SelectionDAG.cpp revision 583bd47f777fe3eb8305872fa0eadab31e833dff
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/Support/MathExtras.h"
22#include "llvm/Target/MRegisterInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/ADT/SetVector.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringExtras.h"
29#include <iostream>
30#include <set>
31#include <cmath>
32#include <algorithm>
33using namespace llvm;
34
35/// makeVTList - Return an instance of the SDVTList struct initialized with the
36/// specified members.
37static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
38  SDVTList Res = {VTs, NumVTs};
39  return Res;
40}
41
42// isInvertibleForFree - Return true if there is no cost to emitting the logical
43// inverse of this node.
44static bool isInvertibleForFree(SDOperand N) {
45  if (isa<ConstantSDNode>(N.Val)) return true;
46  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
47    return true;
48  return false;
49}
50
51//===----------------------------------------------------------------------===//
52//                              ConstantFPSDNode Class
53//===----------------------------------------------------------------------===//
54
55/// isExactlyValue - We don't rely on operator== working on double values, as
56/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
57/// As such, this method can be used to do an exact bit-for-bit comparison of
58/// two floating point values.
59bool ConstantFPSDNode::isExactlyValue(double V) const {
60  return DoubleToBits(V) == DoubleToBits(Value);
61}
62
63//===----------------------------------------------------------------------===//
64//                              ISD Namespace
65//===----------------------------------------------------------------------===//
66
67/// isBuildVectorAllOnes - Return true if the specified node is a
68/// BUILD_VECTOR where all of the elements are ~0 or undef.
69bool ISD::isBuildVectorAllOnes(const SDNode *N) {
70  // Look through a bit convert.
71  if (N->getOpcode() == ISD::BIT_CONVERT)
72    N = N->getOperand(0).Val;
73
74  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
75
76  unsigned i = 0, e = N->getNumOperands();
77
78  // Skip over all of the undef values.
79  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
80    ++i;
81
82  // Do not accept an all-undef vector.
83  if (i == e) return false;
84
85  // Do not accept build_vectors that aren't all constants or which have non-~0
86  // elements.
87  SDOperand NotZero = N->getOperand(i);
88  if (isa<ConstantSDNode>(NotZero)) {
89    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
90      return false;
91  } else if (isa<ConstantFPSDNode>(NotZero)) {
92    MVT::ValueType VT = NotZero.getValueType();
93    if (VT== MVT::f64) {
94      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
95          (uint64_t)-1)
96        return false;
97    } else {
98      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
99          (uint32_t)-1)
100        return false;
101    }
102  } else
103    return false;
104
105  // Okay, we have at least one ~0 value, check to see if the rest match or are
106  // undefs.
107  for (++i; i != e; ++i)
108    if (N->getOperand(i) != NotZero &&
109        N->getOperand(i).getOpcode() != ISD::UNDEF)
110      return false;
111  return true;
112}
113
114
115/// isBuildVectorAllZeros - Return true if the specified node is a
116/// BUILD_VECTOR where all of the elements are 0 or undef.
117bool ISD::isBuildVectorAllZeros(const SDNode *N) {
118  // Look through a bit convert.
119  if (N->getOpcode() == ISD::BIT_CONVERT)
120    N = N->getOperand(0).Val;
121
122  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
123
124  unsigned i = 0, e = N->getNumOperands();
125
126  // Skip over all of the undef values.
127  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
128    ++i;
129
130  // Do not accept an all-undef vector.
131  if (i == e) return false;
132
133  // Do not accept build_vectors that aren't all constants or which have non-~0
134  // elements.
135  SDOperand Zero = N->getOperand(i);
136  if (isa<ConstantSDNode>(Zero)) {
137    if (!cast<ConstantSDNode>(Zero)->isNullValue())
138      return false;
139  } else if (isa<ConstantFPSDNode>(Zero)) {
140    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
141      return false;
142  } else
143    return false;
144
145  // Okay, we have at least one ~0 value, check to see if the rest match or are
146  // undefs.
147  for (++i; i != e; ++i)
148    if (N->getOperand(i) != Zero &&
149        N->getOperand(i).getOpcode() != ISD::UNDEF)
150      return false;
151  return true;
152}
153
154/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
155/// when given the operation for (X op Y).
156ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
157  // To perform this operation, we just need to swap the L and G bits of the
158  // operation.
159  unsigned OldL = (Operation >> 2) & 1;
160  unsigned OldG = (Operation >> 1) & 1;
161  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
162                       (OldL << 1) |       // New G bit
163                       (OldG << 2));        // New L bit.
164}
165
166/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
167/// 'op' is a valid SetCC operation.
168ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
169  unsigned Operation = Op;
170  if (isInteger)
171    Operation ^= 7;   // Flip L, G, E bits, but not U.
172  else
173    Operation ^= 15;  // Flip all of the condition bits.
174  if (Operation > ISD::SETTRUE2)
175    Operation &= ~8;     // Don't let N and U bits get set.
176  return ISD::CondCode(Operation);
177}
178
179
180/// isSignedOp - For an integer comparison, return 1 if the comparison is a
181/// signed operation and 2 if the result is an unsigned comparison.  Return zero
182/// if the operation does not depend on the sign of the input (setne and seteq).
183static int isSignedOp(ISD::CondCode Opcode) {
184  switch (Opcode) {
185  default: assert(0 && "Illegal integer setcc operation!");
186  case ISD::SETEQ:
187  case ISD::SETNE: return 0;
188  case ISD::SETLT:
189  case ISD::SETLE:
190  case ISD::SETGT:
191  case ISD::SETGE: return 1;
192  case ISD::SETULT:
193  case ISD::SETULE:
194  case ISD::SETUGT:
195  case ISD::SETUGE: return 2;
196  }
197}
198
199/// getSetCCOrOperation - Return the result of a logical OR between different
200/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
201/// returns SETCC_INVALID if it is not possible to represent the resultant
202/// comparison.
203ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
204                                       bool isInteger) {
205  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
206    // Cannot fold a signed integer setcc with an unsigned integer setcc.
207    return ISD::SETCC_INVALID;
208
209  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
210
211  // If the N and U bits get set then the resultant comparison DOES suddenly
212  // care about orderedness, and is true when ordered.
213  if (Op > ISD::SETTRUE2)
214    Op &= ~16;     // Clear the U bit if the N bit is set.
215
216  // Canonicalize illegal integer setcc's.
217  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
218    Op = ISD::SETNE;
219
220  return ISD::CondCode(Op);
221}
222
223/// getSetCCAndOperation - Return the result of a logical AND between different
224/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
225/// function returns zero if it is not possible to represent the resultant
226/// comparison.
227ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
228                                        bool isInteger) {
229  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
230    // Cannot fold a signed setcc with an unsigned setcc.
231    return ISD::SETCC_INVALID;
232
233  // Combine all of the condition bits.
234  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
235
236  // Canonicalize illegal integer setcc's.
237  if (isInteger) {
238    switch (Result) {
239    default: break;
240    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
241    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
242    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
243    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
244    }
245  }
246
247  return Result;
248}
249
250const TargetMachine &SelectionDAG::getTarget() const {
251  return TLI.getTargetMachine();
252}
253
254//===----------------------------------------------------------------------===//
255//                           SDNode Profile Support
256//===----------------------------------------------------------------------===//
257
258/// getNodeIDOpcode - Return the opcode that has been set for this NodeID.
259///
260static unsigned getNodeIDOpcode(FoldingSetNodeID &ID)  {
261  return ID.getRawData(0);
262}
263static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
264  ID.AddInteger(OpC);
265}
266
267/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
268/// solely with their pointer.
269void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
270  ID.AddPointer(VTList.VTs);
271}
272
273
274static void AddNodeIDOperand(FoldingSetNodeID &ID, SDOperand Op) {
275  ID.AddPointer(Op.Val);
276  ID.AddInteger(Op.ResNo);
277}
278
279static void AddNodeIDOperands(FoldingSetNodeID &ID) {
280}
281void AddNodeIDOperands(FoldingSetNodeID &ID, SDOperand Op) {
282  AddNodeIDOperand(ID, Op);
283}
284static void AddNodeIDOperands(FoldingSetNodeID &ID,
285                             SDOperand Op1, SDOperand Op2) {
286  AddNodeIDOperand(ID, Op1);
287  AddNodeIDOperand(ID, Op2);
288}
289static void AddNodeIDOperands(FoldingSetNodeID &ID,
290                              SDOperand Op1, SDOperand Op2, SDOperand Op3) {
291  AddNodeIDOperand(ID, Op1);
292  AddNodeIDOperand(ID, Op2);
293  AddNodeIDOperand(ID, Op3);
294}
295static void AddNodeIDOperands(FoldingSetNodeID &ID,
296                              const SDOperand *Ops, unsigned NumOps) {
297  for (; NumOps; --NumOps, ++Ops)
298    AddNodeIDOperand(ID, *Ops);
299}
300
301static void AddNodeIDNode(FoldingSetNodeID &ID,
302                          unsigned short OpC, SDVTList VTList) {
303  AddNodeIDOpcode(ID, OpC);
304  AddNodeIDValueTypes(ID, VTList);
305  AddNodeIDOperands(ID);
306}
307static void AddNodeIDNode(FoldingSetNodeID &ID,
308                          unsigned short OpC, SDVTList VTList,
309                          SDOperand Op) {
310  AddNodeIDOpcode(ID, OpC);
311  AddNodeIDValueTypes(ID, VTList);
312  AddNodeIDOperands(ID, Op);
313}
314static void AddNodeIDNode(FoldingSetNodeID &ID,
315                          unsigned short OpC, SDVTList VTList,
316                          SDOperand Op1, SDOperand Op2) {
317  AddNodeIDOpcode(ID, OpC);
318  AddNodeIDValueTypes(ID, VTList);
319  AddNodeIDOperands(ID, Op1, Op2);
320}
321static void AddNodeIDNode(FoldingSetNodeID &ID,
322                          unsigned short OpC, SDVTList VTList,
323                          SDOperand Op1, SDOperand Op2, SDOperand Op3) {
324  AddNodeIDOpcode(ID, OpC);
325  AddNodeIDValueTypes(ID, VTList);
326  AddNodeIDOperands(ID, Op1, Op2);
327}
328static void AddNodeIDNode(FoldingSetNodeID &ID,
329                          unsigned short OpC, SDVTList VTList,
330                          const SDOperand *OpList, unsigned N) {
331  AddNodeIDOpcode(ID, OpC);
332  AddNodeIDValueTypes(ID, VTList);
333  AddNodeIDOperands(ID, OpList, N);
334}
335
336static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
337  AddNodeIDOpcode(ID, N->getOpcode());
338  // Add the return value info.
339  AddNodeIDValueTypes(ID, N->getVTList());
340  // Add the operand info.
341  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
342
343  // Handle SDNode leafs with special info.
344  if (N->getNumOperands() == 0) {
345    switch (N->getOpcode()) {
346    default: break;  // Normal nodes don't need extra info.
347    case ISD::TargetConstant:
348    case ISD::Constant:
349      ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
350      break;
351    case ISD::TargetConstantFP:
352    case ISD::ConstantFP:
353      ID.AddDouble(cast<ConstantFPSDNode>(N)->getValue());
354      break;
355    case ISD::TargetGlobalAddress:
356    case ISD::GlobalAddress:
357      ID.AddPointer(cast<GlobalAddressSDNode>(N)->getGlobal());
358      ID.AddInteger(cast<GlobalAddressSDNode>(N)->getOffset());
359      break;
360    case ISD::BasicBlock:
361      ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
362      break;
363    case ISD::Register:
364      ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
365      break;
366    case ISD::SRCVALUE:
367      ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
368      ID.AddInteger(cast<SrcValueSDNode>(N)->getOffset());
369      break;
370    case ISD::FrameIndex:
371    case ISD::TargetFrameIndex:
372      ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
373      break;
374    case ISD::JumpTable:
375    case ISD::TargetJumpTable:
376      ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
377      break;
378    case ISD::ConstantPool:
379    case ISD::TargetConstantPool:
380      ID.AddInteger(cast<ConstantPoolSDNode>(N)->getAlignment());
381      ID.AddInteger(cast<ConstantPoolSDNode>(N)->getOffset());
382      if (cast<ConstantPoolSDNode>(N)->isMachineConstantPoolEntry())
383        cast<ConstantPoolSDNode>(N)->getMachineCPVal()->
384          AddSelectionDAGCSEId(ID);
385      else
386        ID.AddPointer(cast<ConstantPoolSDNode>(N)->getConstVal());
387      break;
388    }
389  }
390}
391
392//===----------------------------------------------------------------------===//
393//                              SelectionDAG Class
394//===----------------------------------------------------------------------===//
395
396/// RemoveDeadNodes - This method deletes all unreachable nodes in the
397/// SelectionDAG.
