SelectionDAG.cpp revision 6595cb3000d7f5f8e9a76d556aa8609db91b7887
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include <algorithm>
33#include <cmath>
34using namespace llvm;
35
36/// makeVTList - Return an instance of the SDVTList struct initialized with the
37/// specified members.
38static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39  SDVTList Res = {VTs, NumVTs};
40  return Res;
41}
42
43//===----------------------------------------------------------------------===//
44//                              ConstantFPSDNode Class
45//===----------------------------------------------------------------------===//
46
47/// isExactlyValue - We don't rely on operator== working on double values, as
48/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49/// As such, this method can be used to do an exact bit-for-bit comparison of
50/// two floating point values.
51bool ConstantFPSDNode::isExactlyValue(double V) const {
52  return DoubleToBits(V) == DoubleToBits(Value);
53}
54
55//===----------------------------------------------------------------------===//
56//                              ISD Namespace
57//===----------------------------------------------------------------------===//
58
59/// isBuildVectorAllOnes - Return true if the specified node is a
60/// BUILD_VECTOR where all of the elements are ~0 or undef.
61bool ISD::isBuildVectorAllOnes(const SDNode *N) {
62  // Look through a bit convert.
63  if (N->getOpcode() == ISD::BIT_CONVERT)
64    N = N->getOperand(0).Val;
65
66  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
67
68  unsigned i = 0, e = N->getNumOperands();
69
70  // Skip over all of the undef values.
71  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
72    ++i;
73
74  // Do not accept an all-undef vector.
75  if (i == e) return false;
76
77  // Do not accept build_vectors that aren't all constants or which have non-~0
78  // elements.
79  SDOperand NotZero = N->getOperand(i);
80  if (isa<ConstantSDNode>(NotZero)) {
81    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
82      return false;
83  } else if (isa<ConstantFPSDNode>(NotZero)) {
84    MVT::ValueType VT = NotZero.getValueType();
85    if (VT== MVT::f64) {
86      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
87          (uint64_t)-1)
88        return false;
89    } else {
90      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
91          (uint32_t)-1)
92        return false;
93    }
94  } else
95    return false;
96
97  // Okay, we have at least one ~0 value, check to see if the rest match or are
98  // undefs.
99  for (++i; i != e; ++i)
100    if (N->getOperand(i) != NotZero &&
101        N->getOperand(i).getOpcode() != ISD::UNDEF)
102      return false;
103  return true;
104}
105
106
107/// isBuildVectorAllZeros - Return true if the specified node is a
108/// BUILD_VECTOR where all of the elements are 0 or undef.
109bool ISD::isBuildVectorAllZeros(const SDNode *N) {
110  // Look through a bit convert.
111  if (N->getOpcode() == ISD::BIT_CONVERT)
112    N = N->getOperand(0).Val;
113
114  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
115
116  unsigned i = 0, e = N->getNumOperands();
117
118  // Skip over all of the undef values.
119  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120    ++i;
121
122  // Do not accept an all-undef vector.
123  if (i == e) return false;
124
125  // Do not accept build_vectors that aren't all constants or which have non-~0
126  // elements.
127  SDOperand Zero = N->getOperand(i);
128  if (isa<ConstantSDNode>(Zero)) {
129    if (!cast<ConstantSDNode>(Zero)->isNullValue())
130      return false;
131  } else if (isa<ConstantFPSDNode>(Zero)) {
132    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
133      return false;
134  } else
135    return false;
136
137  // Okay, we have at least one ~0 value, check to see if the rest match or are
138  // undefs.
139  for (++i; i != e; ++i)
140    if (N->getOperand(i) != Zero &&
141        N->getOperand(i).getOpcode() != ISD::UNDEF)
142      return false;
143  return true;
144}
145
146/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
147/// when given the operation for (X op Y).
148ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
149  // To perform this operation, we just need to swap the L and G bits of the
150  // operation.
151  unsigned OldL = (Operation >> 2) & 1;
152  unsigned OldG = (Operation >> 1) & 1;
153  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
154                       (OldL << 1) |       // New G bit
155                       (OldG << 2));        // New L bit.
156}
157
158/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
159/// 'op' is a valid SetCC operation.
160ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
161  unsigned Operation = Op;
162  if (isInteger)
163    Operation ^= 7;   // Flip L, G, E bits, but not U.
164  else
165    Operation ^= 15;  // Flip all of the condition bits.
166  if (Operation > ISD::SETTRUE2)
167    Operation &= ~8;     // Don't let N and U bits get set.
168  return ISD::CondCode(Operation);
169}
170
171
172/// isSignedOp - For an integer comparison, return 1 if the comparison is a
173/// signed operation and 2 if the result is an unsigned comparison.  Return zero
174/// if the operation does not depend on the sign of the input (setne and seteq).
175static int isSignedOp(ISD::CondCode Opcode) {
176  switch (Opcode) {
177  default: assert(0 && "Illegal integer setcc operation!");
178  case ISD::SETEQ:
179  case ISD::SETNE: return 0;
180  case ISD::SETLT:
181  case ISD::SETLE:
182  case ISD::SETGT:
183  case ISD::SETGE: return 1;
184  case ISD::SETULT:
185  case ISD::SETULE:
186  case ISD::SETUGT:
187  case ISD::SETUGE: return 2;
188  }
189}
190
191/// getSetCCOrOperation - Return the result of a logical OR between different
192/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
193/// returns SETCC_INVALID if it is not possible to represent the resultant
194/// comparison.
195ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
196                                       bool isInteger) {
197  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
198    // Cannot fold a signed integer setcc with an unsigned integer setcc.
199    return ISD::SETCC_INVALID;
200
201  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
202
203  // If the N and U bits get set then the resultant comparison DOES suddenly
204  // care about orderedness, and is true when ordered.
205  if (Op > ISD::SETTRUE2)
206    Op &= ~16;     // Clear the U bit if the N bit is set.
207
208  // Canonicalize illegal integer setcc's.
209  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
210    Op = ISD::SETNE;
211
212  return ISD::CondCode(Op);
213}
214
215/// getSetCCAndOperation - Return the result of a logical AND between different
216/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
217/// function returns zero if it is not possible to represent the resultant
218/// comparison.
219ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
220                                        bool isInteger) {
221  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
222    // Cannot fold a signed setcc with an unsigned setcc.
223    return ISD::SETCC_INVALID;
224
225  // Combine all of the condition bits.
226  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
227
228  // Canonicalize illegal integer setcc's.
229  if (isInteger) {
230    switch (Result) {
231    default: break;
232    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
233    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
234    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
235    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
236    }
237  }
238
239  return Result;
240}
241
242const TargetMachine &SelectionDAG::getTarget() const {
243  return TLI.getTargetMachine();
244}
245
246//===----------------------------------------------------------------------===//
247//                           SDNode Profile Support
248//===----------------------------------------------------------------------===//
249
250/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
251///
252static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
253  ID.AddInteger(OpC);
254}
255
256/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
257/// solely with their pointer.
258void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
259  ID.AddPointer(VTList.VTs);
260}
261
262/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
263///
264static void AddNodeIDOperands(FoldingSetNodeID &ID,
265                              const SDOperand *Ops, unsigned NumOps) {
266  for (; NumOps; --NumOps, ++Ops) {
267    ID.AddPointer(Ops->Val);
268    ID.AddInteger(Ops->ResNo);
269  }
270}
271
272static void AddNodeIDNode(FoldingSetNodeID &ID,
273                          unsigned short OpC, SDVTList VTList,
274                          const SDOperand *OpList, unsigned N) {
275  AddNodeIDOpcode(ID, OpC);
276  AddNodeIDValueTypes(ID, VTList);
277  AddNodeIDOperands(ID, OpList, N);
278}
279
280/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
281/// data.
282static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
283  AddNodeIDOpcode(ID, N->getOpcode());
284  // Add the return value info.
285  AddNodeIDValueTypes(ID, N->getVTList());
286  // Add the operand info.
287  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
288
289  // Handle SDNode leafs with special info.
290  switch (N->getOpcode()) {
291  default: break;  // Normal nodes don't need extra info.
292  case ISD::TargetConstant:
293  case ISD::Constant:
294    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
295    break;
296  case ISD::TargetConstantFP:
297  case ISD::ConstantFP:
298    ID.AddDouble(cast<ConstantFPSDNode>(N)->getValue());
299    break;
300  case ISD::TargetGlobalAddress:
301  case ISD::GlobalAddress:
302  case ISD::TargetGlobalTLSAddress:
303  case ISD::GlobalTLSAddress: {
304    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
305    ID.AddPointer(GA->getGlobal());
306    ID.AddInteger(GA->getOffset());
307    break;
308  }
309  case ISD::BasicBlock:
310    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
311    break;
312  case ISD::Register:
313    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
314    break;
315  case ISD::SRCVALUE: {
316    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
317    ID.AddPointer(SV->getValue());
318    ID.AddInteger(SV->getOffset());
319    break;
320  }
321  case ISD::FrameIndex:
322  case ISD::TargetFrameIndex:
323    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
324    break;
325  case ISD::JumpTable:
326  case ISD::TargetJumpTable:
327    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
328    break;
329  case ISD::ConstantPool:
330  case ISD::TargetConstantPool: {
331    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
332    ID.AddInteger(CP->getAlignment());
333    ID.AddInteger(CP->getOffset());
334    if (CP->isMachineConstantPoolEntry())
335      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
336    else
337      ID.AddPointer(CP->getConstVal());
338    break;
339  }
340  case ISD::LOAD: {
341    LoadSDNode *LD = cast<LoadSDNode>(N);
342    ID.AddInteger(LD->getAddressingMode());
343    ID.AddInteger(LD->getExtensionType());
344    ID.AddInteger(LD->getLoadedVT());
345    ID.AddPointer(LD->getSrcValue());
346    ID.AddInteger(LD->getSrcValueOffset());
347    ID.AddInteger(LD->getAlignment());
348    ID.AddInteger(LD->isVolatile());
349    break;
350  }
351  case ISD::STORE: {
352    StoreSDNode *ST = cast<StoreSDNode>(N);
353    ID.AddInteger(ST->getAddressingMode());
354    ID.AddInteger(ST->isTruncatingStore());
355    ID.AddInteger(ST->getStoredVT());
356    ID.AddPointer(ST->getSrcValue());
357    ID.AddInteger(ST->getSrcValueOffset());
358    ID.AddInteger(ST->getAlignment());
359    ID.AddInteger(ST->isVolatile());
360    break;
361  }
362  }
363}
364
365//===----------------------------------------------------------------------===//
366//                              SelectionDAG Class
367//===----------------------------------------------------------------------===//
368
369/// RemoveDeadNodes - This method deletes all unreachable nodes in the
370/// SelectionDAG.
371void SelectionDAG::RemoveDeadNodes() {
372  // Create a dummy node (which is not added to allnodes), that adds a reference
373  // to the root node, preventing it from being deleted.
374  HandleSDNode Dummy(getRoot());
375
376  SmallVector<SDNode*, 128> DeadNodes;
377
378  // Add all obviously-dead nodes to the DeadNodes worklist.
379  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
380    if (I->use_empty())
381      DeadNodes.push_back(I);
382
383  // Process the worklist, deleting the nodes and adding their uses to the
384  // worklist.
385  while (!DeadNodes.empty()) {
386    SDNode *N = DeadNodes.back();
387    DeadNodes.pop_back();
388
389    // Take the node out of the appropriate CSE map.
390    RemoveNodeFromCSEMaps(N);
391
392    // Next, brutally remove the operand list.  This is safe to do, as there are
393    // no cycles in the graph.
394    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
395      SDNode *Operand = I->Val;
396      Operand->removeUser(N);
397
398      // Now that we removed this operand, see if there are no uses of it left.
399      if (Operand->use_empty())
400        DeadNodes.push_back(Operand);
401    }
402    if (N->OperandsNeedDelete)
403      delete[] N->OperandList;
404    N->OperandList = 0;
405    N->NumOperands = 0;
406
407    // Finally, remove N itself.
408    AllNodes.erase(N);
409  }
410
411  // If the root changed (e.g. it was a dead load, update the root).
412  setRoot(Dummy.getValue());
413}
414
415void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
416  SmallVector<SDNode*, 16> DeadNodes;
417  DeadNodes.push_back(N);
418
419  // Process the worklist, deleting the nodes and adding their uses to the
420  // worklist.
421  while (!DeadNodes.empty()) {
422    SDNode *N = DeadNodes.back();
423    DeadNodes.pop_back();
424
425    // Take the node out of the appropriate CSE map.
426    RemoveNodeFromCSEMaps(N);
427
428    // Next, brutally remove the operand list.  This is safe to do, as there are
429    // no cycles in the graph.
430    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
431      SDNode *Operand = I->Val;
432      Operand->removeUser(N);
433
434      // Now that we removed this operand, see if there are no uses of it left.
435      if (Operand->use_empty())
436        DeadNodes.push_back(Operand);
437    }
438    if (N->OperandsNeedDelete)
439      delete[] N->OperandList;
440    N->OperandList = 0;
441    N->NumOperands = 0;
442
443    // Finally, remove N itself.
444    Deleted.push_back(N);
445    AllNodes.erase(N);
446  }
447}
448
449void SelectionDAG::DeleteNode(SDNode *N) {
450  assert(N->use_empty() && "Cannot delete a node that is not dead!");
451
452  // First take this out of the appropriate CSE map.
453  RemoveNodeFromCSEMaps(N);
454
455  // Finally, remove uses due to operands of this node, remove from the
456  // AllNodes list, and delete the node.
457  DeleteNodeNotInCSEMaps(N);
458}
459
460void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
461
462  // Remove it from the AllNodes list.
463  AllNodes.remove(N);
464
465  // Drop all of the operands and decrement used nodes use counts.
466  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
467    I->Val->removeUser(N);
468  if (N->OperandsNeedDelete)
469    delete[] N->OperandList;
470  N->OperandList = 0;
471  N->NumOperands = 0;
472
473  delete N;
474}
475
476/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
477/// correspond to it.  This is useful when we're about to delete or repurpose
478/// the node.  We don't want future request for structurally identical nodes
479/// to return N anymore.
480void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
481  bool Erased = false;
482  switch (N->getOpcode()) {
483  case ISD::HANDLENODE: return;  // noop.
484  case ISD::STRING:
485    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
486    break;
487  case ISD::CONDCODE:
488    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
489           "Cond code doesn't exist!");
490    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
491    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
492    break;
493  case ISD::ExternalSymbol:
494    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
495    break;
496  case ISD::TargetExternalSymbol:
497    Erased =
498      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
499    break;
500  case ISD::VALUETYPE:
501    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
502    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
503    break;
504  default:
505    // Remove it from the CSE Map.
