SelectionDAG.cpp revision 51dabfb28375be7bc5848806ae31cd068b6133f8
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/Support/MathExtras.h"
22#include "llvm/Target/MRegisterInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/ADT/SetVector.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringExtras.h"
29#include <iostream>
30#include <set>
31#include <cmath>
32#include <algorithm>
33using namespace llvm;
34
35/// makeVTList - Return an instance of the SDVTList struct initialized with the
36/// specified members.
37static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
38  SDVTList Res = {VTs, NumVTs};
39  return Res;
40}
41
42// isInvertibleForFree - Return true if there is no cost to emitting the logical
43// inverse of this node.
44static bool isInvertibleForFree(SDOperand N) {
45  if (isa<ConstantSDNode>(N.Val)) return true;
46  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
47    return true;
48  return false;
49}
50
51//===----------------------------------------------------------------------===//
52//                              ConstantFPSDNode Class
53//===----------------------------------------------------------------------===//
54
55/// isExactlyValue - We don't rely on operator== working on double values, as
56/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
57/// As such, this method can be used to do an exact bit-for-bit comparison of
58/// two floating point values.
59bool ConstantFPSDNode::isExactlyValue(double V) const {
60  return DoubleToBits(V) == DoubleToBits(Value);
61}
62
63//===----------------------------------------------------------------------===//
64//                              ISD Namespace
65//===----------------------------------------------------------------------===//
66
67/// isBuildVectorAllOnes - Return true if the specified node is a
68/// BUILD_VECTOR where all of the elements are ~0 or undef.
69bool ISD::isBuildVectorAllOnes(const SDNode *N) {
70  // Look through a bit convert.
71  if (N->getOpcode() == ISD::BIT_CONVERT)
72    N = N->getOperand(0).Val;
73
74  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
75
76  unsigned i = 0, e = N->getNumOperands();
77
78  // Skip over all of the undef values.
79  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
80    ++i;
81
82  // Do not accept an all-undef vector.
83  if (i == e) return false;
84
85  // Do not accept build_vectors that aren't all constants or which have non-~0
86  // elements.
87  SDOperand NotZero = N->getOperand(i);
88  if (isa<ConstantSDNode>(NotZero)) {
89    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
90      return false;
91  } else if (isa<ConstantFPSDNode>(NotZero)) {
92    MVT::ValueType VT = NotZero.getValueType();
93    if (VT== MVT::f64) {
94      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
95          (uint64_t)-1)
96        return false;
97    } else {
98      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
99          (uint32_t)-1)
100        return false;
101    }
102  } else
103    return false;
104
105  // Okay, we have at least one ~0 value, check to see if the rest match or are
106  // undefs.
107  for (++i; i != e; ++i)
108    if (N->getOperand(i) != NotZero &&
109        N->getOperand(i).getOpcode() != ISD::UNDEF)
110      return false;
111  return true;
112}
113
114
115/// isBuildVectorAllZeros - Return true if the specified node is a
116/// BUILD_VECTOR where all of the elements are 0 or undef.
117bool ISD::isBuildVectorAllZeros(const SDNode *N) {
118  // Look through a bit convert.
119  if (N->getOpcode() == ISD::BIT_CONVERT)
120    N = N->getOperand(0).Val;
121
122  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
123
124  unsigned i = 0, e = N->getNumOperands();
125
126  // Skip over all of the undef values.
127  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
128    ++i;
129
130  // Do not accept an all-undef vector.
131  if (i == e) return false;
132
133  // Do not accept build_vectors that aren't all constants or which have non-~0
134  // elements.
135  SDOperand Zero = N->getOperand(i);
136  if (isa<ConstantSDNode>(Zero)) {
137    if (!cast<ConstantSDNode>(Zero)->isNullValue())
138      return false;
139  } else if (isa<ConstantFPSDNode>(Zero)) {
140    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
141      return false;
142  } else
143    return false;
144
145  // Okay, we have at least one ~0 value, check to see if the rest match or are
146  // undefs.
147  for (++i; i != e; ++i)
148    if (N->getOperand(i) != Zero &&
149        N->getOperand(i).getOpcode() != ISD::UNDEF)
150      return false;
151  return true;
152}
153
154/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
155/// when given the operation for (X op Y).
156ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
157  // To perform this operation, we just need to swap the L and G bits of the
158  // operation.
159  unsigned OldL = (Operation >> 2) & 1;
160  unsigned OldG = (Operation >> 1) & 1;
161  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
162                       (OldL << 1) |       // New G bit
163                       (OldG << 2));        // New L bit.
164}
165
166/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
167/// 'op' is a valid SetCC operation.
168ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
169  unsigned Operation = Op;
170  if (isInteger)
171    Operation ^= 7;   // Flip L, G, E bits, but not U.
172  else
173    Operation ^= 15;  // Flip all of the condition bits.
174  if (Operation > ISD::SETTRUE2)
175    Operation &= ~8;     // Don't let N and U bits get set.
176  return ISD::CondCode(Operation);
177}
178
179
180/// isSignedOp - For an integer comparison, return 1 if the comparison is a
181/// signed operation and 2 if the result is an unsigned comparison.  Return zero
182/// if the operation does not depend on the sign of the input (setne and seteq).
183static int isSignedOp(ISD::CondCode Opcode) {
184  switch (Opcode) {
185  default: assert(0 && "Illegal integer setcc operation!");
186  case ISD::SETEQ:
187  case ISD::SETNE: return 0;
188  case ISD::SETLT:
189  case ISD::SETLE:
190  case ISD::SETGT:
191  case ISD::SETGE: return 1;
192  case ISD::SETULT:
193  case ISD::SETULE:
194  case ISD::SETUGT:
195  case ISD::SETUGE: return 2;
196  }
197}
198
199/// getSetCCOrOperation - Return the result of a logical OR between different
200/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
201/// returns SETCC_INVALID if it is not possible to represent the resultant
202/// comparison.
203ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
204                                       bool isInteger) {
205  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
206    // Cannot fold a signed integer setcc with an unsigned integer setcc.
207    return ISD::SETCC_INVALID;
208
209  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
210
211  // If the N and U bits get set then the resultant comparison DOES suddenly
212  // care about orderedness, and is true when ordered.
213  if (Op > ISD::SETTRUE2)
214    Op &= ~16;     // Clear the U bit if the N bit is set.
215
216  // Canonicalize illegal integer setcc's.
217  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
218    Op = ISD::SETNE;
219
220  return ISD::CondCode(Op);
221}
222
223/// getSetCCAndOperation - Return the result of a logical AND between different
224/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
225/// function returns zero if it is not possible to represent the resultant
226/// comparison.
227ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
228                                        bool isInteger) {
229  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
230    // Cannot fold a signed setcc with an unsigned setcc.
231    return ISD::SETCC_INVALID;
232
233  // Combine all of the condition bits.
234  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
235
236  // Canonicalize illegal integer setcc's.
237  if (isInteger) {
238    switch (Result) {
239    default: break;
240    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
241    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
242    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
243    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
244    }
245  }
246
247  return Result;
248}
249
250const TargetMachine &SelectionDAG::getTarget() const {
251  return TLI.getTargetMachine();
252}
253
254//===----------------------------------------------------------------------===//
255//                              SelectionDAG Class
256//===----------------------------------------------------------------------===//
257
258/// RemoveDeadNodes - This method deletes all unreachable nodes in the
259/// SelectionDAG.
260void SelectionDAG::RemoveDeadNodes() {
261  // Create a dummy node (which is not added to allnodes), that adds a reference
262  // to the root node, preventing it from being deleted.
263  HandleSDNode Dummy(getRoot());
264
265  SmallVector<SDNode*, 128> DeadNodes;
266
267  // Add all obviously-dead nodes to the DeadNodes worklist.
268  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
269    if (I->use_empty())
270      DeadNodes.push_back(I);
271
272  // Process the worklist, deleting the nodes and adding their uses to the
273  // worklist.
274  while (!DeadNodes.empty()) {
275    SDNode *N = DeadNodes.back();
276    DeadNodes.pop_back();
277
278    // Take the node out of the appropriate CSE map.
279    RemoveNodeFromCSEMaps(N);
280
281    // Next, brutally remove the operand list.  This is safe to do, as there are
282    // no cycles in the graph.
283    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
284      SDNode *Operand = I->Val;
285      Operand->removeUser(N);
286
287      // Now that we removed this operand, see if there are no uses of it left.
288      if (Operand->use_empty())
289        DeadNodes.push_back(Operand);
290    }
291    delete[] N->OperandList;
292    N->OperandList = 0;
293    N->NumOperands = 0;
294
295    // Finally, remove N itself.
296    AllNodes.erase(N);
297  }
298
299  // If the root changed (e.g. it was a dead load, update the root).
300  setRoot(Dummy.getValue());
301}
302
303void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
304  SmallVector<SDNode*, 16> DeadNodes;
305  DeadNodes.push_back(N);
306
307  // Process the worklist, deleting the nodes and adding their uses to the
308  // worklist.
309  while (!DeadNodes.empty()) {
310    SDNode *N = DeadNodes.back();
311    DeadNodes.pop_back();
312
313    // Take the node out of the appropriate CSE map.
314    RemoveNodeFromCSEMaps(N);
315
316    // Next, brutally remove the operand list.  This is safe to do, as there are
317    // no cycles in the graph.
318    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
319      SDNode *Operand = I->Val;
320      Operand->removeUser(N);
321
322      // Now that we removed this operand, see if there are no uses of it left.
323      if (Operand->use_empty())
324        DeadNodes.push_back(Operand);
325    }
326    delete[] N->OperandList;
327    N->OperandList = 0;
328    N->NumOperands = 0;
329
330    // Finally, remove N itself.
331    Deleted.push_back(N);
332    AllNodes.erase(N);
333  }
334}
335
336void SelectionDAG::DeleteNode(SDNode *N) {
337  assert(N->use_empty() && "Cannot delete a node that is not dead!");
338
339  // First take this out of the appropriate CSE map.
340  RemoveNodeFromCSEMaps(N);
341
342  // Finally, remove uses due to operands of this node, remove from the
343  // AllNodes list, and delete the node.
344  DeleteNodeNotInCSEMaps(N);
345}
346
347void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
348
349  // Remove it from the AllNodes list.
350  AllNodes.remove(N);
351
352  // Drop all of the operands and decrement used nodes use counts.
353  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
354    I->Val->removeUser(N);
355  delete[] N->OperandList;
356  N->OperandList = 0;
357  N->NumOperands = 0;
358
359  delete N;
360}
361
362/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
363/// correspond to it.  This is useful when we're about to delete or repurpose
364/// the node.  We don't want future request for structurally identical nodes
365/// to return N anymore.
366void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
367  bool Erased = false;
368  switch (N->getOpcode()) {
369  case ISD::HANDLENODE: return;  // noop.
