SelectionDAG.cpp revision 50b153335d2943a95acf37d7ee84095f8e8af53c
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include <algorithm>
33#include <cmath>
34using namespace llvm;
35
36/// makeVTList - Return an instance of the SDVTList struct initialized with the
37/// specified members.
38static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39  SDVTList Res = {VTs, NumVTs};
40  return Res;
41}
42
43//===----------------------------------------------------------------------===//
44//                              ConstantFPSDNode Class
45//===----------------------------------------------------------------------===//
46
47/// isExactlyValue - We don't rely on operator== working on double values, as
48/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49/// As such, this method can be used to do an exact bit-for-bit comparison of
50/// two floating point values.
51bool ConstantFPSDNode::isExactlyValue(double V) const {
52  return DoubleToBits(V) == DoubleToBits(Value);
53}
54
55//===----------------------------------------------------------------------===//
56//                              ISD Namespace
57//===----------------------------------------------------------------------===//
58
59/// isBuildVectorAllOnes - Return true if the specified node is a
60/// BUILD_VECTOR where all of the elements are ~0 or undef.
61bool ISD::isBuildVectorAllOnes(const SDNode *N) {
62  // Look through a bit convert.
63  if (N->getOpcode() == ISD::BIT_CONVERT)
64    N = N->getOperand(0).Val;
65
66  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
67
68  unsigned i = 0, e = N->getNumOperands();
69
70  // Skip over all of the undef values.
71  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
72    ++i;
73
74  // Do not accept an all-undef vector.
75  if (i == e) return false;
76
77  // Do not accept build_vectors that aren't all constants or which have non-~0
78  // elements.
79  SDOperand NotZero = N->getOperand(i);
80  if (isa<ConstantSDNode>(NotZero)) {
81    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
82      return false;
83  } else if (isa<ConstantFPSDNode>(NotZero)) {
84    MVT::ValueType VT = NotZero.getValueType();
85    if (VT== MVT::f64) {
86      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
87          (uint64_t)-1)
88        return false;
89    } else {
90      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
91          (uint32_t)-1)
92        return false;
93    }
94  } else
95    return false;
96
97  // Okay, we have at least one ~0 value, check to see if the rest match or are
98  // undefs.
99  for (++i; i != e; ++i)
100    if (N->getOperand(i) != NotZero &&
101        N->getOperand(i).getOpcode() != ISD::UNDEF)
102      return false;
103  return true;
104}
105
106
107/// isBuildVectorAllZeros - Return true if the specified node is a
108/// BUILD_VECTOR where all of the elements are 0 or undef.
109bool ISD::isBuildVectorAllZeros(const SDNode *N) {
110  // Look through a bit convert.
111  if (N->getOpcode() == ISD::BIT_CONVERT)
112    N = N->getOperand(0).Val;
113
114  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
115
116  unsigned i = 0, e = N->getNumOperands();
117
118  // Skip over all of the undef values.
119  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120    ++i;
121
122  // Do not accept an all-undef vector.
123  if (i == e) return false;
124
125  // Do not accept build_vectors that aren't all constants or which have non-~0
126  // elements.
127  SDOperand Zero = N->getOperand(i);
128  if (isa<ConstantSDNode>(Zero)) {
129    if (!cast<ConstantSDNode>(Zero)->isNullValue())
130      return false;
131  } else if (isa<ConstantFPSDNode>(Zero)) {
132    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
133      return false;
134  } else
135    return false;
136
137  // Okay, we have at least one ~0 value, check to see if the rest match or are
138  // undefs.
139  for (++i; i != e; ++i)
140    if (N->getOperand(i) != Zero &&
141        N->getOperand(i).getOpcode() != ISD::UNDEF)
142      return false;
143  return true;
144}
145
146/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
147/// when given the operation for (X op Y).
148ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
149  // To perform this operation, we just need to swap the L and G bits of the
150  // operation.
151  unsigned OldL = (Operation >> 2) & 1;
152  unsigned OldG = (Operation >> 1) & 1;
153  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
154                       (OldL << 1) |       // New G bit
155                       (OldG << 2));        // New L bit.
156}
157
158/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
159/// 'op' is a valid SetCC operation.
160ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
161  unsigned Operation = Op;
162  if (isInteger)
163    Operation ^= 7;   // Flip L, G, E bits, but not U.
164  else
165    Operation ^= 15;  // Flip all of the condition bits.
166  if (Operation > ISD::SETTRUE2)
167    Operation &= ~8;     // Don't let N and U bits get set.
168  return ISD::CondCode(Operation);
169}
170
171
172/// isSignedOp - For an integer comparison, return 1 if the comparison is a
173/// signed operation and 2 if the result is an unsigned comparison.  Return zero
174/// if the operation does not depend on the sign of the input (setne and seteq).
175static int isSignedOp(ISD::CondCode Opcode) {
176  switch (Opcode) {
177  default: assert(0 && "Illegal integer setcc operation!");
178  case ISD::SETEQ:
179  case ISD::SETNE: return 0;
180  case ISD::SETLT:
181  case ISD::SETLE:
182  case ISD::SETGT:
183  case ISD::SETGE: return 1;
184  case ISD::SETULT:
185  case ISD::SETULE:
186  case ISD::SETUGT:
187  case ISD::SETUGE: return 2;
188  }
189}
190
191/// getSetCCOrOperation - Return the result of a logical OR between different
192/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
193/// returns SETCC_INVALID if it is not possible to represent the resultant
194/// comparison.
195ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
196                                       bool isInteger) {
197  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
198    // Cannot fold a signed integer setcc with an unsigned integer setcc.
199    return ISD::SETCC_INVALID;
200
201  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
202
203  // If the N and U bits get set then the resultant comparison DOES suddenly
204  // care about orderedness, and is true when ordered.
205  if (Op > ISD::SETTRUE2)
206    Op &= ~16;     // Clear the U bit if the N bit is set.
207
208  // Canonicalize illegal integer setcc's.
209  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
210    Op = ISD::SETNE;
211
212  return ISD::CondCode(Op);
213}
214
215/// getSetCCAndOperation - Return the result of a logical AND between different
216/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
217/// function returns zero if it is not possible to represent the resultant
218/// comparison.
219ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
220                                        bool isInteger) {
221  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
222    // Cannot fold a signed setcc with an unsigned setcc.
223    return ISD::SETCC_INVALID;
224
225  // Combine all of the condition bits.
226  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
227
228  // Canonicalize illegal integer setcc's.
229  if (isInteger) {
230    switch (Result) {
231    default: break;
232    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
233    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
234    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
235    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
236    }
237  }
238
239  return Result;
240}
241
242const TargetMachine &SelectionDAG::getTarget() const {
243  return TLI.getTargetMachine();
244}
245
246//===----------------------------------------------------------------------===//
247//                           SDNode Profile Support
248//===----------------------------------------------------------------------===//
249
250/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
251///
252static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
253  ID.AddInteger(OpC);
254}
255
256/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
257/// solely with their pointer.
258void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
259  ID.AddPointer(VTList.VTs);
260}
261
262/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
263///
264static void AddNodeIDOperands(FoldingSetNodeID &ID,
265                              const SDOperand *Ops, unsigned NumOps) {
266  for (; NumOps; --NumOps, ++Ops) {
267    ID.AddPointer(Ops->Val);
268    ID.AddInteger(Ops->ResNo);
269  }
270}
271
272static void AddNodeIDNode(FoldingSetNodeID &ID,
273                          unsigned short OpC, SDVTList VTList,
274                          const SDOperand *OpList, unsigned N) {
275  AddNodeIDOpcode(ID, OpC);
276  AddNodeIDValueTypes(ID, VTList);
277  AddNodeIDOperands(ID, OpList, N);
278}
279
280/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
281/// data.
282static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
283  AddNodeIDOpcode(ID, N->getOpcode());
284  // Add the return value info.
285  AddNodeIDValueTypes(ID, N->getVTList());
286  // Add the operand info.
287  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
288
289  // Handle SDNode leafs with special info.
290  switch (N->getOpcode()) {
291  default: break;  // Normal nodes don't need extra info.
292  case ISD::TargetConstant:
293  case ISD::Constant:
294    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
295    break;
296  case ISD::TargetConstantFP:
297  case ISD::ConstantFP:
298    ID.AddDouble(cast<ConstantFPSDNode>(N)->getValue());
299    break;
300  case ISD::TargetGlobalAddress:
301  case ISD::GlobalAddress:
302  case ISD::TargetGlobalTLSAddress:
303  case ISD::GlobalTLSAddress: {
304    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
305    ID.AddPointer(GA->getGlobal());
306    ID.AddInteger(GA->getOffset());
307    break;
308  }
309  case ISD::BasicBlock:
310    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
311    break;
312  case ISD::Register:
313    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
314    break;
315  case ISD::SRCVALUE: {
316    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
317    ID.AddPointer(SV->getValue());
318    ID.AddInteger(SV->getOffset());
319    break;
320  }
321  case ISD::FrameIndex:
322  case ISD::TargetFrameIndex:
323    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
324    break;
325  case ISD::JumpTable:
326  case ISD::TargetJumpTable:
327    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
328    break;
329  case ISD::ConstantPool:
330  case ISD::TargetConstantPool: {
331    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
332    ID.AddInteger(CP->getAlignment());
333    ID.AddInteger(CP->getOffset());
334    if (CP->isMachineConstantPoolEntry())
335      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
336    else
337      ID.AddPointer(CP->getConstVal());
338    break;
339  }
340  case ISD::LOAD: {
341    LoadSDNode *LD = cast<LoadSDNode>(N);
342    ID.AddInteger(LD->getAddressingMode());
343    ID.AddInteger(LD->getExtensionType());
344    ID.AddInteger(LD->getLoadedVT());
345    ID.AddPointer(LD->getSrcValue());
346    ID.AddInteger(LD->getSrcValueOffset());
347    ID.AddInteger(LD->getAlignment());
348    ID.AddInteger(LD->isVolatile());
349    break;
350  }
351  case ISD::STORE: {
352    StoreSDNode *ST = cast<StoreSDNode>(N);
353    ID.AddInteger(ST->getAddressingMode());
354    ID.AddInteger(ST->isTruncatingStore());
355    ID.AddInteger(ST->getStoredVT());
356    ID.AddPointer(ST->getSrcValue());
357    ID.AddInteger(ST->getSrcValueOffset());
358    ID.AddInteger(ST->getAlignment());
359    ID.AddInteger(ST->isVolatile());
360    break;
361  }
362  }
363}
364
365//===----------------------------------------------------------------------===//
366//                              SelectionDAG Class
367//===----------------------------------------------------------------------===//
368
369/// RemoveDeadNodes - This method deletes all unreachable nodes in the
370/// SelectionDAG.
371void SelectionDAG::RemoveDeadNodes() {
372  // Create a dummy node (which is not added to allnodes), that adds a reference
373  // to the root node, preventing it from being deleted.
374  HandleSDNode Dummy(getRoot());
375
376  SmallVector<SDNode*, 128> DeadNodes;
377
378  // Add all obviously-dead nodes to the DeadNodes worklist.
379  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
380    if (I->use_empty())
381      DeadNodes.push_back(I);
382
383  // Process the worklist, deleting the nodes and adding their uses to the
384  // worklist.
385  while (!DeadNodes.empty()) {
386    SDNode *N = DeadNodes.back();
387    DeadNodes.pop_back();
388
389    // Take the node out of the appropriate CSE map.
390    RemoveNodeFromCSEMaps(N);
391
392    // Next, brutally remove the operand list.  This is safe to do, as there are
393    // no cycles in the graph.
394    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
395      SDNode *Operand = I->Val;
396      Operand->removeUser(N);
397
398      // Now that we removed this operand, see if there are no uses of it left.
399      if (Operand->use_empty())
400        DeadNodes.push_back(Operand);
401    }
402    if (N->OperandsNeedDelete)
403      delete[] N->OperandList;
404    N->OperandList = 0;
405    N->NumOperands = 0;
406
407    // Finally, remove N itself.
408    AllNodes.erase(N);
409  }
410
411  // If the root changed (e.g. it was a dead load, update the root).
412  setRoot(Dummy.getValue());
413}
414
415void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
416  SmallVector<SDNode*, 16> DeadNodes;
417  DeadNodes.push_back(N);
418
419  // Process the worklist, deleting the nodes and adding their uses to the
420  // worklist.
421  while (!DeadNodes.empty()) {
422    SDNode *N = DeadNodes.back();
423    DeadNodes.pop_back();
424
425    // Take the node out of the appropriate CSE map.
426    RemoveNodeFromCSEMaps(N);
427
428    // Next, brutally remove the operand list.  This is safe to do, as there are
429    // no cycles in the graph.
430    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
431      SDNode *Operand = I->Val;
432      Operand->removeUser(N);
433
434      // Now that we removed this operand, see if there are no uses of it left.
435      if (Operand->use_empty())
436        DeadNodes.push_back(Operand);
437    }
438    if (N->OperandsNeedDelete)
439      delete[] N->OperandList;
440    N->OperandList = 0;
441    N->NumOperands = 0;
442
443    // Finally, remove N itself.
444    Deleted.push_back(N);
445    AllNodes.erase(N);
446  }
447}
448
449void SelectionDAG::DeleteNode(SDNode *N) {
450  assert(N->use_empty() && "Cannot delete a node that is not dead!");
451
452  // First take this out of the appropriate CSE map.
453  RemoveNodeFromCSEMaps(N);
454
455  // Finally, remove uses due to operands of this node, remove from the
456  // AllNodes list, and delete the node.
457  DeleteNodeNotInCSEMaps(N);
458}
459
460void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
461
462  // Remove it from the AllNodes list.
463  AllNodes.remove(N);
464
465  // Drop all of the operands and decrement used nodes use counts.
466  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
467    I->Val->removeUser(N);
468  if (N->OperandsNeedDelete)
469    delete[] N->OperandList;
470  N->OperandList = 0;
471  N->NumOperands = 0;
472
473  delete N;
474}
475
476/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
477/// correspond to it.  This is useful when we're about to delete or repurpose
478/// the node.  We don't want future request for structurally identical nodes
479/// to return N anymore.
480void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
481  bool Erased = false;
482  switch (N->getOpcode()) {
483  case ISD::HANDLENODE: return;  // noop.
484  case ISD::STRING:
485    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
486    break;
487  case ISD::CONDCODE:
488    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
489           "Cond code doesn't exist!");
490    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
491    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
492    break;
493  case ISD::ExternalSymbol:
494    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
495    break;
496  case ISD::TargetExternalSymbol:
497    Erased =
498      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
499    break;
500  case ISD::VALUETYPE:
501    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
502    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
503    break;
504  default:
505    // Remove it from the CSE Map.
