SelectionDAG.cpp revision 50d2b1ac029d63500ea9b9347561b1454fa6ed6a
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/System/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f32:     return &APFloat::IEEEsingle;
66  case MVT::f64:     return &APFloat::IEEEdouble;
67  case MVT::f80:     return &APFloat::x87DoubleExtended;
68  case MVT::f128:    return &APFloat::IEEEquad;
69  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70  }
71}
72
73SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74
75//===----------------------------------------------------------------------===//
76//                              ConstantFPSDNode Class
77//===----------------------------------------------------------------------===//
78
79/// isExactlyValue - We don't rely on operator== working on double values, as
80/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81/// As such, this method can be used to do an exact bit-for-bit comparison of
82/// two floating point values.
83bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84  return getValueAPF().bitwiseIsEqual(V);
85}
86
87bool ConstantFPSDNode::isValueValidForType(EVT VT,
88                                           const APFloat& Val) {
89  assert(VT.isFloatingPoint() && "Can only convert between FP types");
90
91  // PPC long double cannot be converted to any other type.
92  if (VT == MVT::ppcf128 ||
93      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94    return false;
95
96  // convert modifies in place, so make a copy.
97  APFloat Val2 = APFloat(Val);
98  bool losesInfo;
99  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100                      &losesInfo);
101  return !losesInfo;
102}
103
104//===----------------------------------------------------------------------===//
105//                              ISD Namespace
106//===----------------------------------------------------------------------===//
107
108/// isBuildVectorAllOnes - Return true if the specified node is a
109/// BUILD_VECTOR where all of the elements are ~0 or undef.
110bool ISD::isBuildVectorAllOnes(const SDNode *N) {
111  // Look through a bit convert.
112  if (N->getOpcode() == ISD::BIT_CONVERT)
113    N = N->getOperand(0).getNode();
114
115  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116
117  unsigned i = 0, e = N->getNumOperands();
118
119  // Skip over all of the undef values.
120  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121    ++i;
122
123  // Do not accept an all-undef vector.
124  if (i == e) return false;
125
126  // Do not accept build_vectors that aren't all constants or which have non-~0
127  // elements.
128  SDValue NotZero = N->getOperand(i);
129  if (isa<ConstantSDNode>(NotZero)) {
130    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131      return false;
132  } else if (isa<ConstantFPSDNode>(NotZero)) {
133    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134                bitcastToAPInt().isAllOnesValue())
135      return false;
136  } else
137    return false;
138
139  // Okay, we have at least one ~0 value, check to see if the rest match or are
140  // undefs.
141  for (++i; i != e; ++i)
142    if (N->getOperand(i) != NotZero &&
143        N->getOperand(i).getOpcode() != ISD::UNDEF)
144      return false;
145  return true;
146}
147
148
149/// isBuildVectorAllZeros - Return true if the specified node is a
150/// BUILD_VECTOR where all of the elements are 0 or undef.
151bool ISD::isBuildVectorAllZeros(const SDNode *N) {
152  // Look through a bit convert.
153  if (N->getOpcode() == ISD::BIT_CONVERT)
154    N = N->getOperand(0).getNode();
155
156  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157
158  unsigned i = 0, e = N->getNumOperands();
159
160  // Skip over all of the undef values.
161  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162    ++i;
163
164  // Do not accept an all-undef vector.
165  if (i == e) return false;
166
167  // Do not accept build_vectors that aren't all constants or which have non-0
168  // elements.
169  SDValue Zero = N->getOperand(i);
170  if (isa<ConstantSDNode>(Zero)) {
171    if (!cast<ConstantSDNode>(Zero)->isNullValue())
172      return false;
173  } else if (isa<ConstantFPSDNode>(Zero)) {
174    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175      return false;
176  } else
177    return false;
178
179  // Okay, we have at least one 0 value, check to see if the rest match or are
180  // undefs.
181  for (++i; i != e; ++i)
182    if (N->getOperand(i) != Zero &&
183        N->getOperand(i).getOpcode() != ISD::UNDEF)
184      return false;
185  return true;
186}
187
188/// isScalarToVector - Return true if the specified node is a
189/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190/// element is not an undef.
191bool ISD::isScalarToVector(const SDNode *N) {
192  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193    return true;
194
195  if (N->getOpcode() != ISD::BUILD_VECTOR)
196    return false;
197  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198    return false;
199  unsigned NumElems = N->getNumOperands();
200  for (unsigned i = 1; i < NumElems; ++i) {
201    SDValue V = N->getOperand(i);
202    if (V.getOpcode() != ISD::UNDEF)
203      return false;
204  }
205  return true;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211  // To perform this operation, we just need to swap the L and G bits of the
212  // operation.
213  unsigned OldL = (Operation >> 2) & 1;
214  unsigned OldG = (Operation >> 1) & 1;
215  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216                       (OldL << 1) |       // New G bit
217                       (OldG << 2));       // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223  unsigned Operation = Op;
224  if (isInteger)
225    Operation ^= 7;   // Flip L, G, E bits, but not U.
226  else
227    Operation ^= 15;  // Flip all of the condition bits.
228
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;  // Don't let N and U bits get set.
231
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: llvm_unreachable("Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307//===----------------------------------------------------------------------===//
308//                           SDNode Profile Support
309//===----------------------------------------------------------------------===//
310
311/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
312///
313static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
314  ID.AddInteger(OpC);
315}
316
317/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
318/// solely with their pointer.
319static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
320  ID.AddPointer(VTList.VTs);
321}
322
323/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
324///
325static void AddNodeIDOperands(FoldingSetNodeID &ID,
326                              const SDValue *Ops, unsigned NumOps) {
327  for (; NumOps; --NumOps, ++Ops) {
328    ID.AddPointer(Ops->getNode());
329    ID.AddInteger(Ops->getResNo());
330  }
331}
332
333/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
334///
335static void AddNodeIDOperands(FoldingSetNodeID &ID,
336                              const SDUse *Ops, unsigned NumOps) {
337  for (; NumOps; --NumOps, ++Ops) {
338    ID.AddPointer(Ops->getNode());
339    ID.AddInteger(Ops->getResNo());
340  }
341}
342
343static void AddNodeIDNode(FoldingSetNodeID &ID,
344                          unsigned short OpC, SDVTList VTList,
345                          const SDValue *OpList, unsigned N) {
346  AddNodeIDOpcode(ID, OpC);
347  AddNodeIDValueTypes(ID, VTList);
348  AddNodeIDOperands(ID, OpList, N);
349}
350
351/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
352/// the NodeID data.
353static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
354  switch (N->getOpcode()) {
355  case ISD::TargetExternalSymbol:
356  case ISD::ExternalSymbol:
357    llvm_unreachable("Should only be used on nodes with operands");
358  default: break;  // Normal nodes don't need extra info.
359  case ISD::TargetConstant:
360  case ISD::Constant:
361    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
362    break;
363  case ISD::TargetConstantFP:
364  case ISD::ConstantFP: {
365    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
366    break;
367  }
368  case ISD::TargetGlobalAddress:
369  case ISD::GlobalAddress:
370  case ISD::TargetGlobalTLSAddress:
371  case ISD::GlobalTLSAddress: {
372    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
373    ID.AddPointer(GA->getGlobal());
374    ID.AddInteger(GA->getOffset());
375    ID.AddInteger(GA->getTargetFlags());
376    break;
377  }
378  case ISD::BasicBlock:
379    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
380    break;
381  case ISD::Register:
382    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
383    break;
384
385  case ISD::SRCVALUE:
386    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
387    break;
388  case ISD::FrameIndex:
389  case ISD::TargetFrameIndex:
390    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
391    break;
392  case ISD::JumpTable:
393  case ISD::TargetJumpTable:
394    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
395    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
396    break;
397  case ISD::ConstantPool:
398  case ISD::TargetConstantPool: {
399    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
400    ID.AddInteger(CP->getAlignment());
401    ID.AddInteger(CP->getOffset());
402    if (CP->isMachineConstantPoolEntry())
403      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
404    else
405      ID.AddPointer(CP->getConstVal());
406    ID.AddInteger(CP->getTargetFlags());
407    break;
408  }
409  case ISD::LOAD: {
410    const LoadSDNode *LD = cast<LoadSDNode>(N);
411    ID.AddInteger(LD->getMemoryVT().getRawBits());
412    ID.AddInteger(LD->getRawSubclassData());
413    break;
414  }
415  case ISD::STORE: {
416    const StoreSDNode *ST = cast<StoreSDNode>(N);
417    ID.AddInteger(ST->getMemoryVT().getRawBits());
418    ID.AddInteger(ST->getRawSubclassData());
419    break;
420  }
421  case ISD::ATOMIC_CMP_SWAP:
422  case ISD::ATOMIC_SWAP:
423  case ISD::ATOMIC_LOAD_ADD:
424  case ISD::ATOMIC_LOAD_SUB:
425  case ISD::ATOMIC_LOAD_AND:
426  case ISD::ATOMIC_LOAD_OR:
427  case ISD::ATOMIC_LOAD_XOR:
428  case ISD::ATOMIC_LOAD_NAND:
429  case ISD::ATOMIC_LOAD_MIN:
430  case ISD::ATOMIC_LOAD_MAX:
431  case ISD::ATOMIC_LOAD_UMIN:
432  case ISD::ATOMIC_LOAD_UMAX: {
433    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
434    ID.AddInteger(AT->getMemoryVT().getRawBits());
435    ID.AddInteger(AT->getRawSubclassData());
436    break;
437  }
438  case ISD::VECTOR_SHUFFLE: {
439    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
440    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
441         i != e; ++i)
442      ID.AddInteger(SVN->getMaskElt(i));
443    break;
444  }
445  case ISD::TargetBlockAddress:
446  case ISD::BlockAddress: {
447    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
448    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
449    break;
450  }
451  } // end switch (N->getOpcode())
452}
453
454/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
455/// data.
456static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
457  AddNodeIDOpcode(ID, N->getOpcode());
458  // Add the return value info.
459  AddNodeIDValueTypes(ID, N->getVTList());
460  // Add the operand info.
461  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
462
463  // Handle SDNode leafs with special info.
464  AddNodeIDCustom(ID, N);
465}
466
467/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
468/// the CSE map that carries volatility, temporalness, indexing mode, and
469/// extension/truncation information.
470///
471static inline unsigned
472encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
473                     bool isNonTemporal) {
474  assert((ConvType & 3) == ConvType &&
475         "ConvType may not require more than 2 bits!");
476  assert((AM & 7) == AM &&
477         "AM may not require more than 3 bits!");
478  return ConvType |
479         (AM << 2) |
480         (isVolatile << 5) |
481         (isNonTemporal << 6);
482}
483
484//===----------------------------------------------------------------------===//
485//                              SelectionDAG Class
486//===----------------------------------------------------------------------===//
487
488/// doNotCSE - Return true if CSE should not be performed for this node.
489static bool doNotCSE(SDNode *N) {
490  if (N->getValueType(0) == MVT::Flag)
491    return true; // Never CSE anything that produces a flag.
492
493  switch (N->getOpcode()) {
494  default: break;
495  case ISD::HANDLENODE:
496  case ISD::EH_LABEL:
497    return true;   // Never CSE these nodes.
498  }
499
500  // Check that remaining values produced are not flags.
501  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
502    if (N->getValueType(i) == MVT::Flag)
503      return true; // Never CSE anything that produces a flag.
504
505  return false;
506}
507
508/// RemoveDeadNodes - This method deletes all unreachable nodes in the
509/// SelectionDAG.
510void SelectionDAG::RemoveDeadNodes() {
511  // Create a dummy node (which is not added to allnodes), that adds a reference
512  // to the root node, preventing it from being deleted.
513  HandleSDNode Dummy(getRoot());
514
515  SmallVector<SDNode*, 128> DeadNodes;
516
517  // Add all obviously-dead nodes to the DeadNodes worklist.
518  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
519    if (I->use_empty())
520      DeadNodes.push_back(I);
521
522  RemoveDeadNodes(DeadNodes);
523
524  // If the root changed (e.g. it was a dead load, update the root).
525  setRoot(Dummy.getValue());
526}
527
528/// RemoveDeadNodes - This method deletes the unreachable nodes in the
529/// given list, and any nodes that become unreachable as a result.
530void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
531                                   DAGUpdateListener *UpdateListener) {
532
533  // Process the worklist, deleting the nodes and adding their uses to the
534  // worklist.
535  while (!DeadNodes.empty()) {
536    SDNode *N = DeadNodes.pop_back_val();
537
538    if (UpdateListener)
539      UpdateListener->NodeDeleted(N, 0);
540
541    // Take the node out of the appropriate CSE map.
542    RemoveNodeFromCSEMaps(N);
543
544    // Next, brutally remove the operand list.  This is safe to do, as there are
545    // no cycles in the graph.
546    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
547      SDUse &Use = *I++;
548      SDNode *Operand = Use.getNode();
549      Use.set(SDValue());
550
551      // Now that we removed this operand, see if there are no uses of it left.
552      if (Operand->use_empty())
553        DeadNodes.push_back(Operand);
554    }
555
556    DeallocateNode(N);
557  }
558}
559
560void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
561  SmallVector<SDNode*, 16> DeadNodes(1, N);
562  RemoveDeadNodes(DeadNodes, UpdateListener);
563}
564
565void SelectionDAG::DeleteNode(SDNode *N) {
566  // First take this out of the appropriate CSE map.
567  RemoveNodeFromCSEMaps(N);
568
569  // Finally, remove uses due to operands of this node, remove from the
570  // AllNodes list, and delete the node.
571  DeleteNodeNotInCSEMaps(N);
572}
573
574void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
575  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
576  assert(N->use_empty() && "Cannot delete a node that is not dead!");
577
578  // Drop all of the operands and decrement used node's use counts.
579  N->DropOperands();
580
581  DeallocateNode(N);
582}
583
584void SelectionDAG::DeallocateNode(SDNode *N) {
585  if (N->OperandsNeedDelete)
586    delete[] N->OperandList;
587
588  // Set the opcode to DELETED_NODE to help catch bugs when node
589  // memory is reallocated.
590  N->NodeType = ISD::DELETED_NODE;
591
592  NodeAllocator.Deallocate(AllNodes.remove(N));
593
594  // Remove the ordering of this node.
595  Ordering->remove(N);
596
597  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
598  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
599  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
600    DbgVals[i]->setIsInvalidated();
601}
602
603/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
604/// correspond to it.  This is useful when we're about to delete or repurpose
605/// the node.  We don't want future request for structurally identical nodes
606/// to return N anymore.
607bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
608  bool Erased = false;
609  switch (N->getOpcode()) {
610  case ISD::EntryToken:
611    llvm_unreachable("EntryToken should not be in CSEMaps!");
612    return false;
613  case ISD::HANDLENODE: return false;  // noop.
614  case ISD::CONDCODE:
615    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
616           "Cond code doesn't exist!");
617    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
618    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
619    break;
620  case ISD::ExternalSymbol:
621    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
622    break;
623  case ISD::TargetExternalSymbol: {
624    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
625    Erased = TargetExternalSymbols.erase(
626               std::pair<std::string,unsigned char>(ESN->getSymbol(),
627                                                    ESN->getTargetFlags()));
628    break;
629  }
630  case ISD::VALUETYPE: {
631    EVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
636      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    Erased = CSEMap.RemoveNode(N);
643    break;
644  }
645#ifndef NDEBUG
646  // Verify that the node was actually in one of the CSE maps, unless it has a
647  // flag result (which cannot be CSE'd) or is one of the special cases that are
648  // not subject to CSE.
649  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650      !N->isMachineOpcode() && !doNotCSE(N)) {
651    N->dump(this);
652    dbgs() << "\n";
653    llvm_unreachable("Node is not in map!");
654  }
655#endif
656  return Erased;
657}
658
659/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660/// maps and modified in place. Add it back to the CSE maps, unless an identical
661/// node already exists, in which case transfer all its users to the existing
662/// node. This transfer can potentially trigger recursive merging.
663///
664void
665SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666                                       DAGUpdateListener *UpdateListener) {
667  // For node types that aren't CSE'd, just act as if no identical node
668  // already exists.
669  if (!doNotCSE(N)) {
670    SDNode *Existing = CSEMap.GetOrInsertNode(N);
671    if (Existing != N) {
672      // If there was already an existing matching node, use ReplaceAllUsesWith
673      // to replace the dead one with the existing one.  This can cause
674      // recursive merging of other unrelated nodes down the line.
675      ReplaceAllUsesWith(N, Existing, UpdateListener);
676
677      // N is now dead.  Inform the listener if it exists and delete it.
678      if (UpdateListener)
679        UpdateListener->NodeDeleted(N, Existing);
680      DeleteNodeNotInCSEMaps(N);
681      return;
682    }
683  }
684
685  // If the node doesn't already exist, we updated it.  Inform a listener if
686  // it exists.
687  if (UpdateListener)
688    UpdateListener->NodeUpdated(N);
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696                                           void *&InsertPos) {
697  if (doNotCSE(N))
698    return 0;
699
700  SDValue Ops[] = { Op };
701  FoldingSetNodeID ID;
702  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703  AddNodeIDCustom(ID, N);
704  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
705  return Node;
706}
707
708/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
709/// were replaced with those specified.  If this node is never memoized,
710/// return null, otherwise return a pointer to the slot it would take.  If a
711/// node already exists with these operands, the slot will be non-null.
712SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
713                                           SDValue Op1, SDValue Op2,
714                                           void *&InsertPos) {
715  if (doNotCSE(N))
716    return 0;
717
718  SDValue Ops[] = { Op1, Op2 };
719  FoldingSetNodeID ID;
720  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
721  AddNodeIDCustom(ID, N);
722  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
723  return Node;
724}
725
726
727/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
728/// were replaced with those specified.  If this node is never memoized,
729/// return null, otherwise return a pointer to the slot it would take.  If a
730/// node already exists with these operands, the slot will be non-null.
731SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
732                                           const SDValue *Ops,unsigned NumOps,
733                                           void *&InsertPos) {
734  if (doNotCSE(N))
735    return 0;
736
737  FoldingSetNodeID ID;
738  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
739  AddNodeIDCustom(ID, N);
740  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
741  return Node;
742}
743
744/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
745void SelectionDAG::VerifyNode(SDNode *N) {
746  switch (N->getOpcode()) {
747  default:
748    break;
749  case ISD::BUILD_PAIR: {
750    EVT VT = N->getValueType(0);
751    assert(N->getNumValues() == 1 && "Too many results!");
752    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
753           "Wrong return type!");
754    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
755    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
756           "Mismatched operand types!");
757    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
758           "Wrong operand type!");
759    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
760           "Wrong return type size");
761    break;
762  }
763  case ISD::BUILD_VECTOR: {
764    assert(N->getNumValues() == 1 && "Too many results!");
765    assert(N->getValueType(0).isVector() && "Wrong return type!");
766    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
767           "Wrong number of operands!");
768    EVT EltVT = N->getValueType(0).getVectorElementType();
769    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
770      assert((I->getValueType() == EltVT ||
771             (EltVT.isInteger() && I->getValueType().isInteger() &&
772              EltVT.bitsLE(I->getValueType()))) &&
773            "Wrong operand type!");
774    break;
775  }
776  }
777}
778
779/// getEVTAlignment - Compute the default alignment value for the
780/// given type.
781///
782unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
783  const Type *Ty = VT == MVT::iPTR ?
784                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
785                   VT.getTypeForEVT(*getContext());
786
787  return TLI.getTargetData()->getABITypeAlignment(Ty);
788}
789
790// EntryNode could meaningfully have debug info if we can find it...
791SelectionDAG::SelectionDAG(const TargetMachine &tm, FunctionLoweringInfo &fli)
792  : TM(tm), TLI(*tm.getTargetLowering()), FLI(fli),
793    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
794    Root(getEntryNode()), Ordering(0) {
795  AllNodes.push_back(&EntryNode);
796  Ordering = new SDNodeOrdering();
797  DbgInfo = new SDDbgInfo();
798}
799
800void SelectionDAG::init(MachineFunction &mf) {
801  MF = &mf;
802  Context = &mf.getFunction()->getContext();
803}
804
805SelectionDAG::~SelectionDAG() {
806  allnodes_clear();
807  delete Ordering;
808  DbgInfo->clear();
809  delete DbgInfo;
810}
811
812void SelectionDAG::allnodes_clear() {
813  assert(&*AllNodes.begin() == &EntryNode);
814  AllNodes.remove(AllNodes.begin());
815  while (!AllNodes.empty())
816    DeallocateNode(AllNodes.begin());
817}
818
819void SelectionDAG::clear() {
820  allnodes_clear();
821  OperandAllocator.Reset();
822  CSEMap.clear();
823
824  ExtendedValueTypeNodes.clear();
825  ExternalSymbols.clear();
826  TargetExternalSymbols.clear();
827  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
828            static_cast<CondCodeSDNode*>(0));
829  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
830            static_cast<SDNode*>(0));
831
832  EntryNode.UseList = 0;
833  AllNodes.push_back(&EntryNode);
834  Root = getEntryNode();
835  delete Ordering;
836  Ordering = new SDNodeOrdering();
837  DbgInfo->clear();
838  delete DbgInfo;
839  DbgInfo = new SDDbgInfo();
840}
841
842SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
843  return VT.bitsGT(Op.getValueType()) ?
844    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
845    getNode(ISD::TRUNCATE, DL, VT, Op);
846}
847
848SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
849  return VT.bitsGT(Op.getValueType()) ?
850    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
851    getNode(ISD::TRUNCATE, DL, VT, Op);
852}
853
854SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
855  assert(!VT.isVector() &&
856         "getZeroExtendInReg should use the vector element type instead of "
857         "the vector type!");
858  if (Op.getValueType() == VT) return Op;
859  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
860  APInt Imm = APInt::getLowBitsSet(BitWidth,
861                                   VT.getSizeInBits());
862  return getNode(ISD::AND, DL, Op.getValueType(), Op,
863                 getConstant(Imm, Op.getValueType()));
864}
865
866/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
867///
868SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
869  EVT EltVT = VT.getScalarType();
870  SDValue NegOne =
871    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
872  return getNode(ISD::XOR, DL, VT, Val, NegOne);
873}
874
875SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
876  EVT EltVT = VT.getScalarType();
877  assert((EltVT.getSizeInBits() >= 64 ||
878         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
879         "getConstant with a uint64_t value that doesn't fit in the type!");
880  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
881}
882
883SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
884  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
885}
886
887SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
888  assert(VT.isInteger() && "Cannot create FP integer constant!");
889
890  EVT EltVT = VT.getScalarType();
891  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
892         "APInt size does not match type size!");
893
894  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
895  FoldingSetNodeID ID;
896  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
897  ID.AddPointer(&Val);
898  void *IP = 0;
899  SDNode *N = NULL;
900  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
901    if (!VT.isVector())
902      return SDValue(N, 0);
903
904  if (!N) {
905    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
906    CSEMap.InsertNode(N, IP);
907    AllNodes.push_back(N);
908  }
909
910  SDValue Result(N, 0);
911  if (VT.isVector()) {
912    SmallVector<SDValue, 8> Ops;
913    Ops.assign(VT.getVectorNumElements(), Result);
914    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
915  }
916  return Result;
917}
918
919SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
920  return getConstant(Val, TLI.getPointerTy(), isTarget);
921}
922
923
924SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
925  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
926}
927
928SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
929  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
930
931  EVT EltVT = VT.getScalarType();
932
933  // Do the map lookup using the actual bit pattern for the floating point
934  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
935  // we don't have issues with SNANs.
936  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
937  FoldingSetNodeID ID;
938  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
939  ID.AddPointer(&V);
940  void *IP = 0;
941  SDNode *N = NULL;
942  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
943    if (!VT.isVector())
944      return SDValue(N, 0);
945
946  if (!N) {
947    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
948    CSEMap.InsertNode(N, IP);
949    AllNodes.push_back(N);
950  }
951
952  SDValue Result(N, 0);
953  if (VT.isVector()) {
954    SmallVector<SDValue, 8> Ops;
955    Ops.assign(VT.getVectorNumElements(), Result);
956    // FIXME DebugLoc info might be appropriate here
957    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
958  }
959  return Result;
960}
961
962SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
963  EVT EltVT = VT.getScalarType();
964  if (EltVT==MVT::f32)
965    return getConstantFP(APFloat((float)Val), VT, isTarget);
966  else
967    return getConstantFP(APFloat(Val), VT, isTarget);
968}
969
970SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
971                                       EVT VT, int64_t Offset,
972                                       bool isTargetGA,
973                                       unsigned char TargetFlags) {
974  assert((TargetFlags == 0 || isTargetGA) &&
975         "Cannot set target flags on target-independent globals");
976
977  // Truncate (with sign-extension) the offset value to the pointer size.
