SelectionDAG.cpp revision 5ae7911b2437aec6f695d6820284ff7bc60ec97a
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include <iostream>
25#include <set>
26#include <cmath>
27#include <algorithm>
28using namespace llvm;
29
30// Temporary boolean for testing the dag combiner
31namespace llvm {
32  extern bool CombinerEnabled;
33}
34
35static bool isCommutativeBinOp(unsigned Opcode) {
36  switch (Opcode) {
37  case ISD::ADD:
38  case ISD::MUL:
39  case ISD::AND:
40  case ISD::OR:
41  case ISD::XOR: return true;
42  default: return false; // FIXME: Need commutative info for user ops!
43  }
44}
45
46static bool isAssociativeBinOp(unsigned Opcode) {
47  switch (Opcode) {
48  case ISD::ADD:
49  case ISD::MUL:
50  case ISD::AND:
51  case ISD::OR:
52  case ISD::XOR: return true;
53  default: return false; // FIXME: Need associative info for user ops!
54  }
55}
56
57// isInvertibleForFree - Return true if there is no cost to emitting the logical
58// inverse of this node.
59static bool isInvertibleForFree(SDOperand N) {
60  if (isa<ConstantSDNode>(N.Val)) return true;
61  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
62    return true;
63  return false;
64}
65
66//===----------------------------------------------------------------------===//
67//                              ConstantFPSDNode Class
68//===----------------------------------------------------------------------===//
69
70/// isExactlyValue - We don't rely on operator== working on double values, as
71/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
72/// As such, this method can be used to do an exact bit-for-bit comparison of
73/// two floating point values.
74bool ConstantFPSDNode::isExactlyValue(double V) const {
75  return DoubleToBits(V) == DoubleToBits(Value);
76}
77
78//===----------------------------------------------------------------------===//
79//                              ISD Class
80//===----------------------------------------------------------------------===//
81
82/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
83/// when given the operation for (X op Y).
84ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
85  // To perform this operation, we just need to swap the L and G bits of the
86  // operation.
87  unsigned OldL = (Operation >> 2) & 1;
88  unsigned OldG = (Operation >> 1) & 1;
89  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
90                       (OldL << 1) |       // New G bit
91                       (OldG << 2));        // New L bit.
92}
93
94/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
95/// 'op' is a valid SetCC operation.
96ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
97  unsigned Operation = Op;
98  if (isInteger)
99    Operation ^= 7;   // Flip L, G, E bits, but not U.
100  else
101    Operation ^= 15;  // Flip all of the condition bits.
102  if (Operation > ISD::SETTRUE2)
103    Operation &= ~8;     // Don't let N and U bits get set.
104  return ISD::CondCode(Operation);
105}
106
107
108/// isSignedOp - For an integer comparison, return 1 if the comparison is a
109/// signed operation and 2 if the result is an unsigned comparison.  Return zero
110/// if the operation does not depend on the sign of the input (setne and seteq).
111static int isSignedOp(ISD::CondCode Opcode) {
112  switch (Opcode) {
113  default: assert(0 && "Illegal integer setcc operation!");
114  case ISD::SETEQ:
115  case ISD::SETNE: return 0;
116  case ISD::SETLT:
117  case ISD::SETLE:
118  case ISD::SETGT:
119  case ISD::SETGE: return 1;
120  case ISD::SETULT:
121  case ISD::SETULE:
122  case ISD::SETUGT:
123  case ISD::SETUGE: return 2;
124  }
125}
126
127/// getSetCCOrOperation - Return the result of a logical OR between different
128/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
129/// returns SETCC_INVALID if it is not possible to represent the resultant
130/// comparison.
131ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
132                                       bool isInteger) {
133  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
134    // Cannot fold a signed integer setcc with an unsigned integer setcc.
135    return ISD::SETCC_INVALID;
136
137  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
138
139  // If the N and U bits get set then the resultant comparison DOES suddenly
140  // care about orderedness, and is true when ordered.
141  if (Op > ISD::SETTRUE2)
142    Op &= ~16;     // Clear the N bit.
143  return ISD::CondCode(Op);
144}
145
146/// getSetCCAndOperation - Return the result of a logical AND between different
147/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
148/// function returns zero if it is not possible to represent the resultant
149/// comparison.
150ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
151                                        bool isInteger) {
152  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
153    // Cannot fold a signed setcc with an unsigned setcc.
154    return ISD::SETCC_INVALID;
155
156  // Combine all of the condition bits.
157  return ISD::CondCode(Op1 & Op2);
158}
159
160const TargetMachine &SelectionDAG::getTarget() const {
161  return TLI.getTargetMachine();
162}
163
164//===----------------------------------------------------------------------===//
165//                              SelectionDAG Class
166//===----------------------------------------------------------------------===//
167
168/// RemoveDeadNodes - This method deletes all unreachable nodes in the
169/// SelectionDAG, including nodes (like loads) that have uses of their token
170/// chain but no other uses and no side effect.  If a node is passed in as an
171/// argument, it is used as the seed for node deletion.
172void SelectionDAG::RemoveDeadNodes(SDNode *N) {
173  std::set<SDNode*> AllNodeSet(AllNodes.begin(), AllNodes.end());
174
175  // Create a dummy node (which is not added to allnodes), that adds a reference
176  // to the root node, preventing it from being deleted.
177  SDNode *DummyNode = new SDNode(ISD::EntryToken, getRoot());
178
179  // If we have a hint to start from, use it.
180  if (N) DeleteNodeIfDead(N, &AllNodeSet);
181
182 Restart:
183  unsigned NumNodes = AllNodeSet.size();
184  for (std::set<SDNode*>::iterator I = AllNodeSet.begin(), E = AllNodeSet.end();
185       I != E; ++I) {
186    // Try to delete this node.
187    DeleteNodeIfDead(*I, &AllNodeSet);
188
189    // If we actually deleted any nodes, do not use invalid iterators in
190    // AllNodeSet.
191    if (AllNodeSet.size() != NumNodes)
192      goto Restart;
193  }
194
195  // Restore AllNodes.
196  if (AllNodes.size() != NumNodes)
197    AllNodes.assign(AllNodeSet.begin(), AllNodeSet.end());
198
199  // If the root changed (e.g. it was a dead load, update the root).
200  setRoot(DummyNode->getOperand(0));
201
202  // Now that we are done with the dummy node, delete it.
203  DummyNode->getOperand(0).Val->removeUser(DummyNode);
204  delete DummyNode;
205}
206
207
208void SelectionDAG::DeleteNodeIfDead(SDNode *N, void *NodeSet) {
209  if (!N->use_empty())
210    return;
211
212  // Okay, we really are going to delete this node.  First take this out of the
213  // appropriate CSE map.
214  RemoveNodeFromCSEMaps(N);
215
216  // Next, brutally remove the operand list.  This is safe to do, as there are
217  // no cycles in the graph.
218  while (!N->Operands.empty()) {
219    SDNode *O = N->Operands.back().Val;
220    N->Operands.pop_back();
221    O->removeUser(N);
222
223    // Now that we removed this operand, see if there are no uses of it left.
224    DeleteNodeIfDead(O, NodeSet);
225  }
226
227  // Remove the node from the nodes set and delete it.
228  std::set<SDNode*> &AllNodeSet = *(std::set<SDNode*>*)NodeSet;
229  AllNodeSet.erase(N);
230
231  // Now that the node is gone, check to see if any of the operands of this node
232  // are dead now.
233  delete N;
234}
235
236void SelectionDAG::DeleteNode(SDNode *N) {
237  assert(N->use_empty() && "Cannot delete a node that is not dead!");
238
239  // First take this out of the appropriate CSE map.
240  RemoveNodeFromCSEMaps(N);
241
242  // Finally, remove uses due to operands of this node, remove from the
243  // AllNodes list, and delete the node.
244  DeleteNodeNotInCSEMaps(N);
245}
246
247void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
248
249  // Remove it from the AllNodes list.
250  for (std::vector<SDNode*>::iterator I = AllNodes.begin(); ; ++I) {
251    assert(I != AllNodes.end() && "Node not in AllNodes list??");
252    if (*I == N) {
253      // Erase from the vector, which is not ordered.
254      std::swap(*I, AllNodes.back());
255      AllNodes.pop_back();
256      break;
257    }
258  }
259
260  // Drop all of the operands and decrement used nodes use counts.
261  while (!N->Operands.empty()) {
262    SDNode *O = N->Operands.back().Val;
263    N->Operands.pop_back();
264    O->removeUser(N);
265  }
266
267  delete N;
268}
269
270/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
271/// correspond to it.  This is useful when we're about to delete or repurpose
272/// the node.  We don't want future request for structurally identical nodes
273/// to return N anymore.
274void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
275  bool Erased = false;
276  switch (N->getOpcode()) {
277  case ISD::Constant:
278    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
279                                            N->getValueType(0)));
280    break;
281  case ISD::TargetConstant:
282    Erased = TargetConstants.erase(std::make_pair(
283                                    cast<ConstantSDNode>(N)->getValue(),
284                                                  N->getValueType(0)));
285    break;
286  case ISD::ConstantFP: {
287    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
288    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
289    break;
290  }
291  case ISD::CONDCODE:
292    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
293           "Cond code doesn't exist!");
294    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
295    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
296    break;
297  case ISD::GlobalAddress:
298    Erased = GlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
299    break;
300  case ISD::TargetGlobalAddress:
301    Erased =TargetGlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
302    break;
303  case ISD::FrameIndex:
304    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
305    break;
306  case ISD::TargetFrameIndex:
307    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
308    break;
309  case ISD::ConstantPool:
310    Erased = ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
311    break;
312  case ISD::TargetConstantPool:
313    Erased =TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
314    break;
315  case ISD::BasicBlock:
316    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
317    break;
318  case ISD::ExternalSymbol:
319    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
320    break;
321  case ISD::VALUETYPE:
322    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
323    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
324    break;
325  case ISD::Register:
326    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
327                                           N->getValueType(0)));
328    break;
329  case ISD::SRCVALUE: {
330    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
331    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
332    break;
333  }
334  case ISD::LOAD:
335    Erased = Loads.erase(std::make_pair(N->getOperand(1),
336                                        std::make_pair(N->getOperand(0),
337                                                       N->getValueType(0))));
338    break;
339  default:
340    if (N->getNumValues() == 1) {
341      if (N->getNumOperands() == 0) {
342        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
343                                                 N->getValueType(0)));
344      } else if (N->getNumOperands() == 1) {
345        Erased =
346          UnaryOps.erase(std::make_pair(N->getOpcode(),
347                                        std::make_pair(N->getOperand(0),
348                                                       N->getValueType(0))));
349      } else if (N->getNumOperands() == 2) {
350        Erased =
351          BinaryOps.erase(std::make_pair(N->getOpcode(),
352                                         std::make_pair(N->getOperand(0),
353                                                        N->getOperand(1))));
354      } else {
355        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
356        Erased =
357          OneResultNodes.erase(std::make_pair(N->getOpcode(),
358                                              std::make_pair(N->getValueType(0),
359                                                             Ops)));
360      }
361    } else {
362      // Remove the node from the ArbitraryNodes map.
363      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
364      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
365      Erased =
366        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
367                                            std::make_pair(RV, Ops)));
368    }
369    break;
370  }
371#ifndef NDEBUG
372  // Verify that the node was actually in one of the CSE maps, unless it has a
373  // flag result (which cannot be CSE'd) or is one of the special cases that are
374  // not subject to CSE.