506    Erased = CSEMap.RemoveNode(N);
507    break;
508  }
509#ifndef NDEBUG
510  // Verify that the node was actually in one of the CSE maps, unless it has a
511  // flag result (which cannot be CSE'd) or is one of the special cases that are
512  // not subject to CSE.
513  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
514      !N->isTargetOpcode()) {
515    N->dump(this);
516    cerr << "\n";
517    assert(0 && "Node is not in map!");
518  }
519#endif
520}
521
522/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
523/// has been taken out and modified in some way.  If the specified node already
524/// exists in the CSE maps, do not modify the maps, but return the existing node
525/// instead.  If it doesn't exist, add it and return null.
526///
527SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
528  assert(N->getNumOperands() && "This is a leaf node!");
529  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
530    return 0;    // Never add these nodes.
531
532  // Check that remaining values produced are not flags.
533  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
534    if (N->getValueType(i) == MVT::Flag)
535      return 0;   // Never CSE anything that produces a flag.
536
537  SDNode *New = CSEMap.GetOrInsertNode(N);
538  if (New != N) return New;  // Node already existed.
539  return 0;
540}
541
542/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
543/// were replaced with those specified.  If this node is never memoized,
544/// return null, otherwise return a pointer to the slot it would take.  If a
545/// node already exists with these operands, the slot will be non-null.
546SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
547                                           void *&InsertPos) {
548  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
549    return 0;    // Never add these nodes.
550
551  // Check that remaining values produced are not flags.
552  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
553    if (N->getValueType(i) == MVT::Flag)
554      return 0;   // Never CSE anything that produces a flag.
555
556  SDOperand Ops[] = { Op };
557  FoldingSetNodeID ID;
558  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
559  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
560}
561
562/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
563/// were replaced with those specified.  If this node is never memoized,
564/// return null, otherwise return a pointer to the slot it would take.  If a
565/// node already exists with these operands, the slot will be non-null.
566SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
567                                           SDOperand Op1, SDOperand Op2,
568                                           void *&InsertPos) {
569  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
570    return 0;    // Never add these nodes.
571
572  // Check that remaining values produced are not flags.
573  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
574    if (N->getValueType(i) == MVT::Flag)
575      return 0;   // Never CSE anything that produces a flag.
576
577  SDOperand Ops[] = { Op1, Op2 };
578  FoldingSetNodeID ID;
579  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
580  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
581}
582
583
584/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
585/// were replaced with those specified.  If this node is never memoized,
586/// return null, otherwise return a pointer to the slot it would take.  If a
587/// node already exists with these operands, the slot will be non-null.
588SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
589                                           const SDOperand *Ops,unsigned NumOps,
590                                           void *&InsertPos) {
591  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
592    return 0;    // Never add these nodes.
593
594  // Check that remaining values produced are not flags.
595  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
596    if (N->getValueType(i) == MVT::Flag)
597      return 0;   // Never CSE anything that produces a flag.
598
599  FoldingSetNodeID ID;
600  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
601
602  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
603    ID.AddInteger(LD->getAddressingMode());
604    ID.AddInteger(LD->getExtensionType());
605    ID.AddInteger(LD->getLoadedVT());
606    ID.AddPointer(LD->getSrcValue());
607    ID.AddInteger(LD->getSrcValueOffset());
608    ID.AddInteger(LD->getAlignment());
609    ID.AddInteger(LD->isVolatile());
610  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
611    ID.AddInteger(ST->getAddressingMode());
612    ID.AddInteger(ST->isTruncatingStore());
613    ID.AddInteger(ST->getStoredVT());
614    ID.AddPointer(ST->getSrcValue());
615    ID.AddInteger(ST->getSrcValueOffset());
616    ID.AddInteger(ST->getAlignment());
617    ID.AddInteger(ST->isVolatile());
618  }
619
620  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
621}
622
623
624SelectionDAG::~SelectionDAG() {
625  while (!AllNodes.empty()) {
626    SDNode *N = AllNodes.begin();
627    N->SetNextInBucket(0);
628    if (N->OperandsNeedDelete)
629      delete [] N->OperandList;
630    N->OperandList = 0;
631    N->NumOperands = 0;
632    AllNodes.pop_front();
633  }
634}
635
636SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
637  if (Op.getValueType() == VT) return Op;
638  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
639  return getNode(ISD::AND, Op.getValueType(), Op,
640                 getConstant(Imm, Op.getValueType()));
641}
642
643SDOperand SelectionDAG::getString(const std::string &Val) {
644  StringSDNode *&N = StringNodes[Val];
645  if (!N) {
646    N = new StringSDNode(Val);
647    AllNodes.push_back(N);
648  }
649  return SDOperand(N, 0);
650}
651
652SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
653  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
654  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
655
656  // Mask out any bits that are not valid for this constant.
657  Val &= MVT::getIntVTBitMask(VT);
658
659  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
660  FoldingSetNodeID ID;
661  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
662  ID.AddInteger(Val);
663  void *IP = 0;
664  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
665    return SDOperand(E, 0);
666  SDNode *N = new ConstantSDNode(isT, Val, VT);
667  CSEMap.InsertNode(N, IP);
668  AllNodes.push_back(N);
669  return SDOperand(N, 0);
670}
671
672
673SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
674                                      bool isTarget) {
675  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
676  MVT::ValueType EltVT =
677    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
678  if (EltVT == MVT::f32)
679    Val = (float)Val;  // Mask out extra precision.
680
681  // Do the map lookup using the actual bit pattern for the floating point
682  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
683  // we don't have issues with SNANs.
684  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
685  FoldingSetNodeID ID;
686  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
687  ID.AddDouble(Val);
688  void *IP = 0;
689  SDNode *N = NULL;
690  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
691    if (!MVT::isVector(VT))
692      return SDOperand(N, 0);
693  if (!N) {
694    N = new ConstantFPSDNode(isTarget, Val, EltVT);
695    CSEMap.InsertNode(N, IP);
696    AllNodes.push_back(N);
697  }
698
699  SDOperand Result(N, 0);
700  if (MVT::isVector(VT)) {
701    SmallVector<SDOperand, 8> Ops;
702    Ops.assign(MVT::getVectorNumElements(VT), Result);
703    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
704  }
705  return Result;
706}
707
708SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
709                                         MVT::ValueType VT, int Offset,
710                                         bool isTargetGA) {
711  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
712  unsigned Opc;
713  if (GVar && GVar->isThreadLocal())
714    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
715  else
716    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
717  FoldingSetNodeID ID;
718  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
719  ID.AddPointer(GV);
720  ID.AddInteger(Offset);
721  void *IP = 0;
722  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
723   return SDOperand(E, 0);
724  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
725  CSEMap.InsertNode(N, IP);
726  AllNodes.push_back(N);
727  return SDOperand(N, 0);
728}
729
730SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
731                                      bool isTarget) {
732  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
733  FoldingSetNodeID ID;
734  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
735  ID.AddInteger(FI);
736  void *IP = 0;
737  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
738    return SDOperand(E, 0);
739  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
740  CSEMap.InsertNode(N, IP);
741  AllNodes.push_back(N);
742  return SDOperand(N, 0);
743}
744
745SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
746  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
747  FoldingSetNodeID ID;
748  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
749  ID.AddInteger(JTI);
750  void *IP = 0;
751  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
752    return SDOperand(E, 0);
753  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
754  CSEMap.InsertNode(N, IP);
755  AllNodes.push_back(N);
756  return SDOperand(N, 0);
757}
758
759SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
760                                        unsigned Alignment, int Offset,
761                                        bool isTarget) {
762  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
763  FoldingSetNodeID ID;
764  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
765  ID.AddInteger(Alignment);
766  ID.AddInteger(Offset);
767  ID.AddPointer(C);
768  void *IP = 0;
769  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
770    return SDOperand(E, 0);
771  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
772  CSEMap.InsertNode(N, IP);
773  AllNodes.push_back(N);
774  return SDOperand(N, 0);
775}
776
777
778SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
779                                        MVT::ValueType VT,
780                                        unsigned Alignment, int Offset,
781                                        bool isTarget) {
782  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
783  FoldingSetNodeID ID;
784  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
785  ID.AddInteger(Alignment);
786  ID.AddInteger(Offset);
787  C->AddSelectionDAGCSEId(ID);
788  void *IP = 0;
789  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
790    return SDOperand(E, 0);
791  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
792  CSEMap.InsertNode(N, IP);
793  AllNodes.push_back(N);
794  return SDOperand(N, 0);
795}
796
797
798SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
799  FoldingSetNodeID ID;
800  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
801  ID.AddPointer(MBB);
802  void *IP = 0;
803  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
804    return SDOperand(E, 0);
805  SDNode *N = new BasicBlockSDNode(MBB);
806  CSEMap.InsertNode(N, IP);
807  AllNodes.push_back(N);
808  return SDOperand(N, 0);
809}
810
811SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
812  if ((unsigned)VT >= ValueTypeNodes.size())
813    ValueTypeNodes.resize(VT+1);
814  if (ValueTypeNodes[VT] == 0) {
815    ValueTypeNodes[VT] = new VTSDNode(VT);
816    AllNodes.push_back(ValueTypeNodes[VT]);
817  }
818
819  return SDOperand(ValueTypeNodes[VT], 0);
820}
821
822SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
823  SDNode *&N = ExternalSymbols[Sym];
824  if (N) return SDOperand(N, 0);
825  N = new ExternalSymbolSDNode(false, Sym, VT);
826  AllNodes.push_back(N);
827  return SDOperand(N, 0);
828}
829
830SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
831                                                MVT::ValueType VT) {
832  SDNode *&N = TargetExternalSymbols[Sym];
833  if (N) return SDOperand(N, 0);
834  N = new ExternalSymbolSDNode(true, Sym, VT);
835  AllNodes.push_back(N);
836  return SDOperand(N, 0);
837}
838
839SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
840  if ((unsigned)Cond >= CondCodeNodes.size())
841    CondCodeNodes.resize(Cond+1);
842
843  if (CondCodeNodes[Cond] == 0) {
844    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
845    AllNodes.push_back(CondCodeNodes[Cond]);
846  }
847  return SDOperand(CondCodeNodes[Cond], 0);
848}
849
850SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
851  FoldingSetNodeID ID;
852  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
853  ID.AddInteger(RegNo);
854  void *IP = 0;
855  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
856    return SDOperand(E, 0);
857  SDNode *N = new RegisterSDNode(RegNo, VT);
858  CSEMap.InsertNode(N, IP);
859  AllNodes.push_back(N);
860  return SDOperand(N, 0);
861}
862
863SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
864  assert((!V || isa<PointerType>(V->getType())) &&
865         "SrcValue is not a pointer?");
866
867  FoldingSetNodeID ID;
868  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
869  ID.AddPointer(V);
870  ID.AddInteger(Offset);
871  void *IP = 0;
872  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
873    return SDOperand(E, 0);
874  SDNode *N = new SrcValueSDNode(V, Offset);
875  CSEMap.InsertNode(N, IP);
876  AllNodes.push_back(N);
877  return SDOperand(N, 0);
878}
879
880SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
881                                  SDOperand N2, ISD::CondCode Cond) {
882  // These setcc operations always fold.
883  switch (Cond) {
884  default: break;
885  case ISD::SETFALSE:
886  case ISD::SETFALSE2: return getConstant(0, VT);
887  case ISD::SETTRUE:
888  case ISD::SETTRUE2:  return getConstant(1, VT);
889
890  case ISD::SETOEQ:
891  case ISD::SETOGT:
892  case ISD::SETOGE:
893  case ISD::SETOLT:
894  case ISD::SETOLE:
895  case ISD::SETONE:
896  case ISD::SETO:
897  case ISD::SETUO:
898  case ISD::SETUEQ:
899  case ISD::SETUNE:
900    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
901    break;
902  }
903
904  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
905    uint64_t C2 = N2C->getValue();
906    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
907      uint64_t C1 = N1C->getValue();
908
909      // Sign extend the operands if required
910      if (ISD::isSignedIntSetCC(Cond)) {
911        C1 = N1C->getSignExtended();
912        C2 = N2C->getSignExtended();
913      }
914
915      switch (Cond) {
916      default: assert(0 && "Unknown integer setcc!");
917      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
918      case ISD::SETNE:  return getConstant(C1 != C2, VT);
919      case ISD::SETULT: return getConstant(C1 <  C2, VT);
920      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
921      case ISD::SETULE: return getConstant(C1 <= C2, VT);
922      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
923      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
924      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
925      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
926      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
927      }
928    }
929  }
930  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
931    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
932      double C1 = N1C->getValue(), C2 = N2C->getValue();
933
934      switch (Cond) {
935      default: break; // FIXME: Implement the rest of these!
936      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
937      case ISD::SETNE:  return getConstant(C1 != C2, VT);
938      case ISD::SETLT:  return getConstant(C1 < C2, VT);
939      case ISD::SETGT:  return getConstant(C1 > C2, VT);
940      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
941      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
942      }
943    } else {
944      // Ensure that the constant occurs on the RHS.
945      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
946    }
947
948  // Could not fold it.
949  return SDOperand();
950}
951
952/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
953/// this predicate to simplify operations downstream.  Mask is known to be zero
954/// for bits that V cannot have.
955bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
956                                     unsigned Depth) const {
957  // The masks are not wide enough to represent this type!  Should use APInt.
958  if (Op.getValueType() == MVT::i128)
959    return false;
960
961  uint64_t KnownZero, KnownOne;
962  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
963  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
964  return (KnownZero & Mask) == Mask;
965}
966
967/// ComputeMaskedBits - Determine which of the bits specified in Mask are
968/// known to be either zero or one and return them in the KnownZero/KnownOne
969/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
970/// processing.
971void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
972                                     uint64_t &KnownZero, uint64_t &KnownOne,
973                                     unsigned Depth) const {
974  KnownZero = KnownOne = 0;   // Don't know anything.
975  if (Depth == 6 || Mask == 0)
976    return;  // Limit search depth.
977
978  // The masks are not wide enough to represent this type!  Should use APInt.
979  if (Op.getValueType() == MVT::i128)
980    return;
981
982  uint64_t KnownZero2, KnownOne2;
983
984  switch (Op.getOpcode()) {
985  case ISD::Constant:
986    // We know all of the bits for a constant!
