SelectionDAG.cpp revision 6158d8492cc021bb47caee6d4755135ef1d855a4
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44/// makeVTList - Return an instance of the SDVTList struct initialized with the
45/// specified members.
46static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
47  SDVTList Res = {VTs, NumVTs};
48  return Res;
49}
50
51static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
52  switch (VT.getSimpleVT()) {
53  default: assert(0 && "Unknown FP format");
54  case MVT::f32:     return &APFloat::IEEEsingle;
55  case MVT::f64:     return &APFloat::IEEEdouble;
56  case MVT::f80:     return &APFloat::x87DoubleExtended;
57  case MVT::f128:    return &APFloat::IEEEquad;
58  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
59  }
60}
61
62SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
73  return getValueAPF().bitwiseIsEqual(V);
74}
75
76bool ConstantFPSDNode::isValueValidForType(MVT VT,
77                                           const APFloat& Val) {
78  assert(VT.isFloatingPoint() && "Can only convert between FP types");
79
80  // PPC long double cannot be converted to any other type.
81  if (VT == MVT::ppcf128 ||
82      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  return Val2.convert(*MVTToAPFloatSemantics(VT),
88                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
89}
90
91//===----------------------------------------------------------------------===//
92//                              ISD Namespace
93//===----------------------------------------------------------------------===//
94
95/// isBuildVectorAllOnes - Return true if the specified node is a
96/// BUILD_VECTOR where all of the elements are ~0 or undef.
97bool ISD::isBuildVectorAllOnes(const SDNode *N) {
98  // Look through a bit convert.
99  if (N->getOpcode() == ISD::BIT_CONVERT)
100    N = N->getOperand(0).getNode();
101
102  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
103
104  unsigned i = 0, e = N->getNumOperands();
105
106  // Skip over all of the undef values.
107  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
108    ++i;
109
110  // Do not accept an all-undef vector.
111  if (i == e) return false;
112
113  // Do not accept build_vectors that aren't all constants or which have non-~0
114  // elements.
115  SDValue NotZero = N->getOperand(i);
116  if (isa<ConstantSDNode>(NotZero)) {
117    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
118      return false;
119  } else if (isa<ConstantFPSDNode>(NotZero)) {
120    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
121                convertToAPInt().isAllOnesValue())
122      return false;
123  } else
124    return false;
125
126  // Okay, we have at least one ~0 value, check to see if the rest match or are
127  // undefs.
128  for (++i; i != e; ++i)
129    if (N->getOperand(i) != NotZero &&
130        N->getOperand(i).getOpcode() != ISD::UNDEF)
131      return false;
132  return true;
133}
134
135
136/// isBuildVectorAllZeros - Return true if the specified node is a
137/// BUILD_VECTOR where all of the elements are 0 or undef.
138bool ISD::isBuildVectorAllZeros(const SDNode *N) {
139  // Look through a bit convert.
140  if (N->getOpcode() == ISD::BIT_CONVERT)
141    N = N->getOperand(0).getNode();
142
143  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
144
145  unsigned i = 0, e = N->getNumOperands();
146
147  // Skip over all of the undef values.
148  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
149    ++i;
150
151  // Do not accept an all-undef vector.
152  if (i == e) return false;
153
154  // Do not accept build_vectors that aren't all constants or which have non-~0
155  // elements.
156  SDValue Zero = N->getOperand(i);
157  if (isa<ConstantSDNode>(Zero)) {
158    if (!cast<ConstantSDNode>(Zero)->isNullValue())
159      return false;
160  } else if (isa<ConstantFPSDNode>(Zero)) {
161    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
162      return false;
163  } else
164    return false;
165
166  // Okay, we have at least one ~0 value, check to see if the rest match or are
167  // undefs.
168  for (++i; i != e; ++i)
169    if (N->getOperand(i) != Zero &&
170        N->getOperand(i).getOpcode() != ISD::UNDEF)
171      return false;
172  return true;
173}
174
175/// isScalarToVector - Return true if the specified node is a
176/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
177/// element is not an undef.
178bool ISD::isScalarToVector(const SDNode *N) {
179  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
180    return true;
181
182  if (N->getOpcode() != ISD::BUILD_VECTOR)
183    return false;
184  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
185    return false;
186  unsigned NumElems = N->getNumOperands();
187  for (unsigned i = 1; i < NumElems; ++i) {
188    SDValue V = N->getOperand(i);
189    if (V.getOpcode() != ISD::UNDEF)
190      return false;
191  }
192  return true;
193}
194
195
196/// isDebugLabel - Return true if the specified node represents a debug
197/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
198bool ISD::isDebugLabel(const SDNode *N) {
199  SDValue Zero;
200  if (N->getOpcode() == ISD::DBG_LABEL)
201    return true;
202  if (N->isMachineOpcode() &&
203      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
204    return true;
205  return false;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211  // To perform this operation, we just need to swap the L and G bits of the
212  // operation.
213  unsigned OldL = (Operation >> 2) & 1;
214  unsigned OldG = (Operation >> 1) & 1;
215  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216                       (OldL << 1) |       // New G bit
217                       (OldG << 2));        // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223  unsigned Operation = Op;
224  if (isInteger)
225    Operation ^= 7;   // Flip L, G, E bits, but not U.
226  else
227    Operation ^= 15;  // Flip all of the condition bits.
228  if (Operation > ISD::SETTRUE2)
229    Operation &= ~8;     // Don't let N and U bits get set.
230  return ISD::CondCode(Operation);
231}
232
233
234/// isSignedOp - For an integer comparison, return 1 if the comparison is a
235/// signed operation and 2 if the result is an unsigned comparison.  Return zero
236/// if the operation does not depend on the sign of the input (setne and seteq).
237static int isSignedOp(ISD::CondCode Opcode) {
238  switch (Opcode) {
239  default: assert(0 && "Illegal integer setcc operation!");
240  case ISD::SETEQ:
241  case ISD::SETNE: return 0;
242  case ISD::SETLT:
243  case ISD::SETLE:
244  case ISD::SETGT:
245  case ISD::SETGE: return 1;
246  case ISD::SETULT:
247  case ISD::SETULE:
248  case ISD::SETUGT:
249  case ISD::SETUGE: return 2;
250  }
251}
252
253/// getSetCCOrOperation - Return the result of a logical OR between different
254/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
255/// returns SETCC_INVALID if it is not possible to represent the resultant
256/// comparison.
257ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
258                                       bool isInteger) {
259  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
260    // Cannot fold a signed integer setcc with an unsigned integer setcc.
261    return ISD::SETCC_INVALID;
262
263  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
264
265  // If the N and U bits get set then the resultant comparison DOES suddenly
266  // care about orderedness, and is true when ordered.
267  if (Op > ISD::SETTRUE2)
268    Op &= ~16;     // Clear the U bit if the N bit is set.
269
270  // Canonicalize illegal integer setcc's.
271  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
272    Op = ISD::SETNE;
273
274  return ISD::CondCode(Op);
275}
276
277/// getSetCCAndOperation - Return the result of a logical AND between different
278/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
279/// function returns zero if it is not possible to represent the resultant
280/// comparison.
281ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
282                                        bool isInteger) {
283  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
284    // Cannot fold a signed setcc with an unsigned setcc.
285    return ISD::SETCC_INVALID;
286
287  // Combine all of the condition bits.
288  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
289
290  // Canonicalize illegal integer setcc's.
291  if (isInteger) {
292    switch (Result) {
293    default: break;
294    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
295    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
296    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
297    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
298    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
299    }
300  }
301
302  return Result;
303}
304
305const TargetMachine &SelectionDAG::getTarget() const {
306  return MF->getTarget();
307}
308
309//===----------------------------------------------------------------------===//
310//                           SDNode Profile Support
311//===----------------------------------------------------------------------===//
312
313/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314///
315static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316  ID.AddInteger(OpC);
317}
318
319/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320/// solely with their pointer.
321static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322  ID.AddPointer(VTList.VTs);
323}
324
325/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326///
327static void AddNodeIDOperands(FoldingSetNodeID &ID,
328                              const SDValue *Ops, unsigned NumOps) {
329  for (; NumOps; --NumOps, ++Ops) {
330    ID.AddPointer(Ops->getNode());
331    ID.AddInteger(Ops->getResNo());
332  }
333}
334
335/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336///
337static void AddNodeIDOperands(FoldingSetNodeID &ID,
338                              const SDUse *Ops, unsigned NumOps) {
339  for (; NumOps; --NumOps, ++Ops) {
340    ID.AddPointer(Ops->getVal());
341    ID.AddInteger(Ops->getSDValue().getResNo());
342  }
343}
344
345static void AddNodeIDNode(FoldingSetNodeID &ID,
346                          unsigned short OpC, SDVTList VTList,
347                          const SDValue *OpList, unsigned N) {
348  AddNodeIDOpcode(ID, OpC);
349  AddNodeIDValueTypes(ID, VTList);
350  AddNodeIDOperands(ID, OpList, N);
351}
352
353
354/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
355/// data.
356static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
357  AddNodeIDOpcode(ID, N->getOpcode());
358  // Add the return value info.
359  AddNodeIDValueTypes(ID, N->getVTList());
360  // Add the operand info.
361  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
362
363  // Handle SDNode leafs with special info.
364  switch (N->getOpcode()) {
365  default: break;  // Normal nodes don't need extra info.
366  case ISD::ARG_FLAGS:
367    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
368    break;
369  case ISD::TargetConstant:
370  case ISD::Constant:
371    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
372    break;
373  case ISD::TargetConstantFP:
374  case ISD::ConstantFP: {
375    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
376    break;
377  }
378  case ISD::TargetGlobalAddress:
379  case ISD::GlobalAddress:
380  case ISD::TargetGlobalTLSAddress:
381  case ISD::GlobalTLSAddress: {
382    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
383    ID.AddPointer(GA->getGlobal());
384    ID.AddInteger(GA->getOffset());
385    break;
386  }
387  case ISD::BasicBlock:
388    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
389    break;
390  case ISD::Register:
391    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
392    break;
393  case ISD::DBG_STOPPOINT: {
394    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
395    ID.AddInteger(DSP->getLine());
396    ID.AddInteger(DSP->getColumn());
397    ID.AddPointer(DSP->getCompileUnit());
398    break;
399  }
400  case ISD::SRCVALUE:
401    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
402    break;
403  case ISD::MEMOPERAND: {
404    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
405    MO.Profile(ID);
406    break;
407  }
408  case ISD::FrameIndex:
409  case ISD::TargetFrameIndex:
410    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
411    break;
412  case ISD::JumpTable:
413  case ISD::TargetJumpTable:
414    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
415    break;
416  case ISD::ConstantPool:
417  case ISD::TargetConstantPool: {
418    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
419    ID.AddInteger(CP->getAlignment());
420    ID.AddInteger(CP->getOffset());
421    if (CP->isMachineConstantPoolEntry())
422      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
423    else
424      ID.AddPointer(CP->getConstVal());
425    break;
426  }
427  case ISD::CALL: {
428    const CallSDNode *Call = cast<CallSDNode>(N);
429    ID.AddInteger(Call->getCallingConv());
430    ID.AddInteger(Call->isVarArg());
431    break;
432  }
433  case ISD::LOAD: {
434    const LoadSDNode *LD = cast<LoadSDNode>(N);
435    ID.AddInteger(LD->getAddressingMode());
436    ID.AddInteger(LD->getExtensionType());
437    ID.AddInteger(LD->getMemoryVT().getRawBits());
438    ID.AddInteger(LD->getRawFlags());
439    break;
440  }
441  case ISD::STORE: {
442    const StoreSDNode *ST = cast<StoreSDNode>(N);
443    ID.AddInteger(ST->getAddressingMode());
444    ID.AddInteger(ST->isTruncatingStore());
445    ID.AddInteger(ST->getMemoryVT().getRawBits());
446    ID.AddInteger(ST->getRawFlags());
447    break;
448  }
449  case ISD::ATOMIC_CMP_SWAP_8:
450  case ISD::ATOMIC_SWAP_8:
451  case ISD::ATOMIC_LOAD_ADD_8:
452  case ISD::ATOMIC_LOAD_SUB_8:
453  case ISD::ATOMIC_LOAD_AND_8:
454  case ISD::ATOMIC_LOAD_OR_8:
455  case ISD::ATOMIC_LOAD_XOR_8:
456  case ISD::ATOMIC_LOAD_NAND_8:
457  case ISD::ATOMIC_LOAD_MIN_8:
458  case ISD::ATOMIC_LOAD_MAX_8:
459  case ISD::ATOMIC_LOAD_UMIN_8:
460  case ISD::ATOMIC_LOAD_UMAX_8:
461  case ISD::ATOMIC_CMP_SWAP_16:
462  case ISD::ATOMIC_SWAP_16:
463  case ISD::ATOMIC_LOAD_ADD_16:
464  case ISD::ATOMIC_LOAD_SUB_16:
465  case ISD::ATOMIC_LOAD_AND_16:
466  case ISD::ATOMIC_LOAD_OR_16:
467  case ISD::ATOMIC_LOAD_XOR_16:
468  case ISD::ATOMIC_LOAD_NAND_16:
469  case ISD::ATOMIC_LOAD_MIN_16:
470  case ISD::ATOMIC_LOAD_MAX_16:
471  case ISD::ATOMIC_LOAD_UMIN_16:
472  case ISD::ATOMIC_LOAD_UMAX_16:
473  case ISD::ATOMIC_CMP_SWAP_32:
474  case ISD::ATOMIC_SWAP_32:
475  case ISD::ATOMIC_LOAD_ADD_32:
476  case ISD::ATOMIC_LOAD_SUB_32:
477  case ISD::ATOMIC_LOAD_AND_32:
478  case ISD::ATOMIC_LOAD_OR_32:
479  case ISD::ATOMIC_LOAD_XOR_32:
480  case ISD::ATOMIC_LOAD_NAND_32:
481  case ISD::ATOMIC_LOAD_MIN_32:
482  case ISD::ATOMIC_LOAD_MAX_32:
483  case ISD::ATOMIC_LOAD_UMIN_32:
484  case ISD::ATOMIC_LOAD_UMAX_32:
485  case ISD::ATOMIC_CMP_SWAP_64:
486  case ISD::ATOMIC_SWAP_64:
487  case ISD::ATOMIC_LOAD_ADD_64:
488  case ISD::ATOMIC_LOAD_SUB_64:
489  case ISD::ATOMIC_LOAD_AND_64:
490  case ISD::ATOMIC_LOAD_OR_64:
491  case ISD::ATOMIC_LOAD_XOR_64:
492  case ISD::ATOMIC_LOAD_NAND_64:
493  case ISD::ATOMIC_LOAD_MIN_64:
494  case ISD::ATOMIC_LOAD_MAX_64:
495  case ISD::ATOMIC_LOAD_UMIN_64:
496  case ISD::ATOMIC_LOAD_UMAX_64: {
497    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
498    ID.AddInteger(AT->getRawFlags());
499    break;
500  }
501  } // end switch (N->getOpcode())
502}
503
504/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
505/// the CSE map that carries both alignment and volatility information.
506///
507static unsigned encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
508  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
509}
510
511//===----------------------------------------------------------------------===//
512//                              SelectionDAG Class
513//===----------------------------------------------------------------------===//
514
515/// RemoveDeadNodes - This method deletes all unreachable nodes in the
516/// SelectionDAG.
517void SelectionDAG::RemoveDeadNodes() {
518  // Create a dummy node (which is not added to allnodes), that adds a reference
519  // to the root node, preventing it from being deleted.
520  HandleSDNode Dummy(getRoot());
521
522  SmallVector<SDNode*, 128> DeadNodes;
523
524  // Add all obviously-dead nodes to the DeadNodes worklist.
525  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
526    if (I->use_empty())
527      DeadNodes.push_back(I);
528
529  RemoveDeadNodes(DeadNodes);
530
531  // If the root changed (e.g. it was a dead load, update the root).
532  setRoot(Dummy.getValue());
533}
534
535/// RemoveDeadNodes - This method deletes the unreachable nodes in the
536/// given list, and any nodes that become unreachable as a result.
537void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
538                                   DAGUpdateListener *UpdateListener) {
539
540  // Process the worklist, deleting the nodes and adding their uses to the
541  // worklist.
542  while (!DeadNodes.empty()) {
543    SDNode *N = DeadNodes.back();
544    DeadNodes.pop_back();
545
546    if (UpdateListener)
547      UpdateListener->NodeDeleted(N, 0);
548
549    // Take the node out of the appropriate CSE map.
550    RemoveNodeFromCSEMaps(N);
551
552    // Next, brutally remove the operand list.  This is safe to do, as there are
553    // no cycles in the graph.
554    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
555      SDNode *Operand = I->getVal();
556      Operand->removeUser(std::distance(N->op_begin(), I), N);
557
558      // Now that we removed this operand, see if there are no uses of it left.
559      if (Operand->use_empty())
560        DeadNodes.push_back(Operand);
561    }
562    if (N->OperandsNeedDelete) {
563      delete[] N->OperandList;
564    }
565    N->OperandList = 0;
566    N->NumOperands = 0;
567
568    // Finally, remove N itself.
569    NodeAllocator.Deallocate(AllNodes.remove(N));
570  }
571}
572
573void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
574  SmallVector<SDNode*, 16> DeadNodes(1, N);
575  RemoveDeadNodes(DeadNodes, UpdateListener);
576}
577
578void SelectionDAG::DeleteNode(SDNode *N) {
579  assert(N->use_empty() && "Cannot delete a node that is not dead!");
580
581  // First take this out of the appropriate CSE map.
582  RemoveNodeFromCSEMaps(N);
583
584  // Finally, remove uses due to operands of this node, remove from the
585  // AllNodes list, and delete the node.
586  DeleteNodeNotInCSEMaps(N);
587}
588
589void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
590
591  // Drop all of the operands and decrement used node's use counts.
592  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
593    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
594  if (N->OperandsNeedDelete)
595    delete[] N->OperandList;
596
597  assert(N != AllNodes.begin());
598  NodeAllocator.Deallocate(AllNodes.remove(N));
599}
600
601/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
602/// correspond to it.  This is useful when we're about to delete or repurpose
603/// the node.  We don't want future request for structurally identical nodes
604/// to return N anymore.
605bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
606  bool Erased = false;
607  switch (N->getOpcode()) {
608  case ISD::EntryToken:
609    assert(0 && "EntryToken should not be in CSEMaps!");
610    return false;
611  case ISD::HANDLENODE: return false;  // noop.
612  case ISD::CONDCODE:
613    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
614           "Cond code doesn't exist!");
615    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
616    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
617    break;
618  case ISD::ExternalSymbol:
619    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
620    break;
621  case ISD::TargetExternalSymbol:
622    Erased =
623      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::VALUETYPE: {
626    MVT VT = cast<VTSDNode>(N)->getVT();
627    if (VT.isExtended()) {
628      Erased = ExtendedValueTypeNodes.erase(VT);
629    } else {
630      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
631      ValueTypeNodes[VT.getSimpleVT()] = 0;
632    }
633    break;
634  }
635  default:
636    // Remove it from the CSE Map.
637    Erased = CSEMap.RemoveNode(N);
638    break;
639  }
640#ifndef NDEBUG
641  // Verify that the node was actually in one of the CSE maps, unless it has a
642  // flag result (which cannot be CSE'd) or is one of the special cases that are
643  // not subject to CSE.
644  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
645      !N->isMachineOpcode() &&
646      N->getOpcode() != ISD::DBG_LABEL &&
647      N->getOpcode() != ISD::DBG_STOPPOINT &&
648      N->getOpcode() != ISD::EH_LABEL &&
649      N->getOpcode() != ISD::DECLARE) {
650    N->dump(this);
651    cerr << "\n";
652    assert(0 && "Node is not in map!");
653  }
654#endif
655  return Erased;
656}
657
658/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
659/// has been taken out and modified in some way.  If the specified node already
660/// exists in the CSE maps, do not modify the maps, but return the existing node
661/// instead.  If it doesn't exist, add it and return null.
662///
663SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
664  assert(N->getNumOperands() && "This is a leaf node!");
665
666  if (N->getValueType(0) == MVT::Flag)
667    return 0;   // Never CSE anything that produces a flag.
668
669  switch (N->getOpcode()) {
670  default: break;
671  case ISD::HANDLENODE:
672  case ISD::DBG_LABEL:
673  case ISD::DBG_STOPPOINT:
674  case ISD::EH_LABEL:
675  case ISD::DECLARE:
676    return 0;    // Never add these nodes.
677  }
678
679  // Check that remaining values produced are not flags.
680  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
681    if (N->getValueType(i) == MVT::Flag)
682      return 0;   // Never CSE anything that produces a flag.
683
684  SDNode *New = CSEMap.GetOrInsertNode(N);
685  if (New != N) return New;  // Node already existed.
686  return 0;
687}
688
689/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
690/// were replaced with those specified.  If this node is never memoized,
691/// return null, otherwise return a pointer to the slot it would take.  If a
692/// node already exists with these operands, the slot will be non-null.
693SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
694                                           void *&InsertPos) {
695  if (N->getValueType(0) == MVT::Flag)
696    return 0;   // Never CSE anything that produces a flag.