506    Erased = CSEMap.RemoveNode(N);
507    break;
508  }
509#ifndef NDEBUG
510  // Verify that the node was actually in one of the CSE maps, unless it has a
511  // flag result (which cannot be CSE'd) or is one of the special cases that are
512  // not subject to CSE.
513  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
514      !N->isTargetOpcode()) {
515    N->dump(this);
516    cerr << "\n";
517    assert(0 && "Node is not in map!");
518  }
519#endif
520}
521
522/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
523/// has been taken out and modified in some way.  If the specified node already
524/// exists in the CSE maps, do not modify the maps, but return the existing node
525/// instead.  If it doesn't exist, add it and return null.
526///
527SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
528  assert(N->getNumOperands() && "This is a leaf node!");
529  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
530    return 0;    // Never add these nodes.
531
532  // Check that remaining values produced are not flags.
533  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
534    if (N->getValueType(i) == MVT::Flag)
535      return 0;   // Never CSE anything that produces a flag.
536
537  SDNode *New = CSEMap.GetOrInsertNode(N);
538  if (New != N) return New;  // Node already existed.
539  return 0;
540}
541
542/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
543/// were replaced with those specified.  If this node is never memoized,
544/// return null, otherwise return a pointer to the slot it would take.  If a
545/// node already exists with these operands, the slot will be non-null.
546SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
547                                           void *&InsertPos) {
548  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
549    return 0;    // Never add these nodes.
550
551  // Check that remaining values produced are not flags.
552  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
553    if (N->getValueType(i) == MVT::Flag)
554      return 0;   // Never CSE anything that produces a flag.
555
556  SDOperand Ops[] = { Op };
557  FoldingSetNodeID ID;
558  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
559  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
560}
561
562/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
563/// were replaced with those specified.  If this node is never memoized,
564/// return null, otherwise return a pointer to the slot it would take.  If a
565/// node already exists with these operands, the slot will be non-null.
566SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
567                                           SDOperand Op1, SDOperand Op2,
568                                           void *&InsertPos) {
569  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
570    return 0;    // Never add these nodes.
571
572  // Check that remaining values produced are not flags.
573  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
574    if (N->getValueType(i) == MVT::Flag)
575      return 0;   // Never CSE anything that produces a flag.
576
577  SDOperand Ops[] = { Op1, Op2 };
578  FoldingSetNodeID ID;
579  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
580  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
581}
582
583
584/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
585/// were replaced with those specified.  If this node is never memoized,
586/// return null, otherwise return a pointer to the slot it would take.  If a
587/// node already exists with these operands, the slot will be non-null.
588SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
589                                           const SDOperand *Ops,unsigned NumOps,
590                                           void *&InsertPos) {
591  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
592    return 0;    // Never add these nodes.
593
594  // Check that remaining values produced are not flags.
595  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
596    if (N->getValueType(i) == MVT::Flag)
597      return 0;   // Never CSE anything that produces a flag.
598
599  FoldingSetNodeID ID;
600  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
601
602  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
603    ID.AddInteger(LD->getAddressingMode());
604    ID.AddInteger(LD->getExtensionType());
605    ID.AddInteger(LD->getLoadedVT());
606    ID.AddPointer(LD->getSrcValue());
607    ID.AddInteger(LD->getSrcValueOffset());
608    ID.AddInteger(LD->getAlignment());
609    ID.AddInteger(LD->isVolatile());
610  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
611    ID.AddInteger(ST->getAddressingMode());
612    ID.AddInteger(ST->isTruncatingStore());
613    ID.AddInteger(ST->getStoredVT());
614    ID.AddPointer(ST->getSrcValue());
615    ID.AddInteger(ST->getSrcValueOffset());
616    ID.AddInteger(ST->getAlignment());
617    ID.AddInteger(ST->isVolatile());
618  }
619
620  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
621}
622
623
624SelectionDAG::~SelectionDAG() {
625  while (!AllNodes.empty()) {
626    SDNode *N = AllNodes.begin();
627    N->SetNextInBucket(0);
628    if (N->OperandsNeedDelete)
629      delete [] N->OperandList;
630    N->OperandList = 0;
631    N->NumOperands = 0;
632    AllNodes.pop_front();
633  }
634}
635
636SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
637  if (Op.getValueType() == VT) return Op;
638  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
639  return getNode(ISD::AND, Op.getValueType(), Op,
640                 getConstant(Imm, Op.getValueType()));
641}
642
643SDOperand SelectionDAG::getString(const std::string &Val) {
644  StringSDNode *&N = StringNodes[Val];
645  if (!N) {
646    N = new StringSDNode(Val);
647    AllNodes.push_back(N);
648  }
649  return SDOperand(N, 0);
650}
651
652SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
653  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
654  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
655
656  // Mask out any bits that are not valid for this constant.
657  Val &= MVT::getIntVTBitMask(VT);
658
659  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
660  FoldingSetNodeID ID;
661  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
662  ID.AddInteger(Val);
663  void *IP = 0;
664  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
665    return SDOperand(E, 0);
666  SDNode *N = new ConstantSDNode(isT, Val, VT);
667  CSEMap.InsertNode(N, IP);
668  AllNodes.push_back(N);
669  return SDOperand(N, 0);
670}
671
672
673SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
674                                      bool isTarget) {
675  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
676  MVT::ValueType EltVT =
677    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
678  if (EltVT == MVT::f32)
679    Val = (float)Val;  // Mask out extra precision.
680
681  // Do the map lookup using the actual bit pattern for the floating point
682  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
683  // we don't have issues with SNANs.
684  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
685  FoldingSetNodeID ID;
686  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
687  ID.AddDouble(Val);
688  void *IP = 0;
689  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
690    return SDOperand(E, 0);
691  SDNode *N = new ConstantFPSDNode(isTarget, Val, EltVT);
692  CSEMap.InsertNode(N, IP);
693  AllNodes.push_back(N);
694  SDOperand Result(N, 0);
695  if (MVT::isVector(VT)) {
696    SmallVector<SDOperand, 8> Ops;
697    Ops.assign(MVT::getVectorNumElements(VT), Result);
698    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
699  }
700  return Result;
701}
702
703SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
704                                         MVT::ValueType VT, int Offset,
705                                         bool isTargetGA) {
706  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
707  unsigned Opc;
708  if (GVar && GVar->isThreadLocal())
709    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
710  else
711    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
712  FoldingSetNodeID ID;
713  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
714  ID.AddPointer(GV);
715  ID.AddInteger(Offset);
716  void *IP = 0;
717  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
718   return SDOperand(E, 0);
719  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
720  CSEMap.InsertNode(N, IP);
721  AllNodes.push_back(N);
722  return SDOperand(N, 0);
723}
724
725SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
726                                      bool isTarget) {
727  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
728  FoldingSetNodeID ID;
729  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
730  ID.AddInteger(FI);
731  void *IP = 0;
732  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
733    return SDOperand(E, 0);
734  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
735  CSEMap.InsertNode(N, IP);
736  AllNodes.push_back(N);
737  return SDOperand(N, 0);
738}
739
740SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
741  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
742  FoldingSetNodeID ID;
743  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
744  ID.AddInteger(JTI);
745  void *IP = 0;
746  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
747    return SDOperand(E, 0);
748  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
749  CSEMap.InsertNode(N, IP);
750  AllNodes.push_back(N);
751  return SDOperand(N, 0);
752}
753
754SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
755                                        unsigned Alignment, int Offset,
756                                        bool isTarget) {
757  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
758  FoldingSetNodeID ID;
759  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
760  ID.AddInteger(Alignment);
761  ID.AddInteger(Offset);
762  ID.AddPointer(C);
763  void *IP = 0;
764  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
765    return SDOperand(E, 0);
766  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
767  CSEMap.InsertNode(N, IP);
768  AllNodes.push_back(N);
769  return SDOperand(N, 0);
770}
771
772
773SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
774                                        MVT::ValueType VT,
775                                        unsigned Alignment, int Offset,
776                                        bool isTarget) {
777  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
778  FoldingSetNodeID ID;
779  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
780  ID.AddInteger(Alignment);
781  ID.AddInteger(Offset);
782  C->AddSelectionDAGCSEId(ID);
783  void *IP = 0;
784  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
785    return SDOperand(E, 0);
786  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
787  CSEMap.InsertNode(N, IP);
788  AllNodes.push_back(N);
789  return SDOperand(N, 0);
790}
791
792
793SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
794  FoldingSetNodeID ID;
795  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
796  ID.AddPointer(MBB);
797  void *IP = 0;
798  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
799    return SDOperand(E, 0);
800  SDNode *N = new BasicBlockSDNode(MBB);
801  CSEMap.InsertNode(N, IP);
802  AllNodes.push_back(N);
803  return SDOperand(N, 0);
804}
805
806SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
807  if ((unsigned)VT >= ValueTypeNodes.size())
808    ValueTypeNodes.resize(VT+1);
809  if (ValueTypeNodes[VT] == 0) {
810    ValueTypeNodes[VT] = new VTSDNode(VT);
811    AllNodes.push_back(ValueTypeNodes[VT]);
812  }
813
814  return SDOperand(ValueTypeNodes[VT], 0);
815}
816
817SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
818  SDNode *&N = ExternalSymbols[Sym];
819  if (N) return SDOperand(N, 0);
820  N = new ExternalSymbolSDNode(false, Sym, VT);
821  AllNodes.push_back(N);
822  return SDOperand(N, 0);
823}
824
825SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
826                                                MVT::ValueType VT) {
827  SDNode *&N = TargetExternalSymbols[Sym];
828  if (N) return SDOperand(N, 0);
829  N = new ExternalSymbolSDNode(true, Sym, VT);
830  AllNodes.push_back(N);
831  return SDOperand(N, 0);
832}
833
834SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
835  if ((unsigned)Cond >= CondCodeNodes.size())
836    CondCodeNodes.resize(Cond+1);
837
838  if (CondCodeNodes[Cond] == 0) {
839    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
840    AllNodes.push_back(CondCodeNodes[Cond]);
841  }
842  return SDOperand(CondCodeNodes[Cond], 0);
843}
844
845SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
846  FoldingSetNodeID ID;
847  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
848  ID.AddInteger(RegNo);
849  void *IP = 0;
850  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
851    return SDOperand(E, 0);
852  SDNode *N = new RegisterSDNode(RegNo, VT);
853  CSEMap.InsertNode(N, IP);
854  AllNodes.push_back(N);
855  return SDOperand(N, 0);
856}
857
858SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
859  assert((!V || isa<PointerType>(V->getType())) &&
860         "SrcValue is not a pointer?");
861
862  FoldingSetNodeID ID;
863  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
864  ID.AddPointer(V);
865  ID.AddInteger(Offset);
866  void *IP = 0;
867  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
868    return SDOperand(E, 0);
869  SDNode *N = new SrcValueSDNode(V, Offset);
870  CSEMap.InsertNode(N, IP);
871  AllNodes.push_back(N);
872  return SDOperand(N, 0);
873}
874
875SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
876                                  SDOperand N2, ISD::CondCode Cond) {
877  // These setcc operations always fold.
878  switch (Cond) {
879  default: break;
880  case ISD::SETFALSE:
881  case ISD::SETFALSE2: return getConstant(0, VT);
882  case ISD::SETTRUE:
883  case ISD::SETTRUE2:  return getConstant(1, VT);
884
885  case ISD::SETOEQ:
886  case ISD::SETOGT:
887  case ISD::SETOGE:
888  case ISD::SETOLT:
889  case ISD::SETOLE:
890  case ISD::SETONE:
891  case ISD::SETO:
892  case ISD::SETUO:
893  case ISD::SETUEQ:
894  case ISD::SETUNE:
895    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
896    break;
897  }
898
899  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
900    uint64_t C2 = N2C->getValue();
901    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
902      uint64_t C1 = N1C->getValue();
903
904      // Sign extend the operands if required
905      if (ISD::isSignedIntSetCC(Cond)) {
906        C1 = N1C->getSignExtended();
907        C2 = N2C->getSignExtended();
908      }
909
910      switch (Cond) {
911      default: assert(0 && "Unknown integer setcc!");
912      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
913      case ISD::SETNE:  return getConstant(C1 != C2, VT);
914      case ISD::SETULT: return getConstant(C1 <  C2, VT);
915      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
916      case ISD::SETULE: return getConstant(C1 <= C2, VT);
917      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
918      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
919      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
920      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
921      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
922      }
923    }
924  }
925  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
926    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
927      double C1 = N1C->getValue(), C2 = N2C->getValue();
928
929      switch (Cond) {
930      default: break; // FIXME: Implement the rest of these!
931      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
932      case ISD::SETNE:  return getConstant(C1 != C2, VT);
933      case ISD::SETLT:  return getConstant(C1 < C2, VT);
934      case ISD::SETGT:  return getConstant(C1 > C2, VT);
935      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
936      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
937      }
938    } else {
939      // Ensure that the constant occurs on the RHS.
940      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
941    }
942
943  // Could not fold it.
944  return SDOperand();
945}
946
947/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
948/// this predicate to simplify operations downstream.  Mask is known to be zero
949/// for bits that V cannot have.
950bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
951                                     unsigned Depth) const {
952  // The masks are not wide enough to represent this type!  Should use APInt.
953  if (Op.getValueType() == MVT::i128)
954    return false;
955
956  uint64_t KnownZero, KnownOne;
957  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
958  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
959  return (KnownZero & Mask) == Mask;
960}
961
962/// ComputeMaskedBits - Determine which of the bits specified in Mask are
963/// known to be either zero or one and return them in the KnownZero/KnownOne
964/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
965/// processing.
966void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
967                                     uint64_t &KnownZero, uint64_t &KnownOne,
968                                     unsigned Depth) const {
969  KnownZero = KnownOne = 0;   // Don't know anything.
970  if (Depth == 6 || Mask == 0)
971    return;  // Limit search depth.
972
973  // The masks are not wide enough to represent this type!  Should use APInt.
974  if (Op.getValueType() == MVT::i128)
975    return;
976
977  uint64_t KnownZero2, KnownOne2;
978
979  switch (Op.getOpcode()) {
980  case ISD::Constant:
981    // We know all of the bits for a constant!
982    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
983    KnownZero = ~KnownOne & Mask;
984    return;
985  case ISD::AND:
986    // If either the LHS or the RHS are Zero, the result is zero.
