N = NodeAllocator.Allocate<TernarySDNode>();
2704    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2705    CSEMap.InsertNode(N, IP);
2706  } else {
2707    N = NodeAllocator.Allocate<TernarySDNode>();
2708    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2709  }
2710  AllNodes.push_back(N);
2711#ifndef NDEBUG
2712  VerifyNode(N);
2713#endif
2714  return SDValue(N, 0);
2715}
2716
2717SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2718                              SDValue N1, SDValue N2, SDValue N3,
2719                              SDValue N4) {
2720  SDValue Ops[] = { N1, N2, N3, N4 };
2721  return getNode(Opcode, VT, Ops, 4);
2722}
2723
2724SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2725                              SDValue N1, SDValue N2, SDValue N3,
2726                              SDValue N4, SDValue N5) {
2727  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2728  return getNode(Opcode, VT, Ops, 5);
2729}
2730
2731/// getMemsetValue - Vectorized representation of the memset value
2732/// operand.
2733static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2734  unsigned NumBits = VT.isVector() ?
2735    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2736  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2737    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2738    unsigned Shift = 8;
2739    for (unsigned i = NumBits; i > 8; i >>= 1) {
2740      Val = (Val << Shift) | Val;
2741      Shift <<= 1;
2742    }
2743    if (VT.isInteger())
2744      return DAG.getConstant(Val, VT);
2745    return DAG.getConstantFP(APFloat(Val), VT);
2746  }
2747
2748  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2749  unsigned Shift = 8;
2750  for (unsigned i = NumBits; i > 8; i >>= 1) {
2751    Value = DAG.getNode(ISD::OR, VT,
2752                        DAG.getNode(ISD::SHL, VT, Value,
2753                                    DAG.getConstant(Shift, MVT::i8)), Value);
2754    Shift <<= 1;
2755  }
2756
2757  return Value;
2758}
2759
2760/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2761/// used when a memcpy is turned into a memset when the source is a constant
2762/// string ptr.
2763static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2764                                    const TargetLowering &TLI,
2765                                    std::string &Str, unsigned Offset) {
2766  // Handle vector with all elements zero.
2767  if (Str.empty()) {
2768    if (VT.isInteger())
2769      return DAG.getConstant(0, VT);
2770    unsigned NumElts = VT.getVectorNumElements();
2771    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2772    return DAG.getNode(ISD::BIT_CONVERT, VT,
2773                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2774  }
2775
2776  assert(!VT.isVector() && "Can't handle vector type here!");
2777  unsigned NumBits = VT.getSizeInBits();
2778  unsigned MSB = NumBits / 8;
2779  uint64_t Val = 0;
2780  if (TLI.isLittleEndian())
2781    Offset = Offset + MSB - 1;
2782  for (unsigned i = 0; i != MSB; ++i) {
2783    Val = (Val << 8) | (unsigned char)Str[Offset];
2784    Offset += TLI.isLittleEndian() ? -1 : 1;
2785  }
2786  return DAG.getConstant(Val, VT);
2787}
2788
2789/// getMemBasePlusOffset - Returns base and offset node for the
2790///
2791static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2792                                      SelectionDAG &DAG) {
2793  MVT VT = Base.getValueType();
2794  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2795}
2796
2797/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2798///
2799static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2800  unsigned SrcDelta = 0;
2801  GlobalAddressSDNode *G = NULL;
2802  if (Src.getOpcode() == ISD::GlobalAddress)
2803    G = cast<GlobalAddressSDNode>(Src);
2804  else if (Src.getOpcode() == ISD::ADD &&
2805           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2806           Src.getOperand(1).getOpcode() == ISD::Constant) {
2807    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2808    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2809  }
2810  if (!G)
2811    return false;
2812
2813  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2814  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2815    return true;
2816
2817  return false;
2818}
2819
2820/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2821/// to replace the memset / memcpy is below the threshold. It also returns the
2822/// types of the sequence of memory ops to perform memset / memcpy.
2823static
2824bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2825                              SDValue Dst, SDValue Src,
2826                              unsigned Limit, uint64_t Size, unsigned &Align,
2827                              std::string &Str, bool &isSrcStr,
2828                              SelectionDAG &DAG,
2829                              const TargetLowering &TLI) {
2830  isSrcStr = isMemSrcFromString(Src, Str);
2831  bool isSrcConst = isa<ConstantSDNode>(Src);
2832  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2833  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2834  if (VT != MVT::iAny) {
2835    unsigned NewAlign = (unsigned)
2836      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2837    // If source is a string constant, this will require an unaligned load.
2838    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2839      if (Dst.getOpcode() != ISD::FrameIndex) {
2840        // Can't change destination alignment. It requires a unaligned store.
2841        if (AllowUnalign)
2842          VT = MVT::iAny;
2843      } else {
2844        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2845        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2846        if (MFI->isFixedObjectIndex(FI)) {
2847          // Can't change destination alignment. It requires a unaligned store.
2848          if (AllowUnalign)
2849            VT = MVT::iAny;
2850        } else {
2851          // Give the stack frame object a larger alignment if needed.
2852          if (MFI->getObjectAlignment(FI) < NewAlign)
2853            MFI->setObjectAlignment(FI, NewAlign);
2854          Align = NewAlign;
2855        }
2856      }
2857    }
2858  }
2859
2860  if (VT == MVT::iAny) {
2861    if (AllowUnalign) {
2862      VT = MVT::i64;
2863    } else {
2864      switch (Align & 7) {
2865      case 0:  VT = MVT::i64; break;
2866      case 4:  VT = MVT::i32; break;
2867      case 2:  VT = MVT::i16; break;
2868      default: VT = MVT::i8;  break;
2869      }
2870    }
2871
2872    MVT LVT = MVT::i64;
2873    while (!TLI.isTypeLegal(LVT))
2874      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2875    assert(LVT.isInteger());
2876
2877    if (VT.bitsGT(LVT))
2878      VT = LVT;
2879  }
2880
2881  unsigned NumMemOps = 0;
2882  while (Size != 0) {
2883    unsigned VTSize = VT.getSizeInBits() / 8;
2884    while (VTSize > Size) {
2885      // For now, only use non-vector load / store's for the left-over pieces.
2886      if (VT.isVector()) {
2887        VT = MVT::i64;
2888        while (!TLI.isTypeLegal(VT))
2889          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2890        VTSize = VT.getSizeInBits() / 8;
2891      } else {
2892        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2893        VTSize >>= 1;
2894      }
2895    }
2896
2897    if (++NumMemOps > Limit)
2898      return false;
2899    MemOps.push_back(VT);
2900    Size -= VTSize;
2901  }
2902
2903  return true;
2904}
2905
2906static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2907                                         SDValue Chain, SDValue Dst,
2908                                         SDValue Src, uint64_t Size,
2909                                         unsigned Align, bool AlwaysInline,
2910                                         const Value *DstSV, uint64_t DstSVOff,
2911                                         const Value *SrcSV, uint64_t SrcSVOff){
2912  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2913
2914  // Expand memcpy to a series of load and store ops if the size operand falls
2915  // below a certain threshold.
2916  std::vector<MVT> MemOps;
2917  uint64_t Limit = -1;
2918  if (!AlwaysInline)
2919    Limit = TLI.getMaxStoresPerMemcpy();
2920  unsigned DstAlign = Align;  // Destination alignment can change.
2921  std::string Str;
2922  bool CopyFromStr;
2923  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2924                                Str, CopyFromStr, DAG, TLI))
2925    return SDValue();
2926
2927
2928  bool isZeroStr = CopyFromStr && Str.empty();
2929  SmallVector<SDValue, 8> OutChains;
2930  unsigned NumMemOps = MemOps.size();
2931  uint64_t SrcOff = 0, DstOff = 0;
2932  for (unsigned i = 0; i < NumMemOps; i++) {
2933    MVT VT = MemOps[i];
2934    unsigned VTSize = VT.getSizeInBits() / 8;
2935    SDValue Value, Store;
2936
2937    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2938      // It's unlikely a store of a vector immediate can be done in a single
2939      // instruction. It would require a load from a constantpool first.
2940      // We also handle store a vector with all zero's.
2941      // FIXME: Handle other cases where store of vector immediate is done in
2942      // a single instruction.
2943      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2944      Store = DAG.getStore(Chain, Value,
2945                           getMemBasePlusOffset(Dst, DstOff, DAG),
2946                           DstSV, DstSVOff + DstOff, false, DstAlign);
2947    } else {
2948      Value = DAG.getLoad(VT, Chain,
2949                          getMemBasePlusOffset(Src, SrcOff, DAG),
2950                          SrcSV, SrcSVOff + SrcOff, false, Align);
2951      Store = DAG.getStore(Chain, Value,
2952                           getMemBasePlusOffset(Dst, DstOff, DAG),
2953                           DstSV, DstSVOff + DstOff, false, DstAlign);
2954    }
2955    OutChains.push_back(Store);
2956    SrcOff += VTSize;
2957    DstOff += VTSize;
2958  }
2959
2960  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2961                     &OutChains[0], OutChains.size());
2962}
2963
2964static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
2965                                          SDValue Chain, SDValue Dst,
2966                                          SDValue Src, uint64_t Size,
2967                                          unsigned Align, bool AlwaysInline,
2968                                          const Value *DstSV, uint64_t DstSVOff,
2969                                          const Value *SrcSV, uint64_t SrcSVOff){
2970  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2971
2972  // Expand memmove to a series of load and store ops if the size operand falls
2973  // below a certain threshold.
2974  std::vector<MVT> MemOps;
2975  uint64_t Limit = -1;
2976  if (!AlwaysInline)
2977    Limit = TLI.getMaxStoresPerMemmove();
2978  unsigned DstAlign = Align;  // Destination alignment can change.
2979  std::string Str;
2980  bool CopyFromStr;
2981  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2982                                Str, CopyFromStr, DAG, TLI))
2983    return SDValue();
2984
2985  uint64_t SrcOff = 0, DstOff = 0;
2986
2987  SmallVector<SDValue, 8> LoadValues;
2988  SmallVector<SDValue, 8> LoadChains;
2989  SmallVector<SDValue, 8> OutChains;
2990  unsigned NumMemOps = MemOps.size();
2991  for (unsigned i = 0; i < NumMemOps; i++) {
2992    MVT VT = MemOps[i];
2993    unsigned VTSize = VT.getSizeInBits() / 8;
2994    SDValue Value, Store;
2995
2996    Value = DAG.getLoad(VT, Chain,
2997                        getMemBasePlusOffset(Src, SrcOff, DAG),
2998                        SrcSV, SrcSVOff + SrcOff, false, Align);
2999    LoadValues.push_back(Value);
3000    LoadChains.push_back(Value.getValue(1));
3001    SrcOff += VTSize;
3002  }
3003  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3004                      &LoadChains[0], LoadChains.size());
3005  OutChains.clear();
3006  for (unsigned i = 0; i < NumMemOps; i++) {
3007    MVT VT = MemOps[i];
3008    unsigned VTSize = VT.getSizeInBits() / 8;
3009    SDValue Value, Store;
3010
3011    Store = DAG.getStore(Chain, LoadValues[i],
3012                         getMemBasePlusOffset(Dst, DstOff, DAG),
3013                         DstSV, DstSVOff + DstOff, false, DstAlign);
3014    OutChains.push_back(Store);
3015    DstOff += VTSize;
3016  }
3017
3018  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3019                     &OutChains[0], OutChains.size());
3020}
3021
3022static SDValue getMemsetStores(SelectionDAG &DAG,
3023                                 SDValue Chain, SDValue Dst,
3024                                 SDValue Src, uint64_t Size,
3025                                 unsigned Align,
3026                                 const Value *DstSV, uint64_t DstSVOff) {
3027  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3028
3029  // Expand memset to a series of load/store ops if the size operand
3030  // falls below a certain threshold.
