SelectionDAG.cpp revision 6cdc1f43e6a6dd7ba38a334b0b2f8fa70d4dc4cd
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetSelectionDAGInfo.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetIntrinsicInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/ManagedStatic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Support/Mutex.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallSet.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64  switch (VT.getSimpleVT().SimpleTy) {
65  default: llvm_unreachable("Unknown FP format");
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76//===----------------------------------------------------------------------===//
77//                              ConstantFPSDNode Class
78//===----------------------------------------------------------------------===//
79
80/// isExactlyValue - We don't rely on operator== working on double values, as
81/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82/// As such, this method can be used to do an exact bit-for-bit comparison of
83/// two floating point values.
84bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85  return getValueAPF().bitwiseIsEqual(V);
86}
87
88bool ConstantFPSDNode::isValueValidForType(EVT VT,
89                                           const APFloat& Val) {
90  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92  // PPC long double cannot be converted to any other type.
93  if (VT == MVT::ppcf128 ||
94      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95    return false;
96
97  // convert modifies in place, so make a copy.
98  APFloat Val2 = APFloat(Val);
99  bool losesInfo;
100  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101                      &losesInfo);
102  return !losesInfo;
103}
104
105//===----------------------------------------------------------------------===//
106//                              ISD Namespace
107//===----------------------------------------------------------------------===//
108
109/// isBuildVectorAllOnes - Return true if the specified node is a
110/// BUILD_VECTOR where all of the elements are ~0 or undef.
111bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112  // Look through a bit convert.
113  if (N->getOpcode() == ISD::BITCAST)
114    N = N->getOperand(0).getNode();
115
116  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118  unsigned i = 0, e = N->getNumOperands();
119
120  // Skip over all of the undef values.
121  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122    ++i;
123
124  // Do not accept an all-undef vector.
125  if (i == e) return false;
126
127  // Do not accept build_vectors that aren't all constants or which have non-~0
128  // elements.
129  SDValue NotZero = N->getOperand(i);
130  if (isa<ConstantSDNode>(NotZero)) {
131    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132      return false;
133  } else if (isa<ConstantFPSDNode>(NotZero)) {
134    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135                bitcastToAPInt().isAllOnesValue())
136      return false;
137  } else
138    return false;
139
140  // Okay, we have at least one ~0 value, check to see if the rest match or are
141  // undefs.
142  for (++i; i != e; ++i)
143    if (N->getOperand(i) != NotZero &&
144        N->getOperand(i).getOpcode() != ISD::UNDEF)
145      return false;
146  return true;
147}
148
149
150/// isBuildVectorAllZeros - Return true if the specified node is a
151/// BUILD_VECTOR where all of the elements are 0 or undef.
152bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153  // Look through a bit convert.
154  if (N->getOpcode() == ISD::BITCAST)
155    N = N->getOperand(0).getNode();
156
157  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159  unsigned i = 0, e = N->getNumOperands();
160
161  // Skip over all of the undef values.
162  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163    ++i;
164
165  // Do not accept an all-undef vector.
166  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  if (NumElems == 1)
202    return false;
203  for (unsigned i = 1; i < NumElems; ++i) {
204    SDValue V = N->getOperand(i);
205    if (V.getOpcode() != ISD::UNDEF)
206      return false;
207  }
208  return true;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: llvm_unreachable("Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, temporalness, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
476                     bool isNonTemporal) {
477  assert((ConvType & 3) == ConvType &&
478         "ConvType may not require more than 2 bits!");
479  assert((AM & 7) == AM &&
480         "AM may not require more than 3 bits!");
481  return ConvType |
482         (AM << 2) |
483         (isVolatile << 5) |
484         (isNonTemporal << 6);
485}
486
487//===----------------------------------------------------------------------===//
488//                              SelectionDAG Class
489//===----------------------------------------------------------------------===//
490
491/// doNotCSE - Return true if CSE should not be performed for this node.
492static bool doNotCSE(SDNode *N) {
493  if (N->getValueType(0) == MVT::Glue)
494    return true; // Never CSE anything that produces a flag.
495
496  switch (N->getOpcode()) {
497  default: break;
498  case ISD::HANDLENODE:
499  case ISD::EH_LABEL:
500    return true;   // Never CSE these nodes.
501  }
502
503  // Check that remaining values produced are not flags.
504  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
505    if (N->getValueType(i) == MVT::Glue)
506      return true; // Never CSE anything that produces a flag.
507
508  return false;
509}
510
511/// RemoveDeadNodes - This method deletes all unreachable nodes in the
512/// SelectionDAG.
513void SelectionDAG::RemoveDeadNodes() {
514  // Create a dummy node (which is not added to allnodes), that adds a reference
515  // to the root node, preventing it from being deleted.
516  HandleSDNode Dummy(getRoot());
517
518  SmallVector<SDNode*, 128> DeadNodes;
519
520  // Add all obviously-dead nodes to the DeadNodes worklist.
521  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
522    if (I->use_empty())
523      DeadNodes.push_back(I);
524
525  RemoveDeadNodes(DeadNodes);
526
527  // If the root changed (e.g. it was a dead load, update the root).
528  setRoot(Dummy.getValue());
529}
530
531/// RemoveDeadNodes - This method deletes the unreachable nodes in the
532/// given list, and any nodes that become unreachable as a result.
533void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
534                                   DAGUpdateListener *UpdateListener) {
535
536  // Process the worklist, deleting the nodes and adding their uses to the
537  // worklist.
538  while (!DeadNodes.empty()) {
539    SDNode *N = DeadNodes.pop_back_val();
540
541    if (UpdateListener)
542      UpdateListener->NodeDeleted(N, 0);
543
544    // Take the node out of the appropriate CSE map.
545    RemoveNodeFromCSEMaps(N);
546
547    // Next, brutally remove the operand list.  This is safe to do, as there are
548    // no cycles in the graph.
549    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
550      SDUse &Use = *I++;
551      SDNode *Operand = Use.getNode();
552      Use.set(SDValue());
553
554      // Now that we removed this operand, see if there are no uses of it left.
555      if (Operand->use_empty())
556        DeadNodes.push_back(Operand);
557    }
558
559    DeallocateNode(N);
560  }
561}
562
563void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564  SmallVector<SDNode*, 16> DeadNodes(1, N);
565  RemoveDeadNodes(DeadNodes, UpdateListener);
566}
567
568void SelectionDAG::DeleteNode(SDNode *N) {
569  // First take this out of the appropriate CSE map.
570  RemoveNodeFromCSEMaps(N);
571
572  // Finally, remove uses due to operands of this node, remove from the
573  // AllNodes list, and delete the node.
574  DeleteNodeNotInCSEMaps(N);
575}
576
577void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579  assert(N->use_empty() && "Cannot delete a node that is not dead!");
580
581  // Drop all of the operands and decrement used node's use counts.
582  N->DropOperands();
583
584  DeallocateNode(N);
585}
586
587void SelectionDAG::DeallocateNode(SDNode *N) {
588  if (N->OperandsNeedDelete)
589    delete[] N->OperandList;
590
591  // Set the opcode to DELETED_NODE to help catch bugs when node
592  // memory is reallocated.
593  N->NodeType = ISD::DELETED_NODE;
594
595  NodeAllocator.Deallocate(AllNodes.remove(N));
596
597  // Remove the ordering of this node.
598  Ordering->remove(N);
599
600  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
601  ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
602  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
603    DbgVals[i]->setIsInvalidated();
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::HANDLENODE: return false;  // noop.
614  case ISD::CONDCODE:
615    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
616           "Cond code doesn't exist!");
617    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
618    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
619    break;
620  case ISD::ExternalSymbol:
621    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
622    break;
623  case ISD::TargetExternalSymbol: {
624    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
625    Erased = TargetExternalSymbols.erase(
626               std::pair<std::string,unsigned char>(ESN->getSymbol(),
627                                                    ESN->getTargetFlags()));
628    break;
629  }
630  case ISD::VALUETYPE: {
631    EVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
636      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
643    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746#ifndef NDEBUG
747/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
748static void VerifyNodeCommon(SDNode *N) {
749  switch (N->getOpcode()) {
750  default:
751    break;
752  case ISD::BUILD_PAIR: {
753    EVT VT = N->getValueType(0);
754    assert(N->getNumValues() == 1 && "Too many results!");
755    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
756           "Wrong return type!");
757    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
758    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
759           "Mismatched operand types!");
760    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
761           "Wrong operand type!");
762    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
763           "Wrong return type size");
764    break;
765  }
766  case ISD::BUILD_VECTOR: {
767    assert(N->getNumValues() == 1 && "Too many results!");
768    assert(N->getValueType(0).isVector() && "Wrong return type!");
769    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
770           "Wrong number of operands!");
771    EVT EltVT = N->getValueType(0).getVectorElementType();
772    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
773      assert((I->getValueType() == EltVT ||
774             (EltVT.isInteger() && I->getValueType().isInteger() &&
775              EltVT.bitsLE(I->getValueType()))) &&
776            "Wrong operand type!");
777    break;
778  }
779  }
780}
781
782/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
783static void VerifySDNode(SDNode *N) {
784  // The SDNode allocators cannot be used to allocate nodes with fields that are
785  // not present in an SDNode!