978  EVT PTy = TLI.getPointerTy();
979  unsigned BitWidth = PTy.getSizeInBits();
980  if (BitWidth < 64)
981    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
982
983  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
984  if (!GVar) {
985    // If GV is an alias then use the aliasee for determining thread-localness.
986    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
987      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
988  }
989
990  unsigned Opc;
991  if (GVar && GVar->isThreadLocal())
992    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
993  else
994    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
995
996  FoldingSetNodeID ID;
997  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
998  ID.AddPointer(GV);
999  ID.AddInteger(Offset);
1000  ID.AddInteger(TargetFlags);
1001  void *IP = 0;
1002  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1003    return SDValue(E, 0);
1004
1005  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1006                                                      Offset, TargetFlags);
1007  CSEMap.InsertNode(N, IP);
1008  AllNodes.push_back(N);
1009  return SDValue(N, 0);
1010}
1011
1012SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1013  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1014  FoldingSetNodeID ID;
1015  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1016  ID.AddInteger(FI);
1017  void *IP = 0;
1018  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1019    return SDValue(E, 0);
1020
1021  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1022  CSEMap.InsertNode(N, IP);
1023  AllNodes.push_back(N);
1024  return SDValue(N, 0);
1025}
1026
1027SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1028                                   unsigned char TargetFlags) {
1029  assert((TargetFlags == 0 || isTarget) &&
1030         "Cannot set target flags on target-independent jump tables");
1031  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1032  FoldingSetNodeID ID;
1033  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1034  ID.AddInteger(JTI);
1035  ID.AddInteger(TargetFlags);
1036  void *IP = 0;
1037  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1038    return SDValue(E, 0);
1039
1040  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1041                                                  TargetFlags);
1042  CSEMap.InsertNode(N, IP);
1043  AllNodes.push_back(N);
1044  return SDValue(N, 0);
1045}
1046
1047SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1048                                      unsigned Alignment, int Offset,
1049                                      bool isTarget,
1050                                      unsigned char TargetFlags) {
1051  assert((TargetFlags == 0 || isTarget) &&
1052         "Cannot set target flags on target-independent globals");
1053  if (Alignment == 0)
1054    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1055  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1056  FoldingSetNodeID ID;
1057  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1058  ID.AddInteger(Alignment);
1059  ID.AddInteger(Offset);
1060  ID.AddPointer(C);
1061  ID.AddInteger(TargetFlags);
1062  void *IP = 0;
1063  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1064    return SDValue(E, 0);
1065
1066  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1067                                                     Alignment, TargetFlags);
1068  CSEMap.InsertNode(N, IP);
1069  AllNodes.push_back(N);
1070  return SDValue(N, 0);
1071}
1072
1073
1074SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1075                                      unsigned Alignment, int Offset,
1076                                      bool isTarget,
1077                                      unsigned char TargetFlags) {
1078  assert((TargetFlags == 0 || isTarget) &&
1079         "Cannot set target flags on target-independent globals");
1080  if (Alignment == 0)
1081    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1082  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1083  FoldingSetNodeID ID;
1084  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1085  ID.AddInteger(Alignment);
1086  ID.AddInteger(Offset);
1087  C->AddSelectionDAGCSEId(ID);
1088  ID.AddInteger(TargetFlags);
1089  void *IP = 0;
1090  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1091    return SDValue(E, 0);
1092
1093  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1094                                                     Alignment, TargetFlags);
1095  CSEMap.InsertNode(N, IP);
1096  AllNodes.push_back(N);
1097  return SDValue(N, 0);
1098}
1099
1100SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1101  FoldingSetNodeID ID;
1102  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1103  ID.AddPointer(MBB);
1104  void *IP = 0;
1105  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1106    return SDValue(E, 0);
1107
1108  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1109  CSEMap.InsertNode(N, IP);
1110  AllNodes.push_back(N);
1111  return SDValue(N, 0);
1112}
1113
1114SDValue SelectionDAG::getValueType(EVT VT) {
1115  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1116      ValueTypeNodes.size())
1117    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1118
1119  SDNode *&N = VT.isExtended() ?
1120    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1121
1122  if (N) return SDValue(N, 0);
1123  N = new (NodeAllocator) VTSDNode(VT);
1124  AllNodes.push_back(N);
1125  return SDValue(N, 0);
1126}
1127
1128SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1129  SDNode *&N = ExternalSymbols[Sym];
1130  if (N) return SDValue(N, 0);
1131  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1132  AllNodes.push_back(N);
1133  return SDValue(N, 0);
1134}
1135
1136SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1137                                              unsigned char TargetFlags) {
1138  SDNode *&N =
1139    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1140                                                               TargetFlags)];
1141  if (N) return SDValue(N, 0);
1142  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1148  if ((unsigned)Cond >= CondCodeNodes.size())
1149    CondCodeNodes.resize(Cond+1);
1150
1151  if (CondCodeNodes[Cond] == 0) {
1152    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1153    CondCodeNodes[Cond] = N;
1154    AllNodes.push_back(N);
1155  }
1156
1157  return SDValue(CondCodeNodes[Cond], 0);
1158}
1159
1160// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1161// the shuffle mask M that point at N1 to point at N2, and indices that point
1162// N2 to point at N1.
1163static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1164  std::swap(N1, N2);
1165  int NElts = M.size();
1166  for (int i = 0; i != NElts; ++i) {
1167    if (M[i] >= NElts)
1168      M[i] -= NElts;
1169    else if (M[i] >= 0)
1170      M[i] += NElts;
1171  }
1172}
1173
1174SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1175                                       SDValue N2, const int *Mask) {
1176  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1177  assert(VT.isVector() && N1.getValueType().isVector() &&
1178         "Vector Shuffle VTs must be a vectors");
1179  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1180         && "Vector Shuffle VTs must have same element type");
1181
1182  // Canonicalize shuffle undef, undef -> undef
1183  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1184    return getUNDEF(VT);
1185
1186  // Validate that all indices in Mask are within the range of the elements
1187  // input to the shuffle.
1188  unsigned NElts = VT.getVectorNumElements();
1189  SmallVector<int, 8> MaskVec;
1190  for (unsigned i = 0; i != NElts; ++i) {
1191    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1192    MaskVec.push_back(Mask[i]);
1193  }
1194
1195  // Canonicalize shuffle v, v -> v, undef
1196  if (N1 == N2) {
1197    N2 = getUNDEF(VT);
1198    for (unsigned i = 0; i != NElts; ++i)
1199      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1200  }
1201
1202  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1203  if (N1.getOpcode() == ISD::UNDEF)
1204    commuteShuffle(N1, N2, MaskVec);
1205
1206  // Canonicalize all index into lhs, -> shuffle lhs, undef
1207  // Canonicalize all index into rhs, -> shuffle rhs, undef
1208  bool AllLHS = true, AllRHS = true;
1209  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1210  for (unsigned i = 0; i != NElts; ++i) {
1211    if (MaskVec[i] >= (int)NElts) {
1212      if (N2Undef)
1213        MaskVec[i] = -1;
1214      else
1215        AllLHS = false;
1216    } else if (MaskVec[i] >= 0) {
1217      AllRHS = false;
1218    }
1219  }
1220  if (AllLHS && AllRHS)
1221    return getUNDEF(VT);
1222  if (AllLHS && !N2Undef)
1223    N2 = getUNDEF(VT);
1224  if (AllRHS) {
1225    N1 = getUNDEF(VT);
1226    commuteShuffle(N1, N2, MaskVec);
1227  }
1228
1229  // If Identity shuffle, or all shuffle in to undef, return that node.
1230  bool AllUndef = true;
1231  bool Identity = true;
1232  for (unsigned i = 0; i != NElts; ++i) {
1233    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1234    if (MaskVec[i] >= 0) AllUndef = false;
1235  }
1236  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1237    return N1;
1238  if (AllUndef)
1239    return getUNDEF(VT);
1240
1241  FoldingSetNodeID ID;
1242  SDValue Ops[2] = { N1, N2 };
1243  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1244  for (unsigned i = 0; i != NElts; ++i)
1245    ID.AddInteger(MaskVec[i]);
1246
1247  void* IP = 0;
1248  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1249    return SDValue(E, 0);
1250
1251  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1252  // SDNode doesn't have access to it.  This memory will be "leaked" when
1253  // the node is deallocated, but recovered when the NodeAllocator is released.
1254  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1255  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1256
1257  ShuffleVectorSDNode *N =
1258    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1259  CSEMap.InsertNode(N, IP);
1260  AllNodes.push_back(N);
1261  return SDValue(N, 0);
1262}
1263
1264SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1265                                       SDValue Val, SDValue DTy,
1266                                       SDValue STy, SDValue Rnd, SDValue Sat,
1267                                       ISD::CvtCode Code) {
1268  // If the src and dest types are the same and the conversion is between
1269  // integer types of the same sign or two floats, no conversion is necessary.
1270  if (DTy == STy &&
1271      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1272    return Val;
1273
1274  FoldingSetNodeID ID;
1275  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1276  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1277  void* IP = 0;
1278  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1279    return SDValue(E, 0);
1280
1281  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1282                                                           Code);
1283  CSEMap.InsertNode(N, IP);
1284  AllNodes.push_back(N);
1285  return SDValue(N, 0);
1286}
1287
1288SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1289  FoldingSetNodeID ID;
1290  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1291  ID.AddInteger(RegNo);
1292  void *IP = 0;
1293  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1294    return SDValue(E, 0);
1295
1296  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1297  CSEMap.InsertNode(N, IP);
1298  AllNodes.push_back(N);
1299  return SDValue(N, 0);
1300}
1301
1302SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1303  FoldingSetNodeID ID;
1304  SDValue Ops[] = { Root };
1305  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1306  ID.AddPointer(Label);
1307  void *IP = 0;
1308  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1309    return SDValue(E, 0);
1310
1311  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1312  CSEMap.InsertNode(N, IP);
1313  AllNodes.push_back(N);
1314  return SDValue(N, 0);
1315}
1316
1317
1318SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1319                                      bool isTarget,
1320                                      unsigned char TargetFlags) {
1321  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1322
1323  FoldingSetNodeID ID;
1324  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1325  ID.AddPointer(BA);
1326  ID.AddInteger(TargetFlags);
1327  void *IP = 0;
1328  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1329    return SDValue(E, 0);
1330
1331  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1332  CSEMap.InsertNode(N, IP);
1333  AllNodes.push_back(N);
1334  return SDValue(N, 0);
1335}
1336
1337SDValue SelectionDAG::getSrcValue(const Value *V) {
1338  assert((!V || V->getType()->isPointerTy()) &&
1339         "SrcValue is not a pointer?");
1340
1341  FoldingSetNodeID ID;
1342  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1343  ID.AddPointer(V);
1344
1345  void *IP = 0;
1346  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1347    return SDValue(E, 0);
1348
1349  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1350  CSEMap.InsertNode(N, IP);
1351  AllNodes.push_back(N);
1352  return SDValue(N, 0);
1353}
1354
1355/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1356SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1357  FoldingSetNodeID ID;
1358  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1359  ID.AddPointer(MD);
1360
1361  void *IP = 0;
1362  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1363    return SDValue(E, 0);
1364
1365  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1366  CSEMap.InsertNode(N, IP);
1367  AllNodes.push_back(N);
1368  return SDValue(N, 0);
1369}
1370
1371
1372/// getShiftAmountOperand - Return the specified value casted to
1373/// the target's desired shift amount type.
1374SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1375  EVT OpTy = Op.getValueType();
1376  MVT ShTy = TLI.getShiftAmountTy();
1377  if (OpTy == ShTy || OpTy.isVector()) return Op;
1378
1379  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1380  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1381}
1382
1383/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1384/// specified value type.
1385SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1386  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1387  unsigned ByteSize = VT.getStoreSize();
1388  const Type *Ty = VT.getTypeForEVT(*getContext());
1389  unsigned StackAlign =
1390  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1391
1392  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1393  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1394}
1395
1396/// CreateStackTemporary - Create a stack temporary suitable for holding
1397/// either of the specified value types.
1398SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1399  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1400                            VT2.getStoreSizeInBits())/8;
1401  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1402  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1403  const TargetData *TD = TLI.getTargetData();
1404  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1405                            TD->getPrefTypeAlignment(Ty2));
1406
1407  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1408  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1409  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1410}
1411
1412SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1413                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1414  // These setcc operations always fold.
1415  switch (Cond) {
1416  default: break;
1417  case ISD::SETFALSE:
1418  case ISD::SETFALSE2: return getConstant(0, VT);
1419  case ISD::SETTRUE:
1420  case ISD::SETTRUE2:  return getConstant(1, VT);
1421
1422  case ISD::SETOEQ:
1423  case ISD::SETOGT:
1424  case ISD::SETOGE:
1425  case ISD::SETOLT:
1426  case ISD::SETOLE:
1427  case ISD::SETONE:
1428  case ISD::SETO:
1429  case ISD::SETUO:
1430  case ISD::SETUEQ:
1431  case ISD::SETUNE:
1432    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1433    break;
1434  }
1435
1436  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1437    const APInt &C2 = N2C->getAPIntValue();
1438    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1439      const APInt &C1 = N1C->getAPIntValue();
1440
1441      switch (Cond) {
1442      default: llvm_unreachable("Unknown integer setcc!");
1443      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1444      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1445      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1446      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1447      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1448      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1449      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1450      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1451      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1452      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1453      }
1454    }
1455  }
1456  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1457    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1458      // No compile time operations on this type yet.
1459      if (N1C->getValueType(0) == MVT::ppcf128)
1460        return SDValue();
1461
1462      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1463      switch (Cond) {
1464      default: break;
1465      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1466                          return getUNDEF(VT);
1467                        // fall through
1468      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1469      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1470                          return getUNDEF(VT);
1471                        // fall through
1472      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1473                                           R==APFloat::cmpLessThan, VT);
1474      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1475                          return getUNDEF(VT);
1476                        // fall through
1477      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1478      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1479                          return getUNDEF(VT);
1480                        // fall through
1481      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1482      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1483                          return getUNDEF(VT);
1484                        // fall through
1485      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1486                                           R==APFloat::cmpEqual, VT);
1487      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1488                          return getUNDEF(VT);
1489                        // fall through
1490      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1491                                           R==APFloat::cmpEqual, VT);
1492      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1493      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1494      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1495                                           R==APFloat::cmpEqual, VT);
1496      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1497      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1498                                           R==APFloat::cmpLessThan, VT);
1499      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1500                                           R==APFloat::cmpUnordered, VT);
1501      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1502      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1503      }
1504    } else {
1505      // Ensure that the constant occurs on the RHS.
1506      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1507    }
1508  }
1509
1510  // Could not fold it.
1511  return SDValue();
1512}
1513
1514/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1515/// use this predicate to simplify operations downstream.
1516bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1517  // This predicate is not safe for vector operations.
1518  if (Op.getValueType().isVector())
1519    return false;
1520
1521  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1522  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1523}
1524
1525/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1526/// this predicate to simplify operations downstream.  Mask is known to be zero
1527/// for bits that V cannot have.
1528bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1529                                     unsigned Depth) const {
1530  APInt KnownZero, KnownOne;
1531  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1532  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1533  return (KnownZero & Mask) == Mask;
1534}
1535
1536/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1537/// known to be either zero or one and return them in the KnownZero/KnownOne
1538/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1539/// processing.
1540void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1541                                     APInt &KnownZero, APInt &KnownOne,
1542                                     unsigned Depth) const {
1543  unsigned BitWidth = Mask.getBitWidth();
1544  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1545         "Mask size mismatches value type size!");
1546
1547  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1548  if (Depth == 6 || Mask == 0)
1549    return;  // Limit search depth.
1550
1551  APInt KnownZero2, KnownOne2;
1552
1553  switch (Op.getOpcode()) {
1554  case ISD::Constant:
1555    // We know all of the bits for a constant!
1556    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1557    KnownZero = ~KnownOne & Mask;
1558    return;
1559  case ISD::AND:
1560    // If either the LHS or the RHS are Zero, the result is zero.
1561    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1562    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1563                      KnownZero2, KnownOne2, Depth+1);
1564    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1565    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1566
1567    // Output known-1 bits are only known if set in both the LHS & RHS.
1568    KnownOne &= KnownOne2;
1569    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1570    KnownZero |= KnownZero2;
1571    return;
1572  case ISD::OR:
1573    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1574    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1575                      KnownZero2, KnownOne2, Depth+1);
1576    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1577    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1578
1579    // Output known-0 bits are only known if clear in both the LHS & RHS.
1580    KnownZero &= KnownZero2;
1581    // Output known-1 are known to be set if set in either the LHS | RHS.
1582    KnownOne |= KnownOne2;
1583    return;
1584  case ISD::XOR: {
1585    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1586    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1587    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1588    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1589
1590    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1591    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1592    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1593    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1594    KnownZero = KnownZeroOut;
1595    return;
1596  }
1597  case ISD::MUL: {
1598    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1599    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1600    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1601    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1602    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1603
1604    // If low bits are zero in either operand, output low known-0 bits.
1605    // Also compute a conserative estimate for high known-0 bits.
1606    // More trickiness is possible, but this is sufficient for the
1607    // interesting case of alignment computation.
1608    KnownOne.clear();
1609    unsigned TrailZ = KnownZero.countTrailingOnes() +
1610                      KnownZero2.countTrailingOnes();
1611    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1612                               KnownZero2.countLeadingOnes(),
1613                               BitWidth) - BitWidth;
1614
1615    TrailZ = std::min(TrailZ, BitWidth);
1616    LeadZ = std::min(LeadZ, BitWidth);
1617    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1618                APInt::getHighBitsSet(BitWidth, LeadZ);
1619    KnownZero &= Mask;
1620    return;
1621  }
1622  case ISD::UDIV: {
1623    // For the purposes of computing leading zeros we can conservatively
1624    // treat a udiv as a logical right shift by the power of 2 known to
1625    // be less than the denominator.
1626    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1627    ComputeMaskedBits(Op.getOperand(0),
1628                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1629    unsigned LeadZ = KnownZero2.countLeadingOnes();
1630
1631    KnownOne2.clear();
1632    KnownZero2.clear();
1633    ComputeMaskedBits(Op.getOperand(1),
1634                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1635    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1636    if (RHSUnknownLeadingOnes != BitWidth)
1637      LeadZ = std::min(BitWidth,
1638                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1639
1640    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1641    return;
1642  }
1643  case ISD::SELECT:
1644    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1645    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1646    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1647    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1648
1649    // Only known if known in both the LHS and RHS.
1650    KnownOne &= KnownOne2;
1651    KnownZero &= KnownZero2;
1652    return;
1653  case ISD::SELECT_CC:
1654    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1655    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1656    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1657    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1658
1659    // Only known if known in both the LHS and RHS.
1660    KnownOne &= KnownOne2;
1661    KnownZero &= KnownZero2;
1662    return;
1663  case ISD::SADDO:
1664  case ISD::UADDO:
1665  case ISD::SSUBO:
1666  case ISD::USUBO:
1667  case ISD::SMULO:
1668  case ISD::UMULO:
1669    if (Op.getResNo() != 1)
1670      return;
1671    // The boolean result conforms to getBooleanContents.  Fall through.
1672  case ISD::SETCC:
1673    // If we know the result of a setcc has the top bits zero, use this info.
1674    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1675        BitWidth > 1)
1676      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1677    return;
1678  case ISD::SHL:
1679    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1680    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1681      unsigned ShAmt = SA->getZExtValue();
1682
1683      // If the shift count is an invalid immediate, don't do anything.
1684      if (ShAmt >= BitWidth)
1685        return;
1686
1687      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1688                        KnownZero, KnownOne, Depth+1);
1689      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1690      KnownZero <<= ShAmt;
1691      KnownOne  <<= ShAmt;
1692      // low bits known zero.
1693      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1694    }
1695    return;
1696  case ISD::SRL:
1697    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1698    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1699      unsigned ShAmt = SA->getZExtValue();
1700
1701      // If the shift count is an invalid immediate, don't do anything.
1702      if (ShAmt >= BitWidth)
1703        return;
1704
1705      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1706                        KnownZero, KnownOne, Depth+1);
1707      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1708      KnownZero = KnownZero.lshr(ShAmt);
1709      KnownOne  = KnownOne.lshr(ShAmt);
1710
1711      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1712      KnownZero |= HighBits;  // High bits known zero.
1713    }
1714    return;
1715  case ISD::SRA:
1716    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1717      unsigned ShAmt = SA->getZExtValue();
1718
1719      // If the shift count is an invalid immediate, don't do anything.
1720      if (ShAmt >= BitWidth)
1721        return;
1722
1723      APInt InDemandedMask = (Mask << ShAmt);
1724      // If any of the demanded bits are produced by the sign extension, we also
1725      // demand the input sign bit.
1726      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1727      if (HighBits.getBoolValue())
1728        InDemandedMask |= APInt::getSignBit(BitWidth);
1729
1730      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1731                        Depth+1);
1732      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1733      KnownZero = KnownZero.lshr(ShAmt);
1734      KnownOne  = KnownOne.lshr(ShAmt);
1735
1736      // Handle the sign bits.
1737      APInt SignBit = APInt::getSignBit(BitWidth);
1738      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1739
1740      if (KnownZero.intersects(SignBit)) {
1741        KnownZero |= HighBits;  // New bits are known zero.
1742      } else if (KnownOne.intersects(SignBit)) {
1743        KnownOne  |= HighBits;  // New bits are known one.
1744      }
1745    }
1746    return;
1747  case ISD::SIGN_EXTEND_INREG: {
1748    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1749    unsigned EBits = EVT.getScalarType().getSizeInBits();
1750
1751    // Sign extension.  Compute the demanded bits in the result that are not
1752    // present in the input.
1753    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1754
1755    APInt InSignBit = APInt::getSignBit(EBits);
1756    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1757
1758    // If the sign extended bits are demanded, we know that the sign
1759    // bit is demanded.
1760    InSignBit.zext(BitWidth);
1761    if (NewBits.getBoolValue())
1762      InputDemandedBits |= InSignBit;
1763
1764    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1765                      KnownZero, KnownOne, Depth+1);
1766    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1767
1768    // If the sign bit of the input is known set or clear, then we know the
1769    // top bits of the result.
1770    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1771      KnownZero |= NewBits;
1772      KnownOne  &= ~NewBits;
1773    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1774      KnownOne  |= NewBits;
1775      KnownZero &= ~NewBits;
1776    } else {                              // Input sign bit unknown
1777      KnownZero &= ~NewBits;
1778      KnownOne  &= ~NewBits;
1779    }
1780    return;
1781  }
1782  case ISD::CTTZ:
1783  case ISD::CTLZ:
1784  case ISD::CTPOP: {
1785    unsigned LowBits = Log2_32(BitWidth)+1;
1786    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1787    KnownOne.clear();
1788    return;
1789  }
1790  case ISD::LOAD: {
1791    if (ISD::isZEXTLoad(Op.getNode())) {
1792      LoadSDNode *LD = cast<LoadSDNode>(Op);
1793      EVT VT = LD->getMemoryVT();
1794      unsigned MemBits = VT.getScalarType().getSizeInBits();
1795      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1796    }
1797    return;
1798  }
1799  case ISD::ZERO_EXTEND: {
1800    EVT InVT = Op.getOperand(0).getValueType();
1801    unsigned InBits = InVT.getScalarType().getSizeInBits();
1802    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1803    APInt InMask    = Mask;
1804    InMask.trunc(InBits);
1805    KnownZero.trunc(InBits);
1806    KnownOne.trunc(InBits);
1807    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1808    KnownZero.zext(BitWidth);
1809    KnownOne.zext(BitWidth);
1810    KnownZero |= NewBits;
1811    return;
1812  }
1813  case ISD::SIGN_EXTEND: {
1814    EVT InVT = Op.getOperand(0).getValueType();
1815    unsigned InBits = InVT.getScalarType().getSizeInBits();
1816    APInt InSignBit = APInt::getSignBit(InBits);
1817    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1818    APInt InMask = Mask;
1819    InMask.trunc(InBits);
1820
1821    // If any of the sign extended bits are demanded, we know that the sign
1822    // bit is demanded. Temporarily set this bit in the mask for our callee.
1823    if (NewBits.getBoolValue())
1824      InMask |= InSignBit;
1825
1826    KnownZero.trunc(InBits);
1827    KnownOne.trunc(InBits);
1828    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1829
1830    // Note if the sign bit is known to be zero or one.