3031  std::vector<MVT> MemOps;
3032  std::string Str;
3033  bool CopyFromStr;
3034  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3035                                Size, Align, Str, CopyFromStr, DAG, TLI))
3036    return SDValue();
3037
3038  SmallVector<SDValue, 8> OutChains;
3039  uint64_t DstOff = 0;
3040
3041  unsigned NumMemOps = MemOps.size();
3042  for (unsigned i = 0; i < NumMemOps; i++) {
3043    MVT VT = MemOps[i];
3044    unsigned VTSize = VT.getSizeInBits() / 8;
3045    SDValue Value = getMemsetValue(Src, VT, DAG);
3046    SDValue Store = DAG.getStore(Chain, Value,
3047                                   getMemBasePlusOffset(Dst, DstOff, DAG),
3048                                   DstSV, DstSVOff + DstOff);
3049    OutChains.push_back(Store);
3050    DstOff += VTSize;
3051  }
3052
3053  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3054                     &OutChains[0], OutChains.size());
3055}
3056
3057SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3058                                SDValue Src, SDValue Size,
3059                                unsigned Align, bool AlwaysInline,
3060                                const Value *DstSV, uint64_t DstSVOff,
3061                                const Value *SrcSV, uint64_t SrcSVOff) {
3062
3063  // Check to see if we should lower the memcpy to loads and stores first.
3064  // For cases within the target-specified limits, this is the best choice.
3065  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3066  if (ConstantSize) {
3067    // Memcpy with size zero? Just return the original chain.
3068    if (ConstantSize->isNullValue())
3069      return Chain;
3070
3071    SDValue Result =
3072      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3073                              ConstantSize->getZExtValue(),
3074                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3075    if (Result.getNode())
3076      return Result;
3077  }
3078
3079  // Then check to see if we should lower the memcpy with target-specific
3080  // code. If the target chooses to do this, this is the next best.
3081  SDValue Result =
3082    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3083                                AlwaysInline,
3084                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3085  if (Result.getNode())
3086    return Result;
3087
3088  // If we really need inline code and the target declined to provide it,
3089  // use a (potentially long) sequence of loads and stores.
3090  if (AlwaysInline) {
3091    assert(ConstantSize && "AlwaysInline requires a constant size!");
3092    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3093                                   ConstantSize->getZExtValue(), Align, true,
3094                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3095  }
3096
3097  // Emit a library call.
3098  TargetLowering::ArgListTy Args;
3099  TargetLowering::ArgListEntry Entry;
3100  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3101  Entry.Node = Dst; Args.push_back(Entry);
3102  Entry.Node = Src; Args.push_back(Entry);
3103  Entry.Node = Size; Args.push_back(Entry);
3104  std::pair<SDValue,SDValue> CallResult =
3105    TLI.LowerCallTo(Chain, Type::VoidTy,
3106                    false, false, false, CallingConv::C, false,
3107                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3108                    Args, *this);
3109  return CallResult.second;
3110}
3111
3112SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3113                                 SDValue Src, SDValue Size,
3114                                 unsigned Align,
3115                                 const Value *DstSV, uint64_t DstSVOff,
3116                                 const Value *SrcSV, uint64_t SrcSVOff) {
3117
3118  // Check to see if we should lower the memmove to loads and stores first.
3119  // For cases within the target-specified limits, this is the best choice.
3120  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3121  if (ConstantSize) {
3122    // Memmove with size zero? Just return the original chain.
3123    if (ConstantSize->isNullValue())
3124      return Chain;
3125
3126    SDValue Result =
3127      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3128                               ConstantSize->getZExtValue(),
3129                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3130    if (Result.getNode())
3131      return Result;
3132  }
3133
3134  // Then check to see if we should lower the memmove with target-specific
3135  // code. If the target chooses to do this, this is the next best.
3136  SDValue Result =
3137    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3138                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3139  if (Result.getNode())
3140    return Result;
3141
3142  // Emit a library call.
3143  TargetLowering::ArgListTy Args;
3144  TargetLowering::ArgListEntry Entry;
3145  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3146  Entry.Node = Dst; Args.push_back(Entry);
3147  Entry.Node = Src; Args.push_back(Entry);
3148  Entry.Node = Size; Args.push_back(Entry);
3149  std::pair<SDValue,SDValue> CallResult =
3150    TLI.LowerCallTo(Chain, Type::VoidTy,
3151                    false, false, false, CallingConv::C, false,
3152                    getExternalSymbol("memmove", TLI.getPointerTy()),
3153                    Args, *this);
3154  return CallResult.second;
3155}
3156
3157SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3158                                SDValue Src, SDValue Size,
3159                                unsigned Align,
3160                                const Value *DstSV, uint64_t DstSVOff) {
3161
3162  // Check to see if we should lower the memset to stores first.
3163  // For cases within the target-specified limits, this is the best choice.
3164  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3165  if (ConstantSize) {
3166    // Memset with size zero? Just return the original chain.
3167    if (ConstantSize->isNullValue())
3168      return Chain;
3169
3170    SDValue Result =
3171      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3172                      Align, DstSV, DstSVOff);
3173    if (Result.getNode())
3174      return Result;
3175  }
3176
3177  // Then check to see if we should lower the memset with target-specific
3178  // code. If the target chooses to do this, this is the next best.
3179  SDValue Result =
3180    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3181                                DstSV, DstSVOff);
3182  if (Result.getNode())
3183    return Result;
3184
3185  // Emit a library call.
3186  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3187  TargetLowering::ArgListTy Args;
3188  TargetLowering::ArgListEntry Entry;
3189  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3190  Args.push_back(Entry);
3191  // Extend or truncate the argument to be an i32 value for the call.
3192  if (Src.getValueType().bitsGT(MVT::i32))
3193    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3194  else
3195    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3196  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3197  Args.push_back(Entry);
3198  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3199  Args.push_back(Entry);
3200  std::pair<SDValue,SDValue> CallResult =
3201    TLI.LowerCallTo(Chain, Type::VoidTy,
3202                    false, false, false, CallingConv::C, false,
3203                    getExternalSymbol("memset", TLI.getPointerTy()),
3204                    Args, *this);
3205  return CallResult.second;
3206}
3207
3208SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3209                                SDValue Ptr, SDValue Cmp,
3210                                SDValue Swp, const Value* PtrVal,
3211                                unsigned Alignment) {
3212  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3213          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3214          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3215          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3216  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3217
3218  MVT VT = Cmp.getValueType();
3219
3220  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3221    Alignment = getMVTAlignment(VT);
3222
3223  SDVTList VTs = getVTList(VT, MVT::Other);
3224  FoldingSetNodeID ID;
3225  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3226  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3227  void* IP = 0;
3228  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3229    return SDValue(E, 0);
3230  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3231  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3232  CSEMap.InsertNode(N, IP);
3233  AllNodes.push_back(N);
3234  return SDValue(N, 0);
3235}
3236
3237SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3238                                SDValue Ptr, SDValue Val,
3239                                const Value* PtrVal,
3240                                unsigned Alignment) {
3241  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3242          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3243          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3244          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3245          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3246          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3247          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3248          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3249          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3250          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3251          Opcode == ISD::ATOMIC_SWAP_8 ||
3252          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3253          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3254          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3255          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3256          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3257          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3258          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3259          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3260          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3261          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3262          Opcode == ISD::ATOMIC_SWAP_16 ||
3263          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3264          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3265          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3266          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3267          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3268          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3269          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3270          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3271          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3272          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3273          Opcode == ISD::ATOMIC_SWAP_32 ||
3274          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3275          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3276          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3277          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3278          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3279          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3280          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3281          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3282          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3283          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3284          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3285
3286  MVT VT = Val.getValueType();
3287
3288  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3289    Alignment = getMVTAlignment(VT);
3290
3291  SDVTList VTs = getVTList(VT, MVT::Other);
3292  FoldingSetNodeID ID;
3293  SDValue Ops[] = {Chain, Ptr, Val};
3294  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3295  void* IP = 0;
3296  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3297    return SDValue(E, 0);
3298  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3299  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3300  CSEMap.InsertNode(N, IP);
3301  AllNodes.push_back(N);
3302  return SDValue(N, 0);
3303}
3304
3305/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3306/// Allowed to return something different (and simpler) if Simplify is true.
3307SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3308                                     bool Simplify) {
3309  if (Simplify && NumOps == 1)
3310    return Ops[0];
3311
3312  SmallVector<MVT, 4> VTs;
3313  VTs.reserve(NumOps);
3314  for (unsigned i = 0; i < NumOps; ++i)
3315    VTs.push_back(Ops[i].getValueType());
3316  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3317}
3318
3319SDValue
3320SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3321                      SDVTList VTs,
3322                      const SDValue *Operands, unsigned NumOperands) {
3323  // Do not include isTailCall in the folding set profile.
3324  FoldingSetNodeID ID;
3325  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3326  ID.AddInteger(CallingConv);
3327  ID.AddInteger(IsVarArgs);
3328  void *IP = 0;
3329  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3330    // Instead of including isTailCall in the folding set, we just
3331    // set the flag of the existing node.
3332    if (!IsTailCall)
3333      cast<CallSDNode>(E)->setNotTailCall();
3334    return SDValue(E, 0);
3335  }
3336  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3337  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall,
3338                     VTs, Operands, NumOperands);
3339  CSEMap.InsertNode(N, IP);
3340  AllNodes.push_back(N);
3341  return SDValue(N, 0);
3342}
3343
3344SDValue
3345SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3346                      MVT VT, SDValue Chain,
3347                      SDValue Ptr, SDValue Offset,
3348                      const Value *SV, int SVOffset, MVT EVT,
3349                      bool isVolatile, unsigned Alignment) {
3350  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3351    Alignment = getMVTAlignment(VT);
3352
3353  if (VT == EVT) {
3354    ExtType = ISD::NON_EXTLOAD;
3355  } else if (ExtType == ISD::NON_EXTLOAD) {
3356    assert(VT == EVT && "Non-extending load from different memory type!");
3357  } else {
3358    // Extending load.