370  case ISD::STRING:
371    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
372    break;
373  case ISD::CONDCODE:
374    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
375           "Cond code doesn't exist!");
376    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
377    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
378    break;
379  case ISD::ExternalSymbol:
380    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
381    break;
382  case ISD::TargetExternalSymbol:
383    Erased =
384      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
385    break;
386  case ISD::VALUETYPE:
387    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
388    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
389    break;
390  default:
391    // Remove it from the CSE Map.
392    Erased = CSEMap.RemoveNode(N);
393    break;
394  }
395#ifndef NDEBUG
396  // Verify that the node was actually in one of the CSE maps, unless it has a
397  // flag result (which cannot be CSE'd) or is one of the special cases that are
398  // not subject to CSE.
399  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
400      !N->isTargetOpcode()) {
401    N->dump();
402    std::cerr << "\n";
403    assert(0 && "Node is not in map!");
404  }
405#endif
406}
407
408/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
409/// has been taken out and modified in some way.  If the specified node already
410/// exists in the CSE maps, do not modify the maps, but return the existing node
411/// instead.  If it doesn't exist, add it and return null.
412///
413SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
414  assert(N->getNumOperands() && "This is a leaf node!");
415  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
416    return 0;    // Never add these nodes.
417
418  // Check that remaining values produced are not flags.
419  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
420    if (N->getValueType(i) == MVT::Flag)
421      return 0;   // Never CSE anything that produces a flag.
422
423  SDNode *New = CSEMap.GetOrInsertNode(N);
424  if (New != N) return New;  // Node already existed.
425  return 0;
426}
427
428/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
429/// were replaced with those specified.  If this node is never memoized,
430/// return null, otherwise return a pointer to the slot it would take.  If a
431/// node already exists with these operands, the slot will be non-null.
432SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
433                                           void *&InsertPos) {
434  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
435    return 0;    // Never add these nodes.
436
437  // Check that remaining values produced are not flags.
438  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
439    if (N->getValueType(i) == MVT::Flag)
440      return 0;   // Never CSE anything that produces a flag.
441
442  SelectionDAGCSEMap::NodeID ID;
443  ID.SetOpcode(N->getOpcode());
444  ID.SetValueTypes(N->getVTList());
445  ID.SetOperands(Op);
446  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
447}
448
449/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
450/// were replaced with those specified.  If this node is never memoized,
451/// return null, otherwise return a pointer to the slot it would take.  If a
452/// node already exists with these operands, the slot will be non-null.
453SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
454                                           SDOperand Op1, SDOperand Op2,
455                                           void *&InsertPos) {
456  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
457    return 0;    // Never add these nodes.
458
459  // Check that remaining values produced are not flags.
460  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
461    if (N->getValueType(i) == MVT::Flag)
462      return 0;   // Never CSE anything that produces a flag.
463
464  SelectionDAGCSEMap::NodeID ID;
465  ID.SetOpcode(N->getOpcode());
466  ID.SetValueTypes(N->getVTList());
467  ID.SetOperands(Op1, Op2);
468  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
469}
470
471
472/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
473/// were replaced with those specified.  If this node is never memoized,
474/// return null, otherwise return a pointer to the slot it would take.  If a
475/// node already exists with these operands, the slot will be non-null.
476SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
477                                           const SDOperand *Ops,unsigned NumOps,
478                                           void *&InsertPos) {
479  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
480    return 0;    // Never add these nodes.
481
482  // Check that remaining values produced are not flags.
483  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
484    if (N->getValueType(i) == MVT::Flag)
485      return 0;   // Never CSE anything that produces a flag.
486
487  SelectionDAGCSEMap::NodeID ID;
488  ID.SetOpcode(N->getOpcode());
489  ID.SetValueTypes(N->getVTList());
490  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
491    ID.AddInteger(LD->getAddressingMode());
492    ID.AddInteger(LD->getExtensionType());
493    ID.AddInteger(LD->getLoadedVT());
494    ID.AddPointer(LD->getSrcValue());
495    ID.AddInteger(LD->getSrcValueOffset());
496    ID.AddInteger(LD->getAlignment());
497    ID.AddInteger(LD->isVolatile());
498  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
499    ID.AddInteger(ST->getAddressingMode());
500    ID.AddInteger(ST->isTruncatingStore());
501    ID.AddInteger(ST->getStoredVT());
502    ID.AddPointer(ST->getSrcValue());
503    ID.AddInteger(ST->getSrcValueOffset());
504    ID.AddInteger(ST->getAlignment());
505    ID.AddInteger(ST->isVolatile());
506  }
507  ID.SetOperands(Ops, NumOps);
508  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
509}
510
511
512SelectionDAG::~SelectionDAG() {
513  while (!AllNodes.empty()) {
514    SDNode *N = AllNodes.begin();
515    N->SetNextInBucket(0);
516    delete [] N->OperandList;
517    N->OperandList = 0;
518    N->NumOperands = 0;
519    AllNodes.pop_front();
520  }
521}
522
523SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
524  if (Op.getValueType() == VT) return Op;
525  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
526  return getNode(ISD::AND, Op.getValueType(), Op,
527                 getConstant(Imm, Op.getValueType()));
528}
529
530SDOperand SelectionDAG::getString(const std::string &Val) {
531  StringSDNode *&N = StringNodes[Val];
532  if (!N) {
533    N = new StringSDNode(Val);
534    AllNodes.push_back(N);
535  }
536  return SDOperand(N, 0);
537}
538
539SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
540  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
541  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
542
543  // Mask out any bits that are not valid for this constant.
544  Val &= MVT::getIntVTBitMask(VT);
545
546  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
547  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
548  ID.AddInteger(Val);
549  void *IP = 0;
550  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
551    return SDOperand(E, 0);
552  SDNode *N = new ConstantSDNode(isT, Val, VT);
553  CSEMap.InsertNode(N, IP);
554  AllNodes.push_back(N);
555  return SDOperand(N, 0);
556}
557
558
559SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
560                                      bool isTarget) {
561  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
562  if (VT == MVT::f32)
563    Val = (float)Val;  // Mask out extra precision.
564
565  // Do the map lookup using the actual bit pattern for the floating point
566  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
567  // we don't have issues with SNANs.
568  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
569  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
570  ID.AddInteger(DoubleToBits(Val));
571  void *IP = 0;
572  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
573    return SDOperand(E, 0);
574  SDNode *N = new ConstantFPSDNode(isTarget, Val, VT);
575  CSEMap.InsertNode(N, IP);
576  AllNodes.push_back(N);
577  return SDOperand(N, 0);
578}
579
580SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
581                                         MVT::ValueType VT, int Offset,
582                                         bool isTargetGA) {
583  unsigned Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
584  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
585  ID.AddPointer(GV);
586  ID.AddInteger(Offset);
587  void *IP = 0;
588  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
589   return SDOperand(E, 0);
590  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
591  CSEMap.InsertNode(N, IP);
592  AllNodes.push_back(N);
593  return SDOperand(N, 0);
594}
595
596SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
597                                      bool isTarget) {
598  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
599  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
600  ID.AddInteger(FI);
601  void *IP = 0;
602  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
603    return SDOperand(E, 0);
604  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
605  CSEMap.InsertNode(N, IP);
606  AllNodes.push_back(N);
607  return SDOperand(N, 0);
608}
609
610SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
611  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
612  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
613  ID.AddInteger(JTI);
614  void *IP = 0;
615  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
616    return SDOperand(E, 0);
617  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
618  CSEMap.InsertNode(N, IP);
619  AllNodes.push_back(N);
620  return SDOperand(N, 0);
621}
622
623SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
624                                        unsigned Alignment, int Offset,
625                                        bool isTarget) {
626  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
627  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
628  ID.AddInteger(Alignment);
629  ID.AddInteger(Offset);
630  ID.AddPointer(C);
631  void *IP = 0;
632  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
633    return SDOperand(E, 0);
634  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
635  CSEMap.InsertNode(N, IP);
636  AllNodes.push_back(N);
637  return SDOperand(N, 0);
638}
639
640
641SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
642                                        MVT::ValueType VT,
643                                        unsigned Alignment, int Offset,
644                                        bool isTarget) {
645  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
646  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
647  ID.AddInteger(Alignment);
648  ID.AddInteger(Offset);
649  C->AddSelectionDAGCSEId(&ID);
650  void *IP = 0;
651  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
652    return SDOperand(E, 0);
653  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
654  CSEMap.InsertNode(N, IP);
655  AllNodes.push_back(N);
656  return SDOperand(N, 0);
657}
658
659
660SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
661  SelectionDAGCSEMap::NodeID ID(ISD::BasicBlock, getVTList(MVT::Other));
662  ID.AddPointer(MBB);
663  void *IP = 0;
664  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
665    return SDOperand(E, 0);
666  SDNode *N = new BasicBlockSDNode(MBB);
667  CSEMap.InsertNode(N, IP);
668  AllNodes.push_back(N);
669  return SDOperand(N, 0);
670}
671
672SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
673  if ((unsigned)VT >= ValueTypeNodes.size())
674    ValueTypeNodes.resize(VT+1);
675  if (ValueTypeNodes[VT] == 0) {
676    ValueTypeNodes[VT] = new VTSDNode(VT);
677    AllNodes.push_back(ValueTypeNodes[VT]);
678  }
679
680  return SDOperand(ValueTypeNodes[VT], 0);
681}
682
683SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
684  SDNode *&N = ExternalSymbols[Sym];
685  if (N) return SDOperand(N, 0);
686  N = new ExternalSymbolSDNode(false, Sym, VT);
687  AllNodes.push_back(N);
688  return SDOperand(N, 0);
689}
690
691SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
692                                                MVT::ValueType VT) {
693  SDNode *&N = TargetExternalSymbols[Sym];
694  if (N) return SDOperand(N, 0);
695  N = new ExternalSymbolSDNode(true, Sym, VT);
696  AllNodes.push_back(N);
697  return SDOperand(N, 0);
698}
699
700SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
701  if ((unsigned)Cond >= CondCodeNodes.size())
702    CondCodeNodes.resize(Cond+1);
703
704  if (CondCodeNodes[Cond] == 0) {
705    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
706    AllNodes.push_back(CondCodeNodes[Cond]);
707  }
708  return SDOperand(CondCodeNodes[Cond], 0);
709}
710
711SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
712  SelectionDAGCSEMap::NodeID ID(ISD::Register, getVTList(VT));
713  ID.AddInteger(RegNo);
714  void *IP = 0;
715  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
716    return SDOperand(E, 0);
717  SDNode *N = new RegisterSDNode(RegNo, VT);
718  CSEMap.InsertNode(N, IP);
719  AllNodes.push_back(N);
720  return SDOperand(N, 0);
721}
722
723SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
724  assert((!V || isa<PointerType>(V->getType())) &&
725         "SrcValue is not a pointer?");
726
727  SelectionDAGCSEMap::NodeID ID(ISD::SRCVALUE, getVTList(MVT::Other));
728  ID.AddPointer(V);
729  ID.AddInteger(Offset);
730  void *IP = 0;
731  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
732    return SDOperand(E, 0);
733  SDNode *N = new SrcValueSDNode(V, Offset);
734  CSEMap.InsertNode(N, IP);
735  AllNodes.push_back(N);
736  return SDOperand(N, 0);
737}
738
739SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
740                                  SDOperand N2, ISD::CondCode Cond) {
741  // These setcc operations always fold.