398void SelectionDAG::RemoveDeadNodes() {
399  // Create a dummy node (which is not added to allnodes), that adds a reference
400  // to the root node, preventing it from being deleted.
401  HandleSDNode Dummy(getRoot());
402
403  SmallVector<SDNode*, 128> DeadNodes;
404
405  // Add all obviously-dead nodes to the DeadNodes worklist.
406  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
407    if (I->use_empty())
408      DeadNodes.push_back(I);
409
410  // Process the worklist, deleting the nodes and adding their uses to the
411  // worklist.
412  while (!DeadNodes.empty()) {
413    SDNode *N = DeadNodes.back();
414    DeadNodes.pop_back();
415
416    // Take the node out of the appropriate CSE map.
417    RemoveNodeFromCSEMaps(N);
418
419    // Next, brutally remove the operand list.  This is safe to do, as there are
420    // no cycles in the graph.
421    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
422      SDNode *Operand = I->Val;
423      Operand->removeUser(N);
424
425      // Now that we removed this operand, see if there are no uses of it left.
426      if (Operand->use_empty())
427        DeadNodes.push_back(Operand);
428    }
429    delete[] N->OperandList;
430    N->OperandList = 0;
431    N->NumOperands = 0;
432
433    // Finally, remove N itself.
434    AllNodes.erase(N);
435  }
436
437  // If the root changed (e.g. it was a dead load, update the root).
438  setRoot(Dummy.getValue());
439}
440
441void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
442  SmallVector<SDNode*, 16> DeadNodes;
443  DeadNodes.push_back(N);
444
445  // Process the worklist, deleting the nodes and adding their uses to the
446  // worklist.
447  while (!DeadNodes.empty()) {
448    SDNode *N = DeadNodes.back();
449    DeadNodes.pop_back();
450
451    // Take the node out of the appropriate CSE map.
452    RemoveNodeFromCSEMaps(N);
453
454    // Next, brutally remove the operand list.  This is safe to do, as there are
455    // no cycles in the graph.
456    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
457      SDNode *Operand = I->Val;
458      Operand->removeUser(N);
459
460      // Now that we removed this operand, see if there are no uses of it left.
461      if (Operand->use_empty())
462        DeadNodes.push_back(Operand);
463    }
464    delete[] N->OperandList;
465    N->OperandList = 0;
466    N->NumOperands = 0;
467
468    // Finally, remove N itself.
469    Deleted.push_back(N);
470    AllNodes.erase(N);
471  }
472}
473
474void SelectionDAG::DeleteNode(SDNode *N) {
475  assert(N->use_empty() && "Cannot delete a node that is not dead!");
476
477  // First take this out of the appropriate CSE map.
478  RemoveNodeFromCSEMaps(N);
479
480  // Finally, remove uses due to operands of this node, remove from the
481  // AllNodes list, and delete the node.
482  DeleteNodeNotInCSEMaps(N);
483}
484
485void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
486
487  // Remove it from the AllNodes list.
488  AllNodes.remove(N);
489
490  // Drop all of the operands and decrement used nodes use counts.
491  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
492    I->Val->removeUser(N);
493  delete[] N->OperandList;
494  N->OperandList = 0;
495  N->NumOperands = 0;
496
497  delete N;
498}
499
500/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
501/// correspond to it.  This is useful when we're about to delete or repurpose
502/// the node.  We don't want future request for structurally identical nodes
503/// to return N anymore.
504void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
505  bool Erased = false;
506  switch (N->getOpcode()) {
507  case ISD::HANDLENODE: return;  // noop.
508  case ISD::STRING:
509    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
510    break;
511  case ISD::CONDCODE:
512    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
513           "Cond code doesn't exist!");
514    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
515    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
516    break;
517  case ISD::ExternalSymbol:
518    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
519    break;
520  case ISD::TargetExternalSymbol:
521    Erased =
522      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
523    break;
524  case ISD::VALUETYPE:
525    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
526    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
527    break;
528  default:
529    // Remove it from the CSE Map.
530    Erased = CSEMap.RemoveNode(N);
531    break;
532  }
533#ifndef NDEBUG
534  // Verify that the node was actually in one of the CSE maps, unless it has a
535  // flag result (which cannot be CSE'd) or is one of the special cases that are
536  // not subject to CSE.
537  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
538      !N->isTargetOpcode()) {
539    N->dump();
540    std::cerr << "\n";
541    assert(0 && "Node is not in map!");
542  }
543#endif
544}
545
546/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
547/// has been taken out and modified in some way.  If the specified node already
548/// exists in the CSE maps, do not modify the maps, but return the existing node
549/// instead.  If it doesn't exist, add it and return null.
550///
551SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
552  assert(N->getNumOperands() && "This is a leaf node!");
553  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
554    return 0;    // Never add these nodes.
555
556  // Check that remaining values produced are not flags.
557  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
558    if (N->getValueType(i) == MVT::Flag)
559      return 0;   // Never CSE anything that produces a flag.
560
561  SDNode *New = CSEMap.GetOrInsertNode(N);
562  if (New != N) return New;  // Node already existed.
563  return 0;
564}
565
566/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
567/// were replaced with those specified.  If this node is never memoized,
568/// return null, otherwise return a pointer to the slot it would take.  If a
569/// node already exists with these operands, the slot will be non-null.
570SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
571                                           void *&InsertPos) {
572  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
573    return 0;    // Never add these nodes.
574
575  // Check that remaining values produced are not flags.
576  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
577    if (N->getValueType(i) == MVT::Flag)
578      return 0;   // Never CSE anything that produces a flag.
579
580  FoldingSetNodeID ID;
581  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Op);
582  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
583}
584
585/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
586/// were replaced with those specified.  If this node is never memoized,
587/// return null, otherwise return a pointer to the slot it would take.  If a
588/// node already exists with these operands, the slot will be non-null.
589SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
590                                           SDOperand Op1, SDOperand Op2,
591                                           void *&InsertPos) {
592  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
593    return 0;    // Never add these nodes.
594
595  // Check that remaining values produced are not flags.
596  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
597    if (N->getValueType(i) == MVT::Flag)
598      return 0;   // Never CSE anything that produces a flag.
599
600  FoldingSetNodeID ID;
601  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Op1, Op2);
602  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
603}
604
605
606/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
607/// were replaced with those specified.  If this node is never memoized,
608/// return null, otherwise return a pointer to the slot it would take.  If a
609/// node already exists with these operands, the slot will be non-null.
610SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
611                                           const SDOperand *Ops,unsigned NumOps,
612                                           void *&InsertPos) {
613  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
614    return 0;    // Never add these nodes.
615
616  // Check that remaining values produced are not flags.
617  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
618    if (N->getValueType(i) == MVT::Flag)
619      return 0;   // Never CSE anything that produces a flag.
620
621  FoldingSetNodeID ID;
622  AddNodeIDNode(ID, N->getOpcode(), N->getVTList());
623
624  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
625    ID.AddInteger(LD->getAddressingMode());
626    ID.AddInteger(LD->getExtensionType());
627    ID.AddInteger(LD->getLoadedVT());
628    ID.AddPointer(LD->getSrcValue());
629    ID.AddInteger(LD->getSrcValueOffset());
630    ID.AddInteger(LD->getAlignment());
631    ID.AddInteger(LD->isVolatile());
632  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
633    ID.AddInteger(ST->getAddressingMode());
634    ID.AddInteger(ST->isTruncatingStore());
635    ID.AddInteger(ST->getStoredVT());
636    ID.AddPointer(ST->getSrcValue());
637    ID.AddInteger(ST->getSrcValueOffset());
638    ID.AddInteger(ST->getAlignment());
639    ID.AddInteger(ST->isVolatile());
640  }
641
642  AddNodeIDOperands(ID, Ops, NumOps);
643  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
644}
645
646
647SelectionDAG::~SelectionDAG() {
648  while (!AllNodes.empty()) {
649    SDNode *N = AllNodes.begin();
650    N->SetNextInBucket(0);
651    delete [] N->OperandList;
652    N->OperandList = 0;
653    N->NumOperands = 0;
654    AllNodes.pop_front();
655  }
656}
657
658SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
659  if (Op.getValueType() == VT) return Op;
660  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
661  return getNode(ISD::AND, Op.getValueType(), Op,
662                 getConstant(Imm, Op.getValueType()));
663}
664
665SDOperand SelectionDAG::getString(const std::string &Val) {
666  StringSDNode *&N = StringNodes[Val];
667  if (!N) {
668    N = new StringSDNode(Val);
669    AllNodes.push_back(N);
670  }
671  return SDOperand(N, 0);
672}
673
674SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
675  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
676  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
677
678  // Mask out any bits that are not valid for this constant.
679  Val &= MVT::getIntVTBitMask(VT);
680
681  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
682  FoldingSetNodeID ID;
683  AddNodeIDNode(ID, Opc, getVTList(VT));
684  ID.AddInteger(Val);
685  void *IP = 0;
686  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
687    return SDOperand(E, 0);
688  SDNode *N = new ConstantSDNode(isT, Val, VT);
689  CSEMap.InsertNode(N, IP);
690  AllNodes.push_back(N);
691  return SDOperand(N, 0);
692}
693
694
695SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
696                                      bool isTarget) {
697  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
698  if (VT == MVT::f32)
699    Val = (float)Val;  // Mask out extra precision.
700
701  // Do the map lookup using the actual bit pattern for the floating point
702  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
703  // we don't have issues with SNANs.