987    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
988    KnownZero = ~KnownOne & Mask;
989    return;
990  case ISD::AND:
991    // If either the LHS or the RHS are Zero, the result is zero.
992    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
993    Mask &= ~KnownZero;
994    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
995    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
996    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
997
998    // Output known-1 bits are only known if set in both the LHS & RHS.
999    KnownOne &= KnownOne2;
1000    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1001    KnownZero |= KnownZero2;
1002    return;
1003  case ISD::OR:
1004    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1005    Mask &= ~KnownOne;
1006    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1007    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1008    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1009
1010    // Output known-0 bits are only known if clear in both the LHS & RHS.
1011    KnownZero &= KnownZero2;
1012    // Output known-1 are known to be set if set in either the LHS | RHS.
1013    KnownOne |= KnownOne2;
1014    return;
1015  case ISD::XOR: {
1016    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1017    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1018    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1019    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1020
1021    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1022    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1023    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1024    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1025    KnownZero = KnownZeroOut;
1026    return;
1027  }
1028  case ISD::SELECT:
1029    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1030    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1031    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1032    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1033
1034    // Only known if known in both the LHS and RHS.
1035    KnownOne &= KnownOne2;
1036    KnownZero &= KnownZero2;
1037    return;
1038  case ISD::SELECT_CC:
1039    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1040    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1041    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1042    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1043
1044    // Only known if known in both the LHS and RHS.
1045    KnownOne &= KnownOne2;
1046    KnownZero &= KnownZero2;
1047    return;
1048  case ISD::SETCC:
1049    // If we know the result of a setcc has the top bits zero, use this info.
1050    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1051      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1052    return;
1053  case ISD::SHL:
1054    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1055    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1056      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1057                        KnownZero, KnownOne, Depth+1);
1058      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1059      KnownZero <<= SA->getValue();
1060      KnownOne  <<= SA->getValue();
1061      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1062    }
1063    return;
1064  case ISD::SRL:
1065    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1066    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1067      MVT::ValueType VT = Op.getValueType();
1068      unsigned ShAmt = SA->getValue();
1069
1070      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1071      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1072                        KnownZero, KnownOne, Depth+1);
1073      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1074      KnownZero &= TypeMask;
1075      KnownOne  &= TypeMask;
1076      KnownZero >>= ShAmt;
1077      KnownOne  >>= ShAmt;
1078
1079      uint64_t HighBits = (1ULL << ShAmt)-1;
1080      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1081      KnownZero |= HighBits;  // High bits known zero.
1082    }
1083    return;
1084  case ISD::SRA:
1085    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1086      MVT::ValueType VT = Op.getValueType();
1087      unsigned ShAmt = SA->getValue();
1088
1089      // Compute the new bits that are at the top now.
1090      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1091
1092      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1093      // If any of the demanded bits are produced by the sign extension, we also
1094      // demand the input sign bit.
1095      uint64_t HighBits = (1ULL << ShAmt)-1;
1096      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1097      if (HighBits & Mask)
1098        InDemandedMask |= MVT::getIntVTSignBit(VT);
1099
1100      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1101                        Depth+1);
1102      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1103      KnownZero &= TypeMask;
1104      KnownOne  &= TypeMask;
1105      KnownZero >>= ShAmt;
1106      KnownOne  >>= ShAmt;
1107
1108      // Handle the sign bits.
1109      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1110      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1111
1112      if (KnownZero & SignBit) {
1113        KnownZero |= HighBits;  // New bits are known zero.
1114      } else if (KnownOne & SignBit) {
1115        KnownOne  |= HighBits;  // New bits are known one.
1116      }
1117    }
1118    return;
1119  case ISD::SIGN_EXTEND_INREG: {
1120    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1121
1122    // Sign extension.  Compute the demanded bits in the result that are not
1123    // present in the input.
1124    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1125
1126    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1127    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1128
1129    // If the sign extended bits are demanded, we know that the sign
1130    // bit is demanded.
1131    if (NewBits)
1132      InputDemandedBits |= InSignBit;
1133
1134    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1135                      KnownZero, KnownOne, Depth+1);
1136    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1137
1138    // If the sign bit of the input is known set or clear, then we know the
1139    // top bits of the result.
1140    if (KnownZero & InSignBit) {          // Input sign bit known clear
1141      KnownZero |= NewBits;
1142      KnownOne  &= ~NewBits;
1143    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1144      KnownOne  |= NewBits;
1145      KnownZero &= ~NewBits;
1146    } else {                              // Input sign bit unknown
1147      KnownZero &= ~NewBits;
1148      KnownOne  &= ~NewBits;
1149    }
1150    return;
1151  }
1152  case ISD::CTTZ:
1153  case ISD::CTLZ:
1154  case ISD::CTPOP: {
1155    MVT::ValueType VT = Op.getValueType();
1156    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1157    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1158    KnownOne  = 0;
1159    return;
1160  }
1161  case ISD::LOAD: {
1162    if (ISD::isZEXTLoad(Op.Val)) {
1163      LoadSDNode *LD = cast<LoadSDNode>(Op);
1164      MVT::ValueType VT = LD->getLoadedVT();
1165      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1166    }
1167    return;
1168  }
1169  case ISD::ZERO_EXTEND: {
1170    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1171    uint64_t NewBits = (~InMask) & Mask;
1172    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1173                      KnownOne, Depth+1);
1174    KnownZero |= NewBits & Mask;
1175    KnownOne  &= ~NewBits;
1176    return;
1177  }
1178  case ISD::SIGN_EXTEND: {
1179    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1180    unsigned InBits    = MVT::getSizeInBits(InVT);
1181    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1182    uint64_t InSignBit = 1ULL << (InBits-1);
1183    uint64_t NewBits   = (~InMask) & Mask;
1184    uint64_t InDemandedBits = Mask & InMask;
1185
1186    // If any of the sign extended bits are demanded, we know that the sign
1187    // bit is demanded.
1188    if (NewBits & Mask)
1189      InDemandedBits |= InSignBit;
1190
1191    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1192                      KnownOne, Depth+1);
1193    // If the sign bit is known zero or one, the  top bits match.
1194    if (KnownZero & InSignBit) {
1195      KnownZero |= NewBits;
1196      KnownOne  &= ~NewBits;
1197    } else if (KnownOne & InSignBit) {
1198      KnownOne  |= NewBits;
1199      KnownZero &= ~NewBits;
1200    } else {   // Otherwise, top bits aren't known.
1201      KnownOne  &= ~NewBits;
1202      KnownZero &= ~NewBits;
1203    }
1204    return;
1205  }
1206  case ISD::ANY_EXTEND: {
1207    MVT::ValueType VT = Op.getOperand(0).getValueType();
1208    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1209                      KnownZero, KnownOne, Depth+1);
1210    return;
1211  }
1212  case ISD::TRUNCATE: {
1213    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1214    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1215    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1216    KnownZero &= OutMask;
1217    KnownOne &= OutMask;
1218    break;
1219  }
1220  case ISD::AssertZext: {
1221    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1222    uint64_t InMask = MVT::getIntVTBitMask(VT);
1223    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1224                      KnownOne, Depth+1);
1225    KnownZero |= (~InMask) & Mask;
1226    return;
1227  }
1228  case ISD::ADD: {
1229    // If either the LHS or the RHS are Zero, the result is zero.
1230    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1231    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1232    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1233    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1234
1235    // Output known-0 bits are known if clear or set in both the low clear bits
1236    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1237    // low 3 bits clear.
1238    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1239                                     CountTrailingZeros_64(~KnownZero2));
1240
1241    KnownZero = (1ULL << KnownZeroOut) - 1;
1242    KnownOne = 0;
1243    return;
1244  }
1245  case ISD::SUB: {
1246    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1247    if (!CLHS) return;
1248
1249    // We know that the top bits of C-X are clear if X contains less bits
1250    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1251    // positive if we can prove that X is >= 0 and < 16.
1252    MVT::ValueType VT = CLHS->getValueType(0);
1253    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1254      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1255      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1256      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1257      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1258
1259      // If all of the MaskV bits are known to be zero, then we know the output
1260      // top bits are zero, because we now know that the output is from [0-C].
1261      if ((KnownZero & MaskV) == MaskV) {
1262        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1263        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1264        KnownOne = 0;   // No one bits known.
1265      } else {
1266        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1267      }
1268    }
1269    return;
1270  }
1271  default:
1272    // Allow the target to implement this method for its nodes.
1273    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1274  case ISD::INTRINSIC_WO_CHAIN:
1275  case ISD::INTRINSIC_W_CHAIN:
1276  case ISD::INTRINSIC_VOID:
1277      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1278    }
1279    return;
1280  }
1281}
1282
1283/// ComputeNumSignBits - Return the number of times the sign bit of the
1284/// register is replicated into the other bits.  We know that at least 1 bit
1285/// is always equal to the sign bit (itself), but other cases can give us
1286/// information.  For example, immediately after an "SRA X, 2", we know that
1287/// the top 3 bits are all equal to each other, so we return 3.
1288unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1289  MVT::ValueType VT = Op.getValueType();
1290  assert(MVT::isInteger(VT) && "Invalid VT!");
1291  unsigned VTBits = MVT::getSizeInBits(VT);
1292  unsigned Tmp, Tmp2;
1293
1294  if (Depth == 6)
1295    return 1;  // Limit search depth.
1296
1297  switch (Op.getOpcode()) {
1298  default: break;
1299  case ISD::AssertSext:
1300    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1301    return VTBits-Tmp+1;
1302  case ISD::AssertZext:
1303    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1304    return VTBits-Tmp;
1305
1306  case ISD::Constant: {
1307    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1308    // If negative, invert the bits, then look at it.
1309    if (Val & MVT::getIntVTSignBit(VT))
1310      Val = ~Val;
1311
1312    // Shift the bits so they are the leading bits in the int64_t.
1313    Val <<= 64-VTBits;
1314
1315    // Return # leading zeros.  We use 'min' here in case Val was zero before
1316    // shifting.  We don't want to return '64' as for an i32 "0".
1317    return std::min(VTBits, CountLeadingZeros_64(Val));
1318  }
1319
1320  case ISD::SIGN_EXTEND:
1321    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1322    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1323
1324  case ISD::SIGN_EXTEND_INREG:
1325    // Max of the input and what this extends.
1326    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1327    Tmp = VTBits-Tmp+1;
1328
1329    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1330    return std::max(Tmp, Tmp2);
1331
1332  case ISD::SRA:
1333    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1334    // SRA X, C   -> adds C sign bits.
1335    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1336      Tmp += C->getValue();
1337      if (Tmp > VTBits) Tmp = VTBits;
1338    }
1339    return Tmp;
1340  case ISD::SHL:
1341    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1342      // shl destroys sign bits.
1343      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1344      if (C->getValue() >= VTBits ||      // Bad shift.
1345          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1346      return Tmp - C->getValue();
1347    }
1348    break;
1349  case ISD::AND:
1350  case ISD::OR:
1351  case ISD::XOR:    // NOT is handled here.
1352    // Logical binary ops preserve the number of sign bits.
1353    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1354    if (Tmp == 1) return 1;  // Early out.
1355    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1356    return std::min(Tmp, Tmp2);
1357
1358  case ISD::SELECT:
1359    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1360    if (Tmp == 1) return 1;  // Early out.
1361    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1362    return std::min(Tmp, Tmp2);
1363
1364  case ISD::SETCC:
1365    // If setcc returns 0/-1, all bits are sign bits.
1366    if (TLI.getSetCCResultContents() ==
1367        TargetLowering::ZeroOrNegativeOneSetCCResult)
1368      return VTBits;
1369    break;
1370  case ISD::ROTL:
1371  case ISD::ROTR:
1372    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1373      unsigned RotAmt = C->getValue() & (VTBits-1);
1374
1375      // Handle rotate right by N like a rotate left by 32-N.
1376      if (Op.getOpcode() == ISD::ROTR)
1377        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1378
1379      // If we aren't rotating out all of the known-in sign bits, return the
1380      // number that are left.  This handles rotl(sext(x), 1) for example.
1381      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1382      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1383    }
1384    break;
1385  case ISD::ADD:
1386    // Add can have at most one carry bit.  Thus we know that the output
1387    // is, at worst, one more bit than the inputs.
1388    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1389    if (Tmp == 1) return 1;  // Early out.
1390
1391    // Special case decrementing a value (ADD X, -1):
1392    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1393      if (CRHS->isAllOnesValue()) {
1394        uint64_t KnownZero, KnownOne;
1395        uint64_t Mask = MVT::getIntVTBitMask(VT);
1396        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1397
1398        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1399        // sign bits set.
1400        if ((KnownZero|1) == Mask)
1401          return VTBits;
1402
1403        // If we are subtracting one from a positive number, there is no carry
1404        // out of the result.
1405        if (KnownZero & MVT::getIntVTSignBit(VT))
1406          return Tmp;
1407      }
1408
1409    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1410    if (Tmp2 == 1) return 1;
1411      return std::min(Tmp, Tmp2)-1;
1412    break;
1413
1414  case ISD::SUB:
1415    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1416    if (Tmp2 == 1) return 1;
1417
1418    // Handle NEG.
1419    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1420      if (CLHS->getValue() == 0) {
1421        uint64_t KnownZero, KnownOne;
1422        uint64_t Mask = MVT::getIntVTBitMask(VT);
1423        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1424        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1425        // sign bits set.
1426        if ((KnownZero|1) == Mask)
1427          return VTBits;
1428
1429        // If the input is known to be positive (the sign bit is known clear),
1430        // the output of the NEG has the same number of sign bits as the input.
1431        if (KnownZero & MVT::getIntVTSignBit(VT))
1432          return Tmp2;
1433
1434        // Otherwise, we treat this like a SUB.
1435      }
1436
1437    // Sub can have at most one carry bit.  Thus we know that the output
1438    // is, at worst, one more bit than the inputs.
1439    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1440    if (Tmp == 1) return 1;  // Early out.
1441      return std::min(Tmp, Tmp2)-1;
1442    break;
1443  case ISD::TRUNCATE:
1444    // FIXME: it's tricky to do anything useful for this, but it is an important
1445    // case for targets like X86.
1446    break;
1447  }
1448
1449  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1450  if (Op.getOpcode() == ISD::LOAD) {
1451    LoadSDNode *LD = cast<LoadSDNode>(Op);
1452    unsigned ExtType = LD->getExtensionType();
1453    switch (ExtType) {
1454    default: break;
1455    case ISD::SEXTLOAD:    // '17' bits known
1456      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1457      return VTBits-Tmp+1;
1458    case ISD::ZEXTLOAD:    // '16' bits known
1459      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1460      return VTBits-Tmp;
1461    }
1462  }
1463
1464  // Allow the target to implement this method for its nodes.