742  switch (Cond) {
743  default: break;
744  case ISD::SETFALSE:
745  case ISD::SETFALSE2: return getConstant(0, VT);
746  case ISD::SETTRUE:
747  case ISD::SETTRUE2:  return getConstant(1, VT);
748
749  case ISD::SETOEQ:
750  case ISD::SETOGT:
751  case ISD::SETOGE:
752  case ISD::SETOLT:
753  case ISD::SETOLE:
754  case ISD::SETONE:
755  case ISD::SETO:
756  case ISD::SETUO:
757  case ISD::SETUEQ:
758  case ISD::SETUNE:
759    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
760    break;
761  }
762
763  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
764    uint64_t C2 = N2C->getValue();
765    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
766      uint64_t C1 = N1C->getValue();
767
768      // Sign extend the operands if required
769      if (ISD::isSignedIntSetCC(Cond)) {
770        C1 = N1C->getSignExtended();
771        C2 = N2C->getSignExtended();
772      }
773
774      switch (Cond) {
775      default: assert(0 && "Unknown integer setcc!");
776      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
777      case ISD::SETNE:  return getConstant(C1 != C2, VT);
778      case ISD::SETULT: return getConstant(C1 <  C2, VT);
779      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
780      case ISD::SETULE: return getConstant(C1 <= C2, VT);
781      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
782      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
783      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
784      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
785      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
786      }
787    }
788  }
789  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
790    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
791      double C1 = N1C->getValue(), C2 = N2C->getValue();
792
793      switch (Cond) {
794      default: break; // FIXME: Implement the rest of these!
795      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
796      case ISD::SETNE:  return getConstant(C1 != C2, VT);
797      case ISD::SETLT:  return getConstant(C1 < C2, VT);
798      case ISD::SETGT:  return getConstant(C1 > C2, VT);
799      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
800      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
801      }
802    } else {
803      // Ensure that the constant occurs on the RHS.
804      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
805    }
806
807  // Could not fold it.
808  return SDOperand();
809}
810
811
812/// getNode - Gets or creates the specified node.
813///
814SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
815  SelectionDAGCSEMap::NodeID ID(Opcode, getVTList(VT));
816  void *IP = 0;
817  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
818    return SDOperand(E, 0);
819  SDNode *N = new SDNode(Opcode, VT);
820  CSEMap.InsertNode(N, IP);
821
822  AllNodes.push_back(N);
823  return SDOperand(N, 0);
824}
825
826SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
827                                SDOperand Operand) {
828  unsigned Tmp1;
829  // Constant fold unary operations with an integer constant operand.
830  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
831    uint64_t Val = C->getValue();
832    switch (Opcode) {
833    default: break;
834    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
835    case ISD::ANY_EXTEND:
836    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
837    case ISD::TRUNCATE:    return getConstant(Val, VT);
838    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
839    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
840    case ISD::BIT_CONVERT:
841      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
842        return getConstantFP(BitsToFloat(Val), VT);
843      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
844        return getConstantFP(BitsToDouble(Val), VT);
845      break;
846    case ISD::BSWAP:
847      switch(VT) {
848      default: assert(0 && "Invalid bswap!"); break;
849      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
850      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
851      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
852      }
853      break;
854    case ISD::CTPOP:
855      switch(VT) {
856      default: assert(0 && "Invalid ctpop!"); break;
857      case MVT::i1: return getConstant(Val != 0, VT);
858      case MVT::i8:
859        Tmp1 = (unsigned)Val & 0xFF;
860        return getConstant(CountPopulation_32(Tmp1), VT);
861      case MVT::i16:
862        Tmp1 = (unsigned)Val & 0xFFFF;
863        return getConstant(CountPopulation_32(Tmp1), VT);
864      case MVT::i32:
865        return getConstant(CountPopulation_32((unsigned)Val), VT);
866      case MVT::i64:
867        return getConstant(CountPopulation_64(Val), VT);
868      }
869    case ISD::CTLZ:
870      switch(VT) {
871      default: assert(0 && "Invalid ctlz!"); break;
872      case MVT::i1: return getConstant(Val == 0, VT);
873      case MVT::i8:
874        Tmp1 = (unsigned)Val & 0xFF;
875        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
876      case MVT::i16:
877        Tmp1 = (unsigned)Val & 0xFFFF;
878        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
879      case MVT::i32:
880        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
881      case MVT::i64:
882        return getConstant(CountLeadingZeros_64(Val), VT);
883      }
884    case ISD::CTTZ:
885      switch(VT) {
886      default: assert(0 && "Invalid cttz!"); break;
887      case MVT::i1: return getConstant(Val == 0, VT);
888      case MVT::i8:
889        Tmp1 = (unsigned)Val | 0x100;
890        return getConstant(CountTrailingZeros_32(Tmp1), VT);
891      case MVT::i16:
892        Tmp1 = (unsigned)Val | 0x10000;
893        return getConstant(CountTrailingZeros_32(Tmp1), VT);
894      case MVT::i32:
895        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
896      case MVT::i64:
897        return getConstant(CountTrailingZeros_64(Val), VT);
898      }
899    }
900  }
901
902  // Constant fold unary operations with an floating point constant operand.
903  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
904    switch (Opcode) {
905    case ISD::FNEG:
906      return getConstantFP(-C->getValue(), VT);
907    case ISD::FABS:
908      return getConstantFP(fabs(C->getValue()), VT);
909    case ISD::FP_ROUND:
910    case ISD::FP_EXTEND:
911      return getConstantFP(C->getValue(), VT);
912    case ISD::FP_TO_SINT:
913      return getConstant((int64_t)C->getValue(), VT);
914    case ISD::FP_TO_UINT:
915      return getConstant((uint64_t)C->getValue(), VT);
916    case ISD::BIT_CONVERT:
917      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
918        return getConstant(FloatToBits(C->getValue()), VT);
919      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
920        return getConstant(DoubleToBits(C->getValue()), VT);
921      break;
922    }
923
924  unsigned OpOpcode = Operand.Val->getOpcode();
925  switch (Opcode) {
926  case ISD::TokenFactor:
927    return Operand;         // Factor of one node?  No factor.
928  case ISD::SIGN_EXTEND:
929    if (Operand.getValueType() == VT) return Operand;   // noop extension
930    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
931    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
932      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
933    break;
934  case ISD::ZERO_EXTEND:
935    if (Operand.getValueType() == VT) return Operand;   // noop extension
936    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
937    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
938      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
939    break;
940  case ISD::ANY_EXTEND:
941    if (Operand.getValueType() == VT) return Operand;   // noop extension
942    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
943    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
944      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
945      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
946    break;
947  case ISD::TRUNCATE:
948    if (Operand.getValueType() == VT) return Operand;   // noop truncate
949    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
950    if (OpOpcode == ISD::TRUNCATE)
951      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
952    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
953             OpOpcode == ISD::ANY_EXTEND) {
954      // If the source is smaller than the dest, we still need an extend.
955      if (Operand.Val->getOperand(0).getValueType() < VT)
956        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
957      else if (Operand.Val->getOperand(0).getValueType() > VT)
958        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
959      else
960        return Operand.Val->getOperand(0);
961    }
962    break;
963  case ISD::BIT_CONVERT:
964    // Basic sanity checking.
965    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
966           && "Cannot BIT_CONVERT between two different types!");
967    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
968    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
969      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
970    if (OpOpcode == ISD::UNDEF)
971      return getNode(ISD::UNDEF, VT);
972    break;
973  case ISD::SCALAR_TO_VECTOR:
974    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
975           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
976           "Illegal SCALAR_TO_VECTOR node!");
977    break;
978  case ISD::FNEG:
979    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
980      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
981                     Operand.Val->getOperand(0));
982    if (OpOpcode == ISD::FNEG)  // --X -> X
983      return Operand.Val->getOperand(0);
984    break;
985  case ISD::FABS:
986    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
987      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
988    break;
989  }
990
991  SDNode *N;
992  SDVTList VTs = getVTList(VT);
993  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
994    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Operand);
995    void *IP = 0;
996    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
997      return SDOperand(E, 0);
998    N = new SDNode(Opcode, Operand);
999    N->setValueTypes(VTs);
1000    CSEMap.InsertNode(N, IP);
1001  } else {
1002    N = new SDNode(Opcode, Operand);
1003    N->setValueTypes(VTs);
1004  }
1005  AllNodes.push_back(N);
1006  return SDOperand(N, 0);
1007}
1008
1009
1010
1011SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1012                                SDOperand N1, SDOperand N2) {
1013#ifndef NDEBUG
1014  switch (Opcode) {
1015  case ISD::TokenFactor:
1016    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1017           N2.getValueType() == MVT::Other && "Invalid token factor!");
1018    break;
1019  case ISD::AND:
1020  case ISD::OR:
1021  case ISD::XOR:
1022  case ISD::UDIV:
1023  case ISD::UREM:
1024  case ISD::MULHU:
1025  case ISD::MULHS:
1026    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1027    // fall through
1028  case ISD::ADD:
1029  case ISD::SUB:
1030  case ISD::MUL:
1031  case ISD::SDIV:
1032  case ISD::SREM:
1033    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1034    // fall through.