786  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
787  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
788  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
789  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
790  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
791  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
792  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
793  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
794  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
795  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
796  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
797  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
798  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
799  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
800  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
801  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
802  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
803  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
804  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
805
806  VerifyNodeCommon(N);
807}
808
809/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
810/// invalid.
811static void VerifyMachineNode(SDNode *N) {
812  // The MachineNode allocators cannot be used to allocate nodes with fields
813  // that are not present in a MachineNode!
814  // Currently there are no such nodes.
815
816  VerifyNodeCommon(N);
817}
818#endif // NDEBUG
819
820/// getEVTAlignment - Compute the default alignment value for the
821/// given type.
822///
823unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
824  Type *Ty = VT == MVT::iPTR ?
825                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
826                   VT.getTypeForEVT(*getContext());
827
828  return TLI.getTargetData()->getABITypeAlignment(Ty);
829}
830
831// EntryNode could meaningfully have debug info if we can find it...
832SelectionDAG::SelectionDAG(const TargetMachine &tm)
833  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
834    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
835    Root(getEntryNode()), Ordering(0) {
836  AllNodes.push_back(&EntryNode);
837  Ordering = new SDNodeOrdering();
838  DbgInfo = new SDDbgInfo();
839}
840
841void SelectionDAG::init(MachineFunction &mf) {
842  MF = &mf;
843  Context = &mf.getFunction()->getContext();
844}
845
846SelectionDAG::~SelectionDAG() {
847  allnodes_clear();
848  delete Ordering;
849  delete DbgInfo;
850}
851
852void SelectionDAG::allnodes_clear() {
853  assert(&*AllNodes.begin() == &EntryNode);
854  AllNodes.remove(AllNodes.begin());
855  while (!AllNodes.empty())
856    DeallocateNode(AllNodes.begin());
857}
858
859void SelectionDAG::clear() {
860  allnodes_clear();
861  OperandAllocator.Reset();
862  CSEMap.clear();
863
864  ExtendedValueTypeNodes.clear();
865  ExternalSymbols.clear();
866  TargetExternalSymbols.clear();
867  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
868            static_cast<CondCodeSDNode*>(0));
869  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
870            static_cast<SDNode*>(0));
871
872  EntryNode.UseList = 0;
873  AllNodes.push_back(&EntryNode);
874  Root = getEntryNode();
875  Ordering->clear();
876  DbgInfo->clear();
877}
878
879SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
880  return VT.bitsGT(Op.getValueType()) ?
881    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
882    getNode(ISD::TRUNCATE, DL, VT, Op);
883}
884
885SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
886  return VT.bitsGT(Op.getValueType()) ?
887    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
888    getNode(ISD::TRUNCATE, DL, VT, Op);
889}
890
891SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
892  assert(!VT.isVector() &&
893         "getZeroExtendInReg should use the vector element type instead of "
894         "the vector type!");
895  if (Op.getValueType() == VT) return Op;
896  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
897  APInt Imm = APInt::getLowBitsSet(BitWidth,
898                                   VT.getSizeInBits());
899  return getNode(ISD::AND, DL, Op.getValueType(), Op,
900                 getConstant(Imm, Op.getValueType()));
901}
902
903/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
904///
905SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
906  EVT EltVT = VT.getScalarType();
907  SDValue NegOne =
908    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
909  return getNode(ISD::XOR, DL, VT, Val, NegOne);
910}
911
912SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
913  EVT EltVT = VT.getScalarType();
914  assert((EltVT.getSizeInBits() >= 64 ||
915         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
916         "getConstant with a uint64_t value that doesn't fit in the type!");
917  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
918}
919
920SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
921  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
922}
923
924SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
925  assert(VT.isInteger() && "Cannot create FP integer constant!");
926
927  EVT EltVT = VT.getScalarType();
928  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
929         "APInt size does not match type size!");
930
931  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
934  ID.AddPointer(&Val);
935  void *IP = 0;
936  SDNode *N = NULL;
937  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
938    if (!VT.isVector())
939      return SDValue(N, 0);
940
941  if (!N) {
942    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
943    CSEMap.InsertNode(N, IP);
944    AllNodes.push_back(N);
945  }
946
947  SDValue Result(N, 0);
948  if (VT.isVector()) {
949    SmallVector<SDValue, 8> Ops;
950    Ops.assign(VT.getVectorNumElements(), Result);
951    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
952  }
953  return Result;
954}
955
956SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
957  return getConstant(Val, TLI.getPointerTy(), isTarget);
958}
959
960
961SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
962  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
963}
964
965SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
966  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
967
968  EVT EltVT = VT.getScalarType();
969
970  // Do the map lookup using the actual bit pattern for the floating point
971  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
972  // we don't have issues with SNANs.
973  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
974  FoldingSetNodeID ID;
975  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
976  ID.AddPointer(&V);
977  void *IP = 0;
978  SDNode *N = NULL;
979  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
980    if (!VT.isVector())
981      return SDValue(N, 0);
982
983  if (!N) {
984    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
985    CSEMap.InsertNode(N, IP);
986    AllNodes.push_back(N);
987  }
988
989  SDValue Result(N, 0);
990  if (VT.isVector()) {
991    SmallVector<SDValue, 8> Ops;
992    Ops.assign(VT.getVectorNumElements(), Result);
993    // FIXME DebugLoc info might be appropriate here
994    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
995  }
996  return Result;
997}
998
999SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1000  EVT EltVT = VT.getScalarType();
1001  if (EltVT==MVT::f32)
1002    return getConstantFP(APFloat((float)Val), VT, isTarget);
1003  else if (EltVT==MVT::f64)
1004    return getConstantFP(APFloat(Val), VT, isTarget);
1005  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1006    bool ignored;
1007    APFloat apf = APFloat(Val);
1008    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1009                &ignored);
1010    return getConstantFP(apf, VT, isTarget);
1011  } else {
1012    assert(0 && "Unsupported type in getConstantFP");
1013    return SDValue();
1014  }
1015}
1016
1017SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1018                                       EVT VT, int64_t Offset,
1019                                       bool isTargetGA,
1020                                       unsigned char TargetFlags) {
1021  assert((TargetFlags == 0 || isTargetGA) &&
1022         "Cannot set target flags on target-independent globals");
1023
1024  // Truncate (with sign-extension) the offset value to the pointer size.
1025  EVT PTy = TLI.getPointerTy();
1026  unsigned BitWidth = PTy.getSizeInBits();
1027  if (BitWidth < 64)
1028    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1029
1030  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1031  if (!GVar) {
1032    // If GV is an alias then use the aliasee for determining thread-localness.