697
698  switch (N->getOpcode()) {
699  default: break;
700  case ISD::HANDLENODE:
701  case ISD::DBG_LABEL:
702  case ISD::DBG_STOPPOINT:
703  case ISD::EH_LABEL:
704    return 0;    // Never add these nodes.
705  }
706
707  // Check that remaining values produced are not flags.
708  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
709    if (N->getValueType(i) == MVT::Flag)
710      return 0;   // Never CSE anything that produces a flag.
711
712  SDValue Ops[] = { Op };
713  FoldingSetNodeID ID;
714  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
715  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
716}
717
718/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
719/// were replaced with those specified.  If this node is never memoized,
720/// return null, otherwise return a pointer to the slot it would take.  If a
721/// node already exists with these operands, the slot will be non-null.
722SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
723                                           SDValue Op1, SDValue Op2,
724                                           void *&InsertPos) {
725  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
726
727  // Check that remaining values produced are not flags.
728  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
729    if (N->getValueType(i) == MVT::Flag)
730      return 0;   // Never CSE anything that produces a flag.
731
732  SDValue Ops[] = { Op1, Op2 };
733  FoldingSetNodeID ID;
734  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
735  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
736}
737
738
739/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
740/// were replaced with those specified.  If this node is never memoized,
741/// return null, otherwise return a pointer to the slot it would take.  If a
742/// node already exists with these operands, the slot will be non-null.
743SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
744                                           const SDValue *Ops,unsigned NumOps,
745                                           void *&InsertPos) {
746  if (N->getValueType(0) == MVT::Flag)
747    return 0;   // Never CSE anything that produces a flag.
748
749  switch (N->getOpcode()) {
750  default: break;
751  case ISD::HANDLENODE:
752  case ISD::DBG_LABEL:
753  case ISD::DBG_STOPPOINT:
754  case ISD::EH_LABEL:
755  case ISD::DECLARE:
756    return 0;    // Never add these nodes.
757  }
758
759  // Check that remaining values produced are not flags.
760  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
761    if (N->getValueType(i) == MVT::Flag)
762      return 0;   // Never CSE anything that produces a flag.
763
764  FoldingSetNodeID ID;
765  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
766
767  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
768    ID.AddInteger(LD->getAddressingMode());
769    ID.AddInteger(LD->getExtensionType());
770    ID.AddInteger(LD->getMemoryVT().getRawBits());
771    ID.AddInteger(LD->getRawFlags());
772  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
773    ID.AddInteger(ST->getAddressingMode());
774    ID.AddInteger(ST->isTruncatingStore());
775    ID.AddInteger(ST->getMemoryVT().getRawBits());
776    ID.AddInteger(ST->getRawFlags());
777  }
778
779  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
780}
781
782/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
783void SelectionDAG::VerifyNode(SDNode *N) {
784  switch (N->getOpcode()) {
785  default:
786    break;
787  case ISD::BUILD_VECTOR: {
788    assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!");
789    assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!");
790    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
791           "Wrong number of BUILD_VECTOR operands!");
792    MVT EltVT = N->getValueType(0).getVectorElementType();
793    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
794      assert(I->getSDValue().getValueType() == EltVT &&
795             "Wrong BUILD_VECTOR operand type!");
796    break;
797  }
798  }
799}
800
801/// getMVTAlignment - Compute the default alignment value for the
802/// given type.
803///
804unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
805  const Type *Ty = VT == MVT::iPTR ?
806                   PointerType::get(Type::Int8Ty, 0) :
807                   VT.getTypeForMVT();
808
809  return TLI.getTargetData()->getABITypeAlignment(Ty);
810}
811
812SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
813  : TLI(tli), FLI(fli),
814    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
815    Root(getEntryNode()) {
816  AllNodes.push_back(&EntryNode);
817}
818
819void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
820  MF = &mf;
821  MMI = mmi;
822}
823
824SelectionDAG::~SelectionDAG() {
825  allnodes_clear();
826}
827
828void SelectionDAG::allnodes_clear() {
829  assert(&*AllNodes.begin() == &EntryNode);
830  AllNodes.remove(AllNodes.begin());
831  while (!AllNodes.empty()) {
832    SDNode *N = AllNodes.remove(AllNodes.begin());
833    N->SetNextInBucket(0);
834    if (N->OperandsNeedDelete)
835      delete [] N->OperandList;
836    NodeAllocator.Deallocate(N);
837  }
838}
839
840void SelectionDAG::clear() {
841  allnodes_clear();
842  OperandAllocator.Reset();
843  CSEMap.clear();
844
845  ExtendedValueTypeNodes.clear();
846  ExternalSymbols.clear();
847  TargetExternalSymbols.clear();
848  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
849            static_cast<CondCodeSDNode*>(0));
850  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
851            static_cast<SDNode*>(0));
852
853  EntryNode.Uses = 0;
854  AllNodes.push_back(&EntryNode);
855  Root = getEntryNode();
856}
857
858SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
859  if (Op.getValueType() == VT) return Op;
860  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
861                                   VT.getSizeInBits());
862  return getNode(ISD::AND, Op.getValueType(), Op,
863                 getConstant(Imm, Op.getValueType()));
864}
865
866SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
867  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
868  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
869}
870
871SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
872  return getConstant(*ConstantInt::get(Val), VT, isT);
873}
874
875SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
876  assert(VT.isInteger() && "Cannot create FP integer constant!");
877
878  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
879  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
880         "APInt size does not match type size!");
881
882  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
883  FoldingSetNodeID ID;
884  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
885  ID.AddPointer(&Val);
886  void *IP = 0;
887  SDNode *N = NULL;
888  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
889    if (!VT.isVector())
890      return SDValue(N, 0);
891  if (!N) {
892    N = NodeAllocator.Allocate<ConstantSDNode>();
893    new (N) ConstantSDNode(isT, &Val, EltVT);
894    CSEMap.InsertNode(N, IP);
895    AllNodes.push_back(N);
896  }
897
898  SDValue Result(N, 0);
899  if (VT.isVector()) {
900    SmallVector<SDValue, 8> Ops;
901    Ops.assign(VT.getVectorNumElements(), Result);
902    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
903  }
904  return Result;
905}
906
907SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
908  return getConstant(Val, TLI.getPointerTy(), isTarget);
909}
910
911
912SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
913  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
914}
915
916SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
917  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
918
919  MVT EltVT =
920    VT.isVector() ? VT.getVectorElementType() : VT;
921
922  // Do the map lookup using the actual bit pattern for the floating point
923  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
924  // we don't have issues with SNANs.
925  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
926  FoldingSetNodeID ID;
927  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
928  ID.AddPointer(&V);
929  void *IP = 0;
930  SDNode *N = NULL;
931  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
932    if (!VT.isVector())
933      return SDValue(N, 0);
934  if (!N) {
935    N = NodeAllocator.Allocate<ConstantFPSDNode>();
936    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
937    CSEMap.InsertNode(N, IP);
938    AllNodes.push_back(N);
939  }
940
941  SDValue Result(N, 0);
942  if (VT.isVector()) {
943    SmallVector<SDValue, 8> Ops;
944    Ops.assign(VT.getVectorNumElements(), Result);
945    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
946  }
947  return Result;
948}
949
950SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
951  MVT EltVT =
952    VT.isVector() ? VT.getVectorElementType() : VT;
953  if (EltVT==MVT::f32)
954    return getConstantFP(APFloat((float)Val), VT, isTarget);
955  else
956    return getConstantFP(APFloat(Val), VT, isTarget);
957}
958
959SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
960                                       MVT VT, int Offset,
961                                       bool isTargetGA) {
962  unsigned Opc;
963
964  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
965  if (!GVar) {
966    // If GV is an alias then use the aliasee for determining thread-localness.
967    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
968      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
969  }
970
971  if (GVar && GVar->isThreadLocal())
972    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
973  else
974    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
975
976  FoldingSetNodeID ID;
977  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
978  ID.AddPointer(GV);
979  ID.AddInteger(Offset);
980  void *IP = 0;
981  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
982   return SDValue(E, 0);
983  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
984  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
985  CSEMap.InsertNode(N, IP);
986  AllNodes.push_back(N);
987  return SDValue(N, 0);
988}
989
990SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
991  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
992  FoldingSetNodeID ID;
993  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
994  ID.AddInteger(FI);
995  void *IP = 0;
996  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
997    return SDValue(E, 0);
998  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
999  new (N) FrameIndexSDNode(FI, VT, isTarget);
1000  CSEMap.InsertNode(N, IP);
1001  AllNodes.push_back(N);
1002  return SDValue(N, 0);
1003}
1004
1005SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1006  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1007  FoldingSetNodeID ID;
1008  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1009  ID.AddInteger(JTI);
1010  void *IP = 0;
1011  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1012    return SDValue(E, 0);
1013  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1014  new (N) JumpTableSDNode(JTI, VT, isTarget);
1015  CSEMap.InsertNode(N, IP);
1016  AllNodes.push_back(N);
1017  return SDValue(N, 0);
1018}
1019
1020SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1021                                      unsigned Alignment, int Offset,
1022                                      bool isTarget) {
1023  if (Alignment == 0)
1024    Alignment =
1025      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1026  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1027  FoldingSetNodeID ID;
1028  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1029  ID.AddInteger(Alignment);
1030  ID.AddInteger(Offset);
1031  ID.AddPointer(C);
1032  void *IP = 0;
1033  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1034    return SDValue(E, 0);
1035  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1036  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1037  CSEMap.InsertNode(N, IP);
1038  AllNodes.push_back(N);
1039  return SDValue(N, 0);
1040}
1041
1042
1043SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1044                                      unsigned Alignment, int Offset,
1045                                      bool isTarget) {
1046  if (Alignment == 0)
1047    Alignment =
1048      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1049  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1050  FoldingSetNodeID ID;
1051  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1052  ID.AddInteger(Alignment);
1053  ID.AddInteger(Offset);
1054  C->AddSelectionDAGCSEId(ID);
1055  void *IP = 0;
1056  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1057    return SDValue(E, 0);
1058  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1059  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1060  CSEMap.InsertNode(N, IP);
1061  AllNodes.push_back(N);
1062  return SDValue(N, 0);
1063}
1064
1065
1066SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1067  FoldingSetNodeID ID;
1068  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1069  ID.AddPointer(MBB);
1070  void *IP = 0;
1071  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1072    return SDValue(E, 0);
1073  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1074  new (N) BasicBlockSDNode(MBB);
1075  CSEMap.InsertNode(N, IP);
1076  AllNodes.push_back(N);
1077  return SDValue(N, 0);
1078}
1079
1080SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1081  FoldingSetNodeID ID;
1082  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1083  ID.AddInteger(Flags.getRawBits());
1084  void *IP = 0;
1085  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1086    return SDValue(E, 0);
1087  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1088  new (N) ARG_FLAGSSDNode(Flags);
1089  CSEMap.InsertNode(N, IP);
1090  AllNodes.push_back(N);
1091  return SDValue(N, 0);
1092}
1093
1094SDValue SelectionDAG::getValueType(MVT VT) {
1095  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1096    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1097
1098  SDNode *&N = VT.isExtended() ?
1099    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1100
1101  if (N) return SDValue(N, 0);
1102  N = NodeAllocator.Allocate<VTSDNode>();
1103  new (N) VTSDNode(VT);
1104  AllNodes.push_back(N);
1105  return SDValue(N, 0);
1106}
1107
1108SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1109  SDNode *&N = ExternalSymbols[Sym];
1110  if (N) return SDValue(N, 0);
1111  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1112  new (N) ExternalSymbolSDNode(false, Sym, VT);
1113  AllNodes.push_back(N);
1114  return SDValue(N, 0);
1115}
1116
1117SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1118  SDNode *&N = TargetExternalSymbols[Sym];
1119  if (N) return SDValue(N, 0);
1120  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1121  new (N) ExternalSymbolSDNode(true, Sym, VT);
1122  AllNodes.push_back(N);
1123  return SDValue(N, 0);
1124}
1125
1126SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1127  if ((unsigned)Cond >= CondCodeNodes.size())
1128    CondCodeNodes.resize(Cond+1);
1129
1130  if (CondCodeNodes[Cond] == 0) {
1131    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1132    new (N) CondCodeSDNode(Cond);
1133    CondCodeNodes[Cond] = N;
1134    AllNodes.push_back(N);
1135  }
1136  return SDValue(CondCodeNodes[Cond], 0);
1137}
1138
1139SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1140  FoldingSetNodeID ID;
1141  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1142  ID.AddInteger(RegNo);
1143  void *IP = 0;
1144  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1145    return SDValue(E, 0);
1146  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1147  new (N) RegisterSDNode(RegNo, VT);
1148  CSEMap.InsertNode(N, IP);
1149  AllNodes.push_back(N);
1150  return SDValue(N, 0);
1151}
1152
1153SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1154                                        unsigned Line, unsigned Col,
1155                                        const CompileUnitDesc *CU) {
1156  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1157  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1158  AllNodes.push_back(N);
1159  return SDValue(N, 0);
1160}
1161
1162SDValue SelectionDAG::getLabel(unsigned Opcode,
1163                               SDValue Root,
1164                               unsigned LabelID) {
1165  FoldingSetNodeID ID;
1166  SDValue Ops[] = { Root };
1167  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1168  ID.AddInteger(LabelID);
1169  void *IP = 0;
1170  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1171    return SDValue(E, 0);
1172  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1173  new (N) LabelSDNode(Opcode, Root, LabelID);
1174  CSEMap.InsertNode(N, IP);
1175  AllNodes.push_back(N);
1176  return SDValue(N, 0);
1177}
1178
1179SDValue SelectionDAG::getSrcValue(const Value *V) {
1180  assert((!V || isa<PointerType>(V->getType())) &&
1181         "SrcValue is not a pointer?");
1182
1183  FoldingSetNodeID ID;
1184  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1185  ID.AddPointer(V);
1186
1187  void *IP = 0;
1188  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1189    return SDValue(E, 0);
1190
1191  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1192  new (N) SrcValueSDNode(V);
1193  CSEMap.InsertNode(N, IP);
1194  AllNodes.push_back(N);
1195  return SDValue(N, 0);
1196}
1197
1198SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1199  const Value *v = MO.getValue();
1200  assert((!v || isa<PointerType>(v->getType())) &&
1201         "SrcValue is not a pointer?");
1202
1203  FoldingSetNodeID ID;
1204  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1205  MO.Profile(ID);
1206
1207  void *IP = 0;
1208  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1209    return SDValue(E, 0);
1210
1211  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1212  new (N) MemOperandSDNode(MO);
1213  CSEMap.InsertNode(N, IP);
1214  AllNodes.push_back(N);
1215  return SDValue(N, 0);
1216}
1217
1218/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1219/// specified value type.
1220SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1221  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1222  unsigned ByteSize = VT.getSizeInBits()/8;
1223  const Type *Ty = VT.getTypeForMVT();
1224  unsigned StackAlign =
1225  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1226
1227  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1228  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1229}
1230
1231SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1232                                SDValue N2, ISD::CondCode Cond) {
1233  // These setcc operations always fold.
1234  switch (Cond) {
1235  default: break;
1236  case ISD::SETFALSE:
1237  case ISD::SETFALSE2: return getConstant(0, VT);
1238  case ISD::SETTRUE:
1239  case ISD::SETTRUE2:  return getConstant(1, VT);
1240
1241  case ISD::SETOEQ:
1242  case ISD::SETOGT:
1243  case ISD::SETOGE:
1244  case ISD::SETOLT:
1245  case ISD::SETOLE:
1246  case ISD::SETONE:
1247  case ISD::SETO:
1248  case ISD::SETUO:
1249  case ISD::SETUEQ:
1250  case ISD::SETUNE:
1251    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1252    break;
1253  }
1254
1255  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1256    const APInt &C2 = N2C->getAPIntValue();
1257    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1258      const APInt &C1 = N1C->getAPIntValue();
1259
1260      switch (Cond) {
1261      default: assert(0 && "Unknown integer setcc!");
1262      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1263      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1264      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1265      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1266      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1267      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1268      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1269      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1270      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1271      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1272      }
1273    }
1274  }
1275  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1276    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1277      // No compile time operations on this type yet.
1278      if (N1C->getValueType(0) == MVT::ppcf128)
1279        return SDValue();
1280
1281      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1282      switch (Cond) {
1283      default: break;
1284      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1285                          return getNode(ISD::UNDEF, VT);
1286                        // fall through
1287      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1288      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1289                          return getNode(ISD::UNDEF, VT);
1290                        // fall through
1291      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1292                                           R==APFloat::cmpLessThan, VT);
1293      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1294                          return getNode(ISD::UNDEF, VT);
1295                        // fall through
1296      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1297      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1298                          return getNode(ISD::UNDEF, VT);
1299                        // fall through
1300      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1301      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1302                          return getNode(ISD::UNDEF, VT);
1303                        // fall through
1304      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1305                                           R==APFloat::cmpEqual, VT);
1306      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1307                          return getNode(ISD::UNDEF, VT);
1308                        // fall through
1309      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1310                                           R==APFloat::cmpEqual, VT);
1311      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1312      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1313      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1314                                           R==APFloat::cmpEqual, VT);
1315      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1316      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1317                                           R==APFloat::cmpLessThan, VT);
1318      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1319                                           R==APFloat::cmpUnordered, VT);
1320      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1321      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1322      }
1323    } else {
1324      // Ensure that the constant occurs on the RHS.
1325      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1326    }
1327  }
1328
1329  // Could not fold it.
1330  return SDValue();
1331}
1332
1333/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1334/// use this predicate to simplify operations downstream.
1335bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1336  unsigned BitWidth = Op.getValueSizeInBits();
1337  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1338}
1339
1340/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1341/// this predicate to simplify operations downstream.  Mask is known to be zero
1342/// for bits that V cannot have.
1343bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1344                                     unsigned Depth) const {
1345  APInt KnownZero, KnownOne;
1346  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1347  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1348  return (KnownZero & Mask) == Mask;
1349}
1350
1351/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1352/// known to be either zero or one and return them in the KnownZero/KnownOne
1353/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1354/// processing.
1355void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1356                                     APInt &KnownZero, APInt &KnownOne,
1357                                     unsigned Depth) const {
1358  unsigned BitWidth = Mask.getBitWidth();
1359  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1360         "Mask size mismatches value type size!");
1361
1362  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1363  if (Depth == 6 || Mask == 0)
1364    return;  // Limit search depth.
1365
1366  APInt KnownZero2, KnownOne2;
1367
1368  switch (Op.getOpcode()) {
1369  case ISD::Constant:
1370    // We know all of the bits for a constant!
1371    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1372    KnownZero = ~KnownOne & Mask;
1373    return;
1374  case ISD::AND:
1375    // If either the LHS or the RHS are Zero, the result is zero.
1376    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1377    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1378                      KnownZero2, KnownOne2, Depth+1);
1379    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1380    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1381
1382    // Output known-1 bits are only known if set in both the LHS & RHS.
1383    KnownOne &= KnownOne2;
1384    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1385    KnownZero |= KnownZero2;
1386    return;
1387  case ISD::OR:
1388    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1389    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1390                      KnownZero2, KnownOne2, Depth+1);
1391    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1392    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1393
1394    // Output known-0 bits are only known if clear in both the LHS & RHS.
1395    KnownZero &= KnownZero2;
1396    // Output known-1 are known to be set if set in either the LHS | RHS.
1397    KnownOne |= KnownOne2;
1398    return;
1399  case ISD::XOR: {
1400    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1401    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1402    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1403    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1404
1405    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1406    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1407    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1408    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1409    KnownZero = KnownZeroOut;
1410    return;
1411  }
1412  case ISD::MUL: {
1413    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1414    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1415    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1416    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1417    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1418
1419    // If low bits are zero in either operand, output low known-0 bits.
1420    // Also compute a conserative estimate for high known-0 bits.
1421    // More trickiness is possible, but this is sufficient for the
1422    // interesting case of alignment computation.
1423    KnownOne.clear();
1424    unsigned TrailZ = KnownZero.countTrailingOnes() +
1425                      KnownZero2.countTrailingOnes();
1426    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1427                               KnownZero2.countLeadingOnes(),
1428                               BitWidth) - BitWidth;
1429
1430    TrailZ = std::min(TrailZ, BitWidth);
1431    LeadZ = std::min(LeadZ, BitWidth);
1432    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1433                APInt::getHighBitsSet(BitWidth, LeadZ);
1434    KnownZero &= Mask;
1435    return;
1436  }
1437  case ISD::UDIV: {
1438    // For the purposes of computing leading zeros we can conservatively
1439    // treat a udiv as a logical right shift by the power of 2 known to
1440    // be less than the denominator.
1441    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1442    ComputeMaskedBits(Op.getOperand(0),
1443                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1444    unsigned LeadZ = KnownZero2.countLeadingOnes();
1445
1446    KnownOne2.clear();
1447    KnownZero2.clear();
1448    ComputeMaskedBits(Op.getOperand(1),
1449                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1450    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1451    if (RHSUnknownLeadingOnes != BitWidth)
1452      LeadZ = std::min(BitWidth,
1453                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1454
1455    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1456    return;
1457  }
1458  case ISD::SELECT:
1459    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1460    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1461    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1462    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1463
1464    // Only known if known in both the LHS and RHS.
1465    KnownOne &= KnownOne2;
1466    KnownZero &= KnownZero2;
1467    return;
1468  case ISD::SELECT_CC:
1469    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1470    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1471    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1472    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1473
1474    // Only known if known in both the LHS and RHS.