1035  case ISD::FADD:
1036  case ISD::FSUB:
1037  case ISD::FMUL:
1038  case ISD::FDIV:
1039  case ISD::FREM:
1040    assert(N1.getValueType() == N2.getValueType() &&
1041           N1.getValueType() == VT && "Binary operator types must match!");
1042    break;
1043  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1044    assert(N1.getValueType() == VT &&
1045           MVT::isFloatingPoint(N1.getValueType()) &&
1046           MVT::isFloatingPoint(N2.getValueType()) &&
1047           "Invalid FCOPYSIGN!");
1048    break;
1049  case ISD::SHL:
1050  case ISD::SRA:
1051  case ISD::SRL:
1052  case ISD::ROTL:
1053  case ISD::ROTR:
1054    assert(VT == N1.getValueType() &&
1055           "Shift operators return type must be the same as their first arg");
1056    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1057           VT != MVT::i1 && "Shifts only work on integers");
1058    break;
1059  case ISD::FP_ROUND_INREG: {
1060    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1061    assert(VT == N1.getValueType() && "Not an inreg round!");
1062    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1063           "Cannot FP_ROUND_INREG integer types");
1064    assert(EVT <= VT && "Not rounding down!");
1065    break;
1066  }
1067  case ISD::AssertSext:
1068  case ISD::AssertZext:
1069  case ISD::SIGN_EXTEND_INREG: {
1070    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1071    assert(VT == N1.getValueType() && "Not an inreg extend!");
1072    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1073           "Cannot *_EXTEND_INREG FP types");
1074    assert(EVT <= VT && "Not extending!");
1075  }
1076
1077  default: break;
1078  }
1079#endif
1080
1081  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1082  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1083  if (N1C) {
1084    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1085      int64_t Val = N1C->getValue();
1086      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1087      Val <<= 64-FromBits;
1088      Val >>= 64-FromBits;
1089      return getConstant(Val, VT);
1090    }
1091
1092    if (N2C) {
1093      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1094      switch (Opcode) {
1095      case ISD::ADD: return getConstant(C1 + C2, VT);
1096      case ISD::SUB: return getConstant(C1 - C2, VT);
1097      case ISD::MUL: return getConstant(C1 * C2, VT);
1098      case ISD::UDIV:
1099        if (C2) return getConstant(C1 / C2, VT);
1100        break;
1101      case ISD::UREM :
1102        if (C2) return getConstant(C1 % C2, VT);
1103        break;
1104      case ISD::SDIV :
1105        if (C2) return getConstant(N1C->getSignExtended() /
1106                                   N2C->getSignExtended(), VT);
1107        break;
1108      case ISD::SREM :
1109        if (C2) return getConstant(N1C->getSignExtended() %
1110                                   N2C->getSignExtended(), VT);
1111        break;
1112      case ISD::AND  : return getConstant(C1 & C2, VT);
1113      case ISD::OR   : return getConstant(C1 | C2, VT);
1114      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1115      case ISD::SHL  : return getConstant(C1 << C2, VT);
1116      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1117      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1118      case ISD::ROTL :
1119        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1120                           VT);
1121      case ISD::ROTR :
1122        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1123                           VT);
1124      default: break;
1125      }
1126    } else {      // Cannonicalize constant to RHS if commutative
1127      if (isCommutativeBinOp(Opcode)) {
1128        std::swap(N1C, N2C);
1129        std::swap(N1, N2);
1130      }
1131    }
1132  }
1133
1134  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1135  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1136  if (N1CFP) {
1137    if (N2CFP) {
1138      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1139      switch (Opcode) {
1140      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1141      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1142      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1143      case ISD::FDIV:
1144        if (C2) return getConstantFP(C1 / C2, VT);
1145        break;
1146      case ISD::FREM :
1147        if (C2) return getConstantFP(fmod(C1, C2), VT);
1148        break;
1149      case ISD::FCOPYSIGN: {
1150        union {
1151          double   F;
1152          uint64_t I;
1153        } u1;
1154        union {
1155          double  F;
1156          int64_t I;
1157        } u2;
1158        u1.F = C1;
1159        u2.F = C2;
1160        if (u2.I < 0)  // Sign bit of RHS set?
1161          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1162        else
1163          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1164        return getConstantFP(u1.F, VT);
1165      }
1166      default: break;
1167      }
1168    } else {      // Cannonicalize constant to RHS if commutative
1169      if (isCommutativeBinOp(Opcode)) {
1170        std::swap(N1CFP, N2CFP);
1171        std::swap(N1, N2);
1172      }
1173    }
1174  }
1175
1176  // Canonicalize an UNDEF to the RHS, even over a constant.
1177  if (N1.getOpcode() == ISD::UNDEF) {
1178    if (isCommutativeBinOp(Opcode)) {
1179      std::swap(N1, N2);
1180    } else {
1181      switch (Opcode) {
1182      case ISD::FP_ROUND_INREG:
1183      case ISD::SIGN_EXTEND_INREG:
1184      case ISD::SUB:
1185      case ISD::FSUB:
1186      case ISD::FDIV:
1187      case ISD::FREM:
1188      case ISD::SRA:
1189        return N1;     // fold op(undef, arg2) -> undef
1190      case ISD::UDIV:
1191      case ISD::SDIV:
1192      case ISD::UREM:
1193      case ISD::SREM:
1194      case ISD::SRL:
1195      case ISD::SHL:
1196        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1197      }
1198    }
1199  }
1200
1201  // Fold a bunch of operators when the RHS is undef.
1202  if (N2.getOpcode() == ISD::UNDEF) {
1203    switch (Opcode) {
1204    case ISD::ADD:
1205    case ISD::SUB:
1206    case ISD::FADD:
1207    case ISD::FSUB:
1208    case ISD::FMUL:
1209    case ISD::FDIV:
1210    case ISD::FREM:
1211    case ISD::UDIV:
1212    case ISD::SDIV:
1213    case ISD::UREM:
1214    case ISD::SREM:
1215    case ISD::XOR:
1216      return N2;       // fold op(arg1, undef) -> undef
1217    case ISD::MUL:
1218    case ISD::AND:
1219    case ISD::SRL:
1220    case ISD::SHL:
1221      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1222    case ISD::OR:
1223      return getConstant(MVT::getIntVTBitMask(VT), VT);
1224    case ISD::SRA:
1225      return N1;
1226    }
1227  }
1228
1229  // Fold operations.
1230  switch (Opcode) {
1231  case ISD::AND:
1232    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1233    // worth handling here.
1234    if (N2C && N2C->getValue() == 0)
1235      return N2;
1236    break;
1237  case ISD::FP_ROUND_INREG:
1238    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1239    break;
1240  case ISD::SIGN_EXTEND_INREG: {
1241    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1242    if (EVT == VT) return N1;  // Not actually extending
1243    break;
1244  }
1245  case ISD::EXTRACT_ELEMENT:
1246    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1247
1248    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
1249    // 64-bit integers into 32-bit parts.  Instead of building the extract of
1250    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
1251    if (N1.getOpcode() == ISD::BUILD_PAIR)
1252      return N1.getOperand(N2C->getValue());
1253
1254    // EXTRACT_ELEMENT of a constant int is also very common.
1255    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
1256      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
1257      return getConstant(C->getValue() >> Shift, VT);
1258    }
1259    break;
1260
1261  // FIXME: figure out how to safely handle things like
1262  // int foo(int x) { return 1 << (x & 255); }
1263  // int bar() { return foo(256); }
1264#if 0
1265  case ISD::SHL:
1266  case ISD::SRL:
1267  case ISD::SRA:
1268    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1269        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1270      return getNode(Opcode, VT, N1, N2.getOperand(0));
1271    else if (N2.getOpcode() == ISD::AND)
1272      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1273        // If the and is only masking out bits that cannot effect the shift,
1274        // eliminate the and.
1275        unsigned NumBits = MVT::getSizeInBits(VT);
1276        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1277          return getNode(Opcode, VT, N1, N2.getOperand(0));
1278      }
1279    break;
1280#endif
1281  }
1282
1283  // Memoize this node if possible.
1284  SDNode *N;
1285  SDVTList VTs = getVTList(VT);
1286  if (VT != MVT::Flag) {
1287    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2);
1288    void *IP = 0;
1289    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1290      return SDOperand(E, 0);
1291    N = new SDNode(Opcode, N1, N2);
1292    N->setValueTypes(VTs);
1293    CSEMap.InsertNode(N, IP);
1294  } else {
1295    N = new SDNode(Opcode, N1, N2);
1296    N->setValueTypes(VTs);
1297  }
1298
1299  AllNodes.push_back(N);
1300  return SDOperand(N, 0);
1301}
1302
1303SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1304                                SDOperand N1, SDOperand N2, SDOperand N3) {
1305  // Perform various simplifications.
1306  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1307  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1308  //ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1309  switch (Opcode) {
1310  case ISD::SETCC: {
1311    // Use FoldSetCC to simplify SETCC's.
1312    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1313    if (Simp.Val) return Simp;
1314    break;
1315  }
1316  case ISD::SELECT:
1317    if (N1C)
1318      if (N1C->getValue())
1319        return N2;             // select true, X, Y -> X
1320      else
1321        return N3;             // select false, X, Y -> Y
1322
1323    if (N2 == N3) return N2;   // select C, X, X -> X
1324    break;
1325  case ISD::BRCOND:
1326    if (N2C)
1327      if (N2C->getValue()) // Unconditional branch
1328        return getNode(ISD::BR, MVT::Other, N1, N3);
1329      else
1330        return N1;         // Never-taken branch
1331    break;
1332  case ISD::VECTOR_SHUFFLE:
1333    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1334           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1335           N3.getOpcode() == ISD::BUILD_VECTOR &&
1336           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1337           "Illegal VECTOR_SHUFFLE node!");
1338    break;
1339  }
1340
1341  // Memoize node if it doesn't produce a flag.
1342  SDNode *N;
1343  SDVTList VTs = getVTList(VT);
1344  if (VT != MVT::Flag) {
1345    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2, N3);
1346    void *IP = 0;
1347    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1348      return SDOperand(E, 0);
1349    N = new SDNode(Opcode, N1, N2, N3);
1350    N->setValueTypes(VTs);
1351    CSEMap.InsertNode(N, IP);
1352  } else {
1353    N = new SDNode(Opcode, N1, N2, N3);
1354    N->setValueTypes(VTs);
1355  }
1356  AllNodes.push_back(N);
1357  return SDOperand(N, 0);
1358}
1359
1360SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1361                                SDOperand N1, SDOperand N2, SDOperand N3,
1362                                SDOperand N4) {
1363  SDOperand Ops[] = { N1, N2, N3, N4 };
1364  return getNode(Opcode, VT, Ops, 4);
1365}
1366
1367SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1368                                SDOperand N1, SDOperand N2, SDOperand N3,
1369                                SDOperand N4, SDOperand N5) {
1370  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1371  return getNode(Opcode, VT, Ops, 5);
1372}
1373
1374SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1375                                SDOperand Chain, SDOperand Ptr,
1376                                const Value *SV, int SVOffset,
1377                                bool isVolatile) {
1378  // FIXME: Alignment == 1 for now.
1379  unsigned Alignment = 1;
1380  SDVTList VTs = getVTList(VT, MVT::Other);
1381  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1382  SelectionDAGCSEMap::NodeID ID(ISD::LOAD, VTs, Chain, Ptr, Undef);
1383  ID.AddInteger(ISD::UNINDEXED);
1384  ID.AddInteger(ISD::NON_EXTLOAD);
1385  ID.AddInteger(VT);
1386  ID.AddPointer(SV);
1387  ID.AddInteger(SVOffset);
1388  ID.AddInteger(Alignment);
1389  ID.AddInteger(isVolatile);
1390  void *IP = 0;
1391  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1392    return SDOperand(E, 0);
1393  SDNode *N = new LoadSDNode(Chain, Ptr, Undef, ISD::UNINDEXED,
1394                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
1395                             isVolatile);
1396  N->setValueTypes(VTs);
1397  CSEMap.InsertNode(N, IP);
1398  AllNodes.push_back(N);
1399  return SDOperand(N, 0);
1400}
1401
1402SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
1403                                   SDOperand Chain, SDOperand Ptr, const Value *SV,
1404                                   int SVOffset, MVT::ValueType EVT,
1405                                   bool isVolatile) {
1406  // If they are asking for an extending load from/to the same thing, return a
1407  // normal load.