1033    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1034      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1035  }
1036
1037  unsigned Opc;
1038  if (GVar && GVar->isThreadLocal())
1039    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1040  else
1041    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1042
1043  FoldingSetNodeID ID;
1044  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1045  ID.AddPointer(GV);
1046  ID.AddInteger(Offset);
1047  ID.AddInteger(TargetFlags);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051
1052  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1053                                                      Offset, TargetFlags);
1054  CSEMap.InsertNode(N, IP);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1060  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1061  FoldingSetNodeID ID;
1062  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1063  ID.AddInteger(FI);
1064  void *IP = 0;
1065  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1066    return SDValue(E, 0);
1067
1068  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1069  CSEMap.InsertNode(N, IP);
1070  AllNodes.push_back(N);
1071  return SDValue(N, 0);
1072}
1073
1074SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1075                                   unsigned char TargetFlags) {
1076  assert((TargetFlags == 0 || isTarget) &&
1077         "Cannot set target flags on target-independent jump tables");
1078  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1079  FoldingSetNodeID ID;
1080  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1081  ID.AddInteger(JTI);
1082  ID.AddInteger(TargetFlags);
1083  void *IP = 0;
1084  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085    return SDValue(E, 0);
1086
1087  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1088                                                  TargetFlags);
1089  CSEMap.InsertNode(N, IP);
1090  AllNodes.push_back(N);
1091  return SDValue(N, 0);
1092}
1093
1094SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1095                                      unsigned Alignment, int Offset,
1096                                      bool isTarget,
1097                                      unsigned char TargetFlags) {
1098  assert((TargetFlags == 0 || isTarget) &&
1099         "Cannot set target flags on target-independent globals");
1100  if (Alignment == 0)
1101    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1102  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1103  FoldingSetNodeID ID;
1104  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1105  ID.AddInteger(Alignment);
1106  ID.AddInteger(Offset);
1107  ID.AddPointer(C);
1108  ID.AddInteger(TargetFlags);
1109  void *IP = 0;
1110  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1111    return SDValue(E, 0);
1112
1113  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1114                                                     Alignment, TargetFlags);
1115  CSEMap.InsertNode(N, IP);
1116  AllNodes.push_back(N);
1117  return SDValue(N, 0);
1118}
1119
1120
1121SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1122                                      unsigned Alignment, int Offset,
1123                                      bool isTarget,
1124                                      unsigned char TargetFlags) {
1125  assert((TargetFlags == 0 || isTarget) &&
1126         "Cannot set target flags on target-independent globals");
1127  if (Alignment == 0)
1128    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1129  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1130  FoldingSetNodeID ID;
1131  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1132  ID.AddInteger(Alignment);
1133  ID.AddInteger(Offset);
1134  C->AddSelectionDAGCSEId(ID);
1135  ID.AddInteger(TargetFlags);
1136  void *IP = 0;
1137  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1138    return SDValue(E, 0);
1139
1140  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1141                                                     Alignment, TargetFlags);
1142  CSEMap.InsertNode(N, IP);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1148  FoldingSetNodeID ID;
1149  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1150  ID.AddPointer(MBB);
1151  void *IP = 0;
1152  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1153    return SDValue(E, 0);
1154
1155  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1156  CSEMap.InsertNode(N, IP);
1157  AllNodes.push_back(N);
1158  return SDValue(N, 0);
1159}
1160
1161SDValue SelectionDAG::getValueType(EVT VT) {
1162  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1163      ValueTypeNodes.size())
1164    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1165
1166  SDNode *&N = VT.isExtended() ?
1167    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1168
1169  if (N) return SDValue(N, 0);
1170  N = new (NodeAllocator) VTSDNode(VT);
1171  AllNodes.push_back(N);
1172  return SDValue(N, 0);
1173}
1174
1175SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1176  SDNode *&N = ExternalSymbols[Sym];
1177  if (N) return SDValue(N, 0);
1178  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1179  AllNodes.push_back(N);
1180  return SDValue(N, 0);
1181}
1182
1183SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1184                                              unsigned char TargetFlags) {
1185  SDNode *&N =
1186    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1187                                                               TargetFlags)];
1188  if (N) return SDValue(N, 0);
1189  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1190  AllNodes.push_back(N);
1191  return SDValue(N, 0);
1192}
1193
1194SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1195  if ((unsigned)Cond >= CondCodeNodes.size())
1196    CondCodeNodes.resize(Cond+1);
1197
1198  if (CondCodeNodes[Cond] == 0) {
1199    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1200    CondCodeNodes[Cond] = N;
1201    AllNodes.push_back(N);
1202  }
1203
1204  return SDValue(CondCodeNodes[Cond], 0);
1205}
1206
1207// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1208// the shuffle mask M that point at N1 to point at N2, and indices that point
1209// N2 to point at N1.
1210static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1211  std::swap(N1, N2);
1212  int NElts = M.size();
1213  for (int i = 0; i != NElts; ++i) {
1214    if (M[i] >= NElts)
1215      M[i] -= NElts;
1216    else if (M[i] >= 0)
1217      M[i] += NElts;
1218  }
1219}
1220
1221SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1222                                       SDValue N2, const int *Mask) {
1223  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1224  assert(VT.isVector() && N1.getValueType().isVector() &&
1225         "Vector Shuffle VTs must be a vectors");
1226  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1227         && "Vector Shuffle VTs must have same element type");
1228
1229  // Canonicalize shuffle undef, undef -> undef
1230  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1231    return getUNDEF(VT);
1232
1233  // Validate that all indices in Mask are within the range of the elements
1234  // input to the shuffle.
1235  unsigned NElts = VT.getVectorNumElements();
1236  SmallVector<int, 8> MaskVec;
1237  for (unsigned i = 0; i != NElts; ++i) {
1238    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1239    MaskVec.push_back(Mask[i]);
1240  }
1241
1242  // Canonicalize shuffle v, v -> v, undef
1243  if (N1 == N2) {
1244    N2 = getUNDEF(VT);
1245    for (unsigned i = 0; i != NElts; ++i)
1246      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1247  }
1248
1249  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1250  if (N1.getOpcode() == ISD::UNDEF)
1251    commuteShuffle(N1, N2, MaskVec);
1252
1253  // Canonicalize all index into lhs, -> shuffle lhs, undef
1254  // Canonicalize all index into rhs, -> shuffle rhs, undef
1255  bool AllLHS = true, AllRHS = true;
1256  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1257  for (unsigned i = 0; i != NElts; ++i) {
1258    if (MaskVec[i] >= (int)NElts) {
1259      if (N2Undef)
1260        MaskVec[i] = -1;
1261      else
1262        AllLHS = false;
1263    } else if (MaskVec[i] >= 0) {
1264      AllRHS = false;
1265    }
1266  }
1267  if (AllLHS && AllRHS)
1268    return getUNDEF(VT);
1269  if (AllLHS && !N2Undef)
1270    N2 = getUNDEF(VT);
1271  if (AllRHS) {
1272    N1 = getUNDEF(VT);
1273    commuteShuffle(N1, N2, MaskVec);
1274  }
1275
1276  // If Identity shuffle, or all shuffle in to undef, return that node.
1277  bool AllUndef = true;
1278  bool Identity = true;
1279  for (unsigned i = 0; i != NElts; ++i) {
1280    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1281    if (MaskVec[i] >= 0) AllUndef = false;
1282  }
1283  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1284    return N1;
1285  if (AllUndef)
1286    return getUNDEF(VT);
1287
1288  FoldingSetNodeID ID;
1289  SDValue Ops[2] = { N1, N2 };
1290  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1291  for (unsigned i = 0; i != NElts; ++i)
1292    ID.AddInteger(MaskVec[i]);
1293
1294  void* IP = 0;
1295  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1296    return SDValue(E, 0);
1297
1298  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1299  // SDNode doesn't have access to it.  This memory will be "leaked" when
1300  // the node is deallocated, but recovered when the NodeAllocator is released.
1301  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1302  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1303
1304  ShuffleVectorSDNode *N =
1305    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1306  CSEMap.InsertNode(N, IP);
1307  AllNodes.push_back(N);
1308  return SDValue(N, 0);
1309}
1310
1311SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1312                                       SDValue Val, SDValue DTy,
1313                                       SDValue STy, SDValue Rnd, SDValue Sat,
1314                                       ISD::CvtCode Code) {
1315  // If the src and dest types are the same and the conversion is between
1316  // integer types of the same sign or two floats, no conversion is necessary.
1317  if (DTy == STy &&
1318      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1319    return Val;
1320
1321  FoldingSetNodeID ID;
1322  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1323  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1324  void* IP = 0;
1325  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1326    return SDValue(E, 0);
1327
1328  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1329                                                           Code);
1330  CSEMap.InsertNode(N, IP);
1331  AllNodes.push_back(N);
1332  return SDValue(N, 0);
1333}
1334
1335SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1336  FoldingSetNodeID ID;
1337  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1338  ID.AddInteger(RegNo);
1339  void *IP = 0;
1340  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1341    return SDValue(E, 0);
1342
1343  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1344  CSEMap.InsertNode(N, IP);
1345  AllNodes.push_back(N);
1346  return SDValue(N, 0);
1347}
1348
1349SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1350  FoldingSetNodeID ID;
1351  SDValue Ops[] = { Root };
1352  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1353  ID.AddPointer(Label);
1354  void *IP = 0;
1355  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356    return SDValue(E, 0);
1357
1358  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1359  CSEMap.InsertNode(N, IP);
1360  AllNodes.push_back(N);
1361  return SDValue(N, 0);
1362}
1363
1364
1365SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1366                                      bool isTarget,
1367                                      unsigned char TargetFlags) {
1368  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1369
1370  FoldingSetNodeID ID;
1371  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1372  ID.AddPointer(BA);
1373  ID.AddInteger(TargetFlags);
1374  void *IP = 0;
1375  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1376    return SDValue(E, 0);
1377
1378  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1379  CSEMap.InsertNode(N, IP);
1380  AllNodes.push_back(N);
1381  return SDValue(N, 0);
1382}
1383
1384SDValue SelectionDAG::getSrcValue(const Value *V) {
1385  assert((!V || V->getType()->isPointerTy()) &&
1386         "SrcValue is not a pointer?");
1387
1388  FoldingSetNodeID ID;
1389  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1390  ID.AddPointer(V);
1391
1392  void *IP = 0;
1393  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1394    return SDValue(E, 0);
1395
1396  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1397  CSEMap.InsertNode(N, IP);
1398  AllNodes.push_back(N);
1399  return SDValue(N, 0);
1400}
1401
1402/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1403SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1404  FoldingSetNodeID ID;
1405  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1406  ID.AddPointer(MD);
1407
1408  void *IP = 0;
1409  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1410    return SDValue(E, 0);
1411
1412  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1413  CSEMap.InsertNode(N, IP);
1414  AllNodes.push_back(N);
1415  return SDValue(N, 0);
1416}
1417
1418
1419/// getShiftAmountOperand - Return the specified value casted to
1420/// the target's desired shift amount type.