1465  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1466      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1467      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1468      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1469    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1470    if (NumBits > 1) return NumBits;
1471  }
1472
1473  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1474  // use this information.
1475  uint64_t KnownZero, KnownOne;
1476  uint64_t Mask = MVT::getIntVTBitMask(VT);
1477  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1478
1479  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1480  if (KnownZero & SignBit) {        // SignBit is 0
1481    Mask = KnownZero;
1482  } else if (KnownOne & SignBit) {  // SignBit is 1;
1483    Mask = KnownOne;
1484  } else {
1485    // Nothing known.
1486    return 1;
1487  }
1488
1489  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1490  // the number of identical bits in the top of the input value.
1491  Mask ^= ~0ULL;
1492  Mask <<= 64-VTBits;
1493  // Return # leading zeros.  We use 'min' here in case Val was zero before
1494  // shifting.  We don't want to return '64' as for an i32 "0".
1495  return std::min(VTBits, CountLeadingZeros_64(Mask));
1496}
1497
1498
1499/// getNode - Gets or creates the specified node.
1500///
1501SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1502  FoldingSetNodeID ID;
1503  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1504  void *IP = 0;
1505  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1506    return SDOperand(E, 0);
1507  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1508  CSEMap.InsertNode(N, IP);
1509
1510  AllNodes.push_back(N);
1511  return SDOperand(N, 0);
1512}
1513
1514SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1515                                SDOperand Operand) {
1516  unsigned Tmp1;
1517  // Constant fold unary operations with an integer constant operand.
1518  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1519    uint64_t Val = C->getValue();
1520    switch (Opcode) {
1521    default: break;
1522    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1523    case ISD::ANY_EXTEND:
1524    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1525    case ISD::TRUNCATE:    return getConstant(Val, VT);
1526    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1527    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1528    case ISD::BIT_CONVERT:
1529      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1530        return getConstantFP(BitsToFloat(Val), VT);
1531      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1532        return getConstantFP(BitsToDouble(Val), VT);
1533      break;
1534    case ISD::BSWAP:
1535      switch(VT) {
1536      default: assert(0 && "Invalid bswap!"); break;
1537      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1538      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1539      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1540      }
1541      break;
1542    case ISD::CTPOP:
1543      switch(VT) {
1544      default: assert(0 && "Invalid ctpop!"); break;
1545      case MVT::i1: return getConstant(Val != 0, VT);
1546      case MVT::i8:
1547        Tmp1 = (unsigned)Val & 0xFF;
1548        return getConstant(CountPopulation_32(Tmp1), VT);
1549      case MVT::i16:
1550        Tmp1 = (unsigned)Val & 0xFFFF;
1551        return getConstant(CountPopulation_32(Tmp1), VT);
1552      case MVT::i32:
1553        return getConstant(CountPopulation_32((unsigned)Val), VT);
1554      case MVT::i64:
1555        return getConstant(CountPopulation_64(Val), VT);
1556      }
1557    case ISD::CTLZ:
1558      switch(VT) {
1559      default: assert(0 && "Invalid ctlz!"); break;
1560      case MVT::i1: return getConstant(Val == 0, VT);
1561      case MVT::i8:
1562        Tmp1 = (unsigned)Val & 0xFF;
1563        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1564      case MVT::i16:
1565        Tmp1 = (unsigned)Val & 0xFFFF;
1566        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1567      case MVT::i32:
1568        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1569      case MVT::i64:
1570        return getConstant(CountLeadingZeros_64(Val), VT);
1571      }
1572    case ISD::CTTZ:
1573      switch(VT) {
1574      default: assert(0 && "Invalid cttz!"); break;
1575      case MVT::i1: return getConstant(Val == 0, VT);
1576      case MVT::i8:
1577        Tmp1 = (unsigned)Val | 0x100;
1578        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1579      case MVT::i16:
1580        Tmp1 = (unsigned)Val | 0x10000;
1581        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1582      case MVT::i32:
1583        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1584      case MVT::i64:
1585        return getConstant(CountTrailingZeros_64(Val), VT);
1586      }
1587    }
1588  }
1589
1590  // Constant fold unary operations with an floating point constant operand.
1591  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1592    switch (Opcode) {
1593    case ISD::FNEG:
1594      return getConstantFP(-C->getValue(), VT);
1595    case ISD::FABS:
1596      return getConstantFP(fabs(C->getValue()), VT);
1597    case ISD::FP_ROUND:
1598    case ISD::FP_EXTEND:
1599      return getConstantFP(C->getValue(), VT);
1600    case ISD::FP_TO_SINT:
1601      return getConstant((int64_t)C->getValue(), VT);
1602    case ISD::FP_TO_UINT:
1603      return getConstant((uint64_t)C->getValue(), VT);
1604    case ISD::BIT_CONVERT:
1605      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1606        return getConstant(FloatToBits(C->getValue()), VT);
1607      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1608        return getConstant(DoubleToBits(C->getValue()), VT);
1609      break;
1610    }
1611
1612  unsigned OpOpcode = Operand.Val->getOpcode();
1613  switch (Opcode) {
1614  case ISD::TokenFactor:
1615    return Operand;         // Factor of one node?  No factor.
1616  case ISD::FP_ROUND:
1617  case ISD::FP_EXTEND:
1618    assert(MVT::isFloatingPoint(VT) &&
1619           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1620    break;
1621  case ISD::SIGN_EXTEND:
1622    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1623           "Invalid SIGN_EXTEND!");
1624    if (Operand.getValueType() == VT) return Operand;   // noop extension
1625    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1626    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1627      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1628    break;
1629  case ISD::ZERO_EXTEND:
1630    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1631           "Invalid ZERO_EXTEND!");
1632    if (Operand.getValueType() == VT) return Operand;   // noop extension
1633    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1634    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1635      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1636    break;
1637  case ISD::ANY_EXTEND:
1638    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1639           "Invalid ANY_EXTEND!");
1640    if (Operand.getValueType() == VT) return Operand;   // noop extension
1641    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1642    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1643      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1644      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1645    break;
1646  case ISD::TRUNCATE:
1647    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1648           "Invalid TRUNCATE!");
1649    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1650    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1651    if (OpOpcode == ISD::TRUNCATE)
1652      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1653    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1654             OpOpcode == ISD::ANY_EXTEND) {
1655      // If the source is smaller than the dest, we still need an extend.
1656      if (Operand.Val->getOperand(0).getValueType() < VT)
1657        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1658      else if (Operand.Val->getOperand(0).getValueType() > VT)
1659        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1660      else
1661        return Operand.Val->getOperand(0);
1662    }
1663    break;
1664  case ISD::BIT_CONVERT:
1665    // Basic sanity checking.
1666    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1667           && "Cannot BIT_CONVERT between types of different sizes!");
1668    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1669    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1670      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1671    if (OpOpcode == ISD::UNDEF)
1672      return getNode(ISD::UNDEF, VT);
1673    break;
1674  case ISD::SCALAR_TO_VECTOR:
1675    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1676           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1677           "Illegal SCALAR_TO_VECTOR node!");
1678    break;
1679  case ISD::FNEG:
1680    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1681      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1682                     Operand.Val->getOperand(0));
1683    if (OpOpcode == ISD::FNEG)  // --X -> X
1684      return Operand.Val->getOperand(0);
1685    break;
1686  case ISD::FABS:
1687    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1688      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1689    break;
1690  }
1691
1692  SDNode *N;
1693  SDVTList VTs = getVTList(VT);
1694  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1695    FoldingSetNodeID ID;
1696    SDOperand Ops[1] = { Operand };
1697    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1698    void *IP = 0;
1699    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1700      return SDOperand(E, 0);
1701    N = new UnarySDNode(Opcode, VTs, Operand);
1702    CSEMap.InsertNode(N, IP);
1703  } else {
1704    N = new UnarySDNode(Opcode, VTs, Operand);
1705  }
1706  AllNodes.push_back(N);
1707  return SDOperand(N, 0);
1708}
1709
1710
1711
1712SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1713                                SDOperand N1, SDOperand N2) {
1714#ifndef NDEBUG
1715  switch (Opcode) {
1716  case ISD::TokenFactor:
1717    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1718           N2.getValueType() == MVT::Other && "Invalid token factor!");
1719    break;
1720  case ISD::AND:
1721  case ISD::OR:
1722  case ISD::XOR:
1723  case ISD::UDIV:
1724  case ISD::UREM:
1725  case ISD::MULHU:
1726  case ISD::MULHS:
1727    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1728    // fall through
1729  case ISD::ADD:
1730  case ISD::SUB:
1731  case ISD::MUL:
1732  case ISD::SDIV:
1733  case ISD::SREM:
1734    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1735    // fall through.
1736  case ISD::FADD:
1737  case ISD::FSUB:
1738  case ISD::FMUL:
1739  case ISD::FDIV:
1740  case ISD::FREM:
1741    assert(N1.getValueType() == N2.getValueType() &&
1742           N1.getValueType() == VT && "Binary operator types must match!");
1743    break;
1744  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1745    assert(N1.getValueType() == VT &&
1746           MVT::isFloatingPoint(N1.getValueType()) &&
1747           MVT::isFloatingPoint(N2.getValueType()) &&
1748           "Invalid FCOPYSIGN!");
1749    break;
1750  case ISD::SHL:
1751  case ISD::SRA:
1752  case ISD::SRL:
1753  case ISD::ROTL:
1754  case ISD::ROTR:
1755    assert(VT == N1.getValueType() &&
1756           "Shift operators return type must be the same as their first arg");
1757    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1758           VT != MVT::i1 && "Shifts only work on integers");
1759    break;
1760  case ISD::FP_ROUND_INREG: {
1761    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1762    assert(VT == N1.getValueType() && "Not an inreg round!");
1763    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1764           "Cannot FP_ROUND_INREG integer types");
1765    assert(EVT <= VT && "Not rounding down!");
1766    break;
1767  }
1768  case ISD::AssertSext:
1769  case ISD::AssertZext:
1770  case ISD::SIGN_EXTEND_INREG: {
1771    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1772    assert(VT == N1.getValueType() && "Not an inreg extend!");
1773    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1774           "Cannot *_EXTEND_INREG FP types");
1775    assert(EVT <= VT && "Not extending!");
1776  }
1777
1778  default: break;
1779  }
1780#endif
1781
1782  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1783  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1784  if (N1C) {
1785    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1786      int64_t Val = N1C->getValue();
1787      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1788      Val <<= 64-FromBits;
1789      Val >>= 64-FromBits;
1790      return getConstant(Val, VT);
1791    }
1792
1793    if (N2C) {
1794      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1795      switch (Opcode) {
1796      case ISD::ADD: return getConstant(C1 + C2, VT);
1797      case ISD::SUB: return getConstant(C1 - C2, VT);
1798      case ISD::MUL: return getConstant(C1 * C2, VT);
1799      case ISD::UDIV:
1800        if (C2) return getConstant(C1 / C2, VT);
1801        break;
1802      case ISD::UREM :
1803        if (C2) return getConstant(C1 % C2, VT);
1804        break;
1805      case ISD::SDIV :
1806        if (C2) return getConstant(N1C->getSignExtended() /
1807                                   N2C->getSignExtended(), VT);
1808        break;
1809      case ISD::SREM :
1810        if (C2) return getConstant(N1C->getSignExtended() %
1811                                   N2C->getSignExtended(), VT);
1812        break;
1813      case ISD::AND  : return getConstant(C1 & C2, VT);
1814      case ISD::OR   : return getConstant(C1 | C2, VT);
1815      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1816      case ISD::SHL  : return getConstant(C1 << C2, VT);
1817      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1818      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1819      case ISD::ROTL :
1820        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1821                           VT);
1822      case ISD::ROTR :
1823        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1824                           VT);
1825      default: break;
1826      }
1827    } else {      // Cannonicalize constant to RHS if commutative
1828      if (isCommutativeBinOp(Opcode)) {
1829        std::swap(N1C, N2C);
1830        std::swap(N1, N2);
1831      }
1832    }
1833  }
1834
1835  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1836  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1837  if (N1CFP) {
1838    if (N2CFP) {
1839      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1840      switch (Opcode) {
1841      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1842      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1843      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1844      case ISD::FDIV:
1845        if (C2) return getConstantFP(C1 / C2, VT);
1846        break;
1847      case ISD::FREM :
1848        if (C2) return getConstantFP(fmod(C1, C2), VT);
1849        break;
1850      case ISD::FCOPYSIGN: {
1851        union {
1852          double   F;
1853          uint64_t I;
1854        } u1;
1855        u1.F = C1;
1856        if (int64_t(DoubleToBits(C2)) < 0)  // Sign bit of RHS set?
1857          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1858        else
1859          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1860        return getConstantFP(u1.F, VT);
1861      }
1862      default: break;
1863      }
1864    } else {      // Cannonicalize constant to RHS if commutative
1865      if (isCommutativeBinOp(Opcode)) {
1866        std::swap(N1CFP, N2CFP);
1867        std::swap(N1, N2);
1868      }
1869    }
1870  }
1871
1872  // Canonicalize an UNDEF to the RHS, even over a constant.
1873  if (N1.getOpcode() == ISD::UNDEF) {
1874    if (isCommutativeBinOp(Opcode)) {
1875      std::swap(N1, N2);
1876    } else {
1877      switch (Opcode) {
1878      case ISD::FP_ROUND_INREG:
1879      case ISD::SIGN_EXTEND_INREG:
1880      case ISD::SUB:
1881      case ISD::FSUB:
1882      case ISD::FDIV:
1883      case ISD::FREM:
1884      case ISD::SRA:
1885        return N1;     // fold op(undef, arg2) -> undef
1886      case ISD::UDIV:
1887      case ISD::SDIV:
1888      case ISD::UREM:
1889      case ISD::SREM:
1890      case ISD::SRL:
1891      case ISD::SHL:
1892        if (!MVT::isVector(VT))
1893          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1894        // For vectors, we can't easily build an all zero vector, just return
1895        // the LHS.
1896        return N2;
1897      }
1898    }
1899  }
1900
1901  // Fold a bunch of operators when the RHS is undef.