704  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, Opc, getVTList(VT));
707  ID.AddDouble(Val);
708  void *IP = 0;
709  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
710    return SDOperand(E, 0);
711  SDNode *N = new ConstantFPSDNode(isTarget, Val, VT);
712  CSEMap.InsertNode(N, IP);
713  AllNodes.push_back(N);
714  return SDOperand(N, 0);
715}
716
717SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
718                                         MVT::ValueType VT, int Offset,
719                                         bool isTargetGA) {
720  unsigned Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, Opc, getVTList(VT));
723  ID.AddPointer(GV);
724  ID.AddInteger(Offset);
725  void *IP = 0;
726  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
727   return SDOperand(E, 0);
728  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
729  CSEMap.InsertNode(N, IP);
730  AllNodes.push_back(N);
731  return SDOperand(N, 0);
732}
733
734SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
735                                      bool isTarget) {
736  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
737  FoldingSetNodeID ID;
738  AddNodeIDNode(ID, Opc, getVTList(VT));
739  ID.AddInteger(FI);
740  void *IP = 0;
741  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
742    return SDOperand(E, 0);
743  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
744  CSEMap.InsertNode(N, IP);
745  AllNodes.push_back(N);
746  return SDOperand(N, 0);
747}
748
749SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
750  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
751  FoldingSetNodeID ID;
752  AddNodeIDNode(ID, Opc, getVTList(VT));
753  ID.AddInteger(JTI);
754  void *IP = 0;
755  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
756    return SDOperand(E, 0);
757  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
758  CSEMap.InsertNode(N, IP);
759  AllNodes.push_back(N);
760  return SDOperand(N, 0);
761}
762
763SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
764                                        unsigned Alignment, int Offset,
765                                        bool isTarget) {
766  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
767  FoldingSetNodeID ID;
768  AddNodeIDNode(ID, Opc, getVTList(VT));
769  ID.AddInteger(Alignment);
770  ID.AddInteger(Offset);
771  ID.AddPointer(C);
772  void *IP = 0;
773  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
774    return SDOperand(E, 0);
775  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
776  CSEMap.InsertNode(N, IP);
777  AllNodes.push_back(N);
778  return SDOperand(N, 0);
779}
780
781
782SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
783                                        MVT::ValueType VT,
784                                        unsigned Alignment, int Offset,
785                                        bool isTarget) {
786  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
787  FoldingSetNodeID ID;
788  AddNodeIDNode(ID, Opc, getVTList(VT));
789  ID.AddInteger(Alignment);
790  ID.AddInteger(Offset);
791  C->AddSelectionDAGCSEId(ID);
792  void *IP = 0;
793  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
794    return SDOperand(E, 0);
795  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
796  CSEMap.InsertNode(N, IP);
797  AllNodes.push_back(N);
798  return SDOperand(N, 0);
799}
800
801
802SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
803  FoldingSetNodeID ID;
804  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other));
805  ID.AddPointer(MBB);
806  void *IP = 0;
807  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
808    return SDOperand(E, 0);
809  SDNode *N = new BasicBlockSDNode(MBB);
810  CSEMap.InsertNode(N, IP);
811  AllNodes.push_back(N);
812  return SDOperand(N, 0);
813}
814
815SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
816  if ((unsigned)VT >= ValueTypeNodes.size())
817    ValueTypeNodes.resize(VT+1);
818  if (ValueTypeNodes[VT] == 0) {
819    ValueTypeNodes[VT] = new VTSDNode(VT);
820    AllNodes.push_back(ValueTypeNodes[VT]);
821  }
822
823  return SDOperand(ValueTypeNodes[VT], 0);
824}
825
826SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
827  SDNode *&N = ExternalSymbols[Sym];
828  if (N) return SDOperand(N, 0);
829  N = new ExternalSymbolSDNode(false, Sym, VT);
830  AllNodes.push_back(N);
831  return SDOperand(N, 0);
832}
833
834SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
835                                                MVT::ValueType VT) {
836  SDNode *&N = TargetExternalSymbols[Sym];
837  if (N) return SDOperand(N, 0);
838  N = new ExternalSymbolSDNode(true, Sym, VT);
839  AllNodes.push_back(N);
840  return SDOperand(N, 0);
841}
842
843SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
844  if ((unsigned)Cond >= CondCodeNodes.size())
845    CondCodeNodes.resize(Cond+1);
846
847  if (CondCodeNodes[Cond] == 0) {
848    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
849    AllNodes.push_back(CondCodeNodes[Cond]);
850  }
851  return SDOperand(CondCodeNodes[Cond], 0);
852}
853
854SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
855  FoldingSetNodeID ID;
856  AddNodeIDNode(ID, ISD::Register, getVTList(VT));
857  ID.AddInteger(RegNo);
858  void *IP = 0;
859  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
860    return SDOperand(E, 0);
861  SDNode *N = new RegisterSDNode(RegNo, VT);
862  CSEMap.InsertNode(N, IP);
863  AllNodes.push_back(N);
864  return SDOperand(N, 0);
865}
866
867SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
868  assert((!V || isa<PointerType>(V->getType())) &&
869         "SrcValue is not a pointer?");
870
871  FoldingSetNodeID ID;
872  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other));
873  ID.AddPointer(V);
874  ID.AddInteger(Offset);
875  void *IP = 0;
876  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
877    return SDOperand(E, 0);
878  SDNode *N = new SrcValueSDNode(V, Offset);
879  CSEMap.InsertNode(N, IP);
880  AllNodes.push_back(N);
881  return SDOperand(N, 0);
882}
883
884SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
885                                  SDOperand N2, ISD::CondCode Cond) {
886  // These setcc operations always fold.
887  switch (Cond) {
888  default: break;
889  case ISD::SETFALSE:
890  case ISD::SETFALSE2: return getConstant(0, VT);
891  case ISD::SETTRUE:
892  case ISD::SETTRUE2:  return getConstant(1, VT);
893
894  case ISD::SETOEQ:
895  case ISD::SETOGT:
896  case ISD::SETOGE:
897  case ISD::SETOLT:
898  case ISD::SETOLE:
899  case ISD::SETONE:
900  case ISD::SETO:
901  case ISD::SETUO:
902  case ISD::SETUEQ:
903  case ISD::SETUNE:
904    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
905    break;
906  }
907
908  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
909    uint64_t C2 = N2C->getValue();
910    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
911      uint64_t C1 = N1C->getValue();
912
913      // Sign extend the operands if required
914      if (ISD::isSignedIntSetCC(Cond)) {
915        C1 = N1C->getSignExtended();
916        C2 = N2C->getSignExtended();
917      }
918
919      switch (Cond) {
920      default: assert(0 && "Unknown integer setcc!");
921      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
922      case ISD::SETNE:  return getConstant(C1 != C2, VT);
923      case ISD::SETULT: return getConstant(C1 <  C2, VT);
924      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
925      case ISD::SETULE: return getConstant(C1 <= C2, VT);
926      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
927      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
928      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
929      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
930      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
931      }
932    }
933  }
934  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
935    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
936      double C1 = N1C->getValue(), C2 = N2C->getValue();
937
938      switch (Cond) {
939      default: break; // FIXME: Implement the rest of these!
940      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
941      case ISD::SETNE:  return getConstant(C1 != C2, VT);
942      case ISD::SETLT:  return getConstant(C1 < C2, VT);
943      case ISD::SETGT:  return getConstant(C1 > C2, VT);
944      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
945      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
946      }
947    } else {
948      // Ensure that the constant occurs on the RHS.
949      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
950    }
951
952  // Could not fold it.
953  return SDOperand();
954}
955
956
957/// getNode - Gets or creates the specified node.
958///
959SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
960  FoldingSetNodeID ID;
961  AddNodeIDNode(ID, Opcode, getVTList(VT));
962  void *IP = 0;
963  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
964    return SDOperand(E, 0);
965  SDNode *N = new SDNode(Opcode, VT);
966  CSEMap.InsertNode(N, IP);
967
968  AllNodes.push_back(N);
969  return SDOperand(N, 0);
970}
971
972SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
973                                SDOperand Operand) {
974  unsigned Tmp1;
975  // Constant fold unary operations with an integer constant operand.
976  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
977    uint64_t Val = C->getValue();
978    switch (Opcode) {
979    default: break;
980    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
981    case ISD::ANY_EXTEND:
982    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
983    case ISD::TRUNCATE:    return getConstant(Val, VT);
984    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
985    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
986    case ISD::BIT_CONVERT:
987      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
988        return getConstantFP(BitsToFloat(Val), VT);
989      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
990        return getConstantFP(BitsToDouble(Val), VT);
991      break;
992    case ISD::BSWAP:
993      switch(VT) {
994      default: assert(0 && "Invalid bswap!"); break;
995      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
996      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
997      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
998      }
999      break;
1000    case ISD::CTPOP:
1001      switch(VT) {
1002      default: assert(0 && "Invalid ctpop!"); break;
1003      case MVT::i1: return getConstant(Val != 0, VT);
1004      case MVT::i8:
1005        Tmp1 = (unsigned)Val & 0xFF;
1006        return getConstant(CountPopulation_32(Tmp1), VT);
1007      case MVT::i16:
1008        Tmp1 = (unsigned)Val & 0xFFFF;
1009        return getConstant(CountPopulation_32(Tmp1), VT);
1010      case MVT::i32:
1011        return getConstant(CountPopulation_32((unsigned)Val), VT);
1012      case MVT::i64:
1013        return getConstant(CountPopulation_64(Val), VT);
1014      }
1015    case ISD::CTLZ:
1016      switch(VT) {
1017      default: assert(0 && "Invalid ctlz!"); break;
1018      case MVT::i1: return getConstant(Val == 0, VT);
1019      case MVT::i8:
1020        Tmp1 = (unsigned)Val & 0xFF;
1021        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1022      case MVT::i16:
1023        Tmp1 = (unsigned)Val & 0xFFFF;
1024        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1025      case MVT::i32:
1026        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1027      case MVT::i64:
1028        return getConstant(CountLeadingZeros_64(Val), VT);
1029      }
1030    case ISD::CTTZ:
1031      switch(VT) {
1032      default: assert(0 && "Invalid cttz!"); break;
1033      case MVT::i1: return getConstant(Val == 0, VT);
1034      case MVT::i8:
1035        Tmp1 = (unsigned)Val | 0x100;
1036        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1037      case MVT::i16:
1038        Tmp1 = (unsigned)Val | 0x10000;
1039        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1040      case MVT::i32:
1041        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1042      case MVT::i64:
1043        return getConstant(CountTrailingZeros_64(Val), VT);
1044      }
1045    }
1046  }
1047
1048  // Constant fold unary operations with an floating point constant operand.
1049  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1050    switch (Opcode) {
1051    case ISD::FNEG:
1052      return getConstantFP(-C->getValue(), VT);
1053    case ISD::FABS:
1054      return getConstantFP(fabs(C->getValue()), VT);
1055    case ISD::FP_ROUND:
1056    case ISD::FP_EXTEND:
1057      return getConstantFP(C->getValue(), VT);
1058    case ISD::FP_TO_SINT:
1059      return getConstant((int64_t)C->getValue(), VT);
1060    case ISD::FP_TO_UINT:
1061      return getConstant((uint64_t)C->getValue(), VT);
1062    case ISD::BIT_CONVERT:
1063      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1064        return getConstant(FloatToBits(C->getValue()), VT);
1065      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1066        return getConstant(DoubleToBits(C->getValue()), VT);
1067      break;
1068    }
1069
1070  unsigned OpOpcode = Operand.Val->getOpcode();
1071  switch (Opcode) {
1072  case ISD::TokenFactor:
1073    return Operand;         // Factor of one node?  No factor.
1074  case ISD::SIGN_EXTEND:
1075    if (Operand.getValueType() == VT) return Operand;   // noop extension
1076    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1077    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1078      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1079    break;
1080  case ISD::ZERO_EXTEND:
1081    if (Operand.getValueType() == VT) return Operand;   // noop extension
1082    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1083    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1084      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1085    break;
1086  case ISD::ANY_EXTEND:
1087    if (Operand.getValueType() == VT) return Operand;   // noop extension
1088    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1089    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1090      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1091      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1092    break;
1093  case ISD::TRUNCATE:
1094    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1095    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1096    if (OpOpcode == ISD::TRUNCATE)
1097      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1098    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1099             OpOpcode == ISD::ANY_EXTEND) {
1100      // If the source is smaller than the dest, we still need an extend.
1101      if (Operand.Val->getOperand(0).getValueType() < VT)
1102        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1103      else if (Operand.Val->getOperand(0).getValueType() > VT)
1104        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1105      else
1106        return Operand.Val->getOperand(0);
1107    }
1108    break;
1109  case ISD::BIT_CONVERT:
1110    // Basic sanity checking.
