SelectionDAG.cpp revision 6520e20e4fb31f2e65e25c38b372b19d33a83df4
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44/// makeVTList - Return an instance of the SDVTList struct initialized with the
45/// specified members.
46static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
47  SDVTList Res = {VTs, NumVTs};
48  return Res;
49}
50
51static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
52  switch (VT.getSimpleVT()) {
53  default: assert(0 && "Unknown FP format");
54  case MVT::f32:     return &APFloat::IEEEsingle;
55  case MVT::f64:     return &APFloat::IEEEdouble;
56  case MVT::f80:     return &APFloat::x87DoubleExtended;
57  case MVT::f128:    return &APFloat::IEEEquad;
58  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
59  }
60}
61
62SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
73  return getValueAPF().bitwiseIsEqual(V);
74}
75
76bool ConstantFPSDNode::isValueValidForType(MVT VT,
77                                           const APFloat& Val) {
78  assert(VT.isFloatingPoint() && "Can only convert between FP types");
79
80  // PPC long double cannot be converted to any other type.
81  if (VT == MVT::ppcf128 ||
82      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  bool losesInfo;
88  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
89                      &losesInfo);
90  return !losesInfo;
91}
92
93//===----------------------------------------------------------------------===//
94//                              ISD Namespace
95//===----------------------------------------------------------------------===//
96
97/// isBuildVectorAllOnes - Return true if the specified node is a
98/// BUILD_VECTOR where all of the elements are ~0 or undef.
99bool ISD::isBuildVectorAllOnes(const SDNode *N) {
100  // Look through a bit convert.
101  if (N->getOpcode() == ISD::BIT_CONVERT)
102    N = N->getOperand(0).getNode();
103
104  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
105
106  unsigned i = 0, e = N->getNumOperands();
107
108  // Skip over all of the undef values.
109  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
110    ++i;
111
112  // Do not accept an all-undef vector.
113  if (i == e) return false;
114
115  // Do not accept build_vectors that aren't all constants or which have non-~0
116  // elements.
117  SDValue NotZero = N->getOperand(i);
118  if (isa<ConstantSDNode>(NotZero)) {
119    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
120      return false;
121  } else if (isa<ConstantFPSDNode>(NotZero)) {
122    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
123                bitcastToAPInt().isAllOnesValue())
124      return false;
125  } else
126    return false;
127
128  // Okay, we have at least one ~0 value, check to see if the rest match or are
129  // undefs.
130  for (++i; i != e; ++i)
131    if (N->getOperand(i) != NotZero &&
132        N->getOperand(i).getOpcode() != ISD::UNDEF)
133      return false;
134  return true;
135}
136
137
138/// isBuildVectorAllZeros - Return true if the specified node is a
139/// BUILD_VECTOR where all of the elements are 0 or undef.
140bool ISD::isBuildVectorAllZeros(const SDNode *N) {
141  // Look through a bit convert.
142  if (N->getOpcode() == ISD::BIT_CONVERT)
143    N = N->getOperand(0).getNode();
144
145  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
146
147  unsigned i = 0, e = N->getNumOperands();
148
149  // Skip over all of the undef values.
150  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
151    ++i;
152
153  // Do not accept an all-undef vector.
154  if (i == e) return false;
155
156  // Do not accept build_vectors that aren't all constants or which have non-~0
157  // elements.
158  SDValue Zero = N->getOperand(i);
159  if (isa<ConstantSDNode>(Zero)) {
160    if (!cast<ConstantSDNode>(Zero)->isNullValue())
161      return false;
162  } else if (isa<ConstantFPSDNode>(Zero)) {
163    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
164      return false;
165  } else
166    return false;
167
168  // Okay, we have at least one ~0 value, check to see if the rest match or are
169  // undefs.
170  for (++i; i != e; ++i)
171    if (N->getOperand(i) != Zero &&
172        N->getOperand(i).getOpcode() != ISD::UNDEF)
173      return false;
174  return true;
175}
176
177/// isScalarToVector - Return true if the specified node is a
178/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
179/// element is not an undef.
180bool ISD::isScalarToVector(const SDNode *N) {
181  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
182    return true;
183
184  if (N->getOpcode() != ISD::BUILD_VECTOR)
185    return false;
186  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
187    return false;
188  unsigned NumElems = N->getNumOperands();
189  for (unsigned i = 1; i < NumElems; ++i) {
190    SDValue V = N->getOperand(i);
191    if (V.getOpcode() != ISD::UNDEF)
192      return false;
193  }
194  return true;
195}
196
197
198/// isDebugLabel - Return true if the specified node represents a debug
199/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
200bool ISD::isDebugLabel(const SDNode *N) {
201  SDValue Zero;
202  if (N->getOpcode() == ISD::DBG_LABEL)
203    return true;
204  if (N->isMachineOpcode() &&
205      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
206    return true;
207  return false;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));        // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230  if (Operation > ISD::SETTRUE2)
231    Operation &= ~8;     // Don't let N and U bits get set.
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: assert(0 && "Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return MF->getTarget();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getVal());
343    ID.AddInteger(Ops->getSDValue().getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355
356/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
357/// data.
358static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
359  AddNodeIDOpcode(ID, N->getOpcode());
360  // Add the return value info.
361  AddNodeIDValueTypes(ID, N->getVTList());
362  // Add the operand info.
363  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
364
365  // Handle SDNode leafs with special info.
366  switch (N->getOpcode()) {
367  default: break;  // Normal nodes don't need extra info.
368  case ISD::ARG_FLAGS:
369    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
370    break;
371  case ISD::TargetConstant:
372  case ISD::Constant:
373    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
374    break;
375  case ISD::TargetConstantFP:
376  case ISD::ConstantFP: {
377    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
378    break;
379  }
380  case ISD::TargetGlobalAddress:
381  case ISD::GlobalAddress:
382  case ISD::TargetGlobalTLSAddress:
383  case ISD::GlobalTLSAddress: {
384    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
385    ID.AddPointer(GA->getGlobal());
386    ID.AddInteger(GA->getOffset());
387    break;
388  }
389  case ISD::BasicBlock:
390    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
391    break;
392  case ISD::Register:
393    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
394    break;
395  case ISD::DBG_STOPPOINT: {
396    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
397    ID.AddInteger(DSP->getLine());
398    ID.AddInteger(DSP->getColumn());
399    ID.AddPointer(DSP->getCompileUnit());
400    break;
401  }
402  case ISD::SRCVALUE:
403    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
404    break;
405  case ISD::MEMOPERAND: {
406    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
407    MO.Profile(ID);
408    break;
409  }
410  case ISD::FrameIndex:
411  case ISD::TargetFrameIndex:
412    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
413    break;
414  case ISD::JumpTable:
415  case ISD::TargetJumpTable:
416    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
417    break;
418  case ISD::ConstantPool:
419  case ISD::TargetConstantPool: {
420    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
421    ID.AddInteger(CP->getAlignment());
422    ID.AddInteger(CP->getOffset());
423    if (CP->isMachineConstantPoolEntry())
424      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
425    else
426      ID.AddPointer(CP->getConstVal());
427    break;
428  }
429  case ISD::CALL: {
430    const CallSDNode *Call = cast<CallSDNode>(N);
431    ID.AddInteger(Call->getCallingConv());
432    ID.AddInteger(Call->isVarArg());
433    break;
434  }
435  case ISD::LOAD: {
436    const LoadSDNode *LD = cast<LoadSDNode>(N);
437    ID.AddInteger(LD->getAddressingMode());
438    ID.AddInteger(LD->getExtensionType());
439    ID.AddInteger(LD->getMemoryVT().getRawBits());
440    ID.AddInteger(LD->getRawFlags());
441    break;
442  }
443  case ISD::STORE: {
444    const StoreSDNode *ST = cast<StoreSDNode>(N);
445    ID.AddInteger(ST->getAddressingMode());
446    ID.AddInteger(ST->isTruncatingStore());
447    ID.AddInteger(ST->getMemoryVT().getRawBits());
448    ID.AddInteger(ST->getRawFlags());
449    break;
450  }
451  case ISD::ATOMIC_CMP_SWAP_8:
452  case ISD::ATOMIC_SWAP_8:
453  case ISD::ATOMIC_LOAD_ADD_8:
454  case ISD::ATOMIC_LOAD_SUB_8:
455  case ISD::ATOMIC_LOAD_AND_8:
456  case ISD::ATOMIC_LOAD_OR_8:
457  case ISD::ATOMIC_LOAD_XOR_8:
458  case ISD::ATOMIC_LOAD_NAND_8:
459  case ISD::ATOMIC_LOAD_MIN_8:
460  case ISD::ATOMIC_LOAD_MAX_8:
461  case ISD::ATOMIC_LOAD_UMIN_8:
462  case ISD::ATOMIC_LOAD_UMAX_8:
463  case ISD::ATOMIC_CMP_SWAP_16:
464  case ISD::ATOMIC_SWAP_16:
465  case ISD::ATOMIC_LOAD_ADD_16:
466  case ISD::ATOMIC_LOAD_SUB_16:
467  case ISD::ATOMIC_LOAD_AND_16:
468  case ISD::ATOMIC_LOAD_OR_16:
469  case ISD::ATOMIC_LOAD_XOR_16:
470  case ISD::ATOMIC_LOAD_NAND_16:
471  case ISD::ATOMIC_LOAD_MIN_16:
472  case ISD::ATOMIC_LOAD_MAX_16:
473  case ISD::ATOMIC_LOAD_UMIN_16:
474  case ISD::ATOMIC_LOAD_UMAX_16:
475  case ISD::ATOMIC_CMP_SWAP_32:
476  case ISD::ATOMIC_SWAP_32:
477  case ISD::ATOMIC_LOAD_ADD_32:
478  case ISD::ATOMIC_LOAD_SUB_32:
479  case ISD::ATOMIC_LOAD_AND_32:
480  case ISD::ATOMIC_LOAD_OR_32:
481  case ISD::ATOMIC_LOAD_XOR_32:
482  case ISD::ATOMIC_LOAD_NAND_32:
483  case ISD::ATOMIC_LOAD_MIN_32:
484  case ISD::ATOMIC_LOAD_MAX_32:
485  case ISD::ATOMIC_LOAD_UMIN_32:
486  case ISD::ATOMIC_LOAD_UMAX_32:
487  case ISD::ATOMIC_CMP_SWAP_64:
488  case ISD::ATOMIC_SWAP_64:
489  case ISD::ATOMIC_LOAD_ADD_64:
490  case ISD::ATOMIC_LOAD_SUB_64:
491  case ISD::ATOMIC_LOAD_AND_64:
492  case ISD::ATOMIC_LOAD_OR_64:
493  case ISD::ATOMIC_LOAD_XOR_64:
494  case ISD::ATOMIC_LOAD_NAND_64:
495  case ISD::ATOMIC_LOAD_MIN_64:
496  case ISD::ATOMIC_LOAD_MAX_64:
497  case ISD::ATOMIC_LOAD_UMIN_64:
498  case ISD::ATOMIC_LOAD_UMAX_64: {
499    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
500    ID.AddInteger(AT->getRawFlags());
501    break;
502  }
503  } // end switch (N->getOpcode())
504}
505
506/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
507/// the CSE map that carries both alignment and volatility information.
508///
509static unsigned encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
510  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
511}
512
513//===----------------------------------------------------------------------===//
514//                              SelectionDAG Class
515//===----------------------------------------------------------------------===//
516
517/// RemoveDeadNodes - This method deletes all unreachable nodes in the
518/// SelectionDAG.
519void SelectionDAG::RemoveDeadNodes() {
520  // Create a dummy node (which is not added to allnodes), that adds a reference
521  // to the root node, preventing it from being deleted.
522  HandleSDNode Dummy(getRoot());
523
524  SmallVector<SDNode*, 128> DeadNodes;
525
526  // Add all obviously-dead nodes to the DeadNodes worklist.
527  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
528    if (I->use_empty())
529      DeadNodes.push_back(I);
530
531  RemoveDeadNodes(DeadNodes);
532
533  // If the root changed (e.g. it was a dead load, update the root).
534  setRoot(Dummy.getValue());
535}
536
537/// RemoveDeadNodes - This method deletes the unreachable nodes in the
538/// given list, and any nodes that become unreachable as a result.
539void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
540                                   DAGUpdateListener *UpdateListener) {
541
542  // Process the worklist, deleting the nodes and adding their uses to the
543  // worklist.
544  while (!DeadNodes.empty()) {
545    SDNode *N = DeadNodes.back();
546    DeadNodes.pop_back();
547
548    if (UpdateListener)
549      UpdateListener->NodeDeleted(N, 0);
550
551    // Take the node out of the appropriate CSE map.
552    RemoveNodeFromCSEMaps(N);
553
554    // Next, brutally remove the operand list.  This is safe to do, as there are
555    // no cycles in the graph.
556    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
557      SDNode *Operand = I->getVal();
558      Operand->removeUser(std::distance(N->op_begin(), I), N);
559
560      // Now that we removed this operand, see if there are no uses of it left.
561      if (Operand->use_empty())
562        DeadNodes.push_back(Operand);
563    }
564    if (N->OperandsNeedDelete) {
565      delete[] N->OperandList;
566    }
567    N->OperandList = 0;
568    N->NumOperands = 0;
569
570    // Finally, remove N itself.
571    NodeAllocator.Deallocate(AllNodes.remove(N));
572  }
573}
574
575void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
576  SmallVector<SDNode*, 16> DeadNodes(1, N);
577  RemoveDeadNodes(DeadNodes, UpdateListener);
578}
579
580void SelectionDAG::DeleteNode(SDNode *N) {
581  assert(N->use_empty() && "Cannot delete a node that is not dead!");
582
583  // First take this out of the appropriate CSE map.
584  RemoveNodeFromCSEMaps(N);
585
586  // Finally, remove uses due to operands of this node, remove from the
587  // AllNodes list, and delete the node.
588  DeleteNodeNotInCSEMaps(N);
589}
590
591void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
592
593  // Drop all of the operands and decrement used node's use counts.
594  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
595    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  assert(N != AllNodes.begin());
600  NodeAllocator.Deallocate(AllNodes.remove(N));
601}
602
603/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
604/// correspond to it.  This is useful when we're about to delete or repurpose
605/// the node.  We don't want future request for structurally identical nodes
606/// to return N anymore.
607bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
608  bool Erased = false;
609  switch (N->getOpcode()) {
610  case ISD::EntryToken:
611    assert(0 && "EntryToken should not be in CSEMaps!");
612    return false;
613  case ISD::HANDLENODE: return false;  // noop.
614  case ISD::CONDCODE:
615    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
616           "Cond code doesn't exist!");
617    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
618    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
619    break;
620  case ISD::ExternalSymbol:
621    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
622    break;
623  case ISD::TargetExternalSymbol:
624    Erased =
625      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
626    break;
627  case ISD::VALUETYPE: {
628    MVT VT = cast<VTSDNode>(N)->getVT();
629    if (VT.isExtended()) {
630      Erased = ExtendedValueTypeNodes.erase(VT);
631    } else {
632      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
633      ValueTypeNodes[VT.getSimpleVT()] = 0;
634    }
635    break;
636  }
637  default:
638    // Remove it from the CSE Map.
639    Erased = CSEMap.RemoveNode(N);
640    break;
641  }
642#ifndef NDEBUG
643  // Verify that the node was actually in one of the CSE maps, unless it has a
644  // flag result (which cannot be CSE'd) or is one of the special cases that are
645  // not subject to CSE.
646  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
647      !N->isMachineOpcode() &&
648      N->getOpcode() != ISD::DBG_LABEL &&
649      N->getOpcode() != ISD::DBG_STOPPOINT &&
650      N->getOpcode() != ISD::EH_LABEL &&
651      N->getOpcode() != ISD::DECLARE) {
652    N->dump(this);
653    cerr << "\n";
654    assert(0 && "Node is not in map!");
655  }
656#endif
657  return Erased;
658}
659
660/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
661/// has been taken out and modified in some way.  If the specified node already
662/// exists in the CSE maps, do not modify the maps, but return the existing node
663/// instead.  If it doesn't exist, add it and return null.
664///
665SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
666  assert(N->getNumOperands() && "This is a leaf node!");
667
668  if (N->getValueType(0) == MVT::Flag)
669    return 0;   // Never CSE anything that produces a flag.
670
671  switch (N->getOpcode()) {
672  default: break;
673  case ISD::HANDLENODE:
674  case ISD::DBG_LABEL:
675  case ISD::DBG_STOPPOINT:
676  case ISD::EH_LABEL:
677  case ISD::DECLARE:
678    return 0;    // Never add these nodes.
679  }
680
681  // Check that remaining values produced are not flags.
682  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
683    if (N->getValueType(i) == MVT::Flag)
684      return 0;   // Never CSE anything that produces a flag.
685
686  SDNode *New = CSEMap.GetOrInsertNode(N);
687  if (New != N) return New;  // Node already existed.
688  return 0;
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696                                           void *&InsertPos) {
697  if (N->getValueType(0) == MVT::Flag)
698    return 0;   // Never CSE anything that produces a flag.
699
700  switch (N->getOpcode()) {
701  default: break;
702  case ISD::HANDLENODE:
703  case ISD::DBG_LABEL:
704  case ISD::DBG_STOPPOINT:
705  case ISD::EH_LABEL:
706    return 0;    // Never add these nodes.
707  }
708
709  // Check that remaining values produced are not flags.
710  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
711    if (N->getValueType(i) == MVT::Flag)
712      return 0;   // Never CSE anything that produces a flag.
713
714  SDValue Ops[] = { Op };
715  FoldingSetNodeID ID;
716  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
717  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
718}
719
720/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
721/// were replaced with those specified.  If this node is never memoized,
722/// return null, otherwise return a pointer to the slot it would take.  If a
723/// node already exists with these operands, the slot will be non-null.
724SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
725                                           SDValue Op1, SDValue Op2,
726                                           void *&InsertPos) {
727  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
728
729  // Check that remaining values produced are not flags.
730  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
731    if (N->getValueType(i) == MVT::Flag)
732      return 0;   // Never CSE anything that produces a flag.
733
734  SDValue Ops[] = { Op1, Op2 };
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
737  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
738}
739
740
741/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
742/// were replaced with those specified.  If this node is never memoized,
743/// return null, otherwise return a pointer to the slot it would take.  If a
744/// node already exists with these operands, the slot will be non-null.
745SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
746                                           const SDValue *Ops,unsigned NumOps,
747                                           void *&InsertPos) {
748  if (N->getValueType(0) == MVT::Flag)
749    return 0;   // Never CSE anything that produces a flag.
750
751  switch (N->getOpcode()) {
752  default: break;
753  case ISD::HANDLENODE:
754  case ISD::DBG_LABEL:
755  case ISD::DBG_STOPPOINT:
756  case ISD::EH_LABEL:
757  case ISD::DECLARE:
758    return 0;    // Never add these nodes.
759  }
760
761  // Check that remaining values produced are not flags.
762  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
763    if (N->getValueType(i) == MVT::Flag)
764      return 0;   // Never CSE anything that produces a flag.
765
766  FoldingSetNodeID ID;
767  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
768
769  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
770    ID.AddInteger(LD->getAddressingMode());
771    ID.AddInteger(LD->getExtensionType());
772    ID.AddInteger(LD->getMemoryVT().getRawBits());
773    ID.AddInteger(LD->getRawFlags());
774  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
775    ID.AddInteger(ST->getAddressingMode());
776    ID.AddInteger(ST->isTruncatingStore());
777    ID.AddInteger(ST->getMemoryVT().getRawBits());
778    ID.AddInteger(ST->getRawFlags());
779  }
780
781  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
782}
783
784/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
785void SelectionDAG::VerifyNode(SDNode *N) {
786  switch (N->getOpcode()) {
787  default:
788    break;
789  case ISD::BUILD_VECTOR: {
790    assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!");
791    assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!");
792    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
793           "Wrong number of BUILD_VECTOR operands!");
794    MVT EltVT = N->getValueType(0).getVectorElementType();
795    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
796      assert(I->getSDValue().getValueType() == EltVT &&
797             "Wrong BUILD_VECTOR operand type!");
798    break;
799  }
800  }
801}
802
803/// getMVTAlignment - Compute the default alignment value for the
804/// given type.
805///
806unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
807  const Type *Ty = VT == MVT::iPTR ?