1902  if (N2.getOpcode() == ISD::UNDEF) {
1903    switch (Opcode) {
1904    case ISD::ADD:
1905    case ISD::ADDC:
1906    case ISD::ADDE:
1907    case ISD::SUB:
1908    case ISD::FADD:
1909    case ISD::FSUB:
1910    case ISD::FMUL:
1911    case ISD::FDIV:
1912    case ISD::FREM:
1913    case ISD::UDIV:
1914    case ISD::SDIV:
1915    case ISD::UREM:
1916    case ISD::SREM:
1917    case ISD::XOR:
1918      return N2;       // fold op(arg1, undef) -> undef
1919    case ISD::MUL:
1920    case ISD::AND:
1921    case ISD::SRL:
1922    case ISD::SHL:
1923      if (!MVT::isVector(VT))
1924        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1925      // For vectors, we can't easily build an all zero vector, just return
1926      // the LHS.
1927      return N1;
1928    case ISD::OR:
1929      if (!MVT::isVector(VT))
1930        return getConstant(MVT::getIntVTBitMask(VT), VT);
1931      // For vectors, we can't easily build an all one vector, just return
1932      // the LHS.
1933      return N1;
1934    case ISD::SRA:
1935      return N1;
1936    }
1937  }
1938
1939  // Fold operations.
1940  switch (Opcode) {
1941  case ISD::TokenFactor:
1942    // Fold trivial token factors.
1943    if (N1.getOpcode() == ISD::EntryToken) return N2;
1944    if (N2.getOpcode() == ISD::EntryToken) return N1;
1945    break;
1946
1947  case ISD::AND:
1948    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1949    // worth handling here.
1950    if (N2C && N2C->getValue() == 0)
1951      return N2;
1952    break;
1953  case ISD::OR:
1954  case ISD::XOR:
1955    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1956    // worth handling here.
1957    if (N2C && N2C->getValue() == 0)
1958      return N1;
1959    break;
1960  case ISD::FP_ROUND_INREG:
1961    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1962    break;
1963  case ISD::SIGN_EXTEND_INREG: {
1964    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1965    if (EVT == VT) return N1;  // Not actually extending
1966    break;
1967  }
1968  case ISD::EXTRACT_VECTOR_ELT:
1969    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
1970
1971    // EXTRACT_VECTOR_ELT of BUILD_PAIR is often formed while lowering is
1972    // expanding copies of large vectors from registers.
1973    if (N1.getOpcode() == ISD::BUILD_PAIR) {
1974      unsigned NewNumElts = MVT::getVectorNumElements(N1.getValueType()) / 2;
1975      bool Low = N2C->getValue() < NewNumElts;
1976      return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(!Low),
1977                     Low ? N2 : getConstant(N2C->getValue() - NewNumElts,
1978                                            N2.getValueType()));
1979    }
1980    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
1981    // expanding large vector constants.
1982    if (N1.getOpcode() == ISD::BUILD_VECTOR)
1983      return N1.getOperand(N2C->getValue());
1984    break;
1985  case ISD::EXTRACT_ELEMENT:
1986    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1987
1988    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
1989    // 64-bit integers into 32-bit parts.  Instead of building the extract of
1990    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
1991    if (N1.getOpcode() == ISD::BUILD_PAIR)
1992      return N1.getOperand(N2C->getValue());
1993
1994    // EXTRACT_ELEMENT of a constant int is also very common.
1995    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
1996      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
1997      return getConstant(C->getValue() >> Shift, VT);
1998    }
1999    break;
2000
2001  // FIXME: figure out how to safely handle things like
2002  // int foo(int x) { return 1 << (x & 255); }
2003  // int bar() { return foo(256); }
2004#if 0
2005  case ISD::SHL:
2006  case ISD::SRL:
2007  case ISD::SRA:
2008    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2009        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2010      return getNode(Opcode, VT, N1, N2.getOperand(0));
2011    else if (N2.getOpcode() == ISD::AND)
2012      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2013        // If the and is only masking out bits that cannot effect the shift,
2014        // eliminate the and.
2015        unsigned NumBits = MVT::getSizeInBits(VT);
2016        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2017          return getNode(Opcode, VT, N1, N2.getOperand(0));
2018      }
2019    break;
2020#endif
2021  }
2022
2023  // Memoize this node if possible.
2024  SDNode *N;
2025  SDVTList VTs = getVTList(VT);
2026  if (VT != MVT::Flag) {
2027    SDOperand Ops[] = { N1, N2 };
2028    FoldingSetNodeID ID;
2029    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2030    void *IP = 0;
2031    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2032      return SDOperand(E, 0);
2033    N = new BinarySDNode(Opcode, VTs, N1, N2);
2034    CSEMap.InsertNode(N, IP);
2035  } else {
2036    N = new BinarySDNode(Opcode, VTs, N1, N2);
2037  }
2038
2039  AllNodes.push_back(N);
2040  return SDOperand(N, 0);
2041}
2042
2043SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2044                                SDOperand N1, SDOperand N2, SDOperand N3) {
2045  // Perform various simplifications.
2046  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2047  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2048  switch (Opcode) {
2049  case ISD::SETCC: {
2050    // Use FoldSetCC to simplify SETCC's.
2051    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2052    if (Simp.Val) return Simp;
2053    break;
2054  }
2055  case ISD::SELECT:
2056    if (N1C)
2057      if (N1C->getValue())
2058        return N2;             // select true, X, Y -> X
2059      else
2060        return N3;             // select false, X, Y -> Y
2061
2062    if (N2 == N3) return N2;   // select C, X, X -> X
2063    break;
2064  case ISD::BRCOND:
2065    if (N2C)
2066      if (N2C->getValue()) // Unconditional branch
2067        return getNode(ISD::BR, MVT::Other, N1, N3);
2068      else
2069        return N1;         // Never-taken branch
2070    break;
2071  case ISD::VECTOR_SHUFFLE:
2072    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2073           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2074           N3.getOpcode() == ISD::BUILD_VECTOR &&
2075           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2076           "Illegal VECTOR_SHUFFLE node!");
2077    break;
2078  case ISD::BIT_CONVERT:
2079    // Fold bit_convert nodes from a type to themselves.
2080    if (N1.getValueType() == VT)
2081      return N1;
2082    break;
2083  }
2084
2085  // Memoize node if it doesn't produce a flag.
2086  SDNode *N;
2087  SDVTList VTs = getVTList(VT);
2088  if (VT != MVT::Flag) {
2089    SDOperand Ops[] = { N1, N2, N3 };
2090    FoldingSetNodeID ID;
2091    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2092    void *IP = 0;
2093    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2094      return SDOperand(E, 0);
2095    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2096    CSEMap.InsertNode(N, IP);
2097  } else {
2098    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2099  }
2100  AllNodes.push_back(N);
2101  return SDOperand(N, 0);
2102}
2103
2104SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2105                                SDOperand N1, SDOperand N2, SDOperand N3,
2106                                SDOperand N4) {
2107  SDOperand Ops[] = { N1, N2, N3, N4 };
2108  return getNode(Opcode, VT, Ops, 4);
2109}
2110
2111SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2112                                SDOperand N1, SDOperand N2, SDOperand N3,
2113                                SDOperand N4, SDOperand N5) {
2114  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2115  return getNode(Opcode, VT, Ops, 5);
2116}
2117
2118SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2119                                SDOperand Chain, SDOperand Ptr,
2120                                const Value *SV, int SVOffset,
2121                                bool isVolatile, unsigned Alignment) {
2122  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2123    const Type *Ty = 0;
2124    if (VT != MVT::iPTR) {
2125      Ty = MVT::getTypeForValueType(VT);
2126    } else if (SV) {
2127      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2128      assert(PT && "Value for load must be a pointer");
2129      Ty = PT->getElementType();
2130    }
2131    assert(Ty && "Could not get type information for load");
2132    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2133  }
2134  SDVTList VTs = getVTList(VT, MVT::Other);
2135  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2136  SDOperand Ops[] = { Chain, Ptr, Undef };
2137  FoldingSetNodeID ID;
2138  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2139  ID.AddInteger(ISD::UNINDEXED);
2140  ID.AddInteger(ISD::NON_EXTLOAD);
2141  ID.AddInteger(VT);
2142  ID.AddPointer(SV);
2143  ID.AddInteger(SVOffset);
2144  ID.AddInteger(Alignment);
2145  ID.AddInteger(isVolatile);
2146  void *IP = 0;
2147  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2148    return SDOperand(E, 0);
2149  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2150                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2151                             isVolatile);
2152  CSEMap.InsertNode(N, IP);
2153  AllNodes.push_back(N);
2154  return SDOperand(N, 0);
2155}
2156
2157SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2158                                   SDOperand Chain, SDOperand Ptr,
2159                                   const Value *SV,
2160                                   int SVOffset, MVT::ValueType EVT,
2161                                   bool isVolatile, unsigned Alignment) {
2162  // If they are asking for an extending load from/to the same thing, return a
2163  // normal load.
2164  if (VT == EVT)
2165    ExtType = ISD::NON_EXTLOAD;
2166
2167  if (MVT::isVector(VT))
2168    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2169  else
2170    assert(EVT < VT && "Should only be an extending load, not truncating!");
2171  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2172         "Cannot sign/zero extend a FP/Vector load!");
2173  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2174         "Cannot convert from FP to Int or Int -> FP!");
2175
2176  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2177    const Type *Ty = 0;
2178    if (VT != MVT::iPTR) {
2179      Ty = MVT::getTypeForValueType(VT);
2180    } else if (SV) {
2181      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2182      assert(PT && "Value for load must be a pointer");
2183      Ty = PT->getElementType();
2184    }
2185    assert(Ty && "Could not get type information for load");
2186    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2187  }
2188  SDVTList VTs = getVTList(VT, MVT::Other);
2189  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2190  SDOperand Ops[] = { Chain, Ptr, Undef };
2191  FoldingSetNodeID ID;
2192  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2193  ID.AddInteger(ISD::UNINDEXED);
2194  ID.AddInteger(ExtType);
2195  ID.AddInteger(EVT);
2196  ID.AddPointer(SV);
2197  ID.AddInteger(SVOffset);
2198  ID.AddInteger(Alignment);
2199  ID.AddInteger(isVolatile);
2200  void *IP = 0;
2201  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2202    return SDOperand(E, 0);
2203  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2204                             SV, SVOffset, Alignment, isVolatile);
2205  CSEMap.InsertNode(N, IP);
2206  AllNodes.push_back(N);
2207  return SDOperand(N, 0);
2208}
2209
2210SDOperand
2211SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2212                             SDOperand Offset, ISD::MemIndexedMode AM) {
2213  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2214  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2215         "Load is already a indexed load!");
2216  MVT::ValueType VT = OrigLoad.getValueType();
2217  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2218  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2219  FoldingSetNodeID ID;
2220  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2221  ID.AddInteger(AM);
2222  ID.AddInteger(LD->getExtensionType());
2223  ID.AddInteger(LD->getLoadedVT());
2224  ID.AddPointer(LD->getSrcValue());
2225  ID.AddInteger(LD->getSrcValueOffset());
2226  ID.AddInteger(LD->getAlignment());
2227  ID.AddInteger(LD->isVolatile());
2228  void *IP = 0;
2229  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2230    return SDOperand(E, 0);
2231  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2232                             LD->getExtensionType(), LD->getLoadedVT(),
2233                             LD->getSrcValue(), LD->getSrcValueOffset(),
2234                             LD->getAlignment(), LD->isVolatile());
2235  CSEMap.InsertNode(N, IP);
2236  AllNodes.push_back(N);
2237  return SDOperand(N, 0);
2238}
2239
2240SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2241                                 SDOperand Ptr, const Value *SV, int SVOffset,
2242                                 bool isVolatile, unsigned Alignment) {
2243  MVT::ValueType VT = Val.getValueType();
2244
2245  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2246    const Type *Ty = 0;
2247    if (VT != MVT::iPTR) {
2248      Ty = MVT::getTypeForValueType(VT);
2249    } else if (SV) {
2250      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2251      assert(PT && "Value for store must be a pointer");
2252      Ty = PT->getElementType();
2253    }
2254    assert(Ty && "Could not get type information for store");
2255    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2256  }
2257  SDVTList VTs = getVTList(MVT::Other);
2258  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2259  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2260  FoldingSetNodeID ID;
2261  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2262  ID.AddInteger(ISD::UNINDEXED);
2263  ID.AddInteger(false);
2264  ID.AddInteger(VT);
2265  ID.AddPointer(SV);
2266  ID.AddInteger(SVOffset);
2267  ID.AddInteger(Alignment);
2268  ID.AddInteger(isVolatile);
2269  void *IP = 0;
2270  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2271    return SDOperand(E, 0);
2272  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2273                              VT, SV, SVOffset, Alignment, isVolatile);
2274  CSEMap.InsertNode(N, IP);
2275  AllNodes.push_back(N);
2276  return SDOperand(N, 0);
2277}
2278
2279SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2280                                      SDOperand Ptr, const Value *SV,
2281                                      int SVOffset, MVT::ValueType SVT,
2282                                      bool isVolatile, unsigned Alignment) {
2283  MVT::ValueType VT = Val.getValueType();
2284  bool isTrunc = VT != SVT;
2285
2286  assert(VT > SVT && "Not a truncation?");
2287  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2288         "Can't do FP-INT conversion!");
2289
2290  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2291    const Type *Ty = 0;
2292    if (VT != MVT::iPTR) {
2293      Ty = MVT::getTypeForValueType(VT);
2294    } else if (SV) {
2295      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2296      assert(PT && "Value for store must be a pointer");
2297      Ty = PT->getElementType();
2298    }
2299    assert(Ty && "Could not get type information for store");
2300    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2301  }
2302  SDVTList VTs = getVTList(MVT::Other);
2303  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2304  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2305  FoldingSetNodeID ID;
2306  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2307  ID.AddInteger(ISD::UNINDEXED);
2308  ID.AddInteger(isTrunc);
2309  ID.AddInteger(SVT);
2310  ID.AddPointer(SV);
2311  ID.AddInteger(SVOffset);
2312  ID.AddInteger(Alignment);
2313  ID.AddInteger(isVolatile);
2314  void *IP = 0;
2315  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2316    return SDOperand(E, 0);
2317  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2318                              SVT, SV, SVOffset, Alignment, isVolatile);
2319  CSEMap.InsertNode(N, IP);
2320  AllNodes.push_back(N);
2321  return SDOperand(N, 0);
2322}
2323
2324SDOperand
2325SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2326                              SDOperand Offset, ISD::MemIndexedMode AM) {
2327  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2328  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2329         "Store is already a indexed store!");
2330  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2331  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2332  FoldingSetNodeID ID;
2333  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2334  ID.AddInteger(AM);
2335  ID.AddInteger(ST->isTruncatingStore());
2336  ID.AddInteger(ST->getStoredVT());
2337  ID.AddPointer(ST->getSrcValue());
2338  ID.AddInteger(ST->getSrcValueOffset());
2339  ID.AddInteger(ST->getAlignment());
2340  ID.AddInteger(ST->isVolatile());
2341  void *IP = 0;
2342  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2343    return SDOperand(E, 0);
2344  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2345                              ST->isTruncatingStore(), ST->getStoredVT(),
2346                              ST->getSrcValue(), ST->getSrcValueOffset(),
2347                              ST->getAlignment(), ST->isVolatile());
2348  CSEMap.InsertNode(N, IP);
2349  AllNodes.push_back(N);
2350  return SDOperand(N, 0);
2351}
2352
2353SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2354                                 SDOperand Chain, SDOperand Ptr,
2355                                 SDOperand SV) {
2356  SDOperand Ops[] = { Chain, Ptr, SV };
2357  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2358}
2359
2360SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2361                                const SDOperand *Ops, unsigned NumOps) {
2362  switch (NumOps) {
2363  case 0: return getNode(Opcode, VT);
2364  case 1: return getNode(Opcode, VT, Ops[0]);
2365  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2366  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2367  default: break;
2368  }
2369
2370  switch (Opcode) {
2371  default: break;
2372  case ISD::SELECT_CC: {
2373    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2374    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2375           "LHS and RHS of condition must have same type!");
2376    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2377           "True and False arms of SelectCC must have same type!");
2378    assert(Ops[2].getValueType() == VT &&
2379           "select_cc node must be of same type as true and false value!");
2380    break;
2381  }
2382  case ISD::BR_CC: {
2383    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2384    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2385           "LHS/RHS of comparison should match types!");
2386    break;
2387  }
2388  }
2389
2390  // Memoize nodes.