375  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
376      N->getOpcode() != ISD::CALL && N->getOpcode() != ISD::CALLSEQ_START &&
377      N->getOpcode() != ISD::CALLSEQ_END && !N->isTargetOpcode()) {
378
379    N->dump();
380    assert(0 && "Node is not in map!");
381  }
382#endif
383}
384
385/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
386/// has been taken out and modified in some way.  If the specified node already
387/// exists in the CSE maps, do not modify the maps, but return the existing node
388/// instead.  If it doesn't exist, add it and return null.
389///
390SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
391  assert(N->getNumOperands() && "This is a leaf node!");
392  if (N->getOpcode() == ISD::LOAD) {
393    SDNode *&L = Loads[std::make_pair(N->getOperand(1),
394                                      std::make_pair(N->getOperand(0),
395                                                     N->getValueType(0)))];
396    if (L) return L;
397    L = N;
398  } else if (N->getNumOperands() == 1) {
399    SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
400                                         std::make_pair(N->getOperand(0),
401                                                        N->getValueType(0)))];
402    if (U) return U;
403    U = N;
404  } else if (N->getNumOperands() == 2) {
405    SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
406                                          std::make_pair(N->getOperand(0),
407                                                         N->getOperand(1)))];
408    if (B) return B;
409    B = N;
410  } else if (N->getNumValues() == 1) {
411    std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
412    SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
413                                  std::make_pair(N->getValueType(0), Ops))];
414    if (ORN) return ORN;
415    ORN = N;
416  } else {
417    // Remove the node from the ArbitraryNodes map.
418    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
419    std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
420    SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
421                                                std::make_pair(RV, Ops))];
422    if (AN) return AN;
423    AN = N;
424  }
425  return 0;
426
427}
428
429
430
431SelectionDAG::~SelectionDAG() {
432  for (unsigned i = 0, e = AllNodes.size(); i != e; ++i)
433    delete AllNodes[i];
434}
435
436SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
437  if (Op.getValueType() == VT) return Op;
438  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
439  return getNode(ISD::AND, Op.getValueType(), Op,
440                 getConstant(Imm, Op.getValueType()));
441}
442
443SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
444  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
445  // Mask out any bits that are not valid for this constant.
446  if (VT != MVT::i64)
447    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
448
449  SDNode *&N = Constants[std::make_pair(Val, VT)];
450  if (N) return SDOperand(N, 0);
451  N = new ConstantSDNode(false, Val, VT);
452  AllNodes.push_back(N);
453  return SDOperand(N, 0);
454}
455
456SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
457  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
458  // Mask out any bits that are not valid for this constant.
459  if (VT != MVT::i64)
460    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
461
462  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
463  if (N) return SDOperand(N, 0);
464  N = new ConstantSDNode(true, Val, VT);
465  AllNodes.push_back(N);
466  return SDOperand(N, 0);
467}
468
469SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
470  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
471  if (VT == MVT::f32)
472    Val = (float)Val;  // Mask out extra precision.
473
474  // Do the map lookup using the actual bit pattern for the floating point
475  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
476  // we don't have issues with SNANs.
477  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
478  if (N) return SDOperand(N, 0);
479  N = new ConstantFPSDNode(Val, VT);
480  AllNodes.push_back(N);
481  return SDOperand(N, 0);
482}
483
484
485
486SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
487                                         MVT::ValueType VT) {
488  SDNode *&N = GlobalValues[GV];
489  if (N) return SDOperand(N, 0);
490  N = new GlobalAddressSDNode(false, GV, VT);
491  AllNodes.push_back(N);
492  return SDOperand(N, 0);
493}
494
495SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
496                                               MVT::ValueType VT) {
497  SDNode *&N = TargetGlobalValues[GV];
498  if (N) return SDOperand(N, 0);
499  N = new GlobalAddressSDNode(true, GV, VT);
500  AllNodes.push_back(N);
501  return SDOperand(N, 0);
502}
503
504SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
505  SDNode *&N = FrameIndices[FI];
506  if (N) return SDOperand(N, 0);
507  N = new FrameIndexSDNode(FI, VT, false);
508  AllNodes.push_back(N);
509  return SDOperand(N, 0);
510}
511
512SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
513  SDNode *&N = TargetFrameIndices[FI];
514  if (N) return SDOperand(N, 0);
515  N = new FrameIndexSDNode(FI, VT, true);
516  AllNodes.push_back(N);
517  return SDOperand(N, 0);
518}
519
520SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
521  SDNode *&N = ConstantPoolIndices[C];
522  if (N) return SDOperand(N, 0);
523  N = new ConstantPoolSDNode(C, VT, false);
524  AllNodes.push_back(N);
525  return SDOperand(N, 0);
526}
527
528SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
529  SDNode *&N = TargetConstantPoolIndices[C];
530  if (N) return SDOperand(N, 0);
531  N = new ConstantPoolSDNode(C, VT, true);
532  AllNodes.push_back(N);
533  return SDOperand(N, 0);
534}
535
536SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
537  SDNode *&N = BBNodes[MBB];
538  if (N) return SDOperand(N, 0);
539  N = new BasicBlockSDNode(MBB);
540  AllNodes.push_back(N);
541  return SDOperand(N, 0);
542}
543
544SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
545  if ((unsigned)VT >= ValueTypeNodes.size())
546    ValueTypeNodes.resize(VT+1);
547  if (ValueTypeNodes[VT] == 0) {
548    ValueTypeNodes[VT] = new VTSDNode(VT);
549    AllNodes.push_back(ValueTypeNodes[VT]);
550  }
551
552  return SDOperand(ValueTypeNodes[VT], 0);
553}
554
555SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
556  SDNode *&N = ExternalSymbols[Sym];
557  if (N) return SDOperand(N, 0);
558  N = new ExternalSymbolSDNode(Sym, VT);
559  AllNodes.push_back(N);
560  return SDOperand(N, 0);
561}
562
563SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
564  if ((unsigned)Cond >= CondCodeNodes.size())
565    CondCodeNodes.resize(Cond+1);
566
567  if (CondCodeNodes[Cond] == 0) {
568    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
569    AllNodes.push_back(CondCodeNodes[Cond]);
570  }
571  return SDOperand(CondCodeNodes[Cond], 0);
572}
573
574SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
575  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
576  if (!Reg) {
577    Reg = new RegisterSDNode(RegNo, VT);
578    AllNodes.push_back(Reg);
579  }
580  return SDOperand(Reg, 0);
581}
582
583/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
584/// this predicate to simplify operations downstream.  V and Mask are known to
585/// be the same type.
586static bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask,
587                              const TargetLowering &TLI) {
588  unsigned SrcBits;
589  if (Mask == 0) return true;
590
591  // If we know the result of a setcc has the top bits zero, use this info.
592  switch (Op.getOpcode()) {
593    case ISD::Constant:
594      return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0;
595
596    case ISD::SETCC:
597      return ((Mask & 1) == 0) &&
598      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult;
599
600    case ISD::ZEXTLOAD:
601      SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
602      return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
603    case ISD::ZERO_EXTEND:
604      SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
605      return MaskedValueIsZero(Op.getOperand(0),Mask & ((1ULL << SrcBits)-1),TLI);
606    case ISD::AssertZext:
607      SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
608      return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
609    case ISD::AND:
610      // (X & C1) & C2 == 0   iff   C1 & C2 == 0.
611      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
612        return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask, TLI);
613
614      // FALL THROUGH
615    case ISD::OR:
616    case ISD::XOR:
617      return MaskedValueIsZero(Op.getOperand(0), Mask, TLI) &&
618      MaskedValueIsZero(Op.getOperand(1), Mask, TLI);
619    case ISD::SELECT:
620      return MaskedValueIsZero(Op.getOperand(1), Mask, TLI) &&
621      MaskedValueIsZero(Op.getOperand(2), Mask, TLI);
622    case ISD::SELECT_CC:
623      return MaskedValueIsZero(Op.getOperand(2), Mask, TLI) &&
624      MaskedValueIsZero(Op.getOperand(3), Mask, TLI);
625    case ISD::SRL:
626      // (ushr X, C1) & C2 == 0   iff  X & (C2 << C1) == 0
627      if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
628        uint64_t NewVal = Mask << ShAmt->getValue();
629        SrcBits = MVT::getSizeInBits(Op.getValueType());
630        if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1;
631        return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
632      }
633      return false;
634    case ISD::SHL:
635      // (ushl X, C1) & C2 == 0   iff  X & (C2 >> C1) == 0
636      if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
637        uint64_t NewVal = Mask >> ShAmt->getValue();
638        return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
639      }
640      return false;
641    case ISD::CTTZ:
642    case ISD::CTLZ:
643    case ISD::CTPOP:
644      // Bit counting instructions can not set the high bits of the result
645      // register.  The max number of bits sets depends on the input.
646      return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0;
647
648      // TODO we could handle some SRA cases here.
649    default: break;
650  }
651
652  return false;
653}
654
655
656
657SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
658                                      SDOperand N2, ISD::CondCode Cond) {
659  // These setcc operations always fold.
660  switch (Cond) {
661  default: break;
662  case ISD::SETFALSE:
663  case ISD::SETFALSE2: return getConstant(0, VT);
664  case ISD::SETTRUE:
665  case ISD::SETTRUE2:  return getConstant(1, VT);
666  }
667
668  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
669    uint64_t C2 = N2C->getValue();
670    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
671      uint64_t C1 = N1C->getValue();
672
673      // Sign extend the operands if required
674      if (ISD::isSignedIntSetCC(Cond)) {
675        C1 = N1C->getSignExtended();
676        C2 = N2C->getSignExtended();
677      }
678
679      switch (Cond) {
680      default: assert(0 && "Unknown integer setcc!");
681      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
682      case ISD::SETNE:  return getConstant(C1 != C2, VT);
683      case ISD::SETULT: return getConstant(C1 <  C2, VT);
684      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
685      case ISD::SETULE: return getConstant(C1 <= C2, VT);
686      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
687      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
688      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
689      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
690      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
691      }
692    } else {
693      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
694      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
695        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
696
697        // If the comparison constant has bits in the upper part, the
698        // zero-extended value could never match.
699        if (C2 & (~0ULL << InSize)) {
700          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
701          switch (Cond) {
702          case ISD::SETUGT:
703          case ISD::SETUGE:
704          case ISD::SETEQ: return getConstant(0, VT);
705          case ISD::SETULT:
706          case ISD::SETULE:
707          case ISD::SETNE: return getConstant(1, VT);
708          case ISD::SETGT:
709          case ISD::SETGE:
710            // True if the sign bit of C2 is set.
711            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
712          case ISD::SETLT:
713          case ISD::SETLE:
714            // True if the sign bit of C2 isn't set.
715            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
716          default:
717            break;
718          }
719        }
720
721        // Otherwise, we can perform the comparison with the low bits.
722        switch (Cond) {
723        case ISD::SETEQ:
724        case ISD::SETNE:
725        case ISD::SETUGT:
726        case ISD::SETUGE:
727        case ISD::SETULT:
728        case ISD::SETULE:
729          return getSetCC(VT, N1.getOperand(0),
730                          getConstant(C2, N1.getOperand(0).getValueType()),
731                          Cond);
732        default:
733          break;   // todo, be more careful with signed comparisons
734        }
735      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
736                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
737        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
738        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
739        MVT::ValueType ExtDstTy = N1.getValueType();
740        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
741
742        // If the extended part has any inconsistent bits, it cannot ever
743        // compare equal.  In other words, they have to be all ones or all
744        // zeros.