808                   PointerType::get(Type::Int8Ty, 0) :
809                   VT.getTypeForMVT();
810
811  return TLI.getTargetData()->getABITypeAlignment(Ty);
812}
813
814SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
815  : TLI(tli), FLI(fli),
816    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
817    Root(getEntryNode()) {
818  AllNodes.push_back(&EntryNode);
819}
820
821void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
822  MF = &mf;
823  MMI = mmi;
824}
825
826SelectionDAG::~SelectionDAG() {
827  allnodes_clear();
828}
829
830void SelectionDAG::allnodes_clear() {
831  assert(&*AllNodes.begin() == &EntryNode);
832  AllNodes.remove(AllNodes.begin());
833  while (!AllNodes.empty()) {
834    SDNode *N = AllNodes.remove(AllNodes.begin());
835    N->SetNextInBucket(0);
836    if (N->OperandsNeedDelete)
837      delete [] N->OperandList;
838    NodeAllocator.Deallocate(N);
839  }
840}
841
842void SelectionDAG::clear() {
843  allnodes_clear();
844  OperandAllocator.Reset();
845  CSEMap.clear();
846
847  ExtendedValueTypeNodes.clear();
848  ExternalSymbols.clear();
849  TargetExternalSymbols.clear();
850  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
851            static_cast<CondCodeSDNode*>(0));
852  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
853            static_cast<SDNode*>(0));
854
855  EntryNode.Uses = 0;
856  AllNodes.push_back(&EntryNode);
857  Root = getEntryNode();
858}
859
860SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
861  if (Op.getValueType() == VT) return Op;
862  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
863                                   VT.getSizeInBits());
864  return getNode(ISD::AND, Op.getValueType(), Op,
865                 getConstant(Imm, Op.getValueType()));
866}
867
868SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
869  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
870  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
871}
872
873SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
874  return getConstant(*ConstantInt::get(Val), VT, isT);
875}
876
877SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
878  assert(VT.isInteger() && "Cannot create FP integer constant!");
879
880  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
881  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
882         "APInt size does not match type size!");
883
884  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
885  FoldingSetNodeID ID;
886  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
887  ID.AddPointer(&Val);
888  void *IP = 0;
889  SDNode *N = NULL;
890  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
891    if (!VT.isVector())
892      return SDValue(N, 0);
893  if (!N) {
894    N = NodeAllocator.Allocate<ConstantSDNode>();
895    new (N) ConstantSDNode(isT, &Val, EltVT);
896    CSEMap.InsertNode(N, IP);
897    AllNodes.push_back(N);
898  }
899
900  SDValue Result(N, 0);
901  if (VT.isVector()) {
902    SmallVector<SDValue, 8> Ops;
903    Ops.assign(VT.getVectorNumElements(), Result);
904    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
905  }
906  return Result;
907}
908
909SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
910  return getConstant(Val, TLI.getPointerTy(), isTarget);
911}
912
913
914SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
915  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
916}
917
918SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
919  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
920
921  MVT EltVT =
922    VT.isVector() ? VT.getVectorElementType() : VT;
923
924  // Do the map lookup using the actual bit pattern for the floating point
925  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
926  // we don't have issues with SNANs.
927  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
928  FoldingSetNodeID ID;
929  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
930  ID.AddPointer(&V);
931  void *IP = 0;
932  SDNode *N = NULL;
933  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
934    if (!VT.isVector())
935      return SDValue(N, 0);
936  if (!N) {
937    N = NodeAllocator.Allocate<ConstantFPSDNode>();
938    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
939    CSEMap.InsertNode(N, IP);
940    AllNodes.push_back(N);
941  }
942
943  SDValue Result(N, 0);
944  if (VT.isVector()) {
945    SmallVector<SDValue, 8> Ops;
946    Ops.assign(VT.getVectorNumElements(), Result);
947    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
948  }
949  return Result;
950}
951
952SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
953  MVT EltVT =
954    VT.isVector() ? VT.getVectorElementType() : VT;
955  if (EltVT==MVT::f32)
956    return getConstantFP(APFloat((float)Val), VT, isTarget);
957  else
958    return getConstantFP(APFloat(Val), VT, isTarget);
959}
960
961SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
962                                       MVT VT, int64_t Offset,
963                                       bool isTargetGA) {
964  unsigned Opc;
965
966  // Truncate (with sign-extension) the offset value to the pointer size.
967  unsigned BitWidth = VT.getSizeInBits();
968  if (BitWidth < 64)
969    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
970
971  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
972  if (!GVar) {
973    // If GV is an alias then use the aliasee for determining thread-localness.
974    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
975      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
976  }
977
978  if (GVar && GVar->isThreadLocal())
979    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
980  else
981    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
982
983  FoldingSetNodeID ID;
984  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
985  ID.AddPointer(GV);
986  ID.AddInteger(Offset);
987  void *IP = 0;
988  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
989   return SDValue(E, 0);
990  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
991  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
992  CSEMap.InsertNode(N, IP);
993  AllNodes.push_back(N);
994  return SDValue(N, 0);
995}
996
997SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
998  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
999  FoldingSetNodeID ID;
1000  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1001  ID.AddInteger(FI);
1002  void *IP = 0;
1003  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1004    return SDValue(E, 0);
1005  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1006  new (N) FrameIndexSDNode(FI, VT, isTarget);
1007  CSEMap.InsertNode(N, IP);
1008  AllNodes.push_back(N);
1009  return SDValue(N, 0);
1010}
1011
1012SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1013  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1014  FoldingSetNodeID ID;
1015  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1016  ID.AddInteger(JTI);
1017  void *IP = 0;
1018  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1019    return SDValue(E, 0);
1020  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1021  new (N) JumpTableSDNode(JTI, VT, isTarget);
1022  CSEMap.InsertNode(N, IP);
1023  AllNodes.push_back(N);
1024  return SDValue(N, 0);
1025}
1026
1027SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1028                                      unsigned Alignment, int Offset,
1029                                      bool isTarget) {
1030  if (Alignment == 0)
1031    Alignment =
1032      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1033  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1034  FoldingSetNodeID ID;
1035  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1036  ID.AddInteger(Alignment);
1037  ID.AddInteger(Offset);
1038  ID.AddPointer(C);
1039  void *IP = 0;
1040  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1041    return SDValue(E, 0);
1042  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1043  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1044  CSEMap.InsertNode(N, IP);
1045  AllNodes.push_back(N);
1046  return SDValue(N, 0);
1047}
1048
1049
1050SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1051                                      unsigned Alignment, int Offset,
1052                                      bool isTarget) {
1053  if (Alignment == 0)
1054    Alignment =
1055      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1056  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1057  FoldingSetNodeID ID;
1058  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1059  ID.AddInteger(Alignment);
1060  ID.AddInteger(Offset);
1061  C->AddSelectionDAGCSEId(ID);
1062  void *IP = 0;
1063  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1064    return SDValue(E, 0);
1065  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1066  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1067  CSEMap.InsertNode(N, IP);
1068  AllNodes.push_back(N);
1069  return SDValue(N, 0);
1070}
1071
1072
1073SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1074  FoldingSetNodeID ID;
1075  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1076  ID.AddPointer(MBB);
1077  void *IP = 0;
1078  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1079    return SDValue(E, 0);
1080  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1081  new (N) BasicBlockSDNode(MBB);
1082  CSEMap.InsertNode(N, IP);
1083  AllNodes.push_back(N);
1084  return SDValue(N, 0);
1085}
1086
1087SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1088  FoldingSetNodeID ID;
1089  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1090  ID.AddInteger(Flags.getRawBits());
1091  void *IP = 0;
1092  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1093    return SDValue(E, 0);
1094  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1095  new (N) ARG_FLAGSSDNode(Flags);
1096  CSEMap.InsertNode(N, IP);
1097  AllNodes.push_back(N);
1098  return SDValue(N, 0);
1099}
1100
1101SDValue SelectionDAG::getValueType(MVT VT) {
1102  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1103    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1104
1105  SDNode *&N = VT.isExtended() ?
1106    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1107
1108  if (N) return SDValue(N, 0);
1109  N = NodeAllocator.Allocate<VTSDNode>();
1110  new (N) VTSDNode(VT);
1111  AllNodes.push_back(N);
1112  return SDValue(N, 0);
1113}
1114
1115SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1116  SDNode *&N = ExternalSymbols[Sym];
1117  if (N) return SDValue(N, 0);
1118  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1119  new (N) ExternalSymbolSDNode(false, Sym, VT);
1120  AllNodes.push_back(N);
1121  return SDValue(N, 0);
1122}
1123
1124SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1125  SDNode *&N = TargetExternalSymbols[Sym];
1126  if (N) return SDValue(N, 0);
1127  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1128  new (N) ExternalSymbolSDNode(true, Sym, VT);
1129  AllNodes.push_back(N);
1130  return SDValue(N, 0);
1131}
1132
1133SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1134  if ((unsigned)Cond >= CondCodeNodes.size())
1135    CondCodeNodes.resize(Cond+1);
1136
1137  if (CondCodeNodes[Cond] == 0) {
1138    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1139    new (N) CondCodeSDNode(Cond);
1140    CondCodeNodes[Cond] = N;
1141    AllNodes.push_back(N);
1142  }
1143  return SDValue(CondCodeNodes[Cond], 0);
1144}
1145
1146SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1147  FoldingSetNodeID ID;
1148  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1149  ID.AddInteger(RegNo);
1150  void *IP = 0;
1151  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1152    return SDValue(E, 0);
1153  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1154  new (N) RegisterSDNode(RegNo, VT);
1155  CSEMap.InsertNode(N, IP);
1156  AllNodes.push_back(N);
1157  return SDValue(N, 0);
1158}
1159
1160SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1161                                        unsigned Line, unsigned Col,
1162                                        const CompileUnitDesc *CU) {
1163  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1164  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1165  AllNodes.push_back(N);
1166  return SDValue(N, 0);
1167}
1168
1169SDValue SelectionDAG::getLabel(unsigned Opcode,
1170                               SDValue Root,
1171                               unsigned LabelID) {
1172  FoldingSetNodeID ID;
1173  SDValue Ops[] = { Root };
1174  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1175  ID.AddInteger(LabelID);
1176  void *IP = 0;
1177  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1178    return SDValue(E, 0);
1179  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1180  new (N) LabelSDNode(Opcode, Root, LabelID);
1181  CSEMap.InsertNode(N, IP);
1182  AllNodes.push_back(N);
1183  return SDValue(N, 0);
1184}
1185
1186SDValue SelectionDAG::getSrcValue(const Value *V) {
1187  assert((!V || isa<PointerType>(V->getType())) &&
1188         "SrcValue is not a pointer?");
1189
1190  FoldingSetNodeID ID;
1191  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1192  ID.AddPointer(V);
1193
1194  void *IP = 0;
1195  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1196    return SDValue(E, 0);
1197
1198  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1199  new (N) SrcValueSDNode(V);
1200  CSEMap.InsertNode(N, IP);
1201  AllNodes.push_back(N);
1202  return SDValue(N, 0);
1203}
1204
1205SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1206  const Value *v = MO.getValue();
1207  assert((!v || isa<PointerType>(v->getType())) &&
1208         "SrcValue is not a pointer?");
1209
1210  FoldingSetNodeID ID;
1211  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1212  MO.Profile(ID);
1213
1214  void *IP = 0;
1215  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1216    return SDValue(E, 0);
1217
1218  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1219  new (N) MemOperandSDNode(MO);
1220  CSEMap.InsertNode(N, IP);
1221  AllNodes.push_back(N);
1222  return SDValue(N, 0);
1223}
1224
1225/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1226/// specified value type.
1227SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1228  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1229  unsigned ByteSize = VT.getSizeInBits()/8;
1230  const Type *Ty = VT.getTypeForMVT();
1231  unsigned StackAlign =
1232  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1233
1234  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1235  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1236}
1237
1238SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1239                                SDValue N2, ISD::CondCode Cond) {
1240  // These setcc operations always fold.
1241  switch (Cond) {
1242  default: break;
1243  case ISD::SETFALSE:
1244  case ISD::SETFALSE2: return getConstant(0, VT);
1245  case ISD::SETTRUE:
1246  case ISD::SETTRUE2:  return getConstant(1, VT);
1247
1248  case ISD::SETOEQ:
1249  case ISD::SETOGT:
1250  case ISD::SETOGE:
1251  case ISD::SETOLT:
1252  case ISD::SETOLE:
1253  case ISD::SETONE:
1254  case ISD::SETO:
1255  case ISD::SETUO:
1256  case ISD::SETUEQ:
1257  case ISD::SETUNE:
1258    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1259    break;
1260  }
1261
1262  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1263    const APInt &C2 = N2C->getAPIntValue();
1264    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1265      const APInt &C1 = N1C->getAPIntValue();
1266
1267      switch (Cond) {
1268      default: assert(0 && "Unknown integer setcc!");
1269      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1270      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1271      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1272      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1273      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1274      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1275      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1276      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1277      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1278      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1279      }
1280    }
1281  }
1282  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1283    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1284      // No compile time operations on this type yet.
1285      if (N1C->getValueType(0) == MVT::ppcf128)
1286        return SDValue();
1287
1288      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1289      switch (Cond) {
1290      default: break;
1291      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1292                          return getNode(ISD::UNDEF, VT);
1293                        // fall through
1294      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1295      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1296                          return getNode(ISD::UNDEF, VT);
1297                        // fall through
1298      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1299                                           R==APFloat::cmpLessThan, VT);
1300      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1301                          return getNode(ISD::UNDEF, VT);
1302                        // fall through
1303      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1304      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1305                          return getNode(ISD::UNDEF, VT);
1306                        // fall through
1307      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1308      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1309                          return getNode(ISD::UNDEF, VT);
1310                        // fall through
1311      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1312                                           R==APFloat::cmpEqual, VT);
1313      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1314                          return getNode(ISD::UNDEF, VT);
1315                        // fall through
1316      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1317                                           R==APFloat::cmpEqual, VT);
1318      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1319      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1320      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1321                                           R==APFloat::cmpEqual, VT);
1322      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1323      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1324                                           R==APFloat::cmpLessThan, VT);
1325      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1326                                           R==APFloat::cmpUnordered, VT);
1327      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1328      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1329      }
1330    } else {
1331      // Ensure that the constant occurs on the RHS.
1332      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1333    }
1334  }
1335
1336  // Could not fold it.
1337  return SDValue();
1338}
1339
1340/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1341/// use this predicate to simplify operations downstream.
1342bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1343  unsigned BitWidth = Op.getValueSizeInBits();
1344  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1345}
1346
1347/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1348/// this predicate to simplify operations downstream.  Mask is known to be zero
1349/// for bits that V cannot have.
1350bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1351                                     unsigned Depth) const {
1352  APInt KnownZero, KnownOne;
1353  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1354  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1355  return (KnownZero & Mask) == Mask;
1356}
1357
1358/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1359/// known to be either zero or one and return them in the KnownZero/KnownOne
1360/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1361/// processing.
1362void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1363                                     APInt &KnownZero, APInt &KnownOne,
1364                                     unsigned Depth) const {
1365  unsigned BitWidth = Mask.getBitWidth();
1366  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1367         "Mask size mismatches value type size!");
1368
1369  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1370  if (Depth == 6 || Mask == 0)
1371    return;  // Limit search depth.
1372
1373  APInt KnownZero2, KnownOne2;
1374
1375  switch (Op.getOpcode()) {
1376  case ISD::Constant:
1377    // We know all of the bits for a constant!
1378    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1379    KnownZero = ~KnownOne & Mask;
1380    return;
1381  case ISD::AND:
1382    // If either the LHS or the RHS are Zero, the result is zero.
1383    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1384    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1385                      KnownZero2, KnownOne2, Depth+1);
1386    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1387    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1388
1389    // Output known-1 bits are only known if set in both the LHS & RHS.
1390    KnownOne &= KnownOne2;
1391    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1392    KnownZero |= KnownZero2;
1393    return;
1394  case ISD::OR:
1395    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1396    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1397                      KnownZero2, KnownOne2, Depth+1);
1398    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1399    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1400
1401    // Output known-0 bits are only known if clear in both the LHS & RHS.
1402    KnownZero &= KnownZero2;
1403    // Output known-1 are known to be set if set in either the LHS | RHS.
1404    KnownOne |= KnownOne2;
1405    return;
1406  case ISD::XOR: {
1407    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1408    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1409    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1410    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1411
1412    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1413    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1414    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1415    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1416    KnownZero = KnownZeroOut;
1417    return;
1418  }
1419  case ISD::MUL: {
1420    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1421    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1422    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1423    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1424    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1425
1426    // If low bits are zero in either operand, output low known-0 bits.
1427    // Also compute a conserative estimate for high known-0 bits.
1428    // More trickiness is possible, but this is sufficient for the
1429    // interesting case of alignment computation.
1430    KnownOne.clear();
1431    unsigned TrailZ = KnownZero.countTrailingOnes() +
1432                      KnownZero2.countTrailingOnes();
1433    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1434                               KnownZero2.countLeadingOnes(),
1435                               BitWidth) - BitWidth;
1436
1437    TrailZ = std::min(TrailZ, BitWidth);
1438    LeadZ = std::min(LeadZ, BitWidth);
1439    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1440                APInt::getHighBitsSet(BitWidth, LeadZ);
1441    KnownZero &= Mask;
1442    return;
1443  }
1444  case ISD::UDIV: {
1445    // For the purposes of computing leading zeros we can conservatively
1446    // treat a udiv as a logical right shift by the power of 2 known to
1447    // be less than the denominator.
1448    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1449    ComputeMaskedBits(Op.getOperand(0),
1450                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1451    unsigned LeadZ = KnownZero2.countLeadingOnes();
1452
1453    KnownOne2.clear();
1454    KnownZero2.clear();
1455    ComputeMaskedBits(Op.getOperand(1),
1456                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1457    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1458    if (RHSUnknownLeadingOnes != BitWidth)
1459      LeadZ = std::min(BitWidth,
1460                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1461
1462    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1463    return;
1464  }
1465  case ISD::SELECT:
1466    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1467    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1468    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1469    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1470
1471    // Only known if known in both the LHS and RHS.
1472    KnownOne &= KnownOne2;
1473    KnownZero &= KnownZero2;
1474    return;
1475  case ISD::SELECT_CC:
1476    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1477    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1478    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1479    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1480
1481    // Only known if known in both the LHS and RHS.
1482    KnownOne &= KnownOne2;
1483    KnownZero &= KnownZero2;
1484    return;
1485  case ISD::SETCC:
1486    // If we know the result of a setcc has the top bits zero, use this info.
1487    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1488        BitWidth > 1)
1489      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1490    return;
1491  case ISD::SHL:
1492    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1493    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1494      unsigned ShAmt = SA->getZExtValue();
1495
1496      // If the shift count is an invalid immediate, don't do anything.
1497      if (ShAmt >= BitWidth)
1498        return;
1499
1500      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1501                        KnownZero, KnownOne, Depth+1);
1502      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1503      KnownZero <<= ShAmt;
1504      KnownOne  <<= ShAmt;
1505      // low bits known zero.
1506      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1507    }
1508    return;
1509  case ISD::SRL:
1510    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1511    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1512      unsigned ShAmt = SA->getZExtValue();
1513
1514      // If the shift count is an invalid immediate, don't do anything.
1515      if (ShAmt >= BitWidth)
1516        return;
1517
1518      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1519                        KnownZero, KnownOne, Depth+1);
1520      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1521      KnownZero = KnownZero.lshr(ShAmt);
1522      KnownOne  = KnownOne.lshr(ShAmt);
1523
1524      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1525      KnownZero |= HighBits;  // High bits known zero.
1526    }
1527    return;
1528  case ISD::SRA:
1529    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1530      unsigned ShAmt = SA->getZExtValue();
1531
1532      // If the shift count is an invalid immediate, don't do anything.
1533      if (ShAmt >= BitWidth)
1534        return;
1535
1536      APInt InDemandedMask = (Mask << ShAmt);
1537      // If any of the demanded bits are produced by the sign extension, we also
1538      // demand the input sign bit.
1539      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1540      if (HighBits.getBoolValue())
1541        InDemandedMask |= APInt::getSignBit(BitWidth);
1542
1543      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1544                        Depth+1);
1545      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1546      KnownZero = KnownZero.lshr(ShAmt);
1547      KnownOne  = KnownOne.lshr(ShAmt);
1548
1549      // Handle the sign bits.
1550      APInt SignBit = APInt::getSignBit(BitWidth);
1551      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1552
1553      if (KnownZero.intersects(SignBit)) {
1554        KnownZero |= HighBits;  // New bits are known zero.
1555      } else if (KnownOne.intersects(SignBit)) {
1556        KnownOne  |= HighBits;  // New bits are known one.
1557      }
1558    }
1559    return;
1560  case ISD::SIGN_EXTEND_INREG: {
1561    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1562    unsigned EBits = EVT.getSizeInBits();
1563
1564    // Sign extension.  Compute the demanded bits in the result that are not
1565    // present in the input.
1566    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1567
1568    APInt InSignBit = APInt::getSignBit(EBits);
1569    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1570
1571    // If the sign extended bits are demanded, we know that the sign
1572    // bit is demanded.
1573    InSignBit.zext(BitWidth);
1574    if (NewBits.getBoolValue())
1575      InputDemandedBits |= InSignBit;
1576
1577    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1578                      KnownZero, KnownOne, Depth+1);
1579    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1580
1581    // If the sign bit of the input is known set or clear, then we know the
1582    // top bits of the result.