1111    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1112           && "Cannot BIT_CONVERT between two different types!");
1113    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1114    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1115      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1116    if (OpOpcode == ISD::UNDEF)
1117      return getNode(ISD::UNDEF, VT);
1118    break;
1119  case ISD::SCALAR_TO_VECTOR:
1120    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1121           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1122           "Illegal SCALAR_TO_VECTOR node!");
1123    break;
1124  case ISD::FNEG:
1125    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1126      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1127                     Operand.Val->getOperand(0));
1128    if (OpOpcode == ISD::FNEG)  // --X -> X
1129      return Operand.Val->getOperand(0);
1130    break;
1131  case ISD::FABS:
1132    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1133      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1134    break;
1135  }
1136
1137  SDNode *N;
1138  SDVTList VTs = getVTList(VT);
1139  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1140    FoldingSetNodeID ID;
1141    AddNodeIDNode(ID, Opcode, VTs, Operand);
1142    void *IP = 0;
1143    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1144      return SDOperand(E, 0);
1145    N = new SDNode(Opcode, Operand);
1146    N->setValueTypes(VTs);
1147    CSEMap.InsertNode(N, IP);
1148  } else {
1149    N = new SDNode(Opcode, Operand);
1150    N->setValueTypes(VTs);
1151  }
1152  AllNodes.push_back(N);
1153  return SDOperand(N, 0);
1154}
1155
1156
1157
1158SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1159                                SDOperand N1, SDOperand N2) {
1160#ifndef NDEBUG
1161  switch (Opcode) {
1162  case ISD::TokenFactor:
1163    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1164           N2.getValueType() == MVT::Other && "Invalid token factor!");
1165    break;
1166  case ISD::AND:
1167  case ISD::OR:
1168  case ISD::XOR:
1169  case ISD::UDIV:
1170  case ISD::UREM:
1171  case ISD::MULHU:
1172  case ISD::MULHS:
1173    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1174    // fall through
1175  case ISD::ADD:
1176  case ISD::SUB:
1177  case ISD::MUL:
1178  case ISD::SDIV:
1179  case ISD::SREM:
1180    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1181    // fall through.
1182  case ISD::FADD:
1183  case ISD::FSUB:
1184  case ISD::FMUL:
1185  case ISD::FDIV:
1186  case ISD::FREM:
1187    assert(N1.getValueType() == N2.getValueType() &&
1188           N1.getValueType() == VT && "Binary operator types must match!");
1189    break;
1190  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1191    assert(N1.getValueType() == VT &&
1192           MVT::isFloatingPoint(N1.getValueType()) &&
1193           MVT::isFloatingPoint(N2.getValueType()) &&
1194           "Invalid FCOPYSIGN!");
1195    break;
1196  case ISD::SHL:
1197  case ISD::SRA:
1198  case ISD::SRL:
1199  case ISD::ROTL:
1200  case ISD::ROTR:
1201    assert(VT == N1.getValueType() &&
1202           "Shift operators return type must be the same as their first arg");
1203    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1204           VT != MVT::i1 && "Shifts only work on integers");
1205    break;
1206  case ISD::FP_ROUND_INREG: {
1207    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1208    assert(VT == N1.getValueType() && "Not an inreg round!");
1209    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1210           "Cannot FP_ROUND_INREG integer types");
1211    assert(EVT <= VT && "Not rounding down!");
1212    break;
1213  }
1214  case ISD::AssertSext:
1215  case ISD::AssertZext:
1216  case ISD::SIGN_EXTEND_INREG: {
1217    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1218    assert(VT == N1.getValueType() && "Not an inreg extend!");
1219    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1220           "Cannot *_EXTEND_INREG FP types");
1221    assert(EVT <= VT && "Not extending!");
1222  }
1223
1224  default: break;
1225  }
1226#endif
1227
1228  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1229  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1230  if (N1C) {
1231    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1232      int64_t Val = N1C->getValue();
1233      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1234      Val <<= 64-FromBits;
1235      Val >>= 64-FromBits;
1236      return getConstant(Val, VT);
1237    }
1238
1239    if (N2C) {
1240      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1241      switch (Opcode) {
1242      case ISD::ADD: return getConstant(C1 + C2, VT);
1243      case ISD::SUB: return getConstant(C1 - C2, VT);
1244      case ISD::MUL: return getConstant(C1 * C2, VT);
1245      case ISD::UDIV:
1246        if (C2) return getConstant(C1 / C2, VT);
1247        break;
1248      case ISD::UREM :
1249        if (C2) return getConstant(C1 % C2, VT);
1250        break;
1251      case ISD::SDIV :
1252        if (C2) return getConstant(N1C->getSignExtended() /
1253                                   N2C->getSignExtended(), VT);
1254        break;
1255      case ISD::SREM :
1256        if (C2) return getConstant(N1C->getSignExtended() %
1257                                   N2C->getSignExtended(), VT);
1258        break;
1259      case ISD::AND  : return getConstant(C1 & C2, VT);
1260      case ISD::OR   : return getConstant(C1 | C2, VT);
1261      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1262      case ISD::SHL  : return getConstant(C1 << C2, VT);
1263      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1264      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1265      case ISD::ROTL :
1266        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1267                           VT);
1268      case ISD::ROTR :
1269        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1270                           VT);
1271      default: break;
1272      }
1273    } else {      // Cannonicalize constant to RHS if commutative
1274      if (isCommutativeBinOp(Opcode)) {
1275        std::swap(N1C, N2C);
1276        std::swap(N1, N2);
1277      }
1278    }
1279  }
1280
1281  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1282  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1283  if (N1CFP) {
1284    if (N2CFP) {
1285      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1286      switch (Opcode) {
1287      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1288      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1289      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1290      case ISD::FDIV:
1291        if (C2) return getConstantFP(C1 / C2, VT);
1292        break;
1293      case ISD::FREM :
1294        if (C2) return getConstantFP(fmod(C1, C2), VT);
1295        break;
1296      case ISD::FCOPYSIGN: {
1297        union {
1298          double   F;
1299          uint64_t I;
1300        } u1;
1301        union {
1302          double  F;
1303          int64_t I;
1304        } u2;
1305        u1.F = C1;
1306        u2.F = C2;
1307        if (u2.I < 0)  // Sign bit of RHS set?
1308          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1309        else
1310          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1311        return getConstantFP(u1.F, VT);
1312      }
1313      default: break;
1314      }
1315    } else {      // Cannonicalize constant to RHS if commutative
1316      if (isCommutativeBinOp(Opcode)) {
1317        std::swap(N1CFP, N2CFP);
1318        std::swap(N1, N2);
1319      }
1320    }
1321  }
1322
1323  // Canonicalize an UNDEF to the RHS, even over a constant.
1324  if (N1.getOpcode() == ISD::UNDEF) {
1325    if (isCommutativeBinOp(Opcode)) {
1326      std::swap(N1, N2);
1327    } else {
1328      switch (Opcode) {
1329      case ISD::FP_ROUND_INREG:
1330      case ISD::SIGN_EXTEND_INREG:
1331      case ISD::SUB:
1332      case ISD::FSUB:
1333      case ISD::FDIV:
1334      case ISD::FREM:
1335      case ISD::SRA:
1336        return N1;     // fold op(undef, arg2) -> undef
1337      case ISD::UDIV:
1338      case ISD::SDIV:
1339      case ISD::UREM:
1340      case ISD::SREM:
1341      case ISD::SRL:
1342      case ISD::SHL:
1343        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1344      }
1345    }
1346  }
1347
1348  // Fold a bunch of operators when the RHS is undef.
1349  if (N2.getOpcode() == ISD::UNDEF) {
1350    switch (Opcode) {
1351    case ISD::ADD:
1352    case ISD::SUB:
1353    case ISD::FADD:
1354    case ISD::FSUB:
1355    case ISD::FMUL:
1356    case ISD::FDIV:
1357    case ISD::FREM:
1358    case ISD::UDIV:
1359    case ISD::SDIV:
1360    case ISD::UREM:
1361    case ISD::SREM:
1362    case ISD::XOR:
1363      return N2;       // fold op(arg1, undef) -> undef
1364    case ISD::MUL:
1365    case ISD::AND:
1366    case ISD::SRL:
1367    case ISD::SHL:
1368      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1369    case ISD::OR:
1370      return getConstant(MVT::getIntVTBitMask(VT), VT);
1371    case ISD::SRA:
1372      return N1;
1373    }
1374  }
1375
1376  // Fold operations.
1377  switch (Opcode) {
1378  case ISD::AND:
1379    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1380    // worth handling here.
1381    if (N2C && N2C->getValue() == 0)
1382      return N2;
1383    break;
1384  case ISD::OR:
1385  case ISD::XOR:
1386    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1387    // worth handling here.
1388    if (N2C && N2C->getValue() == 0)
1389      return N1;
1390    break;
1391  case ISD::FP_ROUND_INREG:
1392    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1393    break;
1394  case ISD::SIGN_EXTEND_INREG: {
1395    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1396    if (EVT == VT) return N1;  // Not actually extending
1397    break;
1398  }
1399  case ISD::EXTRACT_ELEMENT:
1400    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1401
1402    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
1403    // 64-bit integers into 32-bit parts.  Instead of building the extract of
1404    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
1405    if (N1.getOpcode() == ISD::BUILD_PAIR)
1406      return N1.getOperand(N2C->getValue());
1407
1408    // EXTRACT_ELEMENT of a constant int is also very common.
1409    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
1410      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
1411      return getConstant(C->getValue() >> Shift, VT);
1412    }
1413    break;
1414
1415  // FIXME: figure out how to safely handle things like
1416  // int foo(int x) { return 1 << (x & 255); }
1417  // int bar() { return foo(256); }
1418#if 0
1419  case ISD::SHL:
1420  case ISD::SRL:
1421  case ISD::SRA:
1422    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1423        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1424      return getNode(Opcode, VT, N1, N2.getOperand(0));
1425    else if (N2.getOpcode() == ISD::AND)
1426      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1427        // If the and is only masking out bits that cannot effect the shift,
1428        // eliminate the and.
1429        unsigned NumBits = MVT::getSizeInBits(VT);
1430        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1431          return getNode(Opcode, VT, N1, N2.getOperand(0));
1432      }
1433    break;
1434#endif
1435  }
1436
1437  // Memoize this node if possible.
1438  SDNode *N;
1439  SDVTList VTs = getVTList(VT);
1440  if (VT != MVT::Flag) {
1441    FoldingSetNodeID ID;
1442    AddNodeIDNode(ID, Opcode, VTs, N1, N2);
1443    void *IP = 0;
1444    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1445      return SDOperand(E, 0);
1446    N = new SDNode(Opcode, N1, N2);
1447    N->setValueTypes(VTs);
1448    CSEMap.InsertNode(N, IP);
1449  } else {
1450    N = new SDNode(Opcode, N1, N2);
1451    N->setValueTypes(VTs);
1452  }
1453
1454  AllNodes.push_back(N);
1455  return SDOperand(N, 0);
1456}
1457
1458SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1459                                SDOperand N1, SDOperand N2, SDOperand N3) {
1460  // Perform various simplifications.
1461  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1462  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1463  //ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1464  switch (Opcode) {
1465  case ISD::SETCC: {
1466    // Use FoldSetCC to simplify SETCC's.
1467    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1468    if (Simp.Val) return Simp;
1469    break;
1470  }
1471  case ISD::SELECT:
1472    if (N1C)
1473      if (N1C->getValue())
1474        return N2;             // select true, X, Y -> X
1475      else
1476        return N3;             // select false, X, Y -> Y
1477
1478    if (N2 == N3) return N2;   // select C, X, X -> X
1479    break;
1480  case ISD::BRCOND:
1481    if (N2C)
1482      if (N2C->getValue()) // Unconditional branch
1483        return getNode(ISD::BR, MVT::Other, N1, N3);
1484      else
1485        return N1;         // Never-taken branch
1486    break;
1487  case ISD::VECTOR_SHUFFLE:
1488    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1489           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1490           N3.getOpcode() == ISD::BUILD_VECTOR &&
1491           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1492           "Illegal VECTOR_SHUFFLE node!");
1493    break;
1494  }
1495
1496  // Memoize node if it doesn't produce a flag.
