SelectionDAG.cpp revision 6621e3b9636174886c9665b648f2ddc13effbc8a
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include <iostream>
25#include <set>
26#include <cmath>
27#include <algorithm>
28using namespace llvm;
29
30static bool isCommutativeBinOp(unsigned Opcode) {
31  switch (Opcode) {
32  case ISD::ADD:
33  case ISD::MUL:
34  case ISD::AND:
35  case ISD::OR:
36  case ISD::XOR: return true;
37  default: return false; // FIXME: Need commutative info for user ops!
38  }
39}
40
41static bool isAssociativeBinOp(unsigned Opcode) {
42  switch (Opcode) {
43  case ISD::ADD:
44  case ISD::MUL:
45  case ISD::AND:
46  case ISD::OR:
47  case ISD::XOR: return true;
48  default: return false; // FIXME: Need associative info for user ops!
49  }
50}
51
52// isInvertibleForFree - Return true if there is no cost to emitting the logical
53// inverse of this node.
54static bool isInvertibleForFree(SDOperand N) {
55  if (isa<ConstantSDNode>(N.Val)) return true;
56  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
57    return true;
58  return false;
59}
60
61//===----------------------------------------------------------------------===//
62//                              ConstantFPSDNode Class
63//===----------------------------------------------------------------------===//
64
65/// isExactlyValue - We don't rely on operator== working on double values, as
66/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
67/// As such, this method can be used to do an exact bit-for-bit comparison of
68/// two floating point values.
69bool ConstantFPSDNode::isExactlyValue(double V) const {
70  return DoubleToBits(V) == DoubleToBits(Value);
71}
72
73//===----------------------------------------------------------------------===//
74//                              ISD Class
75//===----------------------------------------------------------------------===//
76
77/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
78/// when given the operation for (X op Y).
79ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
80  // To perform this operation, we just need to swap the L and G bits of the
81  // operation.
82  unsigned OldL = (Operation >> 2) & 1;
83  unsigned OldG = (Operation >> 1) & 1;
84  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
85                       (OldL << 1) |       // New G bit
86                       (OldG << 2));        // New L bit.
87}
88
89/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
90/// 'op' is a valid SetCC operation.
91ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
92  unsigned Operation = Op;
93  if (isInteger)
94    Operation ^= 7;   // Flip L, G, E bits, but not U.
95  else
96    Operation ^= 15;  // Flip all of the condition bits.
97  if (Operation > ISD::SETTRUE2)
98    Operation &= ~8;     // Don't let N and U bits get set.
99  return ISD::CondCode(Operation);
100}
101
102
103/// isSignedOp - For an integer comparison, return 1 if the comparison is a
104/// signed operation and 2 if the result is an unsigned comparison.  Return zero
105/// if the operation does not depend on the sign of the input (setne and seteq).
106static int isSignedOp(ISD::CondCode Opcode) {
107  switch (Opcode) {
108  default: assert(0 && "Illegal integer setcc operation!");
109  case ISD::SETEQ:
110  case ISD::SETNE: return 0;
111  case ISD::SETLT:
112  case ISD::SETLE:
113  case ISD::SETGT:
114  case ISD::SETGE: return 1;
115  case ISD::SETULT:
116  case ISD::SETULE:
117  case ISD::SETUGT:
118  case ISD::SETUGE: return 2;
119  }
120}
121
122/// getSetCCOrOperation - Return the result of a logical OR between different
123/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
124/// returns SETCC_INVALID if it is not possible to represent the resultant
125/// comparison.
126ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
127                                       bool isInteger) {
128  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
129    // Cannot fold a signed integer setcc with an unsigned integer setcc.
130    return ISD::SETCC_INVALID;
131
132  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
133
134  // If the N and U bits get set then the resultant comparison DOES suddenly
135  // care about orderedness, and is true when ordered.
136  if (Op > ISD::SETTRUE2)
137    Op &= ~16;     // Clear the N bit.
138  return ISD::CondCode(Op);
139}
140
141/// getSetCCAndOperation - Return the result of a logical AND between different
142/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
143/// function returns zero if it is not possible to represent the resultant
144/// comparison.
145ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
146                                        bool isInteger) {
147  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
148    // Cannot fold a signed setcc with an unsigned setcc.
149    return ISD::SETCC_INVALID;
150
151  // Combine all of the condition bits.
152  return ISD::CondCode(Op1 & Op2);
153}
154
155const TargetMachine &SelectionDAG::getTarget() const {
156  return TLI.getTargetMachine();
157}
158
159//===----------------------------------------------------------------------===//
160//                              SelectionDAG Class
161//===----------------------------------------------------------------------===//
162
163/// RemoveDeadNodes - This method deletes all unreachable nodes in the
164/// SelectionDAG, including nodes (like loads) that have uses of their token
165/// chain but no other uses and no side effect.  If a node is passed in as an
166/// argument, it is used as the seed for node deletion.
167void SelectionDAG::RemoveDeadNodes(SDNode *N) {
168  std::set<SDNode*> AllNodeSet(AllNodes.begin(), AllNodes.end());
169
170  // Create a dummy node (which is not added to allnodes), that adds a reference
171  // to the root node, preventing it from being deleted.
172  SDNode *DummyNode = new SDNode(ISD::EntryToken, getRoot());
173
174  // If we have a hint to start from, use it.
175  if (N) DeleteNodeIfDead(N, &AllNodeSet);
176
177 Restart:
178  unsigned NumNodes = AllNodeSet.size();
179  for (std::set<SDNode*>::iterator I = AllNodeSet.begin(), E = AllNodeSet.end();
180       I != E; ++I) {
181    // Try to delete this node.
182    DeleteNodeIfDead(*I, &AllNodeSet);
183
184    // If we actually deleted any nodes, do not use invalid iterators in
185    // AllNodeSet.
186    if (AllNodeSet.size() != NumNodes)
187      goto Restart;
188  }
189
190  // Restore AllNodes.
191  if (AllNodes.size() != NumNodes)
192    AllNodes.assign(AllNodeSet.begin(), AllNodeSet.end());
193
194  // If the root changed (e.g. it was a dead load, update the root).
195  setRoot(DummyNode->getOperand(0));
196
197  // Now that we are done with the dummy node, delete it.
198  DummyNode->getOperand(0).Val->removeUser(DummyNode);
199  delete DummyNode;
200}
201
202
203void SelectionDAG::DeleteNodeIfDead(SDNode *N, void *NodeSet) {
204  if (!N->use_empty())
205    return;
206
207  // Okay, we really are going to delete this node.  First take this out of the
208  // appropriate CSE map.
209  RemoveNodeFromCSEMaps(N);
210
211  // Next, brutally remove the operand list.  This is safe to do, as there are
212  // no cycles in the graph.
213  while (!N->Operands.empty()) {
214    SDNode *O = N->Operands.back().Val;
215    N->Operands.pop_back();
216    O->removeUser(N);
217
218    // Now that we removed this operand, see if there are no uses of it left.
219    DeleteNodeIfDead(O, NodeSet);
220  }
221
222  // Remove the node from the nodes set and delete it.
223  std::set<SDNode*> &AllNodeSet = *(std::set<SDNode*>*)NodeSet;
224  AllNodeSet.erase(N);
225
226  // Now that the node is gone, check to see if any of the operands of this node
227  // are dead now.
228  delete N;
229}
230
231void SelectionDAG::DeleteNode(SDNode *N) {
232  assert(N->use_empty() && "Cannot delete a node that is not dead!");
233
234  // First take this out of the appropriate CSE map.
235  RemoveNodeFromCSEMaps(N);
236
237  // Remove it from the AllNodes list.
238  for (std::vector<SDNode*>::iterator I = AllNodes.begin(); ; ++I) {
239    assert(I != AllNodes.end() && "Node not in AllNodes list??");
240    if (*I == N) {
241      // Erase from the vector, which is not ordered.
242      std::swap(*I, AllNodes.back());
243      AllNodes.pop_back();
244      break;
245    }
246  }
247
248  // Drop all of the operands and decrement used nodes use counts.
249  while (!N->Operands.empty()) {
250    SDNode *O = N->Operands.back().Val;
251    N->Operands.pop_back();
252    O->removeUser(N);
253  }
254
255  delete N;
256}
257
258/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
259/// correspond to it.  This is useful when we're about to delete or repurpose
260/// the node.  We don't want future request for structurally identical nodes
261/// to return N anymore.
262void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
263  bool Erased = false;
264  switch (N->getOpcode()) {
265  case ISD::Constant:
266    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
267                                            N->getValueType(0)));
268    break;
269  case ISD::TargetConstant:
270    Erased = TargetConstants.erase(std::make_pair(
271                                    cast<ConstantSDNode>(N)->getValue(),
272                                                  N->getValueType(0)));
273    break;
274  case ISD::ConstantFP: {
275    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
276    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
277    break;
278  }
279  case ISD::CONDCODE:
280    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
281           "Cond code doesn't exist!");
282    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
283    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
284    break;
285  case ISD::GlobalAddress:
286    Erased = GlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
287    break;
288  case ISD::TargetGlobalAddress:
289    Erased =TargetGlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
290    break;
291  case ISD::FrameIndex:
292    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
293    break;
294  case ISD::TargetFrameIndex:
295    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
296    break;
297  case ISD::ConstantPool:
298    Erased = ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
299    break;
300  case ISD::TargetConstantPool:
301    Erased =TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
302    break;
303  case ISD::BasicBlock:
304    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
305    break;
306  case ISD::ExternalSymbol:
307    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
308    break;
309  case ISD::VALUETYPE:
310    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
311    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
312    break;
313  case ISD::Register:
314    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
315                                           N->getValueType(0)));
316    break;
317  case ISD::SRCVALUE: {
318    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
319    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
320    break;
321  }
322  case ISD::LOAD:
323    Erased = Loads.erase(std::make_pair(N->getOperand(1),
324                                        std::make_pair(N->getOperand(0),
325                                                       N->getValueType(0))));
326    break;
327  default:
328    if (N->getNumValues() == 1) {
329      if (N->getNumOperands() == 1) {
330        Erased =
331          UnaryOps.erase(std::make_pair(N->getOpcode(),
332                                        std::make_pair(N->getOperand(0),
333                                                       N->getValueType(0))));
334      } else if (N->getNumOperands() == 2) {
335        Erased =
336          BinaryOps.erase(std::make_pair(N->getOpcode(),
337                                         std::make_pair(N->getOperand(0),
338                                                        N->getOperand(1))));
339      } else {
340        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
341        Erased =
342          OneResultNodes.erase(std::make_pair(N->getOpcode(),
343                                              std::make_pair(N->getValueType(0),
344                                                             Ops)));
345      }
346    } else {
347      // Remove the node from the ArbitraryNodes map.
348      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
349      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
350      Erased =
351        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
352                                            std::make_pair(RV, Ops)));
353    }
354    break;
355  }
356#ifndef NDEBUG
357  // Verify that the node was actually in one of the CSE maps, unless it has a
358  // flag result (which cannot be CSE'd) or is one of the special cases that are
359  // not subject to CSE.