745        uint64_t ExtBits =
746          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
747        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
748          return getConstant(Cond == ISD::SETNE, VT);
749
750        // Otherwise, make this a use of a zext.
751        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
752                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
753                        Cond);
754      }
755
756      uint64_t MinVal, MaxVal;
757      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
758      if (ISD::isSignedIntSetCC(Cond)) {
759        MinVal = 1ULL << (OperandBitSize-1);
760        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
761          MaxVal = ~0ULL >> (65-OperandBitSize);
762        else
763          MaxVal = 0;
764      } else {
765        MinVal = 0;
766        MaxVal = ~0ULL >> (64-OperandBitSize);
767      }
768
769      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
770      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
771        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
772        --C2;                                          // X >= C1 --> X > (C1-1)
773        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
774                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
775      }
776
777      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
778        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
779        ++C2;                                          // X <= C1 --> X < (C1+1)
780        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
781                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
782      }
783
784      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
785        return getConstant(0, VT);      // X < MIN --> false
786
787      // Canonicalize setgt X, Min --> setne X, Min
788      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
789        return getSetCC(VT, N1, N2, ISD::SETNE);
790
791      // If we have setult X, 1, turn it into seteq X, 0
792      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
793        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
794                        ISD::SETEQ);
795      // If we have setugt X, Max-1, turn it into seteq X, Max
796      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
797        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
798                        ISD::SETEQ);
799
800      // If we have "setcc X, C1", check to see if we can shrink the immediate
801      // by changing cc.
802
803      // SETUGT X, SINTMAX  -> SETLT X, 0
804      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
805          C2 == (~0ULL >> (65-OperandBitSize)))
806        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
807
808      // FIXME: Implement the rest of these.
809
810
811      // Fold bit comparisons when we can.
812      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
813          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
814        if (ConstantSDNode *AndRHS =
815                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
816          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
817            // Perform the xform if the AND RHS is a single bit.
818            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
819              return getNode(ISD::SRL, VT, N1,
820                             getConstant(Log2_64(AndRHS->getValue()),
821                                                   TLI.getShiftAmountTy()));
822            }
823          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
824            // (X & 8) == 8  -->  (X & 8) >> 3
825            // Perform the xform if C2 is a single bit.
826            if ((C2 & (C2-1)) == 0) {
827              return getNode(ISD::SRL, VT, N1,
828                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
829            }
830          }
831        }
832    }
833  } else if (isa<ConstantSDNode>(N1.Val)) {
834      // Ensure that the constant occurs on the RHS.
835    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
836  }
837
838  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
839    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
840      double C1 = N1C->getValue(), C2 = N2C->getValue();
841
842      switch (Cond) {
843      default: break; // FIXME: Implement the rest of these!
844      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
845      case ISD::SETNE:  return getConstant(C1 != C2, VT);
846      case ISD::SETLT:  return getConstant(C1 < C2, VT);
847      case ISD::SETGT:  return getConstant(C1 > C2, VT);
848      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
849      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
850      }
851    } else {
852      // Ensure that the constant occurs on the RHS.
853      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
854    }
855
856  if (N1 == N2) {
857    // We can always fold X == Y for integer setcc's.
858    if (MVT::isInteger(N1.getValueType()))
859      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
860    unsigned UOF = ISD::getUnorderedFlavor(Cond);
861    if (UOF == 2)   // FP operators that are undefined on NaNs.
862      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
863    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
864      return getConstant(UOF, VT);
865    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
866    // if it is not already.
867    ISD::CondCode NewCond = UOF == 0 ? ISD::SETUO : ISD::SETO;
868    if (NewCond != Cond)
869      return getSetCC(VT, N1, N2, NewCond);
870  }
871
872  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
873      MVT::isInteger(N1.getValueType())) {
874    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
875        N1.getOpcode() == ISD::XOR) {
876      // Simplify (X+Y) == (X+Z) -->  Y == Z
877      if (N1.getOpcode() == N2.getOpcode()) {
878        if (N1.getOperand(0) == N2.getOperand(0))
879          return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
880        if (N1.getOperand(1) == N2.getOperand(1))
881          return getSetCC(VT, N1.getOperand(0), N2.getOperand(0), Cond);
882        if (isCommutativeBinOp(N1.getOpcode())) {
883          // If X op Y == Y op X, try other combinations.
884          if (N1.getOperand(0) == N2.getOperand(1))
885            return getSetCC(VT, N1.getOperand(1), N2.getOperand(0), Cond);
886          if (N1.getOperand(1) == N2.getOperand(0))
887            return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
888        }
889      }
890
891      // FIXME: move this stuff to the DAG Combiner when it exists!
892
893      // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.  Common for condcodes.
894      if (N1.getOpcode() == ISD::XOR)
895        if (ConstantSDNode *XORC = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
896          if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N2)) {
897            // If we know that all of the inverted bits are zero, don't bother
898            // performing the inversion.
899            if (MaskedValueIsZero(N1.getOperand(0), ~XORC->getValue(), TLI))
900              return getSetCC(VT, N1.getOperand(0),
901                              getConstant(XORC->getValue()^RHSC->getValue(),
902                                          N1.getValueType()), Cond);
903          }
904
905      // Simplify (X+Z) == X -->  Z == 0
906      if (N1.getOperand(0) == N2)
907        return getSetCC(VT, N1.getOperand(1),
908                        getConstant(0, N1.getValueType()), Cond);
909      if (N1.getOperand(1) == N2) {
910        if (isCommutativeBinOp(N1.getOpcode()))
911          return getSetCC(VT, N1.getOperand(0),
912                          getConstant(0, N1.getValueType()), Cond);
913        else {
914          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
915          // (Z-X) == X  --> Z == X<<1
916          return getSetCC(VT, N1.getOperand(0),
917                          getNode(ISD::SHL, N2.getValueType(),
918                                  N2, getConstant(1, TLI.getShiftAmountTy())),
919                          Cond);
920        }
921      }
922    }
923
924    if (N2.getOpcode() == ISD::ADD || N2.getOpcode() == ISD::SUB ||
925        N2.getOpcode() == ISD::XOR) {
926      // Simplify  X == (X+Z) -->  Z == 0
927      if (N2.getOperand(0) == N1) {
928        return getSetCC(VT, N2.getOperand(1),
929                        getConstant(0, N2.getValueType()), Cond);
930      } else if (N2.getOperand(1) == N1) {
931        if (isCommutativeBinOp(N2.getOpcode())) {
932          return getSetCC(VT, N2.getOperand(0),
933                          getConstant(0, N2.getValueType()), Cond);
934        } else {
935          assert(N2.getOpcode() == ISD::SUB && "Unexpected operation!");
936          // X == (Z-X)  --> X<<1 == Z
937          return getSetCC(VT, getNode(ISD::SHL, N2.getValueType(), N1,
938                                      getConstant(1, TLI.getShiftAmountTy())),
939                          N2.getOperand(0), Cond);
940        }
941      }
942    }
943  }
944
945  // Fold away ALL boolean setcc's.
946  if (N1.getValueType() == MVT::i1) {
947    switch (Cond) {
948    default: assert(0 && "Unknown integer setcc!");
949    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
950      N1 = getNode(ISD::XOR, MVT::i1,
951                   getNode(ISD::XOR, MVT::i1, N1, N2),
952                   getConstant(1, MVT::i1));
953      break;
954    case ISD::SETNE:  // X != Y   -->  (X^Y)
955      N1 = getNode(ISD::XOR, MVT::i1, N1, N2);
956      break;
957    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
958    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
959      N1 = getNode(ISD::AND, MVT::i1, N2,
960                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
961      break;
962    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
963    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
964      N1 = getNode(ISD::AND, MVT::i1, N1,
965                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
966      break;
967    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
968    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
969      N1 = getNode(ISD::OR, MVT::i1, N2,
970                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
971      break;
972    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
973    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
974      N1 = getNode(ISD::OR, MVT::i1, N1,
975                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
976      break;
977    }
978    if (VT != MVT::i1)
979      N1 = getNode(ISD::ZERO_EXTEND, VT, N1);
980    return N1;
981  }
982
983  // Could not fold it.
984  return SDOperand();
985}
986
987SDOperand SelectionDAG::SimplifySelectCC(SDOperand N1, SDOperand N2,
988                                         SDOperand N3, SDOperand N4,
989                                         ISD::CondCode CC) {
990  MVT::ValueType VT = N3.getValueType();
991  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
992  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
993  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
994  ConstantSDNode *N4C = dyn_cast<ConstantSDNode>(N4.Val);
995
996  // Check to see if we can simplify the select into an fabs node
997  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2)) {
998    // Allow either -0.0 or 0.0
999    if (CFP->getValue() == 0.0) {
1000      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
1001      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
1002          N1 == N3 && N4.getOpcode() == ISD::FNEG &&
1003          N1 == N4.getOperand(0))
1004        return getNode(ISD::FABS, VT, N1);
1005
1006      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
1007      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
1008          N1 == N4 && N3.getOpcode() == ISD::FNEG &&
1009          N3.getOperand(0) == N4)
1010        return getNode(ISD::FABS, VT, N4);
1011    }
1012  }
1013
1014  // check to see if we're select_cc'ing a select_cc.
1015  // this allows us to turn:
1016  // select_cc set[eq,ne] (select_cc cc, lhs, rhs, 1, 0), 0, true, false ->
1017  // select_cc cc, lhs, rhs, true, false
1018  if ((N1C && N1C->isNullValue() && N2.getOpcode() == ISD::SELECT_CC) ||
1019      (N2C && N2C->isNullValue() && N1.getOpcode() == ISD::SELECT_CC) &&
1020      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1021    SDOperand SCC = N1C ? N2 : N1;
1022    ConstantSDNode *SCCT = dyn_cast<ConstantSDNode>(SCC.getOperand(2));
1023    ConstantSDNode *SCCF = dyn_cast<ConstantSDNode>(SCC.getOperand(3));
1024    if (SCCT && SCCF && SCCF->isNullValue() && SCCT->getValue() == 1ULL) {
1025      if (CC == ISD::SETEQ) std::swap(N3, N4);
1026      return getNode(ISD::SELECT_CC, N3.getValueType(), SCC.getOperand(0),
1027                     SCC.getOperand(1), N3, N4, SCC.getOperand(4));
1028    }
1029  }
1030
1031  // Check to see if we can perform the "gzip trick", transforming
1032  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
1033  if (N2C && N2C->isNullValue() && N4C && N4C->isNullValue() &&
1034      MVT::isInteger(N1.getValueType()) &&
1035      MVT::isInteger(N3.getValueType()) && CC == ISD::SETLT) {
1036    MVT::ValueType XType = N1.getValueType();
1037    MVT::ValueType AType = N3.getValueType();
1038    if (XType >= AType) {
1039      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
1040      // single-bit constant.  FIXME: remove once the dag combiner
1041      // exists.