1408  if (VT == EVT)
1409    ExtType = ISD::NON_EXTLOAD;
1410
1411  if (MVT::isVector(VT))
1412    assert(EVT == MVT::getVectorBaseType(VT) && "Invalid vector extload!");
1413  else
1414    assert(EVT < VT && "Should only be an extending load, not truncating!");
1415  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
1416         "Cannot sign/zero extend a FP/Vector load!");
1417  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
1418         "Cannot convert from FP to Int or Int -> FP!");
1419
1420  // FIXME: Alignment == 1 for now.
1421  unsigned Alignment = 1;
1422  SDVTList VTs = getVTList(VT, MVT::Other);
1423  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1424  SelectionDAGCSEMap::NodeID ID(ISD::LOAD, VTs, Chain, Ptr, Undef);
1425  ID.AddInteger(ISD::UNINDEXED);
1426  ID.AddInteger(ExtType);
1427  ID.AddInteger(EVT);
1428  ID.AddPointer(SV);
1429  ID.AddInteger(SVOffset);
1430  ID.AddInteger(Alignment);
1431  ID.AddInteger(isVolatile);
1432  void *IP = 0;
1433  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1434    return SDOperand(E, 0);
1435  SDNode *N = new LoadSDNode(Chain, Ptr, Undef, ISD::UNINDEXED, ExtType, EVT,
1436                             SV, SVOffset, Alignment, isVolatile);
1437  N->setValueTypes(VTs);
1438  CSEMap.InsertNode(N, IP);
1439  AllNodes.push_back(N);
1440  return SDOperand(N, 0);
1441}
1442
1443SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1444                                   SDOperand Chain, SDOperand Ptr,
1445                                   SDOperand SV) {
1446  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1447                      getValueType(EVT) };
1448  return getNode(ISD::VLOAD, getVTList(MVT::Vector, MVT::Other), Ops, 5);
1449}
1450
1451SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Value,
1452                                 SDOperand Ptr, const Value *SV, int SVOffset,
1453                                 bool isVolatile) {
1454  MVT::ValueType VT = Value.getValueType();
1455
1456  // FIXME: Alignment == 1 for now.
1457  unsigned Alignment = 1;
1458  SDVTList VTs = getVTList(MVT::Other);
1459  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1460  SDOperand Ops[] = { Chain, Value, Ptr, Undef };
1461  SelectionDAGCSEMap::NodeID ID(ISD::STORE, VTs, Ops, 4);
1462  ID.AddInteger(ISD::UNINDEXED);
1463  ID.AddInteger(false);
1464  ID.AddInteger(VT);
1465  ID.AddPointer(SV);
1466  ID.AddInteger(SVOffset);
1467  ID.AddInteger(Alignment);
1468  ID.AddInteger(isVolatile);
1469  void *IP = 0;
1470  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1471    return SDOperand(E, 0);
1472  SDNode *N = new StoreSDNode(Chain, Value, Ptr, Undef, ISD::UNINDEXED, false,
1473                              VT, SV, SVOffset, Alignment, isVolatile);
1474  N->setValueTypes(VTs);
1475  CSEMap.InsertNode(N, IP);
1476  AllNodes.push_back(N);
1477  return SDOperand(N, 0);
1478}
1479
1480SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Value,
1481                                      SDOperand Ptr, const Value *SV,
1482                                      int SVOffset, MVT::ValueType SVT,
1483                                      bool isVolatile) {
1484  MVT::ValueType VT = Value.getValueType();
1485  bool isTrunc = VT != SVT;
1486
1487  assert(VT > SVT && "Not a truncation?");
1488  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
1489         "Can't do FP-INT conversion!");
1490
1491  // FIXME: Alignment == 1 for now.
1492  unsigned Alignment = 1;
1493  SDVTList VTs = getVTList(MVT::Other);
1494  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1495  SDOperand Ops[] = { Chain, Value, Ptr, Undef };
1496  SelectionDAGCSEMap::NodeID ID(ISD::STORE, VTs, Ops, 4);
1497  ID.AddInteger(ISD::UNINDEXED);
1498  ID.AddInteger(isTrunc);
1499  ID.AddInteger(SVT);
1500  ID.AddPointer(SV);
1501  ID.AddInteger(SVOffset);
1502  ID.AddInteger(Alignment);
1503  ID.AddInteger(isVolatile);
1504  void *IP = 0;
1505  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1506    return SDOperand(E, 0);
1507  SDNode *N = new StoreSDNode(Chain, Value, Ptr, Undef, ISD::UNINDEXED, isTrunc,
1508                              SVT, SV, SVOffset, Alignment, isVolatile);
1509  N->setValueTypes(VTs);
1510  CSEMap.InsertNode(N, IP);
1511  AllNodes.push_back(N);
1512  return SDOperand(N, 0);
1513}
1514
1515SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1516                                 SDOperand Chain, SDOperand Ptr,
1517                                 SDOperand SV) {
1518  SDOperand Ops[] = { Chain, Ptr, SV };
1519  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
1520}
1521
1522SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1523                                const SDOperand *Ops, unsigned NumOps) {
1524  switch (NumOps) {
1525  case 0: return getNode(Opcode, VT);
1526  case 1: return getNode(Opcode, VT, Ops[0]);
1527  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1528  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1529  default: break;
1530  }
1531
1532  switch (Opcode) {
1533  default: break;
1534  case ISD::SELECT_CC: {
1535    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1536    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1537           "LHS and RHS of condition must have same type!");
1538    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1539           "True and False arms of SelectCC must have same type!");
1540    assert(Ops[2].getValueType() == VT &&
1541           "select_cc node must be of same type as true and false value!");
1542    break;
1543  }
1544  case ISD::BR_CC: {
1545    assert(NumOps == 5 && "BR_CC takes 5 operands!");
1546    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1547           "LHS/RHS of comparison should match types!");
1548    break;
1549  }
1550  }
1551
1552  // Memoize nodes.
1553  SDNode *N;
1554  SDVTList VTs = getVTList(VT);
1555  if (VT != MVT::Flag) {
1556    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Ops, NumOps);
1557    void *IP = 0;
1558    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1559      return SDOperand(E, 0);
1560    N = new SDNode(Opcode, Ops, NumOps);
1561    N->setValueTypes(VTs);
1562    CSEMap.InsertNode(N, IP);
1563  } else {
1564    N = new SDNode(Opcode, Ops, NumOps);
1565    N->setValueTypes(VTs);
1566  }
1567  AllNodes.push_back(N);
1568  return SDOperand(N, 0);
1569}
1570
1571SDOperand SelectionDAG::getNode(unsigned Opcode,
1572                                std::vector<MVT::ValueType> &ResultTys,
1573                                const SDOperand *Ops, unsigned NumOps) {
1574  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
1575                 Ops, NumOps);
1576}
1577
1578SDOperand SelectionDAG::getNode(unsigned Opcode,
1579                                const MVT::ValueType *VTs, unsigned NumVTs,
1580                                const SDOperand *Ops, unsigned NumOps) {
1581  if (NumVTs == 1)
1582    return getNode(Opcode, VTs[0], Ops, NumOps);
1583  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
1584}
1585
1586SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
1587                                const SDOperand *Ops, unsigned NumOps) {
1588  if (VTList.NumVTs == 1)
1589    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
1590
1591  switch (Opcode) {
1592  // FIXME: figure out how to safely handle things like
1593  // int foo(int x) { return 1 << (x & 255); }
1594  // int bar() { return foo(256); }
1595#if 0
1596  case ISD::SRA_PARTS:
1597  case ISD::SRL_PARTS:
1598  case ISD::SHL_PARTS:
1599    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1600        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1601      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1602    else if (N3.getOpcode() == ISD::AND)
1603      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1604        // If the and is only masking out bits that cannot effect the shift,
1605        // eliminate the and.
1606        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1607        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1608          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1609      }
1610    break;
1611#endif
1612  }
1613
1614  // Memoize the node unless it returns a flag.
1615  SDNode *N;
1616  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
1617    SelectionDAGCSEMap::NodeID ID;
1618    ID.SetOpcode(Opcode);
1619    ID.SetValueTypes(VTList);
1620    ID.SetOperands(&Ops[0], NumOps);
1621    void *IP = 0;
1622    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1623      return SDOperand(E, 0);
1624    N = new SDNode(Opcode, Ops, NumOps);
1625    N->setValueTypes(VTList);
1626    CSEMap.InsertNode(N, IP);
1627  } else {
1628    N = new SDNode(Opcode, Ops, NumOps);
1629    N->setValueTypes(VTList);
1630  }
1631  AllNodes.push_back(N);
1632  return SDOperand(N, 0);
1633}
1634
1635SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
1636  return makeVTList(SDNode::getValueTypeList(VT), 1);
1637}
1638
1639SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
1640  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1641       E = VTList.end(); I != E; ++I) {
1642    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1643      return makeVTList(&(*I)[0], 2);
1644  }
1645  std::vector<MVT::ValueType> V;
1646  V.push_back(VT1);
1647  V.push_back(VT2);
1648  VTList.push_front(V);
1649  return makeVTList(&(*VTList.begin())[0], 2);
1650}
1651SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
1652                                 MVT::ValueType VT3) {
1653  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1654       E = VTList.end(); I != E; ++I) {
1655    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
1656        (*I)[2] == VT3)
1657      return makeVTList(&(*I)[0], 3);
1658  }
1659  std::vector<MVT::ValueType> V;
1660  V.push_back(VT1);
1661  V.push_back(VT2);
1662  V.push_back(VT3);
1663  VTList.push_front(V);
1664  return makeVTList(&(*VTList.begin())[0], 3);
1665}
1666
1667SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
1668  switch (NumVTs) {
1669    case 0: assert(0 && "Cannot have nodes without results!");
1670    case 1: return makeVTList(SDNode::getValueTypeList(VTs[0]), 1);
1671    case 2: return getVTList(VTs[0], VTs[1]);
1672    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
1673    default: break;
1674  }
1675
1676  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1677       E = VTList.end(); I != E; ++I) {
1678    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
1679
1680    bool NoMatch = false;
1681    for (unsigned i = 2; i != NumVTs; ++i)
1682      if (VTs[i] != (*I)[i]) {
1683        NoMatch = true;
1684        break;
1685      }
1686    if (!NoMatch)
1687      return makeVTList(&*I->begin(), NumVTs);
1688  }
1689
1690  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
1691  return makeVTList(&*VTList.begin()->begin(), NumVTs);
1692}
1693
1694
1695/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1696/// specified operands.  If the resultant node already exists in the DAG,
1697/// this does not modify the specified node, instead it returns the node that
1698/// already exists.  If the resultant node does not exist in the DAG, the
1699/// input node is returned.  As a degenerate case, if you specify the same
1700/// input operands as the node already has, the input node is returned.