3359    if (VT.isVector())
3360      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3361             "Invalid vector extload!");
3362    else
3363      assert(EVT.bitsLT(VT) &&
3364             "Should only be an extending load, not truncating!");
3365    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3366           "Cannot sign/zero extend a FP/Vector load!");
3367    assert(VT.isInteger() == EVT.isInteger() &&
3368           "Cannot convert from FP to Int or Int -> FP!");
3369  }
3370
3371  bool Indexed = AM != ISD::UNINDEXED;
3372  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3373         "Unindexed load with an offset!");
3374
3375  SDVTList VTs = Indexed ?
3376    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3377  SDValue Ops[] = { Chain, Ptr, Offset };
3378  FoldingSetNodeID ID;
3379  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3380  ID.AddInteger(AM);
3381  ID.AddInteger(ExtType);
3382  ID.AddInteger(EVT.getRawBits());
3383  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3384  void *IP = 0;
3385  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3386    return SDValue(E, 0);
3387  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3388  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3389                     Alignment, isVolatile);
3390  CSEMap.InsertNode(N, IP);
3391  AllNodes.push_back(N);
3392  return SDValue(N, 0);
3393}
3394
3395SDValue SelectionDAG::getLoad(MVT VT,
3396                              SDValue Chain, SDValue Ptr,
3397                              const Value *SV, int SVOffset,
3398                              bool isVolatile, unsigned Alignment) {
3399  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3400  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3401                 SV, SVOffset, VT, isVolatile, Alignment);
3402}
3403
3404SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3405                                 SDValue Chain, SDValue Ptr,
3406                                 const Value *SV,
3407                                 int SVOffset, MVT EVT,
3408                                 bool isVolatile, unsigned Alignment) {
3409  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3410  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3411                 SV, SVOffset, EVT, isVolatile, Alignment);
3412}
3413
3414SDValue
3415SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3416                             SDValue Offset, ISD::MemIndexedMode AM) {
3417  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3418  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3419         "Load is already a indexed load!");
3420  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3421                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3422                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3423                 LD->isVolatile(), LD->getAlignment());
3424}
3425
3426SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3427                               SDValue Ptr, const Value *SV, int SVOffset,
3428                               bool isVolatile, unsigned Alignment) {
3429  MVT VT = Val.getValueType();
3430
3431  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3432    Alignment = getMVTAlignment(VT);
3433
3434  SDVTList VTs = getVTList(MVT::Other);
3435  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3436  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3437  FoldingSetNodeID ID;
3438  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3439  ID.AddInteger(ISD::UNINDEXED);
3440  ID.AddInteger(false);
3441  ID.AddInteger(VT.getRawBits());
3442  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3443  void *IP = 0;
3444  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3445    return SDValue(E, 0);
3446  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3447  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3448                      VT, SV, SVOffset, Alignment, isVolatile);
3449  CSEMap.InsertNode(N, IP);
3450  AllNodes.push_back(N);
3451  return SDValue(N, 0);
3452}
3453
3454SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3455                                    SDValue Ptr, const Value *SV,
3456                                    int SVOffset, MVT SVT,
3457                                    bool isVolatile, unsigned Alignment) {
3458  MVT VT = Val.getValueType();
3459
3460  if (VT == SVT)
3461    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3462
3463  assert(VT.bitsGT(SVT) && "Not a truncation?");
3464  assert(VT.isInteger() == SVT.isInteger() &&
3465         "Can't do FP-INT conversion!");
3466
3467  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3468    Alignment = getMVTAlignment(VT);
3469
3470  SDVTList VTs = getVTList(MVT::Other);
3471  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3472  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3473  FoldingSetNodeID ID;
3474  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3475  ID.AddInteger(ISD::UNINDEXED);
3476  ID.AddInteger(1);
3477  ID.AddInteger(SVT.getRawBits());
3478  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3479  void *IP = 0;
3480  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3481    return SDValue(E, 0);
3482  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3483  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3484                      SVT, SV, SVOffset, Alignment, isVolatile);
3485  CSEMap.InsertNode(N, IP);
3486  AllNodes.push_back(N);
3487  return SDValue(N, 0);
3488}
3489
3490SDValue
3491SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3492                              SDValue Offset, ISD::MemIndexedMode AM) {
3493  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3494  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3495         "Store is already a indexed store!");
3496  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3497  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3498  FoldingSetNodeID ID;
3499  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3500  ID.AddInteger(AM);
3501  ID.AddInteger(ST->isTruncatingStore());
3502  ID.AddInteger(ST->getMemoryVT().getRawBits());
3503  ID.AddInteger(ST->getRawFlags());
3504  void *IP = 0;
3505  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3506    return SDValue(E, 0);
3507  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3508  new (N) StoreSDNode(Ops, VTs, AM,
3509                      ST->isTruncatingStore(), ST->getMemoryVT(),
3510                      ST->getSrcValue(), ST->getSrcValueOffset(),
3511                      ST->getAlignment(), ST->isVolatile());
3512  CSEMap.InsertNode(N, IP);
3513  AllNodes.push_back(N);
3514  return SDValue(N, 0);
3515}
3516
3517SDValue SelectionDAG::getVAArg(MVT VT,
3518                               SDValue Chain, SDValue Ptr,
3519                               SDValue SV) {
3520  SDValue Ops[] = { Chain, Ptr, SV };
3521  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3522}
3523
3524SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3525                              const SDUse *Ops, unsigned NumOps) {
3526  switch (NumOps) {
3527  case 0: return getNode(Opcode, VT);
3528  case 1: return getNode(Opcode, VT, Ops[0]);
3529  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3530  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3531  default: break;
3532  }
3533
3534  // Copy from an SDUse array into an SDValue array for use with
3535  // the regular getNode logic.
3536  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3537  return getNode(Opcode, VT, &NewOps[0], NumOps);
3538}
3539
3540SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3541                              const SDValue *Ops, unsigned NumOps) {
3542  switch (NumOps) {
3543  case 0: return getNode(Opcode, VT);
3544  case 1: return getNode(Opcode, VT, Ops[0]);
3545  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3546  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3547  default: break;
3548  }
3549
3550  switch (Opcode) {
3551  default: break;
3552  case ISD::SELECT_CC: {
3553    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3554    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3555           "LHS and RHS of condition must have same type!");
3556    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3557           "True and False arms of SelectCC must have same type!");
3558    assert(Ops[2].getValueType() == VT &&
3559           "select_cc node must be of same type as true and false value!");
3560    break;
3561  }
3562  case ISD::BR_CC: {
3563    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3564    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3565           "LHS/RHS of comparison should match types!");
3566    break;
3567  }
3568  }
3569
3570  // Memoize nodes.
3571  SDNode *N;
3572  SDVTList VTs = getVTList(VT);
3573  if (VT != MVT::Flag) {
3574    FoldingSetNodeID ID;
3575    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3576    void *IP = 0;
3577    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3578      return SDValue(E, 0);
3579    N = NodeAllocator.Allocate<SDNode>();
3580    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3581    CSEMap.InsertNode(N, IP);
3582  } else {
3583    N = NodeAllocator.Allocate<SDNode>();
3584    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3585  }
3586  AllNodes.push_back(N);
3587#ifndef NDEBUG
3588  VerifyNode(N);
3589#endif
3590  return SDValue(N, 0);
3591}
3592
3593SDValue SelectionDAG::getNode(unsigned Opcode,
3594                              const std::vector<MVT> &ResultTys,
3595                              const SDValue *Ops, unsigned NumOps) {
3596  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3597                 Ops, NumOps);
3598}
3599
3600SDValue SelectionDAG::getNode(unsigned Opcode,
3601                              const MVT *VTs, unsigned NumVTs,
3602                              const SDValue *Ops, unsigned NumOps) {
3603  if (NumVTs == 1)
3604    return getNode(Opcode, VTs[0], Ops, NumOps);
3605  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3606}
3607
3608SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3609                              const SDValue *Ops, unsigned NumOps) {
3610  if (VTList.NumVTs == 1)
3611    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3612
3613  switch (Opcode) {
3614  // FIXME: figure out how to safely handle things like
3615  // int foo(int x) { return 1 << (x & 255); }
3616  // int bar() { return foo(256); }
3617#if 0
3618  case ISD::SRA_PARTS:
3619  case ISD::SRL_PARTS:
3620  case ISD::SHL_PARTS:
3621    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3622        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3623      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3624    else if (N3.getOpcode() == ISD::AND)
3625      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3626        // If the and is only masking out bits that cannot effect the shift,
3627        // eliminate the and.
3628        unsigned NumBits = VT.getSizeInBits()*2;
3629        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3630          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3631      }
3632    break;
3633#endif
3634  }
3635
3636  // Memoize the node unless it returns a flag.