1042      if (N3C && ((N3C->getValue() & (N3C->getValue()-1)) == 0)) {
1043        unsigned ShCtV = Log2_64(N3C->getValue());
1044        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
1045        SDOperand ShCt = getConstant(ShCtV, TLI.getShiftAmountTy());
1046        SDOperand Shift = getNode(ISD::SRL, XType, N1, ShCt);
1047        if (XType > AType)
1048          Shift = getNode(ISD::TRUNCATE, AType, Shift);
1049        return getNode(ISD::AND, AType, Shift, N3);
1050      }
1051      SDOperand Shift = getNode(ISD::SRA, XType, N1,
1052                                getConstant(MVT::getSizeInBits(XType)-1,
1053                                            TLI.getShiftAmountTy()));
1054      if (XType > AType)
1055        Shift = getNode(ISD::TRUNCATE, AType, Shift);
1056      return getNode(ISD::AND, AType, Shift, N3);
1057    }
1058  }
1059
1060  // Check to see if this is the equivalent of setcc
1061  if (N4C && N4C->isNullValue() && N3C && (N3C->getValue() == 1ULL)) {
1062    MVT::ValueType XType = N1.getValueType();
1063    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
1064      SDOperand Res = getSetCC(TLI.getSetCCResultTy(), N1, N2, CC);
1065      if (Res.getValueType() != VT)
1066        Res = getNode(ISD::ZERO_EXTEND, VT, Res);
1067      return Res;
1068    }
1069
1070    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
1071    if (N2C && N2C->isNullValue() && CC == ISD::SETEQ &&
1072        TLI.isOperationLegal(ISD::CTLZ, XType)) {
1073      SDOperand Ctlz = getNode(ISD::CTLZ, XType, N1);
1074      return getNode(ISD::SRL, XType, Ctlz,
1075                     getConstant(Log2_32(MVT::getSizeInBits(XType)),
1076                                 TLI.getShiftAmountTy()));
1077    }
1078    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
1079    if (N2C && N2C->isNullValue() && CC == ISD::SETGT) {
1080      SDOperand NegN1 = getNode(ISD::SUB, XType, getConstant(0, XType), N1);
1081      SDOperand NotN1 = getNode(ISD::XOR, XType, N1, getConstant(~0ULL, XType));
1082      return getNode(ISD::SRL, XType, getNode(ISD::AND, XType, NegN1, NotN1),
1083                     getConstant(MVT::getSizeInBits(XType)-1,
1084                                 TLI.getShiftAmountTy()));
1085    }
1086    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
1087    if (N2C && N2C->isAllOnesValue() && CC == ISD::SETGT) {
1088      SDOperand Sign = getNode(ISD::SRL, XType, N1,
1089                               getConstant(MVT::getSizeInBits(XType)-1,
1090                                           TLI.getShiftAmountTy()));
1091      return getNode(ISD::XOR, XType, Sign, getConstant(1, XType));
1092    }
1093  }
1094
1095  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
1096  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
1097  if (N2C && N2C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
1098      N1 == N4 && N3.getOpcode() == ISD::SUB && N1 == N3.getOperand(1)) {
1099    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
1100      MVT::ValueType XType = N1.getValueType();
1101      if (SubC->isNullValue() && MVT::isInteger(XType)) {
1102        SDOperand Shift = getNode(ISD::SRA, XType, N1,
1103                                  getConstant(MVT::getSizeInBits(XType)-1,
1104                                              TLI.getShiftAmountTy()));
1105        return getNode(ISD::XOR, XType, getNode(ISD::ADD, XType, N1, Shift),
1106                       Shift);
1107      }
1108    }
1109  }
1110
1111  // Could not fold it.
1112  return SDOperand();
1113}
1114
1115/// getNode - Gets or creates the specified node.
1116///
1117SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1118  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
1119  if (!N) {
1120    N = new SDNode(Opcode, VT);
1121    AllNodes.push_back(N);
1122  }
1123  return SDOperand(N, 0);
1124}
1125
1126SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1127                                SDOperand Operand) {
1128  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1129    uint64_t Val = C->getValue();
1130    switch (Opcode) {
1131    default: break;
1132    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1133    case ISD::ANY_EXTEND:
1134    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1135    case ISD::TRUNCATE:    return getConstant(Val, VT);
1136    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1137    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1138    }
1139  }
1140
1141  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1142    switch (Opcode) {
1143    case ISD::FNEG:
1144      return getConstantFP(-C->getValue(), VT);
1145    case ISD::FP_ROUND:
1146    case ISD::FP_EXTEND:
1147      return getConstantFP(C->getValue(), VT);
1148    case ISD::FP_TO_SINT:
1149      return getConstant((int64_t)C->getValue(), VT);
1150    case ISD::FP_TO_UINT:
1151      return getConstant((uint64_t)C->getValue(), VT);
1152    }
1153
1154  unsigned OpOpcode = Operand.Val->getOpcode();
1155  switch (Opcode) {
1156  case ISD::TokenFactor:
1157    return Operand;         // Factor of one node?  No factor.
1158  case ISD::SIGN_EXTEND:
1159    if (Operand.getValueType() == VT) return Operand;   // noop extension
1160    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1161      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1162    break;
1163  case ISD::ZERO_EXTEND:
1164    if (Operand.getValueType() == VT) return Operand;   // noop extension
1165    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1166      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1167    break;
1168  case ISD::ANY_EXTEND:
1169    if (Operand.getValueType() == VT) return Operand;   // noop extension
1170    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1171      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1172      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1173    break;
1174  case ISD::TRUNCATE:
1175    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1176    if (OpOpcode == ISD::TRUNCATE)
1177      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1178    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1179             OpOpcode == ISD::ANY_EXTEND) {
1180      // If the source is smaller than the dest, we still need an extend.
1181      if (Operand.Val->getOperand(0).getValueType() < VT)
1182        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1183      else if (Operand.Val->getOperand(0).getValueType() > VT)
1184        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1185      else
1186        return Operand.Val->getOperand(0);
1187    }
1188    break;
1189  case ISD::FNEG:
1190    if (OpOpcode == ISD::SUB)   // -(X-Y) -> (Y-X)
1191      return getNode(ISD::SUB, VT, Operand.Val->getOperand(1),
1192                     Operand.Val->getOperand(0));
1193    if (OpOpcode == ISD::FNEG)  // --X -> X
1194      return Operand.Val->getOperand(0);
1195    break;
1196  case ISD::FABS:
1197    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1198      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1199    break;
1200  }
1201
1202  SDNode *N;
1203  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1204    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1205    if (E) return SDOperand(E, 0);
1206    E = N = new SDNode(Opcode, Operand);
1207  } else {
1208    N = new SDNode(Opcode, Operand);
1209  }
1210  N->setValueTypes(VT);
1211  AllNodes.push_back(N);
1212  return SDOperand(N, 0);
1213}
1214
1215
1216
1217SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1218                                SDOperand N1, SDOperand N2) {
1219#ifndef NDEBUG
1220  switch (Opcode) {
1221  case ISD::TokenFactor:
1222    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1223           N2.getValueType() == MVT::Other && "Invalid token factor!");
1224    break;
1225  case ISD::AND:
1226  case ISD::OR:
1227  case ISD::XOR:
1228  case ISD::UDIV:
1229  case ISD::UREM:
1230  case ISD::MULHU:
1231  case ISD::MULHS:
1232    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1233    // fall through
1234  case ISD::ADD:
1235  case ISD::SUB:
1236  case ISD::MUL:
1237  case ISD::SDIV:
1238  case ISD::SREM:
1239    assert(N1.getValueType() == N2.getValueType() &&
1240           N1.getValueType() == VT && "Binary operator types must match!");
1241    break;
1242
1243  case ISD::SHL:
1244  case ISD::SRA:
1245  case ISD::SRL:
1246    assert(VT == N1.getValueType() &&
1247           "Shift operators return type must be the same as their first arg");
1248    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1249           VT != MVT::i1 && "Shifts only work on integers");
1250    break;
1251  case ISD::FP_ROUND_INREG: {
1252    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1253    assert(VT == N1.getValueType() && "Not an inreg round!");
1254    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1255           "Cannot FP_ROUND_INREG integer types");
1256    assert(EVT <= VT && "Not rounding down!");
1257    break;
1258  }
1259  case ISD::AssertSext:
1260  case ISD::AssertZext:
1261  case ISD::SIGN_EXTEND_INREG: {
1262    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1263    assert(VT == N1.getValueType() && "Not an inreg extend!");
1264    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1265           "Cannot *_EXTEND_INREG FP types");
1266    assert(EVT <= VT && "Not extending!");
1267  }
1268
1269  default: break;
1270  }
1271#endif
1272
1273  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1274  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1275  if (N1C) {
1276    if (N2C) {
1277      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1278      switch (Opcode) {
1279      case ISD::ADD: return getConstant(C1 + C2, VT);
1280      case ISD::SUB: return getConstant(C1 - C2, VT);
1281      case ISD::MUL: return getConstant(C1 * C2, VT);
1282      case ISD::UDIV:
1283        if (C2) return getConstant(C1 / C2, VT);
1284        break;
1285      case ISD::UREM :
1286        if (C2) return getConstant(C1 % C2, VT);
1287        break;
1288      case ISD::SDIV :
1289        if (C2) return getConstant(N1C->getSignExtended() /
1290                                   N2C->getSignExtended(), VT);
1291        break;
1292      case ISD::SREM :
1293        if (C2) return getConstant(N1C->getSignExtended() %
1294                                   N2C->getSignExtended(), VT);
1295        break;
1296      case ISD::AND  : return getConstant(C1 & C2, VT);
1297      case ISD::OR   : return getConstant(C1 | C2, VT);
1298      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1299      case ISD::SHL  : return getConstant(C1 << C2, VT);
1300      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1301      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1302      default: break;
1303      }
1304    } else {      // Cannonicalize constant to RHS if commutative
1305      if (isCommutativeBinOp(Opcode)) {
1306        std::swap(N1C, N2C);
1307        std::swap(N1, N2);
1308      }
1309    }
1310
1311    if (!CombinerEnabled) {
1312    switch (Opcode) {
1313    default: break;
1314    case ISD::SHL:    // shl  0, X -> 0
1315      if (N1C->isNullValue()) return N1;
1316      break;
1317    case ISD::SRL:    // srl  0, X -> 0
1318      if (N1C->isNullValue()) return N1;
1319      break;
1320    case ISD::SRA:    // sra -1, X -> -1
1321      if (N1C->isAllOnesValue()) return N1;
1322      break;
1323    case ISD::SIGN_EXTEND_INREG:  // SIGN_EXTEND_INREG N1C, EVT
1324      // Extending a constant?  Just return the extended constant.
1325      SDOperand Tmp = getNode(ISD::TRUNCATE, cast<VTSDNode>(N2)->getVT(), N1);
1326      return getNode(ISD::SIGN_EXTEND, VT, Tmp);
1327    }
1328    }
1329  }
1330
1331  if (!CombinerEnabled) {
1332  if (N2C) {
1333    uint64_t C2 = N2C->getValue();
1334
1335    switch (Opcode) {
1336    case ISD::ADD:
1337      if (!C2) return N1;         // add X, 0 -> X
1338      break;
1339    case ISD::SUB:
1340      if (!C2) return N1;         // sub X, 0 -> X
1341      return getNode(ISD::ADD, VT, N1, getConstant(-C2, VT));
1342    case ISD::MUL:
1343      if (!C2) return N2;         // mul X, 0 -> 0
1344      if (N2C->isAllOnesValue()) // mul X, -1 -> 0-X
1345        return getNode(ISD::SUB, VT, getConstant(0, VT), N1);
1346
1347      // FIXME: Move this to the DAG combiner when it exists.