1475    KnownOne &= KnownOne2;
1476    KnownZero &= KnownZero2;
1477    return;
1478  case ISD::SETCC:
1479    // If we know the result of a setcc has the top bits zero, use this info.
1480    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1481        BitWidth > 1)
1482      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1483    return;
1484  case ISD::SHL:
1485    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1486    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1487      unsigned ShAmt = SA->getZExtValue();
1488
1489      // If the shift count is an invalid immediate, don't do anything.
1490      if (ShAmt >= BitWidth)
1491        return;
1492
1493      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1494                        KnownZero, KnownOne, Depth+1);
1495      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1496      KnownZero <<= ShAmt;
1497      KnownOne  <<= ShAmt;
1498      // low bits known zero.
1499      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1500    }
1501    return;
1502  case ISD::SRL:
1503    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1504    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1505      unsigned ShAmt = SA->getZExtValue();
1506
1507      // If the shift count is an invalid immediate, don't do anything.
1508      if (ShAmt >= BitWidth)
1509        return;
1510
1511      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1512                        KnownZero, KnownOne, Depth+1);
1513      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1514      KnownZero = KnownZero.lshr(ShAmt);
1515      KnownOne  = KnownOne.lshr(ShAmt);
1516
1517      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1518      KnownZero |= HighBits;  // High bits known zero.
1519    }
1520    return;
1521  case ISD::SRA:
1522    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1523      unsigned ShAmt = SA->getZExtValue();
1524
1525      // If the shift count is an invalid immediate, don't do anything.
1526      if (ShAmt >= BitWidth)
1527        return;
1528
1529      APInt InDemandedMask = (Mask << ShAmt);
1530      // If any of the demanded bits are produced by the sign extension, we also
1531      // demand the input sign bit.
1532      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1533      if (HighBits.getBoolValue())
1534        InDemandedMask |= APInt::getSignBit(BitWidth);
1535
1536      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1537                        Depth+1);
1538      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1539      KnownZero = KnownZero.lshr(ShAmt);
1540      KnownOne  = KnownOne.lshr(ShAmt);
1541
1542      // Handle the sign bits.
1543      APInt SignBit = APInt::getSignBit(BitWidth);
1544      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1545
1546      if (KnownZero.intersects(SignBit)) {
1547        KnownZero |= HighBits;  // New bits are known zero.
1548      } else if (KnownOne.intersects(SignBit)) {
1549        KnownOne  |= HighBits;  // New bits are known one.
1550      }
1551    }
1552    return;
1553  case ISD::SIGN_EXTEND_INREG: {
1554    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1555    unsigned EBits = EVT.getSizeInBits();
1556
1557    // Sign extension.  Compute the demanded bits in the result that are not
1558    // present in the input.
1559    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1560
1561    APInt InSignBit = APInt::getSignBit(EBits);
1562    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1563
1564    // If the sign extended bits are demanded, we know that the sign
1565    // bit is demanded.
1566    InSignBit.zext(BitWidth);
1567    if (NewBits.getBoolValue())
1568      InputDemandedBits |= InSignBit;
1569
1570    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1571                      KnownZero, KnownOne, Depth+1);
1572    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1573
1574    // If the sign bit of the input is known set or clear, then we know the
1575    // top bits of the result.
1576    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1577      KnownZero |= NewBits;
1578      KnownOne  &= ~NewBits;
1579    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1580      KnownOne  |= NewBits;
1581      KnownZero &= ~NewBits;
1582    } else {                              // Input sign bit unknown
1583      KnownZero &= ~NewBits;
1584      KnownOne  &= ~NewBits;
1585    }
1586    return;
1587  }
1588  case ISD::CTTZ:
1589  case ISD::CTLZ:
1590  case ISD::CTPOP: {
1591    unsigned LowBits = Log2_32(BitWidth)+1;
1592    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1593    KnownOne.clear();
1594    return;
1595  }
1596  case ISD::LOAD: {
1597    if (ISD::isZEXTLoad(Op.getNode())) {
1598      LoadSDNode *LD = cast<LoadSDNode>(Op);
1599      MVT VT = LD->getMemoryVT();
1600      unsigned MemBits = VT.getSizeInBits();
1601      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1602    }
1603    return;
1604  }
1605  case ISD::ZERO_EXTEND: {
1606    MVT InVT = Op.getOperand(0).getValueType();
1607    unsigned InBits = InVT.getSizeInBits();
1608    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1609    APInt InMask    = Mask;
1610    InMask.trunc(InBits);
1611    KnownZero.trunc(InBits);
1612    KnownOne.trunc(InBits);
1613    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1614    KnownZero.zext(BitWidth);
1615    KnownOne.zext(BitWidth);
1616    KnownZero |= NewBits;
1617    return;
1618  }
1619  case ISD::SIGN_EXTEND: {
1620    MVT InVT = Op.getOperand(0).getValueType();
1621    unsigned InBits = InVT.getSizeInBits();
1622    APInt InSignBit = APInt::getSignBit(InBits);
1623    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1624    APInt InMask = Mask;
1625    InMask.trunc(InBits);
1626
1627    // If any of the sign extended bits are demanded, we know that the sign
1628    // bit is demanded. Temporarily set this bit in the mask for our callee.
1629    if (NewBits.getBoolValue())
1630      InMask |= InSignBit;
1631
1632    KnownZero.trunc(InBits);
1633    KnownOne.trunc(InBits);
1634    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1635
1636    // Note if the sign bit is known to be zero or one.
1637    bool SignBitKnownZero = KnownZero.isNegative();
1638    bool SignBitKnownOne  = KnownOne.isNegative();
1639    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1640           "Sign bit can't be known to be both zero and one!");
1641
1642    // If the sign bit wasn't actually demanded by our caller, we don't
1643    // want it set in the KnownZero and KnownOne result values. Reset the
1644    // mask and reapply it to the result values.
1645    InMask = Mask;
1646    InMask.trunc(InBits);
1647    KnownZero &= InMask;
1648    KnownOne  &= InMask;
1649
1650    KnownZero.zext(BitWidth);
1651    KnownOne.zext(BitWidth);
1652
1653    // If the sign bit is known zero or one, the top bits match.
1654    if (SignBitKnownZero)
1655      KnownZero |= NewBits;
1656    else if (SignBitKnownOne)
1657      KnownOne  |= NewBits;
1658    return;
1659  }
1660  case ISD::ANY_EXTEND: {
1661    MVT InVT = Op.getOperand(0).getValueType();
1662    unsigned InBits = InVT.getSizeInBits();
1663    APInt InMask = Mask;
1664    InMask.trunc(InBits);
1665    KnownZero.trunc(InBits);
1666    KnownOne.trunc(InBits);
1667    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1668    KnownZero.zext(BitWidth);
1669    KnownOne.zext(BitWidth);
1670    return;
1671  }
1672  case ISD::TRUNCATE: {
1673    MVT InVT = Op.getOperand(0).getValueType();
1674    unsigned InBits = InVT.getSizeInBits();
1675    APInt InMask = Mask;
1676    InMask.zext(InBits);
1677    KnownZero.zext(InBits);
1678    KnownOne.zext(InBits);
1679    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1680    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1681    KnownZero.trunc(BitWidth);
1682    KnownOne.trunc(BitWidth);
1683    break;
1684  }
1685  case ISD::AssertZext: {
1686    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1687    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1688    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1689                      KnownOne, Depth+1);
1690    KnownZero |= (~InMask) & Mask;
1691    return;
1692  }
1693  case ISD::FGETSIGN:
1694    // All bits are zero except the low bit.
1695    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1696    return;
1697
1698  case ISD::SUB: {
1699    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1700      // We know that the top bits of C-X are clear if X contains less bits
1701      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1702      // positive if we can prove that X is >= 0 and < 16.
1703      if (CLHS->getAPIntValue().isNonNegative()) {
1704        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1705        // NLZ can't be BitWidth with no sign bit
1706        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1707        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1708                          Depth+1);
1709
1710        // If all of the MaskV bits are known to be zero, then we know the
1711        // output top bits are zero, because we now know that the output is
1712        // from [0-C].
1713        if ((KnownZero2 & MaskV) == MaskV) {
1714          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1715          // Top bits known zero.
1716          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1717        }
1718      }
1719    }
1720  }
1721  // fall through
1722  case ISD::ADD: {
1723    // Output known-0 bits are known if clear or set in both the low clear bits
1724    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1725    // low 3 bits clear.
1726    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1727    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1728    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1729    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1730
1731    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1732    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1733    KnownZeroOut = std::min(KnownZeroOut,
1734                            KnownZero2.countTrailingOnes());
1735
1736    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1737    return;
1738  }
1739  case ISD::SREM:
1740    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1741      const APInt &RA = Rem->getAPIntValue();
1742      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1743        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1744        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1745        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1746
1747        // If the sign bit of the first operand is zero, the sign bit of
1748        // the result is zero. If the first operand has no one bits below
1749        // the second operand's single 1 bit, its sign will be zero.
1750        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1751          KnownZero2 |= ~LowBits;
1752
1753        KnownZero |= KnownZero2 & Mask;
1754
1755        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1756      }
1757    }
1758    return;
1759  case ISD::UREM: {
1760    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1761      const APInt &RA = Rem->getAPIntValue();
1762      if (RA.isPowerOf2()) {
1763        APInt LowBits = (RA - 1);
1764        APInt Mask2 = LowBits & Mask;
1765        KnownZero |= ~LowBits & Mask;
1766        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1767        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1768        break;
1769      }
1770    }
1771
1772    // Since the result is less than or equal to either operand, any leading
1773    // zero bits in either operand must also exist in the result.
1774    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1775    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1776                      Depth+1);
1777    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1778                      Depth+1);
1779
1780    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1781                                KnownZero2.countLeadingOnes());
1782    KnownOne.clear();
1783    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1784    return;
1785  }
1786  default:
1787    // Allow the target to implement this method for its nodes.
1788    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1789  case ISD::INTRINSIC_WO_CHAIN:
1790  case ISD::INTRINSIC_W_CHAIN:
1791  case ISD::INTRINSIC_VOID:
1792      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1793    }
1794    return;
1795  }
1796}
1797
1798/// ComputeNumSignBits - Return the number of times the sign bit of the
1799/// register is replicated into the other bits.  We know that at least 1 bit
1800/// is always equal to the sign bit (itself), but other cases can give us
1801/// information.  For example, immediately after an "SRA X, 2", we know that
1802/// the top 3 bits are all equal to each other, so we return 3.
1803unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1804  MVT VT = Op.getValueType();
1805  assert(VT.isInteger() && "Invalid VT!");
1806  unsigned VTBits = VT.getSizeInBits();
1807  unsigned Tmp, Tmp2;
1808  unsigned FirstAnswer = 1;
1809
1810  if (Depth == 6)
1811    return 1;  // Limit search depth.
1812
1813  switch (Op.getOpcode()) {
1814  default: break;
1815  case ISD::AssertSext:
1816    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1817    return VTBits-Tmp+1;
1818  case ISD::AssertZext:
1819    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1820    return VTBits-Tmp;
1821
1822  case ISD::Constant: {
1823    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1824    // If negative, return # leading ones.
1825    if (Val.isNegative())
1826      return Val.countLeadingOnes();
1827
1828    // Return # leading zeros.
1829    return Val.countLeadingZeros();
1830  }
1831
1832  case ISD::SIGN_EXTEND:
1833    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1834    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1835
1836  case ISD::SIGN_EXTEND_INREG:
1837    // Max of the input and what this extends.
1838    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1839    Tmp = VTBits-Tmp+1;
1840
1841    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1842    return std::max(Tmp, Tmp2);
1843
1844  case ISD::SRA:
1845    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1846    // SRA X, C   -> adds C sign bits.
1847    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1848      Tmp += C->getZExtValue();
1849      if (Tmp > VTBits) Tmp = VTBits;
1850    }
1851    return Tmp;
1852  case ISD::SHL:
1853    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1854      // shl destroys sign bits.
1855      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1856      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1857          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1858      return Tmp - C->getZExtValue();
1859    }
1860    break;
1861  case ISD::AND:
1862  case ISD::OR:
1863  case ISD::XOR:    // NOT is handled here.
1864    // Logical binary ops preserve the number of sign bits at the worst.
1865    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1866    if (Tmp != 1) {
1867      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1868      FirstAnswer = std::min(Tmp, Tmp2);
1869      // We computed what we know about the sign bits as our first
1870      // answer. Now proceed to the generic code that uses
1871      // ComputeMaskedBits, and pick whichever answer is better.
1872    }
1873    break;
1874
1875  case ISD::SELECT:
1876    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1877    if (Tmp == 1) return 1;  // Early out.
1878    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1879    return std::min(Tmp, Tmp2);
1880
1881  case ISD::SETCC:
1882    // If setcc returns 0/-1, all bits are sign bits.
1883    if (TLI.getSetCCResultContents() ==
1884        TargetLowering::ZeroOrNegativeOneSetCCResult)
1885      return VTBits;
1886    break;
1887  case ISD::ROTL:
1888  case ISD::ROTR:
1889    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1890      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1891
1892      // Handle rotate right by N like a rotate left by 32-N.
1893      if (Op.getOpcode() == ISD::ROTR)
1894        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1895
1896      // If we aren't rotating out all of the known-in sign bits, return the
1897      // number that are left.  This handles rotl(sext(x), 1) for example.
1898      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1899      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1900    }
1901    break;
1902  case ISD::ADD:
1903    // Add can have at most one carry bit.  Thus we know that the output
1904    // is, at worst, one more bit than the inputs.
1905    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1906    if (Tmp == 1) return 1;  // Early out.
1907
1908    // Special case decrementing a value (ADD X, -1):
1909    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1910      if (CRHS->isAllOnesValue()) {
1911        APInt KnownZero, KnownOne;
1912        APInt Mask = APInt::getAllOnesValue(VTBits);
1913        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1914
1915        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1916        // sign bits set.
1917        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1918          return VTBits;
1919
1920        // If we are subtracting one from a positive number, there is no carry
1921        // out of the result.
1922        if (KnownZero.isNegative())
1923          return Tmp;
1924      }
1925
1926    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1927    if (Tmp2 == 1) return 1;
1928      return std::min(Tmp, Tmp2)-1;
1929    break;
1930
1931  case ISD::SUB:
1932    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1933    if (Tmp2 == 1) return 1;
1934
1935    // Handle NEG.
1936    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1937      if (CLHS->isNullValue()) {
1938        APInt KnownZero, KnownOne;
1939        APInt Mask = APInt::getAllOnesValue(VTBits);
1940        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1941        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1942        // sign bits set.
1943        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1944          return VTBits;
1945
1946        // If the input is known to be positive (the sign bit is known clear),
1947        // the output of the NEG has the same number of sign bits as the input.
1948        if (KnownZero.isNegative())
1949          return Tmp2;
1950
1951        // Otherwise, we treat this like a SUB.
1952      }
1953
1954    // Sub can have at most one carry bit.  Thus we know that the output
1955    // is, at worst, one more bit than the inputs.
1956    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1957    if (Tmp == 1) return 1;  // Early out.
1958      return std::min(Tmp, Tmp2)-1;
1959    break;
1960  case ISD::TRUNCATE:
1961    // FIXME: it's tricky to do anything useful for this, but it is an important
1962    // case for targets like X86.
1963    break;
1964  }
1965
1966  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1967  if (Op.getOpcode() == ISD::LOAD) {
1968    LoadSDNode *LD = cast<LoadSDNode>(Op);
1969    unsigned ExtType = LD->getExtensionType();
1970    switch (ExtType) {
1971    default: break;
1972    case ISD::SEXTLOAD:    // '17' bits known
1973      Tmp = LD->getMemoryVT().getSizeInBits();
1974      return VTBits-Tmp+1;
1975    case ISD::ZEXTLOAD:    // '16' bits known
1976      Tmp = LD->getMemoryVT().getSizeInBits();
1977      return VTBits-Tmp;
1978    }
1979  }
1980
1981  // Allow the target to implement this method for its nodes.
1982  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1983      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1984      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1985      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1986    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1987    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1988  }
1989
1990  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1991  // use this information.
1992  APInt KnownZero, KnownOne;
1993  APInt Mask = APInt::getAllOnesValue(VTBits);
1994  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1995
1996  if (KnownZero.isNegative()) {        // sign bit is 0
1997    Mask = KnownZero;
1998  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1999    Mask = KnownOne;
2000  } else {
2001    // Nothing known.
2002    return FirstAnswer;
2003  }
2004
2005  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2006  // the number of identical bits in the top of the input value.
2007  Mask = ~Mask;
2008  Mask <<= Mask.getBitWidth()-VTBits;
2009  // Return # leading zeros.  We use 'min' here in case Val was zero before
2010  // shifting.  We don't want to return '64' as for an i32 "0".
2011  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2012}
2013
2014
2015bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2016  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2017  if (!GA) return false;
2018  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2019  if (!GV) return false;
2020  MachineModuleInfo *MMI = getMachineModuleInfo();
2021  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2022}
2023
2024
2025/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2026/// element of the result of the vector shuffle.
2027SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2028  MVT VT = N->getValueType(0);
2029  SDValue PermMask = N->getOperand(2);
2030  SDValue Idx = PermMask.getOperand(i);
2031  if (Idx.getOpcode() == ISD::UNDEF)
2032    return getNode(ISD::UNDEF, VT.getVectorElementType());
2033  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2034  unsigned NumElems = PermMask.getNumOperands();
2035  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2036  Index %= NumElems;
2037
2038  if (V.getOpcode() == ISD::BIT_CONVERT) {
2039    V = V.getOperand(0);
2040    if (V.getValueType().getVectorNumElements() != NumElems)
2041      return SDValue();
2042  }
2043  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2044    return (Index == 0) ? V.getOperand(0)
2045                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2046  if (V.getOpcode() == ISD::BUILD_VECTOR)
2047    return V.getOperand(Index);
2048  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2049    return getShuffleScalarElt(V.getNode(), Index);
2050  return SDValue();
2051}
2052
2053
2054/// getNode - Gets or creates the specified node.
2055///
2056SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2057  FoldingSetNodeID ID;
2058  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2059  void *IP = 0;
2060  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2061    return SDValue(E, 0);
2062  SDNode *N = NodeAllocator.Allocate<SDNode>();
2063  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2064  CSEMap.InsertNode(N, IP);
2065
2066  AllNodes.push_back(N);
2067#ifndef NDEBUG
2068  VerifyNode(N);
2069#endif
2070  return SDValue(N, 0);
2071}
2072
2073SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2074  // Constant fold unary operations with an integer constant operand.
2075  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2076    const APInt &Val = C->getAPIntValue();
2077    unsigned BitWidth = VT.getSizeInBits();
2078    switch (Opcode) {
2079    default: break;
2080    case ISD::SIGN_EXTEND:
2081      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2082    case ISD::ANY_EXTEND:
2083    case ISD::ZERO_EXTEND:
2084    case ISD::TRUNCATE:
2085      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2086    case ISD::UINT_TO_FP:
2087    case ISD::SINT_TO_FP: {
2088      const uint64_t zero[] = {0, 0};
2089      // No compile time operations on this type.
2090      if (VT==MVT::ppcf128)
2091        break;
2092      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2093      (void)apf.convertFromAPInt(Val,
2094                                 Opcode==ISD::SINT_TO_FP,
2095                                 APFloat::rmNearestTiesToEven);
2096      return getConstantFP(apf, VT);
2097    }
2098    case ISD::BIT_CONVERT:
2099      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2100        return getConstantFP(Val.bitsToFloat(), VT);
2101      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2102        return getConstantFP(Val.bitsToDouble(), VT);
2103      break;
2104    case ISD::BSWAP:
2105      return getConstant(Val.byteSwap(), VT);
2106    case ISD::CTPOP:
2107      return getConstant(Val.countPopulation(), VT);
2108    case ISD::CTLZ:
2109      return getConstant(Val.countLeadingZeros(), VT);
2110    case ISD::CTTZ:
2111      return getConstant(Val.countTrailingZeros(), VT);
2112    }
2113  }
2114
2115  // Constant fold unary operations with a floating point constant operand.
2116  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2117    APFloat V = C->getValueAPF();    // make copy
2118    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2119      switch (Opcode) {
2120      case ISD::FNEG:
2121        V.changeSign();
2122        return getConstantFP(V, VT);
2123      case ISD::FABS:
2124        V.clearSign();
2125        return getConstantFP(V, VT);
2126      case ISD::FP_ROUND:
2127      case ISD::FP_EXTEND:
2128        // This can return overflow, underflow, or inexact; we don't care.
2129        // FIXME need to be more flexible about rounding mode.
2130        (void)V.convert(*MVTToAPFloatSemantics(VT),
2131                        APFloat::rmNearestTiesToEven);
2132        return getConstantFP(V, VT);
2133      case ISD::FP_TO_SINT:
2134      case ISD::FP_TO_UINT: {
2135        integerPart x;
2136        assert(integerPartWidth >= 64);
2137        // FIXME need to be more flexible about rounding mode.