1831    bool SignBitKnownZero = KnownZero.isNegative();
1832    bool SignBitKnownOne  = KnownOne.isNegative();
1833    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1834           "Sign bit can't be known to be both zero and one!");
1835
1836    // If the sign bit wasn't actually demanded by our caller, we don't
1837    // want it set in the KnownZero and KnownOne result values. Reset the
1838    // mask and reapply it to the result values.
1839    InMask = Mask;
1840    InMask.trunc(InBits);
1841    KnownZero &= InMask;
1842    KnownOne  &= InMask;
1843
1844    KnownZero.zext(BitWidth);
1845    KnownOne.zext(BitWidth);
1846
1847    // If the sign bit is known zero or one, the top bits match.
1848    if (SignBitKnownZero)
1849      KnownZero |= NewBits;
1850    else if (SignBitKnownOne)
1851      KnownOne  |= NewBits;
1852    return;
1853  }
1854  case ISD::ANY_EXTEND: {
1855    EVT InVT = Op.getOperand(0).getValueType();
1856    unsigned InBits = InVT.getScalarType().getSizeInBits();
1857    APInt InMask = Mask;
1858    InMask.trunc(InBits);
1859    KnownZero.trunc(InBits);
1860    KnownOne.trunc(InBits);
1861    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1862    KnownZero.zext(BitWidth);
1863    KnownOne.zext(BitWidth);
1864    return;
1865  }
1866  case ISD::TRUNCATE: {
1867    EVT InVT = Op.getOperand(0).getValueType();
1868    unsigned InBits = InVT.getScalarType().getSizeInBits();
1869    APInt InMask = Mask;
1870    InMask.zext(InBits);
1871    KnownZero.zext(InBits);
1872    KnownOne.zext(InBits);
1873    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1875    KnownZero.trunc(BitWidth);
1876    KnownOne.trunc(BitWidth);
1877    break;
1878  }
1879  case ISD::AssertZext: {
1880    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1881    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1882    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1883                      KnownOne, Depth+1);
1884    KnownZero |= (~InMask) & Mask;
1885    return;
1886  }
1887  case ISD::FGETSIGN:
1888    // All bits are zero except the low bit.
1889    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1890    return;
1891
1892  case ISD::SUB: {
1893    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1894      // We know that the top bits of C-X are clear if X contains less bits
1895      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1896      // positive if we can prove that X is >= 0 and < 16.
1897      if (CLHS->getAPIntValue().isNonNegative()) {
1898        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1899        // NLZ can't be BitWidth with no sign bit
1900        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1901        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1902                          Depth+1);
1903
1904        // If all of the MaskV bits are known to be zero, then we know the
1905        // output top bits are zero, because we now know that the output is
1906        // from [0-C].
1907        if ((KnownZero2 & MaskV) == MaskV) {
1908          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1909          // Top bits known zero.
1910          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1911        }
1912      }
1913    }
1914  }
1915  // fall through
1916  case ISD::ADD: {
1917    // Output known-0 bits are known if clear or set in both the low clear bits
1918    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1919    // low 3 bits clear.
1920    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1921    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1922    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1923    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1924
1925    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1926    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1927    KnownZeroOut = std::min(KnownZeroOut,
1928                            KnownZero2.countTrailingOnes());
1929
1930    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1931    return;
1932  }
1933  case ISD::SREM:
1934    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1935      const APInt &RA = Rem->getAPIntValue().abs();
1936      if (RA.isPowerOf2()) {
1937        APInt LowBits = RA - 1;
1938        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1939        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1940
1941        // The low bits of the first operand are unchanged by the srem.
1942        KnownZero = KnownZero2 & LowBits;
1943        KnownOne = KnownOne2 & LowBits;
1944
1945        // If the first operand is non-negative or has all low bits zero, then
1946        // the upper bits are all zero.
1947        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1948          KnownZero |= ~LowBits;
1949
1950        // If the first operand is negative and not all low bits are zero, then
1951        // the upper bits are all one.
1952        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1953          KnownOne |= ~LowBits;
1954
1955        KnownZero &= Mask;
1956        KnownOne &= Mask;
1957
1958        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1959      }
1960    }
1961    return;
1962  case ISD::UREM: {
1963    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1964      const APInt &RA = Rem->getAPIntValue();
1965      if (RA.isPowerOf2()) {
1966        APInt LowBits = (RA - 1);
1967        APInt Mask2 = LowBits & Mask;
1968        KnownZero |= ~LowBits & Mask;
1969        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1970        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1971        break;
1972      }
1973    }
1974
1975    // Since the result is less than or equal to either operand, any leading
1976    // zero bits in either operand must also exist in the result.
1977    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1978    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1979                      Depth+1);
1980    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1981                      Depth+1);
1982
1983    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1984                                KnownZero2.countLeadingOnes());
1985    KnownOne.clear();
1986    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1987    return;
1988  }
1989  default:
1990    // Allow the target to implement this method for its nodes.
1991    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1992  case ISD::INTRINSIC_WO_CHAIN:
1993  case ISD::INTRINSIC_W_CHAIN:
1994  case ISD::INTRINSIC_VOID:
1995      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1996                                         Depth);
1997    }
1998    return;
1999  }
2000}
2001
2002/// ComputeNumSignBits - Return the number of times the sign bit of the
2003/// register is replicated into the other bits.  We know that at least 1 bit
2004/// is always equal to the sign bit (itself), but other cases can give us
2005/// information.  For example, immediately after an "SRA X, 2", we know that
2006/// the top 3 bits are all equal to each other, so we return 3.
2007unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2008  EVT VT = Op.getValueType();
2009  assert(VT.isInteger() && "Invalid VT!");
2010  unsigned VTBits = VT.getScalarType().getSizeInBits();
2011  unsigned Tmp, Tmp2;
2012  unsigned FirstAnswer = 1;
2013
2014  if (Depth == 6)
2015    return 1;  // Limit search depth.
2016
2017  switch (Op.getOpcode()) {
2018  default: break;
2019  case ISD::AssertSext:
2020    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2021    return VTBits-Tmp+1;
2022  case ISD::AssertZext:
2023    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2024    return VTBits-Tmp;
2025
2026  case ISD::Constant: {
2027    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2028    // If negative, return # leading ones.
2029    if (Val.isNegative())
2030      return Val.countLeadingOnes();
2031
2032    // Return # leading zeros.
2033    return Val.countLeadingZeros();
2034  }
2035
2036  case ISD::SIGN_EXTEND:
2037    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2038    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2039
2040  case ISD::SIGN_EXTEND_INREG:
2041    // Max of the input and what this extends.
2042    Tmp =
2043      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2044    Tmp = VTBits-Tmp+1;
2045
2046    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2047    return std::max(Tmp, Tmp2);
2048
2049  case ISD::SRA:
2050    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2051    // SRA X, C   -> adds C sign bits.
2052    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2053      Tmp += C->getZExtValue();
2054      if (Tmp > VTBits) Tmp = VTBits;
2055    }
2056    return Tmp;
2057  case ISD::SHL:
2058    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2059      // shl destroys sign bits.
2060      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2061      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2062          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2063      return Tmp - C->getZExtValue();
2064    }
2065    break;
2066  case ISD::AND:
2067  case ISD::OR:
2068  case ISD::XOR:    // NOT is handled here.
2069    // Logical binary ops preserve the number of sign bits at the worst.
2070    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2071    if (Tmp != 1) {
2072      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2073      FirstAnswer = std::min(Tmp, Tmp2);
2074      // We computed what we know about the sign bits as our first
2075      // answer. Now proceed to the generic code that uses
2076      // ComputeMaskedBits, and pick whichever answer is better.
2077    }
2078    break;
2079
2080  case ISD::SELECT:
2081    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2082    if (Tmp == 1) return 1;  // Early out.
2083    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2084    return std::min(Tmp, Tmp2);
2085
2086  case ISD::SADDO:
2087  case ISD::UADDO:
2088  case ISD::SSUBO:
2089  case ISD::USUBO:
2090  case ISD::SMULO:
2091  case ISD::UMULO:
2092    if (Op.getResNo() != 1)
2093      break;
2094    // The boolean result conforms to getBooleanContents.  Fall through.
2095  case ISD::SETCC:
2096    // If setcc returns 0/-1, all bits are sign bits.
2097    if (TLI.getBooleanContents() ==
2098        TargetLowering::ZeroOrNegativeOneBooleanContent)
2099      return VTBits;
2100    break;
2101  case ISD::ROTL:
2102  case ISD::ROTR:
2103    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2104      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2105
2106      // Handle rotate right by N like a rotate left by 32-N.
2107      if (Op.getOpcode() == ISD::ROTR)
2108        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2109
2110      // If we aren't rotating out all of the known-in sign bits, return the
2111      // number that are left.  This handles rotl(sext(x), 1) for example.
2112      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2113      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2114    }
2115    break;
2116  case ISD::ADD:
2117    // Add can have at most one carry bit.  Thus we know that the output
2118    // is, at worst, one more bit than the inputs.
2119    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2120    if (Tmp == 1) return 1;  // Early out.
2121
2122    // Special case decrementing a value (ADD X, -1):
2123    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2124      if (CRHS->isAllOnesValue()) {
2125        APInt KnownZero, KnownOne;
2126        APInt Mask = APInt::getAllOnesValue(VTBits);
2127        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2128
2129        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2130        // sign bits set.
2131        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2132          return VTBits;
2133
2134        // If we are subtracting one from a positive number, there is no carry
2135        // out of the result.
2136        if (KnownZero.isNegative())
2137          return Tmp;
2138      }
2139
2140    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2141    if (Tmp2 == 1) return 1;
2142      return std::min(Tmp, Tmp2)-1;
2143    break;
2144
2145  case ISD::SUB:
2146    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2147    if (Tmp2 == 1) return 1;
2148
2149    // Handle NEG.
2150    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2151      if (CLHS->isNullValue()) {
2152        APInt KnownZero, KnownOne;
2153        APInt Mask = APInt::getAllOnesValue(VTBits);
2154        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2155        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2156        // sign bits set.
2157        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2158          return VTBits;
2159
2160        // If the input is known to be positive (the sign bit is known clear),
2161        // the output of the NEG has the same number of sign bits as the input.
2162        if (KnownZero.isNegative())
2163          return Tmp2;
2164
2165        // Otherwise, we treat this like a SUB.
2166      }
2167
2168    // Sub can have at most one carry bit.  Thus we know that the output
2169    // is, at worst, one more bit than the inputs.
2170    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2171    if (Tmp == 1) return 1;  // Early out.
2172      return std::min(Tmp, Tmp2)-1;
2173    break;
2174  case ISD::TRUNCATE:
2175    // FIXME: it's tricky to do anything useful for this, but it is an important
2176    // case for targets like X86.
2177    break;
2178  }
2179
2180  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2181  if (Op.getOpcode() == ISD::LOAD) {
2182    LoadSDNode *LD = cast<LoadSDNode>(Op);
2183    unsigned ExtType = LD->getExtensionType();
2184    switch (ExtType) {
2185    default: break;
2186    case ISD::SEXTLOAD:    // '17' bits known
2187      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2188      return VTBits-Tmp+1;
2189    case ISD::ZEXTLOAD:    // '16' bits known
2190      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2191      return VTBits-Tmp;
2192    }
2193  }
2194
2195  // Allow the target to implement this method for its nodes.
2196  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2197      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2198      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2199      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2200    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2201    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2202  }
2203
2204  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2205  // use this information.
2206  APInt KnownZero, KnownOne;
2207  APInt Mask = APInt::getAllOnesValue(VTBits);
2208  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2209
2210  if (KnownZero.isNegative()) {        // sign bit is 0
2211    Mask = KnownZero;
2212  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2213    Mask = KnownOne;
2214  } else {
2215    // Nothing known.
2216    return FirstAnswer;
2217  }
2218
2219  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2220  // the number of identical bits in the top of the input value.
2221  Mask = ~Mask;
2222  Mask <<= Mask.getBitWidth()-VTBits;
2223  // Return # leading zeros.  We use 'min' here in case Val was zero before
2224  // shifting.  We don't want to return '64' as for an i32 "0".
2225  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2226}
2227
2228bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2229  // If we're told that NaNs won't happen, assume they won't.
2230  if (FiniteOnlyFPMath())
2231    return true;
2232
2233  // If the value is a constant, we can obviously see if it is a NaN or not.
2234  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2235    return !C->getValueAPF().isNaN();
2236
2237  // TODO: Recognize more cases here.
2238
2239  return false;
2240}
2241
2242bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2243  // If the value is a constant, we can obviously see if it is a zero or not.
2244  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2245    return !C->isZero();
2246
2247  // TODO: Recognize more cases here.
2248
2249  return false;
2250}
2251
2252bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2253  // Check the obvious case.
2254  if (A == B) return true;
2255
2256  // For for negative and positive zero.
2257  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2258    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2259      if (CA->isZero() && CB->isZero()) return true;
2260
2261  // Otherwise they may not be equal.
2262  return false;
2263}
2264
2265bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2266  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2267  if (!GA) return false;
2268  if (GA->getOffset() != 0) return false;
2269  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2270  if (!GV) return false;
2271  return MF->getMMI().hasDebugInfo();
2272}
2273
2274
2275/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2276/// element of the result of the vector shuffle.
2277SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2278                                          unsigned i) {
2279  EVT VT = N->getValueType(0);
2280  DebugLoc dl = N->getDebugLoc();
2281  if (N->getMaskElt(i) < 0)
2282    return getUNDEF(VT.getVectorElementType());
2283  unsigned Index = N->getMaskElt(i);
2284  unsigned NumElems = VT.getVectorNumElements();
2285  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2286  Index %= NumElems;
2287
2288  if (V.getOpcode() == ISD::BIT_CONVERT) {
2289    V = V.getOperand(0);
2290    EVT VVT = V.getValueType();
2291    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2292      return SDValue();
2293  }
2294  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2295    return (Index == 0) ? V.getOperand(0)
2296                      : getUNDEF(VT.getVectorElementType());
2297  if (V.getOpcode() == ISD::BUILD_VECTOR)
2298    return V.getOperand(Index);
2299  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2300    return getShuffleScalarElt(SVN, Index);
2301  return SDValue();
2302}
2303
2304
2305/// getNode - Gets or creates the specified node.
2306///
2307SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2308  FoldingSetNodeID ID;
2309  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2310  void *IP = 0;
2311  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2312    return SDValue(E, 0);
2313
2314  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2315  CSEMap.InsertNode(N, IP);
2316
2317  AllNodes.push_back(N);
2318#ifndef NDEBUG
2319  VerifyNode(N);
2320#endif
2321  return SDValue(N, 0);
2322}
2323
2324SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2325                              EVT VT, SDValue Operand) {
2326  // Constant fold unary operations with an integer constant operand.
2327  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2328    const APInt &Val = C->getAPIntValue();
2329    switch (Opcode) {
2330    default: break;
2331    case ISD::SIGN_EXTEND:
2332      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2333    case ISD::ANY_EXTEND:
2334    case ISD::ZERO_EXTEND:
2335    case ISD::TRUNCATE:
2336      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2337    case ISD::UINT_TO_FP:
2338    case ISD::SINT_TO_FP: {
2339      const uint64_t zero[] = {0, 0};
2340      // No compile time operations on ppcf128.
2341      if (VT == MVT::ppcf128) break;
2342      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2343      (void)apf.convertFromAPInt(Val,
2344                                 Opcode==ISD::SINT_TO_FP,
2345                                 APFloat::rmNearestTiesToEven);
2346      return getConstantFP(apf, VT);
2347    }
2348    case ISD::BIT_CONVERT:
2349      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2350        return getConstantFP(Val.bitsToFloat(), VT);
2351      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2352        return getConstantFP(Val.bitsToDouble(), VT);
2353      break;
2354    case ISD::BSWAP:
2355      return getConstant(Val.byteSwap(), VT);
2356    case ISD::CTPOP:
2357      return getConstant(Val.countPopulation(), VT);
2358    case ISD::CTLZ:
2359      return getConstant(Val.countLeadingZeros(), VT);
2360    case ISD::CTTZ:
2361      return getConstant(Val.countTrailingZeros(), VT);
2362    }
2363  }
2364
2365  // Constant fold unary operations with a floating point constant operand.
2366  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2367    APFloat V = C->getValueAPF();    // make copy
2368    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2369      switch (Opcode) {
2370      case ISD::FNEG:
2371        V.changeSign();
2372        return getConstantFP(V, VT);
2373      case ISD::FABS:
2374        V.clearSign();
2375        return getConstantFP(V, VT);
2376      case ISD::FP_ROUND:
2377      case ISD::FP_EXTEND: {
2378        bool ignored;
2379        // This can return overflow, underflow, or inexact; we don't care.
2380        // FIXME need to be more flexible about rounding mode.
2381        (void)V.convert(*EVTToAPFloatSemantics(VT),
2382                        APFloat::rmNearestTiesToEven, &ignored);
2383        return getConstantFP(V, VT);
2384      }
2385      case ISD::FP_TO_SINT:
2386      case ISD::FP_TO_UINT: {
2387        integerPart x[2];
2388        bool ignored;
2389        assert(integerPartWidth >= 64);
2390        // FIXME need to be more flexible about rounding mode.
2391        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2392                              Opcode==ISD::FP_TO_SINT,
2393                              APFloat::rmTowardZero, &ignored);
2394        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2395          break;
2396        APInt api(VT.getSizeInBits(), 2, x);
2397        return getConstant(api, VT);
2398      }
2399      case ISD::BIT_CONVERT:
2400        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2401          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2402        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2403          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2404        break;
2405      }
2406    }
2407  }
2408
2409  unsigned OpOpcode = Operand.getNode()->getOpcode();
2410  switch (Opcode) {
2411  case ISD::TokenFactor:
2412  case ISD::MERGE_VALUES:
2413  case ISD::CONCAT_VECTORS:
2414    return Operand;         // Factor, merge or concat of one node?  No need.
2415  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2416  case ISD::FP_EXTEND:
2417    assert(VT.isFloatingPoint() &&
2418           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2419    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2420    assert((!VT.isVector() ||
2421            VT.getVectorNumElements() ==
2422            Operand.getValueType().getVectorNumElements()) &&
2423           "Vector element count mismatch!");
2424    if (Operand.getOpcode() == ISD::UNDEF)
2425      return getUNDEF(VT);
2426    break;
2427  case ISD::SIGN_EXTEND:
2428    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2429           "Invalid SIGN_EXTEND!");
2430    if (Operand.getValueType() == VT) return Operand;   // noop extension
2431    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2432           "Invalid sext node, dst < src!");
2433    assert((!VT.isVector() ||
2434            VT.getVectorNumElements() ==
2435            Operand.getValueType().getVectorNumElements()) &&
2436           "Vector element count mismatch!");
2437    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2438      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2439    break;
2440  case ISD::ZERO_EXTEND:
2441    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2442           "Invalid ZERO_EXTEND!");
2443    if (Operand.getValueType() == VT) return Operand;   // noop extension
2444    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2445           "Invalid zext node, dst < src!");
2446    assert((!VT.isVector() ||
2447            VT.getVectorNumElements() ==
2448            Operand.getValueType().getVectorNumElements()) &&
2449           "Vector element count mismatch!");
2450    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2451      return getNode(ISD::ZERO_EXTEND, DL, VT,
2452                     Operand.getNode()->getOperand(0));
2453    break;
2454  case ISD::ANY_EXTEND:
2455    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2456           "Invalid ANY_EXTEND!");
2457    if (Operand.getValueType() == VT) return Operand;   // noop extension
2458    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2459           "Invalid anyext node, dst < src!");
2460    assert((!VT.isVector() ||
2461            VT.getVectorNumElements() ==
2462            Operand.getValueType().getVectorNumElements()) &&
2463           "Vector element count mismatch!");
2464    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2465      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2466      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2467    break;
2468  case ISD::TRUNCATE:
2469    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2470           "Invalid TRUNCATE!");
2471    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2472    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2473           "Invalid truncate node, src < dst!");
2474    assert((!VT.isVector() ||
2475            VT.getVectorNumElements() ==
2476            Operand.getValueType().getVectorNumElements()) &&
2477           "Vector element count mismatch!");
2478    if (OpOpcode == ISD::TRUNCATE)
2479      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2480    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2481             OpOpcode == ISD::ANY_EXTEND) {
2482      // If the source is smaller than the dest, we still need an extend.
2483      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2484            .bitsLT(VT.getScalarType()))
2485        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2486      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2487        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2488      else
2489        return Operand.getNode()->getOperand(0);
2490    }
2491    break;
2492  case ISD::BIT_CONVERT:
2493    // Basic sanity checking.
2494    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2495           && "Cannot BIT_CONVERT between types of different sizes!");
2496    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2497    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2498      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2499    if (OpOpcode == ISD::UNDEF)
2500      return getUNDEF(VT);
2501    break;
2502  case ISD::SCALAR_TO_VECTOR:
2503    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2504           (VT.getVectorElementType() == Operand.getValueType() ||
2505            (VT.getVectorElementType().isInteger() &&
2506             Operand.getValueType().isInteger() &&
2507             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2508           "Illegal SCALAR_TO_VECTOR node!");
2509    if (OpOpcode == ISD::UNDEF)
2510      return getUNDEF(VT);
2511    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2512    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2513        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2514        Operand.getConstantOperandVal(1) == 0 &&
2515        Operand.getOperand(0).getValueType() == VT)
2516      return Operand.getOperand(0);
2517    break;
2518  case ISD::FNEG:
2519    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2520    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2521      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2522                     Operand.getNode()->getOperand(0));
2523    if (OpOpcode == ISD::FNEG)  // --X -> X
2524      return Operand.getNode()->getOperand(0);
2525    break;
2526  case ISD::FABS:
2527    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2528      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2529    break;
2530  }
2531
2532  SDNode *N;
2533  SDVTList VTs = getVTList(VT);
2534  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2535    FoldingSetNodeID ID;
2536    SDValue Ops[1] = { Operand };
2537    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2538    void *IP = 0;
2539    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2540      return SDValue(E, 0);
2541
2542    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2543    CSEMap.InsertNode(N, IP);
2544  } else {
2545    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2546  }
2547
2548  AllNodes.push_back(N);
2549#ifndef NDEBUG
2550  VerifyNode(N);
2551#endif
2552  return SDValue(N, 0);
2553}
2554
2555SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2556                                             EVT VT,
2557                                             ConstantSDNode *Cst1,
2558                                             ConstantSDNode *Cst2) {
2559  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2560
2561  switch (Opcode) {
2562  case ISD::ADD:  return getConstant(C1 + C2, VT);
2563  case ISD::SUB:  return getConstant(C1 - C2, VT);
2564  case ISD::MUL:  return getConstant(C1 * C2, VT);
2565  case ISD::UDIV:
2566    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2567    break;
2568  case ISD::UREM:
2569    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2570    break;
2571  case ISD::SDIV:
2572    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2573    break;
2574  case ISD::SREM:
2575    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2576    break;
2577  case ISD::AND:  return getConstant(C1 & C2, VT);
2578  case ISD::OR:   return getConstant(C1 | C2, VT);
2579  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2580  case ISD::SHL:  return getConstant(C1 << C2, VT);
2581  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2582  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2583  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2584  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2585  default: break;
2586  }
2587
2588  return SDValue();
2589}
2590
2591SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2592                              SDValue N1, SDValue N2) {
2593  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2594  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2595  switch (Opcode) {
2596  default: break;
2597  case ISD::TokenFactor:
2598    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2599           N2.getValueType() == MVT::Other && "Invalid token factor!");
2600    // Fold trivial token factors.
2601    if (N1.getOpcode() == ISD::EntryToken) return N2;
2602    if (N2.getOpcode() == ISD::EntryToken) return N1;
2603    if (N1 == N2) return N1;
2604    break;
2605  case ISD::CONCAT_VECTORS:
2606    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2607    // one big BUILD_VECTOR.
2608    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2609        N2.getOpcode() == ISD::BUILD_VECTOR) {
2610      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2611      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2612      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2613    }
2614    break;
2615  case ISD::AND:
2616    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2617           N1.getValueType() == VT && "Binary operator types must match!");
2618    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2619    // worth handling here.
2620    if (N2C && N2C->isNullValue())
2621      return N2;
2622    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2623      return N1;
2624    break;
2625  case ISD::OR:
2626  case ISD::XOR:
2627  case ISD::ADD:
2628  case ISD::SUB:
2629    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2630           N1.getValueType() == VT && "Binary operator types must match!");
2631    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2632    // it's worth handling here.