1583    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1584      KnownZero |= NewBits;
1585      KnownOne  &= ~NewBits;
1586    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1587      KnownOne  |= NewBits;
1588      KnownZero &= ~NewBits;
1589    } else {                              // Input sign bit unknown
1590      KnownZero &= ~NewBits;
1591      KnownOne  &= ~NewBits;
1592    }
1593    return;
1594  }
1595  case ISD::CTTZ:
1596  case ISD::CTLZ:
1597  case ISD::CTPOP: {
1598    unsigned LowBits = Log2_32(BitWidth)+1;
1599    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1600    KnownOne.clear();
1601    return;
1602  }
1603  case ISD::LOAD: {
1604    if (ISD::isZEXTLoad(Op.getNode())) {
1605      LoadSDNode *LD = cast<LoadSDNode>(Op);
1606      MVT VT = LD->getMemoryVT();
1607      unsigned MemBits = VT.getSizeInBits();
1608      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1609    }
1610    return;
1611  }
1612  case ISD::ZERO_EXTEND: {
1613    MVT InVT = Op.getOperand(0).getValueType();
1614    unsigned InBits = InVT.getSizeInBits();
1615    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1616    APInt InMask    = Mask;
1617    InMask.trunc(InBits);
1618    KnownZero.trunc(InBits);
1619    KnownOne.trunc(InBits);
1620    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1621    KnownZero.zext(BitWidth);
1622    KnownOne.zext(BitWidth);
1623    KnownZero |= NewBits;
1624    return;
1625  }
1626  case ISD::SIGN_EXTEND: {
1627    MVT InVT = Op.getOperand(0).getValueType();
1628    unsigned InBits = InVT.getSizeInBits();
1629    APInt InSignBit = APInt::getSignBit(InBits);
1630    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1631    APInt InMask = Mask;
1632    InMask.trunc(InBits);
1633
1634    // If any of the sign extended bits are demanded, we know that the sign
1635    // bit is demanded. Temporarily set this bit in the mask for our callee.
1636    if (NewBits.getBoolValue())
1637      InMask |= InSignBit;
1638
1639    KnownZero.trunc(InBits);
1640    KnownOne.trunc(InBits);
1641    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1642
1643    // Note if the sign bit is known to be zero or one.
1644    bool SignBitKnownZero = KnownZero.isNegative();
1645    bool SignBitKnownOne  = KnownOne.isNegative();
1646    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1647           "Sign bit can't be known to be both zero and one!");
1648
1649    // If the sign bit wasn't actually demanded by our caller, we don't
1650    // want it set in the KnownZero and KnownOne result values. Reset the
1651    // mask and reapply it to the result values.
1652    InMask = Mask;
1653    InMask.trunc(InBits);
1654    KnownZero &= InMask;
1655    KnownOne  &= InMask;
1656
1657    KnownZero.zext(BitWidth);
1658    KnownOne.zext(BitWidth);
1659
1660    // If the sign bit is known zero or one, the top bits match.
1661    if (SignBitKnownZero)
1662      KnownZero |= NewBits;
1663    else if (SignBitKnownOne)
1664      KnownOne  |= NewBits;
1665    return;
1666  }
1667  case ISD::ANY_EXTEND: {
1668    MVT InVT = Op.getOperand(0).getValueType();
1669    unsigned InBits = InVT.getSizeInBits();
1670    APInt InMask = Mask;
1671    InMask.trunc(InBits);
1672    KnownZero.trunc(InBits);
1673    KnownOne.trunc(InBits);
1674    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1675    KnownZero.zext(BitWidth);
1676    KnownOne.zext(BitWidth);
1677    return;
1678  }
1679  case ISD::TRUNCATE: {
1680    MVT InVT = Op.getOperand(0).getValueType();
1681    unsigned InBits = InVT.getSizeInBits();
1682    APInt InMask = Mask;
1683    InMask.zext(InBits);
1684    KnownZero.zext(InBits);
1685    KnownOne.zext(InBits);
1686    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1687    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1688    KnownZero.trunc(BitWidth);
1689    KnownOne.trunc(BitWidth);
1690    break;
1691  }
1692  case ISD::AssertZext: {
1693    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1694    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1695    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1696                      KnownOne, Depth+1);
1697    KnownZero |= (~InMask) & Mask;
1698    return;
1699  }
1700  case ISD::FGETSIGN:
1701    // All bits are zero except the low bit.
1702    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1703    return;
1704
1705  case ISD::SUB: {
1706    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1707      // We know that the top bits of C-X are clear if X contains less bits
1708      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1709      // positive if we can prove that X is >= 0 and < 16.
1710      if (CLHS->getAPIntValue().isNonNegative()) {
1711        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1712        // NLZ can't be BitWidth with no sign bit
1713        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1714        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1715                          Depth+1);
1716
1717        // If all of the MaskV bits are known to be zero, then we know the
1718        // output top bits are zero, because we now know that the output is
1719        // from [0-C].
1720        if ((KnownZero2 & MaskV) == MaskV) {
1721          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1722          // Top bits known zero.
1723          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1724        }
1725      }
1726    }
1727  }
1728  // fall through
1729  case ISD::ADD: {
1730    // Output known-0 bits are known if clear or set in both the low clear bits
1731    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1732    // low 3 bits clear.
1733    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1734    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1735    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1736    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1737
1738    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1739    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1740    KnownZeroOut = std::min(KnownZeroOut,
1741                            KnownZero2.countTrailingOnes());
1742
1743    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1744    return;
1745  }
1746  case ISD::SREM:
1747    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1748      const APInt &RA = Rem->getAPIntValue();
1749      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1750        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1751        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1752        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1753
1754        // If the sign bit of the first operand is zero, the sign bit of
1755        // the result is zero. If the first operand has no one bits below
1756        // the second operand's single 1 bit, its sign will be zero.
1757        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1758          KnownZero2 |= ~LowBits;
1759
1760        KnownZero |= KnownZero2 & Mask;
1761
1762        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1763      }
1764    }
1765    return;
1766  case ISD::UREM: {
1767    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1768      const APInt &RA = Rem->getAPIntValue();
1769      if (RA.isPowerOf2()) {
1770        APInt LowBits = (RA - 1);
1771        APInt Mask2 = LowBits & Mask;
1772        KnownZero |= ~LowBits & Mask;
1773        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1774        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1775        break;
1776      }
1777    }
1778
1779    // Since the result is less than or equal to either operand, any leading
1780    // zero bits in either operand must also exist in the result.
1781    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1782    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1783                      Depth+1);
1784    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1785                      Depth+1);
1786
1787    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1788                                KnownZero2.countLeadingOnes());
1789    KnownOne.clear();
1790    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1791    return;
1792  }
1793  default:
1794    // Allow the target to implement this method for its nodes.
1795    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1796  case ISD::INTRINSIC_WO_CHAIN:
1797  case ISD::INTRINSIC_W_CHAIN:
1798  case ISD::INTRINSIC_VOID:
1799      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1800    }
1801    return;
1802  }
1803}
1804
1805/// ComputeNumSignBits - Return the number of times the sign bit of the
1806/// register is replicated into the other bits.  We know that at least 1 bit
1807/// is always equal to the sign bit (itself), but other cases can give us
1808/// information.  For example, immediately after an "SRA X, 2", we know that
1809/// the top 3 bits are all equal to each other, so we return 3.
1810unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1811  MVT VT = Op.getValueType();
1812  assert(VT.isInteger() && "Invalid VT!");
1813  unsigned VTBits = VT.getSizeInBits();
1814  unsigned Tmp, Tmp2;
1815  unsigned FirstAnswer = 1;
1816
1817  if (Depth == 6)
1818    return 1;  // Limit search depth.
1819
1820  switch (Op.getOpcode()) {
1821  default: break;
1822  case ISD::AssertSext:
1823    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1824    return VTBits-Tmp+1;
1825  case ISD::AssertZext:
1826    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1827    return VTBits-Tmp;
1828
1829  case ISD::Constant: {
1830    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1831    // If negative, return # leading ones.
1832    if (Val.isNegative())
1833      return Val.countLeadingOnes();
1834
1835    // Return # leading zeros.
1836    return Val.countLeadingZeros();
1837  }
1838
1839  case ISD::SIGN_EXTEND:
1840    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1841    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1842
1843  case ISD::SIGN_EXTEND_INREG:
1844    // Max of the input and what this extends.
1845    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1846    Tmp = VTBits-Tmp+1;
1847
1848    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1849    return std::max(Tmp, Tmp2);
1850
1851  case ISD::SRA:
1852    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1853    // SRA X, C   -> adds C sign bits.
1854    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1855      Tmp += C->getZExtValue();
1856      if (Tmp > VTBits) Tmp = VTBits;
1857    }
1858    return Tmp;
1859  case ISD::SHL:
1860    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1861      // shl destroys sign bits.
1862      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1863      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1864          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1865      return Tmp - C->getZExtValue();
1866    }
1867    break;
1868  case ISD::AND:
1869  case ISD::OR:
1870  case ISD::XOR:    // NOT is handled here.
1871    // Logical binary ops preserve the number of sign bits at the worst.
1872    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1873    if (Tmp != 1) {
1874      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1875      FirstAnswer = std::min(Tmp, Tmp2);
1876      // We computed what we know about the sign bits as our first
1877      // answer. Now proceed to the generic code that uses
1878      // ComputeMaskedBits, and pick whichever answer is better.
1879    }
1880    break;
1881
1882  case ISD::SELECT:
1883    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1884    if (Tmp == 1) return 1;  // Early out.
1885    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1886    return std::min(Tmp, Tmp2);
1887
1888  case ISD::SETCC:
1889    // If setcc returns 0/-1, all bits are sign bits.
1890    if (TLI.getSetCCResultContents() ==
1891        TargetLowering::ZeroOrNegativeOneSetCCResult)
1892      return VTBits;
1893    break;
1894  case ISD::ROTL:
1895  case ISD::ROTR:
1896    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1897      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1898
1899      // Handle rotate right by N like a rotate left by 32-N.
1900      if (Op.getOpcode() == ISD::ROTR)
1901        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1902
1903      // If we aren't rotating out all of the known-in sign bits, return the
1904      // number that are left.  This handles rotl(sext(x), 1) for example.
1905      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1906      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1907    }
1908    break;
1909  case ISD::ADD:
1910    // Add can have at most one carry bit.  Thus we know that the output
1911    // is, at worst, one more bit than the inputs.
1912    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1913    if (Tmp == 1) return 1;  // Early out.
1914
1915    // Special case decrementing a value (ADD X, -1):
1916    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1917      if (CRHS->isAllOnesValue()) {
1918        APInt KnownZero, KnownOne;
1919        APInt Mask = APInt::getAllOnesValue(VTBits);
1920        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1921
1922        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1923        // sign bits set.
1924        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1925          return VTBits;
1926
1927        // If we are subtracting one from a positive number, there is no carry
1928        // out of the result.
1929        if (KnownZero.isNegative())
1930          return Tmp;
1931      }
1932
1933    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1934    if (Tmp2 == 1) return 1;
1935      return std::min(Tmp, Tmp2)-1;
1936    break;
1937
1938  case ISD::SUB:
1939    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1940    if (Tmp2 == 1) return 1;
1941
1942    // Handle NEG.
1943    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1944      if (CLHS->isNullValue()) {
1945        APInt KnownZero, KnownOne;
1946        APInt Mask = APInt::getAllOnesValue(VTBits);
1947        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1948        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1949        // sign bits set.
1950        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1951          return VTBits;
1952
1953        // If the input is known to be positive (the sign bit is known clear),
1954        // the output of the NEG has the same number of sign bits as the input.
1955        if (KnownZero.isNegative())
1956          return Tmp2;
1957
1958        // Otherwise, we treat this like a SUB.
1959      }
1960
1961    // Sub can have at most one carry bit.  Thus we know that the output
1962    // is, at worst, one more bit than the inputs.
1963    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1964    if (Tmp == 1) return 1;  // Early out.
1965      return std::min(Tmp, Tmp2)-1;
1966    break;
1967  case ISD::TRUNCATE:
1968    // FIXME: it's tricky to do anything useful for this, but it is an important
1969    // case for targets like X86.
1970    break;
1971  }
1972
1973  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1974  if (Op.getOpcode() == ISD::LOAD) {
1975    LoadSDNode *LD = cast<LoadSDNode>(Op);
1976    unsigned ExtType = LD->getExtensionType();
1977    switch (ExtType) {
1978    default: break;
1979    case ISD::SEXTLOAD:    // '17' bits known
1980      Tmp = LD->getMemoryVT().getSizeInBits();
1981      return VTBits-Tmp+1;
1982    case ISD::ZEXTLOAD:    // '16' bits known
1983      Tmp = LD->getMemoryVT().getSizeInBits();
1984      return VTBits-Tmp;
1985    }
1986  }
1987
1988  // Allow the target to implement this method for its nodes.
1989  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1990      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1991      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1992      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1993    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1994    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1995  }
1996
1997  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1998  // use this information.
1999  APInt KnownZero, KnownOne;
2000  APInt Mask = APInt::getAllOnesValue(VTBits);
2001  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2002
2003  if (KnownZero.isNegative()) {        // sign bit is 0
2004    Mask = KnownZero;
2005  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2006    Mask = KnownOne;
2007  } else {
2008    // Nothing known.
2009    return FirstAnswer;
2010  }
2011
2012  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2013  // the number of identical bits in the top of the input value.
2014  Mask = ~Mask;
2015  Mask <<= Mask.getBitWidth()-VTBits;
2016  // Return # leading zeros.  We use 'min' here in case Val was zero before
2017  // shifting.  We don't want to return '64' as for an i32 "0".
2018  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2019}
2020
2021
2022bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2023  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2024  if (!GA) return false;
2025  if (GA->getOffset() != 0) return false;
2026  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2027  if (!GV) return false;
2028  MachineModuleInfo *MMI = getMachineModuleInfo();
2029  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2030}
2031
2032
2033/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2034/// element of the result of the vector shuffle.
2035SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2036  MVT VT = N->getValueType(0);
2037  SDValue PermMask = N->getOperand(2);
2038  SDValue Idx = PermMask.getOperand(i);
2039  if (Idx.getOpcode() == ISD::UNDEF)
2040    return getNode(ISD::UNDEF, VT.getVectorElementType());
2041  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2042  unsigned NumElems = PermMask.getNumOperands();
2043  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2044  Index %= NumElems;
2045
2046  if (V.getOpcode() == ISD::BIT_CONVERT) {
2047    V = V.getOperand(0);
2048    if (V.getValueType().getVectorNumElements() != NumElems)
2049      return SDValue();
2050  }
2051  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2052    return (Index == 0) ? V.getOperand(0)
2053                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2054  if (V.getOpcode() == ISD::BUILD_VECTOR)
2055    return V.getOperand(Index);
2056  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2057    return getShuffleScalarElt(V.getNode(), Index);
2058  return SDValue();
2059}
2060
2061
2062/// getNode - Gets or creates the specified node.
2063///
2064SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2065  FoldingSetNodeID ID;
2066  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2067  void *IP = 0;
2068  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2069    return SDValue(E, 0);
2070  SDNode *N = NodeAllocator.Allocate<SDNode>();
2071  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2072  CSEMap.InsertNode(N, IP);
2073
2074  AllNodes.push_back(N);
2075#ifndef NDEBUG
2076  VerifyNode(N);
2077#endif
2078  return SDValue(N, 0);
2079}
2080
2081SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2082  // Constant fold unary operations with an integer constant operand.
2083  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2084    const APInt &Val = C->getAPIntValue();
2085    unsigned BitWidth = VT.getSizeInBits();
2086    switch (Opcode) {
2087    default: break;
2088    case ISD::SIGN_EXTEND:
2089      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2090    case ISD::ANY_EXTEND:
2091    case ISD::ZERO_EXTEND:
2092    case ISD::TRUNCATE:
2093      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2094    case ISD::UINT_TO_FP:
2095    case ISD::SINT_TO_FP: {
2096      const uint64_t zero[] = {0, 0};
2097      // No compile time operations on this type.
2098      if (VT==MVT::ppcf128)
2099        break;
2100      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2101      (void)apf.convertFromAPInt(Val,
2102                                 Opcode==ISD::SINT_TO_FP,
2103                                 APFloat::rmNearestTiesToEven);
2104      return getConstantFP(apf, VT);
2105    }
2106    case ISD::BIT_CONVERT:
2107      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2108        return getConstantFP(Val.bitsToFloat(), VT);
2109      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2110        return getConstantFP(Val.bitsToDouble(), VT);
2111      break;
2112    case ISD::BSWAP:
2113      return getConstant(Val.byteSwap(), VT);
2114    case ISD::CTPOP:
2115      return getConstant(Val.countPopulation(), VT);
2116    case ISD::CTLZ:
2117      return getConstant(Val.countLeadingZeros(), VT);
2118    case ISD::CTTZ:
2119      return getConstant(Val.countTrailingZeros(), VT);
2120    }
2121  }
2122
2123  // Constant fold unary operations with a floating point constant operand.
2124  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2125    APFloat V = C->getValueAPF();    // make copy
2126    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2127      switch (Opcode) {
2128      case ISD::FNEG:
2129        V.changeSign();
2130        return getConstantFP(V, VT);
2131      case ISD::FABS:
2132        V.clearSign();
2133        return getConstantFP(V, VT);
2134      case ISD::FP_ROUND:
2135      case ISD::FP_EXTEND: {
2136        bool ignored;
2137        // This can return overflow, underflow, or inexact; we don't care.
2138        // FIXME need to be more flexible about rounding mode.
2139        (void)V.convert(*MVTToAPFloatSemantics(VT),
2140                        APFloat::rmNearestTiesToEven, &ignored);
2141        return getConstantFP(V, VT);
2142      }
2143      case ISD::FP_TO_SINT:
2144      case ISD::FP_TO_UINT: {
2145        integerPart x;
2146        bool ignored;
2147        assert(integerPartWidth >= 64);
2148        // FIXME need to be more flexible about rounding mode.
2149        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2150                              Opcode==ISD::FP_TO_SINT,
2151                              APFloat::rmTowardZero, &ignored);
2152        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2153          break;
2154        return getConstant(x, VT);
2155      }
2156      case ISD::BIT_CONVERT:
2157        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2158          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2159        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2160          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2161        break;
2162      }
2163    }
2164  }
2165
2166  unsigned OpOpcode = Operand.getNode()->getOpcode();
2167  switch (Opcode) {
2168  case ISD::TokenFactor:
2169  case ISD::CONCAT_VECTORS:
2170    return Operand;         // Factor or concat of one node?  No need.
2171  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2172  case ISD::FP_EXTEND:
2173    assert(VT.isFloatingPoint() &&
2174           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2175    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2176    if (Operand.getOpcode() == ISD::UNDEF)
2177      return getNode(ISD::UNDEF, VT);
2178    break;
2179  case ISD::SIGN_EXTEND:
2180    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2181           "Invalid SIGN_EXTEND!");
2182    if (Operand.getValueType() == VT) return Operand;   // noop extension
2183    assert(Operand.getValueType().bitsLT(VT)
2184           && "Invalid sext node, dst < src!");
2185    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2186      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2187    break;
2188  case ISD::ZERO_EXTEND:
2189    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2190           "Invalid ZERO_EXTEND!");
2191    if (Operand.getValueType() == VT) return Operand;   // noop extension
2192    assert(Operand.getValueType().bitsLT(VT)
2193           && "Invalid zext node, dst < src!");
2194    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2195      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2196    break;
2197  case ISD::ANY_EXTEND:
2198    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2199           "Invalid ANY_EXTEND!");
2200    if (Operand.getValueType() == VT) return Operand;   // noop extension
2201    assert(Operand.getValueType().bitsLT(VT)
2202           && "Invalid anyext node, dst < src!");
2203    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2204      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2205      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2206    break;
2207  case ISD::TRUNCATE:
2208    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2209           "Invalid TRUNCATE!");
2210    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2211    assert(Operand.getValueType().bitsGT(VT)
2212           && "Invalid truncate node, src < dst!");
2213    if (OpOpcode == ISD::TRUNCATE)
2214      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2215    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2216             OpOpcode == ISD::ANY_EXTEND) {
2217      // If the source is smaller than the dest, we still need an extend.
2218      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2219        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2220      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2221        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2222      else
2223        return Operand.getNode()->getOperand(0);
2224    }
2225    break;
2226  case ISD::BIT_CONVERT:
2227    // Basic sanity checking.