360  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
361      N->getOpcode() != ISD::CALL && N->getOpcode() != ISD::CALLSEQ_START &&
362      N->getOpcode() != ISD::CALLSEQ_END) {
363
364    N->dump();
365    assert(0 && "Node is not in map!");
366  }
367#endif
368}
369
370/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
371/// has been taken out and modified in some way.  If the specified node already
372/// exists in the CSE maps, do not modify the maps, but return the existing node
373/// instead.  If it doesn't exist, add it and return null.
374///
375SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
376  assert(N->getNumOperands() && "This is a leaf node!");
377  if (N->getOpcode() == ISD::LOAD) {
378    SDNode *&L = Loads[std::make_pair(N->getOperand(1),
379                                      std::make_pair(N->getOperand(0),
380                                                     N->getValueType(0)))];
381    if (L) return L;
382    L = N;
383  } else if (N->getNumOperands() == 1) {
384    SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
385                                         std::make_pair(N->getOperand(0),
386                                                        N->getValueType(0)))];
387    if (U) return U;
388    U = N;
389  } else if (N->getNumOperands() == 2) {
390    SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
391                                          std::make_pair(N->getOperand(0),
392                                                         N->getOperand(1)))];
393    if (B) return B;
394    B = N;
395  } else if (N->getNumValues() == 1) {
396    std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
397    SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
398                                  std::make_pair(N->getValueType(0), Ops))];
399    if (ORN) return ORN;
400    ORN = N;
401  } else {
402    // Remove the node from the ArbitraryNodes map.
403    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
404    std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
405    SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
406                                                std::make_pair(RV, Ops))];
407    if (AN) return AN;
408    AN = N;
409  }
410  return 0;
411
412}
413
414
415
416SelectionDAG::~SelectionDAG() {
417  for (unsigned i = 0, e = AllNodes.size(); i != e; ++i)
418    delete AllNodes[i];
419}
420
421SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
422  if (Op.getValueType() == VT) return Op;
423  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
424  return getNode(ISD::AND, Op.getValueType(), Op,
425                 getConstant(Imm, Op.getValueType()));
426}
427
428SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
429  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
430  // Mask out any bits that are not valid for this constant.
431  if (VT != MVT::i64)
432    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
433
434  SDNode *&N = Constants[std::make_pair(Val, VT)];
435  if (N) return SDOperand(N, 0);
436  N = new ConstantSDNode(false, Val, VT);
437  AllNodes.push_back(N);
438  return SDOperand(N, 0);
439}
440
441SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
442  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
443  // Mask out any bits that are not valid for this constant.
444  if (VT != MVT::i64)
445    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
446
447  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
448  if (N) return SDOperand(N, 0);
449  N = new ConstantSDNode(true, Val, VT);
450  AllNodes.push_back(N);
451  return SDOperand(N, 0);
452}
453
454SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
455  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
456  if (VT == MVT::f32)
457    Val = (float)Val;  // Mask out extra precision.
458
459  // Do the map lookup using the actual bit pattern for the floating point
460  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
461  // we don't have issues with SNANs.
462  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
463  if (N) return SDOperand(N, 0);
464  N = new ConstantFPSDNode(Val, VT);
465  AllNodes.push_back(N);
466  return SDOperand(N, 0);
467}
468
469
470
471SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
472                                         MVT::ValueType VT) {
473  SDNode *&N = GlobalValues[GV];
474  if (N) return SDOperand(N, 0);
475  N = new GlobalAddressSDNode(false, GV, VT);
476  AllNodes.push_back(N);
477  return SDOperand(N, 0);
478}
479
480SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
481                                               MVT::ValueType VT) {
482  SDNode *&N = TargetGlobalValues[GV];
483  if (N) return SDOperand(N, 0);
484  N = new GlobalAddressSDNode(true, GV, VT);
485  AllNodes.push_back(N);
486  return SDOperand(N, 0);
487}
488
489SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
490  SDNode *&N = FrameIndices[FI];
491  if (N) return SDOperand(N, 0);
492  N = new FrameIndexSDNode(FI, VT, false);
493  AllNodes.push_back(N);
494  return SDOperand(N, 0);
495}
496
497SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
498  SDNode *&N = TargetFrameIndices[FI];
499  if (N) return SDOperand(N, 0);
500  N = new FrameIndexSDNode(FI, VT, true);
501  AllNodes.push_back(N);
502  return SDOperand(N, 0);
503}
504
505SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
506  SDNode *&N = ConstantPoolIndices[C];
507  if (N) return SDOperand(N, 0);
508  N = new ConstantPoolSDNode(C, VT, false);
509  AllNodes.push_back(N);
510  return SDOperand(N, 0);
511}
512
513SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
514  SDNode *&N = TargetConstantPoolIndices[C];
515  if (N) return SDOperand(N, 0);
516  N = new ConstantPoolSDNode(C, VT, true);
517  AllNodes.push_back(N);
518  return SDOperand(N, 0);
519}
520
521SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
522  SDNode *&N = BBNodes[MBB];
523  if (N) return SDOperand(N, 0);
524  N = new BasicBlockSDNode(MBB);
525  AllNodes.push_back(N);
526  return SDOperand(N, 0);
527}
528
529SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
530  if ((unsigned)VT >= ValueTypeNodes.size())
531    ValueTypeNodes.resize(VT+1);
532  if (ValueTypeNodes[VT] == 0) {
533    ValueTypeNodes[VT] = new VTSDNode(VT);
534    AllNodes.push_back(ValueTypeNodes[VT]);
535  }
536
537  return SDOperand(ValueTypeNodes[VT], 0);
538}
539
540SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
541  SDNode *&N = ExternalSymbols[Sym];
542  if (N) return SDOperand(N, 0);
543  N = new ExternalSymbolSDNode(Sym, VT);
544  AllNodes.push_back(N);
545  return SDOperand(N, 0);
546}
547
548SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
549  if ((unsigned)Cond >= CondCodeNodes.size())
550    CondCodeNodes.resize(Cond+1);
551
552  if (CondCodeNodes[Cond] == 0) {
553    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
554    AllNodes.push_back(CondCodeNodes[Cond]);
555  }
556  return SDOperand(CondCodeNodes[Cond], 0);
557}
558
559SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
560  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
561  if (!Reg) {
562    Reg = new RegisterSDNode(RegNo, VT);
563    AllNodes.push_back(Reg);
564  }
565  return SDOperand(Reg, 0);
566}
567
568SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
569                                      SDOperand N2, ISD::CondCode Cond) {
570  // These setcc operations always fold.
571  switch (Cond) {
572  default: break;
573  case ISD::SETFALSE:
574  case ISD::SETFALSE2: return getConstant(0, VT);
575  case ISD::SETTRUE:
576  case ISD::SETTRUE2:  return getConstant(1, VT);
577  }
578
579  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
580    uint64_t C2 = N2C->getValue();
581    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
582      uint64_t C1 = N1C->getValue();
583
584      // Sign extend the operands if required
585      if (ISD::isSignedIntSetCC(Cond)) {
586        C1 = N1C->getSignExtended();
587        C2 = N2C->getSignExtended();
588      }
589
590      switch (Cond) {
591      default: assert(0 && "Unknown integer setcc!");
592      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
593      case ISD::SETNE:  return getConstant(C1 != C2, VT);
594      case ISD::SETULT: return getConstant(C1 <  C2, VT);
595      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
596      case ISD::SETULE: return getConstant(C1 <= C2, VT);
597      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
598      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
599      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
600      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
601      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
602      }
603    } else {
604      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
605      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
606        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
607
608        // If the comparison constant has bits in the upper part, the
609        // zero-extended value could never match.
610        if (C2 & (~0ULL << InSize)) {
611          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
612          switch (Cond) {
613          case ISD::SETUGT:
614          case ISD::SETUGE:
615          case ISD::SETEQ: return getConstant(0, VT);
616          case ISD::SETULT:
617          case ISD::SETULE:
618          case ISD::SETNE: return getConstant(1, VT);
619          case ISD::SETGT:
620          case ISD::SETGE:
621            // True if the sign bit of C2 is set.
622            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
623          case ISD::SETLT:
624          case ISD::SETLE:
625            // True if the sign bit of C2 isn't set.
626            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
627          default:
628            break;
629          }
630        }
631
632        // Otherwise, we can perform the comparison with the low bits.
633        switch (Cond) {
634        case ISD::SETEQ:
635        case ISD::SETNE:
636        case ISD::SETUGT:
637        case ISD::SETUGE:
638        case ISD::SETULT:
639        case ISD::SETULE:
640          return getSetCC(VT, N1.getOperand(0),
641                          getConstant(C2, N1.getOperand(0).getValueType()),
642                          Cond);
643        default:
644          break;   // todo, be more careful with signed comparisons
645        }
646      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
647                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
648        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
649        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
650        MVT::ValueType ExtDstTy = N1.getValueType();
651        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
652
653        // If the extended part has any inconsistent bits, it cannot ever
654        // compare equal.  In other words, they have to be all ones or all
655        // zeros.
656        uint64_t ExtBits =
657          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
658        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
659          return getConstant(Cond == ISD::SETNE, VT);
660
661        // Otherwise, make this a use of a zext.
662        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
663                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
664                        Cond);
665      }
666
667      uint64_t MinVal, MaxVal;
668      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
669      if (ISD::isSignedIntSetCC(Cond)) {
670        MinVal = 1ULL << (OperandBitSize-1);
671        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
672          MaxVal = ~0ULL >> (65-OperandBitSize);
673        else
674          MaxVal = 0;
675      } else {
676        MinVal = 0;
677        MaxVal = ~0ULL >> (64-OperandBitSize);
678      }
679
680      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
681      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
682        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
683        --C2;                                          // X >= C1 --> X > (C1-1)
684        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
685                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
686      }
687
688      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
689        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
690        ++C2;                                          // X <= C1 --> X < (C1+1)
691        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
692                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
693      }
694
695      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
696        return getConstant(0, VT);      // X < MIN --> false
697
698      // Canonicalize setgt X, Min --> setne X, Min
699      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
700        return getSetCC(VT, N1, N2, ISD::SETNE);
701
702      // If we have setult X, 1, turn it into seteq X, 0
703      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
704        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
705                        ISD::SETEQ);
706      // If we have setugt X, Max-1, turn it into seteq X, Max
707      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
708        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
709                        ISD::SETEQ);
710
711      // If we have "setcc X, C1", check to see if we can shrink the immediate
712      // by changing cc.
713
714      // SETUGT X, SINTMAX  -> SETLT X, 0
715      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
716          C2 == (~0ULL >> (65-OperandBitSize)))
717        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
718
719      // FIXME: Implement the rest of these.
720
721
722      // Fold bit comparisons when we can.
723      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
724          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
725        if (ConstantSDNode *AndRHS =
726                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
727          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
728            // Perform the xform if the AND RHS is a single bit.
729            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
730              return getNode(ISD::SRL, VT, N1,
731                             getConstant(Log2_64(AndRHS->getValue()),
732                                                   TLI.getShiftAmountTy()));
733            }
734          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
735            // (X & 8) == 8  -->  (X & 8) >> 3
736            // Perform the xform if C2 is a single bit.