2391  SDNode *N;
2392  SDVTList VTs = getVTList(VT);
2393  if (VT != MVT::Flag) {
2394    FoldingSetNodeID ID;
2395    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2396    void *IP = 0;
2397    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2398      return SDOperand(E, 0);
2399    N = new SDNode(Opcode, VTs, Ops, NumOps);
2400    CSEMap.InsertNode(N, IP);
2401  } else {
2402    N = new SDNode(Opcode, VTs, Ops, NumOps);
2403  }
2404  AllNodes.push_back(N);
2405  return SDOperand(N, 0);
2406}
2407
2408SDOperand SelectionDAG::getNode(unsigned Opcode,
2409                                std::vector<MVT::ValueType> &ResultTys,
2410                                const SDOperand *Ops, unsigned NumOps) {
2411  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2412                 Ops, NumOps);
2413}
2414
2415SDOperand SelectionDAG::getNode(unsigned Opcode,
2416                                const MVT::ValueType *VTs, unsigned NumVTs,
2417                                const SDOperand *Ops, unsigned NumOps) {
2418  if (NumVTs == 1)
2419    return getNode(Opcode, VTs[0], Ops, NumOps);
2420  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2421}
2422
2423SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2424                                const SDOperand *Ops, unsigned NumOps) {
2425  if (VTList.NumVTs == 1)
2426    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2427
2428  switch (Opcode) {
2429  // FIXME: figure out how to safely handle things like
2430  // int foo(int x) { return 1 << (x & 255); }
2431  // int bar() { return foo(256); }
2432#if 0
2433  case ISD::SRA_PARTS:
2434  case ISD::SRL_PARTS:
2435  case ISD::SHL_PARTS:
2436    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2437        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2438      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2439    else if (N3.getOpcode() == ISD::AND)
2440      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2441        // If the and is only masking out bits that cannot effect the shift,
2442        // eliminate the and.
2443        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2444        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2445          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2446      }
2447    break;
2448#endif
2449  }
2450
2451  // Memoize the node unless it returns a flag.
2452  SDNode *N;
2453  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2454    FoldingSetNodeID ID;
2455    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2456    void *IP = 0;
2457    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2458      return SDOperand(E, 0);
2459    if (NumOps == 1)
2460      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2461    else if (NumOps == 2)
2462      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2463    else if (NumOps == 3)
2464      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2465    else
2466      N = new SDNode(Opcode, VTList, Ops, NumOps);
2467    CSEMap.InsertNode(N, IP);
2468  } else {
2469    if (NumOps == 1)
2470      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2471    else if (NumOps == 2)
2472      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2473    else if (NumOps == 3)
2474      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2475    else
2476      N = new SDNode(Opcode, VTList, Ops, NumOps);
2477  }
2478  AllNodes.push_back(N);
2479  return SDOperand(N, 0);
2480}
2481
2482SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2483  if (!MVT::isExtendedVT(VT))
2484    return makeVTList(SDNode::getValueTypeList(VT), 1);
2485
2486  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2487       E = VTList.end(); I != E; ++I) {
2488    if (I->size() == 1 && (*I)[0] == VT)
2489      return makeVTList(&(*I)[0], 1);
2490  }
2491  std::vector<MVT::ValueType> V;
2492  V.push_back(VT);
2493  VTList.push_front(V);
2494  return makeVTList(&(*VTList.begin())[0], 1);
2495}
2496
2497SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2498  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2499       E = VTList.end(); I != E; ++I) {
2500    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2501      return makeVTList(&(*I)[0], 2);
2502  }
2503  std::vector<MVT::ValueType> V;
2504  V.push_back(VT1);
2505  V.push_back(VT2);
2506  VTList.push_front(V);
2507  return makeVTList(&(*VTList.begin())[0], 2);
2508}
2509SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2510                                 MVT::ValueType VT3) {
2511  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2512       E = VTList.end(); I != E; ++I) {
2513    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2514        (*I)[2] == VT3)
2515      return makeVTList(&(*I)[0], 3);
2516  }
2517  std::vector<MVT::ValueType> V;
2518  V.push_back(VT1);
2519  V.push_back(VT2);
2520  V.push_back(VT3);
2521  VTList.push_front(V);
2522  return makeVTList(&(*VTList.begin())[0], 3);
2523}
2524
2525SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2526  switch (NumVTs) {
2527    case 0: assert(0 && "Cannot have nodes without results!");
2528    case 1: return getVTList(VTs[0]);
2529    case 2: return getVTList(VTs[0], VTs[1]);
2530    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2531    default: break;
2532  }
2533
2534  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2535       E = VTList.end(); I != E; ++I) {
2536    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2537
2538    bool NoMatch = false;
2539    for (unsigned i = 2; i != NumVTs; ++i)
2540      if (VTs[i] != (*I)[i]) {
2541        NoMatch = true;
2542        break;
2543      }
2544    if (!NoMatch)
2545      return makeVTList(&*I->begin(), NumVTs);
2546  }
2547
2548  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2549  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2550}
2551
2552
2553/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2554/// specified operands.  If the resultant node already exists in the DAG,
2555/// this does not modify the specified node, instead it returns the node that
2556/// already exists.  If the resultant node does not exist in the DAG, the
2557/// input node is returned.  As a degenerate case, if you specify the same
2558/// input operands as the node already has, the input node is returned.
2559SDOperand SelectionDAG::
2560UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2561  SDNode *N = InN.Val;
2562  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2563
2564  // Check to see if there is no change.
2565  if (Op == N->getOperand(0)) return InN;
2566
2567  // See if the modified node already exists.
2568  void *InsertPos = 0;
2569  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2570    return SDOperand(Existing, InN.ResNo);
2571
2572  // Nope it doesn't.  Remove the node from it's current place in the maps.
2573  if (InsertPos)
2574    RemoveNodeFromCSEMaps(N);
2575
2576  // Now we update the operands.
2577  N->OperandList[0].Val->removeUser(N);
2578  Op.Val->addUser(N);
2579  N->OperandList[0] = Op;
2580
2581  // If this gets put into a CSE map, add it.
2582  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2583  return InN;
2584}
2585
2586SDOperand SelectionDAG::
2587UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2588  SDNode *N = InN.Val;
2589  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2590
2591  // Check to see if there is no change.
2592  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2593    return InN;   // No operands changed, just return the input node.
2594
2595  // See if the modified node already exists.
2596  void *InsertPos = 0;
2597  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2598    return SDOperand(Existing, InN.ResNo);
2599
2600  // Nope it doesn't.  Remove the node from it's current place in the maps.
2601  if (InsertPos)
2602    RemoveNodeFromCSEMaps(N);
2603
2604  // Now we update the operands.
2605  if (N->OperandList[0] != Op1) {
2606    N->OperandList[0].Val->removeUser(N);
2607    Op1.Val->addUser(N);
2608    N->OperandList[0] = Op1;
2609  }
2610  if (N->OperandList[1] != Op2) {
2611    N->OperandList[1].Val->removeUser(N);
2612    Op2.Val->addUser(N);
2613    N->OperandList[1] = Op2;
2614  }
2615
2616  // If this gets put into a CSE map, add it.
2617  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2618  return InN;
2619}
2620
2621SDOperand SelectionDAG::
2622UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2623  SDOperand Ops[] = { Op1, Op2, Op3 };
2624  return UpdateNodeOperands(N, Ops, 3);
2625}
2626
2627SDOperand SelectionDAG::
2628UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2629                   SDOperand Op3, SDOperand Op4) {
2630  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2631  return UpdateNodeOperands(N, Ops, 4);
2632}
2633
2634SDOperand SelectionDAG::
2635UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2636                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2637  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2638  return UpdateNodeOperands(N, Ops, 5);
2639}
2640
2641
2642SDOperand SelectionDAG::
2643UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2644  SDNode *N = InN.Val;
2645  assert(N->getNumOperands() == NumOps &&
2646         "Update with wrong number of operands");
2647
2648  // Check to see if there is no change.
2649  bool AnyChange = false;
2650  for (unsigned i = 0; i != NumOps; ++i) {
2651    if (Ops[i] != N->getOperand(i)) {
2652      AnyChange = true;
2653      break;
2654    }
2655  }
2656
2657  // No operands changed, just return the input node.
2658  if (!AnyChange) return InN;
2659
2660  // See if the modified node already exists.
2661  void *InsertPos = 0;
2662  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2663    return SDOperand(Existing, InN.ResNo);
2664
2665  // Nope it doesn't.  Remove the node from it's current place in the maps.
2666  if (InsertPos)
2667    RemoveNodeFromCSEMaps(N);
2668
2669  // Now we update the operands.
2670  for (unsigned i = 0; i != NumOps; ++i) {
2671    if (N->OperandList[i] != Ops[i]) {
2672      N->OperandList[i].Val->removeUser(N);
2673      Ops[i].Val->addUser(N);
2674      N->OperandList[i] = Ops[i];
2675    }
2676  }
2677
2678  // If this gets put into a CSE map, add it.
2679  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2680  return InN;
2681}
2682
2683
2684/// MorphNodeTo - This frees the operands of the current node, resets the
2685/// opcode, types, and operands to the specified value.  This should only be
2686/// used by the SelectionDAG class.
2687void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2688                         const SDOperand *Ops, unsigned NumOps) {
2689  NodeType = Opc;
2690  ValueList = L.VTs;
2691  NumValues = L.NumVTs;
2692
2693  // Clear the operands list, updating used nodes to remove this from their
2694  // use list.
2695  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2696    I->Val->removeUser(this);
2697
2698  // If NumOps is larger than the # of operands we currently have, reallocate
2699  // the operand list.
2700  if (NumOps > NumOperands) {
2701    if (OperandsNeedDelete)
2702      delete [] OperandList;
2703    OperandList = new SDOperand[NumOps];
2704    OperandsNeedDelete = true;
2705  }
2706
2707  // Assign the new operands.
2708  NumOperands = NumOps;
2709
2710  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2711    OperandList[i] = Ops[i];
2712    SDNode *N = OperandList[i].Val;
2713    N->Uses.push_back(this);
2714  }
2715}
2716
2717/// SelectNodeTo - These are used for target selectors to *mutate* the
2718/// specified node to have the specified return type, Target opcode, and
2719/// operands.  Note that target opcodes are stored as
2720/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2721///
2722/// Note that SelectNodeTo returns the resultant node.  If there is already a
2723/// node of the specified opcode and operands, it returns that node instead of
2724/// the current one.
2725SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2726                                   MVT::ValueType VT) {
2727  SDVTList VTs = getVTList(VT);
2728  FoldingSetNodeID ID;
2729  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2730  void *IP = 0;
2731  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2732    return ON;
2733
2734  RemoveNodeFromCSEMaps(N);
2735
2736  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2737
2738  CSEMap.InsertNode(N, IP);
2739  return N;
2740}
2741
2742SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2743                                   MVT::ValueType VT, SDOperand Op1) {
2744  // If an identical node already exists, use it.
2745  SDVTList VTs = getVTList(VT);
2746  SDOperand Ops[] = { Op1 };
2747
2748  FoldingSetNodeID ID;
2749  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2750  void *IP = 0;
2751  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2752    return ON;
2753
2754  RemoveNodeFromCSEMaps(N);
2755  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2756  CSEMap.InsertNode(N, IP);
2757  return N;
2758}
2759
2760SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2761                                   MVT::ValueType VT, SDOperand Op1,
2762                                   SDOperand Op2) {
2763  // If an identical node already exists, use it.
2764  SDVTList VTs = getVTList(VT);
2765  SDOperand Ops[] = { Op1, Op2 };
2766
2767  FoldingSetNodeID ID;
2768  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2769  void *IP = 0;
2770  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2771    return ON;
2772
2773  RemoveNodeFromCSEMaps(N);
2774
2775  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2776
2777  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2778  return N;
2779}
2780
2781SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2782                                   MVT::ValueType VT, SDOperand Op1,
2783                                   SDOperand Op2, SDOperand Op3) {
2784  // If an identical node already exists, use it.
2785  SDVTList VTs = getVTList(VT);
2786  SDOperand Ops[] = { Op1, Op2, Op3 };
2787  FoldingSetNodeID ID;
2788  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2789  void *IP = 0;
2790  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2791    return ON;
2792
2793  RemoveNodeFromCSEMaps(N);
2794
2795  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2796
2797  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2798  return N;
2799}
2800
2801SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2802                                   MVT::ValueType VT, const SDOperand *Ops,
2803                                   unsigned NumOps) {
2804  // If an identical node already exists, use it.