2138        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2139                              Opcode==ISD::FP_TO_SINT,
2140                              APFloat::rmTowardZero);
2141        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2142          break;
2143        return getConstant(x, VT);
2144      }
2145      case ISD::BIT_CONVERT:
2146        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2147          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
2148        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2149          return getConstant(V.convertToAPInt().getZExtValue(), VT);
2150        break;
2151      }
2152    }
2153  }
2154
2155  unsigned OpOpcode = Operand.getNode()->getOpcode();
2156  switch (Opcode) {
2157  case ISD::TokenFactor:
2158  case ISD::CONCAT_VECTORS:
2159    return Operand;         // Factor or concat of one node?  No need.
2160  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2161  case ISD::FP_EXTEND:
2162    assert(VT.isFloatingPoint() &&
2163           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2164    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2165    if (Operand.getOpcode() == ISD::UNDEF)
2166      return getNode(ISD::UNDEF, VT);
2167    break;
2168  case ISD::SIGN_EXTEND:
2169    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2170           "Invalid SIGN_EXTEND!");
2171    if (Operand.getValueType() == VT) return Operand;   // noop extension
2172    assert(Operand.getValueType().bitsLT(VT)
2173           && "Invalid sext node, dst < src!");
2174    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2175      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2176    break;
2177  case ISD::ZERO_EXTEND:
2178    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2179           "Invalid ZERO_EXTEND!");
2180    if (Operand.getValueType() == VT) return Operand;   // noop extension
2181    assert(Operand.getValueType().bitsLT(VT)
2182           && "Invalid zext node, dst < src!");
2183    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2184      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2185    break;
2186  case ISD::ANY_EXTEND:
2187    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2188           "Invalid ANY_EXTEND!");
2189    if (Operand.getValueType() == VT) return Operand;   // noop extension
2190    assert(Operand.getValueType().bitsLT(VT)
2191           && "Invalid anyext node, dst < src!");
2192    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2193      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2194      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2195    break;
2196  case ISD::TRUNCATE:
2197    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2198           "Invalid TRUNCATE!");
2199    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2200    assert(Operand.getValueType().bitsGT(VT)
2201           && "Invalid truncate node, src < dst!");
2202    if (OpOpcode == ISD::TRUNCATE)
2203      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2204    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2205             OpOpcode == ISD::ANY_EXTEND) {
2206      // If the source is smaller than the dest, we still need an extend.
2207      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2208        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2209      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2210        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2211      else
2212        return Operand.getNode()->getOperand(0);
2213    }
2214    break;
2215  case ISD::BIT_CONVERT:
2216    // Basic sanity checking.
2217    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2218           && "Cannot BIT_CONVERT between types of different sizes!");
2219    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2220    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2221      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2222    if (OpOpcode == ISD::UNDEF)
2223      return getNode(ISD::UNDEF, VT);
2224    break;
2225  case ISD::SCALAR_TO_VECTOR:
2226    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2227           VT.getVectorElementType() == Operand.getValueType() &&
2228           "Illegal SCALAR_TO_VECTOR node!");
2229    if (OpOpcode == ISD::UNDEF)
2230      return getNode(ISD::UNDEF, VT);
2231    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2232    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2233        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2234        Operand.getConstantOperandVal(1) == 0 &&
2235        Operand.getOperand(0).getValueType() == VT)
2236      return Operand.getOperand(0);
2237    break;
2238  case ISD::FNEG:
2239    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2240      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2241                     Operand.getNode()->getOperand(0));
2242    if (OpOpcode == ISD::FNEG)  // --X -> X
2243      return Operand.getNode()->getOperand(0);
2244    break;
2245  case ISD::FABS:
2246    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2247      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2248    break;
2249  }
2250
2251  SDNode *N;
2252  SDVTList VTs = getVTList(VT);
2253  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2254    FoldingSetNodeID ID;
2255    SDValue Ops[1] = { Operand };
2256    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2257    void *IP = 0;
2258    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2259      return SDValue(E, 0);
2260    N = NodeAllocator.Allocate<UnarySDNode>();
2261    new (N) UnarySDNode(Opcode, VTs, Operand);
2262    CSEMap.InsertNode(N, IP);
2263  } else {
2264    N = NodeAllocator.Allocate<UnarySDNode>();
2265    new (N) UnarySDNode(Opcode, VTs, Operand);
2266  }
2267
2268  AllNodes.push_back(N);
2269#ifndef NDEBUG
2270  VerifyNode(N);
2271#endif
2272  return SDValue(N, 0);
2273}
2274
2275SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2276                                             MVT VT,
2277                                             ConstantSDNode *Cst1,
2278                                             ConstantSDNode *Cst2) {
2279  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2280
2281  switch (Opcode) {
2282  case ISD::ADD:  return getConstant(C1 + C2, VT);
2283  case ISD::SUB:  return getConstant(C1 - C2, VT);
2284  case ISD::MUL:  return getConstant(C1 * C2, VT);
2285  case ISD::UDIV:
2286    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2287    break;
2288  case ISD::UREM:
2289    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2290    break;
2291  case ISD::SDIV:
2292    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2293    break;
2294  case ISD::SREM:
2295    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2296    break;
2297  case ISD::AND:  return getConstant(C1 & C2, VT);
2298  case ISD::OR:   return getConstant(C1 | C2, VT);
2299  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2300  case ISD::SHL:  return getConstant(C1 << C2, VT);
2301  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2302  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2303  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2304  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2305  default: break;
2306  }
2307
2308  return SDValue();
2309}
2310
2311SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2312                              SDValue N1, SDValue N2) {
2313  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2314  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2315  switch (Opcode) {
2316  default: break;
2317  case ISD::TokenFactor:
2318    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2319           N2.getValueType() == MVT::Other && "Invalid token factor!");
2320    // Fold trivial token factors.
2321    if (N1.getOpcode() == ISD::EntryToken) return N2;
2322    if (N2.getOpcode() == ISD::EntryToken) return N1;
2323    break;
2324  case ISD::CONCAT_VECTORS:
2325    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2326    // one big BUILD_VECTOR.
2327    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2328        N2.getOpcode() == ISD::BUILD_VECTOR) {
2329      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2330      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2331      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2332    }
2333    break;
2334  case ISD::AND:
2335    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2336           N1.getValueType() == VT && "Binary operator types must match!");
2337    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2338    // worth handling here.
2339    if (N2C && N2C->isNullValue())
2340      return N2;
2341    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2342      return N1;
2343    break;
2344  case ISD::OR:
2345  case ISD::XOR:
2346  case ISD::ADD:
2347  case ISD::SUB:
2348    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2349           N1.getValueType() == VT && "Binary operator types must match!");
2350    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2351    // it's worth handling here.
2352    if (N2C && N2C->isNullValue())
2353      return N1;
2354    break;
2355  case ISD::UDIV:
2356  case ISD::UREM:
2357  case ISD::MULHU:
2358  case ISD::MULHS:
2359    assert(VT.isInteger() && "This operator does not apply to FP types!");
2360    // fall through
2361  case ISD::MUL:
2362  case ISD::SDIV:
2363  case ISD::SREM:
2364  case ISD::FADD:
2365  case ISD::FSUB:
2366  case ISD::FMUL:
2367  case ISD::FDIV:
2368  case ISD::FREM:
2369    assert(N1.getValueType() == N2.getValueType() &&
2370           N1.getValueType() == VT && "Binary operator types must match!");
2371    break;
2372  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2373    assert(N1.getValueType() == VT &&
2374           N1.getValueType().isFloatingPoint() &&
2375           N2.getValueType().isFloatingPoint() &&
2376           "Invalid FCOPYSIGN!");
2377    break;
2378  case ISD::SHL:
2379  case ISD::SRA:
2380  case ISD::SRL:
2381  case ISD::ROTL:
2382  case ISD::ROTR:
2383    assert(VT == N1.getValueType() &&
2384           "Shift operators return type must be the same as their first arg");
2385    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2386           "Shifts only work on integers");
2387
2388    // Always fold shifts of i1 values so the code generator doesn't need to
2389    // handle them.  Since we know the size of the shift has to be less than the
2390    // size of the value, the shift/rotate count is guaranteed to be zero.
2391    if (VT == MVT::i1)
2392      return N1;
2393    break;
2394  case ISD::FP_ROUND_INREG: {
2395    MVT EVT = cast<VTSDNode>(N2)->getVT();
2396    assert(VT == N1.getValueType() && "Not an inreg round!");
2397    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2398           "Cannot FP_ROUND_INREG integer types");
2399    assert(EVT.bitsLE(VT) && "Not rounding down!");
2400    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2401    break;
2402  }
2403  case ISD::FP_ROUND:
2404    assert(VT.isFloatingPoint() &&
2405           N1.getValueType().isFloatingPoint() &&
2406           VT.bitsLE(N1.getValueType()) &&
2407           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2408    if (N1.getValueType() == VT) return N1;  // noop conversion.
2409    break;
2410  case ISD::AssertSext:
2411  case ISD::AssertZext: {
2412    MVT EVT = cast<VTSDNode>(N2)->getVT();
2413    assert(VT == N1.getValueType() && "Not an inreg extend!");
2414    assert(VT.isInteger() && EVT.isInteger() &&
2415           "Cannot *_EXTEND_INREG FP types");
2416    assert(EVT.bitsLE(VT) && "Not extending!");
2417    if (VT == EVT) return N1; // noop assertion.
2418    break;
2419  }
2420  case ISD::SIGN_EXTEND_INREG: {
2421    MVT EVT = cast<VTSDNode>(N2)->getVT();
2422    assert(VT == N1.getValueType() && "Not an inreg extend!");
2423    assert(VT.isInteger() && EVT.isInteger() &&
2424           "Cannot *_EXTEND_INREG FP types");
2425    assert(EVT.bitsLE(VT) && "Not extending!");
2426    if (EVT == VT) return N1;  // Not actually extending
2427
2428    if (N1C) {
2429      APInt Val = N1C->getAPIntValue();
2430      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2431      Val <<= Val.getBitWidth()-FromBits;
2432      Val = Val.ashr(Val.getBitWidth()-FromBits);
2433      return getConstant(Val, VT);
2434    }
2435    break;
2436  }
2437  case ISD::EXTRACT_VECTOR_ELT:
2438    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2439    if (N1.getOpcode() == ISD::UNDEF)
2440      return getNode(ISD::UNDEF, VT);
2441
2442    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2443    // expanding copies of large vectors from registers.
2444    if (N2C &&
2445        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2446        N1.getNumOperands() > 0) {
2447      unsigned Factor =
2448        N1.getOperand(0).getValueType().getVectorNumElements();
2449      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2450                     N1.getOperand(N2C->getZExtValue() / Factor),
2451                     getConstant(N2C->getZExtValue() % Factor,
2452                                 N2.getValueType()));
2453    }
2454
2455    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2456    // expanding large vector constants.
2457    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2458      return N1.getOperand(N2C->getZExtValue());
2459
2460    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2461    // operations are lowered to scalars.
2462    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2463      if (N1.getOperand(2) == N2)
2464        return N1.getOperand(1);
2465      else
2466        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2467    }
2468    break;
2469  case ISD::EXTRACT_ELEMENT:
2470    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2471    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2472           (N1.getValueType().isInteger() == VT.isInteger()) &&
2473           "Wrong types for EXTRACT_ELEMENT!");
2474
2475    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2476    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2477    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2478    if (N1.getOpcode() == ISD::BUILD_PAIR)
2479      return N1.getOperand(N2C->getZExtValue());
2480
2481    // EXTRACT_ELEMENT of a constant int is also very common.
2482    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2483      unsigned ElementSize = VT.getSizeInBits();
2484      unsigned Shift = ElementSize * N2C->getZExtValue();
2485      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2486      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2487    }
2488    break;
2489  case ISD::EXTRACT_SUBVECTOR:
2490    if (N1.getValueType() == VT) // Trivial extraction.
2491      return N1;
2492    break;
2493  }
2494
2495  if (N1C) {
2496    if (N2C) {
2497      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2498      if (SV.getNode()) return SV;
2499    } else {      // Cannonicalize constant to RHS if commutative
2500      if (isCommutativeBinOp(Opcode)) {
2501        std::swap(N1C, N2C);
2502        std::swap(N1, N2);
2503      }
2504    }
2505  }
2506
2507  // Constant fold FP operations.
2508  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2509  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2510  if (N1CFP) {
2511    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2512      // Cannonicalize constant to RHS if commutative
2513      std::swap(N1CFP, N2CFP);
2514      std::swap(N1, N2);
2515    } else if (N2CFP && VT != MVT::ppcf128) {
2516      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2517      APFloat::opStatus s;
2518      switch (Opcode) {
2519      case ISD::FADD:
2520        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2521        if (s != APFloat::opInvalidOp)
2522          return getConstantFP(V1, VT);
2523        break;
2524      case ISD::FSUB:
2525        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2526        if (s!=APFloat::opInvalidOp)
2527          return getConstantFP(V1, VT);
2528        break;
2529      case ISD::FMUL:
2530        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2531        if (s!=APFloat::opInvalidOp)
2532          return getConstantFP(V1, VT);
2533        break;
2534      case ISD::FDIV:
2535        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2536        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2537          return getConstantFP(V1, VT);
2538        break;
2539      case ISD::FREM :
2540        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2541        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2542          return getConstantFP(V1, VT);
2543        break;
2544      case ISD::FCOPYSIGN:
2545        V1.copySign(V2);
2546        return getConstantFP(V1, VT);
2547      default: break;
2548      }
2549    }
2550  }
2551
2552  // Canonicalize an UNDEF to the RHS, even over a constant.
2553  if (N1.getOpcode() == ISD::UNDEF) {
2554    if (isCommutativeBinOp(Opcode)) {
2555      std::swap(N1, N2);
2556    } else {
2557      switch (Opcode) {
2558      case ISD::FP_ROUND_INREG:
2559      case ISD::SIGN_EXTEND_INREG:
2560      case ISD::SUB:
2561      case ISD::FSUB:
2562      case ISD::FDIV:
2563      case ISD::FREM:
2564      case ISD::SRA:
2565        return N1;     // fold op(undef, arg2) -> undef
2566      case ISD::UDIV:
2567      case ISD::SDIV:
2568      case ISD::UREM:
2569      case ISD::SREM:
2570      case ISD::SRL:
2571      case ISD::SHL:
2572        if (!VT.isVector())
2573          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2574        // For vectors, we can't easily build an all zero vector, just return
2575        // the LHS.
2576        return N2;
2577      }
2578    }
2579  }
2580
2581  // Fold a bunch of operators when the RHS is undef.
2582  if (N2.getOpcode() == ISD::UNDEF) {
2583    switch (Opcode) {
2584    case ISD::XOR:
2585      if (N1.getOpcode() == ISD::UNDEF)
2586        // Handle undef ^ undef -> 0 special case. This is a common
2587        // idiom (misuse).
2588        return getConstant(0, VT);
2589      // fallthrough
2590    case ISD::ADD:
2591    case ISD::ADDC:
2592    case ISD::ADDE:
2593    case ISD::SUB:
2594    case ISD::FADD:
2595    case ISD::FSUB:
2596    case ISD::FMUL:
2597    case ISD::FDIV:
2598    case ISD::FREM:
2599    case ISD::UDIV:
2600    case ISD::SDIV:
2601    case ISD::UREM:
2602    case ISD::SREM:
2603      return N2;       // fold op(arg1, undef) -> undef
2604    case ISD::MUL:
2605    case ISD::AND:
2606    case ISD::SRL:
2607    case ISD::SHL:
2608      if (!VT.isVector())
2609        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2610      // For vectors, we can't easily build an all zero vector, just return
2611      // the LHS.
2612      return N1;
2613    case ISD::OR:
2614      if (!VT.isVector())
2615        return getConstant(VT.getIntegerVTBitMask(), VT);
2616      // For vectors, we can't easily build an all one vector, just return
2617      // the LHS.
2618      return N1;
2619    case ISD::SRA:
2620      return N1;
2621    }
2622  }
2623
2624  // Memoize this node if possible.
2625  SDNode *N;
2626  SDVTList VTs = getVTList(VT);
2627  if (VT != MVT::Flag) {
2628    SDValue Ops[] = { N1, N2 };
2629    FoldingSetNodeID ID;
2630    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2631    void *IP = 0;
2632    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2633      return SDValue(E, 0);
2634    N = NodeAllocator.Allocate<BinarySDNode>();
2635    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2636    CSEMap.InsertNode(N, IP);
2637  } else {
2638    N = NodeAllocator.Allocate<BinarySDNode>();
2639    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2640  }
2641
2642  AllNodes.push_back(N);
2643#ifndef NDEBUG
2644  VerifyNode(N);
2645#endif
2646  return SDValue(N, 0);
2647}
2648
2649SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2650                              SDValue N1, SDValue N2, SDValue N3) {
2651  // Perform various simplifications.
2652  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2653  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2654  switch (Opcode) {
2655  case ISD::CONCAT_VECTORS:
2656    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2657    // one big BUILD_VECTOR.
2658    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2659        N2.getOpcode() == ISD::BUILD_VECTOR &&
2660        N3.getOpcode() == ISD::BUILD_VECTOR) {
2661      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2662      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2663      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2664      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2665    }
2666    break;
2667  case ISD::SETCC: {
2668    // Use FoldSetCC to simplify SETCC's.
2669    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2670    if (Simp.getNode()) return Simp;
2671    break;
2672  }
2673  case ISD::SELECT:
2674    if (N1C) {
2675     if (N1C->getZExtValue())
2676        return N2;             // select true, X, Y -> X
2677      else
2678        return N3;             // select false, X, Y -> Y
2679    }
2680
2681    if (N2 == N3) return N2;   // select C, X, X -> X
2682    break;
2683  case ISD::BRCOND:
2684    if (N2C) {
2685      if (N2C->getZExtValue()) // Unconditional branch
2686        return getNode(ISD::BR, MVT::Other, N1, N3);
2687      else
2688        return N1;         // Never-taken branch
2689    }
2690    break;
2691  case ISD::VECTOR_SHUFFLE:
2692    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2693           VT.isVector() && N3.getValueType().isVector() &&
2694           N3.getOpcode() == ISD::BUILD_VECTOR &&
2695           VT.getVectorNumElements() == N3.getNumOperands() &&
2696           "Illegal VECTOR_SHUFFLE node!");
2697    break;
2698  case ISD::BIT_CONVERT:
2699    // Fold bit_convert nodes from a type to themselves.
2700    if (N1.getValueType() == VT)
2701      return N1;
2702    break;
2703  }
2704
2705  // Memoize node if it doesn't produce a flag.
2706  SDNode *N;
2707  SDVTList VTs = getVTList(VT);
2708  if (VT != MVT::Flag) {
2709    SDValue Ops[] = { N1, N2, N3 };
2710    FoldingSetNodeID ID;
2711    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2712    void *IP = 0;
2713    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2714      return SDValue(E, 0);
2715    N = NodeAllocator.Allocate<TernarySDNode>();
2716    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2717    CSEMap.InsertNode(N, IP);
2718  } else {
2719    N = NodeAllocator.Allocate<TernarySDNode>();
2720    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2721  }
2722  AllNodes.push_back(N);
2723#ifndef NDEBUG
2724  VerifyNode(N);
2725#endif
2726  return SDValue(N, 0);
2727}
2728
2729SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2730                              SDValue N1, SDValue N2, SDValue N3,
2731                              SDValue N4) {
2732  SDValue Ops[] = { N1, N2, N3, N4 };
2733  return getNode(Opcode, VT, Ops, 4);
2734}
2735
2736SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2737                              SDValue N1, SDValue N2, SDValue N3,
2738                              SDValue N4, SDValue N5) {
2739  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2740  return getNode(Opcode, VT, Ops, 5);
2741}
2742
2743/// getMemsetValue - Vectorized representation of the memset value
2744/// operand.
2745static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2746  unsigned NumBits = VT.isVector() ?
2747    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2748  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2749    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2750    unsigned Shift = 8;
2751    for (unsigned i = NumBits; i > 8; i >>= 1) {
2752      Val = (Val << Shift) | Val;
2753      Shift <<= 1;
2754    }
2755    if (VT.isInteger())
2756      return DAG.getConstant(Val, VT);
2757    return DAG.getConstantFP(APFloat(Val), VT);
2758  }
2759
2760  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2761  unsigned Shift = 8;
2762  for (unsigned i = NumBits; i > 8; i >>= 1) {
2763    Value = DAG.getNode(ISD::OR, VT,
2764                        DAG.getNode(ISD::SHL, VT, Value,
2765                                    DAG.getConstant(Shift, MVT::i8)), Value);
2766    Shift <<= 1;
2767  }
2768
2769  return Value;
2770}
2771
2772/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2773/// used when a memcpy is turned into a memset when the source is a constant
2774/// string ptr.
2775static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2776                                    const TargetLowering &TLI,
2777                                    std::string &Str, unsigned Offset) {
2778  // Handle vector with all elements zero.