737            if ((C2 & (C2-1)) == 0) {
738              return getNode(ISD::SRL, VT, N1,
739                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
740            }
741          }
742        }
743    }
744  } else if (isa<ConstantSDNode>(N1.Val)) {
745      // Ensure that the constant occurs on the RHS.
746    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
747  }
748
749  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
750    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
751      double C1 = N1C->getValue(), C2 = N2C->getValue();
752
753      switch (Cond) {
754      default: break; // FIXME: Implement the rest of these!
755      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
756      case ISD::SETNE:  return getConstant(C1 != C2, VT);
757      case ISD::SETLT:  return getConstant(C1 < C2, VT);
758      case ISD::SETGT:  return getConstant(C1 > C2, VT);
759      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
760      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
761      }
762    } else {
763      // Ensure that the constant occurs on the RHS.
764      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
765    }
766
767  if (N1 == N2) {
768    // We can always fold X == Y for integer setcc's.
769    if (MVT::isInteger(N1.getValueType()))
770      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
771    unsigned UOF = ISD::getUnorderedFlavor(Cond);
772    if (UOF == 2)   // FP operators that are undefined on NaNs.
773      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
774    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
775      return getConstant(UOF, VT);
776    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
777    // if it is not already.
778    ISD::CondCode NewCond = UOF == 0 ? ISD::SETUO : ISD::SETO;
779    if (NewCond != Cond)
780      return getSetCC(VT, N1, N2, NewCond);
781  }
782
783  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
784      MVT::isInteger(N1.getValueType())) {
785    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
786        N1.getOpcode() == ISD::XOR) {
787      // Simplify (X+Y) == (X+Z) -->  Y == Z
788      if (N1.getOpcode() == N2.getOpcode()) {
789        if (N1.getOperand(0) == N2.getOperand(0))
790          return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
791        if (N1.getOperand(1) == N2.getOperand(1))
792          return getSetCC(VT, N1.getOperand(0), N2.getOperand(0), Cond);
793        if (isCommutativeBinOp(N1.getOpcode())) {
794          // If X op Y == Y op X, try other combinations.
795          if (N1.getOperand(0) == N2.getOperand(1))
796            return getSetCC(VT, N1.getOperand(1), N2.getOperand(0), Cond);
797          if (N1.getOperand(1) == N2.getOperand(0))
798            return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
799        }
800      }
801
802      // FIXME: move this stuff to the DAG Combiner when it exists!
803
804      // Simplify (X+Z) == X -->  Z == 0
805      if (N1.getOperand(0) == N2)
806        return getSetCC(VT, N1.getOperand(1),
807                        getConstant(0, N1.getValueType()), Cond);
808      if (N1.getOperand(1) == N2) {
809        if (isCommutativeBinOp(N1.getOpcode()))
810          return getSetCC(VT, N1.getOperand(0),
811                          getConstant(0, N1.getValueType()), Cond);
812        else {
813          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
814          // (Z-X) == X  --> Z == X<<1
815          return getSetCC(VT, N1.getOperand(0),
816                          getNode(ISD::SHL, N2.getValueType(),
817                                  N2, getConstant(1, TLI.getShiftAmountTy())),
818                          Cond);
819        }
820      }
821    }
822
823    if (N2.getOpcode() == ISD::ADD || N2.getOpcode() == ISD::SUB ||
824        N2.getOpcode() == ISD::XOR) {
825      // Simplify  X == (X+Z) -->  Z == 0
826      if (N2.getOperand(0) == N1) {
827        return getSetCC(VT, N2.getOperand(1),
828                        getConstant(0, N2.getValueType()), Cond);
829      } else if (N2.getOperand(1) == N1) {
830        if (isCommutativeBinOp(N2.getOpcode())) {
831          return getSetCC(VT, N2.getOperand(0),
832                          getConstant(0, N2.getValueType()), Cond);
833        } else {
834          assert(N2.getOpcode() == ISD::SUB && "Unexpected operation!");
835          // X == (Z-X)  --> X<<1 == Z
836          return getSetCC(VT, getNode(ISD::SHL, N2.getValueType(), N1,
837                                      getConstant(1, TLI.getShiftAmountTy())),
838                          N2.getOperand(0), Cond);
839        }
840      }
841    }
842  }
843
844  // Fold away ALL boolean setcc's.
845  if (N1.getValueType() == MVT::i1) {
846    switch (Cond) {
847    default: assert(0 && "Unknown integer setcc!");
848    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
849      N1 = getNode(ISD::XOR, MVT::i1,
850                   getNode(ISD::XOR, MVT::i1, N1, N2),
851                   getConstant(1, MVT::i1));
852      break;
853    case ISD::SETNE:  // X != Y   -->  (X^Y)
854      N1 = getNode(ISD::XOR, MVT::i1, N1, N2);
855      break;
856    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
857    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
858      N1 = getNode(ISD::AND, MVT::i1, N2,
859                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
860      break;
861    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
862    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
863      N1 = getNode(ISD::AND, MVT::i1, N1,
864                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
865      break;
866    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
867    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
868      N1 = getNode(ISD::OR, MVT::i1, N2,
869                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
870      break;
871    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
872    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
873      N1 = getNode(ISD::OR, MVT::i1, N1,
874                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
875      break;
876    }
877    if (VT != MVT::i1)
878      N1 = getNode(ISD::ZERO_EXTEND, VT, N1);
879    return N1;
880  }
881
882  // Could not fold it.
883  return SDOperand();
884}
885
886SDOperand SelectionDAG::SimplifySelectCC(SDOperand N1, SDOperand N2,
887                                         SDOperand N3, SDOperand N4,
888                                         ISD::CondCode CC) {
889  MVT::ValueType VT = N3.getValueType();
890  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
891  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
892  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
893  ConstantSDNode *N4C = dyn_cast<ConstantSDNode>(N4.Val);
894
895  // Check to see if we can simplify the select into an fabs node
896  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2)) {
897    // Allow either -0.0 or 0.0
898    if (CFP->getValue() == 0.0) {
899      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
900      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
901          N1 == N3 && N4.getOpcode() == ISD::FNEG &&
902          N1 == N4.getOperand(0))
903        return getNode(ISD::FABS, VT, N1);
904
905      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
906      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
907          N1 == N4 && N3.getOpcode() == ISD::FNEG &&
908          N3.getOperand(0) == N4)
909        return getNode(ISD::FABS, VT, N4);
910    }
911  }
912
913  // check to see if we're select_cc'ing a select_cc.
914  // this allows us to turn:
915  // select_cc set[eq,ne] (select_cc cc, lhs, rhs, 1, 0), 0, true, false ->
916  // select_cc cc, lhs, rhs, true, false
917  if ((N1C && N1C->isNullValue() && N2.getOpcode() == ISD::SELECT_CC) ||
918      (N2C && N2C->isNullValue() && N1.getOpcode() == ISD::SELECT_CC) &&
919      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
920    SDOperand SCC = N1C ? N2 : N1;
921    ConstantSDNode *SCCT = dyn_cast<ConstantSDNode>(SCC.getOperand(2));
922    ConstantSDNode *SCCF = dyn_cast<ConstantSDNode>(SCC.getOperand(3));
923    if (SCCT && SCCF && SCCF->isNullValue() && SCCT->getValue() == 1ULL) {
924      if (CC == ISD::SETEQ) std::swap(N3, N4);
925      return getNode(ISD::SELECT_CC, N3.getValueType(), SCC.getOperand(0),
926                     SCC.getOperand(1), N3, N4, SCC.getOperand(4));
927    }
928  }
929
930  // Check to see if we can perform the "gzip trick", transforming
931  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
932  if (N2C && N2C->isNullValue() && N4C && N4C->isNullValue() &&
933      MVT::isInteger(N1.getValueType()) &&
934      MVT::isInteger(N3.getValueType()) && CC == ISD::SETLT) {
935    MVT::ValueType XType = N1.getValueType();
936    MVT::ValueType AType = N3.getValueType();
937    if (XType >= AType) {
938      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
939      // single-bit constant.  FIXME: remove once the dag combiner
940      // exists.
941      if (N3C && ((N3C->getValue() & (N3C->getValue()-1)) == 0)) {
942        unsigned ShCtV = Log2_64(N3C->getValue());
943        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
944        SDOperand ShCt = getConstant(ShCtV, TLI.getShiftAmountTy());
945        SDOperand Shift = getNode(ISD::SRL, XType, N1, ShCt);
946        if (XType > AType)
947          Shift = getNode(ISD::TRUNCATE, AType, Shift);
948        return getNode(ISD::AND, AType, Shift, N3);
949      }
950      SDOperand Shift = getNode(ISD::SRA, XType, N1,
951                                getConstant(MVT::getSizeInBits(XType)-1,
952                                            TLI.getShiftAmountTy()));
953      if (XType > AType)
954        Shift = getNode(ISD::TRUNCATE, AType, Shift);
955      return getNode(ISD::AND, AType, Shift, N3);
956    }
957  }
958
959  // Check to see if this is the equivalent of setcc
960  if (N4C && N4C->isNullValue() && N3C && (N3C->getValue() == 1ULL)) {
961    MVT::ValueType XType = N1.getValueType();
962    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy()))
963      return getSetCC(TLI.getSetCCResultTy(), N1, N2, CC);
964
965    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
966    if (N2C && N2C->isNullValue() && CC == ISD::SETEQ &&
967        TLI.isOperationLegal(ISD::CTLZ, XType)) {
968      SDOperand Ctlz = getNode(ISD::CTLZ, XType, N1);
969      return getNode(ISD::SRL, XType, Ctlz,
970                     getConstant(Log2_32(MVT::getSizeInBits(XType)),
971                                 TLI.getShiftAmountTy()));
972    }
973    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
974    if (N2C && N2C->isNullValue() && CC == ISD::SETGT) {
975      SDOperand NegN1 = getNode(ISD::SUB, XType, getConstant(0, XType), N1);
976      SDOperand NotN1 = getNode(ISD::XOR, XType, N1, getConstant(~0ULL, XType));
977      return getNode(ISD::SRL, XType, getNode(ISD::AND, XType, NegN1, NotN1),
978                     getConstant(MVT::getSizeInBits(XType)-1,
979                                 TLI.getShiftAmountTy()));
980    }
981    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
982    if (N2C && N2C->isAllOnesValue() && CC == ISD::SETGT) {
983      SDOperand Sign = getNode(ISD::SRL, XType, N1,
984                               getConstant(MVT::getSizeInBits(XType)-1,
985                                           TLI.getShiftAmountTy()));
986      return getNode(ISD::XOR, XType, Sign, getConstant(1, XType));
987    }
988  }
989
990  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
991  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
992  if (N2C && N2C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
993      N1 == N4 && N3.getOpcode() == ISD::SUB && N1 == N3.getOperand(1)) {
994    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
995      MVT::ValueType XType = N1.getValueType();
996      if (SubC->isNullValue() && MVT::isInteger(XType)) {
997        SDOperand Shift = getNode(ISD::SRA, XType, N1,
998                                  getConstant(MVT::getSizeInBits(XType)-1,
999                                              TLI.getShiftAmountTy()));
1000        return getNode(ISD::XOR, XType, getNode(ISD::ADD, XType, N1, Shift),
1001                       Shift);
1002      }
1003    }
1004  }
1005
1006  // Could not fold it.