2633    if (N2C && N2C->isNullValue())
2634      return N1;
2635    break;
2636  case ISD::UDIV:
2637  case ISD::UREM:
2638  case ISD::MULHU:
2639  case ISD::MULHS:
2640  case ISD::MUL:
2641  case ISD::SDIV:
2642  case ISD::SREM:
2643    assert(VT.isInteger() && "This operator does not apply to FP types!");
2644    // fall through
2645  case ISD::FADD:
2646  case ISD::FSUB:
2647  case ISD::FMUL:
2648  case ISD::FDIV:
2649  case ISD::FREM:
2650    if (UnsafeFPMath) {
2651      if (Opcode == ISD::FADD) {
2652        // 0+x --> x
2653        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2654          if (CFP->getValueAPF().isZero())
2655            return N2;
2656        // x+0 --> x
2657        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2658          if (CFP->getValueAPF().isZero())
2659            return N1;
2660      } else if (Opcode == ISD::FSUB) {
2661        // x-0 --> x
2662        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2663          if (CFP->getValueAPF().isZero())
2664            return N1;
2665      }
2666    }
2667    assert(N1.getValueType() == N2.getValueType() &&
2668           N1.getValueType() == VT && "Binary operator types must match!");
2669    break;
2670  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2671    assert(N1.getValueType() == VT &&
2672           N1.getValueType().isFloatingPoint() &&
2673           N2.getValueType().isFloatingPoint() &&
2674           "Invalid FCOPYSIGN!");
2675    break;
2676  case ISD::SHL:
2677  case ISD::SRA:
2678  case ISD::SRL:
2679  case ISD::ROTL:
2680  case ISD::ROTR:
2681    assert(VT == N1.getValueType() &&
2682           "Shift operators return type must be the same as their first arg");
2683    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2684           "Shifts only work on integers");
2685
2686    // Always fold shifts of i1 values so the code generator doesn't need to
2687    // handle them.  Since we know the size of the shift has to be less than the
2688    // size of the value, the shift/rotate count is guaranteed to be zero.
2689    if (VT == MVT::i1)
2690      return N1;
2691    if (N2C && N2C->isNullValue())
2692      return N1;
2693    break;
2694  case ISD::FP_ROUND_INREG: {
2695    EVT EVT = cast<VTSDNode>(N2)->getVT();
2696    assert(VT == N1.getValueType() && "Not an inreg round!");
2697    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2698           "Cannot FP_ROUND_INREG integer types");
2699    assert(EVT.isVector() == VT.isVector() &&
2700           "FP_ROUND_INREG type should be vector iff the operand "
2701           "type is vector!");
2702    assert((!EVT.isVector() ||
2703            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2704           "Vector element counts must match in FP_ROUND_INREG");
2705    assert(EVT.bitsLE(VT) && "Not rounding down!");
2706    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2707    break;
2708  }
2709  case ISD::FP_ROUND:
2710    assert(VT.isFloatingPoint() &&
2711           N1.getValueType().isFloatingPoint() &&
2712           VT.bitsLE(N1.getValueType()) &&
2713           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2714    if (N1.getValueType() == VT) return N1;  // noop conversion.
2715    break;
2716  case ISD::AssertSext:
2717  case ISD::AssertZext: {
2718    EVT EVT = cast<VTSDNode>(N2)->getVT();
2719    assert(VT == N1.getValueType() && "Not an inreg extend!");
2720    assert(VT.isInteger() && EVT.isInteger() &&
2721           "Cannot *_EXTEND_INREG FP types");
2722    assert(!EVT.isVector() &&
2723           "AssertSExt/AssertZExt type should be the vector element type "
2724           "rather than the vector type!");
2725    assert(EVT.bitsLE(VT) && "Not extending!");
2726    if (VT == EVT) return N1; // noop assertion.
2727    break;
2728  }
2729  case ISD::SIGN_EXTEND_INREG: {
2730    EVT EVT = cast<VTSDNode>(N2)->getVT();
2731    assert(VT == N1.getValueType() && "Not an inreg extend!");
2732    assert(VT.isInteger() && EVT.isInteger() &&
2733           "Cannot *_EXTEND_INREG FP types");
2734    assert(EVT.isVector() == VT.isVector() &&
2735           "SIGN_EXTEND_INREG type should be vector iff the operand "
2736           "type is vector!");
2737    assert((!EVT.isVector() ||
2738            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2739           "Vector element counts must match in SIGN_EXTEND_INREG");
2740    assert(EVT.bitsLE(VT) && "Not extending!");
2741    if (EVT == VT) return N1;  // Not actually extending
2742
2743    if (N1C) {
2744      APInt Val = N1C->getAPIntValue();
2745      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2746      Val <<= Val.getBitWidth()-FromBits;
2747      Val = Val.ashr(Val.getBitWidth()-FromBits);
2748      return getConstant(Val, VT);
2749    }
2750    break;
2751  }
2752  case ISD::EXTRACT_VECTOR_ELT:
2753    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2754    if (N1.getOpcode() == ISD::UNDEF)
2755      return getUNDEF(VT);
2756
2757    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2758    // expanding copies of large vectors from registers.
2759    if (N2C &&
2760        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2761        N1.getNumOperands() > 0) {
2762      unsigned Factor =
2763        N1.getOperand(0).getValueType().getVectorNumElements();
2764      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2765                     N1.getOperand(N2C->getZExtValue() / Factor),
2766                     getConstant(N2C->getZExtValue() % Factor,
2767                                 N2.getValueType()));
2768    }
2769
2770    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2771    // expanding large vector constants.
2772    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2773      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2774      EVT VEltTy = N1.getValueType().getVectorElementType();
2775      if (Elt.getValueType() != VEltTy) {
2776        // If the vector element type is not legal, the BUILD_VECTOR operands
2777        // are promoted and implicitly truncated.  Make that explicit here.
2778        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2779      }
2780      if (VT != VEltTy) {
2781        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2782        // result is implicitly extended.
2783        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2784      }
2785      return Elt;
2786    }
2787
2788    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2789    // operations are lowered to scalars.
2790    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2791      // If the indices are the same, return the inserted element else
2792      // if the indices are known different, extract the element from
2793      // the original vector.
2794      if (N1.getOperand(2) == N2) {
2795        if (VT == N1.getOperand(1).getValueType())
2796          return N1.getOperand(1);
2797        else
2798          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2799      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2800                 isa<ConstantSDNode>(N2))
2801        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2802    }
2803    break;
2804  case ISD::EXTRACT_ELEMENT:
2805    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2806    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2807           (N1.getValueType().isInteger() == VT.isInteger()) &&
2808           "Wrong types for EXTRACT_ELEMENT!");
2809
2810    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2811    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2812    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2813    if (N1.getOpcode() == ISD::BUILD_PAIR)
2814      return N1.getOperand(N2C->getZExtValue());
2815
2816    // EXTRACT_ELEMENT of a constant int is also very common.
2817    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2818      unsigned ElementSize = VT.getSizeInBits();
2819      unsigned Shift = ElementSize * N2C->getZExtValue();
2820      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2821      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2822    }
2823    break;
2824  case ISD::EXTRACT_SUBVECTOR:
2825    if (N1.getValueType() == VT) // Trivial extraction.
2826      return N1;
2827    break;
2828  }
2829
2830  if (N1C) {
2831    if (N2C) {
2832      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2833      if (SV.getNode()) return SV;
2834    } else {      // Cannonicalize constant to RHS if commutative
2835      if (isCommutativeBinOp(Opcode)) {
2836        std::swap(N1C, N2C);
2837        std::swap(N1, N2);
2838      }
2839    }
2840  }
2841
2842  // Constant fold FP operations.
2843  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2844  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2845  if (N1CFP) {
2846    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2847      // Cannonicalize constant to RHS if commutative
2848      std::swap(N1CFP, N2CFP);
2849      std::swap(N1, N2);
2850    } else if (N2CFP && VT != MVT::ppcf128) {
2851      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2852      APFloat::opStatus s;
2853      switch (Opcode) {
2854      case ISD::FADD:
2855        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2856        if (s != APFloat::opInvalidOp)
2857          return getConstantFP(V1, VT);
2858        break;
2859      case ISD::FSUB:
2860        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2861        if (s!=APFloat::opInvalidOp)
2862          return getConstantFP(V1, VT);
2863        break;
2864      case ISD::FMUL:
2865        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2866        if (s!=APFloat::opInvalidOp)
2867          return getConstantFP(V1, VT);
2868        break;
2869      case ISD::FDIV:
2870        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2871        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2872          return getConstantFP(V1, VT);
2873        break;
2874      case ISD::FREM :
2875        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2876        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2877          return getConstantFP(V1, VT);
2878        break;
2879      case ISD::FCOPYSIGN:
2880        V1.copySign(V2);
2881        return getConstantFP(V1, VT);
2882      default: break;
2883      }
2884    }
2885  }
2886
2887  // Canonicalize an UNDEF to the RHS, even over a constant.
2888  if (N1.getOpcode() == ISD::UNDEF) {
2889    if (isCommutativeBinOp(Opcode)) {
2890      std::swap(N1, N2);
2891    } else {
2892      switch (Opcode) {
2893      case ISD::FP_ROUND_INREG:
2894      case ISD::SIGN_EXTEND_INREG:
2895      case ISD::SUB:
2896      case ISD::FSUB:
2897      case ISD::FDIV:
2898      case ISD::FREM:
2899      case ISD::SRA:
2900        return N1;     // fold op(undef, arg2) -> undef
2901      case ISD::UDIV:
2902      case ISD::SDIV:
2903      case ISD::UREM:
2904      case ISD::SREM:
2905      case ISD::SRL:
2906      case ISD::SHL:
2907        if (!VT.isVector())
2908          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2909        // For vectors, we can't easily build an all zero vector, just return
2910        // the LHS.
2911        return N2;
2912      }
2913    }
2914  }
2915
2916  // Fold a bunch of operators when the RHS is undef.
2917  if (N2.getOpcode() == ISD::UNDEF) {
2918    switch (Opcode) {
2919    case ISD::XOR:
2920      if (N1.getOpcode() == ISD::UNDEF)
2921        // Handle undef ^ undef -> 0 special case. This is a common
2922        // idiom (misuse).
2923        return getConstant(0, VT);
2924      // fallthrough
2925    case ISD::ADD:
2926    case ISD::ADDC:
2927    case ISD::ADDE:
2928    case ISD::SUB:
2929    case ISD::UDIV:
2930    case ISD::SDIV:
2931    case ISD::UREM:
2932    case ISD::SREM:
2933      return N2;       // fold op(arg1, undef) -> undef
2934    case ISD::FADD:
2935    case ISD::FSUB:
2936    case ISD::FMUL:
2937    case ISD::FDIV:
2938    case ISD::FREM:
2939      if (UnsafeFPMath)
2940        return N2;
2941      break;
2942    case ISD::MUL:
2943    case ISD::AND:
2944    case ISD::SRL:
2945    case ISD::SHL:
2946      if (!VT.isVector())
2947        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2948      // For vectors, we can't easily build an all zero vector, just return
2949      // the LHS.
2950      return N1;
2951    case ISD::OR:
2952      if (!VT.isVector())
2953        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2954      // For vectors, we can't easily build an all one vector, just return
2955      // the LHS.
2956      return N1;
2957    case ISD::SRA:
2958      return N1;
2959    }
2960  }
2961
2962  // Memoize this node if possible.
2963  SDNode *N;
2964  SDVTList VTs = getVTList(VT);
2965  if (VT != MVT::Flag) {
2966    SDValue Ops[] = { N1, N2 };
2967    FoldingSetNodeID ID;
2968    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2969    void *IP = 0;
2970    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2971      return SDValue(E, 0);
2972
2973    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2974    CSEMap.InsertNode(N, IP);
2975  } else {
2976    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2977  }
2978
2979  AllNodes.push_back(N);
2980#ifndef NDEBUG
2981  VerifyNode(N);
2982#endif
2983  return SDValue(N, 0);
2984}
2985
2986SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2987                              SDValue N1, SDValue N2, SDValue N3) {
2988  // Perform various simplifications.
2989  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2990  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2991  switch (Opcode) {
2992  case ISD::CONCAT_VECTORS:
2993    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2994    // one big BUILD_VECTOR.
2995    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2996        N2.getOpcode() == ISD::BUILD_VECTOR &&
2997        N3.getOpcode() == ISD::BUILD_VECTOR) {
2998      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2999      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3000      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3001      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3002    }
3003    break;
3004  case ISD::SETCC: {
3005    // Use FoldSetCC to simplify SETCC's.
3006    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3007    if (Simp.getNode()) return Simp;
3008    break;
3009  }
3010  case ISD::SELECT:
3011    if (N1C) {
3012     if (N1C->getZExtValue())
3013        return N2;             // select true, X, Y -> X
3014      else
3015        return N3;             // select false, X, Y -> Y
3016    }
3017
3018    if (N2 == N3) return N2;   // select C, X, X -> X
3019    break;
3020  case ISD::BRCOND:
3021    if (N2C) {
3022      if (N2C->getZExtValue()) // Unconditional branch
3023        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3024      else
3025        return N1;         // Never-taken branch
3026    }
3027    break;
3028  case ISD::VECTOR_SHUFFLE:
3029    llvm_unreachable("should use getVectorShuffle constructor!");
3030    break;
3031  case ISD::BIT_CONVERT:
3032    // Fold bit_convert nodes from a type to themselves.
3033    if (N1.getValueType() == VT)
3034      return N1;
3035    break;
3036  }
3037
3038  // Memoize node if it doesn't produce a flag.
3039  SDNode *N;
3040  SDVTList VTs = getVTList(VT);
3041  if (VT != MVT::Flag) {
3042    SDValue Ops[] = { N1, N2, N3 };
3043    FoldingSetNodeID ID;
3044    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3045    void *IP = 0;
3046    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3047      return SDValue(E, 0);
3048
3049    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3050    CSEMap.InsertNode(N, IP);
3051  } else {
3052    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3053  }
3054
3055  AllNodes.push_back(N);
3056#ifndef NDEBUG
3057  VerifyNode(N);
3058#endif
3059  return SDValue(N, 0);
3060}
3061
3062SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3063                              SDValue N1, SDValue N2, SDValue N3,
3064                              SDValue N4) {
3065  SDValue Ops[] = { N1, N2, N3, N4 };
3066  return getNode(Opcode, DL, VT, Ops, 4);
3067}
3068
3069SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3070                              SDValue N1, SDValue N2, SDValue N3,
3071                              SDValue N4, SDValue N5) {
3072  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3073  return getNode(Opcode, DL, VT, Ops, 5);
3074}
3075
3076/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3077/// the incoming stack arguments to be loaded from the stack.
3078SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3079  SmallVector<SDValue, 8> ArgChains;
3080
3081  // Include the original chain at the beginning of the list. When this is
3082  // used by target LowerCall hooks, this helps legalize find the
3083  // CALLSEQ_BEGIN node.
3084  ArgChains.push_back(Chain);
3085
3086  // Add a chain value for each stack argument.
3087  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3088       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3089    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3090      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3091        if (FI->getIndex() < 0)
3092          ArgChains.push_back(SDValue(L, 1));
3093
3094  // Build a tokenfactor for all the chains.
3095  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3096                 &ArgChains[0], ArgChains.size());
3097}
3098
3099/// getMemsetValue - Vectorized representation of the memset value
3100/// operand.
3101static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3102                              DebugLoc dl) {
3103  assert(Value.getOpcode() != ISD::UNDEF);
3104
3105  unsigned NumBits = VT.getScalarType().getSizeInBits();
3106  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3107    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3108    unsigned Shift = 8;
3109    for (unsigned i = NumBits; i > 8; i >>= 1) {
3110      Val = (Val << Shift) | Val;
3111      Shift <<= 1;
3112    }
3113    if (VT.isInteger())
3114      return DAG.getConstant(Val, VT);
3115    return DAG.getConstantFP(APFloat(Val), VT);
3116  }
3117
3118  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3119  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3120  unsigned Shift = 8;
3121  for (unsigned i = NumBits; i > 8; i >>= 1) {
3122    Value = DAG.getNode(ISD::OR, dl, VT,
3123                        DAG.getNode(ISD::SHL, dl, VT, Value,
3124                                    DAG.getConstant(Shift,
3125                                                    TLI.getShiftAmountTy())),
3126                        Value);
3127    Shift <<= 1;
3128  }
3129
3130  return Value;
3131}
3132
3133/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3134/// used when a memcpy is turned into a memset when the source is a constant
3135/// string ptr.
3136static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3137                                  const TargetLowering &TLI,
3138                                  std::string &Str, unsigned Offset) {
3139  // Handle vector with all elements zero.
3140  if (Str.empty()) {
3141    if (VT.isInteger())
3142      return DAG.getConstant(0, VT);
3143    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3144             VT.getSimpleVT().SimpleTy == MVT::f64)
3145      return DAG.getConstantFP(0.0, VT);
3146    else if (VT.isVector()) {
3147      unsigned NumElts = VT.getVectorNumElements();
3148      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3149      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3150                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3151                                                             EltVT, NumElts)));
3152    } else
3153      llvm_unreachable("Expected type!");
3154  }
3155
3156  assert(!VT.isVector() && "Can't handle vector type here!");
3157  unsigned NumBits = VT.getSizeInBits();
3158  unsigned MSB = NumBits / 8;
3159  uint64_t Val = 0;
3160  if (TLI.isLittleEndian())
3161    Offset = Offset + MSB - 1;
3162  for (unsigned i = 0; i != MSB; ++i) {
3163    Val = (Val << 8) | (unsigned char)Str[Offset];
3164    Offset += TLI.isLittleEndian() ? -1 : 1;
3165  }
3166  return DAG.getConstant(Val, VT);
3167}
3168
3169/// getMemBasePlusOffset - Returns base and offset node for the
3170///
3171static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3172                                      SelectionDAG &DAG) {
3173  EVT VT = Base.getValueType();
3174  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3175                     VT, Base, DAG.getConstant(Offset, VT));
3176}
3177
3178/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3179///
3180static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3181  unsigned SrcDelta = 0;
3182  GlobalAddressSDNode *G = NULL;
3183  if (Src.getOpcode() == ISD::GlobalAddress)
3184    G = cast<GlobalAddressSDNode>(Src);
3185  else if (Src.getOpcode() == ISD::ADD &&
3186           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3187           Src.getOperand(1).getOpcode() == ISD::Constant) {
3188    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3189    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3190  }
3191  if (!G)
3192    return false;
3193
3194  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3195  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3196    return true;
3197
3198  return false;
3199}
3200
3201/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3202/// to replace the memset / memcpy. Return true if the number of memory ops
3203/// is below the threshold. It returns the types of the sequence of
3204/// memory ops to perform memset / memcpy by reference.
3205static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3206                                     unsigned Limit, uint64_t Size,
3207                                     unsigned DstAlign, unsigned SrcAlign,
3208                                     bool NonScalarIntSafe,
3209                                     bool MemcpyStrSrc,
3210                                     SelectionDAG &DAG,
3211                                     const TargetLowering &TLI) {
3212  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3213         "Expecting memcpy / memset source to meet alignment requirement!");
3214  // If 'SrcAlign' is zero, that means the memory operation does not need load
3215  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3216  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3217  // specified alignment of the memory operation. If it is zero, that means
3218  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3219  // indicates whether the memcpy source is constant so it does not need to be
3220  // loaded.
3221  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3222                                   NonScalarIntSafe, MemcpyStrSrc,
3223                                   DAG.getMachineFunction());
3224
3225  if (VT == MVT::Other) {
3226    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3227        TLI.allowsUnalignedMemoryAccesses(VT)) {
3228      VT = TLI.getPointerTy();
3229    } else {
3230      switch (DstAlign & 7) {
3231      case 0:  VT = MVT::i64; break;
3232      case 4:  VT = MVT::i32; break;
3233      case 2:  VT = MVT::i16; break;
3234      default: VT = MVT::i8;  break;
3235      }
3236    }
3237
3238    MVT LVT = MVT::i64;
3239    while (!TLI.isTypeLegal(LVT))
3240      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3241    assert(LVT.isInteger());
3242
3243    if (VT.bitsGT(LVT))
3244      VT = LVT;
3245  }
3246
3247  unsigned NumMemOps = 0;
3248  while (Size != 0) {
3249    unsigned VTSize = VT.getSizeInBits() / 8;
3250    while (VTSize > Size) {
3251      // For now, only use non-vector load / store's for the left-over pieces.
3252      if (VT.isVector() || VT.isFloatingPoint()) {
3253        VT = MVT::i64;
3254        while (!TLI.isTypeLegal(VT))
3255          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3256        VTSize = VT.getSizeInBits() / 8;
3257      } else {
3258        // This can result in a type that is not legal on the target, e.g.
3259        // 1 or 2 bytes on PPC.
3260        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3261        VTSize >>= 1;
3262      }
3263    }
3264
3265    if (++NumMemOps > Limit)
3266      return false;
3267    MemOps.push_back(VT);
3268    Size -= VTSize;
3269  }
3270
3271  return true;
3272}
3273
3274static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3275                                       SDValue Chain, SDValue Dst,
3276                                       SDValue Src, uint64_t Size,
3277                                       unsigned Align, bool isVol,
3278                                       bool AlwaysInline,
3279                                       const Value *DstSV, uint64_t DstSVOff,
3280                                       const Value *SrcSV, uint64_t SrcSVOff) {
3281  // Turn a memcpy of undef to nop.
3282  if (Src.getOpcode() == ISD::UNDEF)
3283    return Chain;
3284
3285  // Expand memcpy to a series of load and store ops if the size operand falls
3286  // below a certain threshold.
3287  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3288  std::vector<EVT> MemOps;
3289  bool DstAlignCanChange = false;
3290  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3291  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3292  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3293    DstAlignCanChange = true;
3294  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3295  if (Align > SrcAlign)
3296    SrcAlign = Align;
3297  std::string Str;
3298  bool CopyFromStr = isMemSrcFromString(Src, Str);
3299  bool isZeroStr = CopyFromStr && Str.empty();
3300  uint64_t Limit = -1ULL;
3301  if (!AlwaysInline)
3302    Limit = TLI.getMaxStoresPerMemcpy();
3303  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3304                                (DstAlignCanChange ? 0 : Align),
3305                                (isZeroStr ? 0 : SrcAlign),
3306                                true, CopyFromStr, DAG, TLI))
3307    return SDValue();
3308
3309  if (DstAlignCanChange) {
3310    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3311    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3312    if (NewAlign > Align) {
3313      // Give the stack frame object a larger alignment if needed.
3314      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3315        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3316      Align = NewAlign;
3317    }
3318  }
3319
3320  SmallVector<SDValue, 8> OutChains;
3321  unsigned NumMemOps = MemOps.size();
3322  uint64_t SrcOff = 0, DstOff = 0;
3323  for (unsigned i = 0; i != NumMemOps; ++i) {
3324    EVT VT = MemOps[i];
3325    unsigned VTSize = VT.getSizeInBits() / 8;
3326    SDValue Value, Store;
3327
3328    if (CopyFromStr &&
3329        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3330      // It's unlikely a store of a vector immediate can be done in a single
3331      // instruction. It would require a load from a constantpool first.
3332      // We only handle zero vectors here.
3333      // FIXME: Handle other cases where store of vector immediate is done in
3334      // a single instruction.
3335      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3336      Store = DAG.getStore(Chain, dl, Value,
3337                           getMemBasePlusOffset(Dst, DstOff, DAG),
3338                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3339    } else {
3340      // The type might not be legal for the target.  This should only happen
3341      // if the type is smaller than a legal type, as on PPC, so the right
3342      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3343      // to Load/Store if NVT==VT.
3344      // FIXME does the case above also need this?
3345      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3346      assert(NVT.bitsGE(VT));
3347      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3348                             getMemBasePlusOffset(Src, SrcOff, DAG),
3349                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3350                             MinAlign(SrcAlign, SrcOff));
3351      Store = DAG.getTruncStore(Chain, dl, Value,
3352                                getMemBasePlusOffset(Dst, DstOff, DAG),
3353                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3354                                Align);
3355    }
3356    OutChains.push_back(Store);
3357    SrcOff += VTSize;
3358    DstOff += VTSize;
3359  }
3360
3361  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3362                     &OutChains[0], OutChains.size());
3363}
3364
3365static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3366                                        SDValue Chain, SDValue Dst,
3367                                        SDValue Src, uint64_t Size,
3368                                        unsigned Align,  bool isVol,
3369                                        bool AlwaysInline,
3370                                        const Value *DstSV, uint64_t DstSVOff,
3371                                        const Value *SrcSV, uint64_t SrcSVOff) {
3372  // Turn a memmove of undef to nop.