2805  SDVTList VTs = getVTList(VT);
2806  FoldingSetNodeID ID;
2807  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2808  void *IP = 0;
2809  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2810    return ON;
2811
2812  RemoveNodeFromCSEMaps(N);
2813  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2814
2815  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2816  return N;
2817}
2818
2819SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2820                                   MVT::ValueType VT1, MVT::ValueType VT2,
2821                                   SDOperand Op1, SDOperand Op2) {
2822  SDVTList VTs = getVTList(VT1, VT2);
2823  FoldingSetNodeID ID;
2824  SDOperand Ops[] = { Op1, Op2 };
2825  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2826  void *IP = 0;
2827  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2828    return ON;
2829
2830  RemoveNodeFromCSEMaps(N);
2831  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2832  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2833  return N;
2834}
2835
2836SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2837                                   MVT::ValueType VT1, MVT::ValueType VT2,
2838                                   SDOperand Op1, SDOperand Op2,
2839                                   SDOperand Op3) {
2840  // If an identical node already exists, use it.
2841  SDVTList VTs = getVTList(VT1, VT2);
2842  SDOperand Ops[] = { Op1, Op2, Op3 };
2843  FoldingSetNodeID ID;
2844  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2845  void *IP = 0;
2846  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2847    return ON;
2848
2849  RemoveNodeFromCSEMaps(N);
2850
2851  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2852  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2853  return N;
2854}
2855
2856
2857/// getTargetNode - These are used for target selectors to create a new node
2858/// with specified return type(s), target opcode, and operands.
2859///
2860/// Note that getTargetNode returns the resultant node.  If there is already a
2861/// node of the specified opcode and operands, it returns that node instead of
2862/// the current one.
2863SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2864  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2865}
2866SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2867                                    SDOperand Op1) {
2868  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2869}
2870SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2871                                    SDOperand Op1, SDOperand Op2) {
2872  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2873}
2874SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2875                                    SDOperand Op1, SDOperand Op2,
2876                                    SDOperand Op3) {
2877  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2878}
2879SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2880                                    const SDOperand *Ops, unsigned NumOps) {
2881  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2882}
2883SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2884                                    MVT::ValueType VT2, SDOperand Op1) {
2885  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2886  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2887}
2888SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2889                                    MVT::ValueType VT2, SDOperand Op1,
2890                                    SDOperand Op2) {
2891  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2892  SDOperand Ops[] = { Op1, Op2 };
2893  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2894}
2895SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2896                                    MVT::ValueType VT2, SDOperand Op1,
2897                                    SDOperand Op2, SDOperand Op3) {
2898  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2899  SDOperand Ops[] = { Op1, Op2, Op3 };
2900  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2901}
2902SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2903                                    MVT::ValueType VT2,
2904                                    const SDOperand *Ops, unsigned NumOps) {
2905  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2906  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2907}
2908SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2909                                    MVT::ValueType VT2, MVT::ValueType VT3,
2910                                    SDOperand Op1, SDOperand Op2) {
2911  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2912  SDOperand Ops[] = { Op1, Op2 };
2913  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2914}
2915SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2916                                    MVT::ValueType VT2, MVT::ValueType VT3,
2917                                    SDOperand Op1, SDOperand Op2,
2918                                    SDOperand Op3) {
2919  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2920  SDOperand Ops[] = { Op1, Op2, Op3 };
2921  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
2922}
2923SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2924                                    MVT::ValueType VT2, MVT::ValueType VT3,
2925                                    const SDOperand *Ops, unsigned NumOps) {
2926  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2927  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2928}
2929
2930/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2931/// This can cause recursive merging of nodes in the DAG.
2932///
2933/// This version assumes From/To have a single result value.
2934///
2935void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2936                                      std::vector<SDNode*> *Deleted) {
2937  SDNode *From = FromN.Val, *To = ToN.Val;
2938  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2939         "Cannot replace with this method!");
2940  assert(From != To && "Cannot replace uses of with self");
2941
2942  while (!From->use_empty()) {
2943    // Process users until they are all gone.
2944    SDNode *U = *From->use_begin();
2945
2946    // This node is about to morph, remove its old self from the CSE maps.
2947    RemoveNodeFromCSEMaps(U);
2948
2949    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2950         I != E; ++I)
2951      if (I->Val == From) {
2952        From->removeUser(U);
2953        I->Val = To;
2954        To->addUser(U);
2955      }
2956
2957    // Now that we have modified U, add it back to the CSE maps.  If it already
2958    // exists there, recursively merge the results together.
2959    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2960      ReplaceAllUsesWith(U, Existing, Deleted);
2961      // U is now dead.
2962      if (Deleted) Deleted->push_back(U);
2963      DeleteNodeNotInCSEMaps(U);
2964    }
2965  }
2966}
2967
2968/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2969/// This can cause recursive merging of nodes in the DAG.
2970///
2971/// This version assumes From/To have matching types and numbers of result
2972/// values.
2973///
2974void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2975                                      std::vector<SDNode*> *Deleted) {
2976  assert(From != To && "Cannot replace uses of with self");
2977  assert(From->getNumValues() == To->getNumValues() &&
2978         "Cannot use this version of ReplaceAllUsesWith!");
2979  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2980    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2981    return;
2982  }
2983
2984  while (!From->use_empty()) {
2985    // Process users until they are all gone.
2986    SDNode *U = *From->use_begin();
2987
2988    // This node is about to morph, remove its old self from the CSE maps.
2989    RemoveNodeFromCSEMaps(U);
2990
2991    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2992         I != E; ++I)
2993      if (I->Val == From) {
2994        From->removeUser(U);
2995        I->Val = To;
2996        To->addUser(U);
2997      }
2998
2999    // Now that we have modified U, add it back to the CSE maps.  If it already
3000    // exists there, recursively merge the results together.
3001    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3002      ReplaceAllUsesWith(U, Existing, Deleted);
3003      // U is now dead.
3004      if (Deleted) Deleted->push_back(U);
3005      DeleteNodeNotInCSEMaps(U);
3006    }
3007  }
3008}
3009
3010/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3011/// This can cause recursive merging of nodes in the DAG.
3012///
3013/// This version can replace From with any result values.  To must match the
3014/// number and types of values returned by From.
3015void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3016                                      const SDOperand *To,
3017                                      std::vector<SDNode*> *Deleted) {
3018  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3019    // Degenerate case handled above.
3020    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3021    return;
3022  }
3023
3024  while (!From->use_empty()) {
3025    // Process users until they are all gone.
3026    SDNode *U = *From->use_begin();
3027
3028    // This node is about to morph, remove its old self from the CSE maps.
3029    RemoveNodeFromCSEMaps(U);
3030
3031    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3032         I != E; ++I)
3033      if (I->Val == From) {
3034        const SDOperand &ToOp = To[I->ResNo];
3035        From->removeUser(U);
3036        *I = ToOp;
3037        ToOp.Val->addUser(U);
3038      }
3039
3040    // Now that we have modified U, add it back to the CSE maps.  If it already
3041    // exists there, recursively merge the results together.
3042    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3043      ReplaceAllUsesWith(U, Existing, Deleted);
3044      // U is now dead.
3045      if (Deleted) Deleted->push_back(U);
3046      DeleteNodeNotInCSEMaps(U);
3047    }
3048  }
3049}
3050
3051/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3052/// uses of other values produced by From.Val alone.  The Deleted vector is
3053/// handled the same was as for ReplaceAllUsesWith.
3054void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3055                                             std::vector<SDNode*> &Deleted) {
3056  assert(From != To && "Cannot replace a value with itself");
3057  // Handle the simple, trivial, case efficiently.
3058  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3059    ReplaceAllUsesWith(From, To, &Deleted);
3060    return;
3061  }
3062
3063  // Get all of the users of From.Val.  We want these in a nice,
3064  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3065  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3066
3067  while (!Users.empty()) {
3068    // We know that this user uses some value of From.  If it is the right
3069    // value, update it.
3070    SDNode *User = Users.back();
3071    Users.pop_back();
3072
3073    for (SDOperand *Op = User->OperandList,
3074         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
3075      if (*Op == From) {
3076        // Okay, we know this user needs to be updated.  Remove its old self
3077        // from the CSE maps.
3078        RemoveNodeFromCSEMaps(User);
3079
3080        // Update all operands that match "From".
3081        for (; Op != E; ++Op) {
3082          if (*Op == From) {
3083            From.Val->removeUser(User);
3084            *Op = To;
3085            To.Val->addUser(User);
3086          }
3087        }
3088
3089        // Now that we have modified User, add it back to the CSE maps.  If it
3090        // already exists there, recursively merge the results together.
3091        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
3092          unsigned NumDeleted = Deleted.size();
3093          ReplaceAllUsesWith(User, Existing, &Deleted);
3094
3095          // User is now dead.
3096          Deleted.push_back(User);
3097          DeleteNodeNotInCSEMaps(User);
3098
3099          // We have to be careful here, because ReplaceAllUsesWith could have
3100          // deleted a user of From, which means there may be dangling pointers
3101          // in the "Users" setvector.  Scan over the deleted node pointers and
3102          // remove them from the setvector.
3103          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
3104            Users.remove(Deleted[i]);
3105        }
3106        break;   // Exit the operand scanning loop.
3107      }
3108    }
3109  }
3110}
3111
3112
3113/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3114/// their allnodes order. It returns the maximum id.
3115unsigned SelectionDAG::AssignNodeIds() {
3116  unsigned Id = 0;
3117  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3118    SDNode *N = I;
3119    N->setNodeId(Id++);
3120  }
3121  return Id;
3122}
3123
3124/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3125/// based on their topological order. It returns the maximum id and a vector
3126/// of the SDNodes* in assigned order by reference.
3127unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3128  unsigned DAGSize = AllNodes.size();
3129  std::vector<unsigned> InDegree(DAGSize);
3130  std::vector<SDNode*> Sources;
3131
3132  // Use a two pass approach to avoid using a std::map which is slow.
3133  unsigned Id = 0;
3134  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3135    SDNode *N = I;
3136    N->setNodeId(Id++);
3137    unsigned Degree = N->use_size();
3138    InDegree[N->getNodeId()] = Degree;
3139    if (Degree == 0)
3140      Sources.push_back(N);
3141  }
3142
3143  TopOrder.clear();
3144  while (!Sources.empty()) {
3145    SDNode *N = Sources.back();
3146    Sources.pop_back();
3147    TopOrder.push_back(N);
3148    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3149      SDNode *P = I->Val;
3150      unsigned Degree = --InDegree[P->getNodeId()];
3151      if (Degree == 0)
3152        Sources.push_back(P);
3153    }
3154  }
3155
3156  // Second pass, assign the actual topological order as node ids.
3157  Id = 0;
3158  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3159       TI != TE; ++TI)
3160    (*TI)->setNodeId(Id++);
3161
3162  return Id;
3163}
3164
3165
3166
3167//===----------------------------------------------------------------------===//
3168//                              SDNode Class
3169//===----------------------------------------------------------------------===//
3170
3171// Out-of-line virtual method to give class a home.
3172void SDNode::ANCHOR() {}
3173void UnarySDNode::ANCHOR() {}
3174void BinarySDNode::ANCHOR() {}
3175void TernarySDNode::ANCHOR() {}
3176void HandleSDNode::ANCHOR() {}
3177void StringSDNode::ANCHOR() {}
3178void ConstantSDNode::ANCHOR() {}
3179void ConstantFPSDNode::ANCHOR() {}
3180void GlobalAddressSDNode::ANCHOR() {}
3181void FrameIndexSDNode::ANCHOR() {}
3182void JumpTableSDNode::ANCHOR() {}
3183void ConstantPoolSDNode::ANCHOR() {}
3184void BasicBlockSDNode::ANCHOR() {}
3185void SrcValueSDNode::ANCHOR() {}
3186void RegisterSDNode::ANCHOR() {}
3187void ExternalSymbolSDNode::ANCHOR() {}
3188void CondCodeSDNode::ANCHOR() {}
3189void VTSDNode::ANCHOR() {}
3190void LoadSDNode::ANCHOR() {}
3191void StoreSDNode::ANCHOR() {}
3192
3193HandleSDNode::~HandleSDNode() {
3194  SDVTList VTs = { 0, 0 };
3195  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3196}
3197
3198GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3199                                         MVT::ValueType VT, int o)
3200  : SDNode(isa<GlobalVariable>(GA) &&
3201           dyn_cast<GlobalVariable>(GA)->isThreadLocal() ?
3202           // Thread Local
3203           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3204           // Non Thread Local
3205           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3206           getSDVTList(VT)), Offset(o) {
3207  TheGlobal = const_cast<GlobalValue*>(GA);
3208}
3209
3210/// Profile - Gather unique data for the node.
3211///
3212void SDNode::Profile(FoldingSetNodeID &ID) {
3213  AddNodeIDNode(ID, this);
3214}
3215
3216/// getValueTypeList - Return a pointer to the specified value type.
3217///
3218MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3219  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3220  VTs[VT] = VT;
3221  return &VTs[VT];
3222}
3223
3224/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3225/// indicated value.  This method ignores uses of other values defined by this
3226/// operation.
3227bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3228  assert(Value < getNumValues() && "Bad value!");
3229
3230  // If there is only one value, this is easy.
3231  if (getNumValues() == 1)
3232    return use_size() == NUses;
3233  if (Uses.size() < NUses) return false;
3234
3235  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3236
3237  SmallPtrSet<SDNode*, 32> UsersHandled;
3238
3239  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3240    SDNode *User = *UI;
3241    if (User->getNumOperands() == 1 ||
3242        UsersHandled.insert(User))     // First time we've seen this?
3243      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3244        if (User->getOperand(i) == TheValue) {
3245          if (NUses == 0)
3246            return false;   // too many uses
3247          --NUses;
3248        }
3249  }
3250
3251  // Found exactly the right number of uses?
3252  return NUses == 0;
3253}
3254
3255
3256/// isOnlyUse - Return true if this node is the only use of N.
3257///
3258bool SDNode::isOnlyUse(SDNode *N) const {
3259  bool Seen = false;
3260  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3261    SDNode *User = *I;
3262    if (User == this)
3263      Seen = true;
3264    else
3265      return false;
3266  }
3267
3268  return Seen;
3269}
3270
3271/// isOperand - Return true if this node is an operand of N.