2228    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2229           && "Cannot BIT_CONVERT between types of different sizes!");
2230    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2231    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2232      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2233    if (OpOpcode == ISD::UNDEF)
2234      return getNode(ISD::UNDEF, VT);
2235    break;
2236  case ISD::SCALAR_TO_VECTOR:
2237    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2238           VT.getVectorElementType() == Operand.getValueType() &&
2239           "Illegal SCALAR_TO_VECTOR node!");
2240    if (OpOpcode == ISD::UNDEF)
2241      return getNode(ISD::UNDEF, VT);
2242    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2243    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2244        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2245        Operand.getConstantOperandVal(1) == 0 &&
2246        Operand.getOperand(0).getValueType() == VT)
2247      return Operand.getOperand(0);
2248    break;
2249  case ISD::FNEG:
2250    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2251      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2252                     Operand.getNode()->getOperand(0));
2253    if (OpOpcode == ISD::FNEG)  // --X -> X
2254      return Operand.getNode()->getOperand(0);
2255    break;
2256  case ISD::FABS:
2257    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2258      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2259    break;
2260  }
2261
2262  SDNode *N;
2263  SDVTList VTs = getVTList(VT);
2264  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2265    FoldingSetNodeID ID;
2266    SDValue Ops[1] = { Operand };
2267    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2268    void *IP = 0;
2269    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2270      return SDValue(E, 0);
2271    N = NodeAllocator.Allocate<UnarySDNode>();
2272    new (N) UnarySDNode(Opcode, VTs, Operand);
2273    CSEMap.InsertNode(N, IP);
2274  } else {
2275    N = NodeAllocator.Allocate<UnarySDNode>();
2276    new (N) UnarySDNode(Opcode, VTs, Operand);
2277  }
2278
2279  AllNodes.push_back(N);
2280#ifndef NDEBUG
2281  VerifyNode(N);
2282#endif
2283  return SDValue(N, 0);
2284}
2285
2286SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2287                                             MVT VT,
2288                                             ConstantSDNode *Cst1,
2289                                             ConstantSDNode *Cst2) {
2290  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2291
2292  switch (Opcode) {
2293  case ISD::ADD:  return getConstant(C1 + C2, VT);
2294  case ISD::SUB:  return getConstant(C1 - C2, VT);
2295  case ISD::MUL:  return getConstant(C1 * C2, VT);
2296  case ISD::UDIV:
2297    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2298    break;
2299  case ISD::UREM:
2300    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2301    break;
2302  case ISD::SDIV:
2303    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2304    break;
2305  case ISD::SREM:
2306    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2307    break;
2308  case ISD::AND:  return getConstant(C1 & C2, VT);
2309  case ISD::OR:   return getConstant(C1 | C2, VT);
2310  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2311  case ISD::SHL:  return getConstant(C1 << C2, VT);
2312  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2313  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2314  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2315  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2316  default: break;
2317  }
2318
2319  return SDValue();
2320}
2321
2322SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2323                              SDValue N1, SDValue N2) {
2324  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2325  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2326  switch (Opcode) {
2327  default: break;
2328  case ISD::TokenFactor:
2329    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2330           N2.getValueType() == MVT::Other && "Invalid token factor!");
2331    // Fold trivial token factors.
2332    if (N1.getOpcode() == ISD::EntryToken) return N2;
2333    if (N2.getOpcode() == ISD::EntryToken) return N1;
2334    if (N1 == N2) return N1;
2335    break;
2336  case ISD::CONCAT_VECTORS:
2337    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2338    // one big BUILD_VECTOR.
2339    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2340        N2.getOpcode() == ISD::BUILD_VECTOR) {
2341      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2342      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2343      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2344    }
2345    break;
2346  case ISD::AND:
2347    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2348           N1.getValueType() == VT && "Binary operator types must match!");
2349    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2350    // worth handling here.
2351    if (N2C && N2C->isNullValue())
2352      return N2;
2353    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2354      return N1;
2355    break;
2356  case ISD::OR:
2357  case ISD::XOR:
2358  case ISD::ADD:
2359  case ISD::SUB:
2360    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2361           N1.getValueType() == VT && "Binary operator types must match!");
2362    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2363    // it's worth handling here.
2364    if (N2C && N2C->isNullValue())
2365      return N1;
2366    break;
2367  case ISD::UDIV:
2368  case ISD::UREM:
2369  case ISD::MULHU:
2370  case ISD::MULHS:
2371    assert(VT.isInteger() && "This operator does not apply to FP types!");
2372    // fall through
2373  case ISD::MUL:
2374  case ISD::SDIV:
2375  case ISD::SREM:
2376  case ISD::FADD:
2377  case ISD::FSUB:
2378  case ISD::FMUL:
2379  case ISD::FDIV:
2380  case ISD::FREM:
2381    assert(N1.getValueType() == N2.getValueType() &&
2382           N1.getValueType() == VT && "Binary operator types must match!");
2383    break;
2384  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2385    assert(N1.getValueType() == VT &&
2386           N1.getValueType().isFloatingPoint() &&
2387           N2.getValueType().isFloatingPoint() &&
2388           "Invalid FCOPYSIGN!");
2389    break;
2390  case ISD::SHL:
2391  case ISD::SRA:
2392  case ISD::SRL:
2393  case ISD::ROTL:
2394  case ISD::ROTR:
2395    assert(VT == N1.getValueType() &&
2396           "Shift operators return type must be the same as their first arg");
2397    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2398           "Shifts only work on integers");
2399
2400    // Always fold shifts of i1 values so the code generator doesn't need to
2401    // handle them.  Since we know the size of the shift has to be less than the
2402    // size of the value, the shift/rotate count is guaranteed to be zero.
2403    if (VT == MVT::i1)
2404      return N1;
2405    break;
2406  case ISD::FP_ROUND_INREG: {
2407    MVT EVT = cast<VTSDNode>(N2)->getVT();
2408    assert(VT == N1.getValueType() && "Not an inreg round!");
2409    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2410           "Cannot FP_ROUND_INREG integer types");
2411    assert(EVT.bitsLE(VT) && "Not rounding down!");
2412    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2413    break;
2414  }
2415  case ISD::FP_ROUND:
2416    assert(VT.isFloatingPoint() &&
2417           N1.getValueType().isFloatingPoint() &&
2418           VT.bitsLE(N1.getValueType()) &&
2419           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2420    if (N1.getValueType() == VT) return N1;  // noop conversion.
2421    break;
2422  case ISD::AssertSext:
2423  case ISD::AssertZext: {
2424    MVT EVT = cast<VTSDNode>(N2)->getVT();
2425    assert(VT == N1.getValueType() && "Not an inreg extend!");
2426    assert(VT.isInteger() && EVT.isInteger() &&
2427           "Cannot *_EXTEND_INREG FP types");
2428    assert(EVT.bitsLE(VT) && "Not extending!");
2429    if (VT == EVT) return N1; // noop assertion.
2430    break;
2431  }
2432  case ISD::SIGN_EXTEND_INREG: {
2433    MVT EVT = cast<VTSDNode>(N2)->getVT();
2434    assert(VT == N1.getValueType() && "Not an inreg extend!");
2435    assert(VT.isInteger() && EVT.isInteger() &&
2436           "Cannot *_EXTEND_INREG FP types");
2437    assert(EVT.bitsLE(VT) && "Not extending!");
2438    if (EVT == VT) return N1;  // Not actually extending
2439
2440    if (N1C) {
2441      APInt Val = N1C->getAPIntValue();
2442      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2443      Val <<= Val.getBitWidth()-FromBits;
2444      Val = Val.ashr(Val.getBitWidth()-FromBits);
2445      return getConstant(Val, VT);
2446    }
2447    break;
2448  }
2449  case ISD::EXTRACT_VECTOR_ELT:
2450    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2451    if (N1.getOpcode() == ISD::UNDEF)
2452      return getNode(ISD::UNDEF, VT);
2453
2454    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2455    // expanding copies of large vectors from registers.
2456    if (N2C &&
2457        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2458        N1.getNumOperands() > 0) {
2459      unsigned Factor =
2460        N1.getOperand(0).getValueType().getVectorNumElements();
2461      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2462                     N1.getOperand(N2C->getZExtValue() / Factor),
2463                     getConstant(N2C->getZExtValue() % Factor,
2464                                 N2.getValueType()));
2465    }
2466
2467    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2468    // expanding large vector constants.
2469    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2470      return N1.getOperand(N2C->getZExtValue());
2471
2472    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2473    // operations are lowered to scalars.
2474    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2475      if (N1.getOperand(2) == N2)
2476        return N1.getOperand(1);
2477      else
2478        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2479    }
2480    break;
2481  case ISD::EXTRACT_ELEMENT:
2482    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2483    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2484           (N1.getValueType().isInteger() == VT.isInteger()) &&
2485           "Wrong types for EXTRACT_ELEMENT!");
2486
2487    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2488    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2489    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2490    if (N1.getOpcode() == ISD::BUILD_PAIR)
2491      return N1.getOperand(N2C->getZExtValue());
2492
2493    // EXTRACT_ELEMENT of a constant int is also very common.
2494    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2495      unsigned ElementSize = VT.getSizeInBits();
2496      unsigned Shift = ElementSize * N2C->getZExtValue();
2497      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2498      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2499    }
2500    break;
2501  case ISD::EXTRACT_SUBVECTOR:
2502    if (N1.getValueType() == VT) // Trivial extraction.
2503      return N1;
2504    break;
2505  }
2506
2507  if (N1C) {
2508    if (N2C) {
2509      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2510      if (SV.getNode()) return SV;
2511    } else {      // Cannonicalize constant to RHS if commutative
2512      if (isCommutativeBinOp(Opcode)) {
2513        std::swap(N1C, N2C);
2514        std::swap(N1, N2);
2515      }
2516    }
2517  }
2518
2519  // Constant fold FP operations.
2520  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2521  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2522  if (N1CFP) {
2523    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2524      // Cannonicalize constant to RHS if commutative
2525      std::swap(N1CFP, N2CFP);
2526      std::swap(N1, N2);
2527    } else if (N2CFP && VT != MVT::ppcf128) {
2528      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2529      APFloat::opStatus s;
2530      switch (Opcode) {
2531      case ISD::FADD:
2532        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2533        if (s != APFloat::opInvalidOp)
2534          return getConstantFP(V1, VT);
2535        break;
2536      case ISD::FSUB:
2537        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2538        if (s!=APFloat::opInvalidOp)
2539          return getConstantFP(V1, VT);
2540        break;
2541      case ISD::FMUL:
2542        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2543        if (s!=APFloat::opInvalidOp)
2544          return getConstantFP(V1, VT);
2545        break;
2546      case ISD::FDIV:
2547        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2548        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2549          return getConstantFP(V1, VT);
2550        break;
2551      case ISD::FREM :
2552        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2553        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2554          return getConstantFP(V1, VT);
2555        break;
2556      case ISD::FCOPYSIGN:
2557        V1.copySign(V2);
2558        return getConstantFP(V1, VT);
2559      default: break;
2560      }
2561    }
2562  }
2563
2564  // Canonicalize an UNDEF to the RHS, even over a constant.
2565  if (N1.getOpcode() == ISD::UNDEF) {
2566    if (isCommutativeBinOp(Opcode)) {
2567      std::swap(N1, N2);
2568    } else {
2569      switch (Opcode) {
2570      case ISD::FP_ROUND_INREG:
2571      case ISD::SIGN_EXTEND_INREG:
2572      case ISD::SUB:
2573      case ISD::FSUB:
2574      case ISD::FDIV:
2575      case ISD::FREM:
2576      case ISD::SRA:
2577        return N1;     // fold op(undef, arg2) -> undef
2578      case ISD::UDIV:
2579      case ISD::SDIV:
2580      case ISD::UREM:
2581      case ISD::SREM:
2582      case ISD::SRL:
2583      case ISD::SHL:
2584        if (!VT.isVector())
2585          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2586        // For vectors, we can't easily build an all zero vector, just return
2587        // the LHS.
2588        return N2;
2589      }
2590    }
2591  }
2592
2593  // Fold a bunch of operators when the RHS is undef.
2594  if (N2.getOpcode() == ISD::UNDEF) {
2595    switch (Opcode) {
2596    case ISD::XOR:
2597      if (N1.getOpcode() == ISD::UNDEF)
2598        // Handle undef ^ undef -> 0 special case. This is a common
2599        // idiom (misuse).
2600        return getConstant(0, VT);
2601      // fallthrough
2602    case ISD::ADD:
2603    case ISD::ADDC:
2604    case ISD::ADDE:
2605    case ISD::SUB:
2606    case ISD::FADD:
2607    case ISD::FSUB:
2608    case ISD::FMUL:
2609    case ISD::FDIV:
2610    case ISD::FREM:
2611    case ISD::UDIV:
2612    case ISD::SDIV:
2613    case ISD::UREM:
2614    case ISD::SREM:
2615      return N2;       // fold op(arg1, undef) -> undef
2616    case ISD::MUL:
2617    case ISD::AND:
2618    case ISD::SRL:
2619    case ISD::SHL:
2620      if (!VT.isVector())
2621        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2622      // For vectors, we can't easily build an all zero vector, just return
2623      // the LHS.
2624      return N1;
2625    case ISD::OR:
2626      if (!VT.isVector())
2627        return getConstant(VT.getIntegerVTBitMask(), VT);
2628      // For vectors, we can't easily build an all one vector, just return
2629      // the LHS.
2630      return N1;
2631    case ISD::SRA:
2632      return N1;
2633    }
2634  }
2635
2636  // Memoize this node if possible.
2637  SDNode *N;
2638  SDVTList VTs = getVTList(VT);
2639  if (VT != MVT::Flag) {
2640    SDValue Ops[] = { N1, N2 };
2641    FoldingSetNodeID ID;
2642    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2643    void *IP = 0;
2644    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2645      return SDValue(E, 0);
2646    N = NodeAllocator.Allocate<BinarySDNode>();
2647    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2648    CSEMap.InsertNode(N, IP);
2649  } else {
2650    N = NodeAllocator.Allocate<BinarySDNode>();
2651    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2652  }
2653
2654  AllNodes.push_back(N);
2655#ifndef NDEBUG
2656  VerifyNode(N);
2657#endif
2658  return SDValue(N, 0);
2659}
2660
2661SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2662                              SDValue N1, SDValue N2, SDValue N3) {
2663  // Perform various simplifications.
2664  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2665  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2666  switch (Opcode) {
2667  case ISD::CONCAT_VECTORS:
2668    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2669    // one big BUILD_VECTOR.
2670    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2671        N2.getOpcode() == ISD::BUILD_VECTOR &&
2672        N3.getOpcode() == ISD::BUILD_VECTOR) {
2673      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2674      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2675      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2676      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2677    }
2678    break;
2679  case ISD::SETCC: {
2680    // Use FoldSetCC to simplify SETCC's.
2681    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2682    if (Simp.getNode()) return Simp;
2683    break;
2684  }
2685  case ISD::SELECT:
2686    if (N1C) {
2687     if (N1C->getZExtValue())
2688        return N2;             // select true, X, Y -> X
2689      else
2690        return N3;             // select false, X, Y -> Y
2691    }
2692
2693    if (N2 == N3) return N2;   // select C, X, X -> X
2694    break;
2695  case ISD::BRCOND:
2696    if (N2C) {
2697      if (N2C->getZExtValue()) // Unconditional branch
2698        return getNode(ISD::BR, MVT::Other, N1, N3);
2699      else
2700        return N1;         // Never-taken branch
2701    }
2702    break;
2703  case ISD::VECTOR_SHUFFLE:
2704    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2705           VT.isVector() && N3.getValueType().isVector() &&
2706           N3.getOpcode() == ISD::BUILD_VECTOR &&
2707           VT.getVectorNumElements() == N3.getNumOperands() &&
2708           "Illegal VECTOR_SHUFFLE node!");
2709    break;
2710  case ISD::BIT_CONVERT:
2711    // Fold bit_convert nodes from a type to themselves.
2712    if (N1.getValueType() == VT)
2713      return N1;
2714    break;
2715  }
2716
2717  // Memoize node if it doesn't produce a flag.
2718  SDNode *N;
2719  SDVTList VTs = getVTList(VT);
2720  if (VT != MVT::Flag) {
2721    SDValue Ops[] = { N1, N2, N3 };
2722    FoldingSetNodeID ID;
2723    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2724    void *IP = 0;
2725    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2726      return SDValue(E, 0);
2727    N = NodeAllocator.Allocate<TernarySDNode>();
2728    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2729    CSEMap.InsertNode(N, IP);
2730  } else {
2731    N = NodeAllocator.Allocate<TernarySDNode>();
2732    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2733  }
2734  AllNodes.push_back(N);
2735#ifndef NDEBUG
2736  VerifyNode(N);
2737#endif
2738  return SDValue(N, 0);
2739}
2740
2741SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2742                              SDValue N1, SDValue N2, SDValue N3,
2743                              SDValue N4) {
2744  SDValue Ops[] = { N1, N2, N3, N4 };
2745  return getNode(Opcode, VT, Ops, 4);
2746}
2747
2748SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2749                              SDValue N1, SDValue N2, SDValue N3,
2750                              SDValue N4, SDValue N5) {
2751  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2752  return getNode(Opcode, VT, Ops, 5);
2753}
2754
2755/// getMemsetValue - Vectorized representation of the memset value
2756/// operand.
2757static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2758  unsigned NumBits = VT.isVector() ?
2759    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2760  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2761    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2762    unsigned Shift = 8;
2763    for (unsigned i = NumBits; i > 8; i >>= 1) {
2764      Val = (Val << Shift) | Val;
2765      Shift <<= 1;
2766    }
2767    if (VT.isInteger())
2768      return DAG.getConstant(Val, VT);
2769    return DAG.getConstantFP(APFloat(Val), VT);
2770  }
2771
2772  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2773  unsigned Shift = 8;
2774  for (unsigned i = NumBits; i > 8; i >>= 1) {
2775    Value = DAG.getNode(ISD::OR, VT,
2776                        DAG.getNode(ISD::SHL, VT, Value,
2777                                    DAG.getConstant(Shift, MVT::i8)), Value);
2778    Shift <<= 1;
2779  }
2780
2781  return Value;
2782}
2783
2784/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2785/// used when a memcpy is turned into a memset when the source is a constant
2786/// string ptr.
2787static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2788                                    const TargetLowering &TLI,
2789                                    std::string &Str, unsigned Offset) {
2790  // Handle vector with all elements zero.
2791  if (Str.empty()) {
2792    if (VT.isInteger())
2793      return DAG.getConstant(0, VT);
2794    unsigned NumElts = VT.getVectorNumElements();
2795    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2796    return DAG.getNode(ISD::BIT_CONVERT, VT,
2797                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2798  }
2799
2800  assert(!VT.isVector() && "Can't handle vector type here!");
2801  unsigned NumBits = VT.getSizeInBits();
2802  unsigned MSB = NumBits / 8;
2803  uint64_t Val = 0;
2804  if (TLI.isLittleEndian())
2805    Offset = Offset + MSB - 1;
2806  for (unsigned i = 0; i != MSB; ++i) {
2807    Val = (Val << 8) | (unsigned char)Str[Offset];
2808    Offset += TLI.isLittleEndian() ? -1 : 1;
2809  }
2810  return DAG.getConstant(Val, VT);
2811}
2812
2813/// getMemBasePlusOffset - Returns base and offset node for the
2814///
2815static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2816                                      SelectionDAG &DAG) {
2817  MVT VT = Base.getValueType();
2818  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2819}
2820
2821/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2822///
2823static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2824  unsigned SrcDelta = 0;
2825  GlobalAddressSDNode *G = NULL;
2826  if (Src.getOpcode() == ISD::GlobalAddress)
2827    G = cast<GlobalAddressSDNode>(Src);
2828  else if (Src.getOpcode() == ISD::ADD &&
2829           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2830           Src.getOperand(1).getOpcode() == ISD::Constant) {
2831    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2832    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2833  }
2834  if (!G)
2835    return false;
2836
2837  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2838  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2839    return true;
2840
2841  return false;
2842}
2843
2844/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2845/// to replace the memset / memcpy is below the threshold. It also returns the
2846/// types of the sequence of memory ops to perform memset / memcpy.
2847static
2848bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2849                              SDValue Dst, SDValue Src,
2850                              unsigned Limit, uint64_t Size, unsigned &Align,
2851                              std::string &Str, bool &isSrcStr,
2852                              SelectionDAG &DAG,
2853                              const TargetLowering &TLI) {
2854  isSrcStr = isMemSrcFromString(Src, Str);
2855  bool isSrcConst = isa<ConstantSDNode>(Src);
2856  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2857  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2858  if (VT != MVT::iAny) {
2859    unsigned NewAlign = (unsigned)
2860      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2861    // If source is a string constant, this will require an unaligned load.
2862    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2863      if (Dst.getOpcode() != ISD::FrameIndex) {
2864        // Can't change destination alignment. It requires a unaligned store.
2865        if (AllowUnalign)
2866          VT = MVT::iAny;
2867      } else {
2868        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2869        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2870        if (MFI->isFixedObjectIndex(FI)) {
2871          // Can't change destination alignment. It requires a unaligned store.
2872          if (AllowUnalign)
2873            VT = MVT::iAny;
2874        } else {
2875          // Give the stack frame object a larger alignment if needed.