1007  return SDOperand();
1008}
1009
1010/// getNode - Gets or creates the specified node.
1011///
1012SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1013  SDNode *N = new SDNode(Opcode, VT);
1014  AllNodes.push_back(N);
1015  return SDOperand(N, 0);
1016}
1017
1018SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1019                                SDOperand Operand) {
1020  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1021    uint64_t Val = C->getValue();
1022    switch (Opcode) {
1023    default: break;
1024    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1025    case ISD::ANY_EXTEND:
1026    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1027    case ISD::TRUNCATE:    return getConstant(Val, VT);
1028    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1029    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1030    }
1031  }
1032
1033  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1034    switch (Opcode) {
1035    case ISD::FNEG:
1036      return getConstantFP(-C->getValue(), VT);
1037    case ISD::FP_ROUND:
1038    case ISD::FP_EXTEND:
1039      return getConstantFP(C->getValue(), VT);
1040    case ISD::FP_TO_SINT:
1041      return getConstant((int64_t)C->getValue(), VT);
1042    case ISD::FP_TO_UINT:
1043      return getConstant((uint64_t)C->getValue(), VT);
1044    }
1045
1046  unsigned OpOpcode = Operand.Val->getOpcode();
1047  switch (Opcode) {
1048  case ISD::TokenFactor:
1049    return Operand;         // Factor of one node?  No factor.
1050  case ISD::SIGN_EXTEND:
1051    if (Operand.getValueType() == VT) return Operand;   // noop extension
1052    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1053      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1054    break;
1055  case ISD::ZERO_EXTEND:
1056    if (Operand.getValueType() == VT) return Operand;   // noop extension
1057    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1058      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1059    break;
1060  case ISD::ANY_EXTEND:
1061    if (Operand.getValueType() == VT) return Operand;   // noop extension
1062    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1063      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1064      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1065    break;
1066  case ISD::TRUNCATE:
1067    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1068    if (OpOpcode == ISD::TRUNCATE)
1069      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1070    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1071             OpOpcode == ISD::ANY_EXTEND) {
1072      // If the source is smaller than the dest, we still need an extend.
1073      if (Operand.Val->getOperand(0).getValueType() < VT)
1074        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1075      else if (Operand.Val->getOperand(0).getValueType() > VT)
1076        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1077      else
1078        return Operand.Val->getOperand(0);
1079    }
1080    break;
1081  case ISD::FNEG:
1082    if (OpOpcode == ISD::SUB)   // -(X-Y) -> (Y-X)
1083      return getNode(ISD::SUB, VT, Operand.Val->getOperand(1),
1084                     Operand.Val->getOperand(0));
1085    if (OpOpcode == ISD::FNEG)  // --X -> X
1086      return Operand.Val->getOperand(0);
1087    break;
1088  case ISD::FABS:
1089    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1090      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1091    break;
1092  }
1093
1094  SDNode *N;
1095  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1096    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1097    if (E) return SDOperand(E, 0);
1098    E = N = new SDNode(Opcode, Operand);
1099  } else {
1100    N = new SDNode(Opcode, Operand);
1101  }
1102  N->setValueTypes(VT);
1103  AllNodes.push_back(N);
1104  return SDOperand(N, 0);
1105}
1106
1107/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1108/// this predicate to simplify operations downstream.  V and Mask are known to
1109/// be the same type.
1110static bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask,
1111                              const TargetLowering &TLI) {
1112  unsigned SrcBits;
1113  if (Mask == 0) return true;
1114
1115  // If we know the result of a setcc has the top bits zero, use this info.
1116  switch (Op.getOpcode()) {
1117  case ISD::Constant:
1118    return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0;
1119
1120  case ISD::SETCC:
1121    return ((Mask & 1) == 0) &&
1122           TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult;
1123
1124  case ISD::ZEXTLOAD:
1125    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
1126    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
1127  case ISD::ZERO_EXTEND:
1128    SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
1129    return MaskedValueIsZero(Op.getOperand(0),Mask & ((1ULL << SrcBits)-1),TLI);
1130  case ISD::AssertZext:
1131    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1132    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
1133  case ISD::AND:
1134    // (X & C1) & C2 == 0   iff   C1 & C2 == 0.
1135    if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1136      return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask, TLI);
1137
1138    // FALL THROUGH
1139  case ISD::OR:
1140  case ISD::XOR:
1141    return MaskedValueIsZero(Op.getOperand(0), Mask, TLI) &&
1142           MaskedValueIsZero(Op.getOperand(1), Mask, TLI);
1143  case ISD::SELECT:
1144    return MaskedValueIsZero(Op.getOperand(1), Mask, TLI) &&
1145           MaskedValueIsZero(Op.getOperand(2), Mask, TLI);
1146  case ISD::SELECT_CC:
1147    return MaskedValueIsZero(Op.getOperand(2), Mask, TLI) &&
1148           MaskedValueIsZero(Op.getOperand(3), Mask, TLI);
1149  case ISD::SRL:
1150    // (ushr X, C1) & C2 == 0   iff  X & (C2 << C1) == 0
1151    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1152      uint64_t NewVal = Mask << ShAmt->getValue();
1153      SrcBits = MVT::getSizeInBits(Op.getValueType());
1154      if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1;
1155      return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
1156    }
1157    return false;
1158  case ISD::SHL:
1159    // (ushl X, C1) & C2 == 0   iff  X & (C2 >> C1) == 0
1160    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1161      uint64_t NewVal = Mask >> ShAmt->getValue();
1162      return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
1163    }
1164    return false;
1165  case ISD::CTTZ:
1166  case ISD::CTLZ:
1167  case ISD::CTPOP:
1168    // Bit counting instructions can not set the high bits of the result
1169    // register.  The max number of bits sets depends on the input.
1170    return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0;
1171
1172    // TODO we could handle some SRA cases here.
1173  default: break;
1174  }
1175
1176  return false;
1177}
1178
1179
1180
1181SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1182                                SDOperand N1, SDOperand N2) {
1183#ifndef NDEBUG
1184  switch (Opcode) {
1185  case ISD::TokenFactor:
1186    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1187           N2.getValueType() == MVT::Other && "Invalid token factor!");
1188    break;
1189  case ISD::AND:
1190  case ISD::OR:
1191  case ISD::XOR:
1192  case ISD::UDIV:
1193  case ISD::UREM:
1194  case ISD::MULHU:
1195  case ISD::MULHS:
1196    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1197    // fall through
1198  case ISD::ADD:
1199  case ISD::SUB:
1200  case ISD::MUL:
1201  case ISD::SDIV:
1202  case ISD::SREM:
1203    assert(N1.getValueType() == N2.getValueType() &&
1204           N1.getValueType() == VT && "Binary operator types must match!");
1205    break;
1206
1207  case ISD::SHL:
1208  case ISD::SRA:
1209  case ISD::SRL:
1210    assert(VT == N1.getValueType() &&
1211           "Shift operators return type must be the same as their first arg");
1212    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1213           VT != MVT::i1 && "Shifts only work on integers");
1214    break;
1215  case ISD::FP_ROUND_INREG: {
1216    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1217    assert(VT == N1.getValueType() && "Not an inreg round!");
1218    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1219           "Cannot FP_ROUND_INREG integer types");
1220    assert(EVT <= VT && "Not rounding down!");
1221    break;
1222  }
1223  case ISD::AssertSext:
1224  case ISD::AssertZext:
1225  case ISD::SIGN_EXTEND_INREG: {
1226    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1227    assert(VT == N1.getValueType() && "Not an inreg extend!");
1228    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1229           "Cannot *_EXTEND_INREG FP types");
1230    assert(EVT <= VT && "Not extending!");
1231  }
1232
1233  default: break;
1234  }
1235#endif
1236
1237  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1238  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1239  if (N1C) {
1240    if (N2C) {
1241      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1242      switch (Opcode) {
1243      case ISD::ADD: return getConstant(C1 + C2, VT);
1244      case ISD::SUB: return getConstant(C1 - C2, VT);
1245      case ISD::MUL: return getConstant(C1 * C2, VT);
1246      case ISD::UDIV:
1247        if (C2) return getConstant(C1 / C2, VT);
1248        break;
1249      case ISD::UREM :
1250        if (C2) return getConstant(C1 % C2, VT);
1251        break;
1252      case ISD::SDIV :
1253        if (C2) return getConstant(N1C->getSignExtended() /
1254                                   N2C->getSignExtended(), VT);
1255        break;
1256      case ISD::SREM :
1257        if (C2) return getConstant(N1C->getSignExtended() %
1258                                   N2C->getSignExtended(), VT);
1259        break;
1260      case ISD::AND  : return getConstant(C1 & C2, VT);
1261      case ISD::OR   : return getConstant(C1 | C2, VT);
1262      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1263      case ISD::SHL  : return getConstant(C1 << C2, VT);
1264      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1265      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1266      default: break;
1267      }
1268
1269    } else {      // Cannonicalize constant to RHS if commutative
1270      if (isCommutativeBinOp(Opcode)) {
1271        std::swap(N1C, N2C);
1272        std::swap(N1, N2);
1273      }
1274    }
1275
1276    switch (Opcode) {
1277    default: break;
1278    case ISD::SHL:    // shl  0, X -> 0
1279      if (N1C->isNullValue()) return N1;
1280      break;
1281    case ISD::SRL:    // srl  0, X -> 0
1282      if (N1C->isNullValue()) return N1;
1283      break;
1284    case ISD::SRA:    // sra -1, X -> -1
1285      if (N1C->isAllOnesValue()) return N1;
1286      break;
1287    case ISD::SIGN_EXTEND_INREG:  // SIGN_EXTEND_INREG N1C, EVT
1288      // Extending a constant?  Just return the extended constant.
1289      SDOperand Tmp = getNode(ISD::TRUNCATE, cast<VTSDNode>(N2)->getVT(), N1);
1290      return getNode(ISD::SIGN_EXTEND, VT, Tmp);
1291    }
1292  }
1293
1294  if (N2C) {
1295    uint64_t C2 = N2C->getValue();
1296
1297    switch (Opcode) {
1298    case ISD::ADD:
1299      if (!C2) return N1;         // add X, 0 -> X
1300      break;
1301    case ISD::SUB:
1302      if (!C2) return N1;         // sub X, 0 -> X
1303      return getNode(ISD::ADD, VT, N1, getConstant(-C2, VT));
1304    case ISD::MUL:
1305      if (!C2) return N2;         // mul X, 0 -> 0
1306      if (N2C->isAllOnesValue()) // mul X, -1 -> 0-X
1307        return getNode(ISD::SUB, VT, getConstant(0, VT), N1);
1308
1309      // FIXME: Move this to the DAG combiner when it exists.
1310      if ((C2 & C2-1) == 0) {
1311        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1312        return getNode(ISD::SHL, VT, N1, ShAmt);
1313      }
1314      break;
1315
1316    case ISD::MULHU:
1317    case ISD::MULHS:
1318      if (!C2) return N2;         // mul X, 0 -> 0
1319
1320      if (C2 == 1)                // 0X*01 -> 0X  hi(0X) == 0
1321        return getConstant(0, VT);
1322
1323      // Many others could be handled here, including -1, powers of 2, etc.