1497  SDNode *N;
1498  SDVTList VTs = getVTList(VT);
1499  if (VT != MVT::Flag) {
1500    FoldingSetNodeID ID;
1501    AddNodeIDNode(ID, Opcode, VTs, N1, N2, N3);
1502    void *IP = 0;
1503    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1504      return SDOperand(E, 0);
1505    N = new SDNode(Opcode, N1, N2, N3);
1506    N->setValueTypes(VTs);
1507    CSEMap.InsertNode(N, IP);
1508  } else {
1509    N = new SDNode(Opcode, N1, N2, N3);
1510    N->setValueTypes(VTs);
1511  }
1512  AllNodes.push_back(N);
1513  return SDOperand(N, 0);
1514}
1515
1516SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1517                                SDOperand N1, SDOperand N2, SDOperand N3,
1518                                SDOperand N4) {
1519  SDOperand Ops[] = { N1, N2, N3, N4 };
1520  return getNode(Opcode, VT, Ops, 4);
1521}
1522
1523SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1524                                SDOperand N1, SDOperand N2, SDOperand N3,
1525                                SDOperand N4, SDOperand N5) {
1526  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1527  return getNode(Opcode, VT, Ops, 5);
1528}
1529
1530SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1531                                SDOperand Chain, SDOperand Ptr,
1532                                const Value *SV, int SVOffset,
1533                                bool isVolatile) {
1534  // FIXME: Alignment == 1 for now.
1535  unsigned Alignment = 1;
1536  SDVTList VTs = getVTList(VT, MVT::Other);
1537  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1538  FoldingSetNodeID ID;
1539  AddNodeIDNode(ID, ISD::LOAD, VTs, Chain, Ptr, Undef);
1540  ID.AddInteger(ISD::UNINDEXED);
1541  ID.AddInteger(ISD::NON_EXTLOAD);
1542  ID.AddInteger(VT);
1543  ID.AddPointer(SV);
1544  ID.AddInteger(SVOffset);
1545  ID.AddInteger(Alignment);
1546  ID.AddInteger(isVolatile);
1547  void *IP = 0;
1548  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1549    return SDOperand(E, 0);
1550  SDNode *N = new LoadSDNode(Chain, Ptr, Undef, ISD::UNINDEXED,
1551                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
1552                             isVolatile);
1553  N->setValueTypes(VTs);
1554  CSEMap.InsertNode(N, IP);
1555  AllNodes.push_back(N);
1556  return SDOperand(N, 0);
1557}
1558
1559SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
1560                                   SDOperand Chain, SDOperand Ptr, const Value *SV,
1561                                   int SVOffset, MVT::ValueType EVT,
1562                                   bool isVolatile) {
1563  // If they are asking for an extending load from/to the same thing, return a
1564  // normal load.
1565  if (VT == EVT)
1566    ExtType = ISD::NON_EXTLOAD;
1567
1568  if (MVT::isVector(VT))
1569    assert(EVT == MVT::getVectorBaseType(VT) && "Invalid vector extload!");
1570  else
1571    assert(EVT < VT && "Should only be an extending load, not truncating!");
1572  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
1573         "Cannot sign/zero extend a FP/Vector load!");
1574  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
1575         "Cannot convert from FP to Int or Int -> FP!");
1576
1577  // FIXME: Alignment == 1 for now.
1578  unsigned Alignment = 1;
1579  SDVTList VTs = getVTList(VT, MVT::Other);
1580  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1581  FoldingSetNodeID ID;
1582  AddNodeIDNode(ID, ISD::LOAD, VTs, Chain, Ptr, Undef);
1583  ID.AddInteger(ISD::UNINDEXED);
1584  ID.AddInteger(ExtType);
1585  ID.AddInteger(EVT);
1586  ID.AddPointer(SV);
1587  ID.AddInteger(SVOffset);
1588  ID.AddInteger(Alignment);
1589  ID.AddInteger(isVolatile);
1590  void *IP = 0;
1591  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1592    return SDOperand(E, 0);
1593  SDNode *N = new LoadSDNode(Chain, Ptr, Undef, ISD::UNINDEXED, ExtType, EVT,
1594                             SV, SVOffset, Alignment, isVolatile);
1595  N->setValueTypes(VTs);
1596  CSEMap.InsertNode(N, IP);
1597  AllNodes.push_back(N);
1598  return SDOperand(N, 0);
1599}
1600
1601SDOperand SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
1602                                       SDOperand Offset, ISD::MemOpAddrMode AM){
1603  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
1604  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
1605         "Load is already a indexed load!");
1606  MVT::ValueType VT = OrigLoad.getValueType();
1607  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
1608  FoldingSetNodeID ID;
1609  AddNodeIDNode(ID, ISD::LOAD, VTs, LD->getChain(), Base, Offset);
1610  ID.AddInteger(AM);
1611  ID.AddInteger(LD->getExtensionType());
1612  ID.AddInteger(LD->getLoadedVT());
1613  ID.AddPointer(LD->getSrcValue());
1614  ID.AddInteger(LD->getSrcValueOffset());
1615  ID.AddInteger(LD->getAlignment());
1616  ID.AddInteger(LD->isVolatile());
1617  void *IP = 0;
1618  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1619    return SDOperand(E, 0);
1620  SDNode *N = new LoadSDNode(LD->getChain(), Base, Offset, AM,
1621                             LD->getExtensionType(), LD->getLoadedVT(),
1622                             LD->getSrcValue(), LD->getSrcValueOffset(),
1623                             LD->getAlignment(), LD->isVolatile());
1624  N->setValueTypes(VTs);
1625  CSEMap.InsertNode(N, IP);
1626  AllNodes.push_back(N);
1627  return SDOperand(N, 0);
1628}
1629
1630SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1631                                   SDOperand Chain, SDOperand Ptr,
1632                                   SDOperand SV) {
1633  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1634                      getValueType(EVT) };
1635  return getNode(ISD::VLOAD, getVTList(MVT::Vector, MVT::Other), Ops, 5);
1636}
1637
1638SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Value,
1639                                 SDOperand Ptr, const Value *SV, int SVOffset,
1640                                 bool isVolatile) {
1641  MVT::ValueType VT = Value.getValueType();
1642
1643  // FIXME: Alignment == 1 for now.
1644  unsigned Alignment = 1;
1645  SDVTList VTs = getVTList(MVT::Other);
1646  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1647  SDOperand Ops[] = { Chain, Value, Ptr, Undef };
1648  FoldingSetNodeID ID;
1649  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1650  ID.AddInteger(ISD::UNINDEXED);
1651  ID.AddInteger(false);
1652  ID.AddInteger(VT);
1653  ID.AddPointer(SV);
1654  ID.AddInteger(SVOffset);
1655  ID.AddInteger(Alignment);
1656  ID.AddInteger(isVolatile);
1657  void *IP = 0;
1658  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1659    return SDOperand(E, 0);
1660  SDNode *N = new StoreSDNode(Chain, Value, Ptr, Undef, ISD::UNINDEXED, false,
1661                              VT, SV, SVOffset, Alignment, isVolatile);
1662  N->setValueTypes(VTs);
1663  CSEMap.InsertNode(N, IP);
1664  AllNodes.push_back(N);
1665  return SDOperand(N, 0);
1666}
1667
1668SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Value,
1669                                      SDOperand Ptr, const Value *SV,
1670                                      int SVOffset, MVT::ValueType SVT,
1671                                      bool isVolatile) {
1672  MVT::ValueType VT = Value.getValueType();
1673  bool isTrunc = VT != SVT;
1674
1675  assert(VT > SVT && "Not a truncation?");
1676  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
1677         "Can't do FP-INT conversion!");
1678
1679  // FIXME: Alignment == 1 for now.
1680  unsigned Alignment = 1;
1681  SDVTList VTs = getVTList(MVT::Other);
1682  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1683  SDOperand Ops[] = { Chain, Value, Ptr, Undef };
1684  FoldingSetNodeID ID;
1685  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1686  ID.AddInteger(ISD::UNINDEXED);
1687  ID.AddInteger(isTrunc);
1688  ID.AddInteger(SVT);
1689  ID.AddPointer(SV);
1690  ID.AddInteger(SVOffset);
1691  ID.AddInteger(Alignment);
1692  ID.AddInteger(isVolatile);
1693  void *IP = 0;
1694  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1695    return SDOperand(E, 0);
1696  SDNode *N = new StoreSDNode(Chain, Value, Ptr, Undef, ISD::UNINDEXED, isTrunc,
1697                              SVT, SV, SVOffset, Alignment, isVolatile);
1698  N->setValueTypes(VTs);
1699  CSEMap.InsertNode(N, IP);
1700  AllNodes.push_back(N);
1701  return SDOperand(N, 0);
1702}
1703
1704SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1705                                 SDOperand Chain, SDOperand Ptr,
1706                                 SDOperand SV) {
1707  SDOperand Ops[] = { Chain, Ptr, SV };
1708  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
1709}
1710
1711SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1712                                const SDOperand *Ops, unsigned NumOps) {
1713  switch (NumOps) {
1714  case 0: return getNode(Opcode, VT);
1715  case 1: return getNode(Opcode, VT, Ops[0]);
1716  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1717  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1718  default: break;
1719  }
1720
1721  switch (Opcode) {
1722  default: break;
1723  case ISD::SELECT_CC: {
1724    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1725    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1726           "LHS and RHS of condition must have same type!");
1727    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1728           "True and False arms of SelectCC must have same type!");
1729    assert(Ops[2].getValueType() == VT &&
1730           "select_cc node must be of same type as true and false value!");
1731    break;
1732  }
1733  case ISD::BR_CC: {
1734    assert(NumOps == 5 && "BR_CC takes 5 operands!");
1735    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1736           "LHS/RHS of comparison should match types!");
1737    break;
1738  }
1739  }
1740
1741  // Memoize nodes.
1742  SDNode *N;
1743  SDVTList VTs = getVTList(VT);
1744  if (VT != MVT::Flag) {
1745    FoldingSetNodeID ID;
1746    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
1747    void *IP = 0;
1748    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1749      return SDOperand(E, 0);
1750    N = new SDNode(Opcode, Ops, NumOps);
1751    N->setValueTypes(VTs);
1752    CSEMap.InsertNode(N, IP);
1753  } else {
1754    N = new SDNode(Opcode, Ops, NumOps);
1755    N->setValueTypes(VTs);
1756  }
1757  AllNodes.push_back(N);
1758  return SDOperand(N, 0);
1759}
1760
1761SDOperand SelectionDAG::getNode(unsigned Opcode,
1762                                std::vector<MVT::ValueType> &ResultTys,
1763                                const SDOperand *Ops, unsigned NumOps) {
1764  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
1765                 Ops, NumOps);
1766}
1767
1768SDOperand SelectionDAG::getNode(unsigned Opcode,
1769                                const MVT::ValueType *VTs, unsigned NumVTs,
1770                                const SDOperand *Ops, unsigned NumOps) {
1771  if (NumVTs == 1)
1772    return getNode(Opcode, VTs[0], Ops, NumOps);
1773  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
1774}
1775
1776SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
1777                                const SDOperand *Ops, unsigned NumOps) {
1778  if (VTList.NumVTs == 1)
1779    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
1780
1781  switch (Opcode) {
1782  // FIXME: figure out how to safely handle things like
1783  // int foo(int x) { return 1 << (x & 255); }
1784  // int bar() { return foo(256); }
1785#if 0
1786  case ISD::SRA_PARTS:
1787  case ISD::SRL_PARTS:
1788  case ISD::SHL_PARTS:
1789    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1790        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1791      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1792    else if (N3.getOpcode() == ISD::AND)
1793      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1794        // If the and is only masking out bits that cannot effect the shift,
1795        // eliminate the and.
1796        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1797        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1798          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1799      }
1800    break;
1801#endif
1802  }
1803
1804  // Memoize the node unless it returns a flag.