1421SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1422  EVT OpTy = Op.getValueType();
1423  MVT ShTy = TLI.getShiftAmountTy(LHSTy);
1424  if (OpTy == ShTy || OpTy.isVector()) return Op;
1425
1426  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1427  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1428}
1429
1430/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1431/// specified value type.
1432SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1433  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1434  unsigned ByteSize = VT.getStoreSize();
1435  Type *Ty = VT.getTypeForEVT(*getContext());
1436  unsigned StackAlign =
1437  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1438
1439  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1440  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1441}
1442
1443/// CreateStackTemporary - Create a stack temporary suitable for holding
1444/// either of the specified value types.
1445SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1446  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1447                            VT2.getStoreSizeInBits())/8;
1448  Type *Ty1 = VT1.getTypeForEVT(*getContext());
1449  Type *Ty2 = VT2.getTypeForEVT(*getContext());
1450  const TargetData *TD = TLI.getTargetData();
1451  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1452                            TD->getPrefTypeAlignment(Ty2));
1453
1454  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1455  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1456  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1457}
1458
1459SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1460                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1461  // These setcc operations always fold.
1462  switch (Cond) {
1463  default: break;
1464  case ISD::SETFALSE:
1465  case ISD::SETFALSE2: return getConstant(0, VT);
1466  case ISD::SETTRUE:
1467  case ISD::SETTRUE2:  return getConstant(1, VT);
1468
1469  case ISD::SETOEQ:
1470  case ISD::SETOGT:
1471  case ISD::SETOGE:
1472  case ISD::SETOLT:
1473  case ISD::SETOLE:
1474  case ISD::SETONE:
1475  case ISD::SETO:
1476  case ISD::SETUO:
1477  case ISD::SETUEQ:
1478  case ISD::SETUNE:
1479    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1480    break;
1481  }
1482
1483  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1484    const APInt &C2 = N2C->getAPIntValue();
1485    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1486      const APInt &C1 = N1C->getAPIntValue();
1487
1488      switch (Cond) {
1489      default: llvm_unreachable("Unknown integer setcc!");
1490      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1491      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1492      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1493      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1494      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1495      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1496      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1497      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1498      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1499      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1500      }
1501    }
1502  }
1503  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1504    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1505      // No compile time operations on this type yet.
1506      if (N1C->getValueType(0) == MVT::ppcf128)
1507        return SDValue();
1508
1509      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1510      switch (Cond) {
1511      default: break;
1512      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1513                          return getUNDEF(VT);
1514                        // fall through
1515      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1516      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1517                          return getUNDEF(VT);
1518                        // fall through
1519      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1520                                           R==APFloat::cmpLessThan, VT);
1521      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1522                          return getUNDEF(VT);
1523                        // fall through
1524      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1525      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1526                          return getUNDEF(VT);
1527                        // fall through
1528      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1529      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1530                          return getUNDEF(VT);
1531                        // fall through
1532      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1533                                           R==APFloat::cmpEqual, VT);
1534      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1535                          return getUNDEF(VT);
1536                        // fall through
1537      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1538                                           R==APFloat::cmpEqual, VT);
1539      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1540      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1541      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1542                                           R==APFloat::cmpEqual, VT);
1543      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1544      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1545                                           R==APFloat::cmpLessThan, VT);
1546      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1547                                           R==APFloat::cmpUnordered, VT);
1548      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1549      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1550      }
1551    } else {
1552      // Ensure that the constant occurs on the RHS.
1553      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1554    }
1555  }
1556
1557  // Could not fold it.
1558  return SDValue();
1559}
1560
1561/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1562/// use this predicate to simplify operations downstream.
1563bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1564  // This predicate is not safe for vector operations.
1565  if (Op.getValueType().isVector())
1566    return false;
1567
1568  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1569  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1570}
1571
1572/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1573/// this predicate to simplify operations downstream.  Mask is known to be zero
1574/// for bits that V cannot have.
1575bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1576                                     unsigned Depth) const {
1577  APInt KnownZero, KnownOne;
1578  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1579  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1580  return (KnownZero & Mask) == Mask;
1581}
1582
1583/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1584/// known to be either zero or one and return them in the KnownZero/KnownOne
1585/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1586/// processing.
1587void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1588                                     APInt &KnownZero, APInt &KnownOne,
1589                                     unsigned Depth) const {
1590  unsigned BitWidth = Mask.getBitWidth();
1591  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1592         "Mask size mismatches value type size!");
1593
1594  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1595  if (Depth == 6 || Mask == 0)
1596    return;  // Limit search depth.
1597
1598  APInt KnownZero2, KnownOne2;
1599
1600  switch (Op.getOpcode()) {
1601  case ISD::Constant:
1602    // We know all of the bits for a constant!
1603    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1604    KnownZero = ~KnownOne & Mask;
1605    return;
1606  case ISD::AND:
1607    // If either the LHS or the RHS are Zero, the result is zero.
1608    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1609    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1610                      KnownZero2, KnownOne2, Depth+1);
1611    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1612    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1613
1614    // Output known-1 bits are only known if set in both the LHS & RHS.
1615    KnownOne &= KnownOne2;
1616    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1617    KnownZero |= KnownZero2;
1618    return;
1619  case ISD::OR:
1620    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1621    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1622                      KnownZero2, KnownOne2, Depth+1);
1623    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1625
1626    // Output known-0 bits are only known if clear in both the LHS & RHS.
1627    KnownZero &= KnownZero2;
1628    // Output known-1 are known to be set if set in either the LHS | RHS.
1629    KnownOne |= KnownOne2;
1630    return;
1631  case ISD::XOR: {
1632    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1633    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1634    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1636
1637    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1638    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1639    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1640    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1641    KnownZero = KnownZeroOut;
1642    return;
1643  }
1644  case ISD::MUL: {
1645    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1646    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1647    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1648    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1649    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1650
1651    // If low bits are zero in either operand, output low known-0 bits.
1652    // Also compute a conserative estimate for high known-0 bits.
1653    // More trickiness is possible, but this is sufficient for the
1654    // interesting case of alignment computation.
1655    KnownOne.clearAllBits();
1656    unsigned TrailZ = KnownZero.countTrailingOnes() +
1657                      KnownZero2.countTrailingOnes();
1658    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1659                               KnownZero2.countLeadingOnes(),
1660                               BitWidth) - BitWidth;
1661
1662    TrailZ = std::min(TrailZ, BitWidth);
1663    LeadZ = std::min(LeadZ, BitWidth);
1664    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1665                APInt::getHighBitsSet(BitWidth, LeadZ);
1666    KnownZero &= Mask;
1667    return;
1668  }
1669  case ISD::UDIV: {
1670    // For the purposes of computing leading zeros we can conservatively
1671    // treat a udiv as a logical right shift by the power of 2 known to
1672    // be less than the denominator.
1673    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1674    ComputeMaskedBits(Op.getOperand(0),
1675                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1676    unsigned LeadZ = KnownZero2.countLeadingOnes();
1677
1678    KnownOne2.clearAllBits();
1679    KnownZero2.clearAllBits();
1680    ComputeMaskedBits(Op.getOperand(1),
1681                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1682    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1683    if (RHSUnknownLeadingOnes != BitWidth)
1684      LeadZ = std::min(BitWidth,
1685                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1686
1687    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1688    return;
1689  }
1690  case ISD::SELECT:
1691    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1692    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1693    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1695
1696    // Only known if known in both the LHS and RHS.