987    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
988    Mask &= ~KnownZero;
989    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
990    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
991    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
992
993    // Output known-1 bits are only known if set in both the LHS & RHS.
994    KnownOne &= KnownOne2;
995    // Output known-0 are known to be clear if zero in either the LHS | RHS.
996    KnownZero |= KnownZero2;
997    return;
998  case ISD::OR:
999    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1000    Mask &= ~KnownOne;
1001    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1002    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1003    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1004
1005    // Output known-0 bits are only known if clear in both the LHS & RHS.
1006    KnownZero &= KnownZero2;
1007    // Output known-1 are known to be set if set in either the LHS | RHS.
1008    KnownOne |= KnownOne2;
1009    return;
1010  case ISD::XOR: {
1011    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1012    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1013    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1014    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1015
1016    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1017    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1018    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1019    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1020    KnownZero = KnownZeroOut;
1021    return;
1022  }
1023  case ISD::SELECT:
1024    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1025    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1026    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1027    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1028
1029    // Only known if known in both the LHS and RHS.
1030    KnownOne &= KnownOne2;
1031    KnownZero &= KnownZero2;
1032    return;
1033  case ISD::SELECT_CC:
1034    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1035    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1036    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1037    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1038
1039    // Only known if known in both the LHS and RHS.
1040    KnownOne &= KnownOne2;
1041    KnownZero &= KnownZero2;
1042    return;
1043  case ISD::SETCC:
1044    // If we know the result of a setcc has the top bits zero, use this info.
1045    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1046      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1047    return;
1048  case ISD::SHL:
1049    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1050    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1051      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1052                        KnownZero, KnownOne, Depth+1);
1053      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1054      KnownZero <<= SA->getValue();
1055      KnownOne  <<= SA->getValue();
1056      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1057    }
1058    return;
1059  case ISD::SRL:
1060    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1061    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1062      MVT::ValueType VT = Op.getValueType();
1063      unsigned ShAmt = SA->getValue();
1064
1065      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1066      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1067                        KnownZero, KnownOne, Depth+1);
1068      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1069      KnownZero &= TypeMask;
1070      KnownOne  &= TypeMask;
1071      KnownZero >>= ShAmt;
1072      KnownOne  >>= ShAmt;
1073
1074      uint64_t HighBits = (1ULL << ShAmt)-1;
1075      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1076      KnownZero |= HighBits;  // High bits known zero.
1077    }
1078    return;
1079  case ISD::SRA:
1080    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1081      MVT::ValueType VT = Op.getValueType();
1082      unsigned ShAmt = SA->getValue();
1083
1084      // Compute the new bits that are at the top now.
1085      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1086
1087      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1088      // If any of the demanded bits are produced by the sign extension, we also
1089      // demand the input sign bit.
1090      uint64_t HighBits = (1ULL << ShAmt)-1;
1091      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1092      if (HighBits & Mask)
1093        InDemandedMask |= MVT::getIntVTSignBit(VT);
1094
1095      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1096                        Depth+1);
1097      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1098      KnownZero &= TypeMask;
1099      KnownOne  &= TypeMask;
1100      KnownZero >>= ShAmt;
1101      KnownOne  >>= ShAmt;
1102
1103      // Handle the sign bits.
1104      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1105      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1106
1107      if (KnownZero & SignBit) {
1108        KnownZero |= HighBits;  // New bits are known zero.
1109      } else if (KnownOne & SignBit) {
1110        KnownOne  |= HighBits;  // New bits are known one.
1111      }
1112    }
1113    return;
1114  case ISD::SIGN_EXTEND_INREG: {
1115    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1116
1117    // Sign extension.  Compute the demanded bits in the result that are not
1118    // present in the input.
1119    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1120
1121    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1122    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1123
1124    // If the sign extended bits are demanded, we know that the sign
1125    // bit is demanded.
1126    if (NewBits)
1127      InputDemandedBits |= InSignBit;
1128
1129    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1130                      KnownZero, KnownOne, Depth+1);
1131    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1132
1133    // If the sign bit of the input is known set or clear, then we know the
1134    // top bits of the result.
1135    if (KnownZero & InSignBit) {          // Input sign bit known clear
1136      KnownZero |= NewBits;
1137      KnownOne  &= ~NewBits;
1138    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1139      KnownOne  |= NewBits;
1140      KnownZero &= ~NewBits;
1141    } else {                              // Input sign bit unknown
1142      KnownZero &= ~NewBits;
1143      KnownOne  &= ~NewBits;
1144    }
1145    return;
1146  }
1147  case ISD::CTTZ:
1148  case ISD::CTLZ:
1149  case ISD::CTPOP: {
1150    MVT::ValueType VT = Op.getValueType();
1151    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1152    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1153    KnownOne  = 0;
1154    return;
1155  }
1156  case ISD::LOAD: {
1157    if (ISD::isZEXTLoad(Op.Val)) {
1158      LoadSDNode *LD = cast<LoadSDNode>(Op);
1159      MVT::ValueType VT = LD->getLoadedVT();
1160      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1161    }
1162    return;
1163  }
1164  case ISD::ZERO_EXTEND: {
1165    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1166    uint64_t NewBits = (~InMask) & Mask;
1167    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1168                      KnownOne, Depth+1);
1169    KnownZero |= NewBits & Mask;
1170    KnownOne  &= ~NewBits;
1171    return;
1172  }
1173  case ISD::SIGN_EXTEND: {
1174    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1175    unsigned InBits    = MVT::getSizeInBits(InVT);
1176    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1177    uint64_t InSignBit = 1ULL << (InBits-1);
1178    uint64_t NewBits   = (~InMask) & Mask;
1179    uint64_t InDemandedBits = Mask & InMask;
1180
1181    // If any of the sign extended bits are demanded, we know that the sign
1182    // bit is demanded.
1183    if (NewBits & Mask)
1184      InDemandedBits |= InSignBit;
1185
1186    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1187                      KnownOne, Depth+1);
1188    // If the sign bit is known zero or one, the  top bits match.
1189    if (KnownZero & InSignBit) {
1190      KnownZero |= NewBits;
1191      KnownOne  &= ~NewBits;
1192    } else if (KnownOne & InSignBit) {
1193      KnownOne  |= NewBits;
1194      KnownZero &= ~NewBits;
1195    } else {   // Otherwise, top bits aren't known.
1196      KnownOne  &= ~NewBits;
1197      KnownZero &= ~NewBits;
1198    }
1199    return;
1200  }
1201  case ISD::ANY_EXTEND: {
1202    MVT::ValueType VT = Op.getOperand(0).getValueType();
1203    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1204                      KnownZero, KnownOne, Depth+1);
1205    return;
1206  }
1207  case ISD::TRUNCATE: {
1208    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1209    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1210    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1211    KnownZero &= OutMask;
1212    KnownOne &= OutMask;
1213    break;
1214  }
1215  case ISD::AssertZext: {
1216    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1217    uint64_t InMask = MVT::getIntVTBitMask(VT);
1218    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1219                      KnownOne, Depth+1);
1220    KnownZero |= (~InMask) & Mask;
1221    return;
1222  }
1223  case ISD::ADD: {
1224    // If either the LHS or the RHS are Zero, the result is zero.
1225    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1226    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1227    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1228    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1229
1230    // Output known-0 bits are known if clear or set in both the low clear bits
1231    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1232    // low 3 bits clear.
1233    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1234                                     CountTrailingZeros_64(~KnownZero2));
1235
1236    KnownZero = (1ULL << KnownZeroOut) - 1;
1237    KnownOne = 0;
1238    return;
1239  }
1240  case ISD::SUB: {
1241    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1242    if (!CLHS) return;
1243
1244    // We know that the top bits of C-X are clear if X contains less bits
1245    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1246    // positive if we can prove that X is >= 0 and < 16.
1247    MVT::ValueType VT = CLHS->getValueType(0);
1248    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1249      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1250      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1251      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1252      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1253
1254      // If all of the MaskV bits are known to be zero, then we know the output
1255      // top bits are zero, because we now know that the output is from [0-C].
1256      if ((KnownZero & MaskV) == MaskV) {
1257        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1258        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1259        KnownOne = 0;   // No one bits known.
1260      } else {
1261        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1262      }
1263    }
1264    return;
1265  }
1266  default:
1267    // Allow the target to implement this method for its nodes.
1268    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1269  case ISD::INTRINSIC_WO_CHAIN:
1270  case ISD::INTRINSIC_W_CHAIN:
1271  case ISD::INTRINSIC_VOID:
1272      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1273    }
1274    return;
1275  }
1276}
1277
1278/// ComputeNumSignBits - Return the number of times the sign bit of the
1279/// register is replicated into the other bits.  We know that at least 1 bit
1280/// is always equal to the sign bit (itself), but other cases can give us
1281/// information.  For example, immediately after an "SRA X, 2", we know that
1282/// the top 3 bits are all equal to each other, so we return 3.
1283unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1284  MVT::ValueType VT = Op.getValueType();
1285  assert(MVT::isInteger(VT) && "Invalid VT!");
1286  unsigned VTBits = MVT::getSizeInBits(VT);
1287  unsigned Tmp, Tmp2;
1288
1289  if (Depth == 6)
1290    return 1;  // Limit search depth.
1291
1292  switch (Op.getOpcode()) {
1293  default: break;
1294  case ISD::AssertSext:
1295    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1296    return VTBits-Tmp+1;
1297  case ISD::AssertZext:
1298    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1299    return VTBits-Tmp;
1300
1301  case ISD::Constant: {
1302    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1303    // If negative, invert the bits, then look at it.
1304    if (Val & MVT::getIntVTSignBit(VT))
1305      Val = ~Val;
1306
1307    // Shift the bits so they are the leading bits in the int64_t.
1308    Val <<= 64-VTBits;
1309
1310    // Return # leading zeros.  We use 'min' here in case Val was zero before
1311    // shifting.  We don't want to return '64' as for an i32 "0".
1312    return std::min(VTBits, CountLeadingZeros_64(Val));
1313  }
1314
1315  case ISD::SIGN_EXTEND:
1316    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1317    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1318
1319  case ISD::SIGN_EXTEND_INREG:
1320    // Max of the input and what this extends.
1321    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1322    Tmp = VTBits-Tmp+1;
1323
1324    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1325    return std::max(Tmp, Tmp2);
1326
1327  case ISD::SRA:
1328    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1329    // SRA X, C   -> adds C sign bits.
1330    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1331      Tmp += C->getValue();
1332      if (Tmp > VTBits) Tmp = VTBits;
1333    }
1334    return Tmp;
1335  case ISD::SHL:
1336    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1337      // shl destroys sign bits.
1338      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1339      if (C->getValue() >= VTBits ||      // Bad shift.
1340          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1341      return Tmp - C->getValue();
1342    }
1343    break;
1344  case ISD::AND:
1345  case ISD::OR:
1346  case ISD::XOR:    // NOT is handled here.
1347    // Logical binary ops preserve the number of sign bits.
1348    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1349    if (Tmp == 1) return 1;  // Early out.
1350    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1351    return std::min(Tmp, Tmp2);
1352
1353  case ISD::SELECT:
1354    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1355    if (Tmp == 1) return 1;  // Early out.
1356    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1357    return std::min(Tmp, Tmp2);
1358
1359  case ISD::SETCC:
1360    // If setcc returns 0/-1, all bits are sign bits.
1361    if (TLI.getSetCCResultContents() ==
1362        TargetLowering::ZeroOrNegativeOneSetCCResult)
1363      return VTBits;
1364    break;
1365  case ISD::ROTL:
1366  case ISD::ROTR:
1367    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1368      unsigned RotAmt = C->getValue() & (VTBits-1);
1369
1370      // Handle rotate right by N like a rotate left by 32-N.
1371      if (Op.getOpcode() == ISD::ROTR)
1372        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1373
1374      // If we aren't rotating out all of the known-in sign bits, return the
1375      // number that are left.  This handles rotl(sext(x), 1) for example.
1376      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1377      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1378    }
1379    break;
1380  case ISD::ADD:
1381    // Add can have at most one carry bit.  Thus we know that the output
1382    // is, at worst, one more bit than the inputs.
1383    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1384    if (Tmp == 1) return 1;  // Early out.
1385
1386    // Special case decrementing a value (ADD X, -1):
1387    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1388      if (CRHS->isAllOnesValue()) {
1389        uint64_t KnownZero, KnownOne;
1390        uint64_t Mask = MVT::getIntVTBitMask(VT);
1391        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1392
1393        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1394        // sign bits set.
1395        if ((KnownZero|1) == Mask)
1396          return VTBits;
1397
1398        // If we are subtracting one from a positive number, there is no carry
1399        // out of the result.
1400        if (KnownZero & MVT::getIntVTSignBit(VT))
1401          return Tmp;
1402      }
1403
1404    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1405    if (Tmp2 == 1) return 1;
1406      return std::min(Tmp, Tmp2)-1;
1407    break;
1408
1409  case ISD::SUB:
1410    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1411    if (Tmp2 == 1) return 1;
1412
1413    // Handle NEG.
1414    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1415      if (CLHS->getValue() == 0) {
1416        uint64_t KnownZero, KnownOne;
1417        uint64_t Mask = MVT::getIntVTBitMask(VT);
1418        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1419        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1420        // sign bits set.
1421        if ((KnownZero|1) == Mask)
1422          return VTBits;
1423
1424        // If the input is known to be positive (the sign bit is known clear),
1425        // the output of the NEG has the same number of sign bits as the input.
1426        if (KnownZero & MVT::getIntVTSignBit(VT))
1427          return Tmp2;
1428
1429        // Otherwise, we treat this like a SUB.
1430      }
1431
1432    // Sub can have at most one carry bit.  Thus we know that the output
1433    // is, at worst, one more bit than the inputs.
1434    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1435    if (Tmp == 1) return 1;  // Early out.
1436      return std::min(Tmp, Tmp2)-1;
1437    break;
1438  case ISD::TRUNCATE:
1439    // FIXME: it's tricky to do anything useful for this, but it is an important
1440    // case for targets like X86.
1441    break;
1442  }
1443
1444  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1445  if (Op.getOpcode() == ISD::LOAD) {
1446    LoadSDNode *LD = cast<LoadSDNode>(Op);
1447    unsigned ExtType = LD->getExtensionType();
1448    switch (ExtType) {
1449    default: break;
1450    case ISD::SEXTLOAD:    // '17' bits known
1451      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1452      return VTBits-Tmp+1;
1453    case ISD::ZEXTLOAD:    // '16' bits known
1454      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1455      return VTBits-Tmp;
1456    }
1457  }
1458
1459  // Allow the target to implement this method for its nodes.