2876          if (MFI->getObjectAlignment(FI) < NewAlign)
2877            MFI->setObjectAlignment(FI, NewAlign);
2878          Align = NewAlign;
2879        }
2880      }
2881    }
2882  }
2883
2884  if (VT == MVT::iAny) {
2885    if (AllowUnalign) {
2886      VT = MVT::i64;
2887    } else {
2888      switch (Align & 7) {
2889      case 0:  VT = MVT::i64; break;
2890      case 4:  VT = MVT::i32; break;
2891      case 2:  VT = MVT::i16; break;
2892      default: VT = MVT::i8;  break;
2893      }
2894    }
2895
2896    MVT LVT = MVT::i64;
2897    while (!TLI.isTypeLegal(LVT))
2898      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2899    assert(LVT.isInteger());
2900
2901    if (VT.bitsGT(LVT))
2902      VT = LVT;
2903  }
2904
2905  unsigned NumMemOps = 0;
2906  while (Size != 0) {
2907    unsigned VTSize = VT.getSizeInBits() / 8;
2908    while (VTSize > Size) {
2909      // For now, only use non-vector load / store's for the left-over pieces.
2910      if (VT.isVector()) {
2911        VT = MVT::i64;
2912        while (!TLI.isTypeLegal(VT))
2913          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2914        VTSize = VT.getSizeInBits() / 8;
2915      } else {
2916        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2917        VTSize >>= 1;
2918      }
2919    }
2920
2921    if (++NumMemOps > Limit)
2922      return false;
2923    MemOps.push_back(VT);
2924    Size -= VTSize;
2925  }
2926
2927  return true;
2928}
2929
2930static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2931                                         SDValue Chain, SDValue Dst,
2932                                         SDValue Src, uint64_t Size,
2933                                         unsigned Align, bool AlwaysInline,
2934                                         const Value *DstSV, uint64_t DstSVOff,
2935                                         const Value *SrcSV, uint64_t SrcSVOff){
2936  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2937
2938  // Expand memcpy to a series of load and store ops if the size operand falls
2939  // below a certain threshold.
2940  std::vector<MVT> MemOps;
2941  uint64_t Limit = -1ULL;
2942  if (!AlwaysInline)
2943    Limit = TLI.getMaxStoresPerMemcpy();
2944  unsigned DstAlign = Align;  // Destination alignment can change.
2945  std::string Str;
2946  bool CopyFromStr;
2947  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2948                                Str, CopyFromStr, DAG, TLI))
2949    return SDValue();
2950
2951
2952  bool isZeroStr = CopyFromStr && Str.empty();
2953  SmallVector<SDValue, 8> OutChains;
2954  unsigned NumMemOps = MemOps.size();
2955  uint64_t SrcOff = 0, DstOff = 0;
2956  for (unsigned i = 0; i < NumMemOps; i++) {
2957    MVT VT = MemOps[i];
2958    unsigned VTSize = VT.getSizeInBits() / 8;
2959    SDValue Value, Store;
2960
2961    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2962      // It's unlikely a store of a vector immediate can be done in a single
2963      // instruction. It would require a load from a constantpool first.
2964      // We also handle store a vector with all zero's.
2965      // FIXME: Handle other cases where store of vector immediate is done in
2966      // a single instruction.
2967      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2968      Store = DAG.getStore(Chain, Value,
2969                           getMemBasePlusOffset(Dst, DstOff, DAG),
2970                           DstSV, DstSVOff + DstOff, false, DstAlign);
2971    } else {
2972      Value = DAG.getLoad(VT, Chain,
2973                          getMemBasePlusOffset(Src, SrcOff, DAG),
2974                          SrcSV, SrcSVOff + SrcOff, false, Align);
2975      Store = DAG.getStore(Chain, Value,
2976                           getMemBasePlusOffset(Dst, DstOff, DAG),
2977                           DstSV, DstSVOff + DstOff, false, DstAlign);
2978    }
2979    OutChains.push_back(Store);
2980    SrcOff += VTSize;
2981    DstOff += VTSize;
2982  }
2983
2984  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2985                     &OutChains[0], OutChains.size());
2986}
2987
2988static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
2989                                          SDValue Chain, SDValue Dst,
2990                                          SDValue Src, uint64_t Size,
2991                                          unsigned Align, bool AlwaysInline,
2992                                          const Value *DstSV, uint64_t DstSVOff,
2993                                          const Value *SrcSV, uint64_t SrcSVOff){
2994  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2995
2996  // Expand memmove to a series of load and store ops if the size operand falls
2997  // below a certain threshold.
2998  std::vector<MVT> MemOps;
2999  uint64_t Limit = -1ULL;
3000  if (!AlwaysInline)
3001    Limit = TLI.getMaxStoresPerMemmove();
3002  unsigned DstAlign = Align;  // Destination alignment can change.
3003  std::string Str;
3004  bool CopyFromStr;
3005  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3006                                Str, CopyFromStr, DAG, TLI))
3007    return SDValue();
3008
3009  uint64_t SrcOff = 0, DstOff = 0;
3010
3011  SmallVector<SDValue, 8> LoadValues;
3012  SmallVector<SDValue, 8> LoadChains;
3013  SmallVector<SDValue, 8> OutChains;
3014  unsigned NumMemOps = MemOps.size();
3015  for (unsigned i = 0; i < NumMemOps; i++) {
3016    MVT VT = MemOps[i];
3017    unsigned VTSize = VT.getSizeInBits() / 8;
3018    SDValue Value, Store;
3019
3020    Value = DAG.getLoad(VT, Chain,
3021                        getMemBasePlusOffset(Src, SrcOff, DAG),
3022                        SrcSV, SrcSVOff + SrcOff, false, Align);
3023    LoadValues.push_back(Value);
3024    LoadChains.push_back(Value.getValue(1));
3025    SrcOff += VTSize;
3026  }
3027  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3028                      &LoadChains[0], LoadChains.size());
3029  OutChains.clear();
3030  for (unsigned i = 0; i < NumMemOps; i++) {
3031    MVT VT = MemOps[i];
3032    unsigned VTSize = VT.getSizeInBits() / 8;
3033    SDValue Value, Store;
3034
3035    Store = DAG.getStore(Chain, LoadValues[i],
3036                         getMemBasePlusOffset(Dst, DstOff, DAG),
3037                         DstSV, DstSVOff + DstOff, false, DstAlign);
3038    OutChains.push_back(Store);
3039    DstOff += VTSize;
3040  }
3041
3042  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3043                     &OutChains[0], OutChains.size());
3044}
3045
3046static SDValue getMemsetStores(SelectionDAG &DAG,
3047                                 SDValue Chain, SDValue Dst,
3048                                 SDValue Src, uint64_t Size,
3049                                 unsigned Align,
3050                                 const Value *DstSV, uint64_t DstSVOff) {
3051  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3052
3053  // Expand memset to a series of load/store ops if the size operand
3054  // falls below a certain threshold.
3055  std::vector<MVT> MemOps;
3056  std::string Str;
3057  bool CopyFromStr;
3058  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3059                                Size, Align, Str, CopyFromStr, DAG, TLI))
3060    return SDValue();
3061
3062  SmallVector<SDValue, 8> OutChains;
3063  uint64_t DstOff = 0;
3064
3065  unsigned NumMemOps = MemOps.size();
3066  for (unsigned i = 0; i < NumMemOps; i++) {
3067    MVT VT = MemOps[i];
3068    unsigned VTSize = VT.getSizeInBits() / 8;
3069    SDValue Value = getMemsetValue(Src, VT, DAG);
3070    SDValue Store = DAG.getStore(Chain, Value,
3071                                   getMemBasePlusOffset(Dst, DstOff, DAG),
3072                                   DstSV, DstSVOff + DstOff);
3073    OutChains.push_back(Store);
3074    DstOff += VTSize;
3075  }
3076
3077  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3078                     &OutChains[0], OutChains.size());
3079}
3080
3081SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3082                                SDValue Src, SDValue Size,
3083                                unsigned Align, bool AlwaysInline,
3084                                const Value *DstSV, uint64_t DstSVOff,
3085                                const Value *SrcSV, uint64_t SrcSVOff) {
3086
3087  // Check to see if we should lower the memcpy to loads and stores first.
3088  // For cases within the target-specified limits, this is the best choice.
3089  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3090  if (ConstantSize) {
3091    // Memcpy with size zero? Just return the original chain.
3092    if (ConstantSize->isNullValue())
3093      return Chain;
3094
3095    SDValue Result =
3096      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3097                              ConstantSize->getZExtValue(),
3098                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3099    if (Result.getNode())
3100      return Result;
3101  }
3102
3103  // Then check to see if we should lower the memcpy with target-specific
3104  // code. If the target chooses to do this, this is the next best.
3105  SDValue Result =
3106    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3107                                AlwaysInline,
3108                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3109  if (Result.getNode())
3110    return Result;
3111
3112  // If we really need inline code and the target declined to provide it,
3113  // use a (potentially long) sequence of loads and stores.
3114  if (AlwaysInline) {
3115    assert(ConstantSize && "AlwaysInline requires a constant size!");
3116    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3117                                   ConstantSize->getZExtValue(), Align, true,
3118                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3119  }
3120
3121  // Emit a library call.
3122  TargetLowering::ArgListTy Args;
3123  TargetLowering::ArgListEntry Entry;
3124  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3125  Entry.Node = Dst; Args.push_back(Entry);
3126  Entry.Node = Src; Args.push_back(Entry);
3127  Entry.Node = Size; Args.push_back(Entry);
3128  std::pair<SDValue,SDValue> CallResult =
3129    TLI.LowerCallTo(Chain, Type::VoidTy,
3130                    false, false, false, false, CallingConv::C, false,
3131                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3132                    Args, *this);
3133  return CallResult.second;
3134}
3135
3136SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3137                                 SDValue Src, SDValue Size,
3138                                 unsigned Align,
3139                                 const Value *DstSV, uint64_t DstSVOff,
3140                                 const Value *SrcSV, uint64_t SrcSVOff) {
3141
3142  // Check to see if we should lower the memmove to loads and stores first.
3143  // For cases within the target-specified limits, this is the best choice.
3144  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3145  if (ConstantSize) {
3146    // Memmove with size zero? Just return the original chain.
3147    if (ConstantSize->isNullValue())
3148      return Chain;
3149
3150    SDValue Result =
3151      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3152                               ConstantSize->getZExtValue(),
3153                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3154    if (Result.getNode())
3155      return Result;
3156  }
3157
3158  // Then check to see if we should lower the memmove with target-specific
3159  // code. If the target chooses to do this, this is the next best.
3160  SDValue Result =
3161    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3162                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3163  if (Result.getNode())
3164    return Result;
3165
3166  // Emit a library call.
3167  TargetLowering::ArgListTy Args;
3168  TargetLowering::ArgListEntry Entry;
3169  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3170  Entry.Node = Dst; Args.push_back(Entry);
3171  Entry.Node = Src; Args.push_back(Entry);
3172  Entry.Node = Size; Args.push_back(Entry);
3173  std::pair<SDValue,SDValue> CallResult =
3174    TLI.LowerCallTo(Chain, Type::VoidTy,
3175                    false, false, false, false, CallingConv::C, false,
3176                    getExternalSymbol("memmove", TLI.getPointerTy()),
3177                    Args, *this);
3178  return CallResult.second;
3179}
3180
3181SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3182                                SDValue Src, SDValue Size,
3183                                unsigned Align,
3184                                const Value *DstSV, uint64_t DstSVOff) {
3185
3186  // Check to see if we should lower the memset to stores first.
3187  // For cases within the target-specified limits, this is the best choice.
3188  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3189  if (ConstantSize) {
3190    // Memset with size zero? Just return the original chain.
3191    if (ConstantSize->isNullValue())
3192      return Chain;
3193
3194    SDValue Result =
3195      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3196                      Align, DstSV, DstSVOff);
3197    if (Result.getNode())
3198      return Result;
3199  }
3200
3201  // Then check to see if we should lower the memset with target-specific
3202  // code. If the target chooses to do this, this is the next best.
3203  SDValue Result =
3204    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3205                                DstSV, DstSVOff);
3206  if (Result.getNode())
3207    return Result;
3208
3209  // Emit a library call.
3210  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3211  TargetLowering::ArgListTy Args;
3212  TargetLowering::ArgListEntry Entry;
3213  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3214  Args.push_back(Entry);
3215  // Extend or truncate the argument to be an i32 value for the call.
3216  if (Src.getValueType().bitsGT(MVT::i32))
3217    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3218  else
3219    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3220  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3221  Args.push_back(Entry);
3222  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3223  Args.push_back(Entry);
3224  std::pair<SDValue,SDValue> CallResult =
3225    TLI.LowerCallTo(Chain, Type::VoidTy,
3226                    false, false, false, false, CallingConv::C, false,
3227                    getExternalSymbol("memset", TLI.getPointerTy()),
3228                    Args, *this);
3229  return CallResult.second;
3230}
3231
3232SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3233                                SDValue Ptr, SDValue Cmp,
3234                                SDValue Swp, const Value* PtrVal,
3235                                unsigned Alignment) {
3236  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3237          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3238          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3239          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3240  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3241
3242  MVT VT = Cmp.getValueType();
3243
3244  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3245    Alignment = getMVTAlignment(VT);
3246
3247  SDVTList VTs = getVTList(VT, MVT::Other);
3248  FoldingSetNodeID ID;
3249  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3250  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3251  void* IP = 0;
3252  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3253    return SDValue(E, 0);
3254  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3255  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3256  CSEMap.InsertNode(N, IP);
3257  AllNodes.push_back(N);
3258  return SDValue(N, 0);
3259}
3260
3261SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3262                                SDValue Ptr, SDValue Val,
3263                                const Value* PtrVal,
3264                                unsigned Alignment) {
3265  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3266          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3267          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3268          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3269          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3270          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3271          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3272          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3273          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3274          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3275          Opcode == ISD::ATOMIC_SWAP_8 ||
3276          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3277          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3278          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3279          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3280          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3281          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3282          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3283          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3284          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3285          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3286          Opcode == ISD::ATOMIC_SWAP_16 ||
3287          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3288          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3289          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3290          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3291          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3292          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3293          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3294          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3295          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3296          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3297          Opcode == ISD::ATOMIC_SWAP_32 ||
3298          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3299          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3300          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3301          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3302          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3303          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3304          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3305          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3306          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3307          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3308          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3309
3310  MVT VT = Val.getValueType();
3311
3312  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3313    Alignment = getMVTAlignment(VT);
3314
3315  SDVTList VTs = getVTList(VT, MVT::Other);
3316  FoldingSetNodeID ID;
3317  SDValue Ops[] = {Chain, Ptr, Val};
3318  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3319  void* IP = 0;
3320  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3321    return SDValue(E, 0);
3322  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3323  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3324  CSEMap.InsertNode(N, IP);
3325  AllNodes.push_back(N);
3326  return SDValue(N, 0);
3327}
3328
3329/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3330/// Allowed to return something different (and simpler) if Simplify is true.
3331SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3332                                     bool Simplify) {
3333  if (Simplify && NumOps == 1)
3334    return Ops[0];
3335
3336  SmallVector<MVT, 4> VTs;
3337  VTs.reserve(NumOps);
3338  for (unsigned i = 0; i < NumOps; ++i)
3339    VTs.push_back(Ops[i].getValueType());
3340  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3341}
3342
3343SDValue
3344SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3345                                  const MVT *VTs, unsigned NumVTs,
3346                                  const SDValue *Ops, unsigned NumOps,
3347                                  MVT MemVT, const Value *srcValue, int SVOff,
3348                                  unsigned Align, bool Vol,
3349                                  bool ReadMem, bool WriteMem) {
3350  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3351                             MemVT, srcValue, SVOff, Align, Vol,
3352                             ReadMem, WriteMem);
3353}
3354
3355SDValue
3356SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3357                                  const SDValue *Ops, unsigned NumOps,
3358                                  MVT MemVT, const Value *srcValue, int SVOff,
3359                                  unsigned Align, bool Vol,
3360                                  bool ReadMem, bool WriteMem) {
3361  // Memoize the node unless it returns a flag.
3362  MemIntrinsicSDNode *N;
3363  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3364    FoldingSetNodeID ID;
3365    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3366    void *IP = 0;
3367    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3368      return SDValue(E, 0);
3369
3370    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3371    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3372                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3373    CSEMap.InsertNode(N, IP);
3374  } else {
3375    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3376    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3377                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3378  }
3379  AllNodes.push_back(N);
3380  return SDValue(N, 0);
3381}
3382
3383SDValue
3384SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3385                      bool IsInreg, SDVTList VTs,
3386                      const SDValue *Operands, unsigned NumOperands) {
3387  // Do not include isTailCall in the folding set profile.
3388  FoldingSetNodeID ID;
3389  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3390  ID.AddInteger(CallingConv);
3391  ID.AddInteger(IsVarArgs);
3392  void *IP = 0;
3393  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3394    // Instead of including isTailCall in the folding set, we just
3395    // set the flag of the existing node.
3396    if (!IsTailCall)
3397      cast<CallSDNode>(E)->setNotTailCall();
3398    return SDValue(E, 0);
3399  }
3400  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3401  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3402                     VTs, Operands, NumOperands);
3403  CSEMap.InsertNode(N, IP);
3404  AllNodes.push_back(N);
3405  return SDValue(N, 0);
3406}
3407
3408SDValue
3409SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3410                      MVT VT, SDValue Chain,
3411                      SDValue Ptr, SDValue Offset,
3412                      const Value *SV, int SVOffset, MVT EVT,
3413                      bool isVolatile, unsigned Alignment) {
3414  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3415    Alignment = getMVTAlignment(VT);
3416
3417  if (VT == EVT) {
3418    ExtType = ISD::NON_EXTLOAD;
3419  } else if (ExtType == ISD::NON_EXTLOAD) {
3420    assert(VT == EVT && "Non-extending load from different memory type!");
3421  } else {
3422    // Extending load.
3423    if (VT.isVector())
3424      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3425             "Invalid vector extload!");
3426    else
3427      assert(EVT.bitsLT(VT) &&
3428             "Should only be an extending load, not truncating!");
3429    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3430           "Cannot sign/zero extend a FP/Vector load!");
3431    assert(VT.isInteger() == EVT.isInteger() &&
3432           "Cannot convert from FP to Int or Int -> FP!");
3433  }
3434
3435  bool Indexed = AM != ISD::UNINDEXED;
3436  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3437         "Unindexed load with an offset!");
3438
3439  SDVTList VTs = Indexed ?
3440    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3441  SDValue Ops[] = { Chain, Ptr, Offset };
3442  FoldingSetNodeID ID;
3443  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3444  ID.AddInteger(AM);
3445  ID.AddInteger(ExtType);
3446  ID.AddInteger(EVT.getRawBits());
3447  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3448  void *IP = 0;
3449  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3450    return SDValue(E, 0);
3451  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3452  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3453                     Alignment, isVolatile);
3454  CSEMap.InsertNode(N, IP);
3455  AllNodes.push_back(N);
3456  return SDValue(N, 0);
3457}
3458
3459SDValue SelectionDAG::getLoad(MVT VT,
3460                              SDValue Chain, SDValue Ptr,
3461                              const Value *SV, int SVOffset,
3462                              bool isVolatile, unsigned Alignment) {
3463  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3464  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3465                 SV, SVOffset, VT, isVolatile, Alignment);
3466}
3467
3468SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3469                                 SDValue Chain, SDValue Ptr,
3470                                 const Value *SV,
3471                                 int SVOffset, MVT EVT,
3472                                 bool isVolatile, unsigned Alignment) {
3473  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3474  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3475                 SV, SVOffset, EVT, isVolatile, Alignment);
3476}
3477
3478SDValue
3479SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3480                             SDValue Offset, ISD::MemIndexedMode AM) {
3481  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3482  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3483         "Load is already a indexed load!");
3484  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3485                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3486                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3487                 LD->isVolatile(), LD->getAlignment());
3488}
3489
3490SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3491                               SDValue Ptr, const Value *SV, int SVOffset,
3492                               bool isVolatile, unsigned Alignment) {
3493  MVT VT = Val.getValueType();
3494
3495  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3496    Alignment = getMVTAlignment(VT);
3497
3498  SDVTList VTs = getVTList(MVT::Other);
3499  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3500  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3501  FoldingSetNodeID ID;
3502  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3503  ID.AddInteger(ISD::UNINDEXED);
3504  ID.AddInteger(false);
3505  ID.AddInteger(VT.getRawBits());
3506  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3507  void *IP = 0;
3508  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3509    return SDValue(E, 0);
3510  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3511  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3512                      VT, SV, SVOffset, Alignment, isVolatile);
3513  CSEMap.InsertNode(N, IP);
3514  AllNodes.push_back(N);
3515  return SDValue(N, 0);
3516}
3517
3518SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3519                                    SDValue Ptr, const Value *SV,
3520                                    int SVOffset, MVT SVT,
3521                                    bool isVolatile, unsigned Alignment) {
3522  MVT VT = Val.getValueType();
3523
3524  if (VT == SVT)
3525    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3526
3527  assert(VT.bitsGT(SVT) && "Not a truncation?");
3528  assert(VT.isInteger() == SVT.isInteger() &&
3529         "Can't do FP-INT conversion!");
3530
3531  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3532    Alignment = getMVTAlignment(VT);
3533
3534  SDVTList VTs = getVTList(MVT::Other);
3535  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3536  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3537  FoldingSetNodeID ID;
3538  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3539  ID.AddInteger(ISD::UNINDEXED);
3540  ID.AddInteger(1);
3541  ID.AddInteger(SVT.getRawBits());
3542  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3543  void *IP = 0;
3544  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3545    return SDValue(E, 0);
3546  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3547  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3548                      SVT, SV, SVOffset, Alignment, isVolatile);
3549  CSEMap.InsertNode(N, IP);
3550  AllNodes.push_back(N);
3551  return SDValue(N, 0);
3552}
3553
3554SDValue
3555SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3556                              SDValue Offset, ISD::MemIndexedMode AM) {
3557  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3558  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3559         "Store is already a indexed store!");
3560  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3561  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3562  FoldingSetNodeID ID;
3563  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3564  ID.AddInteger(AM);
3565  ID.AddInteger(ST->isTruncatingStore());
3566  ID.AddInteger(ST->getMemoryVT().getRawBits());
3567  ID.AddInteger(ST->getRawFlags());
3568  void *IP = 0;
3569  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3570    return SDValue(E, 0);
3571  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3572  new (N) StoreSDNode(Ops, VTs, AM,
3573                      ST->isTruncatingStore(), ST->getMemoryVT(),
3574                      ST->getSrcValue(), ST->getSrcValueOffset(),
3575                      ST->getAlignment(), ST->isVolatile());
3576  CSEMap.InsertNode(N, IP);
3577  AllNodes.push_back(N);
3578  return SDValue(N, 0);
3579}
3580
3581SDValue SelectionDAG::getVAArg(MVT VT,
3582                               SDValue Chain, SDValue Ptr,
3583                               SDValue SV) {
3584  SDValue Ops[] = { Chain, Ptr, SV };
3585  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3586}
3587
3588SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3589                              const SDUse *Ops, unsigned NumOps) {
3590  switch (NumOps) {
3591  case 0: return getNode(Opcode, VT);
3592  case 1: return getNode(Opcode, VT, Ops[0]);
3593  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3594  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3595  default: break;
3596  }
3597
3598  // Copy from an SDUse array into an SDValue array for use with
3599  // the regular getNode logic.