1324      break;
1325
1326    case ISD::UDIV:
1327      // FIXME: Move this to the DAG combiner when it exists.
1328      if ((C2 & C2-1) == 0 && C2) {
1329        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1330        return getNode(ISD::SRL, VT, N1, ShAmt);
1331      }
1332      break;
1333
1334    case ISD::SHL:
1335    case ISD::SRL:
1336    case ISD::SRA:
1337      // If the shift amount is bigger than the size of the data, then all the
1338      // bits are shifted out.  Simplify to undef.
1339      if (C2 >= MVT::getSizeInBits(N1.getValueType())) {
1340        return getNode(ISD::UNDEF, N1.getValueType());
1341      }
1342      if (C2 == 0) return N1;
1343
1344      if (Opcode == ISD::SRA) {
1345        // If the sign bit is known to be zero, switch this to a SRL.
1346        if (MaskedValueIsZero(N1,
1347                              1ULL << (MVT::getSizeInBits(N1.getValueType())-1),
1348                              TLI))
1349          return getNode(ISD::SRL, N1.getValueType(), N1, N2);
1350      } else {
1351        // If the part left over is known to be zero, the whole thing is zero.
1352        uint64_t TypeMask = ~0ULL >> (64-MVT::getSizeInBits(N1.getValueType()));
1353        if (Opcode == ISD::SRL) {
1354          if (MaskedValueIsZero(N1, TypeMask << C2, TLI))
1355            return getConstant(0, N1.getValueType());
1356        } else if (Opcode == ISD::SHL) {
1357          if (MaskedValueIsZero(N1, TypeMask >> C2, TLI))
1358            return getConstant(0, N1.getValueType());
1359        }
1360      }
1361
1362      if (Opcode == ISD::SHL && N1.getNumOperands() == 2)
1363        if (ConstantSDNode *OpSA = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1364          unsigned OpSAC = OpSA->getValue();
1365          if (N1.getOpcode() == ISD::SHL) {
1366            if (C2+OpSAC >= MVT::getSizeInBits(N1.getValueType()))
1367              return getConstant(0, N1.getValueType());
1368            return getNode(ISD::SHL, N1.getValueType(), N1.getOperand(0),
1369                           getConstant(C2+OpSAC, N2.getValueType()));
1370          } else if (N1.getOpcode() == ISD::SRL) {
1371            // (X >> C1) << C2:  if C2 > C1, ((X & ~0<<C1) << C2-C1)
1372            SDOperand Mask = getNode(ISD::AND, VT, N1.getOperand(0),
1373                                     getConstant(~0ULL << OpSAC, VT));
1374            if (C2 > OpSAC) {
1375              return getNode(ISD::SHL, VT, Mask,
1376                             getConstant(C2-OpSAC, N2.getValueType()));
1377            } else {
1378              // (X >> C1) << C2:  if C2 <= C1, ((X & ~0<<C1) >> C1-C2)
1379              return getNode(ISD::SRL, VT, Mask,
1380                             getConstant(OpSAC-C2, N2.getValueType()));
1381            }
1382          } else if (N1.getOpcode() == ISD::SRA) {
1383            // if C1 == C2, just mask out low bits.
1384            if (C2 == OpSAC)
1385              return getNode(ISD::AND, VT, N1.getOperand(0),
1386                             getConstant(~0ULL << C2, VT));
1387          }
1388        }
1389      break;
1390
1391    case ISD::AND:
1392      if (!C2) return N2;         // X and 0 -> 0
1393      if (N2C->isAllOnesValue())
1394        return N1;                // X and -1 -> X
1395
1396      if (MaskedValueIsZero(N1, C2, TLI))  // X and 0 -> 0
1397        return getConstant(0, VT);
1398
1399      {
1400        uint64_t NotC2 = ~C2;
1401        if (VT != MVT::i64)
1402          NotC2 &= (1ULL << MVT::getSizeInBits(VT))-1;
1403
1404        if (MaskedValueIsZero(N1, NotC2, TLI))
1405          return N1;                // if (X & ~C2) -> 0, the and is redundant
1406      }
1407
1408      // FIXME: Should add a corresponding version of this for
1409      // ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which
1410      // we don't have yet.
1411      // FIXME: NOW WE DO, add this.
1412
1413      // and (sign_extend_inreg x:16:32), 1 -> and x, 1
1414      if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1415        // If we are masking out the part of our input that was extended, just
1416        // mask the input to the extension directly.
1417        unsigned ExtendBits =
1418          MVT::getSizeInBits(cast<VTSDNode>(N1.getOperand(1))->getVT());
1419        if ((C2 & (~0ULL << ExtendBits)) == 0)
1420          return getNode(ISD::AND, VT, N1.getOperand(0), N2);
1421      } else if (N1.getOpcode() == ISD::OR) {
1422        if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
1423          if ((ORI->getValue() & C2) == C2) {
1424            // If the 'or' is setting all of the bits that we are masking for,
1425            // we know the result of the AND will be the AND mask itself.
1426            return N2;
1427          }
1428      }
1429      break;
1430    case ISD::OR:
1431      if (!C2)return N1;          // X or 0 -> X
1432      if (N2C->isAllOnesValue())
1433        return N2;                // X or -1 -> -1
1434      break;
1435    case ISD::XOR:
1436      if (!C2) return N1;        // X xor 0 -> X
1437      if (N2C->getValue() == 1 && N1.Val->getOpcode() == ISD::SETCC) {
1438          SDNode *SetCC = N1.Val;
1439          // !(X op Y) -> (X !op Y)
1440          bool isInteger = MVT::isInteger(SetCC->getOperand(0).getValueType());
1441          ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
1442          return getSetCC(SetCC->getValueType(0),
1443                          SetCC->getOperand(0), SetCC->getOperand(1),
1444                          ISD::getSetCCInverse(CC, isInteger));
1445      } else if (N2C->isAllOnesValue()) {
1446        if (N1.getOpcode() == ISD::AND || N1.getOpcode() == ISD::OR) {
1447          SDNode *Op = N1.Val;
1448          // !(X or Y) -> (!X and !Y) iff X or Y are freely invertible
1449          // !(X and Y) -> (!X or !Y) iff X or Y are freely invertible
1450          SDOperand LHS = Op->getOperand(0), RHS = Op->getOperand(1);
1451          if (isInvertibleForFree(RHS) || isInvertibleForFree(LHS)) {
1452            LHS = getNode(ISD::XOR, VT, LHS, N2);  // RHS = ~LHS
1453            RHS = getNode(ISD::XOR, VT, RHS, N2);  // RHS = ~RHS
1454            if (Op->getOpcode() == ISD::AND)
1455              return getNode(ISD::OR, VT, LHS, RHS);
1456            return getNode(ISD::AND, VT, LHS, RHS);
1457          }
1458        }
1459        // X xor -1 -> not(x)  ?
1460      }
1461      break;
1462    }
1463
1464    // Reassociate ((X op C1) op C2) if possible.
1465    if (N1.getOpcode() == Opcode && isAssociativeBinOp(Opcode))
1466      if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N1.Val->getOperand(1)))
1467        return getNode(Opcode, VT, N1.Val->getOperand(0),
1468                       getNode(Opcode, VT, N2, N1.Val->getOperand(1)));
1469  }
1470
1471  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1472  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1473  if (N1CFP) {
1474    if (N2CFP) {
1475      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1476      switch (Opcode) {
1477      case ISD::ADD: return getConstantFP(C1 + C2, VT);
1478      case ISD::SUB: return getConstantFP(C1 - C2, VT);
1479      case ISD::MUL: return getConstantFP(C1 * C2, VT);
1480      case ISD::SDIV:
1481        if (C2) return getConstantFP(C1 / C2, VT);
1482        break;
1483      case ISD::SREM :
1484        if (C2) return getConstantFP(fmod(C1, C2), VT);
1485        break;
1486      default: break;
1487      }
1488
1489    } else {      // Cannonicalize constant to RHS if commutative
1490      if (isCommutativeBinOp(Opcode)) {
1491        std::swap(N1CFP, N2CFP);
1492        std::swap(N1, N2);
1493      }
1494    }
1495
1496    if (Opcode == ISD::FP_ROUND_INREG)
1497      return getNode(ISD::FP_EXTEND, VT,
1498                     getNode(ISD::FP_ROUND, cast<VTSDNode>(N2)->getVT(), N1));
1499  }
1500
1501  // Finally, fold operations that do not require constants.