1460  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1461      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1462      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1463      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1464    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1465    if (NumBits > 1) return NumBits;
1466  }
1467
1468  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1469  // use this information.
1470  uint64_t KnownZero, KnownOne;
1471  uint64_t Mask = MVT::getIntVTBitMask(VT);
1472  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1473
1474  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1475  if (KnownZero & SignBit) {        // SignBit is 0
1476    Mask = KnownZero;
1477  } else if (KnownOne & SignBit) {  // SignBit is 1;
1478    Mask = KnownOne;
1479  } else {
1480    // Nothing known.
1481    return 1;
1482  }
1483
1484  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1485  // the number of identical bits in the top of the input value.
1486  Mask ^= ~0ULL;
1487  Mask <<= 64-VTBits;
1488  // Return # leading zeros.  We use 'min' here in case Val was zero before
1489  // shifting.  We don't want to return '64' as for an i32 "0".
1490  return std::min(VTBits, CountLeadingZeros_64(Mask));
1491}
1492
1493
1494/// getNode - Gets or creates the specified node.
1495///
1496SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1497  FoldingSetNodeID ID;
1498  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1499  void *IP = 0;
1500  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1501    return SDOperand(E, 0);
1502  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1503  CSEMap.InsertNode(N, IP);
1504
1505  AllNodes.push_back(N);
1506  return SDOperand(N, 0);
1507}
1508
1509SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1510                                SDOperand Operand) {
1511  unsigned Tmp1;
1512  // Constant fold unary operations with an integer constant operand.
1513  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1514    uint64_t Val = C->getValue();
1515    switch (Opcode) {
1516    default: break;
1517    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1518    case ISD::ANY_EXTEND:
1519    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1520    case ISD::TRUNCATE:    return getConstant(Val, VT);
1521    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1522    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1523    case ISD::BIT_CONVERT:
1524      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1525        return getConstantFP(BitsToFloat(Val), VT);
1526      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1527        return getConstantFP(BitsToDouble(Val), VT);
1528      break;
1529    case ISD::BSWAP:
1530      switch(VT) {
1531      default: assert(0 && "Invalid bswap!"); break;
1532      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1533      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1534      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1535      }
1536      break;
1537    case ISD::CTPOP:
1538      switch(VT) {
1539      default: assert(0 && "Invalid ctpop!"); break;
1540      case MVT::i1: return getConstant(Val != 0, VT);
1541      case MVT::i8:
1542        Tmp1 = (unsigned)Val & 0xFF;
1543        return getConstant(CountPopulation_32(Tmp1), VT);
1544      case MVT::i16:
1545        Tmp1 = (unsigned)Val & 0xFFFF;
1546        return getConstant(CountPopulation_32(Tmp1), VT);
1547      case MVT::i32:
1548        return getConstant(CountPopulation_32((unsigned)Val), VT);
1549      case MVT::i64:
1550        return getConstant(CountPopulation_64(Val), VT);
1551      }
1552    case ISD::CTLZ:
1553      switch(VT) {
1554      default: assert(0 && "Invalid ctlz!"); break;
1555      case MVT::i1: return getConstant(Val == 0, VT);
1556      case MVT::i8:
1557        Tmp1 = (unsigned)Val & 0xFF;
1558        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1559      case MVT::i16:
1560        Tmp1 = (unsigned)Val & 0xFFFF;
1561        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1562      case MVT::i32:
1563        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1564      case MVT::i64:
1565        return getConstant(CountLeadingZeros_64(Val), VT);
1566      }
1567    case ISD::CTTZ:
1568      switch(VT) {
1569      default: assert(0 && "Invalid cttz!"); break;
1570      case MVT::i1: return getConstant(Val == 0, VT);
1571      case MVT::i8:
1572        Tmp1 = (unsigned)Val | 0x100;
1573        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1574      case MVT::i16:
1575        Tmp1 = (unsigned)Val | 0x10000;
1576        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1577      case MVT::i32:
1578        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1579      case MVT::i64:
1580        return getConstant(CountTrailingZeros_64(Val), VT);
1581      }
1582    }
1583  }
1584
1585  // Constant fold unary operations with an floating point constant operand.
1586  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1587    switch (Opcode) {
1588    case ISD::FNEG:
1589      return getConstantFP(-C->getValue(), VT);
1590    case ISD::FABS:
1591      return getConstantFP(fabs(C->getValue()), VT);
1592    case ISD::FP_ROUND:
1593    case ISD::FP_EXTEND:
1594      return getConstantFP(C->getValue(), VT);
1595    case ISD::FP_TO_SINT:
1596      return getConstant((int64_t)C->getValue(), VT);
1597    case ISD::FP_TO_UINT:
1598      return getConstant((uint64_t)C->getValue(), VT);
1599    case ISD::BIT_CONVERT:
1600      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1601        return getConstant(FloatToBits(C->getValue()), VT);
1602      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1603        return getConstant(DoubleToBits(C->getValue()), VT);
1604      break;
1605    }
1606
1607  unsigned OpOpcode = Operand.Val->getOpcode();
1608  switch (Opcode) {
1609  case ISD::TokenFactor:
1610    return Operand;         // Factor of one node?  No factor.
1611  case ISD::FP_ROUND:
1612  case ISD::FP_EXTEND:
1613    assert(MVT::isFloatingPoint(VT) &&
1614           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1615    break;
1616  case ISD::SIGN_EXTEND:
1617    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1618           "Invalid SIGN_EXTEND!");
1619    if (Operand.getValueType() == VT) return Operand;   // noop extension
1620    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1621    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1622      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1623    break;
1624  case ISD::ZERO_EXTEND:
1625    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1626           "Invalid ZERO_EXTEND!");
1627    if (Operand.getValueType() == VT) return Operand;   // noop extension
1628    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1629    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1630      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1631    break;
1632  case ISD::ANY_EXTEND:
1633    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1634           "Invalid ANY_EXTEND!");
1635    if (Operand.getValueType() == VT) return Operand;   // noop extension
1636    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1637    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1638      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1639      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1640    break;
1641  case ISD::TRUNCATE:
1642    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1643           "Invalid TRUNCATE!");
1644    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1645    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1646    if (OpOpcode == ISD::TRUNCATE)
1647      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1648    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1649             OpOpcode == ISD::ANY_EXTEND) {
1650      // If the source is smaller than the dest, we still need an extend.
1651      if (Operand.Val->getOperand(0).getValueType() < VT)
1652        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1653      else if (Operand.Val->getOperand(0).getValueType() > VT)
1654        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1655      else
1656        return Operand.Val->getOperand(0);
1657    }
1658    break;
1659  case ISD::BIT_CONVERT:
1660    // Basic sanity checking.
1661    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1662           && "Cannot BIT_CONVERT between types of different sizes!");
1663    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1664    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1665      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1666    if (OpOpcode == ISD::UNDEF)
1667      return getNode(ISD::UNDEF, VT);
1668    break;
1669  case ISD::SCALAR_TO_VECTOR:
1670    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1671           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1672           "Illegal SCALAR_TO_VECTOR node!");
1673    break;
1674  case ISD::FNEG:
1675    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1676      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1677                     Operand.Val->getOperand(0));
1678    if (OpOpcode == ISD::FNEG)  // --X -> X
1679      return Operand.Val->getOperand(0);
1680    break;
1681  case ISD::FABS:
1682    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1683      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1684    break;
1685  }
1686
1687  SDNode *N;
1688  SDVTList VTs = getVTList(VT);
1689  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1690    FoldingSetNodeID ID;
1691    SDOperand Ops[1] = { Operand };
1692    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1693    void *IP = 0;
1694    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1695      return SDOperand(E, 0);
1696    N = new UnarySDNode(Opcode, VTs, Operand);
1697    CSEMap.InsertNode(N, IP);
1698  } else {
1699    N = new UnarySDNode(Opcode, VTs, Operand);
1700  }
1701  AllNodes.push_back(N);
1702  return SDOperand(N, 0);
1703}
1704
1705
1706
1707SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1708                                SDOperand N1, SDOperand N2) {
1709#ifndef NDEBUG
1710  switch (Opcode) {
1711  case ISD::TokenFactor:
1712    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1713           N2.getValueType() == MVT::Other && "Invalid token factor!");
1714    break;
1715  case ISD::AND:
1716  case ISD::OR:
1717  case ISD::XOR:
1718  case ISD::UDIV:
1719  case ISD::UREM:
1720  case ISD::MULHU:
1721  case ISD::MULHS:
1722    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1723    // fall through
1724  case ISD::ADD:
1725  case ISD::SUB:
1726  case ISD::MUL:
1727  case ISD::SDIV:
1728  case ISD::SREM:
1729    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1730    // fall through.
1731  case ISD::FADD:
1732  case ISD::FSUB:
1733  case ISD::FMUL:
1734  case ISD::FDIV:
1735  case ISD::FREM:
1736    assert(N1.getValueType() == N2.getValueType() &&
1737           N1.getValueType() == VT && "Binary operator types must match!");
1738    break;
1739  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1740    assert(N1.getValueType() == VT &&
1741           MVT::isFloatingPoint(N1.getValueType()) &&
1742           MVT::isFloatingPoint(N2.getValueType()) &&
1743           "Invalid FCOPYSIGN!");
1744    break;
1745  case ISD::SHL:
1746  case ISD::SRA:
1747  case ISD::SRL:
1748  case ISD::ROTL:
1749  case ISD::ROTR:
1750    assert(VT == N1.getValueType() &&
1751           "Shift operators return type must be the same as their first arg");
1752    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1753           VT != MVT::i1 && "Shifts only work on integers");
1754    break;
1755  case ISD::FP_ROUND_INREG: {
1756    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1757    assert(VT == N1.getValueType() && "Not an inreg round!");
1758    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1759           "Cannot FP_ROUND_INREG integer types");
1760    assert(EVT <= VT && "Not rounding down!");
1761    break;
1762  }
1763  case ISD::AssertSext:
1764  case ISD::AssertZext:
1765  case ISD::SIGN_EXTEND_INREG: {
1766    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1767    assert(VT == N1.getValueType() && "Not an inreg extend!");
1768    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1769           "Cannot *_EXTEND_INREG FP types");
1770    assert(EVT <= VT && "Not extending!");
1771  }
1772
1773  default: break;
1774  }
1775#endif
1776
1777  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1778  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1779  if (N1C) {
1780    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1781      int64_t Val = N1C->getValue();
1782      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1783      Val <<= 64-FromBits;
1784      Val >>= 64-FromBits;
1785      return getConstant(Val, VT);
1786    }
1787
1788    if (N2C) {
1789      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1790      switch (Opcode) {
1791      case ISD::ADD: return getConstant(C1 + C2, VT);
1792      case ISD::SUB: return getConstant(C1 - C2, VT);
1793      case ISD::MUL: return getConstant(C1 * C2, VT);
1794      case ISD::UDIV:
1795        if (C2) return getConstant(C1 / C2, VT);
1796        break;
1797      case ISD::UREM :
1798        if (C2) return getConstant(C1 % C2, VT);
1799        break;
1800      case ISD::SDIV :
1801        if (C2) return getConstant(N1C->getSignExtended() /
1802                                   N2C->getSignExtended(), VT);
1803        break;
1804      case ISD::SREM :
1805        if (C2) return getConstant(N1C->getSignExtended() %
1806                                   N2C->getSignExtended(), VT);
1807        break;
1808      case ISD::AND  : return getConstant(C1 & C2, VT);
1809      case ISD::OR   : return getConstant(C1 | C2, VT);
1810      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1811      case ISD::SHL  : return getConstant(C1 << C2, VT);
1812      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1813      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1814      case ISD::ROTL :
1815        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1816                           VT);
1817      case ISD::ROTR :
1818        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1819                           VT);
1820      default: break;
1821      }
1822    } else {      // Cannonicalize constant to RHS if commutative
1823      if (isCommutativeBinOp(Opcode)) {
1824        std::swap(N1C, N2C);
1825        std::swap(N1, N2);
1826      }
1827    }
1828  }
1829
1830  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1831  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1832  if (N1CFP) {
1833    if (N2CFP) {
1834      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1835      switch (Opcode) {
1836      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1837      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1838      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1839      case ISD::FDIV:
1840        if (C2) return getConstantFP(C1 / C2, VT);
1841        break;
1842      case ISD::FREM :
1843        if (C2) return getConstantFP(fmod(C1, C2), VT);
1844        break;
1845      case ISD::FCOPYSIGN: {
1846        union {
1847          double   F;
1848          uint64_t I;
1849        } u1;
1850        u1.F = C1;
1851        if (int64_t(DoubleToBits(C2)) < 0)  // Sign bit of RHS set?
1852          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1853        else
1854          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1855        return getConstantFP(u1.F, VT);
1856      }
1857      default: break;
1858      }
1859    } else {      // Cannonicalize constant to RHS if commutative
1860      if (isCommutativeBinOp(Opcode)) {
1861        std::swap(N1CFP, N2CFP);
1862        std::swap(N1, N2);
1863      }
1864    }
1865  }
1866
1867  // Canonicalize an UNDEF to the RHS, even over a constant.
1868  if (N1.getOpcode() == ISD::UNDEF) {
1869    if (isCommutativeBinOp(Opcode)) {
1870      std::swap(N1, N2);
1871    } else {
1872      switch (Opcode) {
1873      case ISD::FP_ROUND_INREG:
1874      case ISD::SIGN_EXTEND_INREG:
1875      case ISD::SUB:
1876      case ISD::FSUB:
1877      case ISD::FDIV:
1878      case ISD::FREM:
1879      case ISD::SRA:
1880        return N1;     // fold op(undef, arg2) -> undef
1881      case ISD::UDIV:
1882      case ISD::SDIV:
1883      case ISD::UREM:
1884      case ISD::SREM:
1885      case ISD::SRL:
1886      case ISD::SHL:
1887        if (!MVT::isVector(VT))
1888          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1889        // For vectors, we can't easily build an all zero vector, just return
1890        // the LHS.
1891        return N2;
1892      }
1893    }
1894  }
1895
1896  // Fold a bunch of operators when the RHS is undef.