2779  if (Str.empty()) {
2780    if (VT.isInteger())
2781      return DAG.getConstant(0, VT);
2782    unsigned NumElts = VT.getVectorNumElements();
2783    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2784    return DAG.getNode(ISD::BIT_CONVERT, VT,
2785                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2786  }
2787
2788  assert(!VT.isVector() && "Can't handle vector type here!");
2789  unsigned NumBits = VT.getSizeInBits();
2790  unsigned MSB = NumBits / 8;
2791  uint64_t Val = 0;
2792  if (TLI.isLittleEndian())
2793    Offset = Offset + MSB - 1;
2794  for (unsigned i = 0; i != MSB; ++i) {
2795    Val = (Val << 8) | (unsigned char)Str[Offset];
2796    Offset += TLI.isLittleEndian() ? -1 : 1;
2797  }
2798  return DAG.getConstant(Val, VT);
2799}
2800
2801/// getMemBasePlusOffset - Returns base and offset node for the
2802///
2803static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2804                                      SelectionDAG &DAG) {
2805  MVT VT = Base.getValueType();
2806  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2807}
2808
2809/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2810///
2811static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2812  unsigned SrcDelta = 0;
2813  GlobalAddressSDNode *G = NULL;
2814  if (Src.getOpcode() == ISD::GlobalAddress)
2815    G = cast<GlobalAddressSDNode>(Src);
2816  else if (Src.getOpcode() == ISD::ADD &&
2817           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2818           Src.getOperand(1).getOpcode() == ISD::Constant) {
2819    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2820    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2821  }
2822  if (!G)
2823    return false;
2824
2825  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2826  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2827    return true;
2828
2829  return false;
2830}
2831
2832/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2833/// to replace the memset / memcpy is below the threshold. It also returns the
2834/// types of the sequence of memory ops to perform memset / memcpy.
2835static
2836bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2837                              SDValue Dst, SDValue Src,
2838                              unsigned Limit, uint64_t Size, unsigned &Align,
2839                              std::string &Str, bool &isSrcStr,
2840                              SelectionDAG &DAG,
2841                              const TargetLowering &TLI) {
2842  isSrcStr = isMemSrcFromString(Src, Str);
2843  bool isSrcConst = isa<ConstantSDNode>(Src);
2844  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2845  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2846  if (VT != MVT::iAny) {
2847    unsigned NewAlign = (unsigned)
2848      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2849    // If source is a string constant, this will require an unaligned load.
2850    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2851      if (Dst.getOpcode() != ISD::FrameIndex) {
2852        // Can't change destination alignment. It requires a unaligned store.
2853        if (AllowUnalign)
2854          VT = MVT::iAny;
2855      } else {
2856        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2857        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2858        if (MFI->isFixedObjectIndex(FI)) {
2859          // Can't change destination alignment. It requires a unaligned store.
2860          if (AllowUnalign)
2861            VT = MVT::iAny;
2862        } else {
2863          // Give the stack frame object a larger alignment if needed.
2864          if (MFI->getObjectAlignment(FI) < NewAlign)
2865            MFI->setObjectAlignment(FI, NewAlign);
2866          Align = NewAlign;
2867        }
2868      }
2869    }
2870  }
2871
2872  if (VT == MVT::iAny) {
2873    if (AllowUnalign) {
2874      VT = MVT::i64;
2875    } else {
2876      switch (Align & 7) {
2877      case 0:  VT = MVT::i64; break;
2878      case 4:  VT = MVT::i32; break;
2879      case 2:  VT = MVT::i16; break;
2880      default: VT = MVT::i8;  break;
2881      }
2882    }
2883
2884    MVT LVT = MVT::i64;
2885    while (!TLI.isTypeLegal(LVT))
2886      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2887    assert(LVT.isInteger());
2888
2889    if (VT.bitsGT(LVT))
2890      VT = LVT;
2891  }
2892
2893  unsigned NumMemOps = 0;
2894  while (Size != 0) {
2895    unsigned VTSize = VT.getSizeInBits() / 8;
2896    while (VTSize > Size) {
2897      // For now, only use non-vector load / store's for the left-over pieces.
2898      if (VT.isVector()) {
2899        VT = MVT::i64;
2900        while (!TLI.isTypeLegal(VT))
2901          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2902        VTSize = VT.getSizeInBits() / 8;
2903      } else {
2904        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2905        VTSize >>= 1;
2906      }
2907    }
2908
2909    if (++NumMemOps > Limit)
2910      return false;
2911    MemOps.push_back(VT);
2912    Size -= VTSize;
2913  }
2914
2915  return true;
2916}
2917
2918static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2919                                         SDValue Chain, SDValue Dst,
2920                                         SDValue Src, uint64_t Size,
2921                                         unsigned Align, bool AlwaysInline,
2922                                         const Value *DstSV, uint64_t DstSVOff,
2923                                         const Value *SrcSV, uint64_t SrcSVOff){
2924  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2925
2926  // Expand memcpy to a series of load and store ops if the size operand falls
2927  // below a certain threshold.
2928  std::vector<MVT> MemOps;
2929  uint64_t Limit = -1;
2930  if (!AlwaysInline)
2931    Limit = TLI.getMaxStoresPerMemcpy();
2932  unsigned DstAlign = Align;  // Destination alignment can change.
2933  std::string Str;
2934  bool CopyFromStr;
2935  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2936                                Str, CopyFromStr, DAG, TLI))
2937    return SDValue();
2938
2939
2940  bool isZeroStr = CopyFromStr && Str.empty();
2941  SmallVector<SDValue, 8> OutChains;
2942  unsigned NumMemOps = MemOps.size();
2943  uint64_t SrcOff = 0, DstOff = 0;
2944  for (unsigned i = 0; i < NumMemOps; i++) {
2945    MVT VT = MemOps[i];
2946    unsigned VTSize = VT.getSizeInBits() / 8;
2947    SDValue Value, Store;
2948
2949    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2950      // It's unlikely a store of a vector immediate can be done in a single
2951      // instruction. It would require a load from a constantpool first.
2952      // We also handle store a vector with all zero's.
2953      // FIXME: Handle other cases where store of vector immediate is done in
2954      // a single instruction.
2955      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2956      Store = DAG.getStore(Chain, Value,
2957                           getMemBasePlusOffset(Dst, DstOff, DAG),
2958                           DstSV, DstSVOff + DstOff, false, DstAlign);
2959    } else {
2960      Value = DAG.getLoad(VT, Chain,
2961                          getMemBasePlusOffset(Src, SrcOff, DAG),
2962                          SrcSV, SrcSVOff + SrcOff, false, Align);
2963      Store = DAG.getStore(Chain, Value,
2964                           getMemBasePlusOffset(Dst, DstOff, DAG),
2965                           DstSV, DstSVOff + DstOff, false, DstAlign);
2966    }
2967    OutChains.push_back(Store);
2968    SrcOff += VTSize;
2969    DstOff += VTSize;
2970  }
2971
2972  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2973                     &OutChains[0], OutChains.size());
2974}
2975
2976static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
2977                                          SDValue Chain, SDValue Dst,
2978                                          SDValue Src, uint64_t Size,
2979                                          unsigned Align, bool AlwaysInline,
2980                                          const Value *DstSV, uint64_t DstSVOff,
2981                                          const Value *SrcSV, uint64_t SrcSVOff){
2982  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2983
2984  // Expand memmove to a series of load and store ops if the size operand falls
2985  // below a certain threshold.
2986  std::vector<MVT> MemOps;
2987  uint64_t Limit = -1;
2988  if (!AlwaysInline)
2989    Limit = TLI.getMaxStoresPerMemmove();
2990  unsigned DstAlign = Align;  // Destination alignment can change.
2991  std::string Str;
2992  bool CopyFromStr;
2993  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2994                                Str, CopyFromStr, DAG, TLI))
2995    return SDValue();
2996
2997  uint64_t SrcOff = 0, DstOff = 0;
2998
2999  SmallVector<SDValue, 8> LoadValues;
3000  SmallVector<SDValue, 8> LoadChains;
3001  SmallVector<SDValue, 8> OutChains;
3002  unsigned NumMemOps = MemOps.size();
3003  for (unsigned i = 0; i < NumMemOps; i++) {
3004    MVT VT = MemOps[i];
3005    unsigned VTSize = VT.getSizeInBits() / 8;
3006    SDValue Value, Store;
3007
3008    Value = DAG.getLoad(VT, Chain,
3009                        getMemBasePlusOffset(Src, SrcOff, DAG),
3010                        SrcSV, SrcSVOff + SrcOff, false, Align);
3011    LoadValues.push_back(Value);
3012    LoadChains.push_back(Value.getValue(1));
3013    SrcOff += VTSize;
3014  }
3015  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3016                      &LoadChains[0], LoadChains.size());
3017  OutChains.clear();
3018  for (unsigned i = 0; i < NumMemOps; i++) {
3019    MVT VT = MemOps[i];
3020    unsigned VTSize = VT.getSizeInBits() / 8;
3021    SDValue Value, Store;
3022
3023    Store = DAG.getStore(Chain, LoadValues[i],
3024                         getMemBasePlusOffset(Dst, DstOff, DAG),
3025                         DstSV, DstSVOff + DstOff, false, DstAlign);
3026    OutChains.push_back(Store);
3027    DstOff += VTSize;
3028  }
3029
3030  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3031                     &OutChains[0], OutChains.size());
3032}
3033
3034static SDValue getMemsetStores(SelectionDAG &DAG,
3035                                 SDValue Chain, SDValue Dst,
3036                                 SDValue Src, uint64_t Size,
3037                                 unsigned Align,
3038                                 const Value *DstSV, uint64_t DstSVOff) {
3039  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3040
3041  // Expand memset to a series of load/store ops if the size operand
3042  // falls below a certain threshold.
3043  std::vector<MVT> MemOps;
3044  std::string Str;
3045  bool CopyFromStr;
3046  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3047                                Size, Align, Str, CopyFromStr, DAG, TLI))
3048    return SDValue();
3049
3050  SmallVector<SDValue, 8> OutChains;
3051  uint64_t DstOff = 0;
3052
3053  unsigned NumMemOps = MemOps.size();
3054  for (unsigned i = 0; i < NumMemOps; i++) {
3055    MVT VT = MemOps[i];
3056    unsigned VTSize = VT.getSizeInBits() / 8;
3057    SDValue Value = getMemsetValue(Src, VT, DAG);
3058    SDValue Store = DAG.getStore(Chain, Value,
3059                                   getMemBasePlusOffset(Dst, DstOff, DAG),
3060                                   DstSV, DstSVOff + DstOff);
3061    OutChains.push_back(Store);
3062    DstOff += VTSize;
3063  }
3064
3065  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3066                     &OutChains[0], OutChains.size());
3067}
3068
3069SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3070                                SDValue Src, SDValue Size,
3071                                unsigned Align, bool AlwaysInline,
3072                                const Value *DstSV, uint64_t DstSVOff,
3073                                const Value *SrcSV, uint64_t SrcSVOff) {
3074
3075  // Check to see if we should lower the memcpy to loads and stores first.
3076  // For cases within the target-specified limits, this is the best choice.
3077  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3078  if (ConstantSize) {
3079    // Memcpy with size zero? Just return the original chain.
3080    if (ConstantSize->isNullValue())
3081      return Chain;
3082
3083    SDValue Result =
3084      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3085                              ConstantSize->getZExtValue(),
3086                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3087    if (Result.getNode())
3088      return Result;
3089  }
3090
3091  // Then check to see if we should lower the memcpy with target-specific
3092  // code. If the target chooses to do this, this is the next best.
3093  SDValue Result =
3094    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3095                                AlwaysInline,
3096                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3097  if (Result.getNode())
3098    return Result;
3099
3100  // If we really need inline code and the target declined to provide it,
3101  // use a (potentially long) sequence of loads and stores.
3102  if (AlwaysInline) {
3103    assert(ConstantSize && "AlwaysInline requires a constant size!");
3104    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3105                                   ConstantSize->getZExtValue(), Align, true,
3106                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3107  }
3108
3109  // Emit a library call.
3110  TargetLowering::ArgListTy Args;
3111  TargetLowering::ArgListEntry Entry;
3112  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3113  Entry.Node = Dst; Args.push_back(Entry);
3114  Entry.Node = Src; Args.push_back(Entry);
3115  Entry.Node = Size; Args.push_back(Entry);
3116  std::pair<SDValue,SDValue> CallResult =
3117    TLI.LowerCallTo(Chain, Type::VoidTy,
3118                    false, false, false, false, CallingConv::C, false,
3119                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3120                    Args, *this);
3121  return CallResult.second;
3122}
3123
3124SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3125                                 SDValue Src, SDValue Size,
3126                                 unsigned Align,
3127                                 const Value *DstSV, uint64_t DstSVOff,
3128                                 const Value *SrcSV, uint64_t SrcSVOff) {
3129
3130  // Check to see if we should lower the memmove to loads and stores first.
3131  // For cases within the target-specified limits, this is the best choice.
3132  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3133  if (ConstantSize) {
3134    // Memmove with size zero? Just return the original chain.
3135    if (ConstantSize->isNullValue())
3136      return Chain;
3137
3138    SDValue Result =
3139      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3140                               ConstantSize->getZExtValue(),
3141                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3142    if (Result.getNode())
3143      return Result;
3144  }
3145
3146  // Then check to see if we should lower the memmove with target-specific
3147  // code. If the target chooses to do this, this is the next best.
3148  SDValue Result =
3149    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3150                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3151  if (Result.getNode())
3152    return Result;
3153
3154  // Emit a library call.
3155  TargetLowering::ArgListTy Args;
3156  TargetLowering::ArgListEntry Entry;
3157  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3158  Entry.Node = Dst; Args.push_back(Entry);
3159  Entry.Node = Src; Args.push_back(Entry);
3160  Entry.Node = Size; Args.push_back(Entry);
3161  std::pair<SDValue,SDValue> CallResult =
3162    TLI.LowerCallTo(Chain, Type::VoidTy,
3163                    false, false, false, false, CallingConv::C, false,
3164                    getExternalSymbol("memmove", TLI.getPointerTy()),
3165                    Args, *this);
3166  return CallResult.second;
3167}
3168
3169SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3170                                SDValue Src, SDValue Size,
3171                                unsigned Align,
3172                                const Value *DstSV, uint64_t DstSVOff) {
3173
3174  // Check to see if we should lower the memset to stores first.
3175  // For cases within the target-specified limits, this is the best choice.
3176  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3177  if (ConstantSize) {
3178    // Memset with size zero? Just return the original chain.
3179    if (ConstantSize->isNullValue())
3180      return Chain;
3181
3182    SDValue Result =
3183      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3184                      Align, DstSV, DstSVOff);
3185    if (Result.getNode())
3186      return Result;
3187  }
3188
3189  // Then check to see if we should lower the memset with target-specific
3190  // code. If the target chooses to do this, this is the next best.
3191  SDValue Result =
3192    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3193                                DstSV, DstSVOff);
3194  if (Result.getNode())
3195    return Result;
3196
3197  // Emit a library call.
3198  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3199  TargetLowering::ArgListTy Args;
3200  TargetLowering::ArgListEntry Entry;
3201  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3202  Args.push_back(Entry);
3203  // Extend or truncate the argument to be an i32 value for the call.
3204  if (Src.getValueType().bitsGT(MVT::i32))
3205    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3206  else
3207    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3208  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3209  Args.push_back(Entry);
3210  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3211  Args.push_back(Entry);
3212  std::pair<SDValue,SDValue> CallResult =
3213    TLI.LowerCallTo(Chain, Type::VoidTy,
3214                    false, false, false, false, CallingConv::C, false,
3215                    getExternalSymbol("memset", TLI.getPointerTy()),
3216                    Args, *this);
3217  return CallResult.second;
3218}
3219
3220SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3221                                SDValue Ptr, SDValue Cmp,
3222                                SDValue Swp, const Value* PtrVal,
3223                                unsigned Alignment) {
3224  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3225          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3226          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3227          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3228  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3229
3230  MVT VT = Cmp.getValueType();
3231
3232  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3233    Alignment = getMVTAlignment(VT);
3234
3235  SDVTList VTs = getVTList(VT, MVT::Other);
3236  FoldingSetNodeID ID;
3237  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3238  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3239  void* IP = 0;
3240  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3241    return SDValue(E, 0);
3242  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3243  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3244  CSEMap.InsertNode(N, IP);
3245  AllNodes.push_back(N);
3246  return SDValue(N, 0);
3247}
3248
3249SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3250                                SDValue Ptr, SDValue Val,
3251                                const Value* PtrVal,
3252                                unsigned Alignment) {
3253  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3254          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3255          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3256          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3257          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3258          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3259          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3260          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3261          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3262          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3263          Opcode == ISD::ATOMIC_SWAP_8 ||
3264          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3265          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3266          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3267          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3268          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3269          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3270          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3271          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3272          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3273          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3274          Opcode == ISD::ATOMIC_SWAP_16 ||
3275          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3276          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3277          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3278          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3279          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3280          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3281          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3282          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3283          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3284          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3285          Opcode == ISD::ATOMIC_SWAP_32 ||
3286          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3287          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3288          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3289          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3290          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3291          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3292          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3293          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3294          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3295          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3296          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3297
3298  MVT VT = Val.getValueType();
3299
3300  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3301    Alignment = getMVTAlignment(VT);
3302
3303  SDVTList VTs = getVTList(VT, MVT::Other);
3304  FoldingSetNodeID ID;
3305  SDValue Ops[] = {Chain, Ptr, Val};
3306  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3307  void* IP = 0;
3308  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3309    return SDValue(E, 0);
3310  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3311  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3312  CSEMap.InsertNode(N, IP);
3313  AllNodes.push_back(N);
3314  return SDValue(N, 0);
3315}
3316
3317/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3318/// Allowed to return something different (and simpler) if Simplify is true.
3319SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3320                                     bool Simplify) {
3321  if (Simplify && NumOps == 1)
3322    return Ops[0];
3323
3324  SmallVector<MVT, 4> VTs;
3325  VTs.reserve(NumOps);
3326  for (unsigned i = 0; i < NumOps; ++i)
3327    VTs.push_back(Ops[i].getValueType());
3328  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3329}
3330
3331SDValue
3332SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3333                      bool IsInreg, SDVTList VTs,
3334                      const SDValue *Operands, unsigned NumOperands) {
3335  // Do not include isTailCall in the folding set profile.
3336  FoldingSetNodeID ID;
3337  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3338  ID.AddInteger(CallingConv);
3339  ID.AddInteger(IsVarArgs);
3340  void *IP = 0;
3341  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3342    // Instead of including isTailCall in the folding set, we just
3343    // set the flag of the existing node.
3344    if (!IsTailCall)
3345      cast<CallSDNode>(E)->setNotTailCall();
3346    return SDValue(E, 0);
3347  }
3348  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3349  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3350                     VTs, Operands, NumOperands);
3351  CSEMap.InsertNode(N, IP);
3352  AllNodes.push_back(N);
3353  return SDValue(N, 0);
3354}
3355
3356SDValue
3357SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3358                      MVT VT, SDValue Chain,
3359                      SDValue Ptr, SDValue Offset,
3360                      const Value *SV, int SVOffset, MVT EVT,
3361                      bool isVolatile, unsigned Alignment) {
3362  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3363    Alignment = getMVTAlignment(VT);
3364
3365  if (VT == EVT) {
3366    ExtType = ISD::NON_EXTLOAD;
3367  } else if (ExtType == ISD::NON_EXTLOAD) {
3368    assert(VT == EVT && "Non-extending load from different memory type!");
3369  } else {
3370    // Extending load.