1348      if ((C2 & C2-1) == 0) {
1349        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1350        return getNode(ISD::SHL, VT, N1, ShAmt);
1351      }
1352      break;
1353
1354    case ISD::MULHU:
1355    case ISD::MULHS:
1356      if (!C2) return N2;         // mul X, 0 -> 0
1357
1358      if (C2 == 1)                // 0X*01 -> 0X  hi(0X) == 0
1359        return getConstant(0, VT);
1360
1361      // Many others could be handled here, including -1, powers of 2, etc.
1362      break;
1363
1364    case ISD::UDIV:
1365      // FIXME: Move this to the DAG combiner when it exists.
1366      if ((C2 & C2-1) == 0 && C2) {
1367        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1368        return getNode(ISD::SRL, VT, N1, ShAmt);
1369      }
1370      break;
1371
1372    case ISD::SHL:
1373    case ISD::SRL:
1374    case ISD::SRA:
1375      // If the shift amount is bigger than the size of the data, then all the
1376      // bits are shifted out.  Simplify to undef.
1377      if (C2 >= MVT::getSizeInBits(N1.getValueType())) {
1378        return getNode(ISD::UNDEF, N1.getValueType());
1379      }
1380      if (C2 == 0) return N1;
1381
1382      if (Opcode == ISD::SRA) {
1383        // If the sign bit is known to be zero, switch this to a SRL.
1384        if (MaskedValueIsZero(N1,
1385                              1ULL << (MVT::getSizeInBits(N1.getValueType())-1),
1386                              TLI))
1387          return getNode(ISD::SRL, N1.getValueType(), N1, N2);
1388      } else {
1389        // If the part left over is known to be zero, the whole thing is zero.
1390        uint64_t TypeMask = ~0ULL >> (64-MVT::getSizeInBits(N1.getValueType()));
1391        if (Opcode == ISD::SRL) {
1392          if (MaskedValueIsZero(N1, TypeMask << C2, TLI))
1393            return getConstant(0, N1.getValueType());
1394        } else if (Opcode == ISD::SHL) {
1395          if (MaskedValueIsZero(N1, TypeMask >> C2, TLI))
1396            return getConstant(0, N1.getValueType());
1397        }
1398      }
1399
1400      if (Opcode == ISD::SHL && N1.getNumOperands() == 2)
1401        if (ConstantSDNode *OpSA = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1402          unsigned OpSAC = OpSA->getValue();
1403          if (N1.getOpcode() == ISD::SHL) {
1404            if (C2+OpSAC >= MVT::getSizeInBits(N1.getValueType()))
1405              return getConstant(0, N1.getValueType());
1406            return getNode(ISD::SHL, N1.getValueType(), N1.getOperand(0),
1407                           getConstant(C2+OpSAC, N2.getValueType()));
1408          } else if (N1.getOpcode() == ISD::SRL) {
1409            // (X >> C1) << C2:  if C2 > C1, ((X & ~0<<C1) << C2-C1)
1410            SDOperand Mask = getNode(ISD::AND, VT, N1.getOperand(0),
1411                                     getConstant(~0ULL << OpSAC, VT));
1412            if (C2 > OpSAC) {
1413              return getNode(ISD::SHL, VT, Mask,
1414                             getConstant(C2-OpSAC, N2.getValueType()));
1415            } else {
1416              // (X >> C1) << C2:  if C2 <= C1, ((X & ~0<<C1) >> C1-C2)
1417              return getNode(ISD::SRL, VT, Mask,
1418                             getConstant(OpSAC-C2, N2.getValueType()));
1419            }
1420          } else if (N1.getOpcode() == ISD::SRA) {
1421            // if C1 == C2, just mask out low bits.
1422            if (C2 == OpSAC)
1423              return getNode(ISD::AND, VT, N1.getOperand(0),
1424                             getConstant(~0ULL << C2, VT));
1425          }
1426        }
1427      break;
1428
1429    case ISD::AND:
1430      if (!C2) return N2;         // X and 0 -> 0
1431      if (N2C->isAllOnesValue())
1432        return N1;                // X and -1 -> X
1433
1434      if (MaskedValueIsZero(N1, C2, TLI))  // X and 0 -> 0
1435        return getConstant(0, VT);
1436
1437      {
1438        uint64_t NotC2 = ~C2;
1439        if (VT != MVT::i64)
1440          NotC2 &= (1ULL << MVT::getSizeInBits(VT))-1;
1441
1442        if (MaskedValueIsZero(N1, NotC2, TLI))
1443          return N1;                // if (X & ~C2) -> 0, the and is redundant
1444      }
1445
1446      // FIXME: Should add a corresponding version of this for
1447      // ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which
1448      // we don't have yet.
1449      // FIXME: NOW WE DO, add this.
1450
1451      // and (sign_extend_inreg x:16:32), 1 -> and x, 1
1452      if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1453        // If we are masking out the part of our input that was extended, just
1454        // mask the input to the extension directly.
1455        unsigned ExtendBits =
1456          MVT::getSizeInBits(cast<VTSDNode>(N1.getOperand(1))->getVT());
1457        if ((C2 & (~0ULL << ExtendBits)) == 0)
1458          return getNode(ISD::AND, VT, N1.getOperand(0), N2);
1459      } else if (N1.getOpcode() == ISD::OR) {
1460        if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
1461          if ((ORI->getValue() & C2) == C2) {
1462            // If the 'or' is setting all of the bits that we are masking for,
1463            // we know the result of the AND will be the AND mask itself.
1464            return N2;
1465          }
1466      }
1467      break;
1468    case ISD::OR:
1469      if (!C2)return N1;          // X or 0 -> X
1470      if (N2C->isAllOnesValue())
1471        return N2;                // X or -1 -> -1
1472      break;
1473    case ISD::XOR:
1474      if (!C2) return N1;        // X xor 0 -> X
1475      if (N2C->getValue() == 1 && N1.Val->getOpcode() == ISD::SETCC) {
1476          SDNode *SetCC = N1.Val;
1477          // !(X op Y) -> (X !op Y)
1478          bool isInteger = MVT::isInteger(SetCC->getOperand(0).getValueType());
1479          ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
1480          return getSetCC(SetCC->getValueType(0),
1481                          SetCC->getOperand(0), SetCC->getOperand(1),
1482                          ISD::getSetCCInverse(CC, isInteger));
1483      } else if (N2C->isAllOnesValue()) {
1484        if (N1.getOpcode() == ISD::AND || N1.getOpcode() == ISD::OR) {
1485          SDNode *Op = N1.Val;
1486          // !(X or Y) -> (!X and !Y) iff X or Y are freely invertible
1487          // !(X and Y) -> (!X or !Y) iff X or Y are freely invertible
1488          SDOperand LHS = Op->getOperand(0), RHS = Op->getOperand(1);
1489          if (isInvertibleForFree(RHS) || isInvertibleForFree(LHS)) {
1490            LHS = getNode(ISD::XOR, VT, LHS, N2);  // RHS = ~LHS
1491            RHS = getNode(ISD::XOR, VT, RHS, N2);  // RHS = ~RHS
1492            if (Op->getOpcode() == ISD::AND)
1493              return getNode(ISD::OR, VT, LHS, RHS);
1494            return getNode(ISD::AND, VT, LHS, RHS);
1495          }
1496        }
1497        // X xor -1 -> not(x)  ?
1498      }
1499      break;
1500    }
1501
1502    // Reassociate ((X op C1) op C2) if possible.
1503    if (N1.getOpcode() == Opcode && isAssociativeBinOp(Opcode))
1504      if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N1.Val->getOperand(1)))
1505        return getNode(Opcode, VT, N1.Val->getOperand(0),
1506                       getNode(Opcode, VT, N2, N1.Val->getOperand(1)));
1507  }
1508  }
1509
1510  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1511  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1512  if (N1CFP) {
1513    if (N2CFP) {
1514      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1515      switch (Opcode) {
1516      case ISD::ADD: return getConstantFP(C1 + C2, VT);
1517      case ISD::SUB: return getConstantFP(C1 - C2, VT);
1518      case ISD::MUL: return getConstantFP(C1 * C2, VT);
1519      case ISD::SDIV:
1520        if (C2) return getConstantFP(C1 / C2, VT);
1521        break;
1522      case ISD::SREM :
1523        if (C2) return getConstantFP(fmod(C1, C2), VT);
1524        break;
1525      default: break;
1526      }
1527    } else {      // Cannonicalize constant to RHS if commutative
1528      if (isCommutativeBinOp(Opcode)) {
1529        std::swap(N1CFP, N2CFP);
1530        std::swap(N1, N2);
1531      }
1532    }
1533
1534    if (!CombinerEnabled) {
1535    if (Opcode == ISD::FP_ROUND_INREG)
1536      return getNode(ISD::FP_EXTEND, VT,
1537                     getNode(ISD::FP_ROUND, cast<VTSDNode>(N2)->getVT(), N1));
1538    }
1539  }
1540
1541  // Finally, fold operations that do not require constants.