3272///
3273bool SDOperand::isOperand(SDNode *N) const {
3274  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3275    if (*this == N->getOperand(i))
3276      return true;
3277  return false;
3278}
3279
3280bool SDNode::isOperand(SDNode *N) const {
3281  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3282    if (this == N->OperandList[i].Val)
3283      return true;
3284  return false;
3285}
3286
3287static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3288                            SmallPtrSet<SDNode *, 32> &Visited) {
3289  if (found || !Visited.insert(N))
3290    return;
3291
3292  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3293    SDNode *Op = N->getOperand(i).Val;
3294    if (Op == P) {
3295      found = true;
3296      return;
3297    }
3298    findPredecessor(Op, P, found, Visited);
3299  }
3300}
3301
3302/// isPredecessor - Return true if this node is a predecessor of N. This node
3303/// is either an operand of N or it can be reached by recursively traversing
3304/// up the operands.
3305/// NOTE: this is an expensive method. Use it carefully.
3306bool SDNode::isPredecessor(SDNode *N) const {
3307  SmallPtrSet<SDNode *, 32> Visited;
3308  bool found = false;
3309  findPredecessor(N, this, found, Visited);
3310  return found;
3311}
3312
3313uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3314  assert(Num < NumOperands && "Invalid child # of SDNode!");
3315  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3316}
3317
3318std::string SDNode::getOperationName(const SelectionDAG *G) const {
3319  switch (getOpcode()) {
3320  default:
3321    if (getOpcode() < ISD::BUILTIN_OP_END)
3322      return "<<Unknown DAG Node>>";
3323    else {
3324      if (G) {
3325        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3326          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3327            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3328
3329        TargetLowering &TLI = G->getTargetLoweringInfo();
3330        const char *Name =
3331          TLI.getTargetNodeName(getOpcode());
3332        if (Name) return Name;
3333      }
3334
3335      return "<<Unknown Target Node>>";
3336    }
3337
3338  case ISD::PCMARKER:      return "PCMarker";
3339  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3340  case ISD::SRCVALUE:      return "SrcValue";
3341  case ISD::EntryToken:    return "EntryToken";
3342  case ISD::TokenFactor:   return "TokenFactor";
3343  case ISD::AssertSext:    return "AssertSext";
3344  case ISD::AssertZext:    return "AssertZext";
3345
3346  case ISD::STRING:        return "String";
3347  case ISD::BasicBlock:    return "BasicBlock";
3348  case ISD::VALUETYPE:     return "ValueType";
3349  case ISD::Register:      return "Register";
3350
3351  case ISD::Constant:      return "Constant";
3352  case ISD::ConstantFP:    return "ConstantFP";
3353  case ISD::GlobalAddress: return "GlobalAddress";
3354  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3355  case ISD::FrameIndex:    return "FrameIndex";
3356  case ISD::JumpTable:     return "JumpTable";
3357  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3358  case ISD::RETURNADDR: return "RETURNADDR";
3359  case ISD::FRAMEADDR: return "FRAMEADDR";
3360  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3361  case ISD::EHSELECTION: return "EHSELECTION";
3362  case ISD::ConstantPool:  return "ConstantPool";
3363  case ISD::ExternalSymbol: return "ExternalSymbol";
3364  case ISD::INTRINSIC_WO_CHAIN: {
3365    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3366    return Intrinsic::getName((Intrinsic::ID)IID);
3367  }
3368  case ISD::INTRINSIC_VOID:
3369  case ISD::INTRINSIC_W_CHAIN: {
3370    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3371    return Intrinsic::getName((Intrinsic::ID)IID);
3372  }
3373
3374  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3375  case ISD::TargetConstant: return "TargetConstant";
3376  case ISD::TargetConstantFP:return "TargetConstantFP";
3377  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3378  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3379  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3380  case ISD::TargetJumpTable:  return "TargetJumpTable";
3381  case ISD::TargetConstantPool:  return "TargetConstantPool";
3382  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3383
3384  case ISD::CopyToReg:     return "CopyToReg";
3385  case ISD::CopyFromReg:   return "CopyFromReg";
3386  case ISD::UNDEF:         return "undef";
3387  case ISD::MERGE_VALUES:  return "merge_values";
3388  case ISD::INLINEASM:     return "inlineasm";
3389  case ISD::LABEL:         return "label";
3390  case ISD::HANDLENODE:    return "handlenode";
3391  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3392  case ISD::CALL:          return "call";
3393
3394  // Unary operators
3395  case ISD::FABS:   return "fabs";
3396  case ISD::FNEG:   return "fneg";
3397  case ISD::FSQRT:  return "fsqrt";
3398  case ISD::FSIN:   return "fsin";
3399  case ISD::FCOS:   return "fcos";
3400  case ISD::FPOWI:  return "fpowi";
3401
3402  // Binary operators
3403  case ISD::ADD:    return "add";
3404  case ISD::SUB:    return "sub";
3405  case ISD::MUL:    return "mul";
3406  case ISD::MULHU:  return "mulhu";
3407  case ISD::MULHS:  return "mulhs";
3408  case ISD::SDIV:   return "sdiv";
3409  case ISD::UDIV:   return "udiv";
3410  case ISD::SREM:   return "srem";
3411  case ISD::UREM:   return "urem";
3412  case ISD::AND:    return "and";
3413  case ISD::OR:     return "or";
3414  case ISD::XOR:    return "xor";
3415  case ISD::SHL:    return "shl";
3416  case ISD::SRA:    return "sra";
3417  case ISD::SRL:    return "srl";
3418  case ISD::ROTL:   return "rotl";
3419  case ISD::ROTR:   return "rotr";
3420  case ISD::FADD:   return "fadd";
3421  case ISD::FSUB:   return "fsub";
3422  case ISD::FMUL:   return "fmul";
3423  case ISD::FDIV:   return "fdiv";
3424  case ISD::FREM:   return "frem";
3425  case ISD::FCOPYSIGN: return "fcopysign";
3426
3427  case ISD::SETCC:       return "setcc";
3428  case ISD::SELECT:      return "select";
3429  case ISD::SELECT_CC:   return "select_cc";
3430  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3431  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3432  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3433  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3434  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3435  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3436  case ISD::CARRY_FALSE:         return "carry_false";
3437  case ISD::ADDC:        return "addc";
3438  case ISD::ADDE:        return "adde";
3439  case ISD::SUBC:        return "subc";
3440  case ISD::SUBE:        return "sube";
3441  case ISD::SHL_PARTS:   return "shl_parts";
3442  case ISD::SRA_PARTS:   return "sra_parts";
3443  case ISD::SRL_PARTS:   return "srl_parts";
3444
3445  // Conversion operators.
3446  case ISD::SIGN_EXTEND: return "sign_extend";
3447  case ISD::ZERO_EXTEND: return "zero_extend";
3448  case ISD::ANY_EXTEND:  return "any_extend";
3449  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3450  case ISD::TRUNCATE:    return "truncate";
3451  case ISD::FP_ROUND:    return "fp_round";
3452  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3453  case ISD::FP_EXTEND:   return "fp_extend";
3454
3455  case ISD::SINT_TO_FP:  return "sint_to_fp";
3456  case ISD::UINT_TO_FP:  return "uint_to_fp";
3457  case ISD::FP_TO_SINT:  return "fp_to_sint";
3458  case ISD::FP_TO_UINT:  return "fp_to_uint";
3459  case ISD::BIT_CONVERT: return "bit_convert";
3460
3461    // Control flow instructions
3462  case ISD::BR:      return "br";
3463  case ISD::BRIND:   return "brind";
3464  case ISD::BR_JT:   return "br_jt";
3465  case ISD::BRCOND:  return "brcond";
3466  case ISD::BR_CC:   return "br_cc";
3467  case ISD::RET:     return "ret";
3468  case ISD::CALLSEQ_START:  return "callseq_start";
3469  case ISD::CALLSEQ_END:    return "callseq_end";
3470
3471    // Other operators
3472  case ISD::LOAD:               return "load";
3473  case ISD::STORE:              return "store";
3474  case ISD::VAARG:              return "vaarg";
3475  case ISD::VACOPY:             return "vacopy";
3476  case ISD::VAEND:              return "vaend";
3477  case ISD::VASTART:            return "vastart";
3478  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3479  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3480  case ISD::BUILD_PAIR:         return "build_pair";
3481  case ISD::STACKSAVE:          return "stacksave";
3482  case ISD::STACKRESTORE:       return "stackrestore";
3483
3484  // Block memory operations.
3485  case ISD::MEMSET:  return "memset";
3486  case ISD::MEMCPY:  return "memcpy";
3487  case ISD::MEMMOVE: return "memmove";
3488
3489  // Bit manipulation
3490  case ISD::BSWAP:   return "bswap";
3491  case ISD::CTPOP:   return "ctpop";
3492  case ISD::CTTZ:    return "cttz";
3493  case ISD::CTLZ:    return "ctlz";
3494
3495  // Debug info
3496  case ISD::LOCATION: return "location";
3497  case ISD::DEBUG_LOC: return "debug_loc";
3498
3499  case ISD::CONDCODE:
3500    switch (cast<CondCodeSDNode>(this)->get()) {
3501    default: assert(0 && "Unknown setcc condition!");
3502    case ISD::SETOEQ:  return "setoeq";
3503    case ISD::SETOGT:  return "setogt";
3504    case ISD::SETOGE:  return "setoge";
3505    case ISD::SETOLT:  return "setolt";
3506    case ISD::SETOLE:  return "setole";
3507    case ISD::SETONE:  return "setone";
3508
3509    case ISD::SETO:    return "seto";
3510    case ISD::SETUO:   return "setuo";
3511    case ISD::SETUEQ:  return "setue";
3512    case ISD::SETUGT:  return "setugt";
3513    case ISD::SETUGE:  return "setuge";
3514    case ISD::SETULT:  return "setult";
3515    case ISD::SETULE:  return "setule";
3516    case ISD::SETUNE:  return "setune";
3517
3518    case ISD::SETEQ:   return "seteq";
3519    case ISD::SETGT:   return "setgt";
3520    case ISD::SETGE:   return "setge";
3521    case ISD::SETLT:   return "setlt";
3522    case ISD::SETLE:   return "setle";
3523    case ISD::SETNE:   return "setne";
3524    }
3525  }
3526}
3527
3528const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3529  switch (AM) {
3530  default:
3531    return "";
3532  case ISD::PRE_INC:
3533    return "<pre-inc>";
3534  case ISD::PRE_DEC:
3535    return "<pre-dec>";
3536  case ISD::POST_INC:
3537    return "<post-inc>";
3538  case ISD::POST_DEC:
3539    return "<post-dec>";
3540  }
3541}
3542
3543void SDNode::dump() const { dump(0); }
3544void SDNode::dump(const SelectionDAG *G) const {
3545  cerr << (void*)this << ": ";
3546
3547  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3548    if (i) cerr << ",";
3549    if (getValueType(i) == MVT::Other)
3550      cerr << "ch";
3551    else
3552      cerr << MVT::getValueTypeString(getValueType(i));
3553  }
3554  cerr << " = " << getOperationName(G);
3555
3556  cerr << " ";
3557  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3558    if (i) cerr << ", ";
3559    cerr << (void*)getOperand(i).Val;
3560    if (unsigned RN = getOperand(i).ResNo)
3561      cerr << ":" << RN;
3562  }
3563
3564  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3565    cerr << "<" << CSDN->getValue() << ">";
3566  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3567    cerr << "<" << CSDN->getValue() << ">";
3568  } else if (const GlobalAddressSDNode *GADN =
3569             dyn_cast<GlobalAddressSDNode>(this)) {
3570    int offset = GADN->getOffset();
3571    cerr << "<";
3572    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3573    if (offset > 0)
3574      cerr << " + " << offset;
3575    else
3576      cerr << " " << offset;
3577  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3578    cerr << "<" << FIDN->getIndex() << ">";
3579  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3580    cerr << "<" << JTDN->getIndex() << ">";
3581  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3582    int offset = CP->getOffset();
3583    if (CP->isMachineConstantPoolEntry())
3584      cerr << "<" << *CP->getMachineCPVal() << ">";
3585    else
3586      cerr << "<" << *CP->getConstVal() << ">";
3587    if (offset > 0)
3588      cerr << " + " << offset;
3589    else
3590      cerr << " " << offset;
3591  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3592    cerr << "<";
3593    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3594    if (LBB)
3595      cerr << LBB->getName() << " ";
3596    cerr << (const void*)BBDN->getBasicBlock() << ">";
3597  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3598    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3599      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3600    } else {
3601      cerr << " #" << R->getReg();
3602    }
3603  } else if (const ExternalSymbolSDNode *ES =
3604             dyn_cast<ExternalSymbolSDNode>(this)) {
3605    cerr << "'" << ES->getSymbol() << "'";
3606  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3607    if (M->getValue())
3608      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3609    else
3610      cerr << "<null:" << M->getOffset() << ">";
3611  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3612    cerr << ":" << MVT::getValueTypeString(N->getVT());
3613  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3614    bool doExt = true;
3615    switch (LD->getExtensionType()) {
3616    default: doExt = false; break;
3617    case ISD::EXTLOAD:
3618      cerr << " <anyext ";
3619      break;
3620    case ISD::SEXTLOAD:
3621      cerr << " <sext ";
3622      break;
3623    case ISD::ZEXTLOAD:
3624      cerr << " <zext ";
3625      break;
3626    }
3627    if (doExt)
3628      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3629
3630    const char *AM = getIndexedModeName(LD->getAddressingMode());
3631    if (AM != "")
3632      cerr << " " << AM;
3633  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3634    if (ST->isTruncatingStore())
3635      cerr << " <trunc "
3636           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3637
3638    const char *AM = getIndexedModeName(ST->getAddressingMode());
3639    if (AM != "")
3640      cerr << " " << AM;
3641  }
3642}
3643
3644static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3645  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3646    if (N->getOperand(i).Val->hasOneUse())
3647      DumpNodes(N->getOperand(i).Val, indent+2, G);
3648    else
3649      cerr << "\n" << std::string(indent+2, ' ')
3650           << (void*)N->getOperand(i).Val << ": <multiple use>";
3651
3652
3653  cerr << "\n" << std::string(indent, ' ');
3654  N->dump(G);
3655}
3656
3657void SelectionDAG::dump() const {
3658  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3659  std::vector<const SDNode*> Nodes;
3660  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3661       I != E; ++I)
3662    Nodes.push_back(I);
3663
3664  std::sort(Nodes.begin(), Nodes.end());
3665
3666  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3667    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3668      DumpNodes(Nodes[i], 2, this);
3669  }
3670
3671  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3672
3673  cerr << "\n\n";
3674}
3675
3676const Type *ConstantPoolSDNode::getType() const {
3677  if (isMachineConstantPoolEntry())
3678    return Val.MachineCPVal->getType();
3679  return Val.ConstVal->getType();
3680}
3681