1502  switch (Opcode) {
1503  case ISD::TokenFactor:
1504    if (N1.getOpcode() == ISD::EntryToken)
1505      return N2;
1506    if (N2.getOpcode() == ISD::EntryToken)
1507      return N1;
1508    break;
1509
1510  case ISD::AND:
1511  case ISD::OR:
1512    if (N1.Val->getOpcode() == ISD::SETCC && N2.Val->getOpcode() == ISD::SETCC){
1513      SDNode *LHS = N1.Val, *RHS = N2.Val;
1514      SDOperand LL = LHS->getOperand(0), RL = RHS->getOperand(0);
1515      SDOperand LR = LHS->getOperand(1), RR = RHS->getOperand(1);
1516      ISD::CondCode Op1 = cast<CondCodeSDNode>(LHS->getOperand(2))->get();
1517      ISD::CondCode Op2 = cast<CondCodeSDNode>(RHS->getOperand(2))->get();
1518
1519      if (LR == RR && isa<ConstantSDNode>(LR) &&
1520          Op2 == Op1 && MVT::isInteger(LL.getValueType())) {
1521        // (X != 0) | (Y != 0) -> (X|Y != 0)
1522        // (X == 0) & (Y == 0) -> (X|Y == 0)
1523        // (X <  0) | (Y <  0) -> (X|Y < 0)
1524        if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1525            ((Op2 == ISD::SETEQ && Opcode == ISD::AND) ||
1526             (Op2 == ISD::SETNE && Opcode == ISD::OR) ||
1527             (Op2 == ISD::SETLT && Opcode == ISD::OR)))
1528          return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL), LR,
1529                          Op2);
1530
1531        if (cast<ConstantSDNode>(LR)->isAllOnesValue()) {
1532          // (X == -1) & (Y == -1) -> (X&Y == -1)
1533          // (X != -1) | (Y != -1) -> (X&Y != -1)
1534          // (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1535          if ((Opcode == ISD::AND && Op2 == ISD::SETEQ) ||
1536              (Opcode == ISD::OR  && Op2 == ISD::SETNE) ||
1537              (Opcode == ISD::OR  && Op2 == ISD::SETGT))
1538            return getSetCC(VT, getNode(ISD::AND, LR.getValueType(), LL, RL),
1539                            LR, Op2);
1540          // (X >  -1) & (Y >  -1) -> (X|Y > -1)
1541          if (Opcode == ISD::AND && Op2 == ISD::SETGT)
1542            return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL),
1543                            LR, Op2);
1544        }
1545      }
1546
1547      // (X op1 Y) | (Y op2 X) -> (X op1 Y) | (X swapop2 Y)
1548      if (LL == RR && LR == RL) {
1549        Op2 = ISD::getSetCCSwappedOperands(Op2);
1550        goto MatchedBackwards;
1551      }
1552
1553      if (LL == RL && LR == RR) {
1554      MatchedBackwards:
1555        ISD::CondCode Result;
1556        bool isInteger = MVT::isInteger(LL.getValueType());
1557        if (Opcode == ISD::OR)
1558          Result = ISD::getSetCCOrOperation(Op1, Op2, isInteger);
1559        else
1560          Result = ISD::getSetCCAndOperation(Op1, Op2, isInteger);
1561
1562        if (Result != ISD::SETCC_INVALID)
1563          return getSetCC(LHS->getValueType(0), LL, LR, Result);
1564      }
1565    }
1566
1567    // and/or zext(a), zext(b) -> zext(and/or a, b)
1568    if (N1.getOpcode() == ISD::ZERO_EXTEND &&
1569        N2.getOpcode() == ISD::ZERO_EXTEND &&
1570        N1.getOperand(0).getValueType() == N2.getOperand(0).getValueType())
1571      return getNode(ISD::ZERO_EXTEND, VT,
1572                     getNode(Opcode, N1.getOperand(0).getValueType(),
1573                             N1.getOperand(0), N2.getOperand(0)));
1574    break;
1575  case ISD::XOR:
1576    if (N1 == N2) return getConstant(0, VT);  // xor X, Y -> 0
1577    break;
1578  case ISD::ADD:
1579    if (N2.getOpcode() == ISD::FNEG)          // (A+ (-B) -> A-B
1580      return getNode(ISD::SUB, VT, N1, N2.getOperand(0));
1581    if (N1.getOpcode() == ISD::FNEG)          // ((-A)+B) -> B-A
1582      return getNode(ISD::SUB, VT, N2, N1.getOperand(0));
1583    if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1584        cast<ConstantSDNode>(N1.getOperand(0))->getValue() == 0)
1585      return getNode(ISD::SUB, VT, N2, N1.getOperand(1)); // (0-A)+B -> B-A
1586    if (N2.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N2.getOperand(0)) &&
1587        cast<ConstantSDNode>(N2.getOperand(0))->getValue() == 0)
1588      return getNode(ISD::SUB, VT, N1, N2.getOperand(1)); // A+(0-B) -> A-B
1589    if (N2.getOpcode() == ISD::SUB && N1 == N2.Val->getOperand(1) &&
1590        !MVT::isFloatingPoint(N2.getValueType()))
1591      return N2.Val->getOperand(0); // A+(B-A) -> B
1592    break;
1593  case ISD::SUB:
1594    if (N1.getOpcode() == ISD::ADD) {
1595      if (N1.Val->getOperand(0) == N2 &&
1596          !MVT::isFloatingPoint(N2.getValueType()))
1597        return N1.Val->getOperand(1);         // (A+B)-A == B
1598      if (N1.Val->getOperand(1) == N2 &&
1599          !MVT::isFloatingPoint(N2.getValueType()))
1600        return N1.Val->getOperand(0);         // (A+B)-B == A
1601    }
1602    if (N2.getOpcode() == ISD::FNEG)          // (A- (-B) -> A+B
1603      return getNode(ISD::ADD, VT, N1, N2.getOperand(0));
1604    break;
1605  case ISD::FP_ROUND_INREG:
1606    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1607    break;
1608  case ISD::SIGN_EXTEND_INREG: {
1609    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1610    if (EVT == VT) return N1;  // Not actually extending
1611
1612    // If we are sign extending an extension, use the original source.
1613    if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG ||
1614        N1.getOpcode() == ISD::AssertSext)
1615      if (cast<VTSDNode>(N1.getOperand(1))->getVT() <= EVT)
1616        return N1;
1617
1618    // If we are sign extending a sextload, return just the load.
1619    if (N1.getOpcode() == ISD::SEXTLOAD)
1620      if (cast<VTSDNode>(N1.getOperand(3))->getVT() <= EVT)
1621        return N1;
1622
1623    // If we are extending the result of a setcc, and we already know the
1624    // contents of the top bits, eliminate the extension.
1625    if (N1.getOpcode() == ISD::SETCC &&
1626        TLI.getSetCCResultContents() ==
1627                        TargetLowering::ZeroOrNegativeOneSetCCResult)
1628      return N1;
1629
1630    // If we are sign extending the result of an (and X, C) operation, and we
1631    // know the extended bits are zeros already, don't do the extend.
1632    if (N1.getOpcode() == ISD::AND)
1633      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1634        uint64_t Mask = N1C->getValue();
1635        unsigned NumBits = MVT::getSizeInBits(EVT);
1636        if ((Mask & (~0ULL << (NumBits-1))) == 0)
1637          return N1;
1638      }
1639    break;
1640  }
1641
1642  // FIXME: figure out how to safely handle things like
1643  // int foo(int x) { return 1 << (x & 255); }
1644  // int bar() { return foo(256); }
1645#if 0
1646  case ISD::SHL:
1647  case ISD::SRL:
1648  case ISD::SRA:
1649    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1650        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1651      return getNode(Opcode, VT, N1, N2.getOperand(0));
1652    else if (N2.getOpcode() == ISD::AND)
1653      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1654        // If the and is only masking out bits that cannot effect the shift,
1655        // eliminate the and.
1656        unsigned NumBits = MVT::getSizeInBits(VT);
1657        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1658          return getNode(Opcode, VT, N1, N2.getOperand(0));
1659      }
1660    break;
1661#endif
1662  }
1663
1664  // Memoize this node if possible.
1665  SDNode *N;
1666  if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
1667      VT != MVT::Flag) {
1668    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1669    if (BON) return SDOperand(BON, 0);
1670
1671    BON = N = new SDNode(Opcode, N1, N2);
1672  } else {
1673    N = new SDNode(Opcode, N1, N2);
1674  }
1675
1676  N->setValueTypes(VT);
1677  AllNodes.push_back(N);
1678  return SDOperand(N, 0);
1679}
1680
1681// setAdjCallChain - This method changes the token chain of an
1682// CALLSEQ_START/END node to be the specified operand.
1683void SDNode::setAdjCallChain(SDOperand N) {
1684  assert(N.getValueType() == MVT::Other);
1685  assert((getOpcode() == ISD::CALLSEQ_START ||
1686          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1687
1688  Operands[0].Val->removeUser(this);
1689  Operands[0] = N;
1690  N.Val->Uses.push_back(this);
1691}
1692
1693
1694
1695SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1696                                SDOperand Chain, SDOperand Ptr,
1697                                SDOperand SV) {
1698  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1699  if (N) return SDOperand(N, 0);
1700  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1701
1702  // Loads have a token chain.
1703  N->setValueTypes(VT, MVT::Other);
1704  AllNodes.push_back(N);
1705  return SDOperand(N, 0);
1706}
1707
1708
1709SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1710                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1711                                   MVT::ValueType EVT) {
1712  std::vector<SDOperand> Ops;
1713  Ops.reserve(4);
1714  Ops.push_back(Chain);
1715  Ops.push_back(Ptr);
1716  Ops.push_back(SV);
1717  Ops.push_back(getValueType(EVT));
1718  std::vector<MVT::ValueType> VTs;
1719  VTs.reserve(2);
1720  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1721  return getNode(Opcode, VTs, Ops);
1722}
1723
1724SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1725                                SDOperand N1, SDOperand N2, SDOperand N3) {
1726  // Perform various simplifications.
1727  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1728  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1729  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1730  switch (Opcode) {
1731  case ISD::SETCC: {
1732    // Use SimplifySetCC  to simplify SETCC's.
1733    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1734    if (Simp.Val) return Simp;
1735    break;
1736  }
1737  case ISD::SELECT:
1738    if (N1C)
1739      if (N1C->getValue())
1740        return N2;             // select true, X, Y -> X
1741      else
1742        return N3;             // select false, X, Y -> Y
1743
1744    if (N2 == N3) return N2;   // select C, X, X -> X
1745
1746    if (VT == MVT::i1) {  // Boolean SELECT
1747      if (N2C) {
1748        if (N2C->getValue())   // select C, 1, X -> C | X
1749          return getNode(ISD::OR, VT, N1, N3);
1750        else                   // select C, 0, X -> ~C & X
1751          return getNode(ISD::AND, VT,
1752                         getNode(ISD::XOR, N1.getValueType(), N1,
1753                                 getConstant(1, N1.getValueType())), N3);
1754      } else if (N3C) {
1755        if (N3C->getValue())   // select C, X, 1 -> ~C | X
1756          return getNode(ISD::OR, VT,
1757                         getNode(ISD::XOR, N1.getValueType(), N1,
1758                                 getConstant(1, N1.getValueType())), N2);
1759        else                   // select C, X, 0 -> C & X
1760          return getNode(ISD::AND, VT, N1, N2);
1761      }
1762
1763      if (N1 == N2)   // X ? X : Y --> X ? 1 : Y --> X | Y
1764        return getNode(ISD::OR, VT, N1, N3);
1765      if (N1 == N3)   // X ? Y : X --> X ? Y : 0 --> X & Y
1766        return getNode(ISD::AND, VT, N1, N2);
1767    }
1768    if (N1.getOpcode() == ISD::SETCC) {
1769      SDOperand Simp = SimplifySelectCC(N1.getOperand(0), N1.getOperand(1), N2,
1770                             N3, cast<CondCodeSDNode>(N1.getOperand(2))->get());
1771      if (Simp.Val) return Simp;
1772    }
1773    break;
1774  case ISD::BRCOND:
1775    if (N2C)
1776      if (N2C->getValue()) // Unconditional branch
1777        return getNode(ISD::BR, MVT::Other, N1, N3);
1778      else
1779        return N1;         // Never-taken branch
1780    break;
1781  }
1782
1783  std::vector<SDOperand> Ops;
1784  Ops.reserve(3);
1785  Ops.push_back(N1);
1786  Ops.push_back(N2);
1787  Ops.push_back(N3);
1788
1789  // Memoize node if it doesn't produce a flag.
1790  SDNode *N;
1791  if (VT != MVT::Flag) {
1792    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1793    if (E) return SDOperand(E, 0);
1794    E = N = new SDNode(Opcode, N1, N2, N3);
1795  } else {
1796    N = new SDNode(Opcode, N1, N2, N3);
1797  }
1798  N->setValueTypes(VT);
1799  AllNodes.push_back(N);
1800  return SDOperand(N, 0);
1801}
1802
1803SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1804                                SDOperand N1, SDOperand N2, SDOperand N3,
1805                                SDOperand N4) {
1806  std::vector<SDOperand> Ops;
1807  Ops.reserve(4);
1808  Ops.push_back(N1);
1809  Ops.push_back(N2);
1810  Ops.push_back(N3);
1811  Ops.push_back(N4);
1812  return getNode(Opcode, VT, Ops);
1813}
1814
1815SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1816                                SDOperand N1, SDOperand N2, SDOperand N3,
1817                                SDOperand N4, SDOperand N5) {
1818  std::vector<SDOperand> Ops;
1819  Ops.reserve(5);
1820  Ops.push_back(N1);
1821  Ops.push_back(N2);
1822  Ops.push_back(N3);
1823  Ops.push_back(N4);
1824  Ops.push_back(N5);
1825  return getNode(Opcode, VT, Ops);
1826}
1827
1828
1829SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1830  assert((!V || isa<PointerType>(V->getType())) &&
1831         "SrcValue is not a pointer?");
1832  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1833  if (N) return SDOperand(N, 0);
1834
1835  N = new SrcValueSDNode(V, Offset);
1836  AllNodes.push_back(N);
1837  return SDOperand(N, 0);
1838}
1839
1840SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1841                                std::vector<SDOperand> &Ops) {
1842  switch (Ops.size()) {
1843  case 0: return getNode(Opcode, VT);
1844  case 1: return getNode(Opcode, VT, Ops[0]);
1845  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1846  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1847  default: break;
1848  }
1849
1850  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1851  switch (Opcode) {
1852  default: break;
1853  case ISD::BRCONDTWOWAY:
1854    if (N1C)
1855      if (N1C->getValue()) // Unconditional branch to true dest.