1542  switch (Opcode) {
1543  case ISD::TokenFactor:
1544    if (!CombinerEnabled) {
1545    if (N1.getOpcode() == ISD::EntryToken)
1546      return N2;
1547    if (N2.getOpcode() == ISD::EntryToken)
1548      return N1;
1549    }
1550    break;
1551
1552  case ISD::AND:
1553  case ISD::OR:
1554    if (!CombinerEnabled) {
1555    if (N1.Val->getOpcode() == ISD::SETCC && N2.Val->getOpcode() == ISD::SETCC){
1556      SDNode *LHS = N1.Val, *RHS = N2.Val;
1557      SDOperand LL = LHS->getOperand(0), RL = RHS->getOperand(0);
1558      SDOperand LR = LHS->getOperand(1), RR = RHS->getOperand(1);
1559      ISD::CondCode Op1 = cast<CondCodeSDNode>(LHS->getOperand(2))->get();
1560      ISD::CondCode Op2 = cast<CondCodeSDNode>(RHS->getOperand(2))->get();
1561
1562      if (LR == RR && isa<ConstantSDNode>(LR) &&
1563          Op2 == Op1 && MVT::isInteger(LL.getValueType())) {
1564        // (X != 0) | (Y != 0) -> (X|Y != 0)
1565        // (X == 0) & (Y == 0) -> (X|Y == 0)
1566        // (X <  0) | (Y <  0) -> (X|Y < 0)
1567        if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1568            ((Op2 == ISD::SETEQ && Opcode == ISD::AND) ||
1569             (Op2 == ISD::SETNE && Opcode == ISD::OR) ||
1570             (Op2 == ISD::SETLT && Opcode == ISD::OR)))
1571          return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL), LR,
1572                          Op2);
1573
1574        if (cast<ConstantSDNode>(LR)->isAllOnesValue()) {
1575          // (X == -1) & (Y == -1) -> (X&Y == -1)
1576          // (X != -1) | (Y != -1) -> (X&Y != -1)
1577          // (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1578          if ((Opcode == ISD::AND && Op2 == ISD::SETEQ) ||
1579              (Opcode == ISD::OR  && Op2 == ISD::SETNE) ||
1580              (Opcode == ISD::OR  && Op2 == ISD::SETGT))
1581            return getSetCC(VT, getNode(ISD::AND, LR.getValueType(), LL, RL),
1582                            LR, Op2);
1583          // (X >  -1) & (Y >  -1) -> (X|Y > -1)
1584          if (Opcode == ISD::AND && Op2 == ISD::SETGT)
1585            return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL),
1586                            LR, Op2);
1587        }
1588      }
1589
1590      // (X op1 Y) | (Y op2 X) -> (X op1 Y) | (X swapop2 Y)
1591      if (LL == RR && LR == RL) {
1592        Op2 = ISD::getSetCCSwappedOperands(Op2);
1593        goto MatchedBackwards;
1594      }
1595
1596      if (LL == RL && LR == RR) {
1597      MatchedBackwards:
1598        ISD::CondCode Result;
1599        bool isInteger = MVT::isInteger(LL.getValueType());
1600        if (Opcode == ISD::OR)
1601          Result = ISD::getSetCCOrOperation(Op1, Op2, isInteger);
1602        else
1603          Result = ISD::getSetCCAndOperation(Op1, Op2, isInteger);
1604
1605        if (Result != ISD::SETCC_INVALID)
1606          return getSetCC(LHS->getValueType(0), LL, LR, Result);
1607      }
1608    }
1609
1610    // and/or zext(a), zext(b) -> zext(and/or a, b)
1611    if (N1.getOpcode() == ISD::ZERO_EXTEND &&
1612        N2.getOpcode() == ISD::ZERO_EXTEND &&
1613        N1.getOperand(0).getValueType() == N2.getOperand(0).getValueType())
1614      return getNode(ISD::ZERO_EXTEND, VT,
1615                     getNode(Opcode, N1.getOperand(0).getValueType(),
1616                             N1.getOperand(0), N2.getOperand(0)));
1617    }
1618    break;
1619  case ISD::XOR:
1620    if (!CombinerEnabled) {
1621    if (N1 == N2) return getConstant(0, VT);  // xor X, Y -> 0
1622    }
1623    break;
1624  case ISD::ADD:
1625    if (!CombinerEnabled) {
1626    if (N2.getOpcode() == ISD::FNEG)          // (A+ (-B) -> A-B
1627      return getNode(ISD::SUB, VT, N1, N2.getOperand(0));
1628    if (N1.getOpcode() == ISD::FNEG)          // ((-A)+B) -> B-A
1629      return getNode(ISD::SUB, VT, N2, N1.getOperand(0));
1630    if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1631        cast<ConstantSDNode>(N1.getOperand(0))->getValue() == 0)
1632      return getNode(ISD::SUB, VT, N2, N1.getOperand(1)); // (0-A)+B -> B-A
1633    if (N2.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N2.getOperand(0)) &&
1634        cast<ConstantSDNode>(N2.getOperand(0))->getValue() == 0)
1635      return getNode(ISD::SUB, VT, N1, N2.getOperand(1)); // A+(0-B) -> A-B
1636    if (N2.getOpcode() == ISD::SUB && N1 == N2.Val->getOperand(1) &&
1637        !MVT::isFloatingPoint(N2.getValueType()))
1638      return N2.Val->getOperand(0); // A+(B-A) -> B
1639    }
1640    break;
1641  case ISD::SUB:
1642    if (!CombinerEnabled) {
1643    if (N1.getOpcode() == ISD::ADD) {
1644      if (N1.Val->getOperand(0) == N2 &&
1645          !MVT::isFloatingPoint(N2.getValueType()))
1646        return N1.Val->getOperand(1);         // (A+B)-A == B
1647      if (N1.Val->getOperand(1) == N2 &&
1648          !MVT::isFloatingPoint(N2.getValueType()))
1649        return N1.Val->getOperand(0);         // (A+B)-B == A
1650    }
1651    if (N2.getOpcode() == ISD::FNEG)          // (A- (-B) -> A+B
1652      return getNode(ISD::ADD, VT, N1, N2.getOperand(0));
1653    }
1654    break;
1655  case ISD::FP_ROUND_INREG:
1656    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1657    break;
1658  case ISD::SIGN_EXTEND_INREG: {
1659    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1660    if (EVT == VT) return N1;  // Not actually extending
1661    if (!CombinerEnabled) {
1662    // If we are sign extending an extension, use the original source.
1663    if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG ||
1664        N1.getOpcode() == ISD::AssertSext)
1665      if (cast<VTSDNode>(N1.getOperand(1))->getVT() <= EVT)
1666        return N1;
1667
1668    // If we are sign extending a sextload, return just the load.
1669    if (N1.getOpcode() == ISD::SEXTLOAD)
1670      if (cast<VTSDNode>(N1.getOperand(3))->getVT() <= EVT)
1671        return N1;
1672
1673    // If we are extending the result of a setcc, and we already know the
1674    // contents of the top bits, eliminate the extension.
1675    if (N1.getOpcode() == ISD::SETCC &&
1676        TLI.getSetCCResultContents() ==
1677                        TargetLowering::ZeroOrNegativeOneSetCCResult)
1678      return N1;
1679
1680    // If we are sign extending the result of an (and X, C) operation, and we
1681    // know the extended bits are zeros already, don't do the extend.
1682    if (N1.getOpcode() == ISD::AND)
1683      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1684        uint64_t Mask = N1C->getValue();
1685        unsigned NumBits = MVT::getSizeInBits(EVT);
1686        if ((Mask & (~0ULL << (NumBits-1))) == 0)
1687          return N1;
1688      }
1689    }
1690    break;
1691  }
1692
1693  // FIXME: figure out how to safely handle things like
1694  // int foo(int x) { return 1 << (x & 255); }
1695  // int bar() { return foo(256); }
1696#if 0
1697  case ISD::SHL:
1698  case ISD::SRL:
1699  case ISD::SRA:
1700    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1701        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1702      return getNode(Opcode, VT, N1, N2.getOperand(0));
1703    else if (N2.getOpcode() == ISD::AND)
1704      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1705        // If the and is only masking out bits that cannot effect the shift,
1706        // eliminate the and.
1707        unsigned NumBits = MVT::getSizeInBits(VT);
1708        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1709          return getNode(Opcode, VT, N1, N2.getOperand(0));
1710      }
1711    break;
1712#endif
1713  }
1714
1715  // Memoize this node if possible.
1716  SDNode *N;
1717  if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
1718      VT != MVT::Flag) {
1719    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1720    if (BON) return SDOperand(BON, 0);
1721
1722    BON = N = new SDNode(Opcode, N1, N2);
1723  } else {
1724    N = new SDNode(Opcode, N1, N2);
1725  }
1726
1727  N->setValueTypes(VT);
1728  AllNodes.push_back(N);
1729  return SDOperand(N, 0);
1730}
1731
1732// setAdjCallChain - This method changes the token chain of an
1733// CALLSEQ_START/END node to be the specified operand.
1734void SDNode::setAdjCallChain(SDOperand N) {
1735  assert(N.getValueType() == MVT::Other);
1736  assert((getOpcode() == ISD::CALLSEQ_START ||
1737          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1738
1739  Operands[0].Val->removeUser(this);
1740  Operands[0] = N;
1741  N.Val->Uses.push_back(this);
1742}
1743
1744
1745
1746SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1747                                SDOperand Chain, SDOperand Ptr,
1748                                SDOperand SV) {
1749  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1750  if (N) return SDOperand(N, 0);
1751  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1752
1753  // Loads have a token chain.
1754  N->setValueTypes(VT, MVT::Other);
1755  AllNodes.push_back(N);
1756  return SDOperand(N, 0);
1757}
1758
1759
1760SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1761                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1762                                   MVT::ValueType EVT) {
1763  std::vector<SDOperand> Ops;
1764  Ops.reserve(4);
1765  Ops.push_back(Chain);
1766  Ops.push_back(Ptr);
1767  Ops.push_back(SV);
1768  Ops.push_back(getValueType(EVT));
1769  std::vector<MVT::ValueType> VTs;
1770  VTs.reserve(2);
1771  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1772  return getNode(Opcode, VTs, Ops);
1773}
1774
1775SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1776                                SDOperand N1, SDOperand N2, SDOperand N3) {
1777  // Perform various simplifications.
1778  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1779  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1780  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1781  switch (Opcode) {
1782  case ISD::SETCC: {
1783    // Use SimplifySetCC  to simplify SETCC's.
1784    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1785    if (Simp.Val) return Simp;
1786    break;
1787  }
1788  case ISD::SELECT:
1789    if (N1C)
1790      if (N1C->getValue())
1791        return N2;             // select true, X, Y -> X
1792      else
1793        return N3;             // select false, X, Y -> Y
1794
1795    if (N2 == N3) return N2;   // select C, X, X -> X
1796
1797    if (VT == MVT::i1) {  // Boolean SELECT
1798      if (N2C) {
1799        if (N2C->getValue())   // select C, 1, X -> C | X
1800          return getNode(ISD::OR, VT, N1, N3);
1801        else                   // select C, 0, X -> ~C & X
1802          return getNode(ISD::AND, VT,
1803                         getNode(ISD::XOR, N1.getValueType(), N1,
1804                                 getConstant(1, N1.getValueType())), N3);
1805      } else if (N3C) {
1806        if (N3C->getValue())   // select C, X, 1 -> ~C | X
1807          return getNode(ISD::OR, VT,
1808                         getNode(ISD::XOR, N1.getValueType(), N1,
1809                                 getConstant(1, N1.getValueType())), N2);
1810        else                   // select C, X, 0 -> C & X
1811          return getNode(ISD::AND, VT, N1, N2);
1812      }
1813
1814      if (N1 == N2)   // X ? X : Y --> X ? 1 : Y --> X | Y
1815        return getNode(ISD::OR, VT, N1, N3);
1816      if (N1 == N3)   // X ? Y : X --> X ? Y : 0 --> X & Y
1817        return getNode(ISD::AND, VT, N1, N2);
1818    }
1819    if (N1.getOpcode() == ISD::SETCC) {
1820      SDOperand Simp = SimplifySelectCC(N1.getOperand(0), N1.getOperand(1), N2,
1821                             N3, cast<CondCodeSDNode>(N1.getOperand(2))->get());
1822      if (Simp.Val) return Simp;
1823    }
1824    break;
1825  case ISD::BRCOND:
1826    if (N2C)
1827      if (N2C->getValue()) // Unconditional branch
1828        return getNode(ISD::BR, MVT::Other, N1, N3);
1829      else
1830        return N1;         // Never-taken branch
1831    break;
1832  }
1833
1834  std::vector<SDOperand> Ops;
1835  Ops.reserve(3);
1836  Ops.push_back(N1);
1837  Ops.push_back(N2);
1838  Ops.push_back(N3);
1839
1840  // Memoize node if it doesn't produce a flag.
1841  SDNode *N;
1842  if (VT != MVT::Flag) {
1843    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1844    if (E) return SDOperand(E, 0);
1845    E = N = new SDNode(Opcode, N1, N2, N3);
1846  } else {
1847    N = new SDNode(Opcode, N1, N2, N3);
1848  }
1849  N->setValueTypes(VT);
1850  AllNodes.push_back(N);
1851  return SDOperand(N, 0);
1852}
1853
1854SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1855                                SDOperand N1, SDOperand N2, SDOperand N3,
1856                                SDOperand N4) {
1857  std::vector<SDOperand> Ops;
1858  Ops.reserve(4);
1859  Ops.push_back(N1);
1860  Ops.push_back(N2);
1861  Ops.push_back(N3);
1862  Ops.push_back(N4);
1863  return getNode(Opcode, VT, Ops);
1864}
1865
1866SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1867                                SDOperand N1, SDOperand N2, SDOperand N3,
1868                                SDOperand N4, SDOperand N5) {
1869  std::vector<SDOperand> Ops;
1870  Ops.reserve(5);
1871  Ops.push_back(N1);
1872  Ops.push_back(N2);
1873  Ops.push_back(N3);
1874  Ops.push_back(N4);
1875  Ops.push_back(N5);
1876  return getNode(Opcode, VT, Ops);
1877}
1878
1879
1880SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1881  assert((!V || isa<PointerType>(V->getType())) &&
1882         "SrcValue is not a pointer?");
1883  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1884  if (N) return SDOperand(N, 0);
1885
1886  N = new SrcValueSDNode(V, Offset);
1887  AllNodes.push_back(N);
1888  return SDOperand(N, 0);
1889}
1890
1891SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1892                                std::vector<SDOperand> &Ops) {
1893  switch (Ops.size()) {
1894  case 0: return getNode(Opcode, VT);
1895  case 1: return getNode(Opcode, VT, Ops[0]);
1896  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1897  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1898  default: break;
1899  }
1900
1901  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1902  switch (Opcode) {
1903  default: break;
1904  case ISD::BRCONDTWOWAY:
1905    if (N1C)
1906      if (N1C->getValue()) // Unconditional branch to true dest.