1897  if (N2.getOpcode() == ISD::UNDEF) {
1898    switch (Opcode) {
1899    case ISD::ADD:
1900    case ISD::ADDC:
1901    case ISD::ADDE:
1902    case ISD::SUB:
1903    case ISD::FADD:
1904    case ISD::FSUB:
1905    case ISD::FMUL:
1906    case ISD::FDIV:
1907    case ISD::FREM:
1908    case ISD::UDIV:
1909    case ISD::SDIV:
1910    case ISD::UREM:
1911    case ISD::SREM:
1912    case ISD::XOR:
1913      return N2;       // fold op(arg1, undef) -> undef
1914    case ISD::MUL:
1915    case ISD::AND:
1916    case ISD::SRL:
1917    case ISD::SHL:
1918      if (!MVT::isVector(VT))
1919        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1920      // For vectors, we can't easily build an all zero vector, just return
1921      // the LHS.
1922      return N1;
1923    case ISD::OR:
1924      if (!MVT::isVector(VT))
1925        return getConstant(MVT::getIntVTBitMask(VT), VT);
1926      // For vectors, we can't easily build an all one vector, just return
1927      // the LHS.
1928      return N1;
1929    case ISD::SRA:
1930      return N1;
1931    }
1932  }
1933
1934  // Fold operations.
1935  switch (Opcode) {
1936  case ISD::TokenFactor:
1937    // Fold trivial token factors.
1938    if (N1.getOpcode() == ISD::EntryToken) return N2;
1939    if (N2.getOpcode() == ISD::EntryToken) return N1;
1940    break;
1941
1942  case ISD::AND:
1943    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1944    // worth handling here.
1945    if (N2C && N2C->getValue() == 0)
1946      return N2;
1947    break;
1948  case ISD::OR:
1949  case ISD::XOR:
1950    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1951    // worth handling here.
1952    if (N2C && N2C->getValue() == 0)
1953      return N1;
1954    break;
1955  case ISD::FP_ROUND_INREG:
1956    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1957    break;
1958  case ISD::SIGN_EXTEND_INREG: {
1959    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1960    if (EVT == VT) return N1;  // Not actually extending
1961    break;
1962  }
1963  case ISD::EXTRACT_VECTOR_ELT:
1964    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
1965
1966    // EXTRACT_VECTOR_ELT of BUILD_PAIR is often formed while lowering is
1967    // expanding copies of large vectors from registers.
1968    if (N1.getOpcode() == ISD::BUILD_PAIR) {
1969      unsigned NewNumElts = MVT::getVectorNumElements(N1.getValueType()) / 2;
1970      bool Low = N2C->getValue() < NewNumElts;
1971      return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(!Low),
1972                     Low ? N2 : getConstant(N2C->getValue() - NewNumElts,
1973                                            N2.getValueType()));
1974    }
1975    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
1976    // expanding large vector constants.
1977    if (N1.getOpcode() == ISD::BUILD_VECTOR)
1978      return N1.getOperand(N2C->getValue());
1979    break;
1980  case ISD::EXTRACT_ELEMENT:
1981    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1982
1983    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
1984    // 64-bit integers into 32-bit parts.  Instead of building the extract of
1985    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
1986    if (N1.getOpcode() == ISD::BUILD_PAIR)
1987      return N1.getOperand(N2C->getValue());
1988
1989    // EXTRACT_ELEMENT of a constant int is also very common.
1990    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
1991      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
1992      return getConstant(C->getValue() >> Shift, VT);
1993    }
1994    break;
1995
1996  // FIXME: figure out how to safely handle things like
1997  // int foo(int x) { return 1 << (x & 255); }
1998  // int bar() { return foo(256); }
1999#if 0
2000  case ISD::SHL:
2001  case ISD::SRL:
2002  case ISD::SRA:
2003    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2004        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2005      return getNode(Opcode, VT, N1, N2.getOperand(0));
2006    else if (N2.getOpcode() == ISD::AND)
2007      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2008        // If the and is only masking out bits that cannot effect the shift,
2009        // eliminate the and.
2010        unsigned NumBits = MVT::getSizeInBits(VT);
2011        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2012          return getNode(Opcode, VT, N1, N2.getOperand(0));
2013      }
2014    break;
2015#endif
2016  }
2017
2018  // Memoize this node if possible.
2019  SDNode *N;
2020  SDVTList VTs = getVTList(VT);
2021  if (VT != MVT::Flag) {
2022    SDOperand Ops[] = { N1, N2 };
2023    FoldingSetNodeID ID;
2024    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2025    void *IP = 0;
2026    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2027      return SDOperand(E, 0);
2028    N = new BinarySDNode(Opcode, VTs, N1, N2);
2029    CSEMap.InsertNode(N, IP);
2030  } else {
2031    N = new BinarySDNode(Opcode, VTs, N1, N2);
2032  }
2033
2034  AllNodes.push_back(N);
2035  return SDOperand(N, 0);
2036}
2037
2038SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2039                                SDOperand N1, SDOperand N2, SDOperand N3) {
2040  // Perform various simplifications.
2041  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2042  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2043  switch (Opcode) {
2044  case ISD::SETCC: {
2045    // Use FoldSetCC to simplify SETCC's.
2046    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2047    if (Simp.Val) return Simp;
2048    break;
2049  }
2050  case ISD::SELECT:
2051    if (N1C)
2052      if (N1C->getValue())
2053        return N2;             // select true, X, Y -> X
2054      else
2055        return N3;             // select false, X, Y -> Y
2056
2057    if (N2 == N3) return N2;   // select C, X, X -> X
2058    break;
2059  case ISD::BRCOND:
2060    if (N2C)
2061      if (N2C->getValue()) // Unconditional branch
2062        return getNode(ISD::BR, MVT::Other, N1, N3);
2063      else
2064        return N1;         // Never-taken branch
2065    break;
2066  case ISD::VECTOR_SHUFFLE:
2067    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2068           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2069           N3.getOpcode() == ISD::BUILD_VECTOR &&
2070           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2071           "Illegal VECTOR_SHUFFLE node!");
2072    break;
2073  case ISD::BIT_CONVERT:
2074    // Fold bit_convert nodes from a type to themselves.
2075    if (N1.getValueType() == VT)
2076      return N1;
2077    break;
2078  }
2079
2080  // Memoize node if it doesn't produce a flag.
2081  SDNode *N;
2082  SDVTList VTs = getVTList(VT);
2083  if (VT != MVT::Flag) {
2084    SDOperand Ops[] = { N1, N2, N3 };
2085    FoldingSetNodeID ID;
2086    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2087    void *IP = 0;
2088    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2089      return SDOperand(E, 0);
2090    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2091    CSEMap.InsertNode(N, IP);
2092  } else {
2093    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2094  }
2095  AllNodes.push_back(N);
2096  return SDOperand(N, 0);
2097}
2098
2099SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2100                                SDOperand N1, SDOperand N2, SDOperand N3,
2101                                SDOperand N4) {
2102  SDOperand Ops[] = { N1, N2, N3, N4 };
2103  return getNode(Opcode, VT, Ops, 4);
2104}
2105
2106SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2107                                SDOperand N1, SDOperand N2, SDOperand N3,
2108                                SDOperand N4, SDOperand N5) {
2109  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2110  return getNode(Opcode, VT, Ops, 5);
2111}
2112
2113SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2114                                SDOperand Chain, SDOperand Ptr,
2115                                const Value *SV, int SVOffset,
2116                                bool isVolatile, unsigned Alignment) {
2117  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2118    const Type *Ty = 0;
2119    if (VT != MVT::iPTR) {
2120      Ty = MVT::getTypeForValueType(VT);
2121    } else if (SV) {
2122      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2123      assert(PT && "Value for load must be a pointer");
2124      Ty = PT->getElementType();
2125    }
2126    assert(Ty && "Could not get type information for load");
2127    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2128  }
2129  SDVTList VTs = getVTList(VT, MVT::Other);
2130  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2131  SDOperand Ops[] = { Chain, Ptr, Undef };
2132  FoldingSetNodeID ID;
2133  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2134  ID.AddInteger(ISD::UNINDEXED);
2135  ID.AddInteger(ISD::NON_EXTLOAD);
2136  ID.AddInteger(VT);
2137  ID.AddPointer(SV);
2138  ID.AddInteger(SVOffset);
2139  ID.AddInteger(Alignment);
2140  ID.AddInteger(isVolatile);
2141  void *IP = 0;
2142  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2143    return SDOperand(E, 0);
2144  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2145                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2146                             isVolatile);
2147  CSEMap.InsertNode(N, IP);
2148  AllNodes.push_back(N);
2149  return SDOperand(N, 0);
2150}
2151
2152SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2153                                   SDOperand Chain, SDOperand Ptr,
2154                                   const Value *SV,
2155                                   int SVOffset, MVT::ValueType EVT,
2156                                   bool isVolatile, unsigned Alignment) {
2157  // If they are asking for an extending load from/to the same thing, return a
2158  // normal load.
2159  if (VT == EVT)
2160    ExtType = ISD::NON_EXTLOAD;
2161
2162  if (MVT::isVector(VT))
2163    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2164  else
2165    assert(EVT < VT && "Should only be an extending load, not truncating!");
2166  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2167         "Cannot sign/zero extend a FP/Vector load!");
2168  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2169         "Cannot convert from FP to Int or Int -> FP!");
2170
2171  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2172    const Type *Ty = 0;
2173    if (VT != MVT::iPTR) {
2174      Ty = MVT::getTypeForValueType(VT);
2175    } else if (SV) {
2176      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2177      assert(PT && "Value for load must be a pointer");
2178      Ty = PT->getElementType();
2179    }
2180    assert(Ty && "Could not get type information for load");
2181    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2182  }
2183  SDVTList VTs = getVTList(VT, MVT::Other);
2184  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2185  SDOperand Ops[] = { Chain, Ptr, Undef };
2186  FoldingSetNodeID ID;
2187  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2188  ID.AddInteger(ISD::UNINDEXED);
2189  ID.AddInteger(ExtType);
2190  ID.AddInteger(EVT);
2191  ID.AddPointer(SV);
2192  ID.AddInteger(SVOffset);
2193  ID.AddInteger(Alignment);
2194  ID.AddInteger(isVolatile);
2195  void *IP = 0;
2196  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2197    return SDOperand(E, 0);
2198  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2199                             SV, SVOffset, Alignment, isVolatile);
2200  CSEMap.InsertNode(N, IP);
2201  AllNodes.push_back(N);
2202  return SDOperand(N, 0);
2203}
2204
2205SDOperand
2206SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2207                             SDOperand Offset, ISD::MemIndexedMode AM) {
2208  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2209  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2210         "Load is already a indexed load!");
2211  MVT::ValueType VT = OrigLoad.getValueType();
2212  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2213  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2214  FoldingSetNodeID ID;
2215  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2216  ID.AddInteger(AM);
2217  ID.AddInteger(LD->getExtensionType());
2218  ID.AddInteger(LD->getLoadedVT());
2219  ID.AddPointer(LD->getSrcValue());
2220  ID.AddInteger(LD->getSrcValueOffset());
2221  ID.AddInteger(LD->getAlignment());
2222  ID.AddInteger(LD->isVolatile());
2223  void *IP = 0;
2224  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2225    return SDOperand(E, 0);
2226  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2227                             LD->getExtensionType(), LD->getLoadedVT(),
2228                             LD->getSrcValue(), LD->getSrcValueOffset(),
2229                             LD->getAlignment(), LD->isVolatile());
2230  CSEMap.InsertNode(N, IP);
2231  AllNodes.push_back(N);
2232  return SDOperand(N, 0);
2233}
2234
2235SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2236                                 SDOperand Ptr, const Value *SV, int SVOffset,
2237                                 bool isVolatile, unsigned Alignment) {
2238  MVT::ValueType VT = Val.getValueType();
2239
2240  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2241    const Type *Ty = 0;
2242    if (VT != MVT::iPTR) {
2243      Ty = MVT::getTypeForValueType(VT);
2244    } else if (SV) {
2245      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2246      assert(PT && "Value for store must be a pointer");
2247      Ty = PT->getElementType();
2248    }
2249    assert(Ty && "Could not get type information for store");
2250    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2251  }
2252  SDVTList VTs = getVTList(MVT::Other);
2253  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2254  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2255  FoldingSetNodeID ID;
2256  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2257  ID.AddInteger(ISD::UNINDEXED);
2258  ID.AddInteger(false);
2259  ID.AddInteger(VT);
2260  ID.AddPointer(SV);
2261  ID.AddInteger(SVOffset);
2262  ID.AddInteger(Alignment);
2263  ID.AddInteger(isVolatile);
2264  void *IP = 0;
2265  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2266    return SDOperand(E, 0);
2267  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2268                              VT, SV, SVOffset, Alignment, isVolatile);
2269  CSEMap.InsertNode(N, IP);
2270  AllNodes.push_back(N);
2271  return SDOperand(N, 0);
2272}
2273
2274SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2275                                      SDOperand Ptr, const Value *SV,
2276                                      int SVOffset, MVT::ValueType SVT,
2277                                      bool isVolatile, unsigned Alignment) {
2278  MVT::ValueType VT = Val.getValueType();
2279  bool isTrunc = VT != SVT;
2280
2281  assert(VT > SVT && "Not a truncation?");
2282  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2283         "Can't do FP-INT conversion!");
2284
2285  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2286    const Type *Ty = 0;
2287    if (VT != MVT::iPTR) {
2288      Ty = MVT::getTypeForValueType(VT);
2289    } else if (SV) {
2290      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2291      assert(PT && "Value for store must be a pointer");
2292      Ty = PT->getElementType();
2293    }
2294    assert(Ty && "Could not get type information for store");
2295    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2296  }
2297  SDVTList VTs = getVTList(MVT::Other);
2298  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2299  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2300  FoldingSetNodeID ID;
2301  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2302  ID.AddInteger(ISD::UNINDEXED);
2303  ID.AddInteger(isTrunc);
2304  ID.AddInteger(SVT);
2305  ID.AddPointer(SV);
2306  ID.AddInteger(SVOffset);
2307  ID.AddInteger(Alignment);
2308  ID.AddInteger(isVolatile);
2309  void *IP = 0;
2310  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2311    return SDOperand(E, 0);
2312  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2313                              SVT, SV, SVOffset, Alignment, isVolatile);
2314  CSEMap.InsertNode(N, IP);
2315  AllNodes.push_back(N);
2316  return SDOperand(N, 0);
2317}
2318
2319SDOperand
2320SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2321                              SDOperand Offset, ISD::MemIndexedMode AM) {
2322  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2323  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2324         "Store is already a indexed store!");
2325  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2326  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2327  FoldingSetNodeID ID;
2328  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2329  ID.AddInteger(AM);
2330  ID.AddInteger(ST->isTruncatingStore());
2331  ID.AddInteger(ST->getStoredVT());
2332  ID.AddPointer(ST->getSrcValue());
2333  ID.AddInteger(ST->getSrcValueOffset());
2334  ID.AddInteger(ST->getAlignment());
2335  ID.AddInteger(ST->isVolatile());
2336  void *IP = 0;
2337  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2338    return SDOperand(E, 0);
2339  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2340                              ST->isTruncatingStore(), ST->getStoredVT(),
2341                              ST->getSrcValue(), ST->getSrcValueOffset(),
2342                              ST->getAlignment(), ST->isVolatile());
2343  CSEMap.InsertNode(N, IP);
2344  AllNodes.push_back(N);
2345  return SDOperand(N, 0);
2346}
2347
2348SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2349                                 SDOperand Chain, SDOperand Ptr,
2350                                 SDOperand SV) {
2351  SDOperand Ops[] = { Chain, Ptr, SV };
2352  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2353}
2354
2355SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2356                                const SDOperand *Ops, unsigned NumOps) {
2357  switch (NumOps) {
2358  case 0: return getNode(Opcode, VT);
2359  case 1: return getNode(Opcode, VT, Ops[0]);
2360  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2361  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2362  default: break;
2363  }
2364
2365  switch (Opcode) {
2366  default: break;
2367  case ISD::SELECT_CC: {
2368    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2369    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2370           "LHS and RHS of condition must have same type!");
2371    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2372           "True and False arms of SelectCC must have same type!");
2373    assert(Ops[2].getValueType() == VT &&
2374           "select_cc node must be of same type as true and false value!");
2375    break;
2376  }
2377  case ISD::BR_CC: {
2378    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2379    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2380           "LHS/RHS of comparison should match types!");
2381    break;
2382  }
2383  }
2384
2385  // Memoize nodes.