3637  SDNode *N;
3638  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3639    FoldingSetNodeID ID;
3640    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3641    void *IP = 0;
3642    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3643      return SDValue(E, 0);
3644    if (NumOps == 1) {
3645      N = NodeAllocator.Allocate<UnarySDNode>();
3646      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3647    } else if (NumOps == 2) {
3648      N = NodeAllocator.Allocate<BinarySDNode>();
3649      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3650    } else if (NumOps == 3) {
3651      N = NodeAllocator.Allocate<TernarySDNode>();
3652      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3653    } else {
3654      N = NodeAllocator.Allocate<SDNode>();
3655      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3656    }
3657    CSEMap.InsertNode(N, IP);
3658  } else {
3659    if (NumOps == 1) {
3660      N = NodeAllocator.Allocate<UnarySDNode>();
3661      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3662    } else if (NumOps == 2) {
3663      N = NodeAllocator.Allocate<BinarySDNode>();
3664      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3665    } else if (NumOps == 3) {
3666      N = NodeAllocator.Allocate<TernarySDNode>();
3667      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3668    } else {
3669      N = NodeAllocator.Allocate<SDNode>();
3670      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3671    }
3672  }
3673  AllNodes.push_back(N);
3674#ifndef NDEBUG
3675  VerifyNode(N);
3676#endif
3677  return SDValue(N, 0);
3678}
3679
3680SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3681  return getNode(Opcode, VTList, 0, 0);
3682}
3683
3684SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3685                                SDValue N1) {
3686  SDValue Ops[] = { N1 };
3687  return getNode(Opcode, VTList, Ops, 1);
3688}
3689
3690SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3691                              SDValue N1, SDValue N2) {
3692  SDValue Ops[] = { N1, N2 };
3693  return getNode(Opcode, VTList, Ops, 2);
3694}
3695
3696SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3697                              SDValue N1, SDValue N2, SDValue N3) {
3698  SDValue Ops[] = { N1, N2, N3 };
3699  return getNode(Opcode, VTList, Ops, 3);
3700}
3701
3702SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3703                              SDValue N1, SDValue N2, SDValue N3,
3704                              SDValue N4) {
3705  SDValue Ops[] = { N1, N2, N3, N4 };
3706  return getNode(Opcode, VTList, Ops, 4);
3707}
3708
3709SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3710                              SDValue N1, SDValue N2, SDValue N3,
3711                              SDValue N4, SDValue N5) {
3712  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3713  return getNode(Opcode, VTList, Ops, 5);
3714}
3715
3716SDVTList SelectionDAG::getVTList(MVT VT) {
3717  return makeVTList(SDNode::getValueTypeList(VT), 1);
3718}
3719
3720SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3721  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3722       E = VTList.rend(); I != E; ++I)
3723    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3724      return *I;
3725
3726  MVT *Array = Allocator.Allocate<MVT>(2);
3727  Array[0] = VT1;
3728  Array[1] = VT2;
3729  SDVTList Result = makeVTList(Array, 2);
3730  VTList.push_back(Result);
3731  return Result;
3732}
3733
3734SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3735  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3736       E = VTList.rend(); I != E; ++I)
3737    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3738                          I->VTs[2] == VT3)
3739      return *I;
3740
3741  MVT *Array = Allocator.Allocate<MVT>(3);
3742  Array[0] = VT1;
3743  Array[1] = VT2;
3744  Array[2] = VT3;
3745  SDVTList Result = makeVTList(Array, 3);
3746  VTList.push_back(Result);
3747  return Result;
3748}
3749
3750SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3751  switch (NumVTs) {
3752    case 0: assert(0 && "Cannot have nodes without results!");
3753    case 1: return getVTList(VTs[0]);
3754    case 2: return getVTList(VTs[0], VTs[1]);
3755    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3756    default: break;
3757  }
3758
3759  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3760       E = VTList.rend(); I != E; ++I) {
3761    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3762      continue;
3763
3764    bool NoMatch = false;
3765    for (unsigned i = 2; i != NumVTs; ++i)
3766      if (VTs[i] != I->VTs[i]) {
3767        NoMatch = true;
3768        break;
3769      }
3770    if (!NoMatch)
3771      return *I;
3772  }
3773
3774  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3775  std::copy(VTs, VTs+NumVTs, Array);
3776  SDVTList Result = makeVTList(Array, NumVTs);
3777  VTList.push_back(Result);
3778  return Result;
3779}
3780
3781
3782/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3783/// specified operands.  If the resultant node already exists in the DAG,
3784/// this does not modify the specified node, instead it returns the node that
3785/// already exists.  If the resultant node does not exist in the DAG, the
3786/// input node is returned.  As a degenerate case, if you specify the same
3787/// input operands as the node already has, the input node is returned.
3788SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3789  SDNode *N = InN.getNode();
3790  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3791
3792  // Check to see if there is no change.
3793  if (Op == N->getOperand(0)) return InN;
3794
3795  // See if the modified node already exists.
3796  void *InsertPos = 0;
3797  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3798    return SDValue(Existing, InN.getResNo());
3799
3800  // Nope it doesn't.  Remove the node from its current place in the maps.
3801  if (InsertPos)
3802    if (!RemoveNodeFromCSEMaps(N))
3803      InsertPos = 0;
3804
3805  // Now we update the operands.
3806  N->OperandList[0].getVal()->removeUser(0, N);
3807  N->OperandList[0] = Op;
3808  N->OperandList[0].setUser(N);
3809  Op.getNode()->addUser(0, N);
3810
3811  // If this gets put into a CSE map, add it.
3812  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3813  return InN;
3814}
3815
3816SDValue SelectionDAG::
3817UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3818  SDNode *N = InN.getNode();
3819  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3820
3821  // Check to see if there is no change.
3822  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3823    return InN;   // No operands changed, just return the input node.
3824
3825  // See if the modified node already exists.
3826  void *InsertPos = 0;
3827  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3828    return SDValue(Existing, InN.getResNo());
3829
3830  // Nope it doesn't.  Remove the node from its current place in the maps.
3831  if (InsertPos)
3832    if (!RemoveNodeFromCSEMaps(N))
3833      InsertPos = 0;
3834
3835  // Now we update the operands.
3836  if (N->OperandList[0] != Op1) {
3837    N->OperandList[0].getVal()->removeUser(0, N);
3838    N->OperandList[0] = Op1;
3839    N->OperandList[0].setUser(N);
3840    Op1.getNode()->addUser(0, N);
3841  }
3842  if (N->OperandList[1] != Op2) {
3843    N->OperandList[1].getVal()->removeUser(1, N);
3844    N->OperandList[1] = Op2;
3845    N->OperandList[1].setUser(N);
3846    Op2.getNode()->addUser(1, N);
3847  }
3848
3849  // If this gets put into a CSE map, add it.
3850  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3851  return InN;
3852}
3853
3854SDValue SelectionDAG::
3855UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3856  SDValue Ops[] = { Op1, Op2, Op3 };
3857  return UpdateNodeOperands(N, Ops, 3);
3858}
3859
3860SDValue SelectionDAG::
3861UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3862                   SDValue Op3, SDValue Op4) {
3863  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3864  return UpdateNodeOperands(N, Ops, 4);
3865}
3866
3867SDValue SelectionDAG::
3868UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3869                   SDValue Op3, SDValue Op4, SDValue Op5) {
3870  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3871  return UpdateNodeOperands(N, Ops, 5);
3872}
3873
3874SDValue SelectionDAG::
3875UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3876  SDNode *N = InN.getNode();
3877  assert(N->getNumOperands() == NumOps &&
3878         "Update with wrong number of operands");
3879
3880  // Check to see if there is no change.
3881  bool AnyChange = false;
3882  for (unsigned i = 0; i != NumOps; ++i) {
3883    if (Ops[i] != N->getOperand(i)) {
3884      AnyChange = true;
3885      break;
3886    }
3887  }
3888
3889  // No operands changed, just return the input node.
3890  if (!AnyChange) return InN;
3891
3892  // See if the modified node already exists.
3893  void *InsertPos = 0;
3894  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3895    return SDValue(Existing, InN.getResNo());
3896
3897  // Nope it doesn't.  Remove the node from its current place in the maps.
3898  if (InsertPos)
3899    if (!RemoveNodeFromCSEMaps(N))
3900      InsertPos = 0;
3901
3902  // Now we update the operands.
3903  for (unsigned i = 0; i != NumOps; ++i) {
3904    if (N->OperandList[i] != Ops[i]) {
3905      N->OperandList[i].getVal()->removeUser(i, N);
3906      N->OperandList[i] = Ops[i];
3907      N->OperandList[i].setUser(N);
3908      Ops[i].getNode()->addUser(i, N);
3909    }
3910  }
3911
3912  // If this gets put into a CSE map, add it.
3913  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3914  return InN;
3915}
3916
3917/// DropOperands - Release the operands and set this node to have
3918/// zero operands.
3919void SDNode::DropOperands() {
3920  // Unlike the code in MorphNodeTo that does this, we don't need to
3921  // watch for dead nodes here.
3922  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3923    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3924
3925  NumOperands = 0;
3926}
3927
3928/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
3929/// machine opcode.
3930///
3931SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3932                                   MVT VT) {
3933  SDVTList VTs = getVTList(VT);
3934  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
3935}
3936
3937SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3938                                   MVT VT, SDValue Op1) {
3939  SDVTList VTs = getVTList(VT);
3940  SDValue Ops[] = { Op1 };
3941  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3942}
3943
3944SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3945                                   MVT VT, SDValue Op1,
3946                                   SDValue Op2) {
3947  SDVTList VTs = getVTList(VT);
3948  SDValue Ops[] = { Op1, Op2 };
3949  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
3950}
3951
3952SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3953                                   MVT VT, SDValue Op1,
3954                                   SDValue Op2, SDValue Op3) {
3955  SDVTList VTs = getVTList(VT);
3956  SDValue Ops[] = { Op1, Op2, Op3 };
3957  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
3958}
3959
3960SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3961                                   MVT VT, const SDValue *Ops,
3962                                   unsigned NumOps) {
3963  SDVTList VTs = getVTList(VT);
3964  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3965}
3966
3967SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3968                                   MVT VT1, MVT VT2, const SDValue *Ops,
3969                                   unsigned NumOps) {
3970  SDVTList VTs = getVTList(VT1, VT2);
3971  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3972}
3973
3974SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3975                                   MVT VT1, MVT VT2) {
3976  SDVTList VTs = getVTList(VT1, VT2);
3977  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
3978}
3979
3980SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3981                                   MVT VT1, MVT VT2, MVT VT3,
3982                                   const SDValue *Ops, unsigned NumOps) {
3983  SDVTList VTs = getVTList(VT1, VT2, VT3);
3984  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3985}
3986
3987SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3988                                   MVT VT1, MVT VT2,
3989                                   SDValue Op1) {
3990  SDVTList VTs = getVTList(VT1, VT2);
3991  SDValue Ops[] = { Op1 };
3992  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3993}
3994
3995SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3996                                   MVT VT1, MVT VT2,
3997                                   SDValue Op1, SDValue Op2) {
3998  SDVTList VTs = getVTList(VT1, VT2);
3999  SDValue Ops[] = { Op1, Op2 };
4000  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4001}
4002
4003SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4004                                   MVT VT1, MVT VT2,
4005                                   SDValue Op1, SDValue Op2,
4006                                   SDValue Op3) {
4007  SDVTList VTs = getVTList(VT1, VT2);
4008  SDValue Ops[] = { Op1, Op2, Op3 };
4009  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4010}
4011
4012SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4013                                   SDVTList VTs, const SDValue *Ops,
4014                                   unsigned NumOps) {
4015  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4016}
4017
4018SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4019                                  MVT VT) {
4020  SDVTList VTs = getVTList(VT);
4021  return MorphNodeTo(N, Opc, VTs, 0, 0);
4022}
4023
4024SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4025                                  MVT VT, SDValue Op1) {
4026  SDVTList VTs = getVTList(VT);
4027  SDValue Ops[] = { Op1 };
4028  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4029}
4030
4031SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4032                                  MVT VT, SDValue Op1,
4033                                  SDValue Op2) {
4034  SDVTList VTs = getVTList(VT);
4035  SDValue Ops[] = { Op1, Op2 };
4036  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4037}
4038
4039SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4040                                  MVT VT, SDValue Op1,
4041                                  SDValue Op2, SDValue Op3) {
4042  SDVTList VTs = getVTList(VT);
4043  SDValue Ops[] = { Op1, Op2, Op3 };
4044  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4045}
4046
4047SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4048                                  MVT VT, const SDValue *Ops,
4049                                  unsigned NumOps) {
4050  SDVTList VTs = getVTList(VT);
4051  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4052}
4053
4054SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4055                                  MVT VT1, MVT VT2, const SDValue *Ops,
4056                                  unsigned NumOps) {
4057  SDVTList VTs = getVTList(VT1, VT2);
4058  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4059}
4060
4061SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4062                                  MVT VT1, MVT VT2) {
4063  SDVTList VTs = getVTList(VT1, VT2);
4064  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4065}
4066
4067SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4068                                  MVT VT1, MVT VT2, MVT VT3,
4069                                  const SDValue *Ops, unsigned NumOps) {
4070  SDVTList VTs = getVTList(VT1, VT2, VT3);
4071  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4072}
4073
4074SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4075                                  MVT VT1, MVT VT2,
4076                                  SDValue Op1) {
4077  SDVTList VTs = getVTList(VT1, VT2);
4078  SDValue Ops[] = { Op1 };
4079  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4080}
4081
4082SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4083                                  MVT VT1, MVT VT2,
4084                                  SDValue Op1, SDValue Op2) {
4085  SDVTList VTs = getVTList(VT1, VT2);
4086  SDValue Ops[] = { Op1, Op2 };
4087  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4088}
4089
4090SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4091                                  MVT VT1, MVT VT2,
4092                                  SDValue Op1, SDValue Op2,
4093                                  SDValue Op3) {
4094  SDVTList VTs = getVTList(VT1, VT2);
4095  SDValue Ops[] = { Op1, Op2, Op3 };
4096  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4097}
4098
4099/// MorphNodeTo - These *mutate* the specified node to have the specified
4100/// return type, opcode, and operands.