1805  SDNode *N;
1806  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
1807    FoldingSetNodeID ID;
1808    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
1809    void *IP = 0;
1810    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1811      return SDOperand(E, 0);
1812    N = new SDNode(Opcode, Ops, NumOps);
1813    N->setValueTypes(VTList);
1814    CSEMap.InsertNode(N, IP);
1815  } else {
1816    N = new SDNode(Opcode, Ops, NumOps);
1817    N->setValueTypes(VTList);
1818  }
1819  AllNodes.push_back(N);
1820  return SDOperand(N, 0);
1821}
1822
1823SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
1824  return makeVTList(SDNode::getValueTypeList(VT), 1);
1825}
1826
1827SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
1828  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1829       E = VTList.end(); I != E; ++I) {
1830    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1831      return makeVTList(&(*I)[0], 2);
1832  }
1833  std::vector<MVT::ValueType> V;
1834  V.push_back(VT1);
1835  V.push_back(VT2);
1836  VTList.push_front(V);
1837  return makeVTList(&(*VTList.begin())[0], 2);
1838}
1839SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
1840                                 MVT::ValueType VT3) {
1841  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1842       E = VTList.end(); I != E; ++I) {
1843    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
1844        (*I)[2] == VT3)
1845      return makeVTList(&(*I)[0], 3);
1846  }
1847  std::vector<MVT::ValueType> V;
1848  V.push_back(VT1);
1849  V.push_back(VT2);
1850  V.push_back(VT3);
1851  VTList.push_front(V);
1852  return makeVTList(&(*VTList.begin())[0], 3);
1853}
1854
1855SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
1856  switch (NumVTs) {
1857    case 0: assert(0 && "Cannot have nodes without results!");
1858    case 1: return makeVTList(SDNode::getValueTypeList(VTs[0]), 1);
1859    case 2: return getVTList(VTs[0], VTs[1]);
1860    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
1861    default: break;
1862  }
1863
1864  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1865       E = VTList.end(); I != E; ++I) {
1866    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
1867
1868    bool NoMatch = false;
1869    for (unsigned i = 2; i != NumVTs; ++i)
1870      if (VTs[i] != (*I)[i]) {
1871        NoMatch = true;
1872        break;
1873      }
1874    if (!NoMatch)
1875      return makeVTList(&*I->begin(), NumVTs);
1876  }
1877
1878  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
1879  return makeVTList(&*VTList.begin()->begin(), NumVTs);
1880}
1881
1882
1883/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1884/// specified operands.  If the resultant node already exists in the DAG,
1885/// this does not modify the specified node, instead it returns the node that
1886/// already exists.  If the resultant node does not exist in the DAG, the
1887/// input node is returned.  As a degenerate case, if you specify the same
1888/// input operands as the node already has, the input node is returned.
1889SDOperand SelectionDAG::
1890UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1891  SDNode *N = InN.Val;
1892  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1893
1894  // Check to see if there is no change.
1895  if (Op == N->getOperand(0)) return InN;
1896
1897  // See if the modified node already exists.
1898  void *InsertPos = 0;
1899  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1900    return SDOperand(Existing, InN.ResNo);
1901
1902  // Nope it doesn't.  Remove the node from it's current place in the maps.
1903  if (InsertPos)
1904    RemoveNodeFromCSEMaps(N);
1905
1906  // Now we update the operands.
1907  N->OperandList[0].Val->removeUser(N);
1908  Op.Val->addUser(N);
1909  N->OperandList[0] = Op;
1910
1911  // If this gets put into a CSE map, add it.
1912  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1913  return InN;
1914}
1915
1916SDOperand SelectionDAG::
1917UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1918  SDNode *N = InN.Val;
1919  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1920
1921  // Check to see if there is no change.
1922  bool AnyChange = false;
1923  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1924    return InN;   // No operands changed, just return the input node.
1925
1926  // See if the modified node already exists.
1927  void *InsertPos = 0;
1928  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
1929    return SDOperand(Existing, InN.ResNo);
1930
1931  // Nope it doesn't.  Remove the node from it's current place in the maps.
1932  if (InsertPos)
1933    RemoveNodeFromCSEMaps(N);
1934
1935  // Now we update the operands.
1936  if (N->OperandList[0] != Op1) {
1937    N->OperandList[0].Val->removeUser(N);
1938    Op1.Val->addUser(N);
1939    N->OperandList[0] = Op1;
1940  }
1941  if (N->OperandList[1] != Op2) {
1942    N->OperandList[1].Val->removeUser(N);
1943    Op2.Val->addUser(N);
1944    N->OperandList[1] = Op2;
1945  }
1946
1947  // If this gets put into a CSE map, add it.
1948  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1949  return InN;
1950}
1951
1952SDOperand SelectionDAG::
1953UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1954  SDOperand Ops[] = { Op1, Op2, Op3 };
1955  return UpdateNodeOperands(N, Ops, 3);
1956}
1957
1958SDOperand SelectionDAG::
1959UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1960                   SDOperand Op3, SDOperand Op4) {
1961  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
1962  return UpdateNodeOperands(N, Ops, 4);
1963}
1964
1965SDOperand SelectionDAG::
1966UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1967                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1968  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
1969  return UpdateNodeOperands(N, Ops, 5);
1970}
1971
1972
1973SDOperand SelectionDAG::
1974UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
1975  SDNode *N = InN.Val;
1976  assert(N->getNumOperands() == NumOps &&
1977         "Update with wrong number of operands");
1978
1979  // Check to see if there is no change.
1980  bool AnyChange = false;
1981  for (unsigned i = 0; i != NumOps; ++i) {
1982    if (Ops[i] != N->getOperand(i)) {
1983      AnyChange = true;
1984      break;
1985    }
1986  }
1987
1988  // No operands changed, just return the input node.
1989  if (!AnyChange) return InN;
1990
1991  // See if the modified node already exists.
1992  void *InsertPos = 0;
1993  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
1994    return SDOperand(Existing, InN.ResNo);
1995
1996  // Nope it doesn't.  Remove the node from it's current place in the maps.
1997  if (InsertPos)
1998    RemoveNodeFromCSEMaps(N);
1999
2000  // Now we update the operands.
2001  for (unsigned i = 0; i != NumOps; ++i) {
2002    if (N->OperandList[i] != Ops[i]) {
2003      N->OperandList[i].Val->removeUser(N);
2004      Ops[i].Val->addUser(N);
2005      N->OperandList[i] = Ops[i];
2006    }
2007  }
2008
2009  // If this gets put into a CSE map, add it.
2010  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2011  return InN;
2012}
2013
2014
2015
2016
2017/// SelectNodeTo - These are used for target selectors to *mutate* the
2018/// specified node to have the specified return type, Target opcode, and
2019/// operands.  Note that target opcodes are stored as
2020/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2021///
2022/// Note that SelectNodeTo returns the resultant node.  If there is already a
2023/// node of the specified opcode and operands, it returns that node instead of
2024/// the current one.
2025SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2026                                   MVT::ValueType VT) {
2027  SDVTList VTs = getVTList(VT);
2028  FoldingSetNodeID ID;
2029  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs);
2030  void *IP = 0;
2031  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2032    return ON;
2033
2034  RemoveNodeFromCSEMaps(N);
2035
2036  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2037  N->setValueTypes(VTs);
2038
2039  CSEMap.InsertNode(N, IP);
2040  return N;
2041}
2042
2043SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2044                                   MVT::ValueType VT, SDOperand Op1) {
2045  // If an identical node already exists, use it.
2046  SDVTList VTs = getVTList(VT);
2047  FoldingSetNodeID ID;
2048  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1);
2049  void *IP = 0;
2050  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2051    return ON;
2052
2053  RemoveNodeFromCSEMaps(N);
2054  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2055  N->setValueTypes(VTs);
2056  N->setOperands(Op1);
2057  CSEMap.InsertNode(N, IP);
2058  return N;
2059}
2060
2061SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2062                                   MVT::ValueType VT, SDOperand Op1,
2063                                   SDOperand Op2) {
2064  // If an identical node already exists, use it.
2065  SDVTList VTs = getVTList(VT);
2066  FoldingSetNodeID ID;
2067  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs,  Op1, Op2);
2068  void *IP = 0;
2069  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2070    return ON;
2071
2072  RemoveNodeFromCSEMaps(N);
2073  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2074  N->setValueTypes(VTs);
2075  N->setOperands(Op1, Op2);
2076
2077  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2078  return N;
2079}
2080
2081SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2082                                   MVT::ValueType VT, SDOperand Op1,
2083                                   SDOperand Op2, SDOperand Op3) {
2084  // If an identical node already exists, use it.
2085  SDVTList VTs = getVTList(VT);
2086  FoldingSetNodeID ID;
2087  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs,  Op1, Op2, Op3);
2088  void *IP = 0;
2089  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2090    return ON;
2091
2092  RemoveNodeFromCSEMaps(N);
2093  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2094  N->setValueTypes(VTs);
2095  N->setOperands(Op1, Op2, Op3);
2096
2097  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2098  return N;
2099}
2100
2101SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2102                                   MVT::ValueType VT, const SDOperand *Ops,
2103                                   unsigned NumOps) {
2104  // If an identical node already exists, use it.
2105  SDVTList VTs = getVTList(VT);
2106  FoldingSetNodeID ID;
2107  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2108  void *IP = 0;
2109  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2110    return ON;
2111
2112  RemoveNodeFromCSEMaps(N);
2113  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2114  N->setValueTypes(VTs);
2115  N->setOperands(Ops, NumOps);
2116
2117  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2118  return N;
2119}
2120
2121SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2122                                   MVT::ValueType VT1, MVT::ValueType VT2,
2123                                   SDOperand Op1, SDOperand Op2) {
2124  SDVTList VTs = getVTList(VT1, VT2);
2125  FoldingSetNodeID ID;
2126  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
2127  void *IP = 0;
2128  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2129    return ON;
2130
2131  RemoveNodeFromCSEMaps(N);
2132  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2133  N->setValueTypes(VTs);
2134  N->setOperands(Op1, Op2);
2135
2136  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2137  return N;
2138}
2139
2140SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2141                                   MVT::ValueType VT1, MVT::ValueType VT2,
2142                                   SDOperand Op1, SDOperand Op2,
2143                                   SDOperand Op3) {
2144  // If an identical node already exists, use it.
2145  SDVTList VTs = getVTList(VT1, VT2);
2146  FoldingSetNodeID ID;
2147  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2, Op3);
2148  void *IP = 0;
2149  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2150    return ON;
2151
2152  RemoveNodeFromCSEMaps(N);
2153  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2154  N->setValueTypes(VTs);
2155  N->setOperands(Op1, Op2, Op3);
2156
2157  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2158  return N;
2159}
2160
2161
2162/// getTargetNode - These are used for target selectors to create a new node
2163/// with specified return type(s), target opcode, and operands.
2164///
2165/// Note that getTargetNode returns the resultant node.  If there is already a
2166/// node of the specified opcode and operands, it returns that node instead of
2167/// the current one.
2168SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2169  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2170}
2171SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2172                                    SDOperand Op1) {
2173  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2174}
2175SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2176                                    SDOperand Op1, SDOperand Op2) {
2177  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2178}
2179SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2180                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2181  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2182}
2183SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2184                                    const SDOperand *Ops, unsigned NumOps) {
2185  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2186}
2187SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2188                                    MVT::ValueType VT2, SDOperand Op1) {
2189  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2190  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2191}
2192SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2193                                    MVT::ValueType VT2, SDOperand Op1,
2194                                    SDOperand Op2) {
2195  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2196  SDOperand Ops[] = { Op1, Op2 };
2197  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2198}
2199SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2200                                    MVT::ValueType VT2, SDOperand Op1,
2201                                    SDOperand Op2, SDOperand Op3) {
2202  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2203  SDOperand Ops[] = { Op1, Op2, Op3 };
2204  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2205}
2206SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2207                                    MVT::ValueType VT2,
2208                                    const SDOperand *Ops, unsigned NumOps) {
2209  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2210  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2211}
2212SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2213                                    MVT::ValueType VT2, MVT::ValueType VT3,
2214                                    SDOperand Op1, SDOperand Op2) {
2215  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2216  SDOperand Ops[] = { Op1, Op2 };
2217  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2218}
2219SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2220                                    MVT::ValueType VT2, MVT::ValueType VT3,
2221                                    const SDOperand *Ops, unsigned NumOps) {
2222  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2223  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2224}
2225
2226/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2227/// This can cause recursive merging of nodes in the DAG.