2386  SDNode *N;
2387  SDVTList VTs = getVTList(VT);
2388  if (VT != MVT::Flag) {
2389    FoldingSetNodeID ID;
2390    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2391    void *IP = 0;
2392    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2393      return SDOperand(E, 0);
2394    N = new SDNode(Opcode, VTs, Ops, NumOps);
2395    CSEMap.InsertNode(N, IP);
2396  } else {
2397    N = new SDNode(Opcode, VTs, Ops, NumOps);
2398  }
2399  AllNodes.push_back(N);
2400  return SDOperand(N, 0);
2401}
2402
2403SDOperand SelectionDAG::getNode(unsigned Opcode,
2404                                std::vector<MVT::ValueType> &ResultTys,
2405                                const SDOperand *Ops, unsigned NumOps) {
2406  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2407                 Ops, NumOps);
2408}
2409
2410SDOperand SelectionDAG::getNode(unsigned Opcode,
2411                                const MVT::ValueType *VTs, unsigned NumVTs,
2412                                const SDOperand *Ops, unsigned NumOps) {
2413  if (NumVTs == 1)
2414    return getNode(Opcode, VTs[0], Ops, NumOps);
2415  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2416}
2417
2418SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2419                                const SDOperand *Ops, unsigned NumOps) {
2420  if (VTList.NumVTs == 1)
2421    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2422
2423  switch (Opcode) {
2424  // FIXME: figure out how to safely handle things like
2425  // int foo(int x) { return 1 << (x & 255); }
2426  // int bar() { return foo(256); }
2427#if 0
2428  case ISD::SRA_PARTS:
2429  case ISD::SRL_PARTS:
2430  case ISD::SHL_PARTS:
2431    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2432        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2433      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2434    else if (N3.getOpcode() == ISD::AND)
2435      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2436        // If the and is only masking out bits that cannot effect the shift,
2437        // eliminate the and.
2438        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2439        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2440          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2441      }
2442    break;
2443#endif
2444  }
2445
2446  // Memoize the node unless it returns a flag.
2447  SDNode *N;
2448  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2449    FoldingSetNodeID ID;
2450    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2451    void *IP = 0;
2452    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2453      return SDOperand(E, 0);
2454    if (NumOps == 1)
2455      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2456    else if (NumOps == 2)
2457      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2458    else if (NumOps == 3)
2459      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2460    else
2461      N = new SDNode(Opcode, VTList, Ops, NumOps);
2462    CSEMap.InsertNode(N, IP);
2463  } else {
2464    if (NumOps == 1)
2465      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2466    else if (NumOps == 2)
2467      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2468    else if (NumOps == 3)
2469      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2470    else
2471      N = new SDNode(Opcode, VTList, Ops, NumOps);
2472  }
2473  AllNodes.push_back(N);
2474  return SDOperand(N, 0);
2475}
2476
2477SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2478  if (!MVT::isExtendedVT(VT))
2479    return makeVTList(SDNode::getValueTypeList(VT), 1);
2480
2481  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2482       E = VTList.end(); I != E; ++I) {
2483    if (I->size() == 1 && (*I)[0] == VT)
2484      return makeVTList(&(*I)[0], 1);
2485  }
2486  std::vector<MVT::ValueType> V;
2487  V.push_back(VT);
2488  VTList.push_front(V);
2489  return makeVTList(&(*VTList.begin())[0], 1);
2490}
2491
2492SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2493  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2494       E = VTList.end(); I != E; ++I) {
2495    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2496      return makeVTList(&(*I)[0], 2);
2497  }
2498  std::vector<MVT::ValueType> V;
2499  V.push_back(VT1);
2500  V.push_back(VT2);
2501  VTList.push_front(V);
2502  return makeVTList(&(*VTList.begin())[0], 2);
2503}
2504SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2505                                 MVT::ValueType VT3) {
2506  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2507       E = VTList.end(); I != E; ++I) {
2508    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2509        (*I)[2] == VT3)
2510      return makeVTList(&(*I)[0], 3);
2511  }
2512  std::vector<MVT::ValueType> V;
2513  V.push_back(VT1);
2514  V.push_back(VT2);
2515  V.push_back(VT3);
2516  VTList.push_front(V);
2517  return makeVTList(&(*VTList.begin())[0], 3);
2518}
2519
2520SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2521  switch (NumVTs) {
2522    case 0: assert(0 && "Cannot have nodes without results!");
2523    case 1: return getVTList(VTs[0]);
2524    case 2: return getVTList(VTs[0], VTs[1]);
2525    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2526    default: break;
2527  }
2528
2529  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2530       E = VTList.end(); I != E; ++I) {
2531    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2532
2533    bool NoMatch = false;
2534    for (unsigned i = 2; i != NumVTs; ++i)
2535      if (VTs[i] != (*I)[i]) {
2536        NoMatch = true;
2537        break;
2538      }
2539    if (!NoMatch)
2540      return makeVTList(&*I->begin(), NumVTs);
2541  }
2542
2543  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2544  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2545}
2546
2547
2548/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2549/// specified operands.  If the resultant node already exists in the DAG,
2550/// this does not modify the specified node, instead it returns the node that
2551/// already exists.  If the resultant node does not exist in the DAG, the
2552/// input node is returned.  As a degenerate case, if you specify the same
2553/// input operands as the node already has, the input node is returned.
2554SDOperand SelectionDAG::
2555UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2556  SDNode *N = InN.Val;
2557  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2558
2559  // Check to see if there is no change.
2560  if (Op == N->getOperand(0)) return InN;
2561
2562  // See if the modified node already exists.
2563  void *InsertPos = 0;
2564  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2565    return SDOperand(Existing, InN.ResNo);
2566
2567  // Nope it doesn't.  Remove the node from it's current place in the maps.
2568  if (InsertPos)
2569    RemoveNodeFromCSEMaps(N);
2570
2571  // Now we update the operands.
2572  N->OperandList[0].Val->removeUser(N);
2573  Op.Val->addUser(N);
2574  N->OperandList[0] = Op;
2575
2576  // If this gets put into a CSE map, add it.
2577  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2578  return InN;
2579}
2580
2581SDOperand SelectionDAG::
2582UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2583  SDNode *N = InN.Val;
2584  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2585
2586  // Check to see if there is no change.
2587  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2588    return InN;   // No operands changed, just return the input node.
2589
2590  // See if the modified node already exists.
2591  void *InsertPos = 0;
2592  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2593    return SDOperand(Existing, InN.ResNo);
2594
2595  // Nope it doesn't.  Remove the node from it's current place in the maps.
2596  if (InsertPos)
2597    RemoveNodeFromCSEMaps(N);
2598
2599  // Now we update the operands.
2600  if (N->OperandList[0] != Op1) {
2601    N->OperandList[0].Val->removeUser(N);
2602    Op1.Val->addUser(N);
2603    N->OperandList[0] = Op1;
2604  }
2605  if (N->OperandList[1] != Op2) {
2606    N->OperandList[1].Val->removeUser(N);
2607    Op2.Val->addUser(N);
2608    N->OperandList[1] = Op2;
2609  }
2610
2611  // If this gets put into a CSE map, add it.
2612  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2613  return InN;
2614}
2615
2616SDOperand SelectionDAG::
2617UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2618  SDOperand Ops[] = { Op1, Op2, Op3 };
2619  return UpdateNodeOperands(N, Ops, 3);
2620}
2621
2622SDOperand SelectionDAG::
2623UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2624                   SDOperand Op3, SDOperand Op4) {
2625  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2626  return UpdateNodeOperands(N, Ops, 4);
2627}
2628
2629SDOperand SelectionDAG::
2630UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2631                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2632  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2633  return UpdateNodeOperands(N, Ops, 5);
2634}
2635
2636
2637SDOperand SelectionDAG::
2638UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2639  SDNode *N = InN.Val;
2640  assert(N->getNumOperands() == NumOps &&
2641         "Update with wrong number of operands");
2642
2643  // Check to see if there is no change.
2644  bool AnyChange = false;
2645  for (unsigned i = 0; i != NumOps; ++i) {
2646    if (Ops[i] != N->getOperand(i)) {
2647      AnyChange = true;
2648      break;
2649    }
2650  }
2651
2652  // No operands changed, just return the input node.
2653  if (!AnyChange) return InN;
2654
2655  // See if the modified node already exists.
2656  void *InsertPos = 0;
2657  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2658    return SDOperand(Existing, InN.ResNo);
2659
2660  // Nope it doesn't.  Remove the node from it's current place in the maps.
2661  if (InsertPos)
2662    RemoveNodeFromCSEMaps(N);
2663
2664  // Now we update the operands.
2665  for (unsigned i = 0; i != NumOps; ++i) {
2666    if (N->OperandList[i] != Ops[i]) {
2667      N->OperandList[i].Val->removeUser(N);
2668      Ops[i].Val->addUser(N);
2669      N->OperandList[i] = Ops[i];
2670    }
2671  }
2672
2673  // If this gets put into a CSE map, add it.
2674  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2675  return InN;
2676}
2677
2678
2679/// MorphNodeTo - This frees the operands of the current node, resets the
2680/// opcode, types, and operands to the specified value.  This should only be
2681/// used by the SelectionDAG class.
2682void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2683                         const SDOperand *Ops, unsigned NumOps) {
2684  NodeType = Opc;
2685  ValueList = L.VTs;
2686  NumValues = L.NumVTs;
2687
2688  // Clear the operands list, updating used nodes to remove this from their
2689  // use list.
2690  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2691    I->Val->removeUser(this);
2692
2693  // If NumOps is larger than the # of operands we currently have, reallocate
2694  // the operand list.
2695  if (NumOps > NumOperands) {
2696    if (OperandsNeedDelete)
2697      delete [] OperandList;
2698    OperandList = new SDOperand[NumOps];
2699    OperandsNeedDelete = true;
2700  }
2701
2702  // Assign the new operands.
2703  NumOperands = NumOps;
2704
2705  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2706    OperandList[i] = Ops[i];
2707    SDNode *N = OperandList[i].Val;
2708    N->Uses.push_back(this);
2709  }
2710}
2711
2712/// SelectNodeTo - These are used for target selectors to *mutate* the
2713/// specified node to have the specified return type, Target opcode, and
2714/// operands.  Note that target opcodes are stored as
2715/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2716///
2717/// Note that SelectNodeTo returns the resultant node.  If there is already a
2718/// node of the specified opcode and operands, it returns that node instead of
2719/// the current one.
2720SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2721                                   MVT::ValueType VT) {
2722  SDVTList VTs = getVTList(VT);
2723  FoldingSetNodeID ID;
2724  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2725  void *IP = 0;
2726  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2727    return ON;
2728
2729  RemoveNodeFromCSEMaps(N);
2730
2731  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2732
2733  CSEMap.InsertNode(N, IP);
2734  return N;
2735}
2736
2737SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2738                                   MVT::ValueType VT, SDOperand Op1) {
2739  // If an identical node already exists, use it.
2740  SDVTList VTs = getVTList(VT);
2741  SDOperand Ops[] = { Op1 };
2742
2743  FoldingSetNodeID ID;
2744  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2745  void *IP = 0;
2746  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2747    return ON;
2748
2749  RemoveNodeFromCSEMaps(N);
2750  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2751  CSEMap.InsertNode(N, IP);
2752  return N;
2753}
2754
2755SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2756                                   MVT::ValueType VT, SDOperand Op1,
2757                                   SDOperand Op2) {
2758  // If an identical node already exists, use it.
2759  SDVTList VTs = getVTList(VT);
2760  SDOperand Ops[] = { Op1, Op2 };
2761
2762  FoldingSetNodeID ID;
2763  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2764  void *IP = 0;
2765  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2766    return ON;
2767
2768  RemoveNodeFromCSEMaps(N);
2769
2770  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2771
2772  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2773  return N;
2774}
2775
2776SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2777                                   MVT::ValueType VT, SDOperand Op1,
2778                                   SDOperand Op2, SDOperand Op3) {
2779  // If an identical node already exists, use it.
2780  SDVTList VTs = getVTList(VT);
2781  SDOperand Ops[] = { Op1, Op2, Op3 };
2782  FoldingSetNodeID ID;
2783  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2784  void *IP = 0;
2785  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2786    return ON;
2787
2788  RemoveNodeFromCSEMaps(N);
2789
2790  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2791
2792  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2793  return N;
2794}
2795
2796SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2797                                   MVT::ValueType VT, const SDOperand *Ops,
2798                                   unsigned NumOps) {
2799  // If an identical node already exists, use it.