1697    KnownOne &= KnownOne2;
1698    KnownZero &= KnownZero2;
1699    return;
1700  case ISD::SELECT_CC:
1701    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1702    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1703    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1705
1706    // Only known if known in both the LHS and RHS.
1707    KnownOne &= KnownOne2;
1708    KnownZero &= KnownZero2;
1709    return;
1710  case ISD::SADDO:
1711  case ISD::UADDO:
1712  case ISD::SSUBO:
1713  case ISD::USUBO:
1714  case ISD::SMULO:
1715  case ISD::UMULO:
1716    if (Op.getResNo() != 1)
1717      return;
1718    // The boolean result conforms to getBooleanContents.  Fall through.
1719  case ISD::SETCC:
1720    // If we know the result of a setcc has the top bits zero, use this info.
1721    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1722        BitWidth > 1)
1723      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1724    return;
1725  case ISD::SHL:
1726    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1727    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1728      unsigned ShAmt = SA->getZExtValue();
1729
1730      // If the shift count is an invalid immediate, don't do anything.
1731      if (ShAmt >= BitWidth)
1732        return;
1733
1734      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1735                        KnownZero, KnownOne, Depth+1);
1736      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737      KnownZero <<= ShAmt;
1738      KnownOne  <<= ShAmt;
1739      // low bits known zero.
1740      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1741    }
1742    return;
1743  case ISD::SRL:
1744    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1745    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1746      unsigned ShAmt = SA->getZExtValue();
1747
1748      // If the shift count is an invalid immediate, don't do anything.
1749      if (ShAmt >= BitWidth)
1750        return;
1751
1752      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1753                        KnownZero, KnownOne, Depth+1);
1754      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1755      KnownZero = KnownZero.lshr(ShAmt);
1756      KnownOne  = KnownOne.lshr(ShAmt);
1757
1758      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1759      KnownZero |= HighBits;  // High bits known zero.
1760    }
1761    return;
1762  case ISD::SRA:
1763    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1764      unsigned ShAmt = SA->getZExtValue();
1765
1766      // If the shift count is an invalid immediate, don't do anything.
1767      if (ShAmt >= BitWidth)
1768        return;
1769
1770      APInt InDemandedMask = (Mask << ShAmt);
1771      // If any of the demanded bits are produced by the sign extension, we also
1772      // demand the input sign bit.
1773      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1774      if (HighBits.getBoolValue())
1775        InDemandedMask |= APInt::getSignBit(BitWidth);
1776
1777      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1778                        Depth+1);
1779      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1780      KnownZero = KnownZero.lshr(ShAmt);
1781      KnownOne  = KnownOne.lshr(ShAmt);
1782
1783      // Handle the sign bits.
1784      APInt SignBit = APInt::getSignBit(BitWidth);
1785      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1786
1787      if (KnownZero.intersects(SignBit)) {
1788        KnownZero |= HighBits;  // New bits are known zero.
1789      } else if (KnownOne.intersects(SignBit)) {
1790        KnownOne  |= HighBits;  // New bits are known one.
1791      }
1792    }
1793    return;
1794  case ISD::SIGN_EXTEND_INREG: {
1795    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1796    unsigned EBits = EVT.getScalarType().getSizeInBits();
1797
1798    // Sign extension.  Compute the demanded bits in the result that are not
1799    // present in the input.
1800    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1801
1802    APInt InSignBit = APInt::getSignBit(EBits);
1803    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1804
1805    // If the sign extended bits are demanded, we know that the sign
1806    // bit is demanded.
1807    InSignBit = InSignBit.zext(BitWidth);
1808    if (NewBits.getBoolValue())
1809      InputDemandedBits |= InSignBit;
1810
1811    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1812                      KnownZero, KnownOne, Depth+1);
1813    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1814
1815    // If the sign bit of the input is known set or clear, then we know the
1816    // top bits of the result.
1817    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1818      KnownZero |= NewBits;
1819      KnownOne  &= ~NewBits;
1820    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1821      KnownOne  |= NewBits;
1822      KnownZero &= ~NewBits;
1823    } else {                              // Input sign bit unknown
1824      KnownZero &= ~NewBits;
1825      KnownOne  &= ~NewBits;
1826    }
1827    return;
1828  }
1829  case ISD::CTTZ:
1830  case ISD::CTLZ:
1831  case ISD::CTPOP: {
1832    unsigned LowBits = Log2_32(BitWidth)+1;
1833    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1834    KnownOne.clearAllBits();
1835    return;
1836  }
1837  case ISD::LOAD: {
1838    if (ISD::isZEXTLoad(Op.getNode())) {
1839      LoadSDNode *LD = cast<LoadSDNode>(Op);
1840      EVT VT = LD->getMemoryVT();
1841      unsigned MemBits = VT.getScalarType().getSizeInBits();
1842      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1843    }
1844    return;
1845  }
1846  case ISD::ZERO_EXTEND: {
1847    EVT InVT = Op.getOperand(0).getValueType();
1848    unsigned InBits = InVT.getScalarType().getSizeInBits();
1849    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1850    APInt InMask    = Mask.trunc(InBits);
1851    KnownZero = KnownZero.trunc(InBits);
1852    KnownOne = KnownOne.trunc(InBits);
1853    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1854    KnownZero = KnownZero.zext(BitWidth);
1855    KnownOne = KnownOne.zext(BitWidth);
1856    KnownZero |= NewBits;
1857    return;
1858  }
1859  case ISD::SIGN_EXTEND: {
1860    EVT InVT = Op.getOperand(0).getValueType();
1861    unsigned InBits = InVT.getScalarType().getSizeInBits();
1862    APInt InSignBit = APInt::getSignBit(InBits);
1863    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1864    APInt InMask = Mask.trunc(InBits);
1865
1866    // If any of the sign extended bits are demanded, we know that the sign
1867    // bit is demanded. Temporarily set this bit in the mask for our callee.
1868    if (NewBits.getBoolValue())
1869      InMask |= InSignBit;
1870
1871    KnownZero = KnownZero.trunc(InBits);
1872    KnownOne = KnownOne.trunc(InBits);
1873    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874
1875    // Note if the sign bit is known to be zero or one.
1876    bool SignBitKnownZero = KnownZero.isNegative();
1877    bool SignBitKnownOne  = KnownOne.isNegative();
1878    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1879           "Sign bit can't be known to be both zero and one!");
1880
1881    // If the sign bit wasn't actually demanded by our caller, we don't
1882    // want it set in the KnownZero and KnownOne result values. Reset the
1883    // mask and reapply it to the result values.
1884    InMask = Mask.trunc(InBits);
1885    KnownZero &= InMask;
1886    KnownOne  &= InMask;
1887
1888    KnownZero = KnownZero.zext(BitWidth);
1889    KnownOne = KnownOne.zext(BitWidth);
1890
1891    // If the sign bit is known zero or one, the top bits match.
1892    if (SignBitKnownZero)
1893      KnownZero |= NewBits;
1894    else if (SignBitKnownOne)
1895      KnownOne  |= NewBits;
1896    return;
1897  }
1898  case ISD::ANY_EXTEND: {
1899    EVT InVT = Op.getOperand(0).getValueType();
1900    unsigned InBits = InVT.getScalarType().getSizeInBits();
1901    APInt InMask = Mask.trunc(InBits);
1902    KnownZero = KnownZero.trunc(InBits);
1903    KnownOne = KnownOne.trunc(InBits);
1904    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1905    KnownZero = KnownZero.zext(BitWidth);
1906    KnownOne = KnownOne.zext(BitWidth);
1907    return;
1908  }
1909  case ISD::TRUNCATE: {
1910    EVT InVT = Op.getOperand(0).getValueType();
1911    unsigned InBits = InVT.getScalarType().getSizeInBits();
1912    APInt InMask = Mask.zext(InBits);
1913    KnownZero = KnownZero.zext(InBits);
1914    KnownOne = KnownOne.zext(InBits);
1915    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1916    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1917    KnownZero = KnownZero.trunc(BitWidth);
1918    KnownOne = KnownOne.trunc(BitWidth);
1919    break;
1920  }
1921  case ISD::AssertZext: {
1922    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1923    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1924    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1925                      KnownOne, Depth+1);
1926    KnownZero |= (~InMask) & Mask;
1927    return;
1928  }
1929  case ISD::FGETSIGN:
1930    // All bits are zero except the low bit.
1931    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1932    return;
1933
1934  case ISD::SUB: {
1935    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1936      // We know that the top bits of C-X are clear if X contains less bits
1937      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1938      // positive if we can prove that X is >= 0 and < 16.