3373  if (Src.getOpcode() == ISD::UNDEF)
3374    return Chain;
3375
3376  // Expand memmove to a series of load and store ops if the size operand falls
3377  // below a certain threshold.
3378  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3379  std::vector<EVT> MemOps;
3380  uint64_t Limit = -1ULL;
3381  if (!AlwaysInline)
3382    Limit = TLI.getMaxStoresPerMemmove();
3383  bool DstAlignCanChange = false;
3384  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3385  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3386  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3387    DstAlignCanChange = true;
3388  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3389  if (Align > SrcAlign)
3390    SrcAlign = Align;
3391
3392  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3393                                (DstAlignCanChange ? 0 : Align),
3394                                SrcAlign, true, false, DAG, TLI))
3395    return SDValue();
3396
3397  if (DstAlignCanChange) {
3398    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3399    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3400    if (NewAlign > Align) {
3401      // Give the stack frame object a larger alignment if needed.
3402      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3403        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3404      Align = NewAlign;
3405    }
3406  }
3407
3408  uint64_t SrcOff = 0, DstOff = 0;
3409  SmallVector<SDValue, 8> LoadValues;
3410  SmallVector<SDValue, 8> LoadChains;
3411  SmallVector<SDValue, 8> OutChains;
3412  unsigned NumMemOps = MemOps.size();
3413  for (unsigned i = 0; i < NumMemOps; i++) {
3414    EVT VT = MemOps[i];
3415    unsigned VTSize = VT.getSizeInBits() / 8;
3416    SDValue Value, Store;
3417
3418    Value = DAG.getLoad(VT, dl, Chain,
3419                        getMemBasePlusOffset(Src, SrcOff, DAG),
3420                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3421    LoadValues.push_back(Value);
3422    LoadChains.push_back(Value.getValue(1));
3423    SrcOff += VTSize;
3424  }
3425  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3426                      &LoadChains[0], LoadChains.size());
3427  OutChains.clear();
3428  for (unsigned i = 0; i < NumMemOps; i++) {
3429    EVT VT = MemOps[i];
3430    unsigned VTSize = VT.getSizeInBits() / 8;
3431    SDValue Value, Store;
3432
3433    Store = DAG.getStore(Chain, dl, LoadValues[i],
3434                         getMemBasePlusOffset(Dst, DstOff, DAG),
3435                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3436    OutChains.push_back(Store);
3437    DstOff += VTSize;
3438  }
3439
3440  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3441                     &OutChains[0], OutChains.size());
3442}
3443
3444static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3445                               SDValue Chain, SDValue Dst,
3446                               SDValue Src, uint64_t Size,
3447                               unsigned Align, bool isVol,
3448                               const Value *DstSV, uint64_t DstSVOff) {
3449  // Turn a memset of undef to nop.
3450  if (Src.getOpcode() == ISD::UNDEF)
3451    return Chain;
3452
3453  // Expand memset to a series of load/store ops if the size operand
3454  // falls below a certain threshold.
3455  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3456  std::vector<EVT> MemOps;
3457  bool DstAlignCanChange = false;
3458  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3459  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3460  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3461    DstAlignCanChange = true;
3462  bool NonScalarIntSafe =
3463    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3464  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3465                                Size, (DstAlignCanChange ? 0 : Align), 0,
3466                                NonScalarIntSafe, false, DAG, TLI))
3467    return SDValue();
3468
3469  if (DstAlignCanChange) {
3470    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3471    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3472    if (NewAlign > Align) {
3473      // Give the stack frame object a larger alignment if needed.
3474      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3475        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3476      Align = NewAlign;
3477    }
3478  }
3479
3480  SmallVector<SDValue, 8> OutChains;
3481  uint64_t DstOff = 0;
3482  unsigned NumMemOps = MemOps.size();
3483  for (unsigned i = 0; i < NumMemOps; i++) {
3484    EVT VT = MemOps[i];
3485    unsigned VTSize = VT.getSizeInBits() / 8;
3486    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3487    SDValue Store = DAG.getStore(Chain, dl, Value,
3488                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3489                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3490    OutChains.push_back(Store);
3491    DstOff += VTSize;
3492  }
3493
3494  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3495                     &OutChains[0], OutChains.size());
3496}
3497
3498SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3499                                SDValue Src, SDValue Size,
3500                                unsigned Align, bool isVol, bool AlwaysInline,
3501                                const Value *DstSV, uint64_t DstSVOff,
3502                                const Value *SrcSV, uint64_t SrcSVOff) {
3503
3504  // Check to see if we should lower the memcpy to loads and stores first.
3505  // For cases within the target-specified limits, this is the best choice.
3506  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3507  if (ConstantSize) {
3508    // Memcpy with size zero? Just return the original chain.
3509    if (ConstantSize->isNullValue())
3510      return Chain;
3511
3512    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3513                                             ConstantSize->getZExtValue(),Align,
3514                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3515    if (Result.getNode())
3516      return Result;
3517  }
3518
3519  // Then check to see if we should lower the memcpy with target-specific
3520  // code. If the target chooses to do this, this is the next best.
3521  SDValue Result =
3522    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3523                                isVol, AlwaysInline,
3524                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3525  if (Result.getNode())
3526    return Result;
3527
3528  // If we really need inline code and the target declined to provide it,
3529  // use a (potentially long) sequence of loads and stores.
3530  if (AlwaysInline) {
3531    assert(ConstantSize && "AlwaysInline requires a constant size!");
3532    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3533                                   ConstantSize->getZExtValue(), Align, isVol,
3534                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3535  }
3536
3537  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3538  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3539  // respect volatile, so they may do things like read or write memory
3540  // beyond the given memory regions. But fixing this isn't easy, and most
3541  // people don't care.
3542
3543  // Emit a library call.
3544  TargetLowering::ArgListTy Args;
3545  TargetLowering::ArgListEntry Entry;
3546  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3547  Entry.Node = Dst; Args.push_back(Entry);
3548  Entry.Node = Src; Args.push_back(Entry);
3549  Entry.Node = Size; Args.push_back(Entry);
3550  // FIXME: pass in DebugLoc
3551  std::pair<SDValue,SDValue> CallResult =
3552    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3553                    false, false, false, false, 0,
3554                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3555                    /*isReturnValueUsed=*/false,
3556                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3557                                      TLI.getPointerTy()),
3558                    Args, *this, dl);
3559  return CallResult.second;
3560}
3561
3562SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3563                                 SDValue Src, SDValue Size,
3564                                 unsigned Align, bool isVol,
3565                                 const Value *DstSV, uint64_t DstSVOff,
3566                                 const Value *SrcSV, uint64_t SrcSVOff) {
3567
3568  // Check to see if we should lower the memmove to loads and stores first.
3569  // For cases within the target-specified limits, this is the best choice.
3570  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3571  if (ConstantSize) {
3572    // Memmove with size zero? Just return the original chain.
3573    if (ConstantSize->isNullValue())
3574      return Chain;
3575
3576    SDValue Result =
3577      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3578                               ConstantSize->getZExtValue(), Align, isVol,
3579                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3580    if (Result.getNode())
3581      return Result;
3582  }
3583
3584  // Then check to see if we should lower the memmove with target-specific
3585  // code. If the target chooses to do this, this is the next best.
3586  SDValue Result =
3587    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3588                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3589  if (Result.getNode())
3590    return Result;
3591
3592  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3593  // not be safe.  See memcpy above for more details.
3594
3595  // Emit a library call.
3596  TargetLowering::ArgListTy Args;
3597  TargetLowering::ArgListEntry Entry;
3598  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3599  Entry.Node = Dst; Args.push_back(Entry);
3600  Entry.Node = Src; Args.push_back(Entry);
3601  Entry.Node = Size; Args.push_back(Entry);
3602  // FIXME:  pass in DebugLoc
3603  std::pair<SDValue,SDValue> CallResult =
3604    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3605                    false, false, false, false, 0,
3606                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3607                    /*isReturnValueUsed=*/false,
3608                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3609                                      TLI.getPointerTy()),
3610                    Args, *this, dl);
3611  return CallResult.second;
3612}
3613
3614SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3615                                SDValue Src, SDValue Size,
3616                                unsigned Align, bool isVol,
3617                                const Value *DstSV, uint64_t DstSVOff) {
3618
3619  // Check to see if we should lower the memset to stores first.
3620  // For cases within the target-specified limits, this is the best choice.
3621  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3622  if (ConstantSize) {
3623    // Memset with size zero? Just return the original chain.
3624    if (ConstantSize->isNullValue())
3625      return Chain;
3626
3627    SDValue Result =
3628      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3629                      Align, isVol, DstSV, DstSVOff);
3630
3631    if (Result.getNode())
3632      return Result;
3633  }
3634
3635  // Then check to see if we should lower the memset with target-specific
3636  // code. If the target chooses to do this, this is the next best.
3637  SDValue Result =
3638    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3639                                DstSV, DstSVOff);
3640  if (Result.getNode())
3641    return Result;
3642
3643  // Emit a library call.
3644  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3645  TargetLowering::ArgListTy Args;
3646  TargetLowering::ArgListEntry Entry;
3647  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3648  Args.push_back(Entry);
3649  // Extend or truncate the argument to be an i32 value for the call.
3650  if (Src.getValueType().bitsGT(MVT::i32))
3651    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3652  else
3653    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3654  Entry.Node = Src;
3655  Entry.Ty = Type::getInt32Ty(*getContext());
3656  Entry.isSExt = true;
3657  Args.push_back(Entry);
3658  Entry.Node = Size;
3659  Entry.Ty = IntPtrTy;
3660  Entry.isSExt = false;
3661  Args.push_back(Entry);
3662  // FIXME: pass in DebugLoc
3663  std::pair<SDValue,SDValue> CallResult =
3664    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3665                    false, false, false, false, 0,
3666                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3667                    /*isReturnValueUsed=*/false,
3668                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3669                                      TLI.getPointerTy()),
3670                    Args, *this, dl);
3671  return CallResult.second;
3672}
3673
3674SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3675                                SDValue Chain,
3676                                SDValue Ptr, SDValue Cmp,
3677                                SDValue Swp, const Value* PtrVal,
3678                                unsigned Alignment) {
3679  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3680    Alignment = getEVTAlignment(MemVT);
3681
3682  // Check if the memory reference references a frame index
3683  if (!PtrVal)
3684    if (const FrameIndexSDNode *FI =
3685          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3686      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3687
3688  MachineFunction &MF = getMachineFunction();
3689  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3690
3691  // For now, atomics are considered to be volatile always.
3692  Flags |= MachineMemOperand::MOVolatile;
3693
3694  MachineMemOperand *MMO =
3695    MF.getMachineMemOperand(PtrVal, Flags, 0,
3696                            MemVT.getStoreSize(), Alignment);
3697
3698  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3699}
3700
3701SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3702                                SDValue Chain,
3703                                SDValue Ptr, SDValue Cmp,
3704                                SDValue Swp, MachineMemOperand *MMO) {
3705  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3706  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3707
3708  EVT VT = Cmp.getValueType();
3709
3710  SDVTList VTs = getVTList(VT, MVT::Other);
3711  FoldingSetNodeID ID;
3712  ID.AddInteger(MemVT.getRawBits());
3713  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3714  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3715  void* IP = 0;
3716  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3717    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3718    return SDValue(E, 0);
3719  }
3720  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3721                                               Ptr, Cmp, Swp, MMO);
3722  CSEMap.InsertNode(N, IP);
3723  AllNodes.push_back(N);
3724  return SDValue(N, 0);
3725}
3726
3727SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3728                                SDValue Chain,
3729                                SDValue Ptr, SDValue Val,
3730                                const Value* PtrVal,
3731                                unsigned Alignment) {
3732  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3733    Alignment = getEVTAlignment(MemVT);
3734
3735  // Check if the memory reference references a frame index
3736  if (!PtrVal)
3737    if (const FrameIndexSDNode *FI =
3738          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3739      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3740
3741  MachineFunction &MF = getMachineFunction();
3742  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3743
3744  // For now, atomics are considered to be volatile always.
3745  Flags |= MachineMemOperand::MOVolatile;
3746
3747  MachineMemOperand *MMO =
3748    MF.getMachineMemOperand(PtrVal, Flags, 0,
3749                            MemVT.getStoreSize(), Alignment);
3750
3751  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3752}
3753
3754SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3755                                SDValue Chain,
3756                                SDValue Ptr, SDValue Val,
3757                                MachineMemOperand *MMO) {
3758  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3759          Opcode == ISD::ATOMIC_LOAD_SUB ||
3760          Opcode == ISD::ATOMIC_LOAD_AND ||
3761          Opcode == ISD::ATOMIC_LOAD_OR ||
3762          Opcode == ISD::ATOMIC_LOAD_XOR ||
3763          Opcode == ISD::ATOMIC_LOAD_NAND ||
3764          Opcode == ISD::ATOMIC_LOAD_MIN ||
3765          Opcode == ISD::ATOMIC_LOAD_MAX ||
3766          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3767          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3768          Opcode == ISD::ATOMIC_SWAP) &&
3769         "Invalid Atomic Op");
3770
3771  EVT VT = Val.getValueType();
3772
3773  SDVTList VTs = getVTList(VT, MVT::Other);
3774  FoldingSetNodeID ID;
3775  ID.AddInteger(MemVT.getRawBits());
3776  SDValue Ops[] = {Chain, Ptr, Val};
3777  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3778  void* IP = 0;
3779  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3780    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3781    return SDValue(E, 0);
3782  }
3783  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3784                                               Ptr, Val, MMO);
3785  CSEMap.InsertNode(N, IP);
3786  AllNodes.push_back(N);
3787  return SDValue(N, 0);
3788}
3789
3790/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3791/// Allowed to return something different (and simpler) if Simplify is true.
3792SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3793                                     DebugLoc dl) {
3794  if (NumOps == 1)
3795    return Ops[0];
3796
3797  SmallVector<EVT, 4> VTs;
3798  VTs.reserve(NumOps);
3799  for (unsigned i = 0; i < NumOps; ++i)
3800    VTs.push_back(Ops[i].getValueType());
3801  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3802                 Ops, NumOps);
3803}
3804
3805SDValue
3806SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3807                                  const EVT *VTs, unsigned NumVTs,
3808                                  const SDValue *Ops, unsigned NumOps,
3809                                  EVT MemVT, const Value *srcValue, int SVOff,
3810                                  unsigned Align, bool Vol,
3811                                  bool ReadMem, bool WriteMem) {
3812  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3813                             MemVT, srcValue, SVOff, Align, Vol,
3814                             ReadMem, WriteMem);
3815}
3816
3817SDValue
3818SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3819                                  const SDValue *Ops, unsigned NumOps,
3820                                  EVT MemVT, const Value *srcValue, int SVOff,
3821                                  unsigned Align, bool Vol,
3822                                  bool ReadMem, bool WriteMem) {
3823  if (Align == 0)  // Ensure that codegen never sees alignment 0
3824    Align = getEVTAlignment(MemVT);
3825
3826  MachineFunction &MF = getMachineFunction();
3827  unsigned Flags = 0;
3828  if (WriteMem)
3829    Flags |= MachineMemOperand::MOStore;
3830  if (ReadMem)
3831    Flags |= MachineMemOperand::MOLoad;
3832  if (Vol)
3833    Flags |= MachineMemOperand::MOVolatile;
3834  MachineMemOperand *MMO =
3835    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3836                            MemVT.getStoreSize(), Align);
3837
3838  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3839}
3840
3841SDValue
3842SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3843                                  const SDValue *Ops, unsigned NumOps,
3844                                  EVT MemVT, MachineMemOperand *MMO) {
3845  assert((Opcode == ISD::INTRINSIC_VOID ||
3846          Opcode == ISD::INTRINSIC_W_CHAIN ||
3847          (Opcode <= INT_MAX &&
3848           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3849         "Opcode is not a memory-accessing opcode!");
3850
3851  // Memoize the node unless it returns a flag.
3852  MemIntrinsicSDNode *N;
3853  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3854    FoldingSetNodeID ID;
3855    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3856    void *IP = 0;
3857    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3858      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3859      return SDValue(E, 0);
3860    }
3861
3862    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3863                                               MemVT, MMO);
3864    CSEMap.InsertNode(N, IP);
3865  } else {
3866    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3867                                               MemVT, MMO);
3868  }
3869  AllNodes.push_back(N);
3870  return SDValue(N, 0);
3871}
3872
3873SDValue
3874SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3875                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3876                      SDValue Ptr, SDValue Offset,
3877                      const Value *SV, int SVOffset, EVT MemVT,
3878                      bool isVolatile, bool isNonTemporal,
3879                      unsigned Alignment) {
3880  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3881    Alignment = getEVTAlignment(VT);
3882
3883  // Check if the memory reference references a frame index
3884  if (!SV)
3885    if (const FrameIndexSDNode *FI =
3886          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3887      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3888
3889  MachineFunction &MF = getMachineFunction();
3890  unsigned Flags = MachineMemOperand::MOLoad;
3891  if (isVolatile)
3892    Flags |= MachineMemOperand::MOVolatile;
3893  if (isNonTemporal)
3894    Flags |= MachineMemOperand::MONonTemporal;
3895  MachineMemOperand *MMO =
3896    MF.getMachineMemOperand(SV, Flags, SVOffset,
3897                            MemVT.getStoreSize(), Alignment);
3898  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3899}
3900
3901SDValue
3902SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3903                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3904                      SDValue Ptr, SDValue Offset, EVT MemVT,
3905                      MachineMemOperand *MMO) {
3906  if (VT == MemVT) {
3907    ExtType = ISD::NON_EXTLOAD;
3908  } else if (ExtType == ISD::NON_EXTLOAD) {
3909    assert(VT == MemVT && "Non-extending load from different memory type!");
3910  } else {
3911    // Extending load.
3912    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3913           "Should only be an extending load, not truncating!");
3914    assert(VT.isInteger() == MemVT.isInteger() &&
3915           "Cannot convert from FP to Int or Int -> FP!");
3916    assert(VT.isVector() == MemVT.isVector() &&
3917           "Cannot use trunc store to convert to or from a vector!");
3918    assert((!VT.isVector() ||
3919            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3920           "Cannot use trunc store to change the number of vector elements!");
3921  }
3922
3923  bool Indexed = AM != ISD::UNINDEXED;
3924  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3925         "Unindexed load with an offset!");
3926
3927  SDVTList VTs = Indexed ?
3928    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3929  SDValue Ops[] = { Chain, Ptr, Offset };
3930  FoldingSetNodeID ID;
3931  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3932  ID.AddInteger(MemVT.getRawBits());
3933  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3934                                     MMO->isNonTemporal()));
3935  void *IP = 0;
3936  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3937    cast<LoadSDNode>(E)->refineAlignment(MMO);
3938    return SDValue(E, 0);
3939  }
3940  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3941                                             MemVT, MMO);
3942  CSEMap.InsertNode(N, IP);
3943  AllNodes.push_back(N);
3944  return SDValue(N, 0);
3945}
3946
3947SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3948                              SDValue Chain, SDValue Ptr,
3949                              const Value *SV, int SVOffset,
3950                              bool isVolatile, bool isNonTemporal,
3951                              unsigned Alignment) {
3952  SDValue Undef = getUNDEF(Ptr.getValueType());
3953  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3954                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3955}
3956
3957SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3958                                 SDValue Chain, SDValue Ptr,
3959                                 const Value *SV,
3960                                 int SVOffset, EVT MemVT,
3961                                 bool isVolatile, bool isNonTemporal,
3962                                 unsigned Alignment) {
3963  SDValue Undef = getUNDEF(Ptr.getValueType());
3964  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3965                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3966}
3967
3968SDValue
3969SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3970                             SDValue Offset, ISD::MemIndexedMode AM) {
3971  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3972  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3973         "Load is already a indexed load!");
3974  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3975                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3976                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3977                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3978}
3979
3980SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3981                               SDValue Ptr, const Value *SV, int SVOffset,
3982                               bool isVolatile, bool isNonTemporal,
3983                               unsigned Alignment) {
3984  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3985    Alignment = getEVTAlignment(Val.getValueType());
3986
3987  // Check if the memory reference references a frame index
3988  if (!SV)
3989    if (const FrameIndexSDNode *FI =
3990          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3991      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3992
3993  MachineFunction &MF = getMachineFunction();
3994  unsigned Flags = MachineMemOperand::MOStore;
3995  if (isVolatile)
3996    Flags |= MachineMemOperand::MOVolatile;
3997  if (isNonTemporal)
3998    Flags |= MachineMemOperand::MONonTemporal;
3999  MachineMemOperand *MMO =
4000    MF.getMachineMemOperand(SV, Flags, SVOffset,
4001                            Val.getValueType().getStoreSize(), Alignment);
4002
4003  return getStore(Chain, dl, Val, Ptr, MMO);
4004}
4005
4006SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4007                               SDValue Ptr, MachineMemOperand *MMO) {
4008  EVT VT = Val.getValueType();
4009  SDVTList VTs = getVTList(MVT::Other);
4010  SDValue Undef = getUNDEF(Ptr.getValueType());
4011  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4012  FoldingSetNodeID ID;
4013  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4014  ID.AddInteger(VT.getRawBits());
4015  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4016                                     MMO->isNonTemporal()));
4017  void *IP = 0;
4018  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4019    cast<StoreSDNode>(E)->refineAlignment(MMO);
4020    return SDValue(E, 0);
4021  }
4022  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4023                                              false, VT, MMO);
4024  CSEMap.InsertNode(N, IP);
4025  AllNodes.push_back(N);
4026  return SDValue(N, 0);
4027}
4028
4029SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4030                                    SDValue Ptr, const Value *SV,
4031                                    int SVOffset, EVT SVT,
4032                                    bool isVolatile, bool isNonTemporal,
4033                                    unsigned Alignment) {
4034  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4035    Alignment = getEVTAlignment(SVT);
4036
4037  // Check if the memory reference references a frame index
4038  if (!SV)
4039    if (const FrameIndexSDNode *FI =
4040          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4041      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4042
4043  MachineFunction &MF = getMachineFunction();
4044  unsigned Flags = MachineMemOperand::MOStore;
4045  if (isVolatile)
4046    Flags |= MachineMemOperand::MOVolatile;
4047  if (isNonTemporal)
4048    Flags |= MachineMemOperand::MONonTemporal;
4049  MachineMemOperand *MMO =
4050    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4051
4052  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4053}
4054
4055SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4056                                    SDValue Ptr, EVT SVT,
4057                                    MachineMemOperand *MMO) {
4058  EVT VT = Val.getValueType();
4059
4060  if (VT == SVT)
4061    return getStore(Chain, dl, Val, Ptr, MMO);
4062
4063  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4064         "Should only be a truncating store, not extending!");
4065  assert(VT.isInteger() == SVT.isInteger() &&
4066         "Can't do FP-INT conversion!");
4067  assert(VT.isVector() == SVT.isVector() &&
4068         "Cannot use trunc store to convert to or from a vector!");
4069  assert((!VT.isVector() ||
4070          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4071         "Cannot use trunc store to change the number of vector elements!");
4072
4073  SDVTList VTs = getVTList(MVT::Other);
4074  SDValue Undef = getUNDEF(Ptr.getValueType());
4075  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4076  FoldingSetNodeID ID;
4077  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4078  ID.AddInteger(SVT.getRawBits());
4079  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4080                                     MMO->isNonTemporal()));
4081  void *IP = 0;
4082  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4083    cast<StoreSDNode>(E)->refineAlignment(MMO);
4084    return SDValue(E, 0);
4085  }
4086  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4087                                              true, SVT, MMO);
4088  CSEMap.InsertNode(N, IP);
4089  AllNodes.push_back(N);
4090  return SDValue(N, 0);
4091}
4092
4093SDValue
4094SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4095                              SDValue Offset, ISD::MemIndexedMode AM) {
4096  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4097  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4098         "Store is already a indexed store!");
4099  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4100  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4101  FoldingSetNodeID ID;
4102  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4103  ID.AddInteger(ST->getMemoryVT().getRawBits());
4104  ID.AddInteger(ST->getRawSubclassData());
4105  void *IP = 0;
4106  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4107    return SDValue(E, 0);
4108
4109  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4110                                              ST->isTruncatingStore(),
4111                                              ST->getMemoryVT(),
4112                                              ST->getMemOperand());
4113  CSEMap.InsertNode(N, IP);
4114  AllNodes.push_back(N);
4115  return SDValue(N, 0);
4116}
4117
4118SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4119                               SDValue Chain, SDValue Ptr,
4120                               SDValue SV) {
4121  SDValue Ops[] = { Chain, Ptr, SV };
4122  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4123}
4124
4125SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4126                              const SDUse *Ops, unsigned NumOps) {
4127  switch (NumOps) {
4128  case 0: return getNode(Opcode, DL, VT);
4129  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4130  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4131  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4132  default: break;
4133  }
4134
4135  // Copy from an SDUse array into an SDValue array for use with
4136  // the regular getNode logic.