1856        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1857      else                 // Unconditional branch to false dest.
1858        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1859    break;
1860  case ISD::BRTWOWAY_CC:
1861    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1862    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1863           "LHS and RHS of comparison must have same type!");
1864    break;
1865  case ISD::TRUNCSTORE: {
1866    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1867    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1868#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1869    // If this is a truncating store of a constant, convert to the desired type
1870    // and store it instead.
1871    if (isa<Constant>(Ops[0])) {
1872      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1873      if (isa<Constant>(Op))
1874        N1 = Op;
1875    }
1876    // Also for ConstantFP?
1877#endif
1878    if (Ops[0].getValueType() == EVT)       // Normal store?
1879      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1880    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1881    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1882           "Can't do FP-INT conversion!");
1883    break;
1884  }
1885  case ISD::SELECT_CC: {
1886    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1887    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1888           "LHS and RHS of condition must have same type!");
1889    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1890           "True and False arms of SelectCC must have same type!");
1891    assert(Ops[2].getValueType() == VT &&
1892           "select_cc node must be of same type as true and false value!");
1893    SDOperand Simp = SimplifySelectCC(Ops[0], Ops[1], Ops[2], Ops[3],
1894                                      cast<CondCodeSDNode>(Ops[4])->get());
1895    if (Simp.Val) return Simp;
1896    break;
1897  }
1898  case ISD::BR_CC: {
1899    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1900    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1901           "LHS/RHS of comparison should match types!");
1902    // Use SimplifySetCC  to simplify SETCC's.
1903    SDOperand Simp = SimplifySetCC(MVT::i1, Ops[2], Ops[3],
1904                                   cast<CondCodeSDNode>(Ops[1])->get());
1905    if (Simp.Val) {
1906      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Simp)) {
1907        if (C->getValue() & 1) // Unconditional branch
1908          return getNode(ISD::BR, MVT::Other, Ops[0], Ops[4]);
1909        else
1910          return Ops[0];          // Unconditional Fall through
1911      } else if (Simp.Val->getOpcode() == ISD::SETCC) {
1912        Ops[2] = Simp.getOperand(0);
1913        Ops[3] = Simp.getOperand(1);
1914        Ops[1] = Simp.getOperand(2);
1915      }
1916    }
1917    break;
1918  }
1919  }
1920
1921  // Memoize nodes.
1922  SDNode *N;
1923  if (VT != MVT::Flag) {
1924    SDNode *&E =
1925      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1926    if (E) return SDOperand(E, 0);
1927    E = N = new SDNode(Opcode, Ops);
1928  } else {
1929    N = new SDNode(Opcode, Ops);
1930  }
1931  N->setValueTypes(VT);
1932  AllNodes.push_back(N);
1933  return SDOperand(N, 0);
1934}
1935
1936SDOperand SelectionDAG::getNode(unsigned Opcode,
1937                                std::vector<MVT::ValueType> &ResultTys,
1938                                std::vector<SDOperand> &Ops) {
1939  if (ResultTys.size() == 1)
1940    return getNode(Opcode, ResultTys[0], Ops);
1941
1942  switch (Opcode) {
1943  case ISD::EXTLOAD:
1944  case ISD::SEXTLOAD:
1945  case ISD::ZEXTLOAD: {
1946    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1947    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1948    // If they are asking for an extending load from/to the same thing, return a
1949    // normal load.
1950    if (ResultTys[0] == EVT)
1951      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1952    assert(EVT < ResultTys[0] &&
1953           "Should only be an extending load, not truncating!");
1954    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1955           "Cannot sign/zero extend a FP load!");
1956    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1957           "Cannot convert from FP to Int or Int -> FP!");
1958    break;
1959  }
1960
1961  // FIXME: figure out how to safely handle things like
1962  // int foo(int x) { return 1 << (x & 255); }
1963  // int bar() { return foo(256); }
1964#if 0
1965  case ISD::SRA_PARTS:
1966  case ISD::SRL_PARTS:
1967  case ISD::SHL_PARTS:
1968    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1969        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1970      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1971    else if (N3.getOpcode() == ISD::AND)
1972      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1973        // If the and is only masking out bits that cannot effect the shift,
1974        // eliminate the and.
1975        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1976        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1977          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1978      }
1979    break;
1980#endif
1981  }
1982
1983  // Memoize the node unless it returns a flag.
1984  SDNode *N;
1985  if (ResultTys.back() != MVT::Flag) {
1986    SDNode *&E =
1987      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1988    if (E) return SDOperand(E, 0);
1989    E = N = new SDNode(Opcode, Ops);
1990  } else {
1991    N = new SDNode(Opcode, Ops);
1992  }
1993  N->setValueTypes(ResultTys);
1994  AllNodes.push_back(N);
1995  return SDOperand(N, 0);
1996}
1997
1998
1999/// SelectNodeTo - These are used for target selectors to *mutate* the
2000/// specified node to have the specified return type, Target opcode, and
2001/// operands.  Note that target opcodes are stored as
2002/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2003void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2004                                MVT::ValueType VT) {
2005  RemoveNodeFromCSEMaps(N);
2006  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2007  N->setValueTypes(VT);
2008}
2009void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2010                                MVT::ValueType VT, SDOperand Op1) {
2011  RemoveNodeFromCSEMaps(N);
2012  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2013  N->setValueTypes(VT);
2014  N->setOperands(Op1);
2015}
2016void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2017                                MVT::ValueType VT, SDOperand Op1,
2018                                SDOperand Op2) {
2019  RemoveNodeFromCSEMaps(N);
2020  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2021  N->setValueTypes(VT);
2022  N->setOperands(Op1, Op2);
2023}
2024void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2025                                MVT::ValueType VT1, MVT::ValueType VT2,
2026                                SDOperand Op1, SDOperand Op2) {
2027  RemoveNodeFromCSEMaps(N);
2028  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2029  N->setValueTypes(VT1, VT2);
2030  N->setOperands(Op1, Op2);
2031}
2032void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2033                                MVT::ValueType VT, SDOperand Op1,
2034                                SDOperand Op2, SDOperand Op3) {
2035  RemoveNodeFromCSEMaps(N);
2036  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2037  N->setValueTypes(VT);
2038  N->setOperands(Op1, Op2, Op3);
2039}
2040void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2041                                MVT::ValueType VT1, MVT::ValueType VT2,
2042                                SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2043  RemoveNodeFromCSEMaps(N);
2044  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2045  N->setValueTypes(VT1, VT2);
2046  N->setOperands(Op1, Op2, Op3);
2047}
2048
2049void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2050                                MVT::ValueType VT, SDOperand Op1,
2051                                SDOperand Op2, SDOperand Op3, SDOperand Op4) {
2052  RemoveNodeFromCSEMaps(N);
2053  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2054  N->setValueTypes(VT);
2055  N->setOperands(Op1, Op2, Op3, Op4);
2056}
2057void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2058                                MVT::ValueType VT, SDOperand Op1,
2059                                SDOperand Op2, SDOperand Op3, SDOperand Op4,
2060                                SDOperand Op5) {
2061  RemoveNodeFromCSEMaps(N);
2062  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2063  N->setValueTypes(VT);
2064  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2065}
2066
2067/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2068/// This can cause recursive merging of nodes in the DAG.
2069///
2070/// This version assumes From/To have a single result value.
2071///
2072void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN) {
2073  SDNode *From = FromN.Val, *To = ToN.Val;
2074  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2075         "Cannot replace with this method!");
2076  assert(From != To && "Cannot replace uses of with self");
2077
2078  while (!From->use_empty()) {
2079    // Process users until they are all gone.
2080    SDNode *U = *From->use_begin();
2081
2082    // This node is about to morph, remove its old self from the CSE maps.
2083    RemoveNodeFromCSEMaps(U);
2084
2085    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2086      if (U->getOperand(i).Val == From) {
2087        From->removeUser(U);
2088        U->Operands[i].Val = To;
2089        To->addUser(U);
2090      }
2091
2092    // Now that we have modified U, add it back to the CSE maps.  If it already
2093    // exists there, recursively merge the results together.
2094    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U))
2095      ReplaceAllUsesWith(U, Existing);
2096      // U is now dead.
2097  }
2098}
2099
2100/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2101/// This can cause recursive merging of nodes in the DAG.
2102///
2103/// This version assumes From/To have matching types and numbers of result
2104/// values.
2105///
2106void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
2107  assert(From != To && "Cannot replace uses of with self");
2108  assert(From->getNumValues() == To->getNumValues() &&
2109         "Cannot use this version of ReplaceAllUsesWith!");
2110  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2111    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0));
2112    return;
2113  }
2114
2115  while (!From->use_empty()) {
2116    // Process users until they are all gone.
2117    SDNode *U = *From->use_begin();
2118
2119    // This node is about to morph, remove its old self from the CSE maps.
2120    RemoveNodeFromCSEMaps(U);
2121
2122    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2123      if (U->getOperand(i).Val == From) {
2124        From->removeUser(U);
2125        U->Operands[i].Val = To;
2126        To->addUser(U);
2127      }
2128
2129    // Now that we have modified U, add it back to the CSE maps.  If it already
2130    // exists there, recursively merge the results together.
2131    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U))
2132      ReplaceAllUsesWith(U, Existing);
2133    // U is now dead.
2134  }
2135}
2136
2137/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2138/// This can cause recursive merging of nodes in the DAG.
2139///
2140/// This version can replace From with any result values.  To must match the
2141/// number and types of values returned by From.
2142void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2143                                      const std::vector<SDOperand> &To) {
2144  assert(From->getNumValues() == To.size() &&
2145         "Incorrect number of values to replace with!");
2146  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2147    // Degenerate case handled above.
2148    ReplaceAllUsesWith(SDOperand(From, 0), To[0]);
2149    return;
2150  }
2151
2152  while (!From->use_empty()) {
2153    // Process users until they are all gone.
2154    SDNode *U = *From->use_begin();
2155
2156    // This node is about to morph, remove its old self from the CSE maps.