1701SDOperand SelectionDAG::
1702UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1703  SDNode *N = InN.Val;
1704  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1705
1706  // Check to see if there is no change.
1707  if (Op == N->getOperand(0)) return InN;
1708
1709  // See if the modified node already exists.
1710  void *InsertPos = 0;
1711  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1712    return SDOperand(Existing, InN.ResNo);
1713
1714  // Nope it doesn't.  Remove the node from it's current place in the maps.
1715  if (InsertPos)
1716    RemoveNodeFromCSEMaps(N);
1717
1718  // Now we update the operands.
1719  N->OperandList[0].Val->removeUser(N);
1720  Op.Val->addUser(N);
1721  N->OperandList[0] = Op;
1722
1723  // If this gets put into a CSE map, add it.
1724  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1725  return InN;
1726}
1727
1728SDOperand SelectionDAG::
1729UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1730  SDNode *N = InN.Val;
1731  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1732
1733  // Check to see if there is no change.
1734  bool AnyChange = false;
1735  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1736    return InN;   // No operands changed, just return the input node.
1737
1738  // See if the modified node already exists.
1739  void *InsertPos = 0;
1740  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
1741    return SDOperand(Existing, InN.ResNo);
1742
1743  // Nope it doesn't.  Remove the node from it's current place in the maps.
1744  if (InsertPos)
1745    RemoveNodeFromCSEMaps(N);
1746
1747  // Now we update the operands.
1748  if (N->OperandList[0] != Op1) {
1749    N->OperandList[0].Val->removeUser(N);
1750    Op1.Val->addUser(N);
1751    N->OperandList[0] = Op1;
1752  }
1753  if (N->OperandList[1] != Op2) {
1754    N->OperandList[1].Val->removeUser(N);
1755    Op2.Val->addUser(N);
1756    N->OperandList[1] = Op2;
1757  }
1758
1759  // If this gets put into a CSE map, add it.
1760  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1761  return InN;
1762}
1763
1764SDOperand SelectionDAG::
1765UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1766  SDOperand Ops[] = { Op1, Op2, Op3 };
1767  return UpdateNodeOperands(N, Ops, 3);
1768}
1769
1770SDOperand SelectionDAG::
1771UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1772                   SDOperand Op3, SDOperand Op4) {
1773  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
1774  return UpdateNodeOperands(N, Ops, 4);
1775}
1776
1777SDOperand SelectionDAG::
1778UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1779                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1780  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
1781  return UpdateNodeOperands(N, Ops, 5);
1782}
1783
1784
1785SDOperand SelectionDAG::
1786UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
1787  SDNode *N = InN.Val;
1788  assert(N->getNumOperands() == NumOps &&
1789         "Update with wrong number of operands");
1790
1791  // Check to see if there is no change.
1792  bool AnyChange = false;
1793  for (unsigned i = 0; i != NumOps; ++i) {
1794    if (Ops[i] != N->getOperand(i)) {
1795      AnyChange = true;
1796      break;
1797    }
1798  }
1799
1800  // No operands changed, just return the input node.
1801  if (!AnyChange) return InN;
1802
1803  // See if the modified node already exists.
1804  void *InsertPos = 0;
1805  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
1806    return SDOperand(Existing, InN.ResNo);
1807
1808  // Nope it doesn't.  Remove the node from it's current place in the maps.
1809  if (InsertPos)
1810    RemoveNodeFromCSEMaps(N);
1811
1812  // Now we update the operands.
1813  for (unsigned i = 0; i != NumOps; ++i) {
1814    if (N->OperandList[i] != Ops[i]) {
1815      N->OperandList[i].Val->removeUser(N);
1816      Ops[i].Val->addUser(N);
1817      N->OperandList[i] = Ops[i];
1818    }
1819  }
1820
1821  // If this gets put into a CSE map, add it.
1822  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1823  return InN;
1824}
1825
1826
1827
1828
1829/// SelectNodeTo - These are used for target selectors to *mutate* the
1830/// specified node to have the specified return type, Target opcode, and
1831/// operands.  Note that target opcodes are stored as
1832/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1833///
1834/// Note that SelectNodeTo returns the resultant node.  If there is already a
1835/// node of the specified opcode and operands, it returns that node instead of
1836/// the current one.
1837SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1838                                   MVT::ValueType VT) {
1839  SDVTList VTs = getVTList(VT);
1840  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1841  void *IP = 0;
1842  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1843    return ON;
1844
1845  RemoveNodeFromCSEMaps(N);
1846
1847  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1848  N->setValueTypes(VTs);
1849
1850  CSEMap.InsertNode(N, IP);
1851  return N;
1852}
1853
1854SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1855                                   MVT::ValueType VT, SDOperand Op1) {
1856  // If an identical node already exists, use it.
1857  SDVTList VTs = getVTList(VT);
1858  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1);
1859  void *IP = 0;
1860  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1861    return ON;
1862
1863  RemoveNodeFromCSEMaps(N);
1864  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1865  N->setValueTypes(VTs);
1866  N->setOperands(Op1);
1867  CSEMap.InsertNode(N, IP);
1868  return N;
1869}
1870
1871SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1872                                   MVT::ValueType VT, SDOperand Op1,
1873                                   SDOperand Op2) {
1874  // If an identical node already exists, use it.
1875  SDVTList VTs = getVTList(VT);
1876  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
1877  void *IP = 0;
1878  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1879    return ON;
1880
1881  RemoveNodeFromCSEMaps(N);
1882  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1883  N->setValueTypes(VTs);
1884  N->setOperands(Op1, Op2);
1885
1886  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1887  return N;
1888}
1889
1890SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1891                                   MVT::ValueType VT, SDOperand Op1,
1892                                   SDOperand Op2, SDOperand Op3) {
1893  // If an identical node already exists, use it.
1894  SDVTList VTs = getVTList(VT);
1895  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs,
1896                                Op1, Op2, Op3);
1897  void *IP = 0;
1898  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1899    return ON;
1900
1901  RemoveNodeFromCSEMaps(N);
1902  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1903  N->setValueTypes(VTs);
1904  N->setOperands(Op1, Op2, Op3);
1905
1906  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1907  return N;
1908}
1909
1910SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1911                                   MVT::ValueType VT, const SDOperand *Ops,
1912                                   unsigned NumOps) {
1913  // If an identical node already exists, use it.
1914  SDVTList VTs = getVTList(VT);
1915  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1916  for (unsigned i = 0; i != NumOps; ++i)
1917    ID.AddOperand(Ops[i]);
1918  void *IP = 0;
1919  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1920    return ON;
1921
1922  RemoveNodeFromCSEMaps(N);
1923  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1924  N->setValueTypes(VTs);
1925  N->setOperands(Ops, NumOps);
1926
1927  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1928  return N;
1929}
1930
1931SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1932                                   MVT::ValueType VT1, MVT::ValueType VT2,
1933                                   SDOperand Op1, SDOperand Op2) {
1934  SDVTList VTs = getVTList(VT1, VT2);
1935  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
1936  void *IP = 0;
1937  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1938    return ON;
1939
1940  RemoveNodeFromCSEMaps(N);
1941  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1942  N->setValueTypes(VTs);
1943  N->setOperands(Op1, Op2);
1944
1945  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1946  return N;
1947}
1948
1949SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1950                                   MVT::ValueType VT1, MVT::ValueType VT2,
1951                                   SDOperand Op1, SDOperand Op2,
1952                                   SDOperand Op3) {
1953  // If an identical node already exists, use it.
1954  SDVTList VTs = getVTList(VT1, VT2);
1955  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs,
1956                                Op1, Op2, Op3);
1957  void *IP = 0;
1958  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1959    return ON;
1960
1961  RemoveNodeFromCSEMaps(N);
1962  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1963  N->setValueTypes(VTs);
1964  N->setOperands(Op1, Op2, Op3);
1965
1966  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1967  return N;
1968}
1969
1970
1971/// getTargetNode - These are used for target selectors to create a new node
1972/// with specified return type(s), target opcode, and operands.
1973///
1974/// Note that getTargetNode returns the resultant node.  If there is already a
1975/// node of the specified opcode and operands, it returns that node instead of
1976/// the current one.
1977SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
1978  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
1979}
1980SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
1981                                    SDOperand Op1) {
1982  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
1983}
1984SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
1985                                    SDOperand Op1, SDOperand Op2) {
1986  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
1987}
1988SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
1989                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1990  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
1991}
1992SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
1993                                    const SDOperand *Ops, unsigned NumOps) {
1994  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
1995}
1996SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
1997                                    MVT::ValueType VT2, SDOperand Op1) {
1998  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
1999  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2000}
2001SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2002                                    MVT::ValueType VT2, SDOperand Op1,
2003                                    SDOperand Op2) {
2004  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2005  SDOperand Ops[] = { Op1, Op2 };
2006  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2007}
2008SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2009                                    MVT::ValueType VT2, SDOperand Op1,
2010                                    SDOperand Op2, SDOperand Op3) {
2011  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2012  SDOperand Ops[] = { Op1, Op2, Op3 };
2013  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2014}
2015SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2016                                    MVT::ValueType VT2,
2017                                    const SDOperand *Ops, unsigned NumOps) {
2018  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2019  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2020}
2021SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2022                                    MVT::ValueType VT2, MVT::ValueType VT3,
2023                                    SDOperand Op1, SDOperand Op2) {
2024  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2025  SDOperand Ops[] = { Op1, Op2 };
2026  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2027}
2028SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2029                                    MVT::ValueType VT2, MVT::ValueType VT3,
2030                                    const SDOperand *Ops, unsigned NumOps) {
2031  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2032  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2033}
2034
2035/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2036/// This can cause recursive merging of nodes in the DAG.
2037///
2038/// This version assumes From/To have a single result value.
2039///
2040void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2041                                      std::vector<SDNode*> *Deleted) {
2042  SDNode *From = FromN.Val, *To = ToN.Val;
2043  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2044         "Cannot replace with this method!");
2045  assert(From != To && "Cannot replace uses of with self");
2046
2047  while (!From->use_empty()) {
2048    // Process users until they are all gone.
2049    SDNode *U = *From->use_begin();
2050
2051    // This node is about to morph, remove its old self from the CSE maps.
2052    RemoveNodeFromCSEMaps(U);
2053
2054    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2055         I != E; ++I)
2056      if (I->Val == From) {
2057        From->removeUser(U);
2058        I->Val = To;
2059        To->addUser(U);
2060      }
2061
2062    // Now that we have modified U, add it back to the CSE maps.  If it already
2063    // exists there, recursively merge the results together.
2064    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2065      ReplaceAllUsesWith(U, Existing, Deleted);
2066      // U is now dead.
2067      if (Deleted) Deleted->push_back(U);
2068      DeleteNodeNotInCSEMaps(U);
2069    }
2070  }
2071}
2072
2073/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2074/// This can cause recursive merging of nodes in the DAG.