3600  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3601  return getNode(Opcode, VT, &NewOps[0], NumOps);
3602}
3603
3604SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3605                              const SDValue *Ops, unsigned NumOps) {
3606  switch (NumOps) {
3607  case 0: return getNode(Opcode, VT);
3608  case 1: return getNode(Opcode, VT, Ops[0]);
3609  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3610  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3611  default: break;
3612  }
3613
3614  switch (Opcode) {
3615  default: break;
3616  case ISD::SELECT_CC: {
3617    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3618    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3619           "LHS and RHS of condition must have same type!");
3620    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3621           "True and False arms of SelectCC must have same type!");
3622    assert(Ops[2].getValueType() == VT &&
3623           "select_cc node must be of same type as true and false value!");
3624    break;
3625  }
3626  case ISD::BR_CC: {
3627    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3628    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3629           "LHS/RHS of comparison should match types!");
3630    break;
3631  }
3632  }
3633
3634  // Memoize nodes.
3635  SDNode *N;
3636  SDVTList VTs = getVTList(VT);
3637  if (VT != MVT::Flag) {
3638    FoldingSetNodeID ID;
3639    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3640    void *IP = 0;
3641    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3642      return SDValue(E, 0);
3643    N = NodeAllocator.Allocate<SDNode>();
3644    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3645    CSEMap.InsertNode(N, IP);
3646  } else {
3647    N = NodeAllocator.Allocate<SDNode>();
3648    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3649  }
3650  AllNodes.push_back(N);
3651#ifndef NDEBUG
3652  VerifyNode(N);
3653#endif
3654  return SDValue(N, 0);
3655}
3656
3657SDValue SelectionDAG::getNode(unsigned Opcode,
3658                              const std::vector<MVT> &ResultTys,
3659                              const SDValue *Ops, unsigned NumOps) {
3660  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3661                 Ops, NumOps);
3662}
3663
3664SDValue SelectionDAG::getNode(unsigned Opcode,
3665                              const MVT *VTs, unsigned NumVTs,
3666                              const SDValue *Ops, unsigned NumOps) {
3667  if (NumVTs == 1)
3668    return getNode(Opcode, VTs[0], Ops, NumOps);
3669  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3670}
3671
3672SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3673                              const SDValue *Ops, unsigned NumOps) {
3674  if (VTList.NumVTs == 1)
3675    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3676
3677  switch (Opcode) {
3678  // FIXME: figure out how to safely handle things like
3679  // int foo(int x) { return 1 << (x & 255); }
3680  // int bar() { return foo(256); }
3681#if 0
3682  case ISD::SRA_PARTS:
3683  case ISD::SRL_PARTS:
3684  case ISD::SHL_PARTS:
3685    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3686        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3687      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3688    else if (N3.getOpcode() == ISD::AND)
3689      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3690        // If the and is only masking out bits that cannot effect the shift,
3691        // eliminate the and.
3692        unsigned NumBits = VT.getSizeInBits()*2;
3693        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3694          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3695      }
3696    break;
3697#endif
3698  }
3699
3700  // Memoize the node unless it returns a flag.
3701  SDNode *N;
3702  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3703    FoldingSetNodeID ID;
3704    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3705    void *IP = 0;
3706    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3707      return SDValue(E, 0);
3708    if (NumOps == 1) {
3709      N = NodeAllocator.Allocate<UnarySDNode>();
3710      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3711    } else if (NumOps == 2) {
3712      N = NodeAllocator.Allocate<BinarySDNode>();
3713      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3714    } else if (NumOps == 3) {
3715      N = NodeAllocator.Allocate<TernarySDNode>();
3716      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3717    } else {
3718      N = NodeAllocator.Allocate<SDNode>();
3719      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3720    }
3721    CSEMap.InsertNode(N, IP);
3722  } else {
3723    if (NumOps == 1) {
3724      N = NodeAllocator.Allocate<UnarySDNode>();
3725      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3726    } else if (NumOps == 2) {
3727      N = NodeAllocator.Allocate<BinarySDNode>();
3728      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3729    } else if (NumOps == 3) {
3730      N = NodeAllocator.Allocate<TernarySDNode>();
3731      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3732    } else {
3733      N = NodeAllocator.Allocate<SDNode>();
3734      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3735    }
3736  }
3737  AllNodes.push_back(N);
3738#ifndef NDEBUG
3739  VerifyNode(N);
3740#endif
3741  return SDValue(N, 0);
3742}
3743
3744SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3745  return getNode(Opcode, VTList, 0, 0);
3746}
3747
3748SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3749                                SDValue N1) {
3750  SDValue Ops[] = { N1 };
3751  return getNode(Opcode, VTList, Ops, 1);
3752}
3753
3754SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3755                              SDValue N1, SDValue N2) {
3756  SDValue Ops[] = { N1, N2 };
3757  return getNode(Opcode, VTList, Ops, 2);
3758}
3759
3760SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3761                              SDValue N1, SDValue N2, SDValue N3) {
3762  SDValue Ops[] = { N1, N2, N3 };
3763  return getNode(Opcode, VTList, Ops, 3);
3764}
3765
3766SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3767                              SDValue N1, SDValue N2, SDValue N3,
3768                              SDValue N4) {
3769  SDValue Ops[] = { N1, N2, N3, N4 };
3770  return getNode(Opcode, VTList, Ops, 4);
3771}
3772
3773SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3774                              SDValue N1, SDValue N2, SDValue N3,
3775                              SDValue N4, SDValue N5) {
3776  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3777  return getNode(Opcode, VTList, Ops, 5);
3778}
3779
3780SDVTList SelectionDAG::getVTList(MVT VT) {
3781  return makeVTList(SDNode::getValueTypeList(VT), 1);
3782}
3783
3784SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3785  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3786       E = VTList.rend(); I != E; ++I)
3787    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3788      return *I;
3789
3790  MVT *Array = Allocator.Allocate<MVT>(2);
3791  Array[0] = VT1;
3792  Array[1] = VT2;
3793  SDVTList Result = makeVTList(Array, 2);
3794  VTList.push_back(Result);
3795  return Result;
3796}
3797
3798SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3799  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3800       E = VTList.rend(); I != E; ++I)
3801    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3802                          I->VTs[2] == VT3)
3803      return *I;
3804
3805  MVT *Array = Allocator.Allocate<MVT>(3);
3806  Array[0] = VT1;
3807  Array[1] = VT2;
3808  Array[2] = VT3;
3809  SDVTList Result = makeVTList(Array, 3);
3810  VTList.push_back(Result);
3811  return Result;
3812}
3813
3814SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3815  switch (NumVTs) {
3816    case 0: assert(0 && "Cannot have nodes without results!");
3817    case 1: return getVTList(VTs[0]);
3818    case 2: return getVTList(VTs[0], VTs[1]);
3819    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3820    default: break;
3821  }
3822
3823  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3824       E = VTList.rend(); I != E; ++I) {
3825    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3826      continue;
3827
3828    bool NoMatch = false;
3829    for (unsigned i = 2; i != NumVTs; ++i)
3830      if (VTs[i] != I->VTs[i]) {
3831        NoMatch = true;
3832        break;
3833      }
3834    if (!NoMatch)
3835      return *I;
3836  }
3837
3838  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3839  std::copy(VTs, VTs+NumVTs, Array);
3840  SDVTList Result = makeVTList(Array, NumVTs);
3841  VTList.push_back(Result);
3842  return Result;
3843}
3844
3845
3846/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3847/// specified operands.  If the resultant node already exists in the DAG,
3848/// this does not modify the specified node, instead it returns the node that
3849/// already exists.  If the resultant node does not exist in the DAG, the
3850/// input node is returned.  As a degenerate case, if you specify the same
3851/// input operands as the node already has, the input node is returned.
3852SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3853  SDNode *N = InN.getNode();
3854  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3855
3856  // Check to see if there is no change.
3857  if (Op == N->getOperand(0)) return InN;
3858
3859  // See if the modified node already exists.
3860  void *InsertPos = 0;
3861  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3862    return SDValue(Existing, InN.getResNo());
3863
3864  // Nope it doesn't.  Remove the node from its current place in the maps.
3865  if (InsertPos)
3866    if (!RemoveNodeFromCSEMaps(N))
3867      InsertPos = 0;
3868
3869  // Now we update the operands.
3870  N->OperandList[0].getVal()->removeUser(0, N);
3871  N->OperandList[0] = Op;
3872  N->OperandList[0].setUser(N);
3873  Op.getNode()->addUser(0, N);
3874
3875  // If this gets put into a CSE map, add it.
3876  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3877  return InN;
3878}
3879
3880SDValue SelectionDAG::
3881UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3882  SDNode *N = InN.getNode();
3883  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3884
3885  // Check to see if there is no change.
3886  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3887    return InN;   // No operands changed, just return the input node.
3888
3889  // See if the modified node already exists.
3890  void *InsertPos = 0;
3891  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3892    return SDValue(Existing, InN.getResNo());
3893
3894  // Nope it doesn't.  Remove the node from its current place in the maps.
3895  if (InsertPos)
3896    if (!RemoveNodeFromCSEMaps(N))
3897      InsertPos = 0;
3898
3899  // Now we update the operands.
3900  if (N->OperandList[0] != Op1) {
3901    N->OperandList[0].getVal()->removeUser(0, N);
3902    N->OperandList[0] = Op1;
3903    N->OperandList[0].setUser(N);
3904    Op1.getNode()->addUser(0, N);
3905  }
3906  if (N->OperandList[1] != Op2) {
3907    N->OperandList[1].getVal()->removeUser(1, N);
3908    N->OperandList[1] = Op2;
3909    N->OperandList[1].setUser(N);
3910    Op2.getNode()->addUser(1, N);
3911  }
3912
3913  // If this gets put into a CSE map, add it.
3914  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3915  return InN;
3916}
3917
3918SDValue SelectionDAG::
3919UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3920  SDValue Ops[] = { Op1, Op2, Op3 };
3921  return UpdateNodeOperands(N, Ops, 3);
3922}
3923
3924SDValue SelectionDAG::
3925UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3926                   SDValue Op3, SDValue Op4) {
3927  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3928  return UpdateNodeOperands(N, Ops, 4);
3929}
3930
3931SDValue SelectionDAG::
3932UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3933                   SDValue Op3, SDValue Op4, SDValue Op5) {
3934  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3935  return UpdateNodeOperands(N, Ops, 5);
3936}
3937
3938SDValue SelectionDAG::
3939UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3940  SDNode *N = InN.getNode();
3941  assert(N->getNumOperands() == NumOps &&
3942         "Update with wrong number of operands");
3943
3944  // Check to see if there is no change.
3945  bool AnyChange = false;
3946  for (unsigned i = 0; i != NumOps; ++i) {
3947    if (Ops[i] != N->getOperand(i)) {
3948      AnyChange = true;
3949      break;
3950    }
3951  }
3952
3953  // No operands changed, just return the input node.
3954  if (!AnyChange) return InN;
3955
3956  // See if the modified node already exists.
3957  void *InsertPos = 0;
3958  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3959    return SDValue(Existing, InN.getResNo());
3960
3961  // Nope it doesn't.  Remove the node from its current place in the maps.
3962  if (InsertPos)
3963    if (!RemoveNodeFromCSEMaps(N))
3964      InsertPos = 0;
3965
3966  // Now we update the operands.
3967  for (unsigned i = 0; i != NumOps; ++i) {
3968    if (N->OperandList[i] != Ops[i]) {
3969      N->OperandList[i].getVal()->removeUser(i, N);
3970      N->OperandList[i] = Ops[i];
3971      N->OperandList[i].setUser(N);
3972      Ops[i].getNode()->addUser(i, N);
3973    }
3974  }
3975
3976  // If this gets put into a CSE map, add it.
3977  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3978  return InN;
3979}
3980
3981/// DropOperands - Release the operands and set this node to have
3982/// zero operands.
3983void SDNode::DropOperands() {
3984  // Unlike the code in MorphNodeTo that does this, we don't need to
3985  // watch for dead nodes here.
3986  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3987    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3988
3989  NumOperands = 0;
3990}
3991
3992/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
3993/// machine opcode.
3994///
3995SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3996                                   MVT VT) {
3997  SDVTList VTs = getVTList(VT);
3998  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
3999}
4000
4001SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4002                                   MVT VT, SDValue Op1) {
4003  SDVTList VTs = getVTList(VT);
4004  SDValue Ops[] = { Op1 };
4005  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4006}
4007
4008SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4009                                   MVT VT, SDValue Op1,
4010                                   SDValue Op2) {
4011  SDVTList VTs = getVTList(VT);
4012  SDValue Ops[] = { Op1, Op2 };
4013  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4014}
4015
4016SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4017                                   MVT VT, SDValue Op1,
4018                                   SDValue Op2, SDValue Op3) {
4019  SDVTList VTs = getVTList(VT);
4020  SDValue Ops[] = { Op1, Op2, Op3 };
4021  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4022}
4023
4024SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4025                                   MVT VT, const SDValue *Ops,
4026                                   unsigned NumOps) {
4027  SDVTList VTs = getVTList(VT);
4028  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4029}
4030
4031SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4032                                   MVT VT1, MVT VT2, const SDValue *Ops,
4033                                   unsigned NumOps) {
4034  SDVTList VTs = getVTList(VT1, VT2);
4035  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4036}
4037
4038SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4039                                   MVT VT1, MVT VT2) {
4040  SDVTList VTs = getVTList(VT1, VT2);
4041  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4042}
4043
4044SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4045                                   MVT VT1, MVT VT2, MVT VT3,
4046                                   const SDValue *Ops, unsigned NumOps) {
4047  SDVTList VTs = getVTList(VT1, VT2, VT3);
4048  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4049}
4050
4051SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4052                                   MVT VT1, MVT VT2,
4053                                   SDValue Op1) {
4054  SDVTList VTs = getVTList(VT1, VT2);
4055  SDValue Ops[] = { Op1 };
4056  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4057}
4058
4059SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4060                                   MVT VT1, MVT VT2,
4061                                   SDValue Op1, SDValue Op2) {
4062  SDVTList VTs = getVTList(VT1, VT2);
4063  SDValue Ops[] = { Op1, Op2 };
4064  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4065}
4066
4067SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4068                                   MVT VT1, MVT VT2,
4069                                   SDValue Op1, SDValue Op2,
4070                                   SDValue Op3) {
4071  SDVTList VTs = getVTList(VT1, VT2);
4072  SDValue Ops[] = { Op1, Op2, Op3 };
4073  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4074}
4075
4076SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4077                                   SDVTList VTs, const SDValue *Ops,
4078                                   unsigned NumOps) {
4079  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4080}
4081
4082SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4083                                  MVT VT) {
4084  SDVTList VTs = getVTList(VT);
4085  return MorphNodeTo(N, Opc, VTs, 0, 0);
4086}
4087
4088SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4089                                  MVT VT, SDValue Op1) {
4090  SDVTList VTs = getVTList(VT);
4091  SDValue Ops[] = { Op1 };
4092  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4093}
4094
4095SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4096                                  MVT VT, SDValue Op1,
4097                                  SDValue Op2) {
4098  SDVTList VTs = getVTList(VT);
4099  SDValue Ops[] = { Op1, Op2 };
4100  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4101}
4102
4103SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4104                                  MVT VT, SDValue Op1,
4105                                  SDValue Op2, SDValue Op3) {
4106  SDVTList VTs = getVTList(VT);
4107  SDValue Ops[] = { Op1, Op2, Op3 };
4108  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4109}
4110
4111SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4112                                  MVT VT, const SDValue *Ops,
4113                                  unsigned NumOps) {
4114  SDVTList VTs = getVTList(VT);
4115  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4116}
4117
4118SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4119                                  MVT VT1, MVT VT2, const SDValue *Ops,
4120                                  unsigned NumOps) {
4121  SDVTList VTs = getVTList(VT1, VT2);
4122  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4123}
4124
4125SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4126                                  MVT VT1, MVT VT2) {
4127  SDVTList VTs = getVTList(VT1, VT2);
4128  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4129}
4130
4131SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4132                                  MVT VT1, MVT VT2, MVT VT3,
4133                                  const SDValue *Ops, unsigned NumOps) {
4134  SDVTList VTs = getVTList(VT1, VT2, VT3);
4135  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4136}
4137
4138SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4139                                  MVT VT1, MVT VT2,
4140                                  SDValue Op1) {
4141  SDVTList VTs = getVTList(VT1, VT2);
4142  SDValue Ops[] = { Op1 };
4143  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4144}
4145
4146SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4147                                  MVT VT1, MVT VT2,
4148                                  SDValue Op1, SDValue Op2) {
4149  SDVTList VTs = getVTList(VT1, VT2);
4150  SDValue Ops[] = { Op1, Op2 };
4151  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4152}
4153
4154SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4155                                  MVT VT1, MVT VT2,
4156                                  SDValue Op1, SDValue Op2,
4157                                  SDValue Op3) {
4158  SDVTList VTs = getVTList(VT1, VT2);
4159  SDValue Ops[] = { Op1, Op2, Op3 };
4160  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4161}
4162
4163/// MorphNodeTo - These *mutate* the specified node to have the specified
4164/// return type, opcode, and operands.
4165///
4166/// Note that MorphNodeTo returns the resultant node.  If there is already a
4167/// node of the specified opcode and operands, it returns that node instead of
4168/// the current one.
4169///
4170/// Using MorphNodeTo is faster than creating a new node and swapping it in
4171/// with ReplaceAllUsesWith both because it often avoids allocating a new
4172/// node, and because it doesn't require CSE recalculation for any of
4173/// the node's users.
4174///
4175SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4176                                  SDVTList VTs, const SDValue *Ops,
4177                                  unsigned NumOps) {
4178  // If an identical node already exists, use it.
4179  void *IP = 0;
4180  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4181    FoldingSetNodeID ID;
4182    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4183    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4184      return ON;
4185  }
4186
4187  if (!RemoveNodeFromCSEMaps(N))
4188    IP = 0;
4189
4190  // Start the morphing.
4191  N->NodeType = Opc;
4192  N->ValueList = VTs.VTs;
4193  N->NumValues = VTs.NumVTs;
4194
4195  // Clear the operands list, updating used nodes to remove this from their
4196  // use list.  Keep track of any operands that become dead as a result.
4197  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4198  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4199       I != E; ++I) {
4200    SDNode *Used = I->getVal();
4201    Used->removeUser(std::distance(B, I), N);
4202    if (Used->use_empty())
4203      DeadNodeSet.insert(Used);
4204  }
4205
4206  // If NumOps is larger than the # of operands we currently have, reallocate
4207  // the operand list.
4208  if (NumOps > N->NumOperands) {
4209    if (N->OperandsNeedDelete)
4210      delete[] N->OperandList;
4211    if (N->isMachineOpcode()) {
4212      // We're creating a final node that will live unmorphed for the
4213      // remainder of the current SelectionDAG iteration, so we can allocate
4214      // the operands directly out of a pool with no recycling metadata.