2800  SDVTList VTs = getVTList(VT);
2801  FoldingSetNodeID ID;
2802  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2803  void *IP = 0;
2804  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2805    return ON;
2806
2807  RemoveNodeFromCSEMaps(N);
2808  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2809
2810  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2811  return N;
2812}
2813
2814SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2815                                   MVT::ValueType VT1, MVT::ValueType VT2,
2816                                   SDOperand Op1, SDOperand Op2) {
2817  SDVTList VTs = getVTList(VT1, VT2);
2818  FoldingSetNodeID ID;
2819  SDOperand Ops[] = { Op1, Op2 };
2820  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2821  void *IP = 0;
2822  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2823    return ON;
2824
2825  RemoveNodeFromCSEMaps(N);
2826  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2827  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2828  return N;
2829}
2830
2831SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2832                                   MVT::ValueType VT1, MVT::ValueType VT2,
2833                                   SDOperand Op1, SDOperand Op2,
2834                                   SDOperand Op3) {
2835  // If an identical node already exists, use it.
2836  SDVTList VTs = getVTList(VT1, VT2);
2837  SDOperand Ops[] = { Op1, Op2, Op3 };
2838  FoldingSetNodeID ID;
2839  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2840  void *IP = 0;
2841  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2842    return ON;
2843
2844  RemoveNodeFromCSEMaps(N);
2845
2846  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2847  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2848  return N;
2849}
2850
2851
2852/// getTargetNode - These are used for target selectors to create a new node
2853/// with specified return type(s), target opcode, and operands.
2854///
2855/// Note that getTargetNode returns the resultant node.  If there is already a
2856/// node of the specified opcode and operands, it returns that node instead of
2857/// the current one.
2858SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2859  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2860}
2861SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2862                                    SDOperand Op1) {
2863  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2864}
2865SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2866                                    SDOperand Op1, SDOperand Op2) {
2867  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2868}
2869SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2870                                    SDOperand Op1, SDOperand Op2,
2871                                    SDOperand Op3) {
2872  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2873}
2874SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2875                                    const SDOperand *Ops, unsigned NumOps) {
2876  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2877}
2878SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2879                                    MVT::ValueType VT2, SDOperand Op1) {
2880  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2881  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2882}
2883SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2884                                    MVT::ValueType VT2, SDOperand Op1,
2885                                    SDOperand Op2) {
2886  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2887  SDOperand Ops[] = { Op1, Op2 };
2888  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2889}
2890SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2891                                    MVT::ValueType VT2, SDOperand Op1,
2892                                    SDOperand Op2, SDOperand Op3) {
2893  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2894  SDOperand Ops[] = { Op1, Op2, Op3 };
2895  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2896}
2897SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2898                                    MVT::ValueType VT2,
2899                                    const SDOperand *Ops, unsigned NumOps) {
2900  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2901  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2902}
2903SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2904                                    MVT::ValueType VT2, MVT::ValueType VT3,
2905                                    SDOperand Op1, SDOperand Op2) {
2906  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2907  SDOperand Ops[] = { Op1, Op2 };
2908  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2909}
2910SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2911                                    MVT::ValueType VT2, MVT::ValueType VT3,
2912                                    SDOperand Op1, SDOperand Op2,
2913                                    SDOperand Op3) {
2914  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2915  SDOperand Ops[] = { Op1, Op2, Op3 };
2916  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
2917}
2918SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2919                                    MVT::ValueType VT2, MVT::ValueType VT3,
2920                                    const SDOperand *Ops, unsigned NumOps) {
2921  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2922  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2923}
2924
2925/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2926/// This can cause recursive merging of nodes in the DAG.
2927///
2928/// This version assumes From/To have a single result value.
2929///
2930void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2931                                      std::vector<SDNode*> *Deleted) {
2932  SDNode *From = FromN.Val, *To = ToN.Val;
2933  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2934         "Cannot replace with this method!");
2935  assert(From != To && "Cannot replace uses of with self");
2936
2937  while (!From->use_empty()) {
2938    // Process users until they are all gone.
2939    SDNode *U = *From->use_begin();
2940
2941    // This node is about to morph, remove its old self from the CSE maps.
2942    RemoveNodeFromCSEMaps(U);
2943
2944    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2945         I != E; ++I)
2946      if (I->Val == From) {
2947        From->removeUser(U);
2948        I->Val = To;
2949        To->addUser(U);
2950      }
2951
2952    // Now that we have modified U, add it back to the CSE maps.  If it already
2953    // exists there, recursively merge the results together.
2954    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2955      ReplaceAllUsesWith(U, Existing, Deleted);
2956      // U is now dead.
2957      if (Deleted) Deleted->push_back(U);
2958      DeleteNodeNotInCSEMaps(U);
2959    }
2960  }
2961}
2962
2963/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2964/// This can cause recursive merging of nodes in the DAG.
2965///
2966/// This version assumes From/To have matching types and numbers of result
2967/// values.
2968///
2969void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2970                                      std::vector<SDNode*> *Deleted) {
2971  assert(From != To && "Cannot replace uses of with self");
2972  assert(From->getNumValues() == To->getNumValues() &&
2973         "Cannot use this version of ReplaceAllUsesWith!");
2974  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2975    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2976    return;
2977  }
2978
2979  while (!From->use_empty()) {
2980    // Process users until they are all gone.
2981    SDNode *U = *From->use_begin();
2982
2983    // This node is about to morph, remove its old self from the CSE maps.
2984    RemoveNodeFromCSEMaps(U);
2985
2986    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2987         I != E; ++I)
2988      if (I->Val == From) {
2989        From->removeUser(U);
2990        I->Val = To;
2991        To->addUser(U);
2992      }
2993
2994    // Now that we have modified U, add it back to the CSE maps.  If it already
2995    // exists there, recursively merge the results together.
2996    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2997      ReplaceAllUsesWith(U, Existing, Deleted);
2998      // U is now dead.
2999      if (Deleted) Deleted->push_back(U);
3000      DeleteNodeNotInCSEMaps(U);
3001    }
3002  }
3003}
3004
3005/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3006/// This can cause recursive merging of nodes in the DAG.
3007///
3008/// This version can replace From with any result values.  To must match the
3009/// number and types of values returned by From.
3010void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3011                                      const SDOperand *To,
3012                                      std::vector<SDNode*> *Deleted) {
3013  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3014    // Degenerate case handled above.
3015    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3016    return;
3017  }
3018
3019  while (!From->use_empty()) {
3020    // Process users until they are all gone.
3021    SDNode *U = *From->use_begin();
3022
3023    // This node is about to morph, remove its old self from the CSE maps.
3024    RemoveNodeFromCSEMaps(U);
3025
3026    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3027         I != E; ++I)
3028      if (I->Val == From) {
3029        const SDOperand &ToOp = To[I->ResNo];
3030        From->removeUser(U);
3031        *I = ToOp;
3032        ToOp.Val->addUser(U);
3033      }
3034
3035    // Now that we have modified U, add it back to the CSE maps.  If it already
3036    // exists there, recursively merge the results together.
3037    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3038      ReplaceAllUsesWith(U, Existing, Deleted);
3039      // U is now dead.
3040      if (Deleted) Deleted->push_back(U);
3041      DeleteNodeNotInCSEMaps(U);
3042    }
3043  }
3044}
3045
3046/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3047/// uses of other values produced by From.Val alone.  The Deleted vector is
3048/// handled the same was as for ReplaceAllUsesWith.
3049void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3050                                             std::vector<SDNode*> &Deleted) {
3051  assert(From != To && "Cannot replace a value with itself");
3052  // Handle the simple, trivial, case efficiently.
3053  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3054    ReplaceAllUsesWith(From, To, &Deleted);
3055    return;
3056  }
3057
3058  // Get all of the users of From.Val.  We want these in a nice,
3059  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3060  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3061
3062  while (!Users.empty()) {
3063    // We know that this user uses some value of From.  If it is the right
3064    // value, update it.
3065    SDNode *User = Users.back();
3066    Users.pop_back();
3067
3068    for (SDOperand *Op = User->OperandList,
3069         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
3070      if (*Op == From) {
3071        // Okay, we know this user needs to be updated.  Remove its old self
3072        // from the CSE maps.
3073        RemoveNodeFromCSEMaps(User);
3074
3075        // Update all operands that match "From".
3076        for (; Op != E; ++Op) {
3077          if (*Op == From) {
3078            From.Val->removeUser(User);
3079            *Op = To;
3080            To.Val->addUser(User);
3081          }
3082        }
3083
3084        // Now that we have modified User, add it back to the CSE maps.  If it
3085        // already exists there, recursively merge the results together.
3086        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
3087          unsigned NumDeleted = Deleted.size();
3088          ReplaceAllUsesWith(User, Existing, &Deleted);
3089
3090          // User is now dead.
3091          Deleted.push_back(User);
3092          DeleteNodeNotInCSEMaps(User);
3093
3094          // We have to be careful here, because ReplaceAllUsesWith could have
3095          // deleted a user of From, which means there may be dangling pointers
3096          // in the "Users" setvector.  Scan over the deleted node pointers and
3097          // remove them from the setvector.
3098          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
3099            Users.remove(Deleted[i]);
3100        }
3101        break;   // Exit the operand scanning loop.
3102      }
3103    }
3104  }
3105}
3106
3107
3108/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3109/// their allnodes order. It returns the maximum id.
3110unsigned SelectionDAG::AssignNodeIds() {
3111  unsigned Id = 0;
3112  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3113    SDNode *N = I;
3114    N->setNodeId(Id++);
3115  }
3116  return Id;
3117}
3118
3119/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3120/// based on their topological order. It returns the maximum id and a vector
3121/// of the SDNodes* in assigned order by reference.
3122unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3123  unsigned DAGSize = AllNodes.size();
3124  std::vector<unsigned> InDegree(DAGSize);
3125  std::vector<SDNode*> Sources;
3126
3127  // Use a two pass approach to avoid using a std::map which is slow.
3128  unsigned Id = 0;
3129  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3130    SDNode *N = I;
3131    N->setNodeId(Id++);
3132    unsigned Degree = N->use_size();
3133    InDegree[N->getNodeId()] = Degree;
3134    if (Degree == 0)
3135      Sources.push_back(N);
3136  }
3137
3138  TopOrder.clear();
3139  while (!Sources.empty()) {
3140    SDNode *N = Sources.back();
3141    Sources.pop_back();
3142    TopOrder.push_back(N);
3143    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3144      SDNode *P = I->Val;
3145      unsigned Degree = --InDegree[P->getNodeId()];
3146      if (Degree == 0)
3147        Sources.push_back(P);
3148    }
3149  }
3150
3151  // Second pass, assign the actual topological order as node ids.
3152  Id = 0;
3153  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3154       TI != TE; ++TI)
3155    (*TI)->setNodeId(Id++);
3156
3157  return Id;
3158}
3159
3160
3161
3162//===----------------------------------------------------------------------===//
3163//                              SDNode Class
3164//===----------------------------------------------------------------------===//
3165
3166// Out-of-line virtual method to give class a home.
3167void SDNode::ANCHOR() {}
3168void UnarySDNode::ANCHOR() {}
3169void BinarySDNode::ANCHOR() {}
3170void TernarySDNode::ANCHOR() {}
3171void HandleSDNode::ANCHOR() {}
3172void StringSDNode::ANCHOR() {}
3173void ConstantSDNode::ANCHOR() {}
3174void ConstantFPSDNode::ANCHOR() {}
3175void GlobalAddressSDNode::ANCHOR() {}
3176void FrameIndexSDNode::ANCHOR() {}
3177void JumpTableSDNode::ANCHOR() {}
3178void ConstantPoolSDNode::ANCHOR() {}
3179void BasicBlockSDNode::ANCHOR() {}
3180void SrcValueSDNode::ANCHOR() {}
3181void RegisterSDNode::ANCHOR() {}
3182void ExternalSymbolSDNode::ANCHOR() {}
3183void CondCodeSDNode::ANCHOR() {}
3184void VTSDNode::ANCHOR() {}
3185void LoadSDNode::ANCHOR() {}
3186void StoreSDNode::ANCHOR() {}
3187
3188HandleSDNode::~HandleSDNode() {
3189  SDVTList VTs = { 0, 0 };
3190  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3191}
3192
3193GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3194                                         MVT::ValueType VT, int o)
3195  : SDNode(isa<GlobalVariable>(GA) &&
3196           dyn_cast<GlobalVariable>(GA)->isThreadLocal() ?
3197           // Thread Local
3198           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3199           // Non Thread Local
3200           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3201           getSDVTList(VT)), Offset(o) {
3202  TheGlobal = const_cast<GlobalValue*>(GA);
3203}
3204
3205/// Profile - Gather unique data for the node.
3206///
3207void SDNode::Profile(FoldingSetNodeID &ID) {
3208  AddNodeIDNode(ID, this);
3209}
3210
3211/// getValueTypeList - Return a pointer to the specified value type.
3212///
3213MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3214  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3215  VTs[VT] = VT;
3216  return &VTs[VT];
3217}
3218
3219/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3220/// indicated value.  This method ignores uses of other values defined by this
3221/// operation.
3222bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3223  assert(Value < getNumValues() && "Bad value!");
3224
3225  // If there is only one value, this is easy.
3226  if (getNumValues() == 1)
3227    return use_size() == NUses;
3228  if (Uses.size() < NUses) return false;
3229
3230  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3231
3232  SmallPtrSet<SDNode*, 32> UsersHandled;
3233
3234  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3235    SDNode *User = *UI;
3236    if (User->getNumOperands() == 1 ||
3237        UsersHandled.insert(User))     // First time we've seen this?
3238      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3239        if (User->getOperand(i) == TheValue) {
3240          if (NUses == 0)
3241            return false;   // too many uses
3242          --NUses;
3243        }
3244  }
3245
3246  // Found exactly the right number of uses?
3247  return NUses == 0;
3248}
3249
3250
3251/// isOnlyUse - Return true if this node is the only use of N.
3252///
3253bool SDNode::isOnlyUse(SDNode *N) const {
3254  bool Seen = false;
3255  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3256    SDNode *User = *I;
3257    if (User == this)
3258      Seen = true;
3259    else
3260      return false;
3261  }
3262
3263  return Seen;
3264}
3265
3266/// isOperand - Return true if this node is an operand of N.