4101///
4102/// Note that MorphNodeTo returns the resultant node.  If there is already a
4103/// node of the specified opcode and operands, it returns that node instead of
4104/// the current one.
4105///
4106/// Using MorphNodeTo is faster than creating a new node and swapping it in
4107/// with ReplaceAllUsesWith both because it often avoids allocating a new
4108/// node, and because it doesn't require CSE recalculation for any of
4109/// the node's users.
4110///
4111SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4112                                  SDVTList VTs, const SDValue *Ops,
4113                                  unsigned NumOps) {
4114  // If an identical node already exists, use it.
4115  void *IP = 0;
4116  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4117    FoldingSetNodeID ID;
4118    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4119    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4120      return ON;
4121  }
4122
4123  if (!RemoveNodeFromCSEMaps(N))
4124    IP = 0;
4125
4126  // Start the morphing.
4127  N->NodeType = Opc;
4128  N->ValueList = VTs.VTs;
4129  N->NumValues = VTs.NumVTs;
4130
4131  // Clear the operands list, updating used nodes to remove this from their
4132  // use list.  Keep track of any operands that become dead as a result.
4133  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4134  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4135       I != E; ++I) {
4136    SDNode *Used = I->getVal();
4137    Used->removeUser(std::distance(B, I), N);
4138    if (Used->use_empty())
4139      DeadNodeSet.insert(Used);
4140  }
4141
4142  // If NumOps is larger than the # of operands we currently have, reallocate
4143  // the operand list.
4144  if (NumOps > N->NumOperands) {
4145    if (N->OperandsNeedDelete)
4146      delete[] N->OperandList;
4147    if (N->isMachineOpcode()) {
4148      // We're creating a final node that will live unmorphed for the
4149      // remainder of the current SelectionDAG iteration, so we can allocate
4150      // the operands directly out of a pool with no recycling metadata.
4151      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4152      N->OperandsNeedDelete = false;
4153    } else {
4154      N->OperandList = new SDUse[NumOps];
4155      N->OperandsNeedDelete = true;
4156    }
4157  }
4158
4159  // Assign the new operands.
4160  N->NumOperands = NumOps;
4161  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4162    N->OperandList[i] = Ops[i];
4163    N->OperandList[i].setUser(N);
4164    SDNode *ToUse = N->OperandList[i].getVal();
4165    ToUse->addUser(i, N);
4166  }
4167
4168  // Delete any nodes that are still dead after adding the uses for the
4169  // new operands.
4170  SmallVector<SDNode *, 16> DeadNodes;
4171  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4172       E = DeadNodeSet.end(); I != E; ++I)
4173    if ((*I)->use_empty())
4174      DeadNodes.push_back(*I);
4175  RemoveDeadNodes(DeadNodes);
4176
4177  if (IP)
4178    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4179  return N;
4180}
4181
4182
4183/// getTargetNode - These are used for target selectors to create a new node
4184/// with specified return type(s), target opcode, and operands.
4185///
4186/// Note that getTargetNode returns the resultant node.  If there is already a
4187/// node of the specified opcode and operands, it returns that node instead of
4188/// the current one.
4189SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4190  return getNode(~Opcode, VT).getNode();
4191}
4192SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4193  return getNode(~Opcode, VT, Op1).getNode();
4194}
4195SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4196                                    SDValue Op1, SDValue Op2) {
4197  return getNode(~Opcode, VT, Op1, Op2).getNode();
4198}
4199SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4200                                    SDValue Op1, SDValue Op2,
4201                                    SDValue Op3) {
4202  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4203}
4204SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4205                                    const SDValue *Ops, unsigned NumOps) {
4206  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4207}
4208SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4209  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4210  SDValue Op;
4211  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4212}
4213SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4214                                    MVT VT2, SDValue Op1) {
4215  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4216  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4217}
4218SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4219                                    MVT VT2, SDValue Op1,
4220                                    SDValue Op2) {
4221  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4222  SDValue Ops[] = { Op1, Op2 };
4223  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4224}
4225SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4226                                    MVT VT2, SDValue Op1,
4227                                    SDValue Op2, SDValue Op3) {
4228  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4229  SDValue Ops[] = { Op1, Op2, Op3 };
4230  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4231}
4232SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4233                                    const SDValue *Ops, unsigned NumOps) {
4234  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4235  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4236}
4237SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4238                                    SDValue Op1, SDValue Op2) {
4239  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4240  SDValue Ops[] = { Op1, Op2 };
4241  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4242}
4243SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4244                                    SDValue Op1, SDValue Op2,
4245                                    SDValue Op3) {
4246  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4247  SDValue Ops[] = { Op1, Op2, Op3 };
4248  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4249}
4250SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4251                                    const SDValue *Ops, unsigned NumOps) {
4252  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4253  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4254}
4255SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4256                                    MVT VT2, MVT VT3, MVT VT4,
4257                                    const SDValue *Ops, unsigned NumOps) {
4258  std::vector<MVT> VTList;
4259  VTList.push_back(VT1);
4260  VTList.push_back(VT2);
4261  VTList.push_back(VT3);
4262  VTList.push_back(VT4);
4263  const MVT *VTs = getNodeValueTypes(VTList);
4264  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4265}
4266SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4267                                    const std::vector<MVT> &ResultTys,
4268                                    const SDValue *Ops, unsigned NumOps) {
4269  const MVT *VTs = getNodeValueTypes(ResultTys);
4270  return getNode(~Opcode, VTs, ResultTys.size(),
4271                 Ops, NumOps).getNode();
4272}
4273
4274/// getNodeIfExists - Get the specified node if it's already available, or
4275/// else return NULL.
4276SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4277                                      const SDValue *Ops, unsigned NumOps) {
4278  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4279    FoldingSetNodeID ID;
4280    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4281    void *IP = 0;
4282    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4283      return E;
4284  }
4285  return NULL;
4286}
4287
4288
4289/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4290/// This can cause recursive merging of nodes in the DAG.
4291///
4292/// This version assumes From has a single result value.
4293///
4294void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4295                                      DAGUpdateListener *UpdateListener) {
4296  SDNode *From = FromN.getNode();
4297  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4298         "Cannot replace with this method!");
4299  assert(From != To.getNode() && "Cannot replace uses of with self");
4300
4301  while (!From->use_empty()) {
4302    SDNode::use_iterator UI = From->use_begin();
4303    SDNode *U = *UI;
4304
4305    // This node is about to morph, remove its old self from the CSE maps.
4306    RemoveNodeFromCSEMaps(U);
4307    int operandNum = 0;
4308    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4309         I != E; ++I, ++operandNum)
4310      if (I->getVal() == From) {
4311        From->removeUser(operandNum, U);
4312        *I = To;
4313        I->setUser(U);
4314        To.getNode()->addUser(operandNum, U);
4315      }
4316
4317    // Now that we have modified U, add it back to the CSE maps.  If it already
4318    // exists there, recursively merge the results together.
4319    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4320      ReplaceAllUsesWith(U, Existing, UpdateListener);
4321      // U is now dead.  Inform the listener if it exists and delete it.
4322      if (UpdateListener)
4323        UpdateListener->NodeDeleted(U, Existing);
4324      DeleteNodeNotInCSEMaps(U);
4325    } else {
4326      // If the node doesn't already exist, we updated it.  Inform a listener if
4327      // it exists.
4328      if (UpdateListener)
4329        UpdateListener->NodeUpdated(U);
4330    }
4331  }
4332}
4333
4334/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4335/// This can cause recursive merging of nodes in the DAG.
4336///
4337/// This version assumes From/To have matching types and numbers of result
4338/// values.
4339///
4340void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4341                                      DAGUpdateListener *UpdateListener) {
4342  assert(From->getVTList().VTs == To->getVTList().VTs &&
4343         From->getNumValues() == To->getNumValues() &&
4344         "Cannot use this version of ReplaceAllUsesWith!");
4345
4346  // Handle the trivial case.
4347  if (From == To)
4348    return;
4349
4350  while (!From->use_empty()) {
4351    SDNode::use_iterator UI = From->use_begin();
4352    SDNode *U = *UI;
4353
4354    // This node is about to morph, remove its old self from the CSE maps.
4355    RemoveNodeFromCSEMaps(U);
4356    int operandNum = 0;
4357    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4358         I != E; ++I, ++operandNum)
4359      if (I->getVal() == From) {
4360        From->removeUser(operandNum, U);
4361        I->getSDValue().setNode(To);
4362        To->addUser(operandNum, U);
4363      }
4364
4365    // Now that we have modified U, add it back to the CSE maps.  If it already
4366    // exists there, recursively merge the results together.
4367    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4368      ReplaceAllUsesWith(U, Existing, UpdateListener);
4369      // U is now dead.  Inform the listener if it exists and delete it.
4370      if (UpdateListener)
4371        UpdateListener->NodeDeleted(U, Existing);
4372      DeleteNodeNotInCSEMaps(U);
4373    } else {
4374      // If the node doesn't already exist, we updated it.  Inform a listener if
4375      // it exists.
4376      if (UpdateListener)
4377        UpdateListener->NodeUpdated(U);
4378    }
4379  }
4380}
4381
4382/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4383/// This can cause recursive merging of nodes in the DAG.
4384///
4385/// This version can replace From with any result values.  To must match the
4386/// number and types of values returned by From.
4387void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4388                                      const SDValue *To,
4389                                      DAGUpdateListener *UpdateListener) {
4390  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4391    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4392
4393  while (!From->use_empty()) {
4394    SDNode::use_iterator UI = From->use_begin();
4395    SDNode *U = *UI;
4396
4397    // This node is about to morph, remove its old self from the CSE maps.