2157    RemoveNodeFromCSEMaps(U);
2158
2159    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2160      if (U->getOperand(i).Val == From) {
2161        const SDOperand &ToOp = To[U->getOperand(i).ResNo];
2162        From->removeUser(U);
2163        U->Operands[i] = ToOp;
2164        ToOp.Val->addUser(U);
2165      }
2166
2167    // Now that we have modified U, add it back to the CSE maps.  If it already
2168    // exists there, recursively merge the results together.
2169    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U))
2170      ReplaceAllUsesWith(U, Existing);
2171    // U is now dead.
2172  }
2173}
2174
2175
2176//===----------------------------------------------------------------------===//
2177//                              SDNode Class
2178//===----------------------------------------------------------------------===//
2179
2180/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2181/// indicated value.  This method ignores uses of other values defined by this
2182/// operation.
2183bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
2184  assert(Value < getNumValues() && "Bad value!");
2185
2186  // If there is only one value, this is easy.
2187  if (getNumValues() == 1)
2188    return use_size() == NUses;
2189  if (Uses.size() < NUses) return false;
2190
2191  SDOperand TheValue(this, Value);
2192
2193  std::set<SDNode*> UsersHandled;
2194
2195  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
2196       UI != E; ++UI) {
2197    SDNode *User = *UI;
2198    if (User->getNumOperands() == 1 ||
2199        UsersHandled.insert(User).second)     // First time we've seen this?
2200      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2201        if (User->getOperand(i) == TheValue) {
2202          if (NUses == 0)
2203            return false;   // too many uses
2204          --NUses;
2205        }
2206  }
2207
2208  // Found exactly the right number of uses?
2209  return NUses == 0;
2210}
2211
2212
2213const char *SDNode::getOperationName(const SelectionDAG *G) const {
2214  switch (getOpcode()) {
2215  default:
2216    if (getOpcode() < ISD::BUILTIN_OP_END)
2217      return "<<Unknown DAG Node>>";
2218    else {
2219      if (G)
2220        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2221          return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2222      return "<<Unknown Target Node>>";
2223    }
2224
2225  case ISD::PCMARKER:      return "PCMarker";
2226  case ISD::SRCVALUE:      return "SrcValue";
2227  case ISD::VALUETYPE:     return "ValueType";
2228  case ISD::EntryToken:    return "EntryToken";
2229  case ISD::TokenFactor:   return "TokenFactor";
2230  case ISD::AssertSext:    return "AssertSext";
2231  case ISD::AssertZext:    return "AssertZext";
2232  case ISD::Constant:      return "Constant";
2233  case ISD::TargetConstant: return "TargetConstant";
2234  case ISD::ConstantFP:    return "ConstantFP";
2235  case ISD::GlobalAddress: return "GlobalAddress";
2236  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2237  case ISD::FrameIndex:    return "FrameIndex";
2238  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2239  case ISD::BasicBlock:    return "BasicBlock";
2240  case ISD::Register:      return "Register";
2241  case ISD::ExternalSymbol: return "ExternalSymbol";
2242  case ISD::ConstantPool:  return "ConstantPool";
2243  case ISD::TargetConstantPool:  return "TargetConstantPool";
2244  case ISD::CopyToReg:     return "CopyToReg";
2245  case ISD::CopyFromReg:   return "CopyFromReg";
2246  case ISD::ImplicitDef:   return "ImplicitDef";
2247  case ISD::UNDEF:         return "undef";
2248
2249  // Unary operators
2250  case ISD::FABS:   return "fabs";
2251  case ISD::FNEG:   return "fneg";
2252  case ISD::FSQRT:  return "fsqrt";
2253  case ISD::FSIN:   return "fsin";
2254  case ISD::FCOS:   return "fcos";
2255
2256  // Binary operators
2257  case ISD::ADD:    return "add";
2258  case ISD::SUB:    return "sub";
2259  case ISD::MUL:    return "mul";
2260  case ISD::MULHU:  return "mulhu";
2261  case ISD::MULHS:  return "mulhs";
2262  case ISD::SDIV:   return "sdiv";
2263  case ISD::UDIV:   return "udiv";
2264  case ISD::SREM:   return "srem";
2265  case ISD::UREM:   return "urem";
2266  case ISD::AND:    return "and";
2267  case ISD::OR:     return "or";
2268  case ISD::XOR:    return "xor";
2269  case ISD::SHL:    return "shl";
2270  case ISD::SRA:    return "sra";
2271  case ISD::SRL:    return "srl";
2272
2273  case ISD::SETCC:       return "setcc";
2274  case ISD::SELECT:      return "select";
2275  case ISD::SELECT_CC:   return "select_cc";
2276  case ISD::ADD_PARTS:   return "add_parts";
2277  case ISD::SUB_PARTS:   return "sub_parts";
2278  case ISD::SHL_PARTS:   return "shl_parts";
2279  case ISD::SRA_PARTS:   return "sra_parts";
2280  case ISD::SRL_PARTS:   return "srl_parts";
2281
2282  // Conversion operators.
2283  case ISD::SIGN_EXTEND: return "sign_extend";
2284  case ISD::ZERO_EXTEND: return "zero_extend";
2285  case ISD::ANY_EXTEND:  return "any_extend";
2286  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2287  case ISD::TRUNCATE:    return "truncate";
2288  case ISD::FP_ROUND:    return "fp_round";
2289  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2290  case ISD::FP_EXTEND:   return "fp_extend";
2291
2292  case ISD::SINT_TO_FP:  return "sint_to_fp";
2293  case ISD::UINT_TO_FP:  return "uint_to_fp";
2294  case ISD::FP_TO_SINT:  return "fp_to_sint";
2295  case ISD::FP_TO_UINT:  return "fp_to_uint";
2296
2297    // Control flow instructions
2298  case ISD::BR:      return "br";
2299  case ISD::BRCOND:  return "brcond";
2300  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
2301  case ISD::BR_CC:  return "br_cc";
2302  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
2303  case ISD::RET:     return "ret";
2304  case ISD::CALL:    return "call";
2305  case ISD::TAILCALL:return "tailcall";
2306  case ISD::CALLSEQ_START:  return "callseq_start";
2307  case ISD::CALLSEQ_END:    return "callseq_end";
2308
2309    // Other operators
2310  case ISD::LOAD:    return "load";
2311  case ISD::STORE:   return "store";
2312  case ISD::EXTLOAD:    return "extload";
2313  case ISD::SEXTLOAD:   return "sextload";
2314  case ISD::ZEXTLOAD:   return "zextload";
2315  case ISD::TRUNCSTORE: return "truncstore";
2316
2317  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2318  case ISD::EXTRACT_ELEMENT: return "extract_element";
2319  case ISD::BUILD_PAIR: return "build_pair";
2320  case ISD::MEMSET:  return "memset";
2321  case ISD::MEMCPY:  return "memcpy";
2322  case ISD::MEMMOVE: return "memmove";
2323
2324  // Bit counting
2325  case ISD::CTPOP:   return "ctpop";
2326  case ISD::CTTZ:    return "cttz";
2327  case ISD::CTLZ:    return "ctlz";
2328
2329  // IO Intrinsics
2330  case ISD::READPORT: return "readport";
2331  case ISD::WRITEPORT: return "writeport";
2332  case ISD::READIO: return "readio";
2333  case ISD::WRITEIO: return "writeio";
2334
2335  case ISD::CONDCODE:
2336    switch (cast<CondCodeSDNode>(this)->get()) {
2337    default: assert(0 && "Unknown setcc condition!");
2338    case ISD::SETOEQ:  return "setoeq";
2339    case ISD::SETOGT:  return "setogt";
2340    case ISD::SETOGE:  return "setoge";
2341    case ISD::SETOLT:  return "setolt";
2342    case ISD::SETOLE:  return "setole";
2343    case ISD::SETONE:  return "setone";
2344
2345    case ISD::SETO:    return "seto";
2346    case ISD::SETUO:   return "setuo";
2347    case ISD::SETUEQ:  return "setue";
2348    case ISD::SETUGT:  return "setugt";
2349    case ISD::SETUGE:  return "setuge";
2350    case ISD::SETULT:  return "setult";
2351    case ISD::SETULE:  return "setule";
2352    case ISD::SETUNE:  return "setune";
2353
2354    case ISD::SETEQ:   return "seteq";
2355    case ISD::SETGT:   return "setgt";
2356    case ISD::SETGE:   return "setge";
2357    case ISD::SETLT:   return "setlt";
2358    case ISD::SETLE:   return "setle";
2359    case ISD::SETNE:   return "setne";
2360    }
2361  }
2362}
2363
2364void SDNode::dump() const { dump(0); }
2365void SDNode::dump(const SelectionDAG *G) const {
2366  std::cerr << (void*)this << ": ";
2367
2368  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2369    if (i) std::cerr << ",";
2370    if (getValueType(i) == MVT::Other)
2371      std::cerr << "ch";
2372    else
2373      std::cerr << MVT::getValueTypeString(getValueType(i));
2374  }
2375  std::cerr << " = " << getOperationName(G);
2376
2377  std::cerr << " ";
2378  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2379    if (i) std::cerr << ", ";
2380    std::cerr << (void*)getOperand(i).Val;
2381    if (unsigned RN = getOperand(i).ResNo)
2382      std::cerr << ":" << RN;
2383  }
2384
2385  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2386    std::cerr << "<" << CSDN->getValue() << ">";
2387  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2388    std::cerr << "<" << CSDN->getValue() << ">";
2389  } else if (const GlobalAddressSDNode *GADN =
2390             dyn_cast<GlobalAddressSDNode>(this)) {
2391    std::cerr << "<";
2392    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2393  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2394    std::cerr << "<" << FIDN->getIndex() << ">";
2395  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2396    std::cerr << "<" << *CP->get() << ">";
2397  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2398    std::cerr << "<";
2399    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2400    if (LBB)
2401      std::cerr << LBB->getName() << " ";
2402    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2403  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2404    if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2405      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2406    } else {
2407      std::cerr << " #" << R->getReg();
2408    }
2409  } else if (const ExternalSymbolSDNode *ES =
2410             dyn_cast<ExternalSymbolSDNode>(this)) {
2411    std::cerr << "'" << ES->getSymbol() << "'";
2412  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2413    if (M->getValue())
2414      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2415    else
2416      std::cerr << "<null:" << M->getOffset() << ">";
2417  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2418    std::cerr << ":" << getValueTypeString(N->getVT());
2419  }
2420}
2421
2422static void DumpNodes(SDNode *N, unsigned indent, const SelectionDAG *G) {
2423  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2424    if (N->getOperand(i).Val->hasOneUse())
2425      DumpNodes(N->getOperand(i).Val, indent+2, G);
2426    else
2427      std::cerr << "\n" << std::string(indent+2, ' ')
2428                << (void*)N->getOperand(i).Val << ": <multiple use>";
2429
2430
2431  std::cerr << "\n" << std::string(indent, ' ');
2432  N->dump(G);
2433}
2434
2435void SelectionDAG::dump() const {
2436  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2437  std::vector<SDNode*> Nodes(AllNodes);
2438  std::sort(Nodes.begin(), Nodes.end());
2439
2440  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2441    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2442      DumpNodes(Nodes[i], 2, this);
2443  }
2444
2445  DumpNodes(getRoot().Val, 2, this);
2446
2447  std::cerr << "\n\n";
2448}
2449
2450