3267///
3268bool SDOperand::isOperand(SDNode *N) const {
3269  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3270    if (*this == N->getOperand(i))
3271      return true;
3272  return false;
3273}
3274
3275bool SDNode::isOperand(SDNode *N) const {
3276  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3277    if (this == N->OperandList[i].Val)
3278      return true;
3279  return false;
3280}
3281
3282static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3283                            SmallPtrSet<SDNode *, 32> &Visited) {
3284  if (found || !Visited.insert(N))
3285    return;
3286
3287  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3288    SDNode *Op = N->getOperand(i).Val;
3289    if (Op == P) {
3290      found = true;
3291      return;
3292    }
3293    findPredecessor(Op, P, found, Visited);
3294  }
3295}
3296
3297/// isPredecessor - Return true if this node is a predecessor of N. This node
3298/// is either an operand of N or it can be reached by recursively traversing
3299/// up the operands.
3300/// NOTE: this is an expensive method. Use it carefully.
3301bool SDNode::isPredecessor(SDNode *N) const {
3302  SmallPtrSet<SDNode *, 32> Visited;
3303  bool found = false;
3304  findPredecessor(N, this, found, Visited);
3305  return found;
3306}
3307
3308uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3309  assert(Num < NumOperands && "Invalid child # of SDNode!");
3310  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3311}
3312
3313std::string SDNode::getOperationName(const SelectionDAG *G) const {
3314  switch (getOpcode()) {
3315  default:
3316    if (getOpcode() < ISD::BUILTIN_OP_END)
3317      return "<<Unknown DAG Node>>";
3318    else {
3319      if (G) {
3320        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3321          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3322            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3323
3324        TargetLowering &TLI = G->getTargetLoweringInfo();
3325        const char *Name =
3326          TLI.getTargetNodeName(getOpcode());
3327        if (Name) return Name;
3328      }
3329
3330      return "<<Unknown Target Node>>";
3331    }
3332
3333  case ISD::PCMARKER:      return "PCMarker";
3334  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3335  case ISD::SRCVALUE:      return "SrcValue";
3336  case ISD::EntryToken:    return "EntryToken";
3337  case ISD::TokenFactor:   return "TokenFactor";
3338  case ISD::AssertSext:    return "AssertSext";
3339  case ISD::AssertZext:    return "AssertZext";
3340
3341  case ISD::STRING:        return "String";
3342  case ISD::BasicBlock:    return "BasicBlock";
3343  case ISD::VALUETYPE:     return "ValueType";
3344  case ISD::Register:      return "Register";
3345
3346  case ISD::Constant:      return "Constant";
3347  case ISD::ConstantFP:    return "ConstantFP";
3348  case ISD::GlobalAddress: return "GlobalAddress";
3349  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3350  case ISD::FrameIndex:    return "FrameIndex";
3351  case ISD::JumpTable:     return "JumpTable";
3352  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3353  case ISD::RETURNADDR: return "RETURNADDR";
3354  case ISD::FRAMEADDR: return "FRAMEADDR";
3355  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3356  case ISD::EHSELECTION: return "EHSELECTION";
3357  case ISD::ConstantPool:  return "ConstantPool";
3358  case ISD::ExternalSymbol: return "ExternalSymbol";
3359  case ISD::INTRINSIC_WO_CHAIN: {
3360    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3361    return Intrinsic::getName((Intrinsic::ID)IID);
3362  }
3363  case ISD::INTRINSIC_VOID:
3364  case ISD::INTRINSIC_W_CHAIN: {
3365    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3366    return Intrinsic::getName((Intrinsic::ID)IID);
3367  }
3368
3369  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3370  case ISD::TargetConstant: return "TargetConstant";
3371  case ISD::TargetConstantFP:return "TargetConstantFP";
3372  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3373  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3374  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3375  case ISD::TargetJumpTable:  return "TargetJumpTable";
3376  case ISD::TargetConstantPool:  return "TargetConstantPool";
3377  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3378
3379  case ISD::CopyToReg:     return "CopyToReg";
3380  case ISD::CopyFromReg:   return "CopyFromReg";
3381  case ISD::UNDEF:         return "undef";
3382  case ISD::MERGE_VALUES:  return "mergevalues";
3383  case ISD::INLINEASM:     return "inlineasm";
3384  case ISD::LABEL:         return "label";
3385  case ISD::HANDLENODE:    return "handlenode";
3386  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3387  case ISD::CALL:          return "call";
3388
3389  // Unary operators
3390  case ISD::FABS:   return "fabs";
3391  case ISD::FNEG:   return "fneg";
3392  case ISD::FSQRT:  return "fsqrt";
3393  case ISD::FSIN:   return "fsin";
3394  case ISD::FCOS:   return "fcos";
3395  case ISD::FPOWI:  return "fpowi";
3396
3397  // Binary operators
3398  case ISD::ADD:    return "add";
3399  case ISD::SUB:    return "sub";
3400  case ISD::MUL:    return "mul";
3401  case ISD::MULHU:  return "mulhu";
3402  case ISD::MULHS:  return "mulhs";
3403  case ISD::SDIV:   return "sdiv";
3404  case ISD::UDIV:   return "udiv";
3405  case ISD::SREM:   return "srem";
3406  case ISD::UREM:   return "urem";
3407  case ISD::AND:    return "and";
3408  case ISD::OR:     return "or";
3409  case ISD::XOR:    return "xor";
3410  case ISD::SHL:    return "shl";
3411  case ISD::SRA:    return "sra";
3412  case ISD::SRL:    return "srl";
3413  case ISD::ROTL:   return "rotl";
3414  case ISD::ROTR:   return "rotr";
3415  case ISD::FADD:   return "fadd";
3416  case ISD::FSUB:   return "fsub";
3417  case ISD::FMUL:   return "fmul";
3418  case ISD::FDIV:   return "fdiv";
3419  case ISD::FREM:   return "frem";
3420  case ISD::FCOPYSIGN: return "fcopysign";
3421
3422  case ISD::SETCC:       return "setcc";
3423  case ISD::SELECT:      return "select";
3424  case ISD::SELECT_CC:   return "select_cc";
3425  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3426  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3427  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3428  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3429  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3430  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3431  case ISD::CARRY_FALSE:         return "carry_false";
3432  case ISD::ADDC:        return "addc";
3433  case ISD::ADDE:        return "adde";
3434  case ISD::SUBC:        return "subc";
3435  case ISD::SUBE:        return "sube";
3436  case ISD::SHL_PARTS:   return "shl_parts";
3437  case ISD::SRA_PARTS:   return "sra_parts";
3438  case ISD::SRL_PARTS:   return "srl_parts";
3439
3440  // Conversion operators.
3441  case ISD::SIGN_EXTEND: return "sign_extend";
3442  case ISD::ZERO_EXTEND: return "zero_extend";
3443  case ISD::ANY_EXTEND:  return "any_extend";
3444  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3445  case ISD::TRUNCATE:    return "truncate";
3446  case ISD::FP_ROUND:    return "fp_round";
3447  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3448  case ISD::FP_EXTEND:   return "fp_extend";
3449
3450  case ISD::SINT_TO_FP:  return "sint_to_fp";
3451  case ISD::UINT_TO_FP:  return "uint_to_fp";
3452  case ISD::FP_TO_SINT:  return "fp_to_sint";
3453  case ISD::FP_TO_UINT:  return "fp_to_uint";
3454  case ISD::BIT_CONVERT: return "bit_convert";
3455
3456    // Control flow instructions
3457  case ISD::BR:      return "br";
3458  case ISD::BRIND:   return "brind";
3459  case ISD::BR_JT:   return "br_jt";
3460  case ISD::BRCOND:  return "brcond";
3461  case ISD::BR_CC:   return "br_cc";
3462  case ISD::RET:     return "ret";
3463  case ISD::CALLSEQ_START:  return "callseq_start";
3464  case ISD::CALLSEQ_END:    return "callseq_end";
3465
3466    // Other operators
3467  case ISD::LOAD:               return "load";
3468  case ISD::STORE:              return "store";
3469  case ISD::VAARG:              return "vaarg";
3470  case ISD::VACOPY:             return "vacopy";
3471  case ISD::VAEND:              return "vaend";
3472  case ISD::VASTART:            return "vastart";
3473  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3474  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3475  case ISD::BUILD_PAIR:         return "build_pair";
3476  case ISD::STACKSAVE:          return "stacksave";
3477  case ISD::STACKRESTORE:       return "stackrestore";
3478
3479  // Block memory operations.
3480  case ISD::MEMSET:  return "memset";
3481  case ISD::MEMCPY:  return "memcpy";
3482  case ISD::MEMMOVE: return "memmove";
3483
3484  // Bit manipulation
3485  case ISD::BSWAP:   return "bswap";
3486  case ISD::CTPOP:   return "ctpop";
3487  case ISD::CTTZ:    return "cttz";
3488  case ISD::CTLZ:    return "ctlz";
3489
3490  // Debug info
3491  case ISD::LOCATION: return "location";
3492  case ISD::DEBUG_LOC: return "debug_loc";
3493
3494  case ISD::CONDCODE:
3495    switch (cast<CondCodeSDNode>(this)->get()) {
3496    default: assert(0 && "Unknown setcc condition!");
3497    case ISD::SETOEQ:  return "setoeq";
3498    case ISD::SETOGT:  return "setogt";
3499    case ISD::SETOGE:  return "setoge";
3500    case ISD::SETOLT:  return "setolt";
3501    case ISD::SETOLE:  return "setole";
3502    case ISD::SETONE:  return "setone";
3503
3504    case ISD::SETO:    return "seto";
3505    case ISD::SETUO:   return "setuo";
3506    case ISD::SETUEQ:  return "setue";
3507    case ISD::SETUGT:  return "setugt";
3508    case ISD::SETUGE:  return "setuge";
3509    case ISD::SETULT:  return "setult";
3510    case ISD::SETULE:  return "setule";
3511    case ISD::SETUNE:  return "setune";
3512
3513    case ISD::SETEQ:   return "seteq";
3514    case ISD::SETGT:   return "setgt";
3515    case ISD::SETGE:   return "setge";
3516    case ISD::SETLT:   return "setlt";
3517    case ISD::SETLE:   return "setle";
3518    case ISD::SETNE:   return "setne";
3519    }
3520  }
3521}
3522
3523const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3524  switch (AM) {
3525  default:
3526    return "";
3527  case ISD::PRE_INC:
3528    return "<pre-inc>";
3529  case ISD::PRE_DEC:
3530    return "<pre-dec>";
3531  case ISD::POST_INC:
3532    return "<post-inc>";
3533  case ISD::POST_DEC:
3534    return "<post-dec>";
3535  }
3536}
3537
3538void SDNode::dump() const { dump(0); }
3539void SDNode::dump(const SelectionDAG *G) const {
3540  cerr << (void*)this << ": ";
3541
3542  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3543    if (i) cerr << ",";
3544    if (getValueType(i) == MVT::Other)
3545      cerr << "ch";
3546    else
3547      cerr << MVT::getValueTypeString(getValueType(i));
3548  }
3549  cerr << " = " << getOperationName(G);
3550
3551  cerr << " ";
3552  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3553    if (i) cerr << ", ";
3554    cerr << (void*)getOperand(i).Val;
3555    if (unsigned RN = getOperand(i).ResNo)
3556      cerr << ":" << RN;
3557  }
3558
3559  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3560    cerr << "<" << CSDN->getValue() << ">";
3561  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3562    cerr << "<" << CSDN->getValue() << ">";
3563  } else if (const GlobalAddressSDNode *GADN =
3564             dyn_cast<GlobalAddressSDNode>(this)) {
3565    int offset = GADN->getOffset();
3566    cerr << "<";
3567    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3568    if (offset > 0)
3569      cerr << " + " << offset;
3570    else
3571      cerr << " " << offset;
3572  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3573    cerr << "<" << FIDN->getIndex() << ">";
3574  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3575    cerr << "<" << JTDN->getIndex() << ">";
3576  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3577    int offset = CP->getOffset();
3578    if (CP->isMachineConstantPoolEntry())
3579      cerr << "<" << *CP->getMachineCPVal() << ">";
3580    else
3581      cerr << "<" << *CP->getConstVal() << ">";
3582    if (offset > 0)
3583      cerr << " + " << offset;
3584    else
3585      cerr << " " << offset;
3586  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3587    cerr << "<";
3588    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3589    if (LBB)
3590      cerr << LBB->getName() << " ";
3591    cerr << (const void*)BBDN->getBasicBlock() << ">";
3592  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3593    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3594      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3595    } else {
3596      cerr << " #" << R->getReg();
3597    }
3598  } else if (const ExternalSymbolSDNode *ES =
3599             dyn_cast<ExternalSymbolSDNode>(this)) {
3600    cerr << "'" << ES->getSymbol() << "'";
3601  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3602    if (M->getValue())
3603      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3604    else
3605      cerr << "<null:" << M->getOffset() << ">";
3606  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3607    cerr << ":" << MVT::getValueTypeString(N->getVT());
3608  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3609    bool doExt = true;
3610    switch (LD->getExtensionType()) {
3611    default: doExt = false; break;
3612    case ISD::EXTLOAD:
3613      cerr << " <anyext ";
3614      break;
3615    case ISD::SEXTLOAD:
3616      cerr << " <sext ";
3617      break;
3618    case ISD::ZEXTLOAD:
3619      cerr << " <zext ";
3620      break;
3621    }
3622    if (doExt)
3623      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3624
3625    const char *AM = getIndexedModeName(LD->getAddressingMode());
3626    if (AM != "")
3627      cerr << " " << AM;
3628  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3629    if (ST->isTruncatingStore())
3630      cerr << " <trunc "
3631           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3632
3633    const char *AM = getIndexedModeName(ST->getAddressingMode());
3634    if (AM != "")
3635      cerr << " " << AM;
3636  }
3637}
3638
3639static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3640  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3641    if (N->getOperand(i).Val->hasOneUse())
3642      DumpNodes(N->getOperand(i).Val, indent+2, G);
3643    else
3644      cerr << "\n" << std::string(indent+2, ' ')
3645           << (void*)N->getOperand(i).Val << ": <multiple use>";
3646
3647
3648  cerr << "\n" << std::string(indent, ' ');
3649  N->dump(G);
3650}
3651
3652void SelectionDAG::dump() const {
3653  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3654  std::vector<const SDNode*> Nodes;
3655  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3656       I != E; ++I)
3657    Nodes.push_back(I);
3658
3659  std::sort(Nodes.begin(), Nodes.end());
3660
3661  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3662    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3663      DumpNodes(Nodes[i], 2, this);
3664  }
3665
3666  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3667
3668  cerr << "\n\n";
3669}
3670
3671const Type *ConstantPoolSDNode::getType() const {
3672  if (isMachineConstantPoolEntry())
3673    return Val.MachineCPVal->getType();
3674  return Val.ConstVal->getType();
3675}
3676