4398    RemoveNodeFromCSEMaps(U);
4399    int operandNum = 0;
4400    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4401         I != E; ++I, ++operandNum)
4402      if (I->getVal() == From) {
4403        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4404        From->removeUser(operandNum, U);
4405        *I = ToOp;
4406        I->setUser(U);
4407        ToOp.getNode()->addUser(operandNum, U);
4408      }
4409
4410    // Now that we have modified U, add it back to the CSE maps.  If it already
4411    // exists there, recursively merge the results together.
4412    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4413      ReplaceAllUsesWith(U, Existing, UpdateListener);
4414      // U is now dead.  Inform the listener if it exists and delete it.
4415      if (UpdateListener)
4416        UpdateListener->NodeDeleted(U, Existing);
4417      DeleteNodeNotInCSEMaps(U);
4418    } else {
4419      // If the node doesn't already exist, we updated it.  Inform a listener if
4420      // it exists.
4421      if (UpdateListener)
4422        UpdateListener->NodeUpdated(U);
4423    }
4424  }
4425}
4426
4427/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4428/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4429/// handled the same way as for ReplaceAllUsesWith.
4430void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4431                                             DAGUpdateListener *UpdateListener){
4432  // Handle the really simple, really trivial case efficiently.
4433  if (From == To) return;
4434
4435  // Handle the simple, trivial, case efficiently.
4436  if (From.getNode()->getNumValues() == 1) {
4437    ReplaceAllUsesWith(From, To, UpdateListener);
4438    return;
4439  }
4440
4441  // Get all of the users of From.getNode().  We want these in a nice,
4442  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4443  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4444
4445  while (!Users.empty()) {
4446    // We know that this user uses some value of From.  If it is the right
4447    // value, update it.
4448    SDNode *User = Users.back();
4449    Users.pop_back();
4450
4451    // Scan for an operand that matches From.
4452    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4453    for (; Op != E; ++Op)
4454      if (*Op == From) break;
4455
4456    // If there are no matches, the user must use some other result of From.
4457    if (Op == E) continue;
4458
4459    // Okay, we know this user needs to be updated.  Remove its old self
4460    // from the CSE maps.
4461    RemoveNodeFromCSEMaps(User);
4462
4463    // Update all operands that match "From" in case there are multiple uses.
4464    for (; Op != E; ++Op) {
4465      if (*Op == From) {
4466        From.getNode()->removeUser(Op-User->op_begin(), User);
4467        *Op = To;
4468        Op->setUser(User);
4469        To.getNode()->addUser(Op-User->op_begin(), User);
4470      }
4471    }
4472
4473    // Now that we have modified User, add it back to the CSE maps.  If it
4474    // already exists there, recursively merge the results together.
4475    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4476    if (!Existing) {
4477      if (UpdateListener) UpdateListener->NodeUpdated(User);
4478      continue;  // Continue on to next user.
4479    }
4480
4481    // If there was already an existing matching node, use ReplaceAllUsesWith
4482    // to replace the dead one with the existing one.  This can cause
4483    // recursive merging of other unrelated nodes down the line.
4484    ReplaceAllUsesWith(User, Existing, UpdateListener);
4485
4486    // User is now dead.  Notify a listener if present.
4487    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4488    DeleteNodeNotInCSEMaps(User);
4489  }
4490}
4491
4492/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4493/// uses of other values produced by From.getVal() alone.  The same value may
4494/// appear in both the From and To list.  The Deleted vector is
4495/// handled the same way as for ReplaceAllUsesWith.
4496void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4497                                              const SDValue *To,
4498                                              unsigned Num,
4499                                              DAGUpdateListener *UpdateListener){
4500  // Handle the simple, trivial case efficiently.
4501  if (Num == 1)
4502    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4503
4504  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4505  for (unsigned i = 0; i != Num; ++i)
4506    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4507         E = From[i].getNode()->use_end(); UI != E; ++UI)
4508      Users.push_back(std::make_pair(*UI, i));
4509
4510  while (!Users.empty()) {
4511    // We know that this user uses some value of From.  If it is the right
4512    // value, update it.
4513    SDNode *User = Users.back().first;
4514    unsigned i = Users.back().second;
4515    Users.pop_back();
4516
4517    // Scan for an operand that matches From.
4518    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4519    for (; Op != E; ++Op)
4520      if (*Op == From[i]) break;
4521
4522    // If there are no matches, the user must use some other result of From.
4523    if (Op == E) continue;
4524
4525    // Okay, we know this user needs to be updated.  Remove its old self
4526    // from the CSE maps.
4527    RemoveNodeFromCSEMaps(User);
4528
4529    // Update all operands that match "From" in case there are multiple uses.
4530    for (; Op != E; ++Op) {
4531      if (*Op == From[i]) {
4532        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4533        *Op = To[i];
4534        Op->setUser(User);
4535        To[i].getNode()->addUser(Op-User->op_begin(), User);
4536      }
4537    }
4538
4539    // Now that we have modified User, add it back to the CSE maps.  If it
4540    // already exists there, recursively merge the results together.
4541    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4542    if (!Existing) {
4543      if (UpdateListener) UpdateListener->NodeUpdated(User);
4544      continue;  // Continue on to next user.
4545    }
4546
4547    // If there was already an existing matching node, use ReplaceAllUsesWith
4548    // to replace the dead one with the existing one.  This can cause
4549    // recursive merging of other unrelated nodes down the line.
4550    ReplaceAllUsesWith(User, Existing, UpdateListener);
4551
4552    // User is now dead.  Notify a listener if present.
4553    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4554    DeleteNodeNotInCSEMaps(User);
4555  }
4556}
4557
4558/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4559/// based on their topological order. It returns the maximum id and a vector
4560/// of the SDNodes* in assigned order by reference.
4561unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4562  unsigned DAGSize = AllNodes.size();
4563  std::vector<SDNode*> Sources;
4564
4565  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4566    SDNode *N = I;
4567    unsigned Degree = N->use_size();
4568    // Temporarily use the Node Id as scratch space for the degree count.
4569    N->setNodeId(Degree);
4570    if (Degree == 0)
4571      Sources.push_back(N);
4572  }
4573
4574  TopOrder.clear();
4575  TopOrder.reserve(DAGSize);
4576  int Id = 0;
4577  while (!Sources.empty()) {
4578    SDNode *N = Sources.back();
4579    Sources.pop_back();
4580    TopOrder.push_back(N);
4581    N->setNodeId(Id++);
4582    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4583      SDNode *P = I->getVal();
4584      unsigned Degree = P->getNodeId();
4585      --Degree;
4586      P->setNodeId(Degree);
4587      if (Degree == 0)
4588        Sources.push_back(P);
4589    }
4590  }
4591
4592  return Id;
4593}
4594
4595
4596
4597//===----------------------------------------------------------------------===//
4598//                              SDNode Class
4599//===----------------------------------------------------------------------===//
4600
4601// Out-of-line virtual method to give class a home.
4602void SDNode::ANCHOR() {}
4603void UnarySDNode::ANCHOR() {}
4604void BinarySDNode::ANCHOR() {}
4605void TernarySDNode::ANCHOR() {}
4606void HandleSDNode::ANCHOR() {}
4607void ConstantSDNode::ANCHOR() {}
4608void ConstantFPSDNode::ANCHOR() {}
4609void GlobalAddressSDNode::ANCHOR() {}
4610void FrameIndexSDNode::ANCHOR() {}
4611void JumpTableSDNode::ANCHOR() {}
4612void ConstantPoolSDNode::ANCHOR() {}
4613void BasicBlockSDNode::ANCHOR() {}
4614void SrcValueSDNode::ANCHOR() {}
4615void MemOperandSDNode::ANCHOR() {}
4616void RegisterSDNode::ANCHOR() {}
4617void DbgStopPointSDNode::ANCHOR() {}
4618void LabelSDNode::ANCHOR() {}
4619void ExternalSymbolSDNode::ANCHOR() {}
4620void CondCodeSDNode::ANCHOR() {}
4621void ARG_FLAGSSDNode::ANCHOR() {}
4622void VTSDNode::ANCHOR() {}
4623void MemSDNode::ANCHOR() {}
4624void LoadSDNode::ANCHOR() {}
4625void StoreSDNode::ANCHOR() {}
4626void AtomicSDNode::ANCHOR() {}
4627void CallSDNode::ANCHOR() {}
4628
4629HandleSDNode::~HandleSDNode() {
4630  DropOperands();
4631}
4632
4633GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4634                                         MVT VT, int o)
4635  : SDNode(isa<GlobalVariable>(GA) &&
4636           cast<GlobalVariable>(GA)->isThreadLocal() ?
4637           // Thread Local
4638           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4639           // Non Thread Local
4640           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4641           getSDVTList(VT)), Offset(o) {
4642  TheGlobal = const_cast<GlobalValue*>(GA);
4643}
4644
4645MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4646                     const Value *srcValue, int SVO,
4647                     unsigned alignment, bool vol)
4648 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4649   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4650
4651  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4652  assert(getAlignment() == alignment && "Alignment representation error!");
4653  assert(isVolatile() == vol && "Volatile representation error!");
4654}
4655
4656/// getMemOperand - Return a MachineMemOperand object describing the memory
4657/// reference performed by this memory reference.
4658MachineMemOperand MemSDNode::getMemOperand() const {
4659  int Flags;
4660  if (isa<LoadSDNode>(this))
4661    Flags = MachineMemOperand::MOLoad;
4662  else if (isa<StoreSDNode>(this))
4663    Flags = MachineMemOperand::MOStore;
4664  else {
4665    assert(isa<AtomicSDNode>(this) && "Unknown MemSDNode opcode!");
4666    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4667  }
4668
4669  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4670  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4671
4672  // Check if the memory reference references a frame index
4673  const FrameIndexSDNode *FI =
4674  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4675  if (!getSrcValue() && FI)
4676    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4677                             Flags, 0, Size, getAlignment());
4678  else
4679    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4680                             Size, getAlignment());
4681}
4682
4683/// Profile - Gather unique data for the node.
4684///
4685void SDNode::Profile(FoldingSetNodeID &ID) const {
4686  AddNodeIDNode(ID, this);
4687}
4688
4689/// getValueTypeList - Return a pointer to the specified value type.
4690///
4691const MVT *SDNode::getValueTypeList(MVT VT) {
4692  if (VT.isExtended()) {
4693    static std::set<MVT, MVT::compareRawBits> EVTs;
4694    return &(*EVTs.insert(VT).first);
4695  } else {
4696    static MVT VTs[MVT::LAST_VALUETYPE];
4697    VTs[VT.getSimpleVT()] = VT;
4698    return &VTs[VT.getSimpleVT()];
4699  }
4700}
4701
4702/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4703/// indicated value.  This method ignores uses of other values defined by this
4704/// operation.