2228///
2229/// This version assumes From/To have a single result value.
2230///
2231void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2232                                      std::vector<SDNode*> *Deleted) {
2233  SDNode *From = FromN.Val, *To = ToN.Val;
2234  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2235         "Cannot replace with this method!");
2236  assert(From != To && "Cannot replace uses of with self");
2237
2238  while (!From->use_empty()) {
2239    // Process users until they are all gone.
2240    SDNode *U = *From->use_begin();
2241
2242    // This node is about to morph, remove its old self from the CSE maps.
2243    RemoveNodeFromCSEMaps(U);
2244
2245    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2246         I != E; ++I)
2247      if (I->Val == From) {
2248        From->removeUser(U);
2249        I->Val = To;
2250        To->addUser(U);
2251      }
2252
2253    // Now that we have modified U, add it back to the CSE maps.  If it already
2254    // exists there, recursively merge the results together.
2255    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2256      ReplaceAllUsesWith(U, Existing, Deleted);
2257      // U is now dead.
2258      if (Deleted) Deleted->push_back(U);
2259      DeleteNodeNotInCSEMaps(U);
2260    }
2261  }
2262}
2263
2264/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2265/// This can cause recursive merging of nodes in the DAG.
2266///
2267/// This version assumes From/To have matching types and numbers of result
2268/// values.
2269///
2270void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2271                                      std::vector<SDNode*> *Deleted) {
2272  assert(From != To && "Cannot replace uses of with self");
2273  assert(From->getNumValues() == To->getNumValues() &&
2274         "Cannot use this version of ReplaceAllUsesWith!");
2275  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2276    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2277    return;
2278  }
2279
2280  while (!From->use_empty()) {
2281    // Process users until they are all gone.
2282    SDNode *U = *From->use_begin();
2283
2284    // This node is about to morph, remove its old self from the CSE maps.
2285    RemoveNodeFromCSEMaps(U);
2286
2287    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2288         I != E; ++I)
2289      if (I->Val == From) {
2290        From->removeUser(U);
2291        I->Val = To;
2292        To->addUser(U);
2293      }
2294
2295    // Now that we have modified U, add it back to the CSE maps.  If it already
2296    // exists there, recursively merge the results together.
2297    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2298      ReplaceAllUsesWith(U, Existing, Deleted);
2299      // U is now dead.
2300      if (Deleted) Deleted->push_back(U);
2301      DeleteNodeNotInCSEMaps(U);
2302    }
2303  }
2304}
2305
2306/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2307/// This can cause recursive merging of nodes in the DAG.
2308///
2309/// This version can replace From with any result values.  To must match the
2310/// number and types of values returned by From.
2311void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2312                                      const SDOperand *To,
2313                                      std::vector<SDNode*> *Deleted) {
2314  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
2315    // Degenerate case handled above.
2316    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2317    return;
2318  }
2319
2320  while (!From->use_empty()) {
2321    // Process users until they are all gone.
2322    SDNode *U = *From->use_begin();
2323
2324    // This node is about to morph, remove its old self from the CSE maps.
2325    RemoveNodeFromCSEMaps(U);
2326
2327    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2328         I != E; ++I)
2329      if (I->Val == From) {
2330        const SDOperand &ToOp = To[I->ResNo];
2331        From->removeUser(U);
2332        *I = ToOp;
2333        ToOp.Val->addUser(U);
2334      }
2335
2336    // Now that we have modified U, add it back to the CSE maps.  If it already
2337    // exists there, recursively merge the results together.
2338    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2339      ReplaceAllUsesWith(U, Existing, Deleted);
2340      // U is now dead.
2341      if (Deleted) Deleted->push_back(U);
2342      DeleteNodeNotInCSEMaps(U);
2343    }
2344  }
2345}
2346
2347/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2348/// uses of other values produced by From.Val alone.  The Deleted vector is
2349/// handled the same was as for ReplaceAllUsesWith.
2350void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2351                                             std::vector<SDNode*> &Deleted) {
2352  assert(From != To && "Cannot replace a value with itself");
2353  // Handle the simple, trivial, case efficiently.
2354  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2355    ReplaceAllUsesWith(From, To, &Deleted);
2356    return;
2357  }
2358
2359  // Get all of the users in a nice, deterministically ordered, uniqued set.
2360  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2361
2362  while (!Users.empty()) {
2363    // We know that this user uses some value of From.  If it is the right
2364    // value, update it.
2365    SDNode *User = Users.back();
2366    Users.pop_back();
2367
2368    for (SDOperand *Op = User->OperandList,
2369         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2370      if (*Op == From) {
2371        // Okay, we know this user needs to be updated.  Remove its old self
2372        // from the CSE maps.
2373        RemoveNodeFromCSEMaps(User);
2374
2375        // Update all operands that match "From".
2376        for (; Op != E; ++Op) {
2377          if (*Op == From) {
2378            From.Val->removeUser(User);
2379            *Op = To;
2380            To.Val->addUser(User);
2381          }
2382        }
2383
2384        // Now that we have modified User, add it back to the CSE maps.  If it
2385        // already exists there, recursively merge the results together.
2386        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2387          unsigned NumDeleted = Deleted.size();
2388          ReplaceAllUsesWith(User, Existing, &Deleted);
2389
2390          // User is now dead.
2391          Deleted.push_back(User);
2392          DeleteNodeNotInCSEMaps(User);
2393
2394          // We have to be careful here, because ReplaceAllUsesWith could have
2395          // deleted a user of From, which means there may be dangling pointers
2396          // in the "Users" setvector.  Scan over the deleted node pointers and
2397          // remove them from the setvector.
2398          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2399            Users.remove(Deleted[i]);
2400        }
2401        break;   // Exit the operand scanning loop.
2402      }
2403    }
2404  }
2405}
2406
2407
2408/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2409/// their allnodes order. It returns the maximum id.
2410unsigned SelectionDAG::AssignNodeIds() {
2411  unsigned Id = 0;
2412  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2413    SDNode *N = I;
2414    N->setNodeId(Id++);
2415  }
2416  return Id;
2417}
2418
2419/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2420/// based on their topological order. It returns the maximum id and a vector
2421/// of the SDNodes* in assigned order by reference.
2422unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2423  unsigned DAGSize = AllNodes.size();
2424  std::vector<unsigned> InDegree(DAGSize);
2425  std::vector<SDNode*> Sources;
2426
2427  // Use a two pass approach to avoid using a std::map which is slow.
2428  unsigned Id = 0;
2429  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2430    SDNode *N = I;
2431    N->setNodeId(Id++);
2432    unsigned Degree = N->use_size();
2433    InDegree[N->getNodeId()] = Degree;
2434    if (Degree == 0)
2435      Sources.push_back(N);
2436  }
2437
2438  TopOrder.clear();
2439  while (!Sources.empty()) {
2440    SDNode *N = Sources.back();
2441    Sources.pop_back();
2442    TopOrder.push_back(N);
2443    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2444      SDNode *P = I->Val;
2445      unsigned Degree = --InDegree[P->getNodeId()];
2446      if (Degree == 0)
2447        Sources.push_back(P);
2448    }
2449  }
2450
2451  // Second pass, assign the actual topological order as node ids.
2452  Id = 0;
2453  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2454       TI != TE; ++TI)
2455    (*TI)->setNodeId(Id++);
2456
2457  return Id;
2458}
2459
2460
2461
2462//===----------------------------------------------------------------------===//
2463//                              SDNode Class
2464//===----------------------------------------------------------------------===//
2465
2466// Out-of-line virtual method to give class a home.
2467void SDNode::ANCHOR() {
2468}
2469
2470/// Profile - Gather unique data for the node.
2471///
2472void SDNode::Profile(FoldingSetNodeID &ID) {
2473  AddNodeIDNode(ID, this);
2474}
2475
2476/// getValueTypeList - Return a pointer to the specified value type.
2477///
2478MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2479  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2480  VTs[VT] = VT;
2481  return &VTs[VT];
2482}
2483
2484/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2485/// indicated value.  This method ignores uses of other values defined by this
2486/// operation.
2487bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2488  assert(Value < getNumValues() && "Bad value!");
2489
2490  // If there is only one value, this is easy.
2491  if (getNumValues() == 1)
2492    return use_size() == NUses;
2493  if (Uses.size() < NUses) return false;
2494
2495  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2496
2497  std::set<SDNode*> UsersHandled;
2498
2499  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
2500    SDNode *User = *UI;
2501    if (User->getNumOperands() == 1 ||
2502        UsersHandled.insert(User).second)     // First time we've seen this?
2503      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2504        if (User->getOperand(i) == TheValue) {
2505          if (NUses == 0)
2506            return false;   // too many uses
2507          --NUses;
2508        }
2509  }
2510
2511  // Found exactly the right number of uses?
2512  return NUses == 0;
2513}
2514
2515
2516// isOnlyUse - Return true if this node is the only use of N.
2517bool SDNode::isOnlyUse(SDNode *N) const {
2518  bool Seen = false;
2519  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2520    SDNode *User = *I;
2521    if (User == this)
2522      Seen = true;
2523    else
2524      return false;
2525  }
2526
2527  return Seen;
2528}
2529
2530// isOperand - Return true if this node is an operand of N.