4137  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4138  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4139}
4140
4141SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4142                              const SDValue *Ops, unsigned NumOps) {
4143  switch (NumOps) {
4144  case 0: return getNode(Opcode, DL, VT);
4145  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4146  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4147  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4148  default: break;
4149  }
4150
4151  switch (Opcode) {
4152  default: break;
4153  case ISD::SELECT_CC: {
4154    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4155    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4156           "LHS and RHS of condition must have same type!");
4157    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4158           "True and False arms of SelectCC must have same type!");
4159    assert(Ops[2].getValueType() == VT &&
4160           "select_cc node must be of same type as true and false value!");
4161    break;
4162  }
4163  case ISD::BR_CC: {
4164    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4165    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4166           "LHS/RHS of comparison should match types!");
4167    break;
4168  }
4169  }
4170
4171  // Memoize nodes.
4172  SDNode *N;
4173  SDVTList VTs = getVTList(VT);
4174
4175  if (VT != MVT::Flag) {
4176    FoldingSetNodeID ID;
4177    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4178    void *IP = 0;
4179
4180    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4181      return SDValue(E, 0);
4182
4183    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4184    CSEMap.InsertNode(N, IP);
4185  } else {
4186    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4187  }
4188
4189  AllNodes.push_back(N);
4190#ifndef NDEBUG
4191  VerifyNode(N);
4192#endif
4193  return SDValue(N, 0);
4194}
4195
4196SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4197                              const std::vector<EVT> &ResultTys,
4198                              const SDValue *Ops, unsigned NumOps) {
4199  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4200                 Ops, NumOps);
4201}
4202
4203SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4204                              const EVT *VTs, unsigned NumVTs,
4205                              const SDValue *Ops, unsigned NumOps) {
4206  if (NumVTs == 1)
4207    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4208  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4209}
4210
4211SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4212                              const SDValue *Ops, unsigned NumOps) {
4213  if (VTList.NumVTs == 1)
4214    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4215
4216#if 0
4217  switch (Opcode) {
4218  // FIXME: figure out how to safely handle things like
4219  // int foo(int x) { return 1 << (x & 255); }
4220  // int bar() { return foo(256); }
4221  case ISD::SRA_PARTS:
4222  case ISD::SRL_PARTS:
4223  case ISD::SHL_PARTS:
4224    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4225        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4226      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4227    else if (N3.getOpcode() == ISD::AND)
4228      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4229        // If the and is only masking out bits that cannot effect the shift,
4230        // eliminate the and.
4231        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4232        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4233          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4234      }
4235    break;
4236  }
4237#endif
4238
4239  // Memoize the node unless it returns a flag.
4240  SDNode *N;
4241  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4242    FoldingSetNodeID ID;
4243    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4244    void *IP = 0;
4245    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4246      return SDValue(E, 0);
4247
4248    if (NumOps == 1) {
4249      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4250    } else if (NumOps == 2) {
4251      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4252    } else if (NumOps == 3) {
4253      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4254                                            Ops[2]);
4255    } else {
4256      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4257    }
4258    CSEMap.InsertNode(N, IP);
4259  } else {
4260    if (NumOps == 1) {
4261      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4262    } else if (NumOps == 2) {
4263      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4264    } else if (NumOps == 3) {
4265      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4266                                            Ops[2]);
4267    } else {
4268      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4269    }
4270  }
4271  AllNodes.push_back(N);
4272#ifndef NDEBUG
4273  VerifyNode(N);
4274#endif
4275  return SDValue(N, 0);
4276}
4277
4278SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4279  return getNode(Opcode, DL, VTList, 0, 0);
4280}
4281
4282SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4283                              SDValue N1) {
4284  SDValue Ops[] = { N1 };
4285  return getNode(Opcode, DL, VTList, Ops, 1);
4286}
4287
4288SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4289                              SDValue N1, SDValue N2) {
4290  SDValue Ops[] = { N1, N2 };
4291  return getNode(Opcode, DL, VTList, Ops, 2);
4292}
4293
4294SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4295                              SDValue N1, SDValue N2, SDValue N3) {
4296  SDValue Ops[] = { N1, N2, N3 };
4297  return getNode(Opcode, DL, VTList, Ops, 3);
4298}
4299
4300SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4301                              SDValue N1, SDValue N2, SDValue N3,
4302                              SDValue N4) {
4303  SDValue Ops[] = { N1, N2, N3, N4 };
4304  return getNode(Opcode, DL, VTList, Ops, 4);
4305}
4306
4307SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4308                              SDValue N1, SDValue N2, SDValue N3,
4309                              SDValue N4, SDValue N5) {
4310  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4311  return getNode(Opcode, DL, VTList, Ops, 5);
4312}
4313
4314SDVTList SelectionDAG::getVTList(EVT VT) {
4315  return makeVTList(SDNode::getValueTypeList(VT), 1);
4316}
4317
4318SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4319  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4320       E = VTList.rend(); I != E; ++I)
4321    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4322      return *I;
4323
4324  EVT *Array = Allocator.Allocate<EVT>(2);
4325  Array[0] = VT1;
4326  Array[1] = VT2;
4327  SDVTList Result = makeVTList(Array, 2);
4328  VTList.push_back(Result);
4329  return Result;
4330}
4331
4332SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4333  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4334       E = VTList.rend(); I != E; ++I)
4335    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4336                          I->VTs[2] == VT3)
4337      return *I;
4338
4339  EVT *Array = Allocator.Allocate<EVT>(3);
4340  Array[0] = VT1;
4341  Array[1] = VT2;
4342  Array[2] = VT3;
4343  SDVTList Result = makeVTList(Array, 3);
4344  VTList.push_back(Result);
4345  return Result;
4346}
4347
4348SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4349  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4350       E = VTList.rend(); I != E; ++I)
4351    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4352                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4353      return *I;
4354
4355  EVT *Array = Allocator.Allocate<EVT>(4);
4356  Array[0] = VT1;
4357  Array[1] = VT2;
4358  Array[2] = VT3;
4359  Array[3] = VT4;
4360  SDVTList Result = makeVTList(Array, 4);
4361  VTList.push_back(Result);
4362  return Result;
4363}
4364
4365SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4366  switch (NumVTs) {
4367    case 0: llvm_unreachable("Cannot have nodes without results!");
4368    case 1: return getVTList(VTs[0]);
4369    case 2: return getVTList(VTs[0], VTs[1]);
4370    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4371    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4372    default: break;
4373  }
4374
4375  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4376       E = VTList.rend(); I != E; ++I) {
4377    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4378      continue;
4379
4380    bool NoMatch = false;
4381    for (unsigned i = 2; i != NumVTs; ++i)
4382      if (VTs[i] != I->VTs[i]) {
4383        NoMatch = true;
4384        break;
4385      }
4386    if (!NoMatch)
4387      return *I;
4388  }
4389
4390  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4391  std::copy(VTs, VTs+NumVTs, Array);
4392  SDVTList Result = makeVTList(Array, NumVTs);
4393  VTList.push_back(Result);
4394  return Result;
4395}
4396
4397
4398/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4399/// specified operands.  If the resultant node already exists in the DAG,
4400/// this does not modify the specified node, instead it returns the node that
4401/// already exists.  If the resultant node does not exist in the DAG, the
4402/// input node is returned.  As a degenerate case, if you specify the same
4403/// input operands as the node already has, the input node is returned.
4404SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4405  SDNode *N = InN.getNode();
4406  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4407
4408  // Check to see if there is no change.
4409  if (Op == N->getOperand(0)) return InN;
4410
4411  // See if the modified node already exists.
4412  void *InsertPos = 0;
4413  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4414    return SDValue(Existing, InN.getResNo());
4415
4416  // Nope it doesn't.  Remove the node from its current place in the maps.
4417  if (InsertPos)
4418    if (!RemoveNodeFromCSEMaps(N))
4419      InsertPos = 0;
4420
4421  // Now we update the operands.
4422  N->OperandList[0].set(Op);
4423
4424  // If this gets put into a CSE map, add it.
4425  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4426  return InN;
4427}
4428
4429SDValue SelectionDAG::
4430UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4431  SDNode *N = InN.getNode();
4432  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4433
4434  // Check to see if there is no change.
4435  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4436    return InN;   // No operands changed, just return the input node.
4437
4438  // See if the modified node already exists.
4439  void *InsertPos = 0;
4440  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4441    return SDValue(Existing, InN.getResNo());
4442
4443  // Nope it doesn't.  Remove the node from its current place in the maps.
4444  if (InsertPos)
4445    if (!RemoveNodeFromCSEMaps(N))
4446      InsertPos = 0;
4447
4448  // Now we update the operands.
4449  if (N->OperandList[0] != Op1)
4450    N->OperandList[0].set(Op1);
4451  if (N->OperandList[1] != Op2)
4452    N->OperandList[1].set(Op2);
4453
4454  // If this gets put into a CSE map, add it.
4455  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4456  return InN;
4457}
4458
4459SDValue SelectionDAG::
4460UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4461  SDValue Ops[] = { Op1, Op2, Op3 };
4462  return UpdateNodeOperands(N, Ops, 3);
4463}
4464
4465SDValue SelectionDAG::
4466UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4467                   SDValue Op3, SDValue Op4) {
4468  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4469  return UpdateNodeOperands(N, Ops, 4);
4470}
4471
4472SDValue SelectionDAG::
4473UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4474                   SDValue Op3, SDValue Op4, SDValue Op5) {
4475  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4476  return UpdateNodeOperands(N, Ops, 5);
4477}
4478
4479SDValue SelectionDAG::
4480UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4481  SDNode *N = InN.getNode();
4482  assert(N->getNumOperands() == NumOps &&
4483         "Update with wrong number of operands");
4484
4485  // Check to see if there is no change.
4486  bool AnyChange = false;
4487  for (unsigned i = 0; i != NumOps; ++i) {
4488    if (Ops[i] != N->getOperand(i)) {
4489      AnyChange = true;
4490      break;
4491    }
4492  }
4493
4494  // No operands changed, just return the input node.
4495  if (!AnyChange) return InN;
4496
4497  // See if the modified node already exists.
4498  void *InsertPos = 0;
4499  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4500    return SDValue(Existing, InN.getResNo());
4501
4502  // Nope it doesn't.  Remove the node from its current place in the maps.
4503  if (InsertPos)
4504    if (!RemoveNodeFromCSEMaps(N))
4505      InsertPos = 0;
4506
4507  // Now we update the operands.
4508  for (unsigned i = 0; i != NumOps; ++i)
4509    if (N->OperandList[i] != Ops[i])
4510      N->OperandList[i].set(Ops[i]);
4511
4512  // If this gets put into a CSE map, add it.
4513  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4514  return InN;
4515}
4516
4517/// DropOperands - Release the operands and set this node to have
4518/// zero operands.
4519void SDNode::DropOperands() {
4520  // Unlike the code in MorphNodeTo that does this, we don't need to
4521  // watch for dead nodes here.
4522  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4523    SDUse &Use = *I++;
4524    Use.set(SDValue());
4525  }
4526}
4527
4528/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4529/// machine opcode.
4530///
4531SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4532                                   EVT VT) {
4533  SDVTList VTs = getVTList(VT);
4534  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4535}
4536
4537SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4538                                   EVT VT, SDValue Op1) {
4539  SDVTList VTs = getVTList(VT);
4540  SDValue Ops[] = { Op1 };
4541  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4542}
4543
4544SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4545                                   EVT VT, SDValue Op1,
4546                                   SDValue Op2) {
4547  SDVTList VTs = getVTList(VT);
4548  SDValue Ops[] = { Op1, Op2 };
4549  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4550}
4551
4552SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4553                                   EVT VT, SDValue Op1,
4554                                   SDValue Op2, SDValue Op3) {
4555  SDVTList VTs = getVTList(VT);
4556  SDValue Ops[] = { Op1, Op2, Op3 };
4557  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4558}
4559
4560SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4561                                   EVT VT, const SDValue *Ops,
4562                                   unsigned NumOps) {
4563  SDVTList VTs = getVTList(VT);
4564  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4565}
4566
4567SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4568                                   EVT VT1, EVT VT2, const SDValue *Ops,
4569                                   unsigned NumOps) {
4570  SDVTList VTs = getVTList(VT1, VT2);
4571  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4572}
4573
4574SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4575                                   EVT VT1, EVT VT2) {
4576  SDVTList VTs = getVTList(VT1, VT2);
4577  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4578}
4579
4580SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4581                                   EVT VT1, EVT VT2, EVT VT3,
4582                                   const SDValue *Ops, unsigned NumOps) {
4583  SDVTList VTs = getVTList(VT1, VT2, VT3);
4584  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4585}
4586
4587SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4588                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4589                                   const SDValue *Ops, unsigned NumOps) {
4590  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4591  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4592}
4593
4594SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4595                                   EVT VT1, EVT VT2,
4596                                   SDValue Op1) {
4597  SDVTList VTs = getVTList(VT1, VT2);
4598  SDValue Ops[] = { Op1 };
4599  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4600}
4601
4602SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4603                                   EVT VT1, EVT VT2,
4604                                   SDValue Op1, SDValue Op2) {
4605  SDVTList VTs = getVTList(VT1, VT2);
4606  SDValue Ops[] = { Op1, Op2 };
4607  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4608}
4609
4610SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4611                                   EVT VT1, EVT VT2,
4612                                   SDValue Op1, SDValue Op2,
4613                                   SDValue Op3) {
4614  SDVTList VTs = getVTList(VT1, VT2);
4615  SDValue Ops[] = { Op1, Op2, Op3 };
4616  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4617}
4618
4619SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4620                                   EVT VT1, EVT VT2, EVT VT3,
4621                                   SDValue Op1, SDValue Op2,
4622                                   SDValue Op3) {
4623  SDVTList VTs = getVTList(VT1, VT2, VT3);
4624  SDValue Ops[] = { Op1, Op2, Op3 };
4625  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4626}
4627
4628SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4629                                   SDVTList VTs, const SDValue *Ops,
4630                                   unsigned NumOps) {
4631  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4632  // Reset the NodeID to -1.
4633  N->setNodeId(-1);
4634  return N;
4635}
4636
4637/// MorphNodeTo - This *mutates* the specified node to have the specified
4638/// return type, opcode, and operands.
4639///
4640/// Note that MorphNodeTo returns the resultant node.  If there is already a
4641/// node of the specified opcode and operands, it returns that node instead of
4642/// the current one.  Note that the DebugLoc need not be the same.
4643///
4644/// Using MorphNodeTo is faster than creating a new node and swapping it in
4645/// with ReplaceAllUsesWith both because it often avoids allocating a new
4646/// node, and because it doesn't require CSE recalculation for any of
4647/// the node's users.
4648///
4649SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4650                                  SDVTList VTs, const SDValue *Ops,
4651                                  unsigned NumOps) {
4652  // If an identical node already exists, use it.
4653  void *IP = 0;
4654  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4655    FoldingSetNodeID ID;
4656    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4657    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4658      return ON;
4659  }
4660
4661  if (!RemoveNodeFromCSEMaps(N))
4662    IP = 0;
4663
4664  // Start the morphing.
4665  N->NodeType = Opc;
4666  N->ValueList = VTs.VTs;
4667  N->NumValues = VTs.NumVTs;
4668
4669  // Clear the operands list, updating used nodes to remove this from their
4670  // use list.  Keep track of any operands that become dead as a result.
4671  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4672  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4673    SDUse &Use = *I++;
4674    SDNode *Used = Use.getNode();
4675    Use.set(SDValue());
4676    if (Used->use_empty())
4677      DeadNodeSet.insert(Used);
4678  }
4679
4680  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4681    // Initialize the memory references information.
4682    MN->setMemRefs(0, 0);
4683    // If NumOps is larger than the # of operands we can have in a
4684    // MachineSDNode, reallocate the operand list.
4685    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4686      if (MN->OperandsNeedDelete)
4687        delete[] MN->OperandList;
4688      if (NumOps > array_lengthof(MN->LocalOperands))
4689        // We're creating a final node that will live unmorphed for the
4690        // remainder of the current SelectionDAG iteration, so we can allocate
4691        // the operands directly out of a pool with no recycling metadata.
4692        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4693                         Ops, NumOps);
4694      else
4695        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4696      MN->OperandsNeedDelete = false;
4697    } else
4698      MN->InitOperands(MN->OperandList, Ops, NumOps);
4699  } else {
4700    // If NumOps is larger than the # of operands we currently have, reallocate
4701    // the operand list.
4702    if (NumOps > N->NumOperands) {
4703      if (N->OperandsNeedDelete)
4704        delete[] N->OperandList;
4705      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4706      N->OperandsNeedDelete = true;
4707    } else
4708      N->InitOperands(N->OperandList, Ops, NumOps);
4709  }
4710
4711  // Delete any nodes that are still dead after adding the uses for the
4712  // new operands.
4713  if (!DeadNodeSet.empty()) {
4714    SmallVector<SDNode *, 16> DeadNodes;
4715    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4716         E = DeadNodeSet.end(); I != E; ++I)
4717      if ((*I)->use_empty())
4718        DeadNodes.push_back(*I);
4719    RemoveDeadNodes(DeadNodes);
4720  }
4721
4722  if (IP)
4723    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4724  return N;
4725}
4726
4727
4728/// getMachineNode - These are used for target selectors to create a new node
4729/// with specified return type(s), MachineInstr opcode, and operands.
4730///
4731/// Note that getMachineNode returns the resultant node.  If there is already a
4732/// node of the specified opcode and operands, it returns that node instead of
4733/// the current one.
4734MachineSDNode *
4735SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4736  SDVTList VTs = getVTList(VT);
4737  return getMachineNode(Opcode, dl, VTs, 0, 0);
4738}
4739
4740MachineSDNode *
4741SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4742  SDVTList VTs = getVTList(VT);
4743  SDValue Ops[] = { Op1 };
4744  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4745}
4746
4747MachineSDNode *
4748SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4749                             SDValue Op1, SDValue Op2) {
4750  SDVTList VTs = getVTList(VT);
4751  SDValue Ops[] = { Op1, Op2 };
4752  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4753}
4754
4755MachineSDNode *
4756SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4757                             SDValue Op1, SDValue Op2, SDValue Op3) {
4758  SDVTList VTs = getVTList(VT);
4759  SDValue Ops[] = { Op1, Op2, Op3 };
4760  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4761}
4762
4763MachineSDNode *
4764SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4765                             const SDValue *Ops, unsigned NumOps) {
4766  SDVTList VTs = getVTList(VT);
4767  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4768}
4769
4770MachineSDNode *
4771SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4772  SDVTList VTs = getVTList(VT1, VT2);
4773  return getMachineNode(Opcode, dl, VTs, 0, 0);
4774}
4775
4776MachineSDNode *
4777SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4778                             EVT VT1, EVT VT2, SDValue Op1) {
4779  SDVTList VTs = getVTList(VT1, VT2);
4780  SDValue Ops[] = { Op1 };
4781  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4782}
4783
4784MachineSDNode *
4785SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4786                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4787  SDVTList VTs = getVTList(VT1, VT2);
4788  SDValue Ops[] = { Op1, Op2 };
4789  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4790}
4791
4792MachineSDNode *
4793SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4794                             EVT VT1, EVT VT2, SDValue Op1,
4795                             SDValue Op2, SDValue Op3) {
4796  SDVTList VTs = getVTList(VT1, VT2);
4797  SDValue Ops[] = { Op1, Op2, Op3 };
4798  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4799}
4800
4801MachineSDNode *
4802SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4803                             EVT VT1, EVT VT2,
4804                             const SDValue *Ops, unsigned NumOps) {
4805  SDVTList VTs = getVTList(VT1, VT2);
4806  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4807}
4808
4809MachineSDNode *
4810SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4811                             EVT VT1, EVT VT2, EVT VT3,
4812                             SDValue Op1, SDValue Op2) {
4813  SDVTList VTs = getVTList(VT1, VT2, VT3);
4814  SDValue Ops[] = { Op1, Op2 };
4815  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4816}
4817
4818MachineSDNode *
4819SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4820                             EVT VT1, EVT VT2, EVT VT3,
4821                             SDValue Op1, SDValue Op2, SDValue Op3) {
4822  SDVTList VTs = getVTList(VT1, VT2, VT3);
4823  SDValue Ops[] = { Op1, Op2, Op3 };
4824  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4825}
4826
4827MachineSDNode *
4828SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4829                             EVT VT1, EVT VT2, EVT VT3,
4830                             const SDValue *Ops, unsigned NumOps) {
4831  SDVTList VTs = getVTList(VT1, VT2, VT3);
4832  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4833}
4834
4835MachineSDNode *
4836SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4837                             EVT VT2, EVT VT3, EVT VT4,
4838                             const SDValue *Ops, unsigned NumOps) {
4839  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4840  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4841}
4842
4843MachineSDNode *
4844SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4845                             const std::vector<EVT> &ResultTys,
4846                             const SDValue *Ops, unsigned NumOps) {
4847  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4848  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4849}
4850
4851MachineSDNode *
4852SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4853                             const SDValue *Ops, unsigned NumOps) {
4854  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4855  MachineSDNode *N;
4856  void *IP;
4857
4858  if (DoCSE) {
4859    FoldingSetNodeID ID;
4860    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4861    IP = 0;
4862    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4863      return cast<MachineSDNode>(E);
4864  }
4865
4866  // Allocate a new MachineSDNode.
4867  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4868
4869  // Initialize the operands list.
4870  if (NumOps > array_lengthof(N->LocalOperands))
4871    // We're creating a final node that will live unmorphed for the
4872    // remainder of the current SelectionDAG iteration, so we can allocate
4873    // the operands directly out of a pool with no recycling metadata.
4874    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4875                    Ops, NumOps);
4876  else
4877    N->InitOperands(N->LocalOperands, Ops, NumOps);
4878  N->OperandsNeedDelete = false;
4879
4880  if (DoCSE)
4881    CSEMap.InsertNode(N, IP);
4882
4883  AllNodes.push_back(N);
4884#ifndef NDEBUG
4885  VerifyNode(N);
4886#endif
4887  return N;
4888}
4889
4890/// getTargetExtractSubreg - A convenience function for creating
4891/// TargetOpcode::EXTRACT_SUBREG nodes.
4892SDValue
4893SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4894                                     SDValue Operand) {
4895  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4896  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4897                                  VT, Operand, SRIdxVal);
4898  return SDValue(Subreg, 0);
4899}
4900
4901/// getTargetInsertSubreg - A convenience function for creating
4902/// TargetOpcode::INSERT_SUBREG nodes.
4903SDValue
4904SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4905                                    SDValue Operand, SDValue Subreg) {
4906  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4907  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4908                                  VT, Operand, Subreg, SRIdxVal);
4909  return SDValue(Result, 0);
4910}
4911
4912/// getNodeIfExists - Get the specified node if it's already available, or
4913/// else return NULL.
4914SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4915                                      const SDValue *Ops, unsigned NumOps) {
4916  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4917    FoldingSetNodeID ID;
4918    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4919    void *IP = 0;
4920    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4921      return E;
4922  }
4923  return NULL;
4924}
4925
4926/// getDbgValue - Creates a SDDbgValue node.
4927///
4928SDDbgValue *
4929SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4930                          DebugLoc DL, unsigned O) {
4931  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4932}
4933
4934SDDbgValue *
4935SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4936                          DebugLoc DL, unsigned O) {
4937  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4938}
4939
4940SDDbgValue *
4941SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4942                          DebugLoc DL, unsigned O) {
4943  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4944}
4945
4946namespace {
4947
4948/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4949/// pointed to by a use iterator is deleted, increment the use iterator
4950/// so that it doesn't dangle.
4951///
4952/// This class also manages a "downlink" DAGUpdateListener, to forward
4953/// messages to ReplaceAllUsesWith's callers.
4954///
4955class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4956  SelectionDAG::DAGUpdateListener *DownLink;
4957  SDNode::use_iterator &UI;
4958  SDNode::use_iterator &UE;
4959
4960  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4961    // Increment the iterator as needed.