3371    if (VT.isVector())
3372      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3373             "Invalid vector extload!");
3374    else
3375      assert(EVT.bitsLT(VT) &&
3376             "Should only be an extending load, not truncating!");
3377    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3378           "Cannot sign/zero extend a FP/Vector load!");
3379    assert(VT.isInteger() == EVT.isInteger() &&
3380           "Cannot convert from FP to Int or Int -> FP!");
3381  }
3382
3383  bool Indexed = AM != ISD::UNINDEXED;
3384  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3385         "Unindexed load with an offset!");
3386
3387  SDVTList VTs = Indexed ?
3388    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3389  SDValue Ops[] = { Chain, Ptr, Offset };
3390  FoldingSetNodeID ID;
3391  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3392  ID.AddInteger(AM);
3393  ID.AddInteger(ExtType);
3394  ID.AddInteger(EVT.getRawBits());
3395  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3396  void *IP = 0;
3397  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3398    return SDValue(E, 0);
3399  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3400  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3401                     Alignment, isVolatile);
3402  CSEMap.InsertNode(N, IP);
3403  AllNodes.push_back(N);
3404  return SDValue(N, 0);
3405}
3406
3407SDValue SelectionDAG::getLoad(MVT VT,
3408                              SDValue Chain, SDValue Ptr,
3409                              const Value *SV, int SVOffset,
3410                              bool isVolatile, unsigned Alignment) {
3411  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3412  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3413                 SV, SVOffset, VT, isVolatile, Alignment);
3414}
3415
3416SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3417                                 SDValue Chain, SDValue Ptr,
3418                                 const Value *SV,
3419                                 int SVOffset, MVT EVT,
3420                                 bool isVolatile, unsigned Alignment) {
3421  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3422  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3423                 SV, SVOffset, EVT, isVolatile, Alignment);
3424}
3425
3426SDValue
3427SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3428                             SDValue Offset, ISD::MemIndexedMode AM) {
3429  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3430  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3431         "Load is already a indexed load!");
3432  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3433                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3434                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3435                 LD->isVolatile(), LD->getAlignment());
3436}
3437
3438SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3439                               SDValue Ptr, const Value *SV, int SVOffset,
3440                               bool isVolatile, unsigned Alignment) {
3441  MVT VT = Val.getValueType();
3442
3443  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3444    Alignment = getMVTAlignment(VT);
3445
3446  SDVTList VTs = getVTList(MVT::Other);
3447  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3448  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3449  FoldingSetNodeID ID;
3450  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3451  ID.AddInteger(ISD::UNINDEXED);
3452  ID.AddInteger(false);
3453  ID.AddInteger(VT.getRawBits());
3454  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3455  void *IP = 0;
3456  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3457    return SDValue(E, 0);
3458  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3459  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3460                      VT, SV, SVOffset, Alignment, isVolatile);
3461  CSEMap.InsertNode(N, IP);
3462  AllNodes.push_back(N);
3463  return SDValue(N, 0);
3464}
3465
3466SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3467                                    SDValue Ptr, const Value *SV,
3468                                    int SVOffset, MVT SVT,
3469                                    bool isVolatile, unsigned Alignment) {
3470  MVT VT = Val.getValueType();
3471
3472  if (VT == SVT)
3473    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3474
3475  assert(VT.bitsGT(SVT) && "Not a truncation?");
3476  assert(VT.isInteger() == SVT.isInteger() &&
3477         "Can't do FP-INT conversion!");
3478
3479  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3480    Alignment = getMVTAlignment(VT);
3481
3482  SDVTList VTs = getVTList(MVT::Other);
3483  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3484  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3485  FoldingSetNodeID ID;
3486  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3487  ID.AddInteger(ISD::UNINDEXED);
3488  ID.AddInteger(1);
3489  ID.AddInteger(SVT.getRawBits());
3490  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3491  void *IP = 0;
3492  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3493    return SDValue(E, 0);
3494  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3495  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3496                      SVT, SV, SVOffset, Alignment, isVolatile);
3497  CSEMap.InsertNode(N, IP);
3498  AllNodes.push_back(N);
3499  return SDValue(N, 0);
3500}
3501
3502SDValue
3503SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3504                              SDValue Offset, ISD::MemIndexedMode AM) {
3505  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3506  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3507         "Store is already a indexed store!");
3508  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3509  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3510  FoldingSetNodeID ID;
3511  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3512  ID.AddInteger(AM);
3513  ID.AddInteger(ST->isTruncatingStore());
3514  ID.AddInteger(ST->getMemoryVT().getRawBits());
3515  ID.AddInteger(ST->getRawFlags());
3516  void *IP = 0;
3517  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3518    return SDValue(E, 0);
3519  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3520  new (N) StoreSDNode(Ops, VTs, AM,
3521                      ST->isTruncatingStore(), ST->getMemoryVT(),
3522                      ST->getSrcValue(), ST->getSrcValueOffset(),
3523                      ST->getAlignment(), ST->isVolatile());
3524  CSEMap.InsertNode(N, IP);
3525  AllNodes.push_back(N);
3526  return SDValue(N, 0);
3527}
3528
3529SDValue SelectionDAG::getVAArg(MVT VT,
3530                               SDValue Chain, SDValue Ptr,
3531                               SDValue SV) {
3532  SDValue Ops[] = { Chain, Ptr, SV };
3533  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3534}
3535
3536SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3537                              const SDUse *Ops, unsigned NumOps) {
3538  switch (NumOps) {
3539  case 0: return getNode(Opcode, VT);
3540  case 1: return getNode(Opcode, VT, Ops[0]);
3541  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3542  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3543  default: break;
3544  }
3545
3546  // Copy from an SDUse array into an SDValue array for use with
3547  // the regular getNode logic.
3548  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3549  return getNode(Opcode, VT, &NewOps[0], NumOps);
3550}
3551
3552SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3553                              const SDValue *Ops, unsigned NumOps) {
3554  switch (NumOps) {
3555  case 0: return getNode(Opcode, VT);
3556  case 1: return getNode(Opcode, VT, Ops[0]);
3557  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3558  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3559  default: break;
3560  }
3561
3562  switch (Opcode) {
3563  default: break;
3564  case ISD::SELECT_CC: {
3565    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3566    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3567           "LHS and RHS of condition must have same type!");
3568    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3569           "True and False arms of SelectCC must have same type!");
3570    assert(Ops[2].getValueType() == VT &&
3571           "select_cc node must be of same type as true and false value!");
3572    break;
3573  }
3574  case ISD::BR_CC: {
3575    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3576    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3577           "LHS/RHS of comparison should match types!");
3578    break;
3579  }
3580  }
3581
3582  // Memoize nodes.
3583  SDNode *N;
3584  SDVTList VTs = getVTList(VT);
3585  if (VT != MVT::Flag) {
3586    FoldingSetNodeID ID;
3587    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3588    void *IP = 0;
3589    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3590      return SDValue(E, 0);
3591    N = NodeAllocator.Allocate<SDNode>();
3592    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3593    CSEMap.InsertNode(N, IP);
3594  } else {
3595    N = NodeAllocator.Allocate<SDNode>();
3596    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3597  }
3598  AllNodes.push_back(N);
3599#ifndef NDEBUG
3600  VerifyNode(N);
3601#endif
3602  return SDValue(N, 0);
3603}
3604
3605SDValue SelectionDAG::getNode(unsigned Opcode,
3606                              const std::vector<MVT> &ResultTys,
3607                              const SDValue *Ops, unsigned NumOps) {
3608  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3609                 Ops, NumOps);
3610}
3611
3612SDValue SelectionDAG::getNode(unsigned Opcode,
3613                              const MVT *VTs, unsigned NumVTs,
3614                              const SDValue *Ops, unsigned NumOps) {
3615  if (NumVTs == 1)
3616    return getNode(Opcode, VTs[0], Ops, NumOps);
3617  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3618}
3619
3620SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3621                              const SDValue *Ops, unsigned NumOps) {
3622  if (VTList.NumVTs == 1)
3623    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3624
3625  switch (Opcode) {
3626  // FIXME: figure out how to safely handle things like
3627  // int foo(int x) { return 1 << (x & 255); }
3628  // int bar() { return foo(256); }
3629#if 0
3630  case ISD::SRA_PARTS:
3631  case ISD::SRL_PARTS:
3632  case ISD::SHL_PARTS:
3633    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3634        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3635      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3636    else if (N3.getOpcode() == ISD::AND)
3637      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3638        // If the and is only masking out bits that cannot effect the shift,
3639        // eliminate the and.
3640        unsigned NumBits = VT.getSizeInBits()*2;
3641        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3642          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3643      }
3644    break;
3645#endif
3646  }
3647
3648  // Memoize the node unless it returns a flag.
3649  SDNode *N;
3650  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3651    FoldingSetNodeID ID;
3652    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3653    void *IP = 0;
3654    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3655      return SDValue(E, 0);
3656    if (NumOps == 1) {
3657      N = NodeAllocator.Allocate<UnarySDNode>();
3658      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3659    } else if (NumOps == 2) {
3660      N = NodeAllocator.Allocate<BinarySDNode>();
3661      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3662    } else if (NumOps == 3) {
3663      N = NodeAllocator.Allocate<TernarySDNode>();
3664      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3665    } else {
3666      N = NodeAllocator.Allocate<SDNode>();
3667      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3668    }
3669    CSEMap.InsertNode(N, IP);
3670  } else {
3671    if (NumOps == 1) {
3672      N = NodeAllocator.Allocate<UnarySDNode>();
3673      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3674    } else if (NumOps == 2) {
3675      N = NodeAllocator.Allocate<BinarySDNode>();
3676      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3677    } else if (NumOps == 3) {
3678      N = NodeAllocator.Allocate<TernarySDNode>();
3679      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3680    } else {
3681      N = NodeAllocator.Allocate<SDNode>();
3682      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3683    }
3684  }
3685  AllNodes.push_back(N);
3686#ifndef NDEBUG
3687  VerifyNode(N);
3688#endif
3689  return SDValue(N, 0);
3690}
3691
3692SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3693  return getNode(Opcode, VTList, 0, 0);
3694}
3695
3696SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3697                                SDValue N1) {
3698  SDValue Ops[] = { N1 };
3699  return getNode(Opcode, VTList, Ops, 1);
3700}
3701
3702SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3703                              SDValue N1, SDValue N2) {
3704  SDValue Ops[] = { N1, N2 };
3705  return getNode(Opcode, VTList, Ops, 2);
3706}
3707
3708SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3709                              SDValue N1, SDValue N2, SDValue N3) {
3710  SDValue Ops[] = { N1, N2, N3 };
3711  return getNode(Opcode, VTList, Ops, 3);
3712}
3713
3714SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3715                              SDValue N1, SDValue N2, SDValue N3,
3716                              SDValue N4) {
3717  SDValue Ops[] = { N1, N2, N3, N4 };
3718  return getNode(Opcode, VTList, Ops, 4);
3719}
3720
3721SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3722                              SDValue N1, SDValue N2, SDValue N3,
3723                              SDValue N4, SDValue N5) {
3724  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3725  return getNode(Opcode, VTList, Ops, 5);
3726}
3727
3728SDVTList SelectionDAG::getVTList(MVT VT) {
3729  return makeVTList(SDNode::getValueTypeList(VT), 1);
3730}
3731
3732SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3733  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3734       E = VTList.rend(); I != E; ++I)
3735    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3736      return *I;
3737
3738  MVT *Array = Allocator.Allocate<MVT>(2);
3739  Array[0] = VT1;
3740  Array[1] = VT2;
3741  SDVTList Result = makeVTList(Array, 2);
3742  VTList.push_back(Result);
3743  return Result;
3744}
3745
3746SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3747  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3748       E = VTList.rend(); I != E; ++I)
3749    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3750                          I->VTs[2] == VT3)
3751      return *I;
3752
3753  MVT *Array = Allocator.Allocate<MVT>(3);
3754  Array[0] = VT1;
3755  Array[1] = VT2;
3756  Array[2] = VT3;
3757  SDVTList Result = makeVTList(Array, 3);
3758  VTList.push_back(Result);
3759  return Result;
3760}
3761
3762SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3763  switch (NumVTs) {
3764    case 0: assert(0 && "Cannot have nodes without results!");
3765    case 1: return getVTList(VTs[0]);
3766    case 2: return getVTList(VTs[0], VTs[1]);
3767    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3768    default: break;
3769  }
3770
3771  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3772       E = VTList.rend(); I != E; ++I) {
3773    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3774      continue;
3775
3776    bool NoMatch = false;
3777    for (unsigned i = 2; i != NumVTs; ++i)
3778      if (VTs[i] != I->VTs[i]) {
3779        NoMatch = true;
3780        break;
3781      }
3782    if (!NoMatch)
3783      return *I;
3784  }
3785
3786  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3787  std::copy(VTs, VTs+NumVTs, Array);
3788  SDVTList Result = makeVTList(Array, NumVTs);
3789  VTList.push_back(Result);
3790  return Result;
3791}
3792
3793
3794/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3795/// specified operands.  If the resultant node already exists in the DAG,
3796/// this does not modify the specified node, instead it returns the node that
3797/// already exists.  If the resultant node does not exist in the DAG, the
3798/// input node is returned.  As a degenerate case, if you specify the same
3799/// input operands as the node already has, the input node is returned.
3800SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3801  SDNode *N = InN.getNode();
3802  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3803
3804  // Check to see if there is no change.
3805  if (Op == N->getOperand(0)) return InN;
3806
3807  // See if the modified node already exists.
3808  void *InsertPos = 0;
3809  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3810    return SDValue(Existing, InN.getResNo());
3811
3812  // Nope it doesn't.  Remove the node from its current place in the maps.
3813  if (InsertPos)
3814    if (!RemoveNodeFromCSEMaps(N))
3815      InsertPos = 0;
3816
3817  // Now we update the operands.
3818  N->OperandList[0].getVal()->removeUser(0, N);
3819  N->OperandList[0] = Op;
3820  N->OperandList[0].setUser(N);
3821  Op.getNode()->addUser(0, N);
3822
3823  // If this gets put into a CSE map, add it.
3824  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3825  return InN;
3826}
3827
3828SDValue SelectionDAG::
3829UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3830  SDNode *N = InN.getNode();
3831  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3832
3833  // Check to see if there is no change.
3834  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3835    return InN;   // No operands changed, just return the input node.
3836
3837  // See if the modified node already exists.
3838  void *InsertPos = 0;
3839  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3840    return SDValue(Existing, InN.getResNo());
3841
3842  // Nope it doesn't.  Remove the node from its current place in the maps.
3843  if (InsertPos)
3844    if (!RemoveNodeFromCSEMaps(N))
3845      InsertPos = 0;
3846
3847  // Now we update the operands.
3848  if (N->OperandList[0] != Op1) {
3849    N->OperandList[0].getVal()->removeUser(0, N);
3850    N->OperandList[0] = Op1;
3851    N->OperandList[0].setUser(N);
3852    Op1.getNode()->addUser(0, N);
3853  }
3854  if (N->OperandList[1] != Op2) {
3855    N->OperandList[1].getVal()->removeUser(1, N);
3856    N->OperandList[1] = Op2;
3857    N->OperandList[1].setUser(N);
3858    Op2.getNode()->addUser(1, N);
3859  }
3860
3861  // If this gets put into a CSE map, add it.
3862  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3863  return InN;
3864}
3865
3866SDValue SelectionDAG::
3867UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3868  SDValue Ops[] = { Op1, Op2, Op3 };
3869  return UpdateNodeOperands(N, Ops, 3);
3870}
3871
3872SDValue SelectionDAG::
3873UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3874                   SDValue Op3, SDValue Op4) {
3875  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3876  return UpdateNodeOperands(N, Ops, 4);
3877}
3878
3879SDValue SelectionDAG::
3880UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3881                   SDValue Op3, SDValue Op4, SDValue Op5) {
3882  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3883  return UpdateNodeOperands(N, Ops, 5);
3884}
3885
3886SDValue SelectionDAG::
3887UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3888  SDNode *N = InN.getNode();
3889  assert(N->getNumOperands() == NumOps &&
3890         "Update with wrong number of operands");
3891
3892  // Check to see if there is no change.
3893  bool AnyChange = false;
3894  for (unsigned i = 0; i != NumOps; ++i) {
3895    if (Ops[i] != N->getOperand(i)) {
3896      AnyChange = true;
3897      break;
3898    }
3899  }
3900
3901  // No operands changed, just return the input node.
3902  if (!AnyChange) return InN;
3903
3904  // See if the modified node already exists.
3905  void *InsertPos = 0;
3906  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3907    return SDValue(Existing, InN.getResNo());
3908
3909  // Nope it doesn't.  Remove the node from its current place in the maps.
3910  if (InsertPos)
3911    if (!RemoveNodeFromCSEMaps(N))
3912      InsertPos = 0;
3913
3914  // Now we update the operands.
3915  for (unsigned i = 0; i != NumOps; ++i) {
3916    if (N->OperandList[i] != Ops[i]) {
3917      N->OperandList[i].getVal()->removeUser(i, N);
3918      N->OperandList[i] = Ops[i];
3919      N->OperandList[i].setUser(N);
3920      Ops[i].getNode()->addUser(i, N);
3921    }
3922  }
3923
3924  // If this gets put into a CSE map, add it.
3925  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3926  return InN;
3927}
3928
3929/// DropOperands - Release the operands and set this node to have
3930/// zero operands.
3931void SDNode::DropOperands() {
3932  // Unlike the code in MorphNodeTo that does this, we don't need to
3933  // watch for dead nodes here.
3934  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3935    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3936
3937  NumOperands = 0;
3938}
3939
3940/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
3941/// machine opcode.
3942///
3943SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3944                                   MVT VT) {
3945  SDVTList VTs = getVTList(VT);
3946  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
3947}
3948
3949SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3950                                   MVT VT, SDValue Op1) {
3951  SDVTList VTs = getVTList(VT);
3952  SDValue Ops[] = { Op1 };
3953  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3954}
3955
3956SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3957                                   MVT VT, SDValue Op1,
3958                                   SDValue Op2) {
3959  SDVTList VTs = getVTList(VT);
3960  SDValue Ops[] = { Op1, Op2 };
3961  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
3962}
3963
3964SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3965                                   MVT VT, SDValue Op1,
3966                                   SDValue Op2, SDValue Op3) {
3967  SDVTList VTs = getVTList(VT);
3968  SDValue Ops[] = { Op1, Op2, Op3 };
3969  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
3970}
3971
3972SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3973                                   MVT VT, const SDValue *Ops,
3974                                   unsigned NumOps) {
3975  SDVTList VTs = getVTList(VT);
3976  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3977}
3978
3979SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3980                                   MVT VT1, MVT VT2, const SDValue *Ops,
3981                                   unsigned NumOps) {
3982  SDVTList VTs = getVTList(VT1, VT2);
3983  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3984}
3985
3986SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3987                                   MVT VT1, MVT VT2) {
3988  SDVTList VTs = getVTList(VT1, VT2);
3989  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
3990}
3991
3992SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3993                                   MVT VT1, MVT VT2, MVT VT3,
3994                                   const SDValue *Ops, unsigned NumOps) {
3995  SDVTList VTs = getVTList(VT1, VT2, VT3);
3996  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3997}
3998
3999SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4000                                   MVT VT1, MVT VT2,
4001                                   SDValue Op1) {
4002  SDVTList VTs = getVTList(VT1, VT2);
4003  SDValue Ops[] = { Op1 };
4004  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4005}
4006
4007SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4008                                   MVT VT1, MVT VT2,
4009                                   SDValue Op1, SDValue Op2) {
4010  SDVTList VTs = getVTList(VT1, VT2);
4011  SDValue Ops[] = { Op1, Op2 };
4012  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4013}
4014
4015SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4016                                   MVT VT1, MVT VT2,
4017                                   SDValue Op1, SDValue Op2,
4018                                   SDValue Op3) {
4019  SDVTList VTs = getVTList(VT1, VT2);
4020  SDValue Ops[] = { Op1, Op2, Op3 };
4021  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4022}
4023
4024SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4025                                   SDVTList VTs, const SDValue *Ops,
4026                                   unsigned NumOps) {
4027  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4028}
4029
4030SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4031                                  MVT VT) {
4032  SDVTList VTs = getVTList(VT);
4033  return MorphNodeTo(N, Opc, VTs, 0, 0);
4034}
4035
4036SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4037                                  MVT VT, SDValue Op1) {
4038  SDVTList VTs = getVTList(VT);
4039  SDValue Ops[] = { Op1 };
4040  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4041}
4042
4043SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4044                                  MVT VT, SDValue Op1,
4045                                  SDValue Op2) {
4046  SDVTList VTs = getVTList(VT);
4047  SDValue Ops[] = { Op1, Op2 };
4048  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4049}
4050
4051SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4052                                  MVT VT, SDValue Op1,
4053                                  SDValue Op2, SDValue Op3) {
4054  SDVTList VTs = getVTList(VT);
4055  SDValue Ops[] = { Op1, Op2, Op3 };
4056  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4057}
4058
4059SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4060                                  MVT VT, const SDValue *Ops,
4061                                  unsigned NumOps) {
4062  SDVTList VTs = getVTList(VT);
4063  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4064}
4065
4066SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4067                                  MVT VT1, MVT VT2, const SDValue *Ops,
4068                                  unsigned NumOps) {
4069  SDVTList VTs = getVTList(VT1, VT2);
4070  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4071}
4072
4073SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4074                                  MVT VT1, MVT VT2) {
4075  SDVTList VTs = getVTList(VT1, VT2);
4076  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4077}
4078
4079SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4080                                  MVT VT1, MVT VT2, MVT VT3,
4081                                  const SDValue *Ops, unsigned NumOps) {
4082  SDVTList VTs = getVTList(VT1, VT2, VT3);
4083  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4084}
4085
4086SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4087                                  MVT VT1, MVT VT2,
4088                                  SDValue Op1) {
4089  SDVTList VTs = getVTList(VT1, VT2);
4090  SDValue Ops[] = { Op1 };
4091  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4092}
4093
4094SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4095                                  MVT VT1, MVT VT2,
4096                                  SDValue Op1, SDValue Op2) {
4097  SDVTList VTs = getVTList(VT1, VT2);
4098  SDValue Ops[] = { Op1, Op2 };
4099  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4100}
4101
4102SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4103                                  MVT VT1, MVT VT2,
4104                                  SDValue Op1, SDValue Op2,
4105                                  SDValue Op3) {
4106  SDVTList VTs = getVTList(VT1, VT2);
4107  SDValue Ops[] = { Op1, Op2, Op3 };
4108  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4109}
4110
4111/// MorphNodeTo - These *mutate* the specified node to have the specified
4112/// return type, opcode, and operands.
4113///
4114/// Note that MorphNodeTo returns the resultant node.  If there is already a
4115/// node of the specified opcode and operands, it returns that node instead of
4116/// the current one.
4117///
4118/// Using MorphNodeTo is faster than creating a new node and swapping it in
4119/// with ReplaceAllUsesWith both because it often avoids allocating a new
4120/// node, and because it doesn't require CSE recalculation for any of
4121/// the node's users.
4122///
4123SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4124                                  SDVTList VTs, const SDValue *Ops,
4125                                  unsigned NumOps) {
4126  // If an identical node already exists, use it.
4127  void *IP = 0;
4128  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4129    FoldingSetNodeID ID;
4130    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4131    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4132      return ON;
4133  }
4134
4135  if (!RemoveNodeFromCSEMaps(N))
4136    IP = 0;
4137
4138  // Start the morphing.