4705bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4706  assert(Value < getNumValues() && "Bad value!");
4707
4708  // TODO: Only iterate over uses of a given value of the node
4709  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4710    if (UI.getUse().getSDValue().getResNo() == Value) {
4711      if (NUses == 0)
4712        return false;
4713      --NUses;
4714    }
4715  }
4716
4717  // Found exactly the right number of uses?
4718  return NUses == 0;
4719}
4720
4721
4722/// hasAnyUseOfValue - Return true if there are any use of the indicated
4723/// value. This method ignores uses of other values defined by this operation.
4724bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4725  assert(Value < getNumValues() && "Bad value!");
4726
4727  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4728    if (UI.getUse().getSDValue().getResNo() == Value)
4729      return true;
4730
4731  return false;
4732}
4733
4734
4735/// isOnlyUserOf - Return true if this node is the only use of N.
4736///
4737bool SDNode::isOnlyUserOf(SDNode *N) const {
4738  bool Seen = false;
4739  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4740    SDNode *User = *I;
4741    if (User == this)
4742      Seen = true;
4743    else
4744      return false;
4745  }
4746
4747  return Seen;
4748}
4749
4750/// isOperand - Return true if this node is an operand of N.
4751///
4752bool SDValue::isOperandOf(SDNode *N) const {
4753  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4754    if (*this == N->getOperand(i))
4755      return true;
4756  return false;
4757}
4758
4759bool SDNode::isOperandOf(SDNode *N) const {
4760  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4761    if (this == N->OperandList[i].getVal())
4762      return true;
4763  return false;
4764}
4765
4766/// reachesChainWithoutSideEffects - Return true if this operand (which must
4767/// be a chain) reaches the specified operand without crossing any
4768/// side-effecting instructions.  In practice, this looks through token
4769/// factors and non-volatile loads.  In order to remain efficient, this only
4770/// looks a couple of nodes in, it does not do an exhaustive search.
4771bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4772                                               unsigned Depth) const {
4773  if (*this == Dest) return true;
4774
4775  // Don't search too deeply, we just want to be able to see through
4776  // TokenFactor's etc.
4777  if (Depth == 0) return false;
4778
4779  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4780  // of the operands of the TF reach dest, then we can do the xform.
4781  if (getOpcode() == ISD::TokenFactor) {
4782    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4783      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4784        return true;
4785    return false;
4786  }
4787
4788  // Loads don't have side effects, look through them.
4789  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4790    if (!Ld->isVolatile())
4791      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4792  }
4793  return false;
4794}
4795
4796
4797static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4798                            SmallPtrSet<SDNode *, 32> &Visited) {
4799  if (found || !Visited.insert(N))
4800    return;
4801
4802  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4803    SDNode *Op = N->getOperand(i).getNode();
4804    if (Op == P) {
4805      found = true;
4806      return;
4807    }
4808    findPredecessor(Op, P, found, Visited);
4809  }
4810}
4811
4812/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4813/// is either an operand of N or it can be reached by recursively traversing
4814/// up the operands.
4815/// NOTE: this is an expensive method. Use it carefully.
4816bool SDNode::isPredecessorOf(SDNode *N) const {
4817  SmallPtrSet<SDNode *, 32> Visited;
4818  bool found = false;
4819  findPredecessor(N, this, found, Visited);
4820  return found;
4821}
4822
4823uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4824  assert(Num < NumOperands && "Invalid child # of SDNode!");
4825  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4826}
4827
4828std::string SDNode::getOperationName(const SelectionDAG *G) const {
4829  switch (getOpcode()) {
4830  default:
4831    if (getOpcode() < ISD::BUILTIN_OP_END)
4832      return "<<Unknown DAG Node>>";
4833    if (isMachineOpcode()) {
4834      if (G)
4835        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4836          if (getMachineOpcode() < TII->getNumOpcodes())
4837            return TII->get(getMachineOpcode()).getName();
4838      return "<<Unknown Machine Node>>";
4839    }
4840    if (G) {
4841      TargetLowering &TLI = G->getTargetLoweringInfo();
4842      const char *Name = TLI.getTargetNodeName(getOpcode());
4843      if (Name) return Name;
4844      return "<<Unknown Target Node>>";
4845    }
4846    return "<<Unknown Node>>";
4847
4848#ifndef NDEBUG
4849  case ISD::DELETED_NODE:
4850    return "<<Deleted Node!>>";
4851#endif
4852  case ISD::PREFETCH:      return "Prefetch";
4853  case ISD::MEMBARRIER:    return "MemBarrier";
4854  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
4855  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
4856  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
4857  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
4858  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
4859  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
4860  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
4861  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
4862  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
4863  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
4864  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
4865  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
4866  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
4867  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
4868  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
4869  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
4870  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
4871  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
4872  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
4873  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
4874  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
4875  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
4876  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
4877  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
4878  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
4879  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
4880  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
4881  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
4882  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
4883  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
4884  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
4885  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
4886  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
4887  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
4888  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
4889  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
4890  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
4891  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
4892  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
4893  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
4894  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
4895  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
4896  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
4897  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
4898  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
4899  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
4900  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
4901  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
4902  case ISD::PCMARKER:      return "PCMarker";
4903  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4904  case ISD::SRCVALUE:      return "SrcValue";
4905  case ISD::MEMOPERAND:    return "MemOperand";
4906  case ISD::EntryToken:    return "EntryToken";
4907  case ISD::TokenFactor:   return "TokenFactor";
4908  case ISD::AssertSext:    return "AssertSext";
4909  case ISD::AssertZext:    return "AssertZext";
4910
4911  case ISD::BasicBlock:    return "BasicBlock";
4912  case ISD::ARG_FLAGS:     return "ArgFlags";
4913  case ISD::VALUETYPE:     return "ValueType";
4914  case ISD::Register:      return "Register";
4915
4916  case ISD::Constant:      return "Constant";
4917  case ISD::ConstantFP:    return "ConstantFP";
4918  case ISD::GlobalAddress: return "GlobalAddress";
4919  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4920  case ISD::FrameIndex:    return "FrameIndex";
4921  case ISD::JumpTable:     return "JumpTable";
4922  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4923  case ISD::RETURNADDR: return "RETURNADDR";
4924  case ISD::FRAMEADDR: return "FRAMEADDR";
4925  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4926  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4927  case ISD::EHSELECTION: return "EHSELECTION";
4928  case ISD::EH_RETURN: return "EH_RETURN";
4929  case ISD::ConstantPool:  return "ConstantPool";
4930  case ISD::ExternalSymbol: return "ExternalSymbol";
4931  case ISD::INTRINSIC_WO_CHAIN: {
4932    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
4933    return Intrinsic::getName((Intrinsic::ID)IID);
4934  }
4935  case ISD::INTRINSIC_VOID:
4936  case ISD::INTRINSIC_W_CHAIN: {
4937    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
4938    return Intrinsic::getName((Intrinsic::ID)IID);
4939  }
4940
4941  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4942  case ISD::TargetConstant: return "TargetConstant";
4943  case ISD::TargetConstantFP:return "TargetConstantFP";
4944  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4945  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4946  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4947  case ISD::TargetJumpTable:  return "TargetJumpTable";
4948  case ISD::TargetConstantPool:  return "TargetConstantPool";
4949  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4950
4951  case ISD::CopyToReg:     return "CopyToReg";
4952  case ISD::CopyFromReg:   return "CopyFromReg";
4953  case ISD::UNDEF:         return "undef";
4954  case ISD::MERGE_VALUES:  return "merge_values";
4955  case ISD::INLINEASM:     return "inlineasm";
4956  case ISD::DBG_LABEL:     return "dbg_label";
4957  case ISD::EH_LABEL:      return "eh_label";
4958  case ISD::DECLARE:       return "declare";
4959  case ISD::HANDLENODE:    return "handlenode";
4960  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4961  case ISD::CALL:          return "call";
4962
4963  // Unary operators
4964  case ISD::FABS:   return "fabs";
4965  case ISD::FNEG:   return "fneg";
4966  case ISD::FSQRT:  return "fsqrt";
4967  case ISD::FSIN:   return "fsin";
4968  case ISD::FCOS:   return "fcos";
4969  case ISD::FPOWI:  return "fpowi";
4970  case ISD::FPOW:   return "fpow";
4971  case ISD::FTRUNC: return "ftrunc";
4972  case ISD::FFLOOR: return "ffloor";
4973  case ISD::FCEIL:  return "fceil";
4974  case ISD::FRINT:  return "frint";
4975  case ISD::FNEARBYINT: return "fnearbyint";
4976
4977  // Binary operators
4978  case ISD::ADD:    return "add";
4979  case ISD::SUB:    return "sub";
4980  case ISD::MUL:    return "mul";
4981  case ISD::MULHU:  return "mulhu";
4982  case ISD::MULHS:  return "mulhs";
4983  case ISD::SDIV:   return "sdiv";
4984  case ISD::UDIV:   return "udiv";
4985  case ISD::SREM:   return "srem";
4986  case ISD::UREM:   return "urem";
4987  case ISD::SMUL_LOHI:  return "smul_lohi";
4988  case ISD::UMUL_LOHI:  return "umul_lohi";
4989  case ISD::SDIVREM:    return "sdivrem";
4990  case ISD::UDIVREM:    return "udivrem";
4991  case ISD::AND:    return "and";
4992  case ISD::OR:     return "or";
4993  case ISD::XOR:    return "xor";
4994  case ISD::SHL:    return "shl";
4995  case ISD::SRA:    return "sra";
4996  case ISD::SRL:    return "srl";
4997  case ISD::ROTL:   return "rotl";
4998  case ISD::ROTR:   return "rotr";
4999  case ISD::FADD:   return "fadd";
5000  case ISD::FSUB:   return "fsub";
5001  case ISD::FMUL:   return "fmul";
5002  case ISD::FDIV:   return "fdiv";
5003  case ISD::FREM:   return "frem";
5004  case ISD::FCOPYSIGN: return "fcopysign";
5005  case ISD::FGETSIGN:  return "fgetsign";
5006
5007  case ISD::SETCC:       return "setcc";
5008  case ISD::VSETCC:      return "vsetcc";
5009  case ISD::SELECT:      return "select";
5010  case ISD::SELECT_CC:   return "select_cc";
5011  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5012  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5013  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5014  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5015  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5016  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5017  case ISD::CARRY_FALSE:         return "carry_false";
5018  case ISD::ADDC:        return "addc";
5019  case ISD::ADDE:        return "adde";
5020  case ISD::SUBC:        return "subc";
5021  case ISD::SUBE:        return "sube";
5022  case ISD::SHL_PARTS:   return "shl_parts";
5023  case ISD::SRA_PARTS:   return "sra_parts";
5024  case ISD::SRL_PARTS:   return "srl_parts";
5025
5026  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5027  case ISD::INSERT_SUBREG:      return "insert_subreg";
5028
5029  // Conversion operators.