2075///
2076/// This version assumes From/To have matching types and numbers of result
2077/// values.
2078///
2079void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2080                                      std::vector<SDNode*> *Deleted) {
2081  assert(From != To && "Cannot replace uses of with self");
2082  assert(From->getNumValues() == To->getNumValues() &&
2083         "Cannot use this version of ReplaceAllUsesWith!");
2084  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2085    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2086    return;
2087  }
2088
2089  while (!From->use_empty()) {
2090    // Process users until they are all gone.
2091    SDNode *U = *From->use_begin();
2092
2093    // This node is about to morph, remove its old self from the CSE maps.
2094    RemoveNodeFromCSEMaps(U);
2095
2096    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2097         I != E; ++I)
2098      if (I->Val == From) {
2099        From->removeUser(U);
2100        I->Val = To;
2101        To->addUser(U);
2102      }
2103
2104    // Now that we have modified U, add it back to the CSE maps.  If it already
2105    // exists there, recursively merge the results together.
2106    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2107      ReplaceAllUsesWith(U, Existing, Deleted);
2108      // U is now dead.
2109      if (Deleted) Deleted->push_back(U);
2110      DeleteNodeNotInCSEMaps(U);
2111    }
2112  }
2113}
2114
2115/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2116/// This can cause recursive merging of nodes in the DAG.
2117///
2118/// This version can replace From with any result values.  To must match the
2119/// number and types of values returned by From.
2120void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2121                                      const SDOperand *To,
2122                                      std::vector<SDNode*> *Deleted) {
2123  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
2124    // Degenerate case handled above.
2125    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2126    return;
2127  }
2128
2129  while (!From->use_empty()) {
2130    // Process users until they are all gone.
2131    SDNode *U = *From->use_begin();
2132
2133    // This node is about to morph, remove its old self from the CSE maps.
2134    RemoveNodeFromCSEMaps(U);
2135
2136    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2137         I != E; ++I)
2138      if (I->Val == From) {
2139        const SDOperand &ToOp = To[I->ResNo];
2140        From->removeUser(U);
2141        *I = ToOp;
2142        ToOp.Val->addUser(U);
2143      }
2144
2145    // Now that we have modified U, add it back to the CSE maps.  If it already
2146    // exists there, recursively merge the results together.
2147    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2148      ReplaceAllUsesWith(U, Existing, Deleted);
2149      // U is now dead.
2150      if (Deleted) Deleted->push_back(U);
2151      DeleteNodeNotInCSEMaps(U);
2152    }
2153  }
2154}
2155
2156/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2157/// uses of other values produced by From.Val alone.  The Deleted vector is
2158/// handled the same was as for ReplaceAllUsesWith.
2159void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2160                                             std::vector<SDNode*> &Deleted) {
2161  assert(From != To && "Cannot replace a value with itself");
2162  // Handle the simple, trivial, case efficiently.
2163  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2164    ReplaceAllUsesWith(From, To, &Deleted);
2165    return;
2166  }
2167
2168  // Get all of the users in a nice, deterministically ordered, uniqued set.
2169  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2170
2171  while (!Users.empty()) {
2172    // We know that this user uses some value of From.  If it is the right
2173    // value, update it.
2174    SDNode *User = Users.back();
2175    Users.pop_back();
2176
2177    for (SDOperand *Op = User->OperandList,
2178         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2179      if (*Op == From) {
2180        // Okay, we know this user needs to be updated.  Remove its old self
2181        // from the CSE maps.
2182        RemoveNodeFromCSEMaps(User);
2183
2184        // Update all operands that match "From".
2185        for (; Op != E; ++Op) {
2186          if (*Op == From) {
2187            From.Val->removeUser(User);
2188            *Op = To;
2189            To.Val->addUser(User);
2190          }
2191        }
2192
2193        // Now that we have modified User, add it back to the CSE maps.  If it
2194        // already exists there, recursively merge the results together.
2195        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2196          unsigned NumDeleted = Deleted.size();
2197          ReplaceAllUsesWith(User, Existing, &Deleted);
2198
2199          // User is now dead.
2200          Deleted.push_back(User);
2201          DeleteNodeNotInCSEMaps(User);
2202
2203          // We have to be careful here, because ReplaceAllUsesWith could have
2204          // deleted a user of From, which means there may be dangling pointers
2205          // in the "Users" setvector.  Scan over the deleted node pointers and
2206          // remove them from the setvector.
2207          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2208            Users.remove(Deleted[i]);
2209        }
2210        break;   // Exit the operand scanning loop.
2211      }
2212    }
2213  }
2214}
2215
2216
2217/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2218/// their allnodes order. It returns the maximum id.
2219unsigned SelectionDAG::AssignNodeIds() {
2220  unsigned Id = 0;
2221  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2222    SDNode *N = I;
2223    N->setNodeId(Id++);
2224  }
2225  return Id;
2226}
2227
2228/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2229/// based on their topological order. It returns the maximum id and a vector
2230/// of the SDNodes* in assigned order by reference.
2231unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2232  unsigned DAGSize = AllNodes.size();
2233  std::vector<unsigned> InDegree(DAGSize);
2234  std::vector<SDNode*> Sources;
2235
2236  // Use a two pass approach to avoid using a std::map which is slow.
2237  unsigned Id = 0;
2238  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2239    SDNode *N = I;
2240    N->setNodeId(Id++);
2241    unsigned Degree = N->use_size();
2242    InDegree[N->getNodeId()] = Degree;
2243    if (Degree == 0)
2244      Sources.push_back(N);
2245  }
2246
2247  TopOrder.clear();
2248  while (!Sources.empty()) {
2249    SDNode *N = Sources.back();
2250    Sources.pop_back();
2251    TopOrder.push_back(N);
2252    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2253      SDNode *P = I->Val;
2254      unsigned Degree = --InDegree[P->getNodeId()];
2255      if (Degree == 0)
2256        Sources.push_back(P);
2257    }
2258  }
2259
2260  // Second pass, assign the actual topological order as node ids.
2261  Id = 0;
2262  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2263       TI != TE; ++TI)
2264    (*TI)->setNodeId(Id++);
2265
2266  return Id;
2267}
2268
2269
2270
2271//===----------------------------------------------------------------------===//
2272//                              SDNode Class
2273//===----------------------------------------------------------------------===//
2274
2275// Out-of-line virtual method to give class a home.
2276void SDNode::ANCHOR() {
2277}
2278
2279/// getValueTypeList - Return a pointer to the specified value type.
2280///
2281MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2282  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2283  VTs[VT] = VT;
2284  return &VTs[VT];
2285}
2286
2287/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2288/// indicated value.  This method ignores uses of other values defined by this
2289/// operation.
2290bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2291  assert(Value < getNumValues() && "Bad value!");
2292
2293  // If there is only one value, this is easy.
2294  if (getNumValues() == 1)
2295    return use_size() == NUses;
2296  if (Uses.size() < NUses) return false;
2297
2298  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2299
2300  std::set<SDNode*> UsersHandled;
2301
2302  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
2303    SDNode *User = *UI;
2304    if (User->getNumOperands() == 1 ||
2305        UsersHandled.insert(User).second)     // First time we've seen this?
2306      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2307        if (User->getOperand(i) == TheValue) {
2308          if (NUses == 0)
2309            return false;   // too many uses
2310          --NUses;
2311        }
2312  }
2313
2314  // Found exactly the right number of uses?
2315  return NUses == 0;
2316}
2317
2318
2319// isOnlyUse - Return true if this node is the only use of N.
2320bool SDNode::isOnlyUse(SDNode *N) const {
2321  bool Seen = false;
2322  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2323    SDNode *User = *I;
2324    if (User == this)
2325      Seen = true;
2326    else
2327      return false;
2328  }
2329
2330  return Seen;
2331}
2332
2333// isOperand - Return true if this node is an operand of N.
2334bool SDOperand::isOperand(SDNode *N) const {
2335  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2336    if (*this == N->getOperand(i))
2337      return true;
2338  return false;
2339}
2340
2341bool SDNode::isOperand(SDNode *N) const {
2342  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2343    if (this == N->OperandList[i].Val)
2344      return true;
2345  return false;
2346}
2347
2348uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
2349  assert(Num < NumOperands && "Invalid child # of SDNode!");
2350  return cast<ConstantSDNode>(OperandList[Num])->getValue();
2351}
2352
2353const char *SDNode::getOperationName(const SelectionDAG *G) const {
2354  switch (getOpcode()) {
2355  default:
2356    if (getOpcode() < ISD::BUILTIN_OP_END)
2357      return "<<Unknown DAG Node>>";
2358    else {
2359      if (G) {
2360        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2361          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2362            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2363
2364        TargetLowering &TLI = G->getTargetLoweringInfo();
2365        const char *Name =
2366          TLI.getTargetNodeName(getOpcode());
2367        if (Name) return Name;
2368      }
2369
2370      return "<<Unknown Target Node>>";
2371    }
2372
2373  case ISD::PCMARKER:      return "PCMarker";
2374  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2375  case ISD::SRCVALUE:      return "SrcValue";
2376  case ISD::EntryToken:    return "EntryToken";
2377  case ISD::TokenFactor:   return "TokenFactor";
2378  case ISD::AssertSext:    return "AssertSext";
2379  case ISD::AssertZext:    return "AssertZext";
2380
2381  case ISD::STRING:        return "String";
2382  case ISD::BasicBlock:    return "BasicBlock";
2383  case ISD::VALUETYPE:     return "ValueType";
2384  case ISD::Register:      return "Register";
2385
2386  case ISD::Constant:      return "Constant";
2387  case ISD::ConstantFP:    return "ConstantFP";
2388  case ISD::GlobalAddress: return "GlobalAddress";
2389  case ISD::FrameIndex:    return "FrameIndex";
2390  case ISD::JumpTable:     return "JumpTable";
2391  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
2392  case ISD::ConstantPool:  return "ConstantPool";
2393  case ISD::ExternalSymbol: return "ExternalSymbol";
2394  case ISD::INTRINSIC_WO_CHAIN: {
2395    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2396    return Intrinsic::getName((Intrinsic::ID)IID);
2397  }
2398  case ISD::INTRINSIC_VOID:
2399  case ISD::INTRINSIC_W_CHAIN: {
2400    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2401    return Intrinsic::getName((Intrinsic::ID)IID);
2402  }
2403
2404  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2405  case ISD::TargetConstant: return "TargetConstant";
2406  case ISD::TargetConstantFP:return "TargetConstantFP";
2407  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2408  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2409  case ISD::TargetJumpTable:  return "TargetJumpTable";
2410  case ISD::TargetConstantPool:  return "TargetConstantPool";
2411  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2412
2413  case ISD::CopyToReg:     return "CopyToReg";
2414  case ISD::CopyFromReg:   return "CopyFromReg";
2415  case ISD::UNDEF:         return "undef";
2416  case ISD::MERGE_VALUES:  return "mergevalues";
2417  case ISD::INLINEASM:     return "inlineasm";
2418  case ISD::HANDLENODE:    return "handlenode";
2419  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2420  case ISD::CALL:          return "call";
2421
2422  // Unary operators
2423  case ISD::FABS:   return "fabs";
2424  case ISD::FNEG:   return "fneg";
2425  case ISD::FSQRT:  return "fsqrt";
2426  case ISD::FSIN:   return "fsin";
2427  case ISD::FCOS:   return "fcos";
2428  case ISD::FPOWI:  return "fpowi";
2429
2430  // Binary operators
2431  case ISD::ADD:    return "add";
2432  case ISD::SUB:    return "sub";
2433  case ISD::MUL:    return "mul";
2434  case ISD::MULHU:  return "mulhu";
2435  case ISD::MULHS:  return "mulhs";
2436  case ISD::SDIV:   return "sdiv";
2437  case ISD::UDIV:   return "udiv";
2438  case ISD::SREM:   return "srem";
2439  case ISD::UREM:   return "urem";
2440  case ISD::AND:    return "and";
2441  case ISD::OR:     return "or";
2442  case ISD::XOR:    return "xor";
2443  case ISD::SHL:    return "shl";
2444  case ISD::SRA:    return "sra";
2445  case ISD::SRL:    return "srl";
2446  case ISD::ROTL:   return "rotl";
2447  case ISD::ROTR:   return "rotr";
2448  case ISD::FADD:   return "fadd";
2449  case ISD::FSUB:   return "fsub";
2450  case ISD::FMUL:   return "fmul";
2451  case ISD::FDIV:   return "fdiv";
2452  case ISD::FREM:   return "frem";
2453  case ISD::FCOPYSIGN: return "fcopysign";
2454  case ISD::VADD:   return "vadd";
2455  case ISD::VSUB:   return "vsub";
2456  case ISD::VMUL:   return "vmul";
2457  case ISD::VSDIV:  return "vsdiv";
2458  case ISD::VUDIV:  return "vudiv";
2459  case ISD::VAND:   return "vand";
2460  case ISD::VOR:    return "vor";
2461  case ISD::VXOR:   return "vxor";
2462
2463  case ISD::SETCC:       return "setcc";
2464  case ISD::SELECT:      return "select";
2465  case ISD::SELECT_CC:   return "select_cc";
2466  case ISD::VSELECT:     return "vselect";
2467  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2468  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2469  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2470  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2471  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2472  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2473  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2474  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2475  case ISD::VBIT_CONVERT:        return "vbit_convert";
2476  case ISD::ADDC:        return "addc";
2477  case ISD::ADDE:        return "adde";
2478  case ISD::SUBC:        return "subc";
2479  case ISD::SUBE:        return "sube";
2480  case ISD::SHL_PARTS:   return "shl_parts";
2481  case ISD::SRA_PARTS:   return "sra_parts";
2482  case ISD::SRL_PARTS:   return "srl_parts";
2483
2484  // Conversion operators.