1907        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1908      else                 // Unconditional branch to false dest.
1909        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1910    break;
1911  case ISD::BRTWOWAY_CC:
1912    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1913    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1914           "LHS and RHS of comparison must have same type!");
1915    break;
1916  case ISD::TRUNCSTORE: {
1917    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1918    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1919#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1920    // If this is a truncating store of a constant, convert to the desired type
1921    // and store it instead.
1922    if (isa<Constant>(Ops[0])) {
1923      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1924      if (isa<Constant>(Op))
1925        N1 = Op;
1926    }
1927    // Also for ConstantFP?
1928#endif
1929    if (Ops[0].getValueType() == EVT)       // Normal store?
1930      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1931    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1932    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1933           "Can't do FP-INT conversion!");
1934    break;
1935  }
1936  case ISD::SELECT_CC: {
1937    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1938    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1939           "LHS and RHS of condition must have same type!");
1940    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1941           "True and False arms of SelectCC must have same type!");
1942    assert(Ops[2].getValueType() == VT &&
1943           "select_cc node must be of same type as true and false value!");
1944    SDOperand Simp = SimplifySelectCC(Ops[0], Ops[1], Ops[2], Ops[3],
1945                                      cast<CondCodeSDNode>(Ops[4])->get());
1946    if (Simp.Val) return Simp;
1947    break;
1948  }
1949  case ISD::BR_CC: {
1950    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1951    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1952           "LHS/RHS of comparison should match types!");
1953    // Use SimplifySetCC  to simplify SETCC's.
1954    SDOperand Simp = SimplifySetCC(MVT::i1, Ops[2], Ops[3],
1955                                   cast<CondCodeSDNode>(Ops[1])->get());
1956    if (Simp.Val) {
1957      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Simp)) {
1958        if (C->getValue() & 1) // Unconditional branch
1959          return getNode(ISD::BR, MVT::Other, Ops[0], Ops[4]);
1960        else
1961          return Ops[0];          // Unconditional Fall through
1962      } else if (Simp.Val->getOpcode() == ISD::SETCC) {
1963        Ops[2] = Simp.getOperand(0);
1964        Ops[3] = Simp.getOperand(1);
1965        Ops[1] = Simp.getOperand(2);
1966      }
1967    }
1968    break;
1969  }
1970  }
1971
1972  // Memoize nodes.
1973  SDNode *N;
1974  if (VT != MVT::Flag) {
1975    SDNode *&E =
1976      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1977    if (E) return SDOperand(E, 0);
1978    E = N = new SDNode(Opcode, Ops);
1979  } else {
1980    N = new SDNode(Opcode, Ops);
1981  }
1982  N->setValueTypes(VT);
1983  AllNodes.push_back(N);
1984  return SDOperand(N, 0);
1985}
1986
1987SDOperand SelectionDAG::getNode(unsigned Opcode,
1988                                std::vector<MVT::ValueType> &ResultTys,
1989                                std::vector<SDOperand> &Ops) {
1990  if (ResultTys.size() == 1)
1991    return getNode(Opcode, ResultTys[0], Ops);
1992
1993  switch (Opcode) {
1994  case ISD::EXTLOAD:
1995  case ISD::SEXTLOAD:
1996  case ISD::ZEXTLOAD: {
1997    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1998    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1999    // If they are asking for an extending load from/to the same thing, return a
2000    // normal load.
2001    if (ResultTys[0] == EVT)
2002      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
2003    assert(EVT < ResultTys[0] &&
2004           "Should only be an extending load, not truncating!");
2005    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
2006           "Cannot sign/zero extend a FP load!");
2007    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
2008           "Cannot convert from FP to Int or Int -> FP!");
2009    break;
2010  }
2011
2012  // FIXME: figure out how to safely handle things like
2013  // int foo(int x) { return 1 << (x & 255); }
2014  // int bar() { return foo(256); }
2015#if 0
2016  case ISD::SRA_PARTS:
2017  case ISD::SRL_PARTS:
2018  case ISD::SHL_PARTS:
2019    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2020        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2021      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2022    else if (N3.getOpcode() == ISD::AND)
2023      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2024        // If the and is only masking out bits that cannot effect the shift,
2025        // eliminate the and.
2026        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2027        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2028          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2029      }
2030    break;
2031#endif
2032  }
2033
2034  // Memoize the node unless it returns a flag.
2035  SDNode *N;
2036  if (ResultTys.back() != MVT::Flag) {
2037    SDNode *&E =
2038      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
2039    if (E) return SDOperand(E, 0);
2040    E = N = new SDNode(Opcode, Ops);
2041  } else {
2042    N = new SDNode(Opcode, Ops);
2043  }
2044  N->setValueTypes(ResultTys);
2045  AllNodes.push_back(N);
2046  return SDOperand(N, 0);
2047}
2048
2049
2050/// SelectNodeTo - These are used for target selectors to *mutate* the
2051/// specified node to have the specified return type, Target opcode, and
2052/// operands.  Note that target opcodes are stored as
2053/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2054void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2055                                MVT::ValueType VT) {
2056  RemoveNodeFromCSEMaps(N);
2057  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2058  N->setValueTypes(VT);
2059}
2060void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2061                                MVT::ValueType VT, SDOperand Op1) {
2062  RemoveNodeFromCSEMaps(N);
2063  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2064  N->setValueTypes(VT);
2065  N->setOperands(Op1);
2066}
2067void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2068                                MVT::ValueType VT, SDOperand Op1,
2069                                SDOperand Op2) {
2070  RemoveNodeFromCSEMaps(N);
2071  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2072  N->setValueTypes(VT);
2073  N->setOperands(Op1, Op2);
2074}
2075void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2076                                MVT::ValueType VT1, MVT::ValueType VT2,
2077                                SDOperand Op1, SDOperand Op2) {
2078  RemoveNodeFromCSEMaps(N);
2079  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2080  N->setValueTypes(VT1, VT2);
2081  N->setOperands(Op1, Op2);
2082}
2083void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2084                                MVT::ValueType VT, SDOperand Op1,
2085                                SDOperand Op2, SDOperand Op3) {
2086  RemoveNodeFromCSEMaps(N);
2087  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2088  N->setValueTypes(VT);
2089  N->setOperands(Op1, Op2, Op3);
2090}
2091void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2092                                MVT::ValueType VT1, MVT::ValueType VT2,
2093                                SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2094  RemoveNodeFromCSEMaps(N);
2095  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2096  N->setValueTypes(VT1, VT2);
2097  N->setOperands(Op1, Op2, Op3);
2098}
2099
2100void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2101                                MVT::ValueType VT, SDOperand Op1,
2102                                SDOperand Op2, SDOperand Op3, SDOperand Op4) {
2103  RemoveNodeFromCSEMaps(N);
2104  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2105  N->setValueTypes(VT);
2106  N->setOperands(Op1, Op2, Op3, Op4);
2107}
2108void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2109                                MVT::ValueType VT, SDOperand Op1,
2110                                SDOperand Op2, SDOperand Op3, SDOperand Op4,
2111                                SDOperand Op5) {
2112  RemoveNodeFromCSEMaps(N);
2113  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2114  N->setValueTypes(VT);
2115  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2116}
2117
2118/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2119/// This can cause recursive merging of nodes in the DAG.
2120///
2121/// This version assumes From/To have a single result value.
2122///
2123void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2124                                      std::vector<SDNode*> *Deleted) {
2125  SDNode *From = FromN.Val, *To = ToN.Val;
2126  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2127         "Cannot replace with this method!");
2128  assert(From != To && "Cannot replace uses of with self");
2129
2130  while (!From->use_empty()) {
2131    // Process users until they are all gone.
2132    SDNode *U = *From->use_begin();
2133
2134    // This node is about to morph, remove its old self from the CSE maps.
2135    RemoveNodeFromCSEMaps(U);
2136
2137    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2138      if (U->getOperand(i).Val == From) {
2139        From->removeUser(U);
2140        U->Operands[i].Val = To;
2141        To->addUser(U);
2142      }
2143
2144    // Now that we have modified U, add it back to the CSE maps.  If it already
2145    // exists there, recursively merge the results together.
2146    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2147      ReplaceAllUsesWith(U, Existing, Deleted);
2148      // U is now dead.
2149      if (Deleted) Deleted->push_back(U);
2150      DeleteNodeNotInCSEMaps(U);
2151    }
2152  }
2153}
2154
2155/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2156/// This can cause recursive merging of nodes in the DAG.
2157///
2158/// This version assumes From/To have matching types and numbers of result
2159/// values.
2160///
2161void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2162                                      std::vector<SDNode*> *Deleted) {
2163  assert(From != To && "Cannot replace uses of with self");
2164  assert(From->getNumValues() == To->getNumValues() &&
2165         "Cannot use this version of ReplaceAllUsesWith!");
2166  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2167    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2168    return;
2169  }
2170
2171  while (!From->use_empty()) {
2172    // Process users until they are all gone.
2173    SDNode *U = *From->use_begin();
2174
2175    // This node is about to morph, remove its old self from the CSE maps.
2176    RemoveNodeFromCSEMaps(U);
2177
2178    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2179      if (U->getOperand(i).Val == From) {
2180        From->removeUser(U);
2181        U->Operands[i].Val = To;
2182        To->addUser(U);
2183      }
2184
2185    // Now that we have modified U, add it back to the CSE maps.  If it already
2186    // exists there, recursively merge the results together.
2187    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2188      ReplaceAllUsesWith(U, Existing, Deleted);
2189      // U is now dead.
2190      if (Deleted) Deleted->push_back(U);
2191      DeleteNodeNotInCSEMaps(U);
2192    }
2193  }
2194}
2195
2196/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2197/// This can cause recursive merging of nodes in the DAG.
2198///
2199/// This version can replace From with any result values.  To must match the
2200/// number and types of values returned by From.
2201void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2202                                      const std::vector<SDOperand> &To,
2203                                      std::vector<SDNode*> *Deleted) {
2204  assert(From->getNumValues() == To.size() &&
2205         "Incorrect number of values to replace with!");
2206  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2207    // Degenerate case handled above.
2208    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2209    return;
2210  }
2211
2212  while (!From->use_empty()) {
2213    // Process users until they are all gone.
2214    SDNode *U = *From->use_begin();
2215
2216    // This node is about to morph, remove its old self from the CSE maps.