4962    while (UI != UE && N == *UI)
4963      ++UI;
4964
4965    // Then forward the message.
4966    if (DownLink) DownLink->NodeDeleted(N, E);
4967  }
4968
4969  virtual void NodeUpdated(SDNode *N) {
4970    // Just forward the message.
4971    if (DownLink) DownLink->NodeUpdated(N);
4972  }
4973
4974public:
4975  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4976                     SDNode::use_iterator &ui,
4977                     SDNode::use_iterator &ue)
4978    : DownLink(dl), UI(ui), UE(ue) {}
4979};
4980
4981}
4982
4983/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4984/// This can cause recursive merging of nodes in the DAG.
4985///
4986/// This version assumes From has a single result value.
4987///
4988void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4989                                      DAGUpdateListener *UpdateListener) {
4990  SDNode *From = FromN.getNode();
4991  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4992         "Cannot replace with this method!");
4993  assert(From != To.getNode() && "Cannot replace uses of with self");
4994
4995  // Iterate over all the existing uses of From. New uses will be added
4996  // to the beginning of the use list, which we avoid visiting.
4997  // This specifically avoids visiting uses of From that arise while the
4998  // replacement is happening, because any such uses would be the result
4999  // of CSE: If an existing node looks like From after one of its operands
5000  // is replaced by To, we don't want to replace of all its users with To
5001  // too. See PR3018 for more info.
5002  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5003  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5004  while (UI != UE) {
5005    SDNode *User = *UI;
5006
5007    // This node is about to morph, remove its old self from the CSE maps.
5008    RemoveNodeFromCSEMaps(User);
5009
5010    // A user can appear in a use list multiple times, and when this
5011    // happens the uses are usually next to each other in the list.
5012    // To help reduce the number of CSE recomputations, process all
5013    // the uses of this user that we can find this way.
5014    do {
5015      SDUse &Use = UI.getUse();
5016      ++UI;
5017      Use.set(To);
5018    } while (UI != UE && *UI == User);
5019
5020    // Now that we have modified User, add it back to the CSE maps.  If it
5021    // already exists there, recursively merge the results together.
5022    AddModifiedNodeToCSEMaps(User, &Listener);
5023  }
5024}
5025
5026/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5027/// This can cause recursive merging of nodes in the DAG.
5028///
5029/// This version assumes that for each value of From, there is a
5030/// corresponding value in To in the same position with the same type.
5031///
5032void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5033                                      DAGUpdateListener *UpdateListener) {
5034#ifndef NDEBUG
5035  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5036    assert((!From->hasAnyUseOfValue(i) ||
5037            From->getValueType(i) == To->getValueType(i)) &&
5038           "Cannot use this version of ReplaceAllUsesWith!");
5039#endif
5040
5041  // Handle the trivial case.
5042  if (From == To)
5043    return;
5044
5045  // Iterate over just the existing users of From. See the comments in
5046  // the ReplaceAllUsesWith above.
5047  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5048  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5049  while (UI != UE) {
5050    SDNode *User = *UI;
5051
5052    // This node is about to morph, remove its old self from the CSE maps.
5053    RemoveNodeFromCSEMaps(User);
5054
5055    // A user can appear in a use list multiple times, and when this
5056    // happens the uses are usually next to each other in the list.
5057    // To help reduce the number of CSE recomputations, process all
5058    // the uses of this user that we can find this way.
5059    do {
5060      SDUse &Use = UI.getUse();
5061      ++UI;
5062      Use.setNode(To);
5063    } while (UI != UE && *UI == User);
5064
5065    // Now that we have modified User, add it back to the CSE maps.  If it
5066    // already exists there, recursively merge the results together.
5067    AddModifiedNodeToCSEMaps(User, &Listener);
5068  }
5069}
5070
5071/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5072/// This can cause recursive merging of nodes in the DAG.
5073///
5074/// This version can replace From with any result values.  To must match the
5075/// number and types of values returned by From.
5076void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5077                                      const SDValue *To,
5078                                      DAGUpdateListener *UpdateListener) {
5079  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5080    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5081
5082  // Iterate over just the existing users of From. See the comments in
5083  // the ReplaceAllUsesWith above.
5084  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5085  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5086  while (UI != UE) {
5087    SDNode *User = *UI;
5088
5089    // This node is about to morph, remove its old self from the CSE maps.
5090    RemoveNodeFromCSEMaps(User);
5091
5092    // A user can appear in a use list multiple times, and when this
5093    // happens the uses are usually next to each other in the list.
5094    // To help reduce the number of CSE recomputations, process all
5095    // the uses of this user that we can find this way.
5096    do {
5097      SDUse &Use = UI.getUse();
5098      const SDValue &ToOp = To[Use.getResNo()];
5099      ++UI;
5100      Use.set(ToOp);
5101    } while (UI != UE && *UI == User);
5102
5103    // Now that we have modified User, add it back to the CSE maps.  If it
5104    // already exists there, recursively merge the results together.
5105    AddModifiedNodeToCSEMaps(User, &Listener);
5106  }
5107}
5108
5109/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5110/// uses of other values produced by From.getNode() alone.  The Deleted
5111/// vector is handled the same way as for ReplaceAllUsesWith.
5112void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5113                                             DAGUpdateListener *UpdateListener){
5114  // Handle the really simple, really trivial case efficiently.
5115  if (From == To) return;
5116
5117  // Handle the simple, trivial, case efficiently.
5118  if (From.getNode()->getNumValues() == 1) {
5119    ReplaceAllUsesWith(From, To, UpdateListener);
5120    return;
5121  }
5122
5123  // Iterate over just the existing users of From. See the comments in
5124  // the ReplaceAllUsesWith above.
5125  SDNode::use_iterator UI = From.getNode()->use_begin(),
5126                       UE = From.getNode()->use_end();
5127  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5128  while (UI != UE) {
5129    SDNode *User = *UI;
5130    bool UserRemovedFromCSEMaps = false;
5131
5132    // A user can appear in a use list multiple times, and when this
5133    // happens the uses are usually next to each other in the list.
5134    // To help reduce the number of CSE recomputations, process all
5135    // the uses of this user that we can find this way.
5136    do {
5137      SDUse &Use = UI.getUse();
5138
5139      // Skip uses of different values from the same node.
5140      if (Use.getResNo() != From.getResNo()) {
5141        ++UI;
5142        continue;
5143      }
5144
5145      // If this node hasn't been modified yet, it's still in the CSE maps,
5146      // so remove its old self from the CSE maps.
5147      if (!UserRemovedFromCSEMaps) {
5148        RemoveNodeFromCSEMaps(User);
5149        UserRemovedFromCSEMaps = true;
5150      }
5151
5152      ++UI;
5153      Use.set(To);
5154    } while (UI != UE && *UI == User);
5155
5156    // We are iterating over all uses of the From node, so if a use
5157    // doesn't use the specific value, no changes are made.
5158    if (!UserRemovedFromCSEMaps)
5159      continue;
5160
5161    // Now that we have modified User, add it back to the CSE maps.  If it
5162    // already exists there, recursively merge the results together.
5163    AddModifiedNodeToCSEMaps(User, &Listener);
5164  }
5165}
5166
5167namespace {
5168  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5169  /// to record information about a use.
5170  struct UseMemo {
5171    SDNode *User;
5172    unsigned Index;
5173    SDUse *Use;
5174  };
5175
5176  /// operator< - Sort Memos by User.
5177  bool operator<(const UseMemo &L, const UseMemo &R) {
5178    return (intptr_t)L.User < (intptr_t)R.User;
5179  }
5180}
5181
5182/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5183/// uses of other values produced by From.getNode() alone.  The same value
5184/// may appear in both the From and To list.  The Deleted vector is
5185/// handled the same way as for ReplaceAllUsesWith.
5186void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5187                                              const SDValue *To,
5188                                              unsigned Num,
5189                                              DAGUpdateListener *UpdateListener){
5190  // Handle the simple, trivial case efficiently.
5191  if (Num == 1)
5192    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5193
5194  // Read up all the uses and make records of them. This helps
5195  // processing new uses that are introduced during the
5196  // replacement process.
5197  SmallVector<UseMemo, 4> Uses;
5198  for (unsigned i = 0; i != Num; ++i) {
5199    unsigned FromResNo = From[i].getResNo();
5200    SDNode *FromNode = From[i].getNode();
5201    for (SDNode::use_iterator UI = FromNode->use_begin(),
5202         E = FromNode->use_end(); UI != E; ++UI) {
5203      SDUse &Use = UI.getUse();
5204      if (Use.getResNo() == FromResNo) {
5205        UseMemo Memo = { *UI, i, &Use };
5206        Uses.push_back(Memo);
5207      }
5208    }
5209  }
5210
5211  // Sort the uses, so that all the uses from a given User are together.
5212  std::sort(Uses.begin(), Uses.end());
5213
5214  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5215       UseIndex != UseIndexEnd; ) {
5216    // We know that this user uses some value of From.  If it is the right
5217    // value, update it.
5218    SDNode *User = Uses[UseIndex].User;
5219
5220    // This node is about to morph, remove its old self from the CSE maps.
5221    RemoveNodeFromCSEMaps(User);
5222
5223    // The Uses array is sorted, so all the uses for a given User
5224    // are next to each other in the list.
5225    // To help reduce the number of CSE recomputations, process all
5226    // the uses of this user that we can find this way.
5227    do {
5228      unsigned i = Uses[UseIndex].Index;
5229      SDUse &Use = *Uses[UseIndex].Use;
5230      ++UseIndex;
5231
5232      Use.set(To[i]);
5233    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5234
5235    // Now that we have modified User, add it back to the CSE maps.  If it
5236    // already exists there, recursively merge the results together.
5237    AddModifiedNodeToCSEMaps(User, UpdateListener);
5238  }
5239}
5240
5241/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5242/// based on their topological order. It returns the maximum id and a vector
5243/// of the SDNodes* in assigned order by reference.
5244unsigned SelectionDAG::AssignTopologicalOrder() {
5245
5246  unsigned DAGSize = 0;
5247
5248  // SortedPos tracks the progress of the algorithm. Nodes before it are
5249  // sorted, nodes after it are unsorted. When the algorithm completes
5250  // it is at the end of the list.
5251  allnodes_iterator SortedPos = allnodes_begin();
5252
5253  // Visit all the nodes. Move nodes with no operands to the front of
5254  // the list immediately. Annotate nodes that do have operands with their
5255  // operand count. Before we do this, the Node Id fields of the nodes
5256  // may contain arbitrary values. After, the Node Id fields for nodes
5257  // before SortedPos will contain the topological sort index, and the
5258  // Node Id fields for nodes At SortedPos and after will contain the
5259  // count of outstanding operands.
5260  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5261    SDNode *N = I++;
5262    checkForCycles(N);
5263    unsigned Degree = N->getNumOperands();
5264    if (Degree == 0) {
5265      // A node with no uses, add it to the result array immediately.
5266      N->setNodeId(DAGSize++);
5267      allnodes_iterator Q = N;
5268      if (Q != SortedPos)
5269        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5270      assert(SortedPos != AllNodes.end() && "Overran node list");
5271      ++SortedPos;
5272    } else {
5273      // Temporarily use the Node Id as scratch space for the degree count.
5274      N->setNodeId(Degree);
5275    }
5276  }
5277
5278  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5279  // such that by the time the end is reached all nodes will be sorted.
5280  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5281    SDNode *N = I;
5282    checkForCycles(N);
5283    // N is in sorted position, so all its uses have one less operand
5284    // that needs to be sorted.
5285    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5286         UI != UE; ++UI) {
5287      SDNode *P = *UI;
5288      unsigned Degree = P->getNodeId();
5289      assert(Degree != 0 && "Invalid node degree");
5290      --Degree;
5291      if (Degree == 0) {
5292        // All of P's operands are sorted, so P may sorted now.
5293        P->setNodeId(DAGSize++);
5294        if (P != SortedPos)
5295          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5296        assert(SortedPos != AllNodes.end() && "Overran node list");
5297        ++SortedPos;
5298      } else {
5299        // Update P's outstanding operand count.
5300        P->setNodeId(Degree);
5301      }
5302    }
5303    if (I == SortedPos) {
5304#ifndef NDEBUG
5305      SDNode *S = ++I;
5306      dbgs() << "Overran sorted position:\n";
5307      S->dumprFull();
5308#endif
5309      llvm_unreachable(0);
5310    }
5311  }
5312
5313  assert(SortedPos == AllNodes.end() &&
5314         "Topological sort incomplete!");
5315  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5316         "First node in topological sort is not the entry token!");
5317  assert(AllNodes.front().getNodeId() == 0 &&
5318         "First node in topological sort has non-zero id!");
5319  assert(AllNodes.front().getNumOperands() == 0 &&
5320         "First node in topological sort has operands!");
5321  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5322         "Last node in topologic sort has unexpected id!");
5323  assert(AllNodes.back().use_empty() &&
5324         "Last node in topologic sort has users!");
5325  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5326  return DAGSize;
5327}
5328
5329/// AssignOrdering - Assign an order to the SDNode.
5330void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5331  assert(SD && "Trying to assign an order to a null node!");
5332  Ordering->add(SD, Order);
5333}
5334
5335/// GetOrdering - Get the order for the SDNode.
5336unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5337  assert(SD && "Trying to get the order of a null node!");
5338  return Ordering->getOrder(SD);
5339}
5340
5341/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5342/// value is produced by SD.
5343void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD) {
5344  DbgInfo->add(DB, SD);
5345  if (SD)
5346    SD->setHasDebugValue(true);
5347}
5348
5349//===----------------------------------------------------------------------===//
5350//                              SDNode Class
5351//===----------------------------------------------------------------------===//
5352
5353HandleSDNode::~HandleSDNode() {
5354  DropOperands();
5355}
5356
5357GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5358                                         EVT VT, int64_t o, unsigned char TF)
5359  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5360  TheGlobal = GA;
5361}
5362
5363MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5364                     MachineMemOperand *mmo)
5365 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5366  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5367                                      MMO->isNonTemporal());
5368  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5369  assert(isNonTemporal() == MMO->isNonTemporal() &&
5370         "Non-temporal encoding error!");
5371  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5372}
5373
5374MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5375                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5376                     MachineMemOperand *mmo)
5377   : SDNode(Opc, dl, VTs, Ops, NumOps),
5378     MemoryVT(memvt), MMO(mmo) {
5379  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5380                                      MMO->isNonTemporal());
5381  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5382  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5383}
5384
5385/// Profile - Gather unique data for the node.
5386///
5387void SDNode::Profile(FoldingSetNodeID &ID) const {
5388  AddNodeIDNode(ID, this);
5389}
5390
5391namespace {
5392  struct EVTArray {
5393    std::vector<EVT> VTs;
5394
5395    EVTArray() {
5396      VTs.reserve(MVT::LAST_VALUETYPE);
5397      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5398        VTs.push_back(MVT((MVT::SimpleValueType)i));
5399    }
5400  };
5401}
5402
5403static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5404static ManagedStatic<EVTArray> SimpleVTArray;
5405static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5406
5407/// getValueTypeList - Return a pointer to the specified value type.
5408///
5409const EVT *SDNode::getValueTypeList(EVT VT) {
5410  if (VT.isExtended()) {
5411    sys::SmartScopedLock<true> Lock(*VTMutex);
5412    return &(*EVTs->insert(VT).first);
5413  } else {
5414    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5415  }
5416}
5417
5418/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5419/// indicated value.  This method ignores uses of other values defined by this
5420/// operation.
5421bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5422  assert(Value < getNumValues() && "Bad value!");
5423
5424  // TODO: Only iterate over uses of a given value of the node
5425  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5426    if (UI.getUse().getResNo() == Value) {
5427      if (NUses == 0)
5428        return false;
5429      --NUses;
5430    }
5431  }
5432
5433  // Found exactly the right number of uses?
5434  return NUses == 0;
5435}
5436
5437
5438/// hasAnyUseOfValue - Return true if there are any use of the indicated
5439/// value. This method ignores uses of other values defined by this operation.
5440bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5441  assert(Value < getNumValues() && "Bad value!");
5442
5443  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5444    if (UI.getUse().getResNo() == Value)
5445      return true;
5446
5447  return false;
5448}
5449
5450
5451/// isOnlyUserOf - Return true if this node is the only use of N.
5452///
5453bool SDNode::isOnlyUserOf(SDNode *N) const {
5454  bool Seen = false;
5455  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5456    SDNode *User = *I;
5457    if (User == this)
5458      Seen = true;
5459    else
5460      return false;
5461  }
5462
5463  return Seen;
5464}
5465
5466/// isOperand - Return true if this node is an operand of N.
5467///
5468bool SDValue::isOperandOf(SDNode *N) const {
5469  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5470    if (*this == N->getOperand(i))
5471      return true;
5472  return false;
5473}
5474
5475bool SDNode::isOperandOf(SDNode *N) const {
5476  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5477    if (this == N->OperandList[i].getNode())
5478      return true;
5479  return false;
5480}
5481
5482/// reachesChainWithoutSideEffects - Return true if this operand (which must
5483/// be a chain) reaches the specified operand without crossing any
5484/// side-effecting instructions.  In practice, this looks through token
5485/// factors and non-volatile loads.  In order to remain efficient, this only
5486/// looks a couple of nodes in, it does not do an exhaustive search.
5487bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5488                                               unsigned Depth) const {
5489  if (*this == Dest) return true;
5490
5491  // Don't search too deeply, we just want to be able to see through
5492  // TokenFactor's etc.
5493  if (Depth == 0) return false;
5494
5495  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5496  // of the operands of the TF reach dest, then we can do the xform.
5497  if (getOpcode() == ISD::TokenFactor) {
5498    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5499      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5500        return true;
5501    return false;
5502  }
5503
5504  // Loads don't have side effects, look through them.
5505  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5506    if (!Ld->isVolatile())
5507      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5508  }
5509  return false;
5510}
5511
5512/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5513/// is either an operand of N or it can be reached by traversing up the operands.
5514/// NOTE: this is an expensive method. Use it carefully.
5515bool SDNode::isPredecessorOf(SDNode *N) const {
5516  SmallPtrSet<SDNode *, 32> Visited;
5517  SmallVector<SDNode *, 16> Worklist;
5518  Worklist.push_back(N);
5519
5520  do {
5521    N = Worklist.pop_back_val();
5522    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5523      SDNode *Op = N->getOperand(i).getNode();
5524      if (Op == this)
5525        return true;
5526      if (Visited.insert(Op))
5527        Worklist.push_back(Op);
5528    }
5529  } while (!Worklist.empty());
5530
5531  return false;
5532}
5533
5534uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5535  assert(Num < NumOperands && "Invalid child # of SDNode!");
5536  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5537}
5538
5539std::string SDNode::getOperationName(const SelectionDAG *G) const {
5540  switch (getOpcode()) {
5541  default:
5542    if (getOpcode() < ISD::BUILTIN_OP_END)
5543      return "<<Unknown DAG Node>>";
5544    if (isMachineOpcode()) {
5545      if (G)
5546        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5547          if (getMachineOpcode() < TII->getNumOpcodes())
5548            return TII->get(getMachineOpcode()).getName();
5549      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5550    }
5551    if (G) {
5552      const TargetLowering &TLI = G->getTargetLoweringInfo();
5553      const char *Name = TLI.getTargetNodeName(getOpcode());
5554      if (Name) return Name;
5555      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5556    }
5557    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5558
5559#ifndef NDEBUG
5560  case ISD::DELETED_NODE:
5561    return "<<Deleted Node!>>";
5562#endif
5563  case ISD::PREFETCH:      return "Prefetch";
5564  case ISD::MEMBARRIER:    return "MemBarrier";
5565  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5566  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5567  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5568  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5569  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5570  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5571  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5572  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5573  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5574  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5575  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5576  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5577  case ISD::PCMARKER:      return "PCMarker";
5578  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5579  case ISD::SRCVALUE:      return "SrcValue";
5580  case ISD::MDNODE_SDNODE: return "MDNode";
5581  case ISD::EntryToken:    return "EntryToken";
5582  case ISD::TokenFactor:   return "TokenFactor";
5583  case ISD::AssertSext:    return "AssertSext";
5584  case ISD::AssertZext:    return "AssertZext";
5585
5586  case ISD::BasicBlock:    return "BasicBlock";
5587  case ISD::VALUETYPE:     return "ValueType";
5588  case ISD::Register:      return "Register";
5589
5590  case ISD::Constant:      return "Constant";
5591  case ISD::ConstantFP:    return "ConstantFP";
5592  case ISD::GlobalAddress: return "GlobalAddress";
5593  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5594  case ISD::FrameIndex:    return "FrameIndex";
5595  case ISD::JumpTable:     return "JumpTable";
5596  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5597  case ISD::RETURNADDR: return "RETURNADDR";
5598  case ISD::FRAMEADDR: return "FRAMEADDR";
5599  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5600  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5601  case ISD::LSDAADDR: return "LSDAADDR";
5602  case ISD::EHSELECTION: return "EHSELECTION";
5603  case ISD::EH_RETURN: return "EH_RETURN";
5604  case ISD::ConstantPool:  return "ConstantPool";
5605  case ISD::ExternalSymbol: return "ExternalSymbol";
5606  case ISD::BlockAddress:  return "BlockAddress";
5607  case ISD::INTRINSIC_WO_CHAIN:
5608  case ISD::INTRINSIC_VOID:
5609  case ISD::INTRINSIC_W_CHAIN: {
5610    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5611    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5612    if (IID < Intrinsic::num_intrinsics)
5613      return Intrinsic::getName((Intrinsic::ID)IID);
5614    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5615      return TII->getName(IID);
5616    llvm_unreachable("Invalid intrinsic ID");
5617  }
5618
5619  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5620  case ISD::TargetConstant: return "TargetConstant";
5621  case ISD::TargetConstantFP:return "TargetConstantFP";
5622  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5623  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5624  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5625  case ISD::TargetJumpTable:  return "TargetJumpTable";
5626  case ISD::TargetConstantPool:  return "TargetConstantPool";
5627  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5628  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5629
5630  case ISD::CopyToReg:     return "CopyToReg";
5631  case ISD::CopyFromReg:   return "CopyFromReg";
5632  case ISD::UNDEF:         return "undef";
5633  case ISD::MERGE_VALUES:  return "merge_values";
5634  case ISD::INLINEASM:     return "inlineasm";
5635  case ISD::EH_LABEL:      return "eh_label";
5636  case ISD::HANDLENODE:    return "handlenode";
5637
5638  // Unary operators
5639  case ISD::FABS:   return "fabs";
5640  case ISD::FNEG:   return "fneg";
5641  case ISD::FSQRT:  return "fsqrt";
5642  case ISD::FSIN:   return "fsin";
5643  case ISD::FCOS:   return "fcos";
5644  case ISD::FPOWI:  return "fpowi";
5645  case ISD::FPOW:   return "fpow";
5646  case ISD::FTRUNC: return "ftrunc";
5647  case ISD::FFLOOR: return "ffloor";
5648  case ISD::FCEIL:  return "fceil";
5649  case ISD::FRINT:  return "frint";
5650  case ISD::FNEARBYINT: return "fnearbyint";
5651
5652  // Binary operators
5653  case ISD::ADD:    return "add";
5654  case ISD::SUB:    return "sub";
5655  case ISD::MUL:    return "mul";
5656  case ISD::MULHU:  return "mulhu";
5657  case ISD::MULHS:  return "mulhs";
5658  case ISD::SDIV:   return "sdiv";
5659  case ISD::UDIV:   return "udiv";
5660  case ISD::SREM:   return "srem";
5661  case ISD::UREM:   return "urem";
5662  case ISD::SMUL_LOHI:  return "smul_lohi";
5663  case ISD::UMUL_LOHI:  return "umul_lohi";
5664  case ISD::SDIVREM:    return "sdivrem";
5665  case ISD::UDIVREM:    return "udivrem";
5666  case ISD::AND:    return "and";
5667  case ISD::OR:     return "or";
5668  case ISD::XOR:    return "xor";
5669  case ISD::SHL:    return "shl";
5670  case ISD::SRA:    return "sra";
5671  case ISD::SRL:    return "srl";
5672  case ISD::ROTL:   return "rotl";
5673  case ISD::ROTR:   return "rotr";
5674  case ISD::FADD:   return "fadd";
5675  case ISD::FSUB:   return "fsub";
5676  case ISD::FMUL:   return "fmul";
5677  case ISD::FDIV:   return "fdiv";
5678  case ISD::FREM:   return "frem";
5679  case ISD::FCOPYSIGN: return "fcopysign";
5680  case ISD::FGETSIGN:  return "fgetsign";
5681
5682  case ISD::SETCC:       return "setcc";
5683  case ISD::VSETCC:      return "vsetcc";
5684  case ISD::SELECT:      return "select";
5685  case ISD::SELECT_CC:   return "select_cc";
5686  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5687  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5688  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5689  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5690  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5691  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5692  case ISD::CARRY_FALSE:         return "carry_false";
5693  case ISD::ADDC:        return "addc";
5694  case ISD::ADDE:        return "adde";
5695  case ISD::SADDO:       return "saddo";
5696  case ISD::UADDO:       return "uaddo";
5697  case ISD::SSUBO:       return "ssubo";
5698  case ISD::USUBO:       return "usubo";
5699  case ISD::SMULO:       return "smulo";
5700  case ISD::UMULO:       return "umulo";
5701  case ISD::SUBC:        return "subc";
5702  case ISD::SUBE:        return "sube";
5703  case ISD::SHL_PARTS:   return "shl_parts";
5704  case ISD::SRA_PARTS:   return "sra_parts";
5705  case ISD::SRL_PARTS:   return "srl_parts";
5706
5707  // Conversion operators.