4215      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4216      N->OperandsNeedDelete = false;
4217    } else {
4218      N->OperandList = new SDUse[NumOps];
4219      N->OperandsNeedDelete = true;
4220    }
4221  }
4222
4223  // Assign the new operands.
4224  N->NumOperands = NumOps;
4225  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4226    N->OperandList[i] = Ops[i];
4227    N->OperandList[i].setUser(N);
4228    SDNode *ToUse = N->OperandList[i].getVal();
4229    ToUse->addUser(i, N);
4230  }
4231
4232  // Delete any nodes that are still dead after adding the uses for the
4233  // new operands.
4234  SmallVector<SDNode *, 16> DeadNodes;
4235  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4236       E = DeadNodeSet.end(); I != E; ++I)
4237    if ((*I)->use_empty())
4238      DeadNodes.push_back(*I);
4239  RemoveDeadNodes(DeadNodes);
4240
4241  if (IP)
4242    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4243  return N;
4244}
4245
4246
4247/// getTargetNode - These are used for target selectors to create a new node
4248/// with specified return type(s), target opcode, and operands.
4249///
4250/// Note that getTargetNode returns the resultant node.  If there is already a
4251/// node of the specified opcode and operands, it returns that node instead of
4252/// the current one.
4253SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4254  return getNode(~Opcode, VT).getNode();
4255}
4256SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4257  return getNode(~Opcode, VT, Op1).getNode();
4258}
4259SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4260                                    SDValue Op1, SDValue Op2) {
4261  return getNode(~Opcode, VT, Op1, Op2).getNode();
4262}
4263SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4264                                    SDValue Op1, SDValue Op2,
4265                                    SDValue Op3) {
4266  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4267}
4268SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4269                                    const SDValue *Ops, unsigned NumOps) {
4270  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4271}
4272SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4273  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4274  SDValue Op;
4275  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4276}
4277SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4278                                    MVT VT2, SDValue Op1) {
4279  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4280  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4281}
4282SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4283                                    MVT VT2, SDValue Op1,
4284                                    SDValue Op2) {
4285  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4286  SDValue Ops[] = { Op1, Op2 };
4287  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4288}
4289SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4290                                    MVT VT2, SDValue Op1,
4291                                    SDValue Op2, SDValue Op3) {
4292  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4293  SDValue Ops[] = { Op1, Op2, Op3 };
4294  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4295}
4296SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4297                                    const SDValue *Ops, unsigned NumOps) {
4298  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4299  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4300}
4301SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4302                                    SDValue Op1, SDValue Op2) {
4303  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4304  SDValue Ops[] = { Op1, Op2 };
4305  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4306}
4307SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4308                                    SDValue Op1, SDValue Op2,
4309                                    SDValue Op3) {
4310  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4311  SDValue Ops[] = { Op1, Op2, Op3 };
4312  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4313}
4314SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4315                                    const SDValue *Ops, unsigned NumOps) {
4316  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4317  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4318}
4319SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4320                                    MVT VT2, MVT VT3, MVT VT4,
4321                                    const SDValue *Ops, unsigned NumOps) {
4322  std::vector<MVT> VTList;
4323  VTList.push_back(VT1);
4324  VTList.push_back(VT2);
4325  VTList.push_back(VT3);
4326  VTList.push_back(VT4);
4327  const MVT *VTs = getNodeValueTypes(VTList);
4328  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4329}
4330SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4331                                    const std::vector<MVT> &ResultTys,
4332                                    const SDValue *Ops, unsigned NumOps) {
4333  const MVT *VTs = getNodeValueTypes(ResultTys);
4334  return getNode(~Opcode, VTs, ResultTys.size(),
4335                 Ops, NumOps).getNode();
4336}
4337
4338/// getNodeIfExists - Get the specified node if it's already available, or
4339/// else return NULL.
4340SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4341                                      const SDValue *Ops, unsigned NumOps) {
4342  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4343    FoldingSetNodeID ID;
4344    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4345    void *IP = 0;
4346    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4347      return E;
4348  }
4349  return NULL;
4350}
4351
4352
4353/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4354/// This can cause recursive merging of nodes in the DAG.
4355///
4356/// This version assumes From has a single result value.
4357///
4358void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4359                                      DAGUpdateListener *UpdateListener) {
4360  SDNode *From = FromN.getNode();
4361  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4362         "Cannot replace with this method!");
4363  assert(From != To.getNode() && "Cannot replace uses of with self");
4364
4365  while (!From->use_empty()) {
4366    SDNode::use_iterator UI = From->use_begin();
4367    SDNode *U = *UI;
4368
4369    // This node is about to morph, remove its old self from the CSE maps.
4370    RemoveNodeFromCSEMaps(U);
4371    int operandNum = 0;
4372    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4373         I != E; ++I, ++operandNum)
4374      if (I->getVal() == From) {
4375        From->removeUser(operandNum, U);
4376        *I = To;
4377        I->setUser(U);
4378        To.getNode()->addUser(operandNum, U);
4379      }
4380
4381    // Now that we have modified U, add it back to the CSE maps.  If it already
4382    // exists there, recursively merge the results together.
4383    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4384      ReplaceAllUsesWith(U, Existing, UpdateListener);
4385      // U is now dead.  Inform the listener if it exists and delete it.
4386      if (UpdateListener)
4387        UpdateListener->NodeDeleted(U, Existing);
4388      DeleteNodeNotInCSEMaps(U);
4389    } else {
4390      // If the node doesn't already exist, we updated it.  Inform a listener if
4391      // it exists.
4392      if (UpdateListener)
4393        UpdateListener->NodeUpdated(U);
4394    }
4395  }
4396}
4397
4398/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4399/// This can cause recursive merging of nodes in the DAG.
4400///
4401/// This version assumes From/To have matching types and numbers of result
4402/// values.
4403///
4404void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4405                                      DAGUpdateListener *UpdateListener) {
4406  assert(From->getVTList().VTs == To->getVTList().VTs &&
4407         From->getNumValues() == To->getNumValues() &&
4408         "Cannot use this version of ReplaceAllUsesWith!");
4409
4410  // Handle the trivial case.
4411  if (From == To)
4412    return;
4413
4414  while (!From->use_empty()) {
4415    SDNode::use_iterator UI = From->use_begin();
4416    SDNode *U = *UI;
4417
4418    // This node is about to morph, remove its old self from the CSE maps.
4419    RemoveNodeFromCSEMaps(U);
4420    int operandNum = 0;
4421    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4422         I != E; ++I, ++operandNum)
4423      if (I->getVal() == From) {
4424        From->removeUser(operandNum, U);
4425        I->getSDValue().setNode(To);
4426        To->addUser(operandNum, U);
4427      }
4428
4429    // Now that we have modified U, add it back to the CSE maps.  If it already
4430    // exists there, recursively merge the results together.
4431    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4432      ReplaceAllUsesWith(U, Existing, UpdateListener);
4433      // U is now dead.  Inform the listener if it exists and delete it.
4434      if (UpdateListener)
4435        UpdateListener->NodeDeleted(U, Existing);
4436      DeleteNodeNotInCSEMaps(U);
4437    } else {
4438      // If the node doesn't already exist, we updated it.  Inform a listener if
4439      // it exists.
4440      if (UpdateListener)
4441        UpdateListener->NodeUpdated(U);
4442    }
4443  }
4444}
4445
4446/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4447/// This can cause recursive merging of nodes in the DAG.
4448///
4449/// This version can replace From with any result values.  To must match the
4450/// number and types of values returned by From.
4451void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4452                                      const SDValue *To,
4453                                      DAGUpdateListener *UpdateListener) {
4454  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4455    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4456
4457  while (!From->use_empty()) {
4458    SDNode::use_iterator UI = From->use_begin();
4459    SDNode *U = *UI;
4460
4461    // This node is about to morph, remove its old self from the CSE maps.
4462    RemoveNodeFromCSEMaps(U);
4463    int operandNum = 0;
4464    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4465         I != E; ++I, ++operandNum)
4466      if (I->getVal() == From) {
4467        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4468        From->removeUser(operandNum, U);
4469        *I = ToOp;
4470        I->setUser(U);
4471        ToOp.getNode()->addUser(operandNum, U);
4472      }
4473
4474    // Now that we have modified U, add it back to the CSE maps.  If it already
4475    // exists there, recursively merge the results together.
4476    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4477      ReplaceAllUsesWith(U, Existing, UpdateListener);
4478      // U is now dead.  Inform the listener if it exists and delete it.
4479      if (UpdateListener)
4480        UpdateListener->NodeDeleted(U, Existing);
4481      DeleteNodeNotInCSEMaps(U);
4482    } else {
4483      // If the node doesn't already exist, we updated it.  Inform a listener if
4484      // it exists.
4485      if (UpdateListener)
4486        UpdateListener->NodeUpdated(U);
4487    }
4488  }
4489}
4490
4491/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4492/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4493/// handled the same way as for ReplaceAllUsesWith.
4494void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4495                                             DAGUpdateListener *UpdateListener){
4496  // Handle the really simple, really trivial case efficiently.
4497  if (From == To) return;
4498
4499  // Handle the simple, trivial, case efficiently.
4500  if (From.getNode()->getNumValues() == 1) {
4501    ReplaceAllUsesWith(From, To, UpdateListener);
4502    return;
4503  }
4504
4505  // Get all of the users of From.getNode().  We want these in a nice,
4506  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4507  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4508
4509  while (!Users.empty()) {
4510    // We know that this user uses some value of From.  If it is the right
4511    // value, update it.
4512    SDNode *User = Users.back();
4513    Users.pop_back();
4514
4515    // Scan for an operand that matches From.
4516    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4517    for (; Op != E; ++Op)
4518      if (*Op == From) break;
4519
4520    // If there are no matches, the user must use some other result of From.
4521    if (Op == E) continue;
4522
4523    // Okay, we know this user needs to be updated.  Remove its old self
4524    // from the CSE maps.
4525    RemoveNodeFromCSEMaps(User);
4526
4527    // Update all operands that match "From" in case there are multiple uses.
4528    for (; Op != E; ++Op) {
4529      if (*Op == From) {
4530        From.getNode()->removeUser(Op-User->op_begin(), User);
4531        *Op = To;
4532        Op->setUser(User);
4533        To.getNode()->addUser(Op-User->op_begin(), User);
4534      }
4535    }
4536
4537    // Now that we have modified User, add it back to the CSE maps.  If it
4538    // already exists there, recursively merge the results together.
4539    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4540    if (!Existing) {
4541      if (UpdateListener) UpdateListener->NodeUpdated(User);
4542      continue;  // Continue on to next user.
4543    }
4544
4545    // If there was already an existing matching node, use ReplaceAllUsesWith
4546    // to replace the dead one with the existing one.  This can cause
4547    // recursive merging of other unrelated nodes down the line.
4548    ReplaceAllUsesWith(User, Existing, UpdateListener);
4549
4550    // User is now dead.  Notify a listener if present.
4551    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4552    DeleteNodeNotInCSEMaps(User);
4553  }
4554}
4555
4556/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4557/// uses of other values produced by From.getVal() alone.  The same value may
4558/// appear in both the From and To list.  The Deleted vector is
4559/// handled the same way as for ReplaceAllUsesWith.
4560void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4561                                              const SDValue *To,
4562                                              unsigned Num,
4563                                              DAGUpdateListener *UpdateListener){
4564  // Handle the simple, trivial case efficiently.
4565  if (Num == 1)
4566    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4567
4568  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4569  for (unsigned i = 0; i != Num; ++i)
4570    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4571         E = From[i].getNode()->use_end(); UI != E; ++UI)
4572      Users.push_back(std::make_pair(*UI, i));
4573
4574  while (!Users.empty()) {
4575    // We know that this user uses some value of From.  If it is the right
4576    // value, update it.
4577    SDNode *User = Users.back().first;
4578    unsigned i = Users.back().second;
4579    Users.pop_back();
4580
4581    // Scan for an operand that matches From.
4582    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4583    for (; Op != E; ++Op)
4584      if (*Op == From[i]) break;
4585
4586    // If there are no matches, the user must use some other result of From.
4587    if (Op == E) continue;
4588
4589    // Okay, we know this user needs to be updated.  Remove its old self
4590    // from the CSE maps.
4591    RemoveNodeFromCSEMaps(User);
4592
4593    // Update all operands that match "From" in case there are multiple uses.
4594    for (; Op != E; ++Op) {
4595      if (*Op == From[i]) {
4596        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4597        *Op = To[i];
4598        Op->setUser(User);
4599        To[i].getNode()->addUser(Op-User->op_begin(), User);
4600      }
4601    }
4602
4603    // Now that we have modified User, add it back to the CSE maps.  If it
4604    // already exists there, recursively merge the results together.
4605    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4606    if (!Existing) {
4607      if (UpdateListener) UpdateListener->NodeUpdated(User);
4608      continue;  // Continue on to next user.
4609    }
4610
4611    // If there was already an existing matching node, use ReplaceAllUsesWith
4612    // to replace the dead one with the existing one.  This can cause
4613    // recursive merging of other unrelated nodes down the line.
4614    ReplaceAllUsesWith(User, Existing, UpdateListener);
4615
4616    // User is now dead.  Notify a listener if present.
4617    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4618    DeleteNodeNotInCSEMaps(User);
4619  }
4620}
4621
4622/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4623/// based on their topological order. It returns the maximum id and a vector
4624/// of the SDNodes* in assigned order by reference.
4625unsigned SelectionDAG::AssignTopologicalOrder() {
4626
4627  unsigned DAGSize = 0;
4628
4629  // SortedPos tracks the progress of the algorithm. Nodes before it are
4630  // sorted, nodes after it are unsorted. When the algorithm completes
4631  // it is at the end of the list.
4632  allnodes_iterator SortedPos = allnodes_begin();
4633
4634  // Visit all the nodes. Add nodes with no operands to the TopOrder result
4635  // array immediately. Annotate nodes that do have operands with their
4636  // operand count. Before we do this, the Node Id fields of the nodes
4637  // may contain arbitrary values. After, the Node Id fields for nodes
4638  // before SortedPos will contain the topological sort index, and the
4639  // Node Id fields for nodes At SortedPos and after will contain the
4640  // count of outstanding operands.
4641  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4642    SDNode *N = I++;
4643    unsigned Degree = N->getNumOperands();
4644    if (Degree == 0) {
4645      // A node with no uses, add it to the result array immediately.
4646      N->setNodeId(DAGSize++);
4647      allnodes_iterator Q = N;
4648      if (Q != SortedPos)
4649        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4650      ++SortedPos;
4651    } else {
4652      // Temporarily use the Node Id as scratch space for the degree count.
4653      N->setNodeId(Degree);
4654    }
4655  }
4656
4657  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4658  // such that by the time the end is reached all nodes will be sorted.
4659  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4660    SDNode *N = I;
4661    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4662         UI != UE; ++UI) {
4663      SDNode *P = *UI;
4664      unsigned Degree = P->getNodeId();
4665      --Degree;
4666      if (Degree == 0) {
4667        // All of P's operands are sorted, so P may sorted now.
4668        P->setNodeId(DAGSize++);
4669        if (P != SortedPos)
4670          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4671        ++SortedPos;
4672      } else {
4673        // Update P's outstanding operand count.
4674        P->setNodeId(Degree);
4675      }
4676    }
4677  }
4678
4679  assert(SortedPos == AllNodes.end() &&
4680         "Topological sort incomplete!");
4681  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4682         "First node in topological sort is not the entry token!");
4683  assert(AllNodes.front().getNodeId() == 0 &&
4684         "First node in topological sort has non-zero id!");
4685  assert(AllNodes.front().getNumOperands() == 0 &&
4686         "First node in topological sort has operands!");
4687  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4688         "Last node in topologic sort has unexpected id!");
4689  assert(AllNodes.back().use_empty() &&
4690         "Last node in topologic sort has users!");
4691  assert(DAGSize == allnodes_size() && "TopOrder result count mismatch!");
4692  return DAGSize;
4693}
4694
4695
4696
4697//===----------------------------------------------------------------------===//
4698//                              SDNode Class
4699//===----------------------------------------------------------------------===//
4700
4701// Out-of-line virtual method to give class a home.
4702void SDNode::ANCHOR() {}
4703void UnarySDNode::ANCHOR() {}
4704void BinarySDNode::ANCHOR() {}
4705void TernarySDNode::ANCHOR() {}
4706void HandleSDNode::ANCHOR() {}
4707void ConstantSDNode::ANCHOR() {}
4708void ConstantFPSDNode::ANCHOR() {}
4709void GlobalAddressSDNode::ANCHOR() {}
4710void FrameIndexSDNode::ANCHOR() {}
4711void JumpTableSDNode::ANCHOR() {}
4712void ConstantPoolSDNode::ANCHOR() {}
4713void BasicBlockSDNode::ANCHOR() {}
4714void SrcValueSDNode::ANCHOR() {}
4715void MemOperandSDNode::ANCHOR() {}
4716void RegisterSDNode::ANCHOR() {}
4717void DbgStopPointSDNode::ANCHOR() {}
4718void LabelSDNode::ANCHOR() {}
4719void ExternalSymbolSDNode::ANCHOR() {}
4720void CondCodeSDNode::ANCHOR() {}
4721void ARG_FLAGSSDNode::ANCHOR() {}
4722void VTSDNode::ANCHOR() {}
4723void MemSDNode::ANCHOR() {}
4724void LoadSDNode::ANCHOR() {}
4725void StoreSDNode::ANCHOR() {}
4726void AtomicSDNode::ANCHOR() {}
4727void MemIntrinsicSDNode::ANCHOR() {}
4728void CallSDNode::ANCHOR() {}
4729
4730HandleSDNode::~HandleSDNode() {
4731  DropOperands();
4732}
4733
4734GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4735                                         MVT VT, int64_t o)
4736  : SDNode(isa<GlobalVariable>(GA) &&
4737           cast<GlobalVariable>(GA)->isThreadLocal() ?
4738           // Thread Local
4739           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4740           // Non Thread Local
4741           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4742           getSDVTList(VT)), Offset(o) {
4743  TheGlobal = const_cast<GlobalValue*>(GA);
4744}
4745
4746MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4747                     const Value *srcValue, int SVO,
4748                     unsigned alignment, bool vol)
4749 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4750   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4751
4752  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4753  assert(getAlignment() == alignment && "Alignment representation error!");
4754  assert(isVolatile() == vol && "Volatile representation error!");
4755}
4756
4757MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4758                     unsigned NumOps, MVT memvt, const Value *srcValue,
4759                     int SVO, unsigned alignment, bool vol)
4760   : SDNode(Opc, VTs, Ops, NumOps),
4761     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4762     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4763  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4764  assert(getAlignment() == alignment && "Alignment representation error!");
4765  assert(isVolatile() == vol && "Volatile representation error!");
4766}
4767
4768/// getMemOperand - Return a MachineMemOperand object describing the memory
4769/// reference performed by this memory reference.
4770MachineMemOperand MemSDNode::getMemOperand() const {
4771  int Flags;
4772  if (isa<LoadSDNode>(this))
4773    Flags = MachineMemOperand::MOLoad;
4774  else if (isa<StoreSDNode>(this))
4775    Flags = MachineMemOperand::MOStore;
4776  else if (isa<AtomicSDNode>(this)) {
4777    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4778  }
4779  else {
4780    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4781    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4782    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4783    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4784  }
4785
4786  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4787  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4788
4789  // Check if the memory reference references a frame index
4790  const FrameIndexSDNode *FI =
4791  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4792  if (!getSrcValue() && FI)
4793    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4794                             Flags, 0, Size, getAlignment());
4795  else
4796    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4797                             Size, getAlignment());
4798}
4799
4800/// Profile - Gather unique data for the node.
4801///
4802void SDNode::Profile(FoldingSetNodeID &ID) const {
4803  AddNodeIDNode(ID, this);
4804}
4805
4806/// getValueTypeList - Return a pointer to the specified value type.
4807///
4808const MVT *SDNode::getValueTypeList(MVT VT) {
4809  if (VT.isExtended()) {
4810    static std::set<MVT, MVT::compareRawBits> EVTs;
4811    return &(*EVTs.insert(VT).first);
4812  } else {
4813    static MVT VTs[MVT::LAST_VALUETYPE];
4814    VTs[VT.getSimpleVT()] = VT;
4815    return &VTs[VT.getSimpleVT()];
4816  }
4817}
4818
4819/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4820/// indicated value.  This method ignores uses of other values defined by this
4821/// operation.
4822bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4823  assert(Value < getNumValues() && "Bad value!");
4824
4825  // TODO: Only iterate over uses of a given value of the node
4826  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4827    if (UI.getUse().getSDValue().getResNo() == Value) {
4828      if (NUses == 0)
4829        return false;
4830      --NUses;
4831    }
4832  }
4833
4834  // Found exactly the right number of uses?
4835  return NUses == 0;
4836}
4837
4838
4839/// hasAnyUseOfValue - Return true if there are any use of the indicated
4840/// value. This method ignores uses of other values defined by this operation.