1939      if (CLHS->getAPIntValue().isNonNegative()) {
1940        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1941        // NLZ can't be BitWidth with no sign bit
1942        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1943        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1944                          Depth+1);
1945
1946        // If all of the MaskV bits are known to be zero, then we know the
1947        // output top bits are zero, because we now know that the output is
1948        // from [0-C].
1949        if ((KnownZero2 & MaskV) == MaskV) {
1950          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1951          // Top bits known zero.
1952          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1953        }
1954      }
1955    }
1956  }
1957  // fall through
1958  case ISD::ADD:
1959  case ISD::ADDE: {
1960    // Output known-0 bits are known if clear or set in both the low clear bits
1961    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1962    // low 3 bits clear.
1963    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1964                                       BitWidth - Mask.countLeadingZeros());
1965    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1966    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1967    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1968
1969    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1970    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1971    KnownZeroOut = std::min(KnownZeroOut,
1972                            KnownZero2.countTrailingOnes());
1973
1974    if (Op.getOpcode() == ISD::ADD) {
1975      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1976      return;
1977    }
1978
1979    // With ADDE, a carry bit may be added in, so we can only use this
1980    // information if we know (at least) that the low two bits are clear.  We
1981    // then return to the caller that the low bit is unknown but that other bits
1982    // are known zero.
1983    if (KnownZeroOut >= 2) // ADDE
1984      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
1985    return;
1986  }
1987  case ISD::SREM:
1988    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1989      const APInt &RA = Rem->getAPIntValue().abs();
1990      if (RA.isPowerOf2()) {
1991        APInt LowBits = RA - 1;
1992        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1993        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1994
1995        // The low bits of the first operand are unchanged by the srem.
1996        KnownZero = KnownZero2 & LowBits;
1997        KnownOne = KnownOne2 & LowBits;
1998
1999        // If the first operand is non-negative or has all low bits zero, then
2000        // the upper bits are all zero.
2001        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2002          KnownZero |= ~LowBits;
2003
2004        // If the first operand is negative and not all low bits are zero, then
2005        // the upper bits are all one.
2006        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2007          KnownOne |= ~LowBits;
2008
2009        KnownZero &= Mask;
2010        KnownOne &= Mask;
2011
2012        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2013      }
2014    }
2015    return;
2016  case ISD::UREM: {
2017    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2018      const APInt &RA = Rem->getAPIntValue();
2019      if (RA.isPowerOf2()) {
2020        APInt LowBits = (RA - 1);
2021        APInt Mask2 = LowBits & Mask;
2022        KnownZero |= ~LowBits & Mask;
2023        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2024        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2025        break;
2026      }
2027    }
2028
2029    // Since the result is less than or equal to either operand, any leading
2030    // zero bits in either operand must also exist in the result.
2031    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2032    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2033                      Depth+1);
2034    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2035                      Depth+1);
2036
2037    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2038                                KnownZero2.countLeadingOnes());
2039    KnownOne.clearAllBits();
2040    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2041    return;
2042  }
2043  case ISD::FrameIndex:
2044  case ISD::TargetFrameIndex:
2045    if (unsigned Align = InferPtrAlignment(Op)) {
2046      // The low bits are known zero if the pointer is aligned.
2047      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2048      return;
2049    }
2050    break;
2051
2052  default:
2053    if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2054      break;
2055    // Fallthrough
2056  case ISD::INTRINSIC_WO_CHAIN:
2057  case ISD::INTRINSIC_W_CHAIN:
2058  case ISD::INTRINSIC_VOID:
2059    // Allow the target to implement this method for its nodes.
2060    TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2061                                       Depth);
2062    return;
2063  }
2064}
2065
2066/// ComputeNumSignBits - Return the number of times the sign bit of the
2067/// register is replicated into the other bits.  We know that at least 1 bit
2068/// is always equal to the sign bit (itself), but other cases can give us
2069/// information.  For example, immediately after an "SRA X, 2", we know that
2070/// the top 3 bits are all equal to each other, so we return 3.
2071unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2072  EVT VT = Op.getValueType();
2073  assert(VT.isInteger() && "Invalid VT!");
2074  unsigned VTBits = VT.getScalarType().getSizeInBits();
2075  unsigned Tmp, Tmp2;
2076  unsigned FirstAnswer = 1;
2077
2078  if (Depth == 6)
2079    return 1;  // Limit search depth.
2080
2081  switch (Op.getOpcode()) {
2082  default: break;
2083  case ISD::AssertSext:
2084    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2085    return VTBits-Tmp+1;
2086  case ISD::AssertZext:
2087    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2088    return VTBits-Tmp;
2089
2090  case ISD::Constant: {
2091    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2092    return Val.getNumSignBits();
2093  }
2094
2095  case ISD::SIGN_EXTEND:
2096    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2097    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2098
2099  case ISD::SIGN_EXTEND_INREG:
2100    // Max of the input and what this extends.
2101    Tmp =
2102      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2103    Tmp = VTBits-Tmp+1;
2104
2105    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2106    return std::max(Tmp, Tmp2);
2107
2108  case ISD::SRA:
2109    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2110    // SRA X, C   -> adds C sign bits.
2111    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2112      Tmp += C->getZExtValue();
2113      if (Tmp > VTBits) Tmp = VTBits;
2114    }
2115    return Tmp;
2116  case ISD::SHL:
2117    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2118      // shl destroys sign bits.
2119      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2120      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2121          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2122      return Tmp - C->getZExtValue();
2123    }
2124    break;
2125  case ISD::AND:
2126  case ISD::OR:
2127  case ISD::XOR:    // NOT is handled here.
2128    // Logical binary ops preserve the number of sign bits at the worst.
2129    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2130    if (Tmp != 1) {
2131      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2132      FirstAnswer = std::min(Tmp, Tmp2);
2133      // We computed what we know about the sign bits as our first
2134      // answer. Now proceed to the generic code that uses
2135      // ComputeMaskedBits, and pick whichever answer is better.
2136    }
2137    break;
2138
2139  case ISD::SELECT:
2140    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2141    if (Tmp == 1) return 1;  // Early out.
2142    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2143    return std::min(Tmp, Tmp2);
2144
2145  case ISD::SADDO:
2146  case ISD::UADDO:
2147  case ISD::SSUBO:
2148  case ISD::USUBO:
2149  case ISD::SMULO:
2150  case ISD::UMULO:
2151    if (Op.getResNo() != 1)
2152      break;
2153    // The boolean result conforms to getBooleanContents.  Fall through.
2154  case ISD::SETCC:
2155    // If setcc returns 0/-1, all bits are sign bits.
2156    if (TLI.getBooleanContents() ==
2157        TargetLowering::ZeroOrNegativeOneBooleanContent)
2158      return VTBits;
2159    break;
2160  case ISD::ROTL:
2161  case ISD::ROTR:
2162    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2163      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2164
2165      // Handle rotate right by N like a rotate left by 32-N.
2166      if (Op.getOpcode() == ISD::ROTR)
2167        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2168
2169      // If we aren't rotating out all of the known-in sign bits, return the
2170      // number that are left.  This handles rotl(sext(x), 1) for example.
2171      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2172      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2173    }
2174    break;
2175  case ISD::ADD:
2176    // Add can have at most one carry bit.  Thus we know that the output
2177    // is, at worst, one more bit than the inputs.
2178    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2179    if (Tmp == 1) return 1;  // Early out.
2180
2181    // Special case decrementing a value (ADD X, -1):
2182    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2183      if (CRHS->isAllOnesValue()) {
2184        APInt KnownZero, KnownOne;
2185        APInt Mask = APInt::getAllOnesValue(VTBits);
2186        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2187
2188        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2189        // sign bits set.
2190        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2191          return VTBits;
2192
2193        // If we are subtracting one from a positive number, there is no carry
2194        // out of the result.
2195        if (KnownZero.isNegative())
2196          return Tmp;
2197      }
2198
2199    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2200    if (Tmp2 == 1) return 1;
2201      return std::min(Tmp, Tmp2)-1;
2202    break;
2203
2204  case ISD::SUB:
2205    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2206    if (Tmp2 == 1) return 1;
2207
2208    // Handle NEG.
2209    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2210      if (CLHS->isNullValue()) {
2211        APInt KnownZero, KnownOne;
2212        APInt Mask = APInt::getAllOnesValue(VTBits);
2213        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2214        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2215        // sign bits set.
2216        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2217          return VTBits;
2218
2219        // If the input is known to be positive (the sign bit is known clear),
2220        // the output of the NEG has the same number of sign bits as the input.
2221        if (KnownZero.isNegative())
2222          return Tmp2;
2223
2224        // Otherwise, we treat this like a SUB.