5708  case ISD::SIGN_EXTEND: return "sign_extend";
5709  case ISD::ZERO_EXTEND: return "zero_extend";
5710  case ISD::ANY_EXTEND:  return "any_extend";
5711  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5712  case ISD::TRUNCATE:    return "truncate";
5713  case ISD::FP_ROUND:    return "fp_round";
5714  case ISD::FLT_ROUNDS_: return "flt_rounds";
5715  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5716  case ISD::FP_EXTEND:   return "fp_extend";
5717
5718  case ISD::SINT_TO_FP:  return "sint_to_fp";
5719  case ISD::UINT_TO_FP:  return "uint_to_fp";
5720  case ISD::FP_TO_SINT:  return "fp_to_sint";
5721  case ISD::FP_TO_UINT:  return "fp_to_uint";
5722  case ISD::BIT_CONVERT: return "bit_convert";
5723  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5724  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5725
5726  case ISD::CONVERT_RNDSAT: {
5727    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5728    default: llvm_unreachable("Unknown cvt code!");
5729    case ISD::CVT_FF:  return "cvt_ff";
5730    case ISD::CVT_FS:  return "cvt_fs";
5731    case ISD::CVT_FU:  return "cvt_fu";
5732    case ISD::CVT_SF:  return "cvt_sf";
5733    case ISD::CVT_UF:  return "cvt_uf";
5734    case ISD::CVT_SS:  return "cvt_ss";
5735    case ISD::CVT_SU:  return "cvt_su";
5736    case ISD::CVT_US:  return "cvt_us";
5737    case ISD::CVT_UU:  return "cvt_uu";
5738    }
5739  }
5740
5741    // Control flow instructions
5742  case ISD::BR:      return "br";
5743  case ISD::BRIND:   return "brind";
5744  case ISD::BR_JT:   return "br_jt";
5745  case ISD::BRCOND:  return "brcond";
5746  case ISD::BR_CC:   return "br_cc";
5747  case ISD::CALLSEQ_START:  return "callseq_start";
5748  case ISD::CALLSEQ_END:    return "callseq_end";
5749
5750    // Other operators
5751  case ISD::LOAD:               return "load";
5752  case ISD::STORE:              return "store";
5753  case ISD::VAARG:              return "vaarg";
5754  case ISD::VACOPY:             return "vacopy";
5755  case ISD::VAEND:              return "vaend";
5756  case ISD::VASTART:            return "vastart";
5757  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5758  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5759  case ISD::BUILD_PAIR:         return "build_pair";
5760  case ISD::STACKSAVE:          return "stacksave";
5761  case ISD::STACKRESTORE:       return "stackrestore";
5762  case ISD::TRAP:               return "trap";
5763
5764  // Bit manipulation
5765  case ISD::BSWAP:   return "bswap";
5766  case ISD::CTPOP:   return "ctpop";
5767  case ISD::CTTZ:    return "cttz";
5768  case ISD::CTLZ:    return "ctlz";
5769
5770  // Trampolines
5771  case ISD::TRAMPOLINE: return "trampoline";
5772
5773  case ISD::CONDCODE:
5774    switch (cast<CondCodeSDNode>(this)->get()) {
5775    default: llvm_unreachable("Unknown setcc condition!");
5776    case ISD::SETOEQ:  return "setoeq";
5777    case ISD::SETOGT:  return "setogt";
5778    case ISD::SETOGE:  return "setoge";
5779    case ISD::SETOLT:  return "setolt";
5780    case ISD::SETOLE:  return "setole";
5781    case ISD::SETONE:  return "setone";
5782
5783    case ISD::SETO:    return "seto";
5784    case ISD::SETUO:   return "setuo";
5785    case ISD::SETUEQ:  return "setue";
5786    case ISD::SETUGT:  return "setugt";
5787    case ISD::SETUGE:  return "setuge";
5788    case ISD::SETULT:  return "setult";
5789    case ISD::SETULE:  return "setule";
5790    case ISD::SETUNE:  return "setune";
5791
5792    case ISD::SETEQ:   return "seteq";
5793    case ISD::SETGT:   return "setgt";
5794    case ISD::SETGE:   return "setge";
5795    case ISD::SETLT:   return "setlt";
5796    case ISD::SETLE:   return "setle";
5797    case ISD::SETNE:   return "setne";
5798    }
5799  }
5800}
5801
5802const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5803  switch (AM) {
5804  default:
5805    return "";
5806  case ISD::PRE_INC:
5807    return "<pre-inc>";
5808  case ISD::PRE_DEC:
5809    return "<pre-dec>";
5810  case ISD::POST_INC:
5811    return "<post-inc>";
5812  case ISD::POST_DEC:
5813    return "<post-dec>";
5814  }
5815}
5816
5817std::string ISD::ArgFlagsTy::getArgFlagsString() {
5818  std::string S = "< ";
5819
5820  if (isZExt())
5821    S += "zext ";
5822  if (isSExt())
5823    S += "sext ";
5824  if (isInReg())
5825    S += "inreg ";
5826  if (isSRet())
5827    S += "sret ";
5828  if (isByVal())
5829    S += "byval ";
5830  if (isNest())
5831    S += "nest ";
5832  if (getByValAlign())
5833    S += "byval-align:" + utostr(getByValAlign()) + " ";
5834  if (getOrigAlign())
5835    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5836  if (getByValSize())
5837    S += "byval-size:" + utostr(getByValSize()) + " ";
5838  return S + ">";
5839}
5840
5841void SDNode::dump() const { dump(0); }
5842void SDNode::dump(const SelectionDAG *G) const {
5843  print(dbgs(), G);
5844}
5845
5846void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5847  OS << (void*)this << ": ";
5848
5849  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5850    if (i) OS << ",";
5851    if (getValueType(i) == MVT::Other)
5852      OS << "ch";
5853    else
5854      OS << getValueType(i).getEVTString();
5855  }
5856  OS << " = " << getOperationName(G);
5857}
5858
5859void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5860  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5861    if (!MN->memoperands_empty()) {
5862      OS << "<";
5863      OS << "Mem:";
5864      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5865           e = MN->memoperands_end(); i != e; ++i) {
5866        OS << **i;
5867        if (next(i) != e)
5868          OS << " ";
5869      }
5870      OS << ">";
5871    }
5872  } else if (const ShuffleVectorSDNode *SVN =
5873               dyn_cast<ShuffleVectorSDNode>(this)) {
5874    OS << "<";
5875    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5876      int Idx = SVN->getMaskElt(i);
5877      if (i) OS << ",";
5878      if (Idx < 0)
5879        OS << "u";
5880      else
5881        OS << Idx;
5882    }
5883    OS << ">";
5884  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5885    OS << '<' << CSDN->getAPIntValue() << '>';
5886  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5887    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5888      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5889    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5890      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5891    else {
5892      OS << "<APFloat(";
5893      CSDN->getValueAPF().bitcastToAPInt().dump();
5894      OS << ")>";
5895    }
5896  } else if (const GlobalAddressSDNode *GADN =
5897             dyn_cast<GlobalAddressSDNode>(this)) {
5898    int64_t offset = GADN->getOffset();
5899    OS << '<';
5900    WriteAsOperand(OS, GADN->getGlobal());
5901    OS << '>';
5902    if (offset > 0)
5903      OS << " + " << offset;
5904    else
5905      OS << " " << offset;
5906    if (unsigned int TF = GADN->getTargetFlags())
5907      OS << " [TF=" << TF << ']';
5908  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5909    OS << "<" << FIDN->getIndex() << ">";
5910  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5911    OS << "<" << JTDN->getIndex() << ">";
5912    if (unsigned int TF = JTDN->getTargetFlags())
5913      OS << " [TF=" << TF << ']';
5914  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5915    int offset = CP->getOffset();
5916    if (CP->isMachineConstantPoolEntry())
5917      OS << "<" << *CP->getMachineCPVal() << ">";
5918    else
5919      OS << "<" << *CP->getConstVal() << ">";
5920    if (offset > 0)
5921      OS << " + " << offset;
5922    else
5923      OS << " " << offset;
5924    if (unsigned int TF = CP->getTargetFlags())
5925      OS << " [TF=" << TF << ']';
5926  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5927    OS << "<";
5928    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5929    if (LBB)
5930      OS << LBB->getName() << " ";
5931    OS << (const void*)BBDN->getBasicBlock() << ">";
5932  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5933    if (G && R->getReg() &&
5934        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5935      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5936    } else {
5937      OS << " %reg" << R->getReg();
5938    }
5939  } else if (const ExternalSymbolSDNode *ES =
5940             dyn_cast<ExternalSymbolSDNode>(this)) {
5941    OS << "'" << ES->getSymbol() << "'";
5942    if (unsigned int TF = ES->getTargetFlags())
5943      OS << " [TF=" << TF << ']';
5944  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5945    if (M->getValue())
5946      OS << "<" << M->getValue() << ">";
5947    else
5948      OS << "<null>";
5949  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5950    if (MD->getMD())
5951      OS << "<" << MD->getMD() << ">";
5952    else
5953      OS << "<null>";
5954  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5955    OS << ":" << N->getVT().getEVTString();
5956  }
5957  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5958    OS << "<" << *LD->getMemOperand();
5959
5960    bool doExt = true;
5961    switch (LD->getExtensionType()) {
5962    default: doExt = false; break;
5963    case ISD::EXTLOAD: OS << ", anyext"; break;
5964    case ISD::SEXTLOAD: OS << ", sext"; break;
5965    case ISD::ZEXTLOAD: OS << ", zext"; break;
5966    }
5967    if (doExt)
5968      OS << " from " << LD->getMemoryVT().getEVTString();
5969
5970    const char *AM = getIndexedModeName(LD->getAddressingMode());
5971    if (*AM)
5972      OS << ", " << AM;
5973
5974    OS << ">";
5975  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5976    OS << "<" << *ST->getMemOperand();
5977
5978    if (ST->isTruncatingStore())
5979      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5980
5981    const char *AM = getIndexedModeName(ST->getAddressingMode());
5982    if (*AM)
5983      OS << ", " << AM;
5984
5985    OS << ">";
5986  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5987    OS << "<" << *M->getMemOperand() << ">";
5988  } else if (const BlockAddressSDNode *BA =
5989               dyn_cast<BlockAddressSDNode>(this)) {
5990    OS << "<";
5991    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5992    OS << ", ";
5993    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5994    OS << ">";
5995    if (unsigned int TF = BA->getTargetFlags())
5996      OS << " [TF=" << TF << ']';
5997  }
5998
5999  if (G)
6000    if (unsigned Order = G->GetOrdering(this))
6001      OS << " [ORD=" << Order << ']';
6002
6003  if (getNodeId() != -1)
6004    OS << " [ID=" << getNodeId() << ']';
6005}
6006
6007void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6008  print_types(OS, G);
6009  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6010    if (i) OS << ", "; else OS << " ";
6011    OS << (void*)getOperand(i).getNode();
6012    if (unsigned RN = getOperand(i).getResNo())
6013      OS << ":" << RN;
6014  }
6015  print_details(OS, G);
6016}
6017
6018static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6019                                  const SelectionDAG *G, unsigned depth,
6020                                  unsigned indent)
6021{
6022  if (depth == 0)
6023    return;
6024
6025  OS.indent(indent);
6026
6027  N->print(OS, G);
6028
6029  if (depth < 1)
6030    return;
6031
6032  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6033    OS << '\n';
6034    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6035  }
6036}
6037
6038void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6039                            unsigned depth) const {
6040  printrWithDepthHelper(OS, this, G, depth, 0);
6041}
6042
6043void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6044  // Don't print impossibly deep things.
6045  printrWithDepth(OS, G, 100);
6046}
6047
6048void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6049  printrWithDepth(dbgs(), G, depth);
6050}
6051
6052void SDNode::dumprFull(const SelectionDAG *G) const {
6053  // Don't print impossibly deep things.
6054  dumprWithDepth(G, 100);
6055}
6056
6057static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6058  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6059    if (N->getOperand(i).getNode()->hasOneUse())
6060      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6061    else
6062      dbgs() << "\n" << std::string(indent+2, ' ')
6063           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6064
6065
6066  dbgs() << "\n";
6067  dbgs().indent(indent);
6068  N->dump(G);
6069}
6070
6071SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6072  assert(N->getNumValues() == 1 &&
6073         "Can't unroll a vector with multiple results!");
6074
6075  EVT VT = N->getValueType(0);
6076  unsigned NE = VT.getVectorNumElements();
6077  EVT EltVT = VT.getVectorElementType();
6078  DebugLoc dl = N->getDebugLoc();
6079
6080  SmallVector<SDValue, 8> Scalars;
6081  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6082
6083  // If ResNE is 0, fully unroll the vector op.
6084  if (ResNE == 0)
6085    ResNE = NE;
6086  else if (NE > ResNE)
6087    NE = ResNE;
6088
6089  unsigned i;
6090  for (i= 0; i != NE; ++i) {
6091    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6092      SDValue Operand = N->getOperand(j);
6093      EVT OperandVT = Operand.getValueType();
6094      if (OperandVT.isVector()) {
6095        // A vector operand; extract a single element.
6096        EVT OperandEltVT = OperandVT.getVectorElementType();
6097        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6098                              OperandEltVT,
6099                              Operand,
6100                              getConstant(i, MVT::i32));
6101      } else {
6102        // A scalar operand; just use it as is.
6103        Operands[j] = Operand;
6104      }
6105    }
6106
6107    switch (N->getOpcode()) {
6108    default:
6109      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6110                                &Operands[0], Operands.size()));
6111      break;
6112    case ISD::SHL:
6113    case ISD::SRA:
6114    case ISD::SRL:
6115    case ISD::ROTL:
6116    case ISD::ROTR:
6117      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6118                                getShiftAmountOperand(Operands[1])));
6119      break;
6120    case ISD::SIGN_EXTEND_INREG:
6121    case ISD::FP_ROUND_INREG: {
6122      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6123      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6124                                Operands[0],
6125                                getValueType(ExtVT)));
6126    }
6127    }
6128  }
6129
6130  for (; i < ResNE; ++i)
6131    Scalars.push_back(getUNDEF(EltVT));
6132
6133  return getNode(ISD::BUILD_VECTOR, dl,
6134                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6135                 &Scalars[0], Scalars.size());
6136}
6137
6138
6139/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6140/// location that is 'Dist' units away from the location that the 'Base' load
6141/// is loading from.
6142bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6143                                     unsigned Bytes, int Dist) const {
6144  if (LD->getChain() != Base->getChain())
6145    return false;
6146  EVT VT = LD->getValueType(0);
6147  if (VT.getSizeInBits() / 8 != Bytes)
6148    return false;
6149
6150  SDValue Loc = LD->getOperand(1);
6151  SDValue BaseLoc = Base->getOperand(1);
6152  if (Loc.getOpcode() == ISD::FrameIndex) {
6153    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6154      return false;
6155    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6156    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6157    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6158    int FS  = MFI->getObjectSize(FI);
6159    int BFS = MFI->getObjectSize(BFI);
6160    if (FS != BFS || FS != (int)Bytes) return false;
6161    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6162  }
6163  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6164    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6165    if (V && (V->getSExtValue() == Dist*Bytes))
6166      return true;
6167  }
6168
6169  const GlobalValue *GV1 = NULL;
6170  const GlobalValue *GV2 = NULL;
6171  int64_t Offset1 = 0;
6172  int64_t Offset2 = 0;
6173  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6174  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6175  if (isGA1 && isGA2 && GV1 == GV2)
6176    return Offset1 == (Offset2 + Dist*Bytes);
6177  return false;
6178}
6179
6180
6181/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6182/// it cannot be inferred.
6183unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6184  // If this is a GlobalAddress + cst, return the alignment.
6185  const GlobalValue *GV;
6186  int64_t GVOffset = 0;
6187  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6188    // If GV has specified alignment, then use it. Otherwise, use the preferred
6189    // alignment.
6190    unsigned Align = GV->getAlignment();
6191    if (!Align) {
6192      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6193        if (GVar->hasInitializer()) {
6194          const TargetData *TD = TLI.getTargetData();
6195          Align = TD->getPreferredAlignment(GVar);
6196        }
6197      }
6198    }
6199    return MinAlign(Align, GVOffset);
6200  }
6201
6202  // If this is a direct reference to a stack slot, use information about the
6203  // stack slot's alignment.
6204  int FrameIdx = 1 << 31;
6205  int64_t FrameOffset = 0;
6206  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6207    FrameIdx = FI->getIndex();
6208  } else if (Ptr.getOpcode() == ISD::ADD &&
6209             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6210             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6211    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6212    FrameOffset = Ptr.getConstantOperandVal(1);
6213  }
6214
6215  if (FrameIdx != (1 << 31)) {
6216    // FIXME: Handle FI+CST.
6217    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6218    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6219                                    FrameOffset);
6220    if (MFI.isFixedObjectIndex(FrameIdx)) {
6221      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6222
6223      // The alignment of the frame index can be determined from its offset from
6224      // the incoming frame position.  If the frame object is at offset 32 and
6225      // the stack is guaranteed to be 16-byte aligned, then we know that the
6226      // object is 16-byte aligned.
6227      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6228      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6229
6230      // Finally, the frame object itself may have a known alignment.  Factor
6231      // the alignment + offset into a new alignment.  For example, if we know
6232      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6233      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6234      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6235      return std::max(Align, FIInfoAlign);
6236    }
6237    return FIInfoAlign;
6238  }
6239
6240  return 0;
6241}
6242
6243void SelectionDAG::dump() const {
6244  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6245
6246  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6247       I != E; ++I) {
6248    const SDNode *N = I;
6249    if (!N->hasOneUse() && N != getRoot().getNode())
6250      DumpNodes(N, 2, this);
6251  }
6252
6253  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6254
6255  dbgs() << "\n\n";
6256}
6257
6258void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6259  print_types(OS, G);
6260  print_details(OS, G);
6261}
6262
6263typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6264static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6265                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6266  if (!once.insert(N))          // If we've been here before, return now.
6267    return;
6268
6269  // Dump the current SDNode, but don't end the line yet.
6270  OS << std::string(indent, ' ');
6271  N->printr(OS, G);
6272
6273  // Having printed this SDNode, walk the children:
6274  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6275    const SDNode *child = N->getOperand(i).getNode();
6276
6277    if (i) OS << ",";
6278    OS << " ";
6279
6280    if (child->getNumOperands() == 0) {
6281      // This child has no grandchildren; print it inline right here.
6282      child->printr(OS, G);
6283      once.insert(child);
6284    } else {         // Just the address. FIXME: also print the child's opcode.
6285      OS << (void*)child;
6286      if (unsigned RN = N->getOperand(i).getResNo())
6287        OS << ":" << RN;
6288    }
6289  }
6290
6291  OS << "\n";
6292
6293  // Dump children that have grandchildren on their own line(s).
6294  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6295    const SDNode *child = N->getOperand(i).getNode();
6296    DumpNodesr(OS, child, indent+2, G, once);
6297  }
6298}
6299
6300void SDNode::dumpr() const {
6301  VisitedSDNodeSet once;
6302  DumpNodesr(dbgs(), this, 0, 0, once);
6303}
6304
6305void SDNode::dumpr(const SelectionDAG *G) const {
6306  VisitedSDNodeSet once;
6307  DumpNodesr(dbgs(), this, 0, G, once);
6308}
6309
6310
6311// getAddressSpace - Return the address space this GlobalAddress belongs to.
6312unsigned GlobalAddressSDNode::getAddressSpace() const {
6313  return getGlobal()->getType()->getAddressSpace();
6314}
6315
6316
6317const Type *ConstantPoolSDNode::getType() const {
6318  if (isMachineConstantPoolEntry())
6319    return Val.MachineCPVal->getType();
6320  return Val.ConstVal->getType();
6321}
6322
6323bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6324                                        APInt &SplatUndef,
6325                                        unsigned &SplatBitSize,
6326                                        bool &HasAnyUndefs,
6327                                        unsigned MinSplatBits,
6328                                        bool isBigEndian) {
6329  EVT VT = getValueType(0);
6330  assert(VT.isVector() && "Expected a vector type");
6331  unsigned sz = VT.getSizeInBits();
6332  if (MinSplatBits > sz)
6333    return false;
6334
6335  SplatValue = APInt(sz, 0);
6336  SplatUndef = APInt(sz, 0);
6337
6338  // Get the bits.  Bits with undefined values (when the corresponding element
6339  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6340  // in SplatValue.  If any of the values are not constant, give up and return
6341  // false.
6342  unsigned int nOps = getNumOperands();
6343  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6344  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6345
6346  for (unsigned j = 0; j < nOps; ++j) {
6347    unsigned i = isBigEndian ? nOps-1-j : j;
6348    SDValue OpVal = getOperand(i);
6349    unsigned BitPos = j * EltBitSize;
6350
6351    if (OpVal.getOpcode() == ISD::UNDEF)
6352      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6353    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6354      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6355                    zextOrTrunc(sz) << BitPos;
6356    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6357      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6358     else
6359      return false;
6360  }
6361
6362  // The build_vector is all constants or undefs.  Find the smallest element
6363  // size that splats the vector.
6364
6365  HasAnyUndefs = (SplatUndef != 0);
6366  while (sz > 8) {
6367
6368    unsigned HalfSize = sz / 2;
6369    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6370    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6371    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6372    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6373
6374    // If the two halves do not match (ignoring undef bits), stop here.
6375    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6376        MinSplatBits > HalfSize)
6377      break;
6378
6379    SplatValue = HighValue | LowValue;
6380    SplatUndef = HighUndef & LowUndef;
6381
6382    sz = HalfSize;
6383  }
6384
6385  SplatBitSize = sz;
6386  return true;
6387}
6388
6389bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6390  // Find the first non-undef value in the shuffle mask.
6391  unsigned i, e;
6392  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6393    /* search */;
6394
6395  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6396
6397  // Make sure all remaining elements are either undef or the same as the first
6398  // non-undef value.
6399  for (int Idx = Mask[i]; i != e; ++i)
6400    if (Mask[i] >= 0 && Mask[i] != Idx)
6401      return false;
6402  return true;
6403}
6404
6405#ifdef XDEBUG
6406static void checkForCyclesHelper(const SDNode *N,
6407                                 SmallPtrSet<const SDNode*, 32> &Visited,
6408                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6409  // If this node has already been checked, don't check it again.
6410  if (Checked.count(N))
6411    return;
6412
6413  // If a node has already been visited on this depth-first walk, reject it as
6414  // a cycle.
6415  if (!Visited.insert(N)) {
6416    dbgs() << "Offending node:\n";
6417    N->dumprFull();
6418    errs() << "Detected cycle in SelectionDAG\n";
6419    abort();
6420  }
6421
6422  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6423    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6424
6425  Checked.insert(N);
6426  Visited.erase(N);
6427}
6428#endif
6429
6430void llvm::checkForCycles(const llvm::SDNode *N) {
6431#ifdef XDEBUG
6432  assert(N && "Checking nonexistant SDNode");
6433  SmallPtrSet<const SDNode*, 32> visited;
6434  SmallPtrSet<const SDNode*, 32> checked;
6435  checkForCyclesHelper(N, visited, checked);
6436#endif
6437}
6438
6439void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6440  checkForCycles(DAG->getRoot().getNode());
6441}
6442