2217    RemoveNodeFromCSEMaps(U);
2218
2219    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2220      if (U->getOperand(i).Val == From) {
2221        const SDOperand &ToOp = To[U->getOperand(i).ResNo];
2222        From->removeUser(U);
2223        U->Operands[i] = ToOp;
2224        ToOp.Val->addUser(U);
2225      }
2226
2227    // Now that we have modified U, add it back to the CSE maps.  If it already
2228    // exists there, recursively merge the results together.
2229    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2230      ReplaceAllUsesWith(U, Existing, Deleted);
2231      // U is now dead.
2232      if (Deleted) Deleted->push_back(U);
2233      DeleteNodeNotInCSEMaps(U);
2234    }
2235  }
2236}
2237
2238
2239//===----------------------------------------------------------------------===//
2240//                              SDNode Class
2241//===----------------------------------------------------------------------===//
2242
2243/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2244/// indicated value.  This method ignores uses of other values defined by this
2245/// operation.
2246bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
2247  assert(Value < getNumValues() && "Bad value!");
2248
2249  // If there is only one value, this is easy.
2250  if (getNumValues() == 1)
2251    return use_size() == NUses;
2252  if (Uses.size() < NUses) return false;
2253
2254  SDOperand TheValue(this, Value);
2255
2256  std::set<SDNode*> UsersHandled;
2257
2258  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
2259       UI != E; ++UI) {
2260    SDNode *User = *UI;
2261    if (User->getNumOperands() == 1 ||
2262        UsersHandled.insert(User).second)     // First time we've seen this?
2263      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2264        if (User->getOperand(i) == TheValue) {
2265          if (NUses == 0)
2266            return false;   // too many uses
2267          --NUses;
2268        }
2269  }
2270
2271  // Found exactly the right number of uses?
2272  return NUses == 0;
2273}
2274
2275
2276const char *SDNode::getOperationName(const SelectionDAG *G) const {
2277  switch (getOpcode()) {
2278  default:
2279    if (getOpcode() < ISD::BUILTIN_OP_END)
2280      return "<<Unknown DAG Node>>";
2281    else {
2282      if (G)
2283        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2284          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2285            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2286      return "<<Unknown Target Node>>";
2287    }
2288
2289  case ISD::PCMARKER:      return "PCMarker";
2290  case ISD::SRCVALUE:      return "SrcValue";
2291  case ISD::VALUETYPE:     return "ValueType";
2292  case ISD::EntryToken:    return "EntryToken";
2293  case ISD::TokenFactor:   return "TokenFactor";
2294  case ISD::AssertSext:    return "AssertSext";
2295  case ISD::AssertZext:    return "AssertZext";
2296  case ISD::Constant:      return "Constant";
2297  case ISD::TargetConstant: return "TargetConstant";
2298  case ISD::ConstantFP:    return "ConstantFP";
2299  case ISD::GlobalAddress: return "GlobalAddress";
2300  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2301  case ISD::FrameIndex:    return "FrameIndex";
2302  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2303  case ISD::BasicBlock:    return "BasicBlock";
2304  case ISD::Register:      return "Register";
2305  case ISD::ExternalSymbol: return "ExternalSymbol";
2306  case ISD::ConstantPool:  return "ConstantPool";
2307  case ISD::TargetConstantPool:  return "TargetConstantPool";
2308  case ISD::CopyToReg:     return "CopyToReg";
2309  case ISD::CopyFromReg:   return "CopyFromReg";
2310  case ISD::ImplicitDef:   return "ImplicitDef";
2311  case ISD::UNDEF:         return "undef";
2312
2313  // Unary operators
2314  case ISD::FABS:   return "fabs";
2315  case ISD::FNEG:   return "fneg";
2316  case ISD::FSQRT:  return "fsqrt";
2317  case ISD::FSIN:   return "fsin";
2318  case ISD::FCOS:   return "fcos";
2319
2320  // Binary operators
2321  case ISD::ADD:    return "add";
2322  case ISD::SUB:    return "sub";
2323  case ISD::MUL:    return "mul";
2324  case ISD::MULHU:  return "mulhu";
2325  case ISD::MULHS:  return "mulhs";
2326  case ISD::SDIV:   return "sdiv";
2327  case ISD::UDIV:   return "udiv";
2328  case ISD::SREM:   return "srem";
2329  case ISD::UREM:   return "urem";
2330  case ISD::AND:    return "and";
2331  case ISD::OR:     return "or";
2332  case ISD::XOR:    return "xor";
2333  case ISD::SHL:    return "shl";
2334  case ISD::SRA:    return "sra";
2335  case ISD::SRL:    return "srl";
2336
2337  case ISD::SETCC:       return "setcc";
2338  case ISD::SELECT:      return "select";
2339  case ISD::SELECT_CC:   return "select_cc";
2340  case ISD::ADD_PARTS:   return "add_parts";
2341  case ISD::SUB_PARTS:   return "sub_parts";
2342  case ISD::SHL_PARTS:   return "shl_parts";
2343  case ISD::SRA_PARTS:   return "sra_parts";
2344  case ISD::SRL_PARTS:   return "srl_parts";
2345
2346  // Conversion operators.
2347  case ISD::SIGN_EXTEND: return "sign_extend";
2348  case ISD::ZERO_EXTEND: return "zero_extend";
2349  case ISD::ANY_EXTEND:  return "any_extend";
2350  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2351  case ISD::TRUNCATE:    return "truncate";
2352  case ISD::FP_ROUND:    return "fp_round";
2353  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2354  case ISD::FP_EXTEND:   return "fp_extend";
2355
2356  case ISD::SINT_TO_FP:  return "sint_to_fp";
2357  case ISD::UINT_TO_FP:  return "uint_to_fp";
2358  case ISD::FP_TO_SINT:  return "fp_to_sint";
2359  case ISD::FP_TO_UINT:  return "fp_to_uint";
2360
2361    // Control flow instructions
2362  case ISD::BR:      return "br";
2363  case ISD::BRCOND:  return "brcond";
2364  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
2365  case ISD::BR_CC:  return "br_cc";
2366  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
2367  case ISD::RET:     return "ret";
2368  case ISD::CALL:    return "call";
2369  case ISD::TAILCALL:return "tailcall";
2370  case ISD::CALLSEQ_START:  return "callseq_start";
2371  case ISD::CALLSEQ_END:    return "callseq_end";
2372
2373    // Other operators
2374  case ISD::LOAD:    return "load";
2375  case ISD::STORE:   return "store";
2376  case ISD::EXTLOAD:    return "extload";
2377  case ISD::SEXTLOAD:   return "sextload";
2378  case ISD::ZEXTLOAD:   return "zextload";
2379  case ISD::TRUNCSTORE: return "truncstore";
2380
2381  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2382  case ISD::EXTRACT_ELEMENT: return "extract_element";
2383  case ISD::BUILD_PAIR: return "build_pair";
2384  case ISD::MEMSET:  return "memset";
2385  case ISD::MEMCPY:  return "memcpy";
2386  case ISD::MEMMOVE: return "memmove";
2387
2388  // Bit counting
2389  case ISD::CTPOP:   return "ctpop";
2390  case ISD::CTTZ:    return "cttz";
2391  case ISD::CTLZ:    return "ctlz";
2392
2393  // IO Intrinsics
2394  case ISD::READPORT: return "readport";
2395  case ISD::WRITEPORT: return "writeport";
2396  case ISD::READIO: return "readio";
2397  case ISD::WRITEIO: return "writeio";
2398
2399  case ISD::CONDCODE:
2400    switch (cast<CondCodeSDNode>(this)->get()) {
2401    default: assert(0 && "Unknown setcc condition!");
2402    case ISD::SETOEQ:  return "setoeq";
2403    case ISD::SETOGT:  return "setogt";
2404    case ISD::SETOGE:  return "setoge";
2405    case ISD::SETOLT:  return "setolt";
2406    case ISD::SETOLE:  return "setole";
2407    case ISD::SETONE:  return "setone";
2408
2409    case ISD::SETO:    return "seto";
2410    case ISD::SETUO:   return "setuo";
2411    case ISD::SETUEQ:  return "setue";
2412    case ISD::SETUGT:  return "setugt";
2413    case ISD::SETUGE:  return "setuge";
2414    case ISD::SETULT:  return "setult";
2415    case ISD::SETULE:  return "setule";
2416    case ISD::SETUNE:  return "setune";
2417
2418    case ISD::SETEQ:   return "seteq";
2419    case ISD::SETGT:   return "setgt";
2420    case ISD::SETGE:   return "setge";
2421    case ISD::SETLT:   return "setlt";
2422    case ISD::SETLE:   return "setle";
2423    case ISD::SETNE:   return "setne";
2424    }
2425  }
2426}
2427
2428void SDNode::dump() const { dump(0); }
2429void SDNode::dump(const SelectionDAG *G) const {
2430  std::cerr << (void*)this << ": ";
2431
2432  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2433    if (i) std::cerr << ",";
2434    if (getValueType(i) == MVT::Other)
2435      std::cerr << "ch";
2436    else
2437      std::cerr << MVT::getValueTypeString(getValueType(i));
2438  }
2439  std::cerr << " = " << getOperationName(G);
2440
2441  std::cerr << " ";
2442  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2443    if (i) std::cerr << ", ";
2444    std::cerr << (void*)getOperand(i).Val;
2445    if (unsigned RN = getOperand(i).ResNo)
2446      std::cerr << ":" << RN;
2447  }
2448
2449  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2450    std::cerr << "<" << CSDN->getValue() << ">";
2451  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2452    std::cerr << "<" << CSDN->getValue() << ">";
2453  } else if (const GlobalAddressSDNode *GADN =
2454             dyn_cast<GlobalAddressSDNode>(this)) {
2455    std::cerr << "<";
2456    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2457  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2458    std::cerr << "<" << FIDN->getIndex() << ">";
2459  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2460    std::cerr << "<" << *CP->get() << ">";
2461  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2462    std::cerr << "<";
2463    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2464    if (LBB)
2465      std::cerr << LBB->getName() << " ";
2466    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2467  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2468    if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2469      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2470    } else {
2471      std::cerr << " #" << R->getReg();
2472    }
2473  } else if (const ExternalSymbolSDNode *ES =
2474             dyn_cast<ExternalSymbolSDNode>(this)) {
2475    std::cerr << "'" << ES->getSymbol() << "'";
2476  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2477    if (M->getValue())
2478      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2479    else
2480      std::cerr << "<null:" << M->getOffset() << ">";
2481  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2482    std::cerr << ":" << getValueTypeString(N->getVT());
2483  }
2484}
2485
2486static void DumpNodes(SDNode *N, unsigned indent, const SelectionDAG *G) {
2487  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2488    if (N->getOperand(i).Val->hasOneUse())
2489      DumpNodes(N->getOperand(i).Val, indent+2, G);
2490    else
2491      std::cerr << "\n" << std::string(indent+2, ' ')
2492                << (void*)N->getOperand(i).Val << ": <multiple use>";
2493
2494
2495  std::cerr << "\n" << std::string(indent, ' ');
2496  N->dump(G);
2497}
2498
2499void SelectionDAG::dump() const {
2500  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2501  std::vector<SDNode*> Nodes(AllNodes);
2502  std::sort(Nodes.begin(), Nodes.end());
2503
2504  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2505    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2506      DumpNodes(Nodes[i], 2, this);
2507  }
2508
2509  DumpNodes(getRoot().Val, 2, this);
2510
2511  std::cerr << "\n\n";
2512}
2513
2514