4841bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4842  assert(Value < getNumValues() && "Bad value!");
4843
4844  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4845    if (UI.getUse().getSDValue().getResNo() == Value)
4846      return true;
4847
4848  return false;
4849}
4850
4851
4852/// isOnlyUserOf - Return true if this node is the only use of N.
4853///
4854bool SDNode::isOnlyUserOf(SDNode *N) const {
4855  bool Seen = false;
4856  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4857    SDNode *User = *I;
4858    if (User == this)
4859      Seen = true;
4860    else
4861      return false;
4862  }
4863
4864  return Seen;
4865}
4866
4867/// isOperand - Return true if this node is an operand of N.
4868///
4869bool SDValue::isOperandOf(SDNode *N) const {
4870  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4871    if (*this == N->getOperand(i))
4872      return true;
4873  return false;
4874}
4875
4876bool SDNode::isOperandOf(SDNode *N) const {
4877  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4878    if (this == N->OperandList[i].getVal())
4879      return true;
4880  return false;
4881}
4882
4883/// reachesChainWithoutSideEffects - Return true if this operand (which must
4884/// be a chain) reaches the specified operand without crossing any
4885/// side-effecting instructions.  In practice, this looks through token
4886/// factors and non-volatile loads.  In order to remain efficient, this only
4887/// looks a couple of nodes in, it does not do an exhaustive search.
4888bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4889                                               unsigned Depth) const {
4890  if (*this == Dest) return true;
4891
4892  // Don't search too deeply, we just want to be able to see through
4893  // TokenFactor's etc.
4894  if (Depth == 0) return false;
4895
4896  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4897  // of the operands of the TF reach dest, then we can do the xform.
4898  if (getOpcode() == ISD::TokenFactor) {
4899    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4900      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4901        return true;
4902    return false;
4903  }
4904
4905  // Loads don't have side effects, look through them.
4906  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4907    if (!Ld->isVolatile())
4908      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4909  }
4910  return false;
4911}
4912
4913
4914static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4915                            SmallPtrSet<SDNode *, 32> &Visited) {
4916  if (found || !Visited.insert(N))
4917    return;
4918
4919  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4920    SDNode *Op = N->getOperand(i).getNode();
4921    if (Op == P) {
4922      found = true;
4923      return;
4924    }
4925    findPredecessor(Op, P, found, Visited);
4926  }
4927}
4928
4929/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4930/// is either an operand of N or it can be reached by recursively traversing
4931/// up the operands.
4932/// NOTE: this is an expensive method. Use it carefully.
4933bool SDNode::isPredecessorOf(SDNode *N) const {
4934  SmallPtrSet<SDNode *, 32> Visited;
4935  bool found = false;
4936  findPredecessor(N, this, found, Visited);
4937  return found;
4938}
4939
4940uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4941  assert(Num < NumOperands && "Invalid child # of SDNode!");
4942  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4943}
4944
4945std::string SDNode::getOperationName(const SelectionDAG *G) const {
4946  switch (getOpcode()) {
4947  default:
4948    if (getOpcode() < ISD::BUILTIN_OP_END)
4949      return "<<Unknown DAG Node>>";
4950    if (isMachineOpcode()) {
4951      if (G)
4952        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4953          if (getMachineOpcode() < TII->getNumOpcodes())
4954            return TII->get(getMachineOpcode()).getName();
4955      return "<<Unknown Machine Node>>";
4956    }
4957    if (G) {
4958      TargetLowering &TLI = G->getTargetLoweringInfo();
4959      const char *Name = TLI.getTargetNodeName(getOpcode());
4960      if (Name) return Name;
4961      return "<<Unknown Target Node>>";
4962    }
4963    return "<<Unknown Node>>";
4964
4965#ifndef NDEBUG
4966  case ISD::DELETED_NODE:
4967    return "<<Deleted Node!>>";
4968#endif
4969  case ISD::PREFETCH:      return "Prefetch";
4970  case ISD::MEMBARRIER:    return "MemBarrier";
4971  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
4972  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
4973  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
4974  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
4975  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
4976  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
4977  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
4978  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
4979  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
4980  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
4981  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
4982  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
4983  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
4984  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
4985  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
4986  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
4987  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
4988  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
4989  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
4990  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
4991  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
4992  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
4993  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
4994  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
4995  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
4996  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
4997  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
4998  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
4999  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
5000  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
5001  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
5002  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
5003  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
5004  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
5005  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
5006  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
5007  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
5008  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
5009  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
5010  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
5011  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
5012  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
5013  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
5014  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
5015  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
5016  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
5017  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
5018  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
5019  case ISD::PCMARKER:      return "PCMarker";
5020  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5021  case ISD::SRCVALUE:      return "SrcValue";
5022  case ISD::MEMOPERAND:    return "MemOperand";
5023  case ISD::EntryToken:    return "EntryToken";
5024  case ISD::TokenFactor:   return "TokenFactor";
5025  case ISD::AssertSext:    return "AssertSext";
5026  case ISD::AssertZext:    return "AssertZext";
5027
5028  case ISD::BasicBlock:    return "BasicBlock";
5029  case ISD::ARG_FLAGS:     return "ArgFlags";
5030  case ISD::VALUETYPE:     return "ValueType";
5031  case ISD::Register:      return "Register";
5032
5033  case ISD::Constant:      return "Constant";
5034  case ISD::ConstantFP:    return "ConstantFP";
5035  case ISD::GlobalAddress: return "GlobalAddress";
5036  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5037  case ISD::FrameIndex:    return "FrameIndex";
5038  case ISD::JumpTable:     return "JumpTable";
5039  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5040  case ISD::RETURNADDR: return "RETURNADDR";
5041  case ISD::FRAMEADDR: return "FRAMEADDR";
5042  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5043  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5044  case ISD::EHSELECTION: return "EHSELECTION";
5045  case ISD::EH_RETURN: return "EH_RETURN";
5046  case ISD::ConstantPool:  return "ConstantPool";
5047  case ISD::ExternalSymbol: return "ExternalSymbol";
5048  case ISD::INTRINSIC_WO_CHAIN: {
5049    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5050    return Intrinsic::getName((Intrinsic::ID)IID);
5051  }
5052  case ISD::INTRINSIC_VOID:
5053  case ISD::INTRINSIC_W_CHAIN: {
5054    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5055    return Intrinsic::getName((Intrinsic::ID)IID);
5056  }
5057
5058  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5059  case ISD::TargetConstant: return "TargetConstant";
5060  case ISD::TargetConstantFP:return "TargetConstantFP";
5061  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5062  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5063  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5064  case ISD::TargetJumpTable:  return "TargetJumpTable";
5065  case ISD::TargetConstantPool:  return "TargetConstantPool";
5066  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5067
5068  case ISD::CopyToReg:     return "CopyToReg";
5069  case ISD::CopyFromReg:   return "CopyFromReg";
5070  case ISD::UNDEF:         return "undef";
5071  case ISD::MERGE_VALUES:  return "merge_values";
5072  case ISD::INLINEASM:     return "inlineasm";
5073  case ISD::DBG_LABEL:     return "dbg_label";
5074  case ISD::EH_LABEL:      return "eh_label";
5075  case ISD::DECLARE:       return "declare";
5076  case ISD::HANDLENODE:    return "handlenode";
5077  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5078  case ISD::CALL:          return "call";
5079
5080  // Unary operators
5081  case ISD::FABS:   return "fabs";
5082  case ISD::FNEG:   return "fneg";
5083  case ISD::FSQRT:  return "fsqrt";
5084  case ISD::FSIN:   return "fsin";
5085  case ISD::FCOS:   return "fcos";
5086  case ISD::FPOWI:  return "fpowi";
5087  case ISD::FPOW:   return "fpow";
5088  case ISD::FTRUNC: return "ftrunc";
5089  case ISD::FFLOOR: return "ffloor";
5090  case ISD::FCEIL:  return "fceil";
5091  case ISD::FRINT:  return "frint";
5092  case ISD::FNEARBYINT: return "fnearbyint";
5093
5094  // Binary operators
5095  case ISD::ADD:    return "add";
5096  case ISD::SUB:    return "sub";
5097  case ISD::MUL:    return "mul";
5098  case ISD::MULHU:  return "mulhu";
5099  case ISD::MULHS:  return "mulhs";
5100  case ISD::SDIV:   return "sdiv";
5101  case ISD::UDIV:   return "udiv";
5102  case ISD::SREM:   return "srem";
5103  case ISD::UREM:   return "urem";
5104  case ISD::SMUL_LOHI:  return "smul_lohi";
5105  case ISD::UMUL_LOHI:  return "umul_lohi";
5106  case ISD::SDIVREM:    return "sdivrem";
5107  case ISD::UDIVREM:    return "udivrem";
5108  case ISD::AND:    return "and";
5109  case ISD::OR:     return "or";
5110  case ISD::XOR:    return "xor";
5111  case ISD::SHL:    return "shl";
5112  case ISD::SRA:    return "sra";
5113  case ISD::SRL:    return "srl";
5114  case ISD::ROTL:   return "rotl";
5115  case ISD::ROTR:   return "rotr";
5116  case ISD::FADD:   return "fadd";
5117  case ISD::FSUB:   return "fsub";
5118  case ISD::FMUL:   return "fmul";
5119  case ISD::FDIV:   return "fdiv";
5120  case ISD::FREM:   return "frem";
5121  case ISD::FCOPYSIGN: return "fcopysign";
5122  case ISD::FGETSIGN:  return "fgetsign";
5123
5124  case ISD::SETCC:       return "setcc";
5125  case ISD::VSETCC:      return "vsetcc";
5126  case ISD::SELECT:      return "select";
5127  case ISD::SELECT_CC:   return "select_cc";
5128  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5129  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5130  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5131  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5132  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5133  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5134  case ISD::CARRY_FALSE:         return "carry_false";
5135  case ISD::ADDC:        return "addc";
5136  case ISD::ADDE:        return "adde";
5137  case ISD::SUBC:        return "subc";
5138  case ISD::SUBE:        return "sube";
5139  case ISD::SHL_PARTS:   return "shl_parts";
5140  case ISD::SRA_PARTS:   return "sra_parts";
5141  case ISD::SRL_PARTS:   return "srl_parts";
5142
5143  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5144  case ISD::INSERT_SUBREG:      return "insert_subreg";
5145
5146  // Conversion operators.
5147  case ISD::SIGN_EXTEND: return "sign_extend";
5148  case ISD::ZERO_EXTEND: return "zero_extend";
5149  case ISD::ANY_EXTEND:  return "any_extend";
5150  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5151  case ISD::TRUNCATE:    return "truncate";
5152  case ISD::FP_ROUND:    return "fp_round";
5153  case ISD::FLT_ROUNDS_: return "flt_rounds";
5154  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5155  case ISD::FP_EXTEND:   return "fp_extend";
5156
5157  case ISD::SINT_TO_FP:  return "sint_to_fp";
5158  case ISD::UINT_TO_FP:  return "uint_to_fp";
5159  case ISD::FP_TO_SINT:  return "fp_to_sint";
5160  case ISD::FP_TO_UINT:  return "fp_to_uint";
5161  case ISD::BIT_CONVERT: return "bit_convert";
5162
5163    // Control flow instructions
5164  case ISD::BR:      return "br";
5165  case ISD::BRIND:   return "brind";
5166  case ISD::BR_JT:   return "br_jt";
5167  case ISD::BRCOND:  return "brcond";
5168  case ISD::BR_CC:   return "br_cc";
5169  case ISD::RET:     return "ret";
5170  case ISD::CALLSEQ_START:  return "callseq_start";
5171  case ISD::CALLSEQ_END:    return "callseq_end";
5172
5173    // Other operators
5174  case ISD::LOAD:               return "load";
5175  case ISD::STORE:              return "store";
5176  case ISD::VAARG:              return "vaarg";
5177  case ISD::VACOPY:             return "vacopy";
5178  case ISD::VAEND:              return "vaend";
5179  case ISD::VASTART:            return "vastart";
5180  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5181  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5182  case ISD::BUILD_PAIR:         return "build_pair";
5183  case ISD::STACKSAVE:          return "stacksave";
5184  case ISD::STACKRESTORE:       return "stackrestore";
5185  case ISD::TRAP:               return "trap";
5186
5187  // Bit manipulation
5188  case ISD::BSWAP:   return "bswap";
5189  case ISD::CTPOP:   return "ctpop";
5190  case ISD::CTTZ:    return "cttz";
5191  case ISD::CTLZ:    return "ctlz";
5192
5193  // Debug info
5194  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5195  case ISD::DEBUG_LOC: return "debug_loc";
5196
5197  // Trampolines
5198  case ISD::TRAMPOLINE: return "trampoline";
5199
5200  case ISD::CONDCODE:
5201    switch (cast<CondCodeSDNode>(this)->get()) {
5202    default: assert(0 && "Unknown setcc condition!");
5203    case ISD::SETOEQ:  return "setoeq";
5204    case ISD::SETOGT:  return "setogt";
5205    case ISD::SETOGE:  return "setoge";
5206    case ISD::SETOLT:  return "setolt";
5207    case ISD::SETOLE:  return "setole";
5208    case ISD::SETONE:  return "setone";
5209
5210    case ISD::SETO:    return "seto";
5211    case ISD::SETUO:   return "setuo";
5212    case ISD::SETUEQ:  return "setue";
5213    case ISD::SETUGT:  return "setugt";
5214    case ISD::SETUGE:  return "setuge";
5215    case ISD::SETULT:  return "setult";
5216    case ISD::SETULE:  return "setule";
5217    case ISD::SETUNE:  return "setune";
5218
5219    case ISD::SETEQ:   return "seteq";
5220    case ISD::SETGT:   return "setgt";
5221    case ISD::SETGE:   return "setge";
5222    case ISD::SETLT:   return "setlt";
5223    case ISD::SETLE:   return "setle";
5224    case ISD::SETNE:   return "setne";
5225    }
5226  }
5227}
5228
5229const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5230  switch (AM) {
5231  default:
5232    return "";
5233  case ISD::PRE_INC:
5234    return "<pre-inc>";
5235  case ISD::PRE_DEC:
5236    return "<pre-dec>";
5237  case ISD::POST_INC:
5238    return "<post-inc>";
5239  case ISD::POST_DEC:
5240    return "<post-dec>";
5241  }
5242}
5243
5244std::string ISD::ArgFlagsTy::getArgFlagsString() {
5245  std::string S = "< ";
5246
5247  if (isZExt())
5248    S += "zext ";
5249  if (isSExt())
5250    S += "sext ";
5251  if (isInReg())
5252    S += "inreg ";
5253  if (isSRet())
5254    S += "sret ";
5255  if (isByVal())
5256    S += "byval ";
5257  if (isNest())
5258    S += "nest ";
5259  if (getByValAlign())
5260    S += "byval-align:" + utostr(getByValAlign()) + " ";
5261  if (getOrigAlign())
5262    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5263  if (getByValSize())
5264    S += "byval-size:" + utostr(getByValSize()) + " ";
5265  return S + ">";
5266}
5267
5268void SDNode::dump() const { dump(0); }
5269void SDNode::dump(const SelectionDAG *G) const {
5270  print(errs(), G);
5271  errs().flush();
5272}
5273
5274void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5275  OS << (void*)this << ": ";
5276
5277  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5278    if (i) OS << ",";
5279    if (getValueType(i) == MVT::Other)
5280      OS << "ch";
5281    else
5282      OS << getValueType(i).getMVTString();
5283  }
5284  OS << " = " << getOperationName(G);
5285
5286  OS << " ";
5287  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5288    if (i) OS << ", ";
5289    OS << (void*)getOperand(i).getNode();
5290    if (unsigned RN = getOperand(i).getResNo())
5291      OS << ":" << RN;
5292  }
5293
5294  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5295    SDNode *Mask = getOperand(2).getNode();
5296    OS << "<";
5297    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5298      if (i) OS << ",";
5299      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5300        OS << "u";
5301      else
5302        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5303    }
5304    OS << ">";
5305  }
5306
5307  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5308    OS << '<' << CSDN->getAPIntValue() << '>';
5309  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5310    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5311      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5312    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5313      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5314    else {
5315      OS << "<APFloat(";
5316      CSDN->getValueAPF().bitcastToAPInt().dump();
5317      OS << ")>";
5318    }
5319  } else if (const GlobalAddressSDNode *GADN =
5320             dyn_cast<GlobalAddressSDNode>(this)) {
5321    int offset = GADN->getOffset();
5322    OS << '<';
5323    WriteAsOperand(OS, GADN->getGlobal());
5324    OS << '>';
5325    if (offset > 0)
5326      OS << " + " << offset;
5327    else
5328      OS << " " << offset;
5329  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5330    OS << "<" << FIDN->getIndex() << ">";
5331  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5332    OS << "<" << JTDN->getIndex() << ">";
5333  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5334    int offset = CP->getOffset();
5335    if (CP->isMachineConstantPoolEntry())
5336      OS << "<" << *CP->getMachineCPVal() << ">";
5337    else
5338      OS << "<" << *CP->getConstVal() << ">";
5339    if (offset > 0)
5340      OS << " + " << offset;
5341    else
5342      OS << " " << offset;
5343  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5344    OS << "<";
5345    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5346    if (LBB)
5347      OS << LBB->getName() << " ";
5348    OS << (const void*)BBDN->getBasicBlock() << ">";
5349  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5350    if (G && R->getReg() &&
5351        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5352      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5353    } else {
5354      OS << " #" << R->getReg();
5355    }
5356  } else if (const ExternalSymbolSDNode *ES =
5357             dyn_cast<ExternalSymbolSDNode>(this)) {
5358    OS << "'" << ES->getSymbol() << "'";
5359  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5360    if (M->getValue())
5361      OS << "<" << M->getValue() << ">";
5362    else
5363      OS << "<null>";
5364  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5365    if (M->MO.getValue())
5366      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5367    else
5368      OS << "<null:" << M->MO.getOffset() << ">";
5369  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5370    OS << N->getArgFlags().getArgFlagsString();
5371  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5372    OS << ":" << N->getVT().getMVTString();
5373  }
5374  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5375    const Value *SrcValue = LD->getSrcValue();
5376    int SrcOffset = LD->getSrcValueOffset();
5377    OS << " <";
5378    if (SrcValue)
5379      OS << SrcValue;
5380    else
5381      OS << "null";
5382    OS << ":" << SrcOffset << ">";
5383
5384    bool doExt = true;
5385    switch (LD->getExtensionType()) {
5386    default: doExt = false; break;
5387    case ISD::EXTLOAD: OS << " <anyext "; break;
5388    case ISD::SEXTLOAD: OS << " <sext "; break;
5389    case ISD::ZEXTLOAD: OS << " <zext "; break;
5390    }
5391    if (doExt)
5392      OS << LD->getMemoryVT().getMVTString() << ">";
5393
5394    const char *AM = getIndexedModeName(LD->getAddressingMode());
5395    if (*AM)
5396      OS << " " << AM;
5397    if (LD->isVolatile())
5398      OS << " <volatile>";
5399    OS << " alignment=" << LD->getAlignment();
5400  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5401    const Value *SrcValue = ST->getSrcValue();
5402    int SrcOffset = ST->getSrcValueOffset();
5403    OS << " <";
5404    if (SrcValue)
5405      OS << SrcValue;
5406    else
5407      OS << "null";
5408    OS << ":" << SrcOffset << ">";
5409
5410    if (ST->isTruncatingStore())
5411      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5412
5413    const char *AM = getIndexedModeName(ST->getAddressingMode());
5414    if (*AM)
5415      OS << " " << AM;
5416    if (ST->isVolatile())
5417      OS << " <volatile>";
5418    OS << " alignment=" << ST->getAlignment();
5419  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5420    const Value *SrcValue = AT->getSrcValue();
5421    int SrcOffset = AT->getSrcValueOffset();
5422    OS << " <";
5423    if (SrcValue)
5424      OS << SrcValue;
5425    else
5426      OS << "null";
5427    OS << ":" << SrcOffset << ">";
5428    if (AT->isVolatile())
5429      OS << " <volatile>";
5430    OS << " alignment=" << AT->getAlignment();
5431  }
5432}
5433
5434static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5435  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5436    if (N->getOperand(i).getNode()->hasOneUse())
5437      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5438    else
5439      cerr << "\n" << std::string(indent+2, ' ')
5440           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5441
5442
5443  cerr << "\n" << std::string(indent, ' ');
5444  N->dump(G);
5445}
5446
5447void SelectionDAG::dump() const {
5448  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5449
5450  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5451       I != E; ++I) {
5452    const SDNode *N = I;
5453    if (!N->hasOneUse() && N != getRoot().getNode())
5454      DumpNodes(N, 2, this);
5455  }
5456
5457  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5458
5459  cerr << "\n\n";
5460}
5461
5462const Type *ConstantPoolSDNode::getType() const {
5463  if (isMachineConstantPoolEntry())
5464    return Val.MachineCPVal->getType();
5465  return Val.ConstVal->getType();
5466}
5467