2225      }
2226
2227    // Sub can have at most one carry bit.  Thus we know that the output
2228    // is, at worst, one more bit than the inputs.
2229    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2230    if (Tmp == 1) return 1;  // Early out.
2231      return std::min(Tmp, Tmp2)-1;
2232    break;
2233  case ISD::TRUNCATE:
2234    // FIXME: it's tricky to do anything useful for this, but it is an important
2235    // case for targets like X86.
2236    break;
2237  }
2238
2239  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2240  if (Op.getOpcode() == ISD::LOAD) {
2241    LoadSDNode *LD = cast<LoadSDNode>(Op);
2242    unsigned ExtType = LD->getExtensionType();
2243    switch (ExtType) {
2244    default: break;
2245    case ISD::SEXTLOAD:    // '17' bits known
2246      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2247      return VTBits-Tmp+1;
2248    case ISD::ZEXTLOAD:    // '16' bits known
2249      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2250      return VTBits-Tmp;
2251    }
2252  }
2253
2254  // Allow the target to implement this method for its nodes.
2255  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2256      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2257      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2258      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2259    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2260    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2261  }
2262
2263  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2264  // use this information.
2265  APInt KnownZero, KnownOne;
2266  APInt Mask = APInt::getAllOnesValue(VTBits);
2267  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2268
2269  if (KnownZero.isNegative()) {        // sign bit is 0
2270    Mask = KnownZero;
2271  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2272    Mask = KnownOne;
2273  } else {
2274    // Nothing known.
2275    return FirstAnswer;
2276  }
2277
2278  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2279  // the number of identical bits in the top of the input value.
2280  Mask = ~Mask;
2281  Mask <<= Mask.getBitWidth()-VTBits;
2282  // Return # leading zeros.  We use 'min' here in case Val was zero before
2283  // shifting.  We don't want to return '64' as for an i32 "0".
2284  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2285}
2286
2287/// isBaseWithConstantOffset - Return true if the specified operand is an
2288/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2289/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2290/// semantics as an ADD.  This handles the equivalence:
2291///     X|Cst == X+Cst iff X&Cst = 0.
2292bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2293  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2294      !isa<ConstantSDNode>(Op.getOperand(1)))
2295    return false;
2296
2297  if (Op.getOpcode() == ISD::OR &&
2298      !MaskedValueIsZero(Op.getOperand(0),
2299                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2300    return false;
2301
2302  return true;
2303}
2304
2305
2306bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2307  // If we're told that NaNs won't happen, assume they won't.
2308  if (NoNaNsFPMath)
2309    return true;
2310
2311  // If the value is a constant, we can obviously see if it is a NaN or not.
2312  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2313    return !C->getValueAPF().isNaN();
2314
2315  // TODO: Recognize more cases here.
2316
2317  return false;
2318}
2319
2320bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2321  // If the value is a constant, we can obviously see if it is a zero or not.
2322  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2323    return !C->isZero();
2324
2325  // TODO: Recognize more cases here.
2326  switch (Op.getOpcode()) {
2327  default: break;
2328  case ISD::OR:
2329    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2330      return !C->isNullValue();
2331    break;
2332  }
2333
2334  return false;
2335}
2336
2337bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2338  // Check the obvious case.
2339  if (A == B) return true;
2340
2341  // For for negative and positive zero.
2342  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2343    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2344      if (CA->isZero() && CB->isZero()) return true;
2345
2346  // Otherwise they may not be equal.
2347  return false;
2348}
2349
2350/// getNode - Gets or creates the specified node.
2351///
2352SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2353  FoldingSetNodeID ID;
2354  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2355  void *IP = 0;
2356  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2357    return SDValue(E, 0);
2358
2359  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2360  CSEMap.InsertNode(N, IP);
2361
2362  AllNodes.push_back(N);
2363#ifndef NDEBUG
2364  VerifySDNode(N);
2365#endif
2366  return SDValue(N, 0);
2367}
2368
2369SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2370                              EVT VT, SDValue Operand) {
2371  // Constant fold unary operations with an integer constant operand.
2372  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2373    const APInt &Val = C->getAPIntValue();
2374    switch (Opcode) {
2375    default: break;
2376    case ISD::SIGN_EXTEND:
2377      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2378    case ISD::ANY_EXTEND:
2379    case ISD::ZERO_EXTEND:
2380    case ISD::TRUNCATE:
2381      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2382    case ISD::UINT_TO_FP:
2383    case ISD::SINT_TO_FP: {
2384      // No compile time operations on ppcf128.
2385      if (VT == MVT::ppcf128) break;
2386      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2387      (void)apf.convertFromAPInt(Val,
2388                                 Opcode==ISD::SINT_TO_FP,
2389                                 APFloat::rmNearestTiesToEven);
2390      return getConstantFP(apf, VT);
2391    }
2392    case ISD::BITCAST:
2393      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2394        return getConstantFP(Val.bitsToFloat(), VT);
2395      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2396        return getConstantFP(Val.bitsToDouble(), VT);
2397      break;
2398    case ISD::BSWAP:
2399      return getConstant(Val.byteSwap(), VT);
2400    case ISD::CTPOP:
2401      return getConstant(Val.countPopulation(), VT);
2402    case ISD::CTLZ:
2403      return getConstant(Val.countLeadingZeros(), VT);
2404    case ISD::CTTZ:
2405      return getConstant(Val.countTrailingZeros(), VT);
2406    }
2407  }
2408
2409  // Constant fold unary operations with a floating point constant operand.
2410  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2411    APFloat V = C->getValueAPF();    // make copy
2412    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2413      switch (Opcode) {
2414      case ISD::FNEG:
2415        V.changeSign();
2416        return getConstantFP(V, VT);
2417      case ISD::FABS:
2418        V.clearSign();
2419        return getConstantFP(V, VT);
2420      case ISD::FP_ROUND:
2421      case ISD::FP_EXTEND: {
2422        bool ignored;
2423        // This can return overflow, underflow, or inexact; we don't care.
2424        // FIXME need to be more flexible about rounding mode.
2425        (void)V.convert(*EVTToAPFloatSemantics(VT),
2426                        APFloat::rmNearestTiesToEven, &ignored);
2427        return getConstantFP(V, VT);
2428      }
2429      case ISD::FP_TO_SINT:
2430      case ISD::FP_TO_UINT: {
2431        integerPart x[2];
2432        bool ignored;
2433        assert(integerPartWidth >= 64);
2434        // FIXME need to be more flexible about rounding mode.
2435        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2436                              Opcode==ISD::FP_TO_SINT,
2437                              APFloat::rmTowardZero, &ignored);
2438        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2439          break;
2440        APInt api(VT.getSizeInBits(), x);
2441        return getConstant(api, VT);
2442      }
2443      case ISD::BITCAST:
2444        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2445          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2446        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2447          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2448        break;
2449      }
2450    }
2451  }
2452
2453  unsigned OpOpcode = Operand.getNode()->getOpcode();
2454  switch (Opcode) {
2455  case ISD::TokenFactor:
2456  case ISD::MERGE_VALUES:
2457  case ISD::CONCAT_VECTORS:
2458    return Operand;         // Factor, merge or concat of one node?  No need.
2459  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2460  case ISD::FP_EXTEND:
2461    assert(VT.isFloatingPoint() &&
2462           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2463    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2464    assert((!VT.isVector() ||
2465            VT.getVectorNumElements() ==
2466            Operand.getValueType().getVectorNumElements()) &&
2467           "Vector element count mismatch!");
2468    if (Operand.getOpcode() == ISD::UNDEF)
2469      return getUNDEF(VT);
2470    break;
2471  case ISD::SIGN_EXTEND:
2472    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2473           "Invalid SIGN_EXTEND!");
2474    if (Operand.getValueType() == VT) return Operand;   // noop extension
2475    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2476           "Invalid sext node, dst < src!");
2477    assert((!VT.isVector() ||
2478            VT.getVectorNumElements() ==
2479            Operand.getValueType().getVectorNumElements()) &&
2480           "Vector element count mismatch!");
2481    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2482      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2483    else if (OpOpcode == ISD::UNDEF)
2484      // sext(undef) = 0, because the top bits will all be the same.
2485      return getConstant(0, VT);
2486    break;
2487  case ISD::ZERO_EXTEND:
2488    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2489           "Invalid ZERO_EXTEND!");
2490    if (Operand.getValueType() == VT) return Operand;   // noop extension
2491    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2492           "Invalid zext node, dst < src!");
2493    assert((!VT.isVector() ||
2494            VT.getVectorNumElements() ==
2495            Operand.getValueType().getVectorNumElements()) &&
2496           "Vector element count mismatch!");
2497    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2498      return getNode(ISD::ZERO_EXTEND, DL, VT,
2499                     Operand.getNode()->getOperand(0));
2500    else if (OpOpcode == ISD::UNDEF)
2501      // zext(undef) = 0, because the top bits will be zero.