2531bool SDOperand::isOperand(SDNode *N) const {
2532  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2533    if (*this == N->getOperand(i))
2534      return true;
2535  return false;
2536}
2537
2538bool SDNode::isOperand(SDNode *N) const {
2539  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2540    if (this == N->OperandList[i].Val)
2541      return true;
2542  return false;
2543}
2544
2545uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
2546  assert(Num < NumOperands && "Invalid child # of SDNode!");
2547  return cast<ConstantSDNode>(OperandList[Num])->getValue();
2548}
2549
2550const char *SDNode::getOperationName(const SelectionDAG *G) const {
2551  switch (getOpcode()) {
2552  default:
2553    if (getOpcode() < ISD::BUILTIN_OP_END)
2554      return "<<Unknown DAG Node>>";
2555    else {
2556      if (G) {
2557        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2558          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2559            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2560
2561        TargetLowering &TLI = G->getTargetLoweringInfo();
2562        const char *Name =
2563          TLI.getTargetNodeName(getOpcode());
2564        if (Name) return Name;
2565      }
2566
2567      return "<<Unknown Target Node>>";
2568    }
2569
2570  case ISD::PCMARKER:      return "PCMarker";
2571  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2572  case ISD::SRCVALUE:      return "SrcValue";
2573  case ISD::EntryToken:    return "EntryToken";
2574  case ISD::TokenFactor:   return "TokenFactor";
2575  case ISD::AssertSext:    return "AssertSext";
2576  case ISD::AssertZext:    return "AssertZext";
2577
2578  case ISD::STRING:        return "String";
2579  case ISD::BasicBlock:    return "BasicBlock";
2580  case ISD::VALUETYPE:     return "ValueType";
2581  case ISD::Register:      return "Register";
2582
2583  case ISD::Constant:      return "Constant";
2584  case ISD::ConstantFP:    return "ConstantFP";
2585  case ISD::GlobalAddress: return "GlobalAddress";
2586  case ISD::FrameIndex:    return "FrameIndex";
2587  case ISD::JumpTable:     return "JumpTable";
2588  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
2589  case ISD::ConstantPool:  return "ConstantPool";
2590  case ISD::ExternalSymbol: return "ExternalSymbol";
2591  case ISD::INTRINSIC_WO_CHAIN: {
2592    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2593    return Intrinsic::getName((Intrinsic::ID)IID);
2594  }
2595  case ISD::INTRINSIC_VOID:
2596  case ISD::INTRINSIC_W_CHAIN: {
2597    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2598    return Intrinsic::getName((Intrinsic::ID)IID);
2599  }
2600
2601  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2602  case ISD::TargetConstant: return "TargetConstant";
2603  case ISD::TargetConstantFP:return "TargetConstantFP";
2604  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2605  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2606  case ISD::TargetJumpTable:  return "TargetJumpTable";
2607  case ISD::TargetConstantPool:  return "TargetConstantPool";
2608  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2609
2610  case ISD::CopyToReg:     return "CopyToReg";
2611  case ISD::CopyFromReg:   return "CopyFromReg";
2612  case ISD::UNDEF:         return "undef";
2613  case ISD::MERGE_VALUES:  return "mergevalues";
2614  case ISD::INLINEASM:     return "inlineasm";
2615  case ISD::HANDLENODE:    return "handlenode";
2616  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2617  case ISD::CALL:          return "call";
2618
2619  // Unary operators
2620  case ISD::FABS:   return "fabs";
2621  case ISD::FNEG:   return "fneg";
2622  case ISD::FSQRT:  return "fsqrt";
2623  case ISD::FSIN:   return "fsin";
2624  case ISD::FCOS:   return "fcos";
2625  case ISD::FPOWI:  return "fpowi";
2626
2627  // Binary operators
2628  case ISD::ADD:    return "add";
2629  case ISD::SUB:    return "sub";
2630  case ISD::MUL:    return "mul";
2631  case ISD::MULHU:  return "mulhu";
2632  case ISD::MULHS:  return "mulhs";
2633  case ISD::SDIV:   return "sdiv";
2634  case ISD::UDIV:   return "udiv";
2635  case ISD::SREM:   return "srem";
2636  case ISD::UREM:   return "urem";
2637  case ISD::AND:    return "and";
2638  case ISD::OR:     return "or";
2639  case ISD::XOR:    return "xor";
2640  case ISD::SHL:    return "shl";
2641  case ISD::SRA:    return "sra";
2642  case ISD::SRL:    return "srl";
2643  case ISD::ROTL:   return "rotl";
2644  case ISD::ROTR:   return "rotr";
2645  case ISD::FADD:   return "fadd";
2646  case ISD::FSUB:   return "fsub";
2647  case ISD::FMUL:   return "fmul";
2648  case ISD::FDIV:   return "fdiv";
2649  case ISD::FREM:   return "frem";
2650  case ISD::FCOPYSIGN: return "fcopysign";
2651  case ISD::VADD:   return "vadd";
2652  case ISD::VSUB:   return "vsub";
2653  case ISD::VMUL:   return "vmul";
2654  case ISD::VSDIV:  return "vsdiv";
2655  case ISD::VUDIV:  return "vudiv";
2656  case ISD::VAND:   return "vand";
2657  case ISD::VOR:    return "vor";
2658  case ISD::VXOR:   return "vxor";
2659
2660  case ISD::SETCC:       return "setcc";
2661  case ISD::SELECT:      return "select";
2662  case ISD::SELECT_CC:   return "select_cc";
2663  case ISD::VSELECT:     return "vselect";
2664  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2665  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2666  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2667  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2668  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2669  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2670  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2671  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2672  case ISD::VBIT_CONVERT:        return "vbit_convert";
2673  case ISD::ADDC:        return "addc";
2674  case ISD::ADDE:        return "adde";
2675  case ISD::SUBC:        return "subc";
2676  case ISD::SUBE:        return "sube";
2677  case ISD::SHL_PARTS:   return "shl_parts";
2678  case ISD::SRA_PARTS:   return "sra_parts";
2679  case ISD::SRL_PARTS:   return "srl_parts";
2680
2681  // Conversion operators.
2682  case ISD::SIGN_EXTEND: return "sign_extend";
2683  case ISD::ZERO_EXTEND: return "zero_extend";
2684  case ISD::ANY_EXTEND:  return "any_extend";
2685  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2686  case ISD::TRUNCATE:    return "truncate";
2687  case ISD::FP_ROUND:    return "fp_round";
2688  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2689  case ISD::FP_EXTEND:   return "fp_extend";
2690
2691  case ISD::SINT_TO_FP:  return "sint_to_fp";
2692  case ISD::UINT_TO_FP:  return "uint_to_fp";
2693  case ISD::FP_TO_SINT:  return "fp_to_sint";
2694  case ISD::FP_TO_UINT:  return "fp_to_uint";
2695  case ISD::BIT_CONVERT: return "bit_convert";
2696
2697    // Control flow instructions
2698  case ISD::BR:      return "br";
2699  case ISD::BRIND:   return "brind";
2700  case ISD::BRCOND:  return "brcond";
2701  case ISD::BR_CC:   return "br_cc";
2702  case ISD::RET:     return "ret";
2703  case ISD::CALLSEQ_START:  return "callseq_start";
2704  case ISD::CALLSEQ_END:    return "callseq_end";
2705
2706    // Other operators
2707  case ISD::LOAD:               return "load";
2708  case ISD::STORE:              return "store";
2709  case ISD::VLOAD:              return "vload";
2710  case ISD::VAARG:              return "vaarg";
2711  case ISD::VACOPY:             return "vacopy";
2712  case ISD::VAEND:              return "vaend";
2713  case ISD::VASTART:            return "vastart";
2714  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2715  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2716  case ISD::BUILD_PAIR:         return "build_pair";
2717  case ISD::STACKSAVE:          return "stacksave";
2718  case ISD::STACKRESTORE:       return "stackrestore";
2719
2720  // Block memory operations.
2721  case ISD::MEMSET:  return "memset";
2722  case ISD::MEMCPY:  return "memcpy";
2723  case ISD::MEMMOVE: return "memmove";
2724
2725  // Bit manipulation
2726  case ISD::BSWAP:   return "bswap";
2727  case ISD::CTPOP:   return "ctpop";
2728  case ISD::CTTZ:    return "cttz";
2729  case ISD::CTLZ:    return "ctlz";
2730
2731  // Debug info
2732  case ISD::LOCATION: return "location";
2733  case ISD::DEBUG_LOC: return "debug_loc";
2734  case ISD::DEBUG_LABEL: return "debug_label";
2735
2736  case ISD::CONDCODE:
2737    switch (cast<CondCodeSDNode>(this)->get()) {
2738    default: assert(0 && "Unknown setcc condition!");
2739    case ISD::SETOEQ:  return "setoeq";
2740    case ISD::SETOGT:  return "setogt";
2741    case ISD::SETOGE:  return "setoge";
2742    case ISD::SETOLT:  return "setolt";
2743    case ISD::SETOLE:  return "setole";
2744    case ISD::SETONE:  return "setone";
2745
2746    case ISD::SETO:    return "seto";
2747    case ISD::SETUO:   return "setuo";
2748    case ISD::SETUEQ:  return "setue";
2749    case ISD::SETUGT:  return "setugt";
2750    case ISD::SETUGE:  return "setuge";
2751    case ISD::SETULT:  return "setult";
2752    case ISD::SETULE:  return "setule";
2753    case ISD::SETUNE:  return "setune";
2754
2755    case ISD::SETEQ:   return "seteq";
2756    case ISD::SETGT:   return "setgt";
2757    case ISD::SETGE:   return "setge";
2758    case ISD::SETLT:   return "setlt";
2759    case ISD::SETLE:   return "setle";
2760    case ISD::SETNE:   return "setne";
2761    }
2762  }
2763}
2764
2765const char *SDNode::getAddressingModeName(ISD::MemOpAddrMode AM) {
2766  switch (AM) {
2767  default:
2768    return "";
2769  case ISD::PRE_INC:
2770    return "<pre-inc>";
2771  case ISD::PRE_DEC:
2772    return "<pre-dec>";
2773  case ISD::POST_INC:
2774    return "<post-inc>";
2775  case ISD::POST_DEC:
2776    return "<post-dec>";
2777  }
2778}
2779
2780void SDNode::dump() const { dump(0); }
2781void SDNode::dump(const SelectionDAG *G) const {
2782  std::cerr << (void*)this << ": ";
2783
2784  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2785    if (i) std::cerr << ",";
2786    if (getValueType(i) == MVT::Other)
2787      std::cerr << "ch";
2788    else
2789      std::cerr << MVT::getValueTypeString(getValueType(i));
2790  }
2791  std::cerr << " = " << getOperationName(G);
2792
2793  std::cerr << " ";
2794  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2795    if (i) std::cerr << ", ";
2796    std::cerr << (void*)getOperand(i).Val;
2797    if (unsigned RN = getOperand(i).ResNo)
2798      std::cerr << ":" << RN;
2799  }
2800
2801  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2802    std::cerr << "<" << CSDN->getValue() << ">";
2803  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2804    std::cerr << "<" << CSDN->getValue() << ">";
2805  } else if (const GlobalAddressSDNode *GADN =
2806             dyn_cast<GlobalAddressSDNode>(this)) {
2807    int offset = GADN->getOffset();
2808    std::cerr << "<";
2809    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2810    if (offset > 0)
2811      std::cerr << " + " << offset;
2812    else
2813      std::cerr << " " << offset;
2814  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2815    std::cerr << "<" << FIDN->getIndex() << ">";
2816  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2817    int offset = CP->getOffset();
2818    if (CP->isMachineConstantPoolEntry())
2819      std::cerr << "<" << *CP->getMachineCPVal() << ">";
2820    else
2821      std::cerr << "<" << *CP->getConstVal() << ">";
2822    if (offset > 0)
2823      std::cerr << " + " << offset;
2824    else
2825      std::cerr << " " << offset;
2826  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2827    std::cerr << "<";
2828    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2829    if (LBB)
2830      std::cerr << LBB->getName() << " ";
2831    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2832  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2833    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2834      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2835    } else {
2836      std::cerr << " #" << R->getReg();
2837    }
2838  } else if (const ExternalSymbolSDNode *ES =
2839             dyn_cast<ExternalSymbolSDNode>(this)) {
2840    std::cerr << "'" << ES->getSymbol() << "'";
2841  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2842    if (M->getValue())
2843      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2844    else
2845      std::cerr << "<null:" << M->getOffset() << ">";
2846  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2847    std::cerr << ":" << getValueTypeString(N->getVT());
2848  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
2849    bool doExt = true;
2850    switch (LD->getExtensionType()) {
2851    default: doExt = false; break;
2852    case ISD::EXTLOAD:
2853      std::cerr << " <anyext ";
2854      break;
2855    case ISD::SEXTLOAD:
2856      std::cerr << " <sext ";
2857      break;
2858    case ISD::ZEXTLOAD:
2859      std::cerr << " <zext ";
2860      break;
2861    }
2862    if (doExt)
2863      std::cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
2864
2865    const char *AM = getAddressingModeName(LD->getAddressingMode());
2866    if (AM != "")
2867      std::cerr << " " << AM;
2868  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
2869    if (ST->isTruncatingStore())
2870      std::cerr << " <trunc "
2871                << MVT::getValueTypeString(ST->getStoredVT()) << ">";
2872
2873    const char *AM = getAddressingModeName(ST->getAddressingMode());
2874    if (AM != "")
2875      std::cerr << " " << AM;
2876  }
2877}
2878
2879static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2880  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2881    if (N->getOperand(i).Val->hasOneUse())
2882      DumpNodes(N->getOperand(i).Val, indent+2, G);
2883    else
2884      std::cerr << "\n" << std::string(indent+2, ' ')
2885                << (void*)N->getOperand(i).Val << ": <multiple use>";
2886
2887
2888  std::cerr << "\n" << std::string(indent, ' ');
2889  N->dump(G);
2890}
2891
2892void SelectionDAG::dump() const {
2893  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2894  std::vector<const SDNode*> Nodes;
2895  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2896       I != E; ++I)
2897    Nodes.push_back(I);
2898
2899  std::sort(Nodes.begin(), Nodes.end());
2900
2901  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2902    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2903      DumpNodes(Nodes[i], 2, this);
2904  }
2905
2906  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
2907
2908  std::cerr << "\n\n";
2909}
2910
2911const Type *ConstantPoolSDNode::getType() const {
2912  if (isMachineConstantPoolEntry())
2913    return Val.MachineCPVal->getType();
2914  return Val.ConstVal->getType();
2915}
2916