2485  case ISD::SIGN_EXTEND: return "sign_extend";
2486  case ISD::ZERO_EXTEND: return "zero_extend";
2487  case ISD::ANY_EXTEND:  return "any_extend";
2488  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2489  case ISD::TRUNCATE:    return "truncate";
2490  case ISD::FP_ROUND:    return "fp_round";
2491  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2492  case ISD::FP_EXTEND:   return "fp_extend";
2493
2494  case ISD::SINT_TO_FP:  return "sint_to_fp";
2495  case ISD::UINT_TO_FP:  return "uint_to_fp";
2496  case ISD::FP_TO_SINT:  return "fp_to_sint";
2497  case ISD::FP_TO_UINT:  return "fp_to_uint";
2498  case ISD::BIT_CONVERT: return "bit_convert";
2499
2500    // Control flow instructions
2501  case ISD::BR:      return "br";
2502  case ISD::BRIND:   return "brind";
2503  case ISD::BRCOND:  return "brcond";
2504  case ISD::BR_CC:   return "br_cc";
2505  case ISD::RET:     return "ret";
2506  case ISD::CALLSEQ_START:  return "callseq_start";
2507  case ISD::CALLSEQ_END:    return "callseq_end";
2508
2509    // Other operators
2510  case ISD::LOAD:               return "load";
2511  case ISD::STORE:              return "store";
2512  case ISD::VLOAD:              return "vload";
2513  case ISD::VAARG:              return "vaarg";
2514  case ISD::VACOPY:             return "vacopy";
2515  case ISD::VAEND:              return "vaend";
2516  case ISD::VASTART:            return "vastart";
2517  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2518  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2519  case ISD::BUILD_PAIR:         return "build_pair";
2520  case ISD::STACKSAVE:          return "stacksave";
2521  case ISD::STACKRESTORE:       return "stackrestore";
2522
2523  // Block memory operations.
2524  case ISD::MEMSET:  return "memset";
2525  case ISD::MEMCPY:  return "memcpy";
2526  case ISD::MEMMOVE: return "memmove";
2527
2528  // Bit manipulation
2529  case ISD::BSWAP:   return "bswap";
2530  case ISD::CTPOP:   return "ctpop";
2531  case ISD::CTTZ:    return "cttz";
2532  case ISD::CTLZ:    return "ctlz";
2533
2534  // Debug info
2535  case ISD::LOCATION: return "location";
2536  case ISD::DEBUG_LOC: return "debug_loc";
2537  case ISD::DEBUG_LABEL: return "debug_label";
2538
2539  case ISD::CONDCODE:
2540    switch (cast<CondCodeSDNode>(this)->get()) {
2541    default: assert(0 && "Unknown setcc condition!");
2542    case ISD::SETOEQ:  return "setoeq";
2543    case ISD::SETOGT:  return "setogt";
2544    case ISD::SETOGE:  return "setoge";
2545    case ISD::SETOLT:  return "setolt";
2546    case ISD::SETOLE:  return "setole";
2547    case ISD::SETONE:  return "setone";
2548
2549    case ISD::SETO:    return "seto";
2550    case ISD::SETUO:   return "setuo";
2551    case ISD::SETUEQ:  return "setue";
2552    case ISD::SETUGT:  return "setugt";
2553    case ISD::SETUGE:  return "setuge";
2554    case ISD::SETULT:  return "setult";
2555    case ISD::SETULE:  return "setule";
2556    case ISD::SETUNE:  return "setune";
2557
2558    case ISD::SETEQ:   return "seteq";
2559    case ISD::SETGT:   return "setgt";
2560    case ISD::SETGE:   return "setge";
2561    case ISD::SETLT:   return "setlt";
2562    case ISD::SETLE:   return "setle";
2563    case ISD::SETNE:   return "setne";
2564    }
2565  }
2566}
2567
2568void SDNode::dump() const { dump(0); }
2569void SDNode::dump(const SelectionDAG *G) const {
2570  std::cerr << (void*)this << ": ";
2571
2572  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2573    if (i) std::cerr << ",";
2574    if (getValueType(i) == MVT::Other)
2575      std::cerr << "ch";
2576    else
2577      std::cerr << MVT::getValueTypeString(getValueType(i));
2578  }
2579  std::cerr << " = " << getOperationName(G);
2580
2581  std::cerr << " ";
2582  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2583    if (i) std::cerr << ", ";
2584    std::cerr << (void*)getOperand(i).Val;
2585    if (unsigned RN = getOperand(i).ResNo)
2586      std::cerr << ":" << RN;
2587  }
2588
2589  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2590    std::cerr << "<" << CSDN->getValue() << ">";
2591  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2592    std::cerr << "<" << CSDN->getValue() << ">";
2593  } else if (const GlobalAddressSDNode *GADN =
2594             dyn_cast<GlobalAddressSDNode>(this)) {
2595    int offset = GADN->getOffset();
2596    std::cerr << "<";
2597    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2598    if (offset > 0)
2599      std::cerr << " + " << offset;
2600    else
2601      std::cerr << " " << offset;
2602  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2603    std::cerr << "<" << FIDN->getIndex() << ">";
2604  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2605    int offset = CP->getOffset();
2606    if (CP->isMachineConstantPoolEntry())
2607      std::cerr << "<" << *CP->getMachineCPVal() << ">";
2608    else
2609      std::cerr << "<" << *CP->getConstVal() << ">";
2610    if (offset > 0)
2611      std::cerr << " + " << offset;
2612    else
2613      std::cerr << " " << offset;
2614  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2615    std::cerr << "<";
2616    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2617    if (LBB)
2618      std::cerr << LBB->getName() << " ";
2619    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2620  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2621    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2622      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2623    } else {
2624      std::cerr << " #" << R->getReg();
2625    }
2626  } else if (const ExternalSymbolSDNode *ES =
2627             dyn_cast<ExternalSymbolSDNode>(this)) {
2628    std::cerr << "'" << ES->getSymbol() << "'";
2629  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2630    if (M->getValue())
2631      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2632    else
2633      std::cerr << "<null:" << M->getOffset() << ">";
2634  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2635    std::cerr << ":" << getValueTypeString(N->getVT());
2636  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
2637    bool doExt = true;
2638    switch (LD->getExtensionType()) {
2639    default: doExt = false; break;
2640    case ISD::EXTLOAD:
2641      std::cerr << " <anyext ";
2642      break;
2643    case ISD::SEXTLOAD:
2644      std::cerr << " <sext ";
2645      break;
2646    case ISD::ZEXTLOAD:
2647      std::cerr << " <zext ";
2648      break;
2649    }
2650    if (doExt)
2651      std::cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
2652
2653    if (LD->getAddressingMode() == ISD::PRE_INDEXED)
2654      std::cerr << " <pre>";
2655    else if (LD->getAddressingMode() == ISD::POST_INDEXED)
2656      std::cerr << " <post>";
2657  }
2658}
2659
2660static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2661  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2662    if (N->getOperand(i).Val->hasOneUse())
2663      DumpNodes(N->getOperand(i).Val, indent+2, G);
2664    else
2665      std::cerr << "\n" << std::string(indent+2, ' ')
2666                << (void*)N->getOperand(i).Val << ": <multiple use>";
2667
2668
2669  std::cerr << "\n" << std::string(indent, ' ');
2670  N->dump(G);
2671}
2672
2673void SelectionDAG::dump() const {
2674  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2675  std::vector<const SDNode*> Nodes;
2676  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2677       I != E; ++I)
2678    Nodes.push_back(I);
2679
2680  std::sort(Nodes.begin(), Nodes.end());
2681
2682  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2683    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2684      DumpNodes(Nodes[i], 2, this);
2685  }
2686
2687  DumpNodes(getRoot().Val, 2, this);
2688
2689  std::cerr << "\n\n";
2690}
2691
2692const Type *ConstantPoolSDNode::getType() const {
2693  if (isMachineConstantPoolEntry())
2694    return Val.MachineCPVal->getType();
2695  return Val.ConstVal->getType();
2696}
2697