4139  N->NodeType = Opc;
4140  N->ValueList = VTs.VTs;
4141  N->NumValues = VTs.NumVTs;
4142
4143  // Clear the operands list, updating used nodes to remove this from their
4144  // use list.  Keep track of any operands that become dead as a result.
4145  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4146  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4147       I != E; ++I) {
4148    SDNode *Used = I->getVal();
4149    Used->removeUser(std::distance(B, I), N);
4150    if (Used->use_empty())
4151      DeadNodeSet.insert(Used);
4152  }
4153
4154  // If NumOps is larger than the # of operands we currently have, reallocate
4155  // the operand list.
4156  if (NumOps > N->NumOperands) {
4157    if (N->OperandsNeedDelete)
4158      delete[] N->OperandList;
4159    if (N->isMachineOpcode()) {
4160      // We're creating a final node that will live unmorphed for the
4161      // remainder of the current SelectionDAG iteration, so we can allocate
4162      // the operands directly out of a pool with no recycling metadata.
4163      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4164      N->OperandsNeedDelete = false;
4165    } else {
4166      N->OperandList = new SDUse[NumOps];
4167      N->OperandsNeedDelete = true;
4168    }
4169  }
4170
4171  // Assign the new operands.
4172  N->NumOperands = NumOps;
4173  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4174    N->OperandList[i] = Ops[i];
4175    N->OperandList[i].setUser(N);
4176    SDNode *ToUse = N->OperandList[i].getVal();
4177    ToUse->addUser(i, N);
4178  }
4179
4180  // Delete any nodes that are still dead after adding the uses for the
4181  // new operands.
4182  SmallVector<SDNode *, 16> DeadNodes;
4183  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4184       E = DeadNodeSet.end(); I != E; ++I)
4185    if ((*I)->use_empty())
4186      DeadNodes.push_back(*I);
4187  RemoveDeadNodes(DeadNodes);
4188
4189  if (IP)
4190    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4191  return N;
4192}
4193
4194
4195/// getTargetNode - These are used for target selectors to create a new node
4196/// with specified return type(s), target opcode, and operands.
4197///
4198/// Note that getTargetNode returns the resultant node.  If there is already a
4199/// node of the specified opcode and operands, it returns that node instead of
4200/// the current one.
4201SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4202  return getNode(~Opcode, VT).getNode();
4203}
4204SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4205  return getNode(~Opcode, VT, Op1).getNode();
4206}
4207SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4208                                    SDValue Op1, SDValue Op2) {
4209  return getNode(~Opcode, VT, Op1, Op2).getNode();
4210}
4211SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4212                                    SDValue Op1, SDValue Op2,
4213                                    SDValue Op3) {
4214  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4215}
4216SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4217                                    const SDValue *Ops, unsigned NumOps) {
4218  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4219}
4220SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4221  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4222  SDValue Op;
4223  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4224}
4225SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4226                                    MVT VT2, SDValue Op1) {
4227  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4228  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4229}
4230SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4231                                    MVT VT2, SDValue Op1,
4232                                    SDValue Op2) {
4233  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4234  SDValue Ops[] = { Op1, Op2 };
4235  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4236}
4237SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4238                                    MVT VT2, SDValue Op1,
4239                                    SDValue Op2, SDValue Op3) {
4240  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4241  SDValue Ops[] = { Op1, Op2, Op3 };
4242  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4243}
4244SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4245                                    const SDValue *Ops, unsigned NumOps) {
4246  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4247  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4248}
4249SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4250                                    SDValue Op1, SDValue Op2) {
4251  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4252  SDValue Ops[] = { Op1, Op2 };
4253  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4254}
4255SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4256                                    SDValue Op1, SDValue Op2,
4257                                    SDValue Op3) {
4258  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4259  SDValue Ops[] = { Op1, Op2, Op3 };
4260  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4261}
4262SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4263                                    const SDValue *Ops, unsigned NumOps) {
4264  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4265  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4266}
4267SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4268                                    MVT VT2, MVT VT3, MVT VT4,
4269                                    const SDValue *Ops, unsigned NumOps) {
4270  std::vector<MVT> VTList;
4271  VTList.push_back(VT1);
4272  VTList.push_back(VT2);
4273  VTList.push_back(VT3);
4274  VTList.push_back(VT4);
4275  const MVT *VTs = getNodeValueTypes(VTList);
4276  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4277}
4278SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4279                                    const std::vector<MVT> &ResultTys,
4280                                    const SDValue *Ops, unsigned NumOps) {
4281  const MVT *VTs = getNodeValueTypes(ResultTys);
4282  return getNode(~Opcode, VTs, ResultTys.size(),
4283                 Ops, NumOps).getNode();
4284}
4285
4286/// getNodeIfExists - Get the specified node if it's already available, or
4287/// else return NULL.
4288SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4289                                      const SDValue *Ops, unsigned NumOps) {
4290  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4291    FoldingSetNodeID ID;
4292    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4293    void *IP = 0;
4294    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4295      return E;
4296  }
4297  return NULL;
4298}
4299
4300
4301/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4302/// This can cause recursive merging of nodes in the DAG.
4303///
4304/// This version assumes From has a single result value.
4305///
4306void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4307                                      DAGUpdateListener *UpdateListener) {
4308  SDNode *From = FromN.getNode();
4309  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4310         "Cannot replace with this method!");
4311  assert(From != To.getNode() && "Cannot replace uses of with self");
4312
4313  while (!From->use_empty()) {
4314    SDNode::use_iterator UI = From->use_begin();
4315    SDNode *U = *UI;
4316
4317    // This node is about to morph, remove its old self from the CSE maps.
4318    RemoveNodeFromCSEMaps(U);
4319    int operandNum = 0;
4320    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4321         I != E; ++I, ++operandNum)
4322      if (I->getVal() == From) {
4323        From->removeUser(operandNum, U);
4324        *I = To;
4325        I->setUser(U);
4326        To.getNode()->addUser(operandNum, U);
4327      }
4328
4329    // Now that we have modified U, add it back to the CSE maps.  If it already
4330    // exists there, recursively merge the results together.
4331    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4332      ReplaceAllUsesWith(U, Existing, UpdateListener);
4333      // U is now dead.  Inform the listener if it exists and delete it.
4334      if (UpdateListener)
4335        UpdateListener->NodeDeleted(U, Existing);
4336      DeleteNodeNotInCSEMaps(U);
4337    } else {
4338      // If the node doesn't already exist, we updated it.  Inform a listener if
4339      // it exists.
4340      if (UpdateListener)
4341        UpdateListener->NodeUpdated(U);
4342    }
4343  }
4344}
4345
4346/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4347/// This can cause recursive merging of nodes in the DAG.
4348///
4349/// This version assumes From/To have matching types and numbers of result
4350/// values.
4351///
4352void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4353                                      DAGUpdateListener *UpdateListener) {
4354  assert(From->getVTList().VTs == To->getVTList().VTs &&
4355         From->getNumValues() == To->getNumValues() &&
4356         "Cannot use this version of ReplaceAllUsesWith!");
4357
4358  // Handle the trivial case.
4359  if (From == To)
4360    return;
4361
4362  while (!From->use_empty()) {
4363    SDNode::use_iterator UI = From->use_begin();
4364    SDNode *U = *UI;
4365
4366    // This node is about to morph, remove its old self from the CSE maps.
4367    RemoveNodeFromCSEMaps(U);
4368    int operandNum = 0;
4369    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4370         I != E; ++I, ++operandNum)
4371      if (I->getVal() == From) {
4372        From->removeUser(operandNum, U);
4373        I->getSDValue().setNode(To);
4374        To->addUser(operandNum, U);
4375      }
4376
4377    // Now that we have modified U, add it back to the CSE maps.  If it already
4378    // exists there, recursively merge the results together.
4379    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4380      ReplaceAllUsesWith(U, Existing, UpdateListener);
4381      // U is now dead.  Inform the listener if it exists and delete it.
4382      if (UpdateListener)
4383        UpdateListener->NodeDeleted(U, Existing);
4384      DeleteNodeNotInCSEMaps(U);
4385    } else {
4386      // If the node doesn't already exist, we updated it.  Inform a listener if
4387      // it exists.
4388      if (UpdateListener)
4389        UpdateListener->NodeUpdated(U);
4390    }
4391  }
4392}
4393
4394/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4395/// This can cause recursive merging of nodes in the DAG.
4396///
4397/// This version can replace From with any result values.  To must match the
4398/// number and types of values returned by From.
4399void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4400                                      const SDValue *To,
4401                                      DAGUpdateListener *UpdateListener) {
4402  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4403    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4404
4405  while (!From->use_empty()) {
4406    SDNode::use_iterator UI = From->use_begin();
4407    SDNode *U = *UI;
4408
4409    // This node is about to morph, remove its old self from the CSE maps.
4410    RemoveNodeFromCSEMaps(U);
4411    int operandNum = 0;
4412    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4413         I != E; ++I, ++operandNum)
4414      if (I->getVal() == From) {
4415        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4416        From->removeUser(operandNum, U);
4417        *I = ToOp;
4418        I->setUser(U);
4419        ToOp.getNode()->addUser(operandNum, U);
4420      }
4421
4422    // Now that we have modified U, add it back to the CSE maps.  If it already
4423    // exists there, recursively merge the results together.
4424    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4425      ReplaceAllUsesWith(U, Existing, UpdateListener);
4426      // U is now dead.  Inform the listener if it exists and delete it.
4427      if (UpdateListener)
4428        UpdateListener->NodeDeleted(U, Existing);
4429      DeleteNodeNotInCSEMaps(U);
4430    } else {
4431      // If the node doesn't already exist, we updated it.  Inform a listener if
4432      // it exists.
4433      if (UpdateListener)
4434        UpdateListener->NodeUpdated(U);
4435    }
4436  }
4437}
4438
4439/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4440/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4441/// handled the same way as for ReplaceAllUsesWith.
4442void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4443                                             DAGUpdateListener *UpdateListener){
4444  // Handle the really simple, really trivial case efficiently.
4445  if (From == To) return;
4446
4447  // Handle the simple, trivial, case efficiently.
4448  if (From.getNode()->getNumValues() == 1) {
4449    ReplaceAllUsesWith(From, To, UpdateListener);
4450    return;
4451  }
4452
4453  // Get all of the users of From.getNode().  We want these in a nice,
4454  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4455  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4456
4457  while (!Users.empty()) {
4458    // We know that this user uses some value of From.  If it is the right
4459    // value, update it.
4460    SDNode *User = Users.back();
4461    Users.pop_back();
4462
4463    // Scan for an operand that matches From.
4464    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4465    for (; Op != E; ++Op)
4466      if (*Op == From) break;
4467
4468    // If there are no matches, the user must use some other result of From.
4469    if (Op == E) continue;
4470
4471    // Okay, we know this user needs to be updated.  Remove its old self
4472    // from the CSE maps.
4473    RemoveNodeFromCSEMaps(User);
4474
4475    // Update all operands that match "From" in case there are multiple uses.
4476    for (; Op != E; ++Op) {
4477      if (*Op == From) {
4478        From.getNode()->removeUser(Op-User->op_begin(), User);
4479        *Op = To;
4480        Op->setUser(User);
4481        To.getNode()->addUser(Op-User->op_begin(), User);
4482      }
4483    }
4484
4485    // Now that we have modified User, add it back to the CSE maps.  If it
4486    // already exists there, recursively merge the results together.
4487    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4488    if (!Existing) {
4489      if (UpdateListener) UpdateListener->NodeUpdated(User);
4490      continue;  // Continue on to next user.
4491    }
4492
4493    // If there was already an existing matching node, use ReplaceAllUsesWith
4494    // to replace the dead one with the existing one.  This can cause
4495    // recursive merging of other unrelated nodes down the line.
4496    ReplaceAllUsesWith(User, Existing, UpdateListener);
4497
4498    // User is now dead.  Notify a listener if present.
4499    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4500    DeleteNodeNotInCSEMaps(User);
4501  }
4502}
4503
4504/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4505/// uses of other values produced by From.getVal() alone.  The same value may
4506/// appear in both the From and To list.  The Deleted vector is
4507/// handled the same way as for ReplaceAllUsesWith.
4508void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4509                                              const SDValue *To,
4510                                              unsigned Num,
4511                                              DAGUpdateListener *UpdateListener){
4512  // Handle the simple, trivial case efficiently.
4513  if (Num == 1)
4514    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4515
4516  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4517  for (unsigned i = 0; i != Num; ++i)
4518    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4519         E = From[i].getNode()->use_end(); UI != E; ++UI)
4520      Users.push_back(std::make_pair(*UI, i));
4521
4522  while (!Users.empty()) {
4523    // We know that this user uses some value of From.  If it is the right
4524    // value, update it.
4525    SDNode *User = Users.back().first;
4526    unsigned i = Users.back().second;
4527    Users.pop_back();
4528
4529    // Scan for an operand that matches From.
4530    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4531    for (; Op != E; ++Op)
4532      if (*Op == From[i]) break;
4533
4534    // If there are no matches, the user must use some other result of From.
4535    if (Op == E) continue;
4536
4537    // Okay, we know this user needs to be updated.  Remove its old self
4538    // from the CSE maps.
4539    RemoveNodeFromCSEMaps(User);
4540
4541    // Update all operands that match "From" in case there are multiple uses.
4542    for (; Op != E; ++Op) {
4543      if (*Op == From[i]) {
4544        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4545        *Op = To[i];
4546        Op->setUser(User);
4547        To[i].getNode()->addUser(Op-User->op_begin(), User);
4548      }
4549    }
4550
4551    // Now that we have modified User, add it back to the CSE maps.  If it
4552    // already exists there, recursively merge the results together.
4553    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4554    if (!Existing) {
4555      if (UpdateListener) UpdateListener->NodeUpdated(User);
4556      continue;  // Continue on to next user.
4557    }
4558
4559    // If there was already an existing matching node, use ReplaceAllUsesWith
4560    // to replace the dead one with the existing one.  This can cause
4561    // recursive merging of other unrelated nodes down the line.
4562    ReplaceAllUsesWith(User, Existing, UpdateListener);
4563
4564    // User is now dead.  Notify a listener if present.
4565    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4566    DeleteNodeNotInCSEMaps(User);
4567  }
4568}
4569
4570/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4571/// based on their topological order. It returns the maximum id and a vector
4572/// of the SDNodes* in assigned order by reference.
4573unsigned SelectionDAG::AssignTopologicalOrder() {
4574
4575  unsigned DAGSize = 0;
4576
4577  // SortedPos tracks the progress of the algorithm. Nodes before it are
4578  // sorted, nodes after it are unsorted. When the algorithm completes
4579  // it is at the end of the list.
4580  allnodes_iterator SortedPos = allnodes_begin();
4581
4582  // Visit all the nodes. Add nodes with no operands to the TopOrder result
4583  // array immediately. Annotate nodes that do have operands with their
4584  // operand count. Before we do this, the Node Id fields of the nodes
4585  // may contain arbitrary values. After, the Node Id fields for nodes
4586  // before SortedPos will contain the topological sort index, and the
4587  // Node Id fields for nodes At SortedPos and after will contain the
4588  // count of outstanding operands.
4589  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4590    SDNode *N = I++;
4591    unsigned Degree = N->getNumOperands();
4592    if (Degree == 0) {
4593      // A node with no uses, add it to the result array immediately.
4594      N->setNodeId(DAGSize++);
4595      allnodes_iterator Q = N;
4596      if (Q != SortedPos)
4597        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4598      ++SortedPos;
4599    } else {
4600      // Temporarily use the Node Id as scratch space for the degree count.
4601      N->setNodeId(Degree);
4602    }
4603  }
4604
4605  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4606  // such that by the time the end is reached all nodes will be sorted.
4607  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4608    SDNode *N = I;
4609    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4610         UI != UE; ++UI) {
4611      SDNode *P = *UI;
4612      unsigned Degree = P->getNodeId();
4613      --Degree;
4614      if (Degree == 0) {
4615        // All of P's operands are sorted, so P may sorted now.
4616        P->setNodeId(DAGSize++);
4617        if (P != SortedPos)
4618          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4619        ++SortedPos;
4620      } else {
4621        // Update P's outstanding operand count.
4622        P->setNodeId(Degree);
4623      }
4624    }
4625  }
4626
4627  assert(SortedPos == AllNodes.end() &&
4628         "Topological sort incomplete!");
4629  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4630         "First node in topological sort is not the entry token!");
4631  assert(AllNodes.front().getNodeId() == 0 &&
4632         "First node in topological sort has non-zero id!");
4633  assert(AllNodes.front().getNumOperands() == 0 &&
4634         "First node in topological sort has operands!");
4635  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4636         "Last node in topologic sort has unexpected id!");
4637  assert(AllNodes.back().use_empty() &&
4638         "Last node in topologic sort has users!");
4639  assert(DAGSize == allnodes_size() && "TopOrder result count mismatch!");
4640  return DAGSize;
4641}
4642
4643
4644
4645//===----------------------------------------------------------------------===//
4646//                              SDNode Class
4647//===----------------------------------------------------------------------===//
4648
4649// Out-of-line virtual method to give class a home.
4650void SDNode::ANCHOR() {}
4651void UnarySDNode::ANCHOR() {}
4652void BinarySDNode::ANCHOR() {}
4653void TernarySDNode::ANCHOR() {}
4654void HandleSDNode::ANCHOR() {}
4655void ConstantSDNode::ANCHOR() {}
4656void ConstantFPSDNode::ANCHOR() {}
4657void GlobalAddressSDNode::ANCHOR() {}
4658void FrameIndexSDNode::ANCHOR() {}
4659void JumpTableSDNode::ANCHOR() {}
4660void ConstantPoolSDNode::ANCHOR() {}
4661void BasicBlockSDNode::ANCHOR() {}
4662void SrcValueSDNode::ANCHOR() {}
4663void MemOperandSDNode::ANCHOR() {}
4664void RegisterSDNode::ANCHOR() {}
4665void DbgStopPointSDNode::ANCHOR() {}
4666void LabelSDNode::ANCHOR() {}
4667void ExternalSymbolSDNode::ANCHOR() {}
4668void CondCodeSDNode::ANCHOR() {}
4669void ARG_FLAGSSDNode::ANCHOR() {}
4670void VTSDNode::ANCHOR() {}
4671void MemSDNode::ANCHOR() {}
4672void LoadSDNode::ANCHOR() {}
4673void StoreSDNode::ANCHOR() {}
4674void AtomicSDNode::ANCHOR() {}
4675void CallSDNode::ANCHOR() {}
4676
4677HandleSDNode::~HandleSDNode() {
4678  DropOperands();
4679}
4680
4681GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4682                                         MVT VT, int o)
4683  : SDNode(isa<GlobalVariable>(GA) &&
4684           cast<GlobalVariable>(GA)->isThreadLocal() ?
4685           // Thread Local
4686           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4687           // Non Thread Local
4688           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4689           getSDVTList(VT)), Offset(o) {
4690  TheGlobal = const_cast<GlobalValue*>(GA);
4691}
4692
4693MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4694                     const Value *srcValue, int SVO,
4695                     unsigned alignment, bool vol)
4696 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4697   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4698
4699  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4700  assert(getAlignment() == alignment && "Alignment representation error!");
4701  assert(isVolatile() == vol && "Volatile representation error!");
4702}
4703
4704/// getMemOperand - Return a MachineMemOperand object describing the memory
4705/// reference performed by this memory reference.
4706MachineMemOperand MemSDNode::getMemOperand() const {
4707  int Flags;
4708  if (isa<LoadSDNode>(this))
4709    Flags = MachineMemOperand::MOLoad;
4710  else if (isa<StoreSDNode>(this))
4711    Flags = MachineMemOperand::MOStore;
4712  else {
4713    assert(isa<AtomicSDNode>(this) && "Unknown MemSDNode opcode!");
4714    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4715  }
4716
4717  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4718  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4719
4720  // Check if the memory reference references a frame index
4721  const FrameIndexSDNode *FI =
4722  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4723  if (!getSrcValue() && FI)
4724    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4725                             Flags, 0, Size, getAlignment());
4726  else
4727    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4728                             Size, getAlignment());
4729}
4730
4731/// Profile - Gather unique data for the node.
4732///
4733void SDNode::Profile(FoldingSetNodeID &ID) const {
4734  AddNodeIDNode(ID, this);
4735}
4736
4737/// getValueTypeList - Return a pointer to the specified value type.
4738///
4739const MVT *SDNode::getValueTypeList(MVT VT) {
4740  if (VT.isExtended()) {
4741    static std::set<MVT, MVT::compareRawBits> EVTs;
4742    return &(*EVTs.insert(VT).first);
4743  } else {
4744    static MVT VTs[MVT::LAST_VALUETYPE];
4745    VTs[VT.getSimpleVT()] = VT;
4746    return &VTs[VT.getSimpleVT()];
4747  }
4748}
4749
4750/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4751/// indicated value.  This method ignores uses of other values defined by this
4752/// operation.
4753bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4754  assert(Value < getNumValues() && "Bad value!");
4755
4756  // TODO: Only iterate over uses of a given value of the node
4757  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4758    if (UI.getUse().getSDValue().getResNo() == Value) {
4759      if (NUses == 0)
4760        return false;
4761      --NUses;
4762    }
4763  }
4764
4765  // Found exactly the right number of uses?