5030  case ISD::SIGN_EXTEND: return "sign_extend";
5031  case ISD::ZERO_EXTEND: return "zero_extend";
5032  case ISD::ANY_EXTEND:  return "any_extend";
5033  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5034  case ISD::TRUNCATE:    return "truncate";
5035  case ISD::FP_ROUND:    return "fp_round";
5036  case ISD::FLT_ROUNDS_: return "flt_rounds";
5037  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5038  case ISD::FP_EXTEND:   return "fp_extend";
5039
5040  case ISD::SINT_TO_FP:  return "sint_to_fp";
5041  case ISD::UINT_TO_FP:  return "uint_to_fp";
5042  case ISD::FP_TO_SINT:  return "fp_to_sint";
5043  case ISD::FP_TO_UINT:  return "fp_to_uint";
5044  case ISD::BIT_CONVERT: return "bit_convert";
5045
5046    // Control flow instructions
5047  case ISD::BR:      return "br";
5048  case ISD::BRIND:   return "brind";
5049  case ISD::BR_JT:   return "br_jt";
5050  case ISD::BRCOND:  return "brcond";
5051  case ISD::BR_CC:   return "br_cc";
5052  case ISD::RET:     return "ret";
5053  case ISD::CALLSEQ_START:  return "callseq_start";
5054  case ISD::CALLSEQ_END:    return "callseq_end";
5055
5056    // Other operators
5057  case ISD::LOAD:               return "load";
5058  case ISD::STORE:              return "store";
5059  case ISD::VAARG:              return "vaarg";
5060  case ISD::VACOPY:             return "vacopy";
5061  case ISD::VAEND:              return "vaend";
5062  case ISD::VASTART:            return "vastart";
5063  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5064  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5065  case ISD::BUILD_PAIR:         return "build_pair";
5066  case ISD::STACKSAVE:          return "stacksave";
5067  case ISD::STACKRESTORE:       return "stackrestore";
5068  case ISD::TRAP:               return "trap";
5069
5070  // Bit manipulation
5071  case ISD::BSWAP:   return "bswap";
5072  case ISD::CTPOP:   return "ctpop";
5073  case ISD::CTTZ:    return "cttz";
5074  case ISD::CTLZ:    return "ctlz";
5075
5076  // Debug info
5077  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5078  case ISD::DEBUG_LOC: return "debug_loc";
5079
5080  // Trampolines
5081  case ISD::TRAMPOLINE: return "trampoline";
5082
5083  case ISD::CONDCODE:
5084    switch (cast<CondCodeSDNode>(this)->get()) {
5085    default: assert(0 && "Unknown setcc condition!");
5086    case ISD::SETOEQ:  return "setoeq";
5087    case ISD::SETOGT:  return "setogt";
5088    case ISD::SETOGE:  return "setoge";
5089    case ISD::SETOLT:  return "setolt";
5090    case ISD::SETOLE:  return "setole";
5091    case ISD::SETONE:  return "setone";
5092
5093    case ISD::SETO:    return "seto";
5094    case ISD::SETUO:   return "setuo";
5095    case ISD::SETUEQ:  return "setue";
5096    case ISD::SETUGT:  return "setugt";
5097    case ISD::SETUGE:  return "setuge";
5098    case ISD::SETULT:  return "setult";
5099    case ISD::SETULE:  return "setule";
5100    case ISD::SETUNE:  return "setune";
5101
5102    case ISD::SETEQ:   return "seteq";
5103    case ISD::SETGT:   return "setgt";
5104    case ISD::SETGE:   return "setge";
5105    case ISD::SETLT:   return "setlt";
5106    case ISD::SETLE:   return "setle";
5107    case ISD::SETNE:   return "setne";
5108    }
5109  }
5110}
5111
5112const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5113  switch (AM) {
5114  default:
5115    return "";
5116  case ISD::PRE_INC:
5117    return "<pre-inc>";
5118  case ISD::PRE_DEC:
5119    return "<pre-dec>";
5120  case ISD::POST_INC:
5121    return "<post-inc>";
5122  case ISD::POST_DEC:
5123    return "<post-dec>";
5124  }
5125}
5126
5127std::string ISD::ArgFlagsTy::getArgFlagsString() {
5128  std::string S = "< ";
5129
5130  if (isZExt())
5131    S += "zext ";
5132  if (isSExt())
5133    S += "sext ";
5134  if (isInReg())
5135    S += "inreg ";
5136  if (isSRet())
5137    S += "sret ";
5138  if (isByVal())
5139    S += "byval ";
5140  if (isNest())
5141    S += "nest ";
5142  if (getByValAlign())
5143    S += "byval-align:" + utostr(getByValAlign()) + " ";
5144  if (getOrigAlign())
5145    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5146  if (getByValSize())
5147    S += "byval-size:" + utostr(getByValSize()) + " ";
5148  return S + ">";
5149}
5150
5151void SDNode::dump() const { dump(0); }
5152void SDNode::dump(const SelectionDAG *G) const {
5153  print(errs(), G);
5154  errs().flush();
5155}
5156
5157void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5158  OS << (void*)this << ": ";
5159
5160  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5161    if (i) OS << ",";
5162    if (getValueType(i) == MVT::Other)
5163      OS << "ch";
5164    else
5165      OS << getValueType(i).getMVTString();
5166  }
5167  OS << " = " << getOperationName(G);
5168
5169  OS << " ";
5170  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5171    if (i) OS << ", ";
5172    OS << (void*)getOperand(i).getNode();
5173    if (unsigned RN = getOperand(i).getResNo())
5174      OS << ":" << RN;
5175  }
5176
5177  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5178    SDNode *Mask = getOperand(2).getNode();
5179    OS << "<";
5180    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5181      if (i) OS << ",";
5182      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5183        OS << "u";
5184      else
5185        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5186    }
5187    OS << ">";
5188  }
5189
5190  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5191    OS << '<' << CSDN->getAPIntValue() << '>';
5192  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5193    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5194      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5195    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5196      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5197    else {
5198      OS << "<APFloat(";
5199      CSDN->getValueAPF().convertToAPInt().dump();
5200      OS << ")>";
5201    }
5202  } else if (const GlobalAddressSDNode *GADN =
5203             dyn_cast<GlobalAddressSDNode>(this)) {
5204    int offset = GADN->getOffset();
5205    OS << '<';
5206    WriteAsOperand(OS, GADN->getGlobal());
5207    OS << '>';
5208    if (offset > 0)
5209      OS << " + " << offset;
5210    else
5211      OS << " " << offset;
5212  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5213    OS << "<" << FIDN->getIndex() << ">";
5214  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5215    OS << "<" << JTDN->getIndex() << ">";
5216  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5217    int offset = CP->getOffset();
5218    if (CP->isMachineConstantPoolEntry())
5219      OS << "<" << *CP->getMachineCPVal() << ">";
5220    else
5221      OS << "<" << *CP->getConstVal() << ">";
5222    if (offset > 0)
5223      OS << " + " << offset;
5224    else
5225      OS << " " << offset;
5226  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5227    OS << "<";
5228    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5229    if (LBB)
5230      OS << LBB->getName() << " ";
5231    OS << (const void*)BBDN->getBasicBlock() << ">";
5232  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5233    if (G && R->getReg() &&
5234        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5235      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5236    } else {
5237      OS << " #" << R->getReg();
5238    }
5239  } else if (const ExternalSymbolSDNode *ES =
5240             dyn_cast<ExternalSymbolSDNode>(this)) {
5241    OS << "'" << ES->getSymbol() << "'";
5242  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5243    if (M->getValue())
5244      OS << "<" << M->getValue() << ">";
5245    else
5246      OS << "<null>";
5247  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5248    if (M->MO.getValue())
5249      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5250    else
5251      OS << "<null:" << M->MO.getOffset() << ">";
5252  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5253    OS << N->getArgFlags().getArgFlagsString();
5254  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5255    OS << ":" << N->getVT().getMVTString();
5256  }
5257  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5258    const Value *SrcValue = LD->getSrcValue();
5259    int SrcOffset = LD->getSrcValueOffset();
5260    OS << " <";
5261    if (SrcValue)
5262      OS << SrcValue;
5263    else
5264      OS << "null";
5265    OS << ":" << SrcOffset << ">";
5266
5267    bool doExt = true;
5268    switch (LD->getExtensionType()) {
5269    default: doExt = false; break;
5270    case ISD::EXTLOAD: OS << " <anyext "; break;
5271    case ISD::SEXTLOAD: OS << " <sext "; break;
5272    case ISD::ZEXTLOAD: OS << " <zext "; break;
5273    }
5274    if (doExt)
5275      OS << LD->getMemoryVT().getMVTString() << ">";
5276
5277    const char *AM = getIndexedModeName(LD->getAddressingMode());
5278    if (*AM)
5279      OS << " " << AM;
5280    if (LD->isVolatile())
5281      OS << " <volatile>";
5282    OS << " alignment=" << LD->getAlignment();
5283  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5284    const Value *SrcValue = ST->getSrcValue();
5285    int SrcOffset = ST->getSrcValueOffset();
5286    OS << " <";
5287    if (SrcValue)
5288      OS << SrcValue;
5289    else
5290      OS << "null";
5291    OS << ":" << SrcOffset << ">";
5292
5293    if (ST->isTruncatingStore())
5294      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5295
5296    const char *AM = getIndexedModeName(ST->getAddressingMode());
5297    if (*AM)
5298      OS << " " << AM;
5299    if (ST->isVolatile())
5300      OS << " <volatile>";
5301    OS << " alignment=" << ST->getAlignment();
5302  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5303    const Value *SrcValue = AT->getSrcValue();
5304    int SrcOffset = AT->getSrcValueOffset();
5305    OS << " <";
5306    if (SrcValue)
5307      OS << SrcValue;
5308    else
5309      OS << "null";
5310    OS << ":" << SrcOffset << ">";
5311    if (AT->isVolatile())
5312      OS << " <volatile>";
5313    OS << " alignment=" << AT->getAlignment();
5314  }
5315}
5316
5317static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5318  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5319    if (N->getOperand(i).getNode()->hasOneUse())
5320      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5321    else
5322      cerr << "\n" << std::string(indent+2, ' ')
5323           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5324
5325
5326  cerr << "\n" << std::string(indent, ' ');
5327  N->dump(G);
5328}
5329
5330void SelectionDAG::dump() const {
5331  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5332
5333  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5334       I != E; ++I) {
5335    const SDNode *N = I;
5336    if (!N->hasOneUse() && N != getRoot().getNode())
5337      DumpNodes(N, 2, this);
5338  }
5339
5340  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5341
5342  cerr << "\n\n";
5343}
5344
5345const Type *ConstantPoolSDNode::getType() const {
5346  if (isMachineConstantPoolEntry())
5347    return Val.MachineCPVal->getType();
5348  return Val.ConstVal->getType();
5349}
5350