4766  return NUses == 0;
4767}
4768
4769
4770/// hasAnyUseOfValue - Return true if there are any use of the indicated
4771/// value. This method ignores uses of other values defined by this operation.
4772bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4773  assert(Value < getNumValues() && "Bad value!");
4774
4775  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4776    if (UI.getUse().getSDValue().getResNo() == Value)
4777      return true;
4778
4779  return false;
4780}
4781
4782
4783/// isOnlyUserOf - Return true if this node is the only use of N.
4784///
4785bool SDNode::isOnlyUserOf(SDNode *N) const {
4786  bool Seen = false;
4787  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4788    SDNode *User = *I;
4789    if (User == this)
4790      Seen = true;
4791    else
4792      return false;
4793  }
4794
4795  return Seen;
4796}
4797
4798/// isOperand - Return true if this node is an operand of N.
4799///
4800bool SDValue::isOperandOf(SDNode *N) const {
4801  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4802    if (*this == N->getOperand(i))
4803      return true;
4804  return false;
4805}
4806
4807bool SDNode::isOperandOf(SDNode *N) const {
4808  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4809    if (this == N->OperandList[i].getVal())
4810      return true;
4811  return false;
4812}
4813
4814/// reachesChainWithoutSideEffects - Return true if this operand (which must
4815/// be a chain) reaches the specified operand without crossing any
4816/// side-effecting instructions.  In practice, this looks through token
4817/// factors and non-volatile loads.  In order to remain efficient, this only
4818/// looks a couple of nodes in, it does not do an exhaustive search.
4819bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4820                                               unsigned Depth) const {
4821  if (*this == Dest) return true;
4822
4823  // Don't search too deeply, we just want to be able to see through
4824  // TokenFactor's etc.
4825  if (Depth == 0) return false;
4826
4827  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4828  // of the operands of the TF reach dest, then we can do the xform.
4829  if (getOpcode() == ISD::TokenFactor) {
4830    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4831      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4832        return true;
4833    return false;
4834  }
4835
4836  // Loads don't have side effects, look through them.
4837  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4838    if (!Ld->isVolatile())
4839      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4840  }
4841  return false;
4842}
4843
4844
4845static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4846                            SmallPtrSet<SDNode *, 32> &Visited) {
4847  if (found || !Visited.insert(N))
4848    return;
4849
4850  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4851    SDNode *Op = N->getOperand(i).getNode();
4852    if (Op == P) {
4853      found = true;
4854      return;
4855    }
4856    findPredecessor(Op, P, found, Visited);
4857  }
4858}
4859
4860/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4861/// is either an operand of N or it can be reached by recursively traversing
4862/// up the operands.
4863/// NOTE: this is an expensive method. Use it carefully.
4864bool SDNode::isPredecessorOf(SDNode *N) const {
4865  SmallPtrSet<SDNode *, 32> Visited;
4866  bool found = false;
4867  findPredecessor(N, this, found, Visited);
4868  return found;
4869}
4870
4871uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4872  assert(Num < NumOperands && "Invalid child # of SDNode!");
4873  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4874}
4875
4876std::string SDNode::getOperationName(const SelectionDAG *G) const {
4877  switch (getOpcode()) {
4878  default:
4879    if (getOpcode() < ISD::BUILTIN_OP_END)
4880      return "<<Unknown DAG Node>>";
4881    if (isMachineOpcode()) {
4882      if (G)
4883        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4884          if (getMachineOpcode() < TII->getNumOpcodes())
4885            return TII->get(getMachineOpcode()).getName();
4886      return "<<Unknown Machine Node>>";
4887    }
4888    if (G) {
4889      TargetLowering &TLI = G->getTargetLoweringInfo();
4890      const char *Name = TLI.getTargetNodeName(getOpcode());
4891      if (Name) return Name;
4892      return "<<Unknown Target Node>>";
4893    }
4894    return "<<Unknown Node>>";
4895
4896#ifndef NDEBUG
4897  case ISD::DELETED_NODE:
4898    return "<<Deleted Node!>>";
4899#endif
4900  case ISD::PREFETCH:      return "Prefetch";
4901  case ISD::MEMBARRIER:    return "MemBarrier";
4902  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
4903  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
4904  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
4905  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
4906  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
4907  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
4908  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
4909  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
4910  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
4911  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
4912  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
4913  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
4914  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
4915  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
4916  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
4917  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
4918  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
4919  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
4920  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
4921  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
4922  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
4923  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
4924  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
4925  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
4926  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
4927  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
4928  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
4929  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
4930  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
4931  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
4932  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
4933  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
4934  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
4935  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
4936  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
4937  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
4938  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
4939  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
4940  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
4941  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
4942  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
4943  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
4944  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
4945  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
4946  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
4947  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
4948  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
4949  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
4950  case ISD::PCMARKER:      return "PCMarker";
4951  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4952  case ISD::SRCVALUE:      return "SrcValue";
4953  case ISD::MEMOPERAND:    return "MemOperand";
4954  case ISD::EntryToken:    return "EntryToken";
4955  case ISD::TokenFactor:   return "TokenFactor";
4956  case ISD::AssertSext:    return "AssertSext";
4957  case ISD::AssertZext:    return "AssertZext";
4958
4959  case ISD::BasicBlock:    return "BasicBlock";
4960  case ISD::ARG_FLAGS:     return "ArgFlags";
4961  case ISD::VALUETYPE:     return "ValueType";
4962  case ISD::Register:      return "Register";
4963
4964  case ISD::Constant:      return "Constant";
4965  case ISD::ConstantFP:    return "ConstantFP";
4966  case ISD::GlobalAddress: return "GlobalAddress";
4967  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4968  case ISD::FrameIndex:    return "FrameIndex";
4969  case ISD::JumpTable:     return "JumpTable";
4970  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4971  case ISD::RETURNADDR: return "RETURNADDR";
4972  case ISD::FRAMEADDR: return "FRAMEADDR";
4973  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4974  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4975  case ISD::EHSELECTION: return "EHSELECTION";
4976  case ISD::EH_RETURN: return "EH_RETURN";
4977  case ISD::ConstantPool:  return "ConstantPool";
4978  case ISD::ExternalSymbol: return "ExternalSymbol";
4979  case ISD::INTRINSIC_WO_CHAIN: {
4980    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
4981    return Intrinsic::getName((Intrinsic::ID)IID);
4982  }
4983  case ISD::INTRINSIC_VOID:
4984  case ISD::INTRINSIC_W_CHAIN: {
4985    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
4986    return Intrinsic::getName((Intrinsic::ID)IID);
4987  }
4988
4989  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4990  case ISD::TargetConstant: return "TargetConstant";
4991  case ISD::TargetConstantFP:return "TargetConstantFP";
4992  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4993  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4994  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4995  case ISD::TargetJumpTable:  return "TargetJumpTable";
4996  case ISD::TargetConstantPool:  return "TargetConstantPool";
4997  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4998
4999  case ISD::CopyToReg:     return "CopyToReg";
5000  case ISD::CopyFromReg:   return "CopyFromReg";
5001  case ISD::UNDEF:         return "undef";
5002  case ISD::MERGE_VALUES:  return "merge_values";
5003  case ISD::INLINEASM:     return "inlineasm";
5004  case ISD::DBG_LABEL:     return "dbg_label";
5005  case ISD::EH_LABEL:      return "eh_label";
5006  case ISD::DECLARE:       return "declare";
5007  case ISD::HANDLENODE:    return "handlenode";
5008  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5009  case ISD::CALL:          return "call";
5010
5011  // Unary operators
5012  case ISD::FABS:   return "fabs";
5013  case ISD::FNEG:   return "fneg";
5014  case ISD::FSQRT:  return "fsqrt";
5015  case ISD::FSIN:   return "fsin";
5016  case ISD::FCOS:   return "fcos";
5017  case ISD::FPOWI:  return "fpowi";
5018  case ISD::FPOW:   return "fpow";
5019  case ISD::FTRUNC: return "ftrunc";
5020  case ISD::FFLOOR: return "ffloor";
5021  case ISD::FCEIL:  return "fceil";
5022  case ISD::FRINT:  return "frint";
5023  case ISD::FNEARBYINT: return "fnearbyint";
5024
5025  // Binary operators
5026  case ISD::ADD:    return "add";
5027  case ISD::SUB:    return "sub";
5028  case ISD::MUL:    return "mul";
5029  case ISD::MULHU:  return "mulhu";
5030  case ISD::MULHS:  return "mulhs";
5031  case ISD::SDIV:   return "sdiv";
5032  case ISD::UDIV:   return "udiv";
5033  case ISD::SREM:   return "srem";
5034  case ISD::UREM:   return "urem";
5035  case ISD::SMUL_LOHI:  return "smul_lohi";
5036  case ISD::UMUL_LOHI:  return "umul_lohi";
5037  case ISD::SDIVREM:    return "sdivrem";
5038  case ISD::UDIVREM:    return "udivrem";
5039  case ISD::AND:    return "and";
5040  case ISD::OR:     return "or";
5041  case ISD::XOR:    return "xor";
5042  case ISD::SHL:    return "shl";
5043  case ISD::SRA:    return "sra";
5044  case ISD::SRL:    return "srl";
5045  case ISD::ROTL:   return "rotl";
5046  case ISD::ROTR:   return "rotr";
5047  case ISD::FADD:   return "fadd";
5048  case ISD::FSUB:   return "fsub";
5049  case ISD::FMUL:   return "fmul";
5050  case ISD::FDIV:   return "fdiv";
5051  case ISD::FREM:   return "frem";
5052  case ISD::FCOPYSIGN: return "fcopysign";
5053  case ISD::FGETSIGN:  return "fgetsign";
5054
5055  case ISD::SETCC:       return "setcc";
5056  case ISD::VSETCC:      return "vsetcc";
5057  case ISD::SELECT:      return "select";
5058  case ISD::SELECT_CC:   return "select_cc";
5059  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5060  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5061  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5062  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5063  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5064  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5065  case ISD::CARRY_FALSE:         return "carry_false";
5066  case ISD::ADDC:        return "addc";
5067  case ISD::ADDE:        return "adde";
5068  case ISD::SUBC:        return "subc";
5069  case ISD::SUBE:        return "sube";
5070  case ISD::SHL_PARTS:   return "shl_parts";
5071  case ISD::SRA_PARTS:   return "sra_parts";
5072  case ISD::SRL_PARTS:   return "srl_parts";
5073
5074  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5075  case ISD::INSERT_SUBREG:      return "insert_subreg";
5076
5077  // Conversion operators.
5078  case ISD::SIGN_EXTEND: return "sign_extend";
5079  case ISD::ZERO_EXTEND: return "zero_extend";
5080  case ISD::ANY_EXTEND:  return "any_extend";
5081  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5082  case ISD::TRUNCATE:    return "truncate";
5083  case ISD::FP_ROUND:    return "fp_round";
5084  case ISD::FLT_ROUNDS_: return "flt_rounds";
5085  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5086  case ISD::FP_EXTEND:   return "fp_extend";
5087
5088  case ISD::SINT_TO_FP:  return "sint_to_fp";
5089  case ISD::UINT_TO_FP:  return "uint_to_fp";
5090  case ISD::FP_TO_SINT:  return "fp_to_sint";
5091  case ISD::FP_TO_UINT:  return "fp_to_uint";
5092  case ISD::BIT_CONVERT: return "bit_convert";
5093
5094    // Control flow instructions
5095  case ISD::BR:      return "br";
5096  case ISD::BRIND:   return "brind";
5097  case ISD::BR_JT:   return "br_jt";
5098  case ISD::BRCOND:  return "brcond";
5099  case ISD::BR_CC:   return "br_cc";
5100  case ISD::RET:     return "ret";
5101  case ISD::CALLSEQ_START:  return "callseq_start";
5102  case ISD::CALLSEQ_END:    return "callseq_end";
5103
5104    // Other operators
5105  case ISD::LOAD:               return "load";
5106  case ISD::STORE:              return "store";
5107  case ISD::VAARG:              return "vaarg";
5108  case ISD::VACOPY:             return "vacopy";
5109  case ISD::VAEND:              return "vaend";
5110  case ISD::VASTART:            return "vastart";
5111  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5112  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5113  case ISD::BUILD_PAIR:         return "build_pair";
5114  case ISD::STACKSAVE:          return "stacksave";
5115  case ISD::STACKRESTORE:       return "stackrestore";
5116  case ISD::TRAP:               return "trap";
5117
5118  // Bit manipulation
5119  case ISD::BSWAP:   return "bswap";
5120  case ISD::CTPOP:   return "ctpop";
5121  case ISD::CTTZ:    return "cttz";
5122  case ISD::CTLZ:    return "ctlz";
5123
5124  // Debug info
5125  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5126  case ISD::DEBUG_LOC: return "debug_loc";
5127
5128  // Trampolines
5129  case ISD::TRAMPOLINE: return "trampoline";
5130
5131  case ISD::CONDCODE:
5132    switch (cast<CondCodeSDNode>(this)->get()) {
5133    default: assert(0 && "Unknown setcc condition!");
5134    case ISD::SETOEQ:  return "setoeq";
5135    case ISD::SETOGT:  return "setogt";
5136    case ISD::SETOGE:  return "setoge";
5137    case ISD::SETOLT:  return "setolt";
5138    case ISD::SETOLE:  return "setole";
5139    case ISD::SETONE:  return "setone";
5140
5141    case ISD::SETO:    return "seto";
5142    case ISD::SETUO:   return "setuo";
5143    case ISD::SETUEQ:  return "setue";
5144    case ISD::SETUGT:  return "setugt";
5145    case ISD::SETUGE:  return "setuge";
5146    case ISD::SETULT:  return "setult";
5147    case ISD::SETULE:  return "setule";
5148    case ISD::SETUNE:  return "setune";
5149
5150    case ISD::SETEQ:   return "seteq";
5151    case ISD::SETGT:   return "setgt";
5152    case ISD::SETGE:   return "setge";
5153    case ISD::SETLT:   return "setlt";
5154    case ISD::SETLE:   return "setle";
5155    case ISD::SETNE:   return "setne";
5156    }
5157  }
5158}
5159
5160const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5161  switch (AM) {
5162  default:
5163    return "";
5164  case ISD::PRE_INC:
5165    return "<pre-inc>";
5166  case ISD::PRE_DEC:
5167    return "<pre-dec>";
5168  case ISD::POST_INC:
5169    return "<post-inc>";
5170  case ISD::POST_DEC:
5171    return "<post-dec>";
5172  }
5173}
5174
5175std::string ISD::ArgFlagsTy::getArgFlagsString() {
5176  std::string S = "< ";
5177
5178  if (isZExt())
5179    S += "zext ";
5180  if (isSExt())
5181    S += "sext ";
5182  if (isInReg())
5183    S += "inreg ";
5184  if (isSRet())
5185    S += "sret ";
5186  if (isByVal())
5187    S += "byval ";
5188  if (isNest())
5189    S += "nest ";
5190  if (getByValAlign())
5191    S += "byval-align:" + utostr(getByValAlign()) + " ";
5192  if (getOrigAlign())
5193    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5194  if (getByValSize())
5195    S += "byval-size:" + utostr(getByValSize()) + " ";
5196  return S + ">";
5197}
5198
5199void SDNode::dump() const { dump(0); }
5200void SDNode::dump(const SelectionDAG *G) const {
5201  print(errs(), G);
5202  errs().flush();
5203}
5204
5205void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5206  OS << (void*)this << ": ";
5207
5208  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5209    if (i) OS << ",";
5210    if (getValueType(i) == MVT::Other)
5211      OS << "ch";
5212    else
5213      OS << getValueType(i).getMVTString();
5214  }
5215  OS << " = " << getOperationName(G);
5216
5217  OS << " ";
5218  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5219    if (i) OS << ", ";
5220    OS << (void*)getOperand(i).getNode();
5221    if (unsigned RN = getOperand(i).getResNo())
5222      OS << ":" << RN;
5223  }
5224
5225  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5226    SDNode *Mask = getOperand(2).getNode();
5227    OS << "<";
5228    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5229      if (i) OS << ",";
5230      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5231        OS << "u";
5232      else
5233        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5234    }
5235    OS << ">";
5236  }
5237
5238  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5239    OS << '<' << CSDN->getAPIntValue() << '>';
5240  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5241    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5242      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5243    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5244      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5245    else {
5246      OS << "<APFloat(";
5247      CSDN->getValueAPF().convertToAPInt().dump();
5248      OS << ")>";
5249    }
5250  } else if (const GlobalAddressSDNode *GADN =
5251             dyn_cast<GlobalAddressSDNode>(this)) {
5252    int offset = GADN->getOffset();
5253    OS << '<';
5254    WriteAsOperand(OS, GADN->getGlobal());
5255    OS << '>';
5256    if (offset > 0)
5257      OS << " + " << offset;
5258    else
5259      OS << " " << offset;
5260  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5261    OS << "<" << FIDN->getIndex() << ">";
5262  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5263    OS << "<" << JTDN->getIndex() << ">";
5264  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5265    int offset = CP->getOffset();
5266    if (CP->isMachineConstantPoolEntry())
5267      OS << "<" << *CP->getMachineCPVal() << ">";
5268    else
5269      OS << "<" << *CP->getConstVal() << ">";
5270    if (offset > 0)
5271      OS << " + " << offset;
5272    else
5273      OS << " " << offset;
5274  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5275    OS << "<";
5276    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5277    if (LBB)
5278      OS << LBB->getName() << " ";
5279    OS << (const void*)BBDN->getBasicBlock() << ">";
5280  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5281    if (G && R->getReg() &&
5282        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5283      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5284    } else {
5285      OS << " #" << R->getReg();
5286    }
5287  } else if (const ExternalSymbolSDNode *ES =
5288             dyn_cast<ExternalSymbolSDNode>(this)) {
5289    OS << "'" << ES->getSymbol() << "'";
5290  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5291    if (M->getValue())
5292      OS << "<" << M->getValue() << ">";
5293    else
5294      OS << "<null>";
5295  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5296    if (M->MO.getValue())
5297      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5298    else
5299      OS << "<null:" << M->MO.getOffset() << ">";
5300  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5301    OS << N->getArgFlags().getArgFlagsString();
5302  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5303    OS << ":" << N->getVT().getMVTString();
5304  }
5305  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5306    const Value *SrcValue = LD->getSrcValue();
5307    int SrcOffset = LD->getSrcValueOffset();
5308    OS << " <";
5309    if (SrcValue)
5310      OS << SrcValue;
5311    else
5312      OS << "null";
5313    OS << ":" << SrcOffset << ">";
5314
5315    bool doExt = true;
5316    switch (LD->getExtensionType()) {
5317    default: doExt = false; break;
5318    case ISD::EXTLOAD: OS << " <anyext "; break;
5319    case ISD::SEXTLOAD: OS << " <sext "; break;
5320    case ISD::ZEXTLOAD: OS << " <zext "; break;
5321    }
5322    if (doExt)
5323      OS << LD->getMemoryVT().getMVTString() << ">";
5324
5325    const char *AM = getIndexedModeName(LD->getAddressingMode());
5326    if (*AM)
5327      OS << " " << AM;
5328    if (LD->isVolatile())
5329      OS << " <volatile>";
5330    OS << " alignment=" << LD->getAlignment();
5331  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5332    const Value *SrcValue = ST->getSrcValue();
5333    int SrcOffset = ST->getSrcValueOffset();
5334    OS << " <";
5335    if (SrcValue)
5336      OS << SrcValue;
5337    else
5338      OS << "null";
5339    OS << ":" << SrcOffset << ">";
5340
5341    if (ST->isTruncatingStore())
5342      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5343
5344    const char *AM = getIndexedModeName(ST->getAddressingMode());
5345    if (*AM)
5346      OS << " " << AM;
5347    if (ST->isVolatile())
5348      OS << " <volatile>";
5349    OS << " alignment=" << ST->getAlignment();
5350  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5351    const Value *SrcValue = AT->getSrcValue();
5352    int SrcOffset = AT->getSrcValueOffset();
5353    OS << " <";
5354    if (SrcValue)
5355      OS << SrcValue;
5356    else
5357      OS << "null";
5358    OS << ":" << SrcOffset << ">";
5359    if (AT->isVolatile())
5360      OS << " <volatile>";
5361    OS << " alignment=" << AT->getAlignment();
5362  }
5363}
5364
5365static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5366  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5367    if (N->getOperand(i).getNode()->hasOneUse())
5368      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5369    else
5370      cerr << "\n" << std::string(indent+2, ' ')
5371           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5372
5373
5374  cerr << "\n" << std::string(indent, ' ');
5375  N->dump(G);
5376}
5377
5378void SelectionDAG::dump() const {
5379  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5380
5381  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5382       I != E; ++I) {
5383    const SDNode *N = I;
5384    if (!N->hasOneUse() && N != getRoot().getNode())
5385      DumpNodes(N, 2, this);
5386  }
5387
5388  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5389
5390  cerr << "\n\n";
5391}
5392
5393const Type *ConstantPoolSDNode::getType() const {
5394  if (isMachineConstantPoolEntry())
5395    return Val.MachineCPVal->getType();
5396  return Val.ConstVal->getType();
5397}
5398