2502      return getConstant(0, VT);
2503    break;
2504  case ISD::ANY_EXTEND:
2505    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2506           "Invalid ANY_EXTEND!");
2507    if (Operand.getValueType() == VT) return Operand;   // noop extension
2508    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2509           "Invalid anyext node, dst < src!");
2510    assert((!VT.isVector() ||
2511            VT.getVectorNumElements() ==
2512            Operand.getValueType().getVectorNumElements()) &&
2513           "Vector element count mismatch!");
2514
2515    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2516        OpOpcode == ISD::ANY_EXTEND)
2517      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2518      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2519    else if (OpOpcode == ISD::UNDEF)
2520      return getUNDEF(VT);
2521
2522    // (ext (trunx x)) -> x
2523    if (OpOpcode == ISD::TRUNCATE) {
2524      SDValue OpOp = Operand.getNode()->getOperand(0);
2525      if (OpOp.getValueType() == VT)
2526        return OpOp;
2527    }
2528    break;
2529  case ISD::TRUNCATE:
2530    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2531           "Invalid TRUNCATE!");
2532    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2533    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2534           "Invalid truncate node, src < dst!");
2535    assert((!VT.isVector() ||
2536            VT.getVectorNumElements() ==
2537            Operand.getValueType().getVectorNumElements()) &&
2538           "Vector element count mismatch!");
2539    if (OpOpcode == ISD::TRUNCATE)
2540      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2541    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2542             OpOpcode == ISD::ANY_EXTEND) {
2543      // If the source is smaller than the dest, we still need an extend.
2544      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2545            .bitsLT(VT.getScalarType()))
2546        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2547      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2548        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2549      else
2550        return Operand.getNode()->getOperand(0);
2551    }
2552    break;
2553  case ISD::BITCAST:
2554    // Basic sanity checking.
2555    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2556           && "Cannot BITCAST between types of different sizes!");
2557    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2558    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2559      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2560    if (OpOpcode == ISD::UNDEF)
2561      return getUNDEF(VT);
2562    break;
2563  case ISD::SCALAR_TO_VECTOR:
2564    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2565           (VT.getVectorElementType() == Operand.getValueType() ||
2566            (VT.getVectorElementType().isInteger() &&
2567             Operand.getValueType().isInteger() &&
2568             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2569           "Illegal SCALAR_TO_VECTOR node!");
2570    if (OpOpcode == ISD::UNDEF)
2571      return getUNDEF(VT);
2572    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2573    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2574        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2575        Operand.getConstantOperandVal(1) == 0 &&
2576        Operand.getOperand(0).getValueType() == VT)
2577      return Operand.getOperand(0);
2578    break;
2579  case ISD::FNEG:
2580    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2581    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2582      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2583                     Operand.getNode()->getOperand(0));
2584    if (OpOpcode == ISD::FNEG)  // --X -> X
2585      return Operand.getNode()->getOperand(0);
2586    break;
2587  case ISD::FABS:
2588    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2589      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2590    break;
2591  }
2592
2593  SDNode *N;
2594  SDVTList VTs = getVTList(VT);
2595  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2596    FoldingSetNodeID ID;
2597    SDValue Ops[1] = { Operand };
2598    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2599    void *IP = 0;
2600    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2601      return SDValue(E, 0);
2602
2603    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2604    CSEMap.InsertNode(N, IP);
2605  } else {
2606    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2607  }
2608
2609  AllNodes.push_back(N);
2610#ifndef NDEBUG
2611  VerifySDNode(N);
2612#endif
2613  return SDValue(N, 0);
2614}
2615
2616SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2617                                             EVT VT,
2618                                             ConstantSDNode *Cst1,
2619                                             ConstantSDNode *Cst2) {
2620  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2621
2622  switch (Opcode) {
2623  case ISD::ADD:  return getConstant(C1 + C2, VT);
2624  case ISD::SUB:  return getConstant(C1 - C2, VT);
2625  case ISD::MUL:  return getConstant(C1 * C2, VT);
2626  case ISD::UDIV:
2627    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2628    break;
2629  case ISD::UREM:
2630    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2631    break;
2632  case ISD::SDIV:
2633    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2634    break;
2635  case ISD::SREM:
2636    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2637    break;
2638  case ISD::AND:  return getConstant(C1 & C2, VT);
2639  case ISD::OR:   return getConstant(C1 | C2, VT);
2640  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2641  case ISD::SHL:  return getConstant(C1 << C2, VT);
2642  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2643  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2644  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2645  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2646  default: break;
2647  }
2648
2649  return SDValue();
2650}
2651
2652SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2653                              SDValue N1, SDValue N2) {
2654  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2655  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2656  switch (Opcode) {
2657  default: break;
2658  case ISD::TokenFactor:
2659    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2660           N2.getValueType() == MVT::Other && "Invalid token factor!");
2661    // Fold trivial token factors.
2662    if (N1.getOpcode() == ISD::EntryToken) return N2;
2663    if (N2.getOpcode() == ISD::EntryToken) return N1;
2664    if (N1 == N2) return N1;
2665    break;
2666  case ISD::CONCAT_VECTORS:
2667    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2668    // one big BUILD_VECTOR.
2669    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2670        N2.getOpcode() == ISD::BUILD_VECTOR) {
2671      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2672                                    N1.getNode()->op_end());
2673      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2674      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2675    }
2676    break;
2677  case ISD::AND:
2678    assert(VT.isInteger() && "This operator does not apply to FP types!");
2679    assert(N1.getValueType() == N2.getValueType() &&
2680           N1.getValueType() == VT && "Binary operator types must match!");
2681    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2682    // worth handling here.
2683    if (N2C && N2C->isNullValue())
2684      return N2;
2685    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2686      return N1;
2687    break;
2688  case ISD::OR:
2689  case ISD::XOR:
2690  case ISD::ADD:
2691  case ISD::SUB:
2692    assert(VT.isInteger() && "This operator does not apply to FP types!");
2693    assert(N1.getValueType() == N2.getValueType() &&
2694           N1.getValueType() == VT && "Binary operator types must match!");
2695    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2696    // it's worth handling here.
2697    if (N2C && N2C->isNullValue())
2698      return N1;
2699    break;
2700  case ISD::UDIV:
2701  case ISD::UREM:
2702  case ISD::MULHU:
2703  case ISD::MULHS:
2704  case ISD::MUL:
2705  case ISD::SDIV:
2706  case ISD::SREM:
2707    assert(VT.isInteger() && "This operator does not apply to FP types!");
2708    assert(N1.getValueType() == N2.getValueType() &&
2709           N1.getValueType() == VT && "Binary operator types must match!");
2710    break;
2711  case ISD::FADD:
2712  case ISD::FSUB:
2713  case ISD::FMUL:
2714  case ISD::FDIV:
2715  case ISD::FREM:
2716    if (UnsafeFPMath) {
2717      if (Opcode == ISD::FADD) {
2718        // 0+x --> x
2719        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2720          if (CFP->getValueAPF().isZero())
2721            return N2;
2722        // x+0 --> x
2723        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2724          if (CFP->getValueAPF().isZero())
2725            return N1;
2726      } else if (Opcode == ISD::FSUB) {
2727        // x-0 --> x
2728        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2729          if (CFP->getValueAPF().isZero())
2730            return N1;
2731      }
2732    }
2733    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2734    assert(N1.getValueType() == N2.getValueType() &&
2735           N1.getValueType() == VT && "Binary operator types must match!");
2736    break;
2737  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2738    assert(N1.getValueType() == VT &&
2739           N1.getValueType().isFloatingPoint() &&
2740           N2.getValueType().isFloatingPoint() &&
2741           "Invalid FCOPYSIGN!");
2742    break;
2743  case ISD::SHL:
2744  case ISD::SRA:
2745  case ISD::SRL:
2746  case ISD::ROTL:
2747  case ISD::ROTR:
2748    assert(VT == N1.getValueType() &&
2749           "Shift operators return type must be the same as their first arg");
2750    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2751           "Shifts only work on integers");
2752    // Verify that the shift amount VT is bit enough to hold valid shift
2753    // amounts.  This catches things like trying to shift an i1024 value by an
2754    // i8, which is easy to fall into in generic code that uses
2755    // TLI.getShiftAmount().
2756    assert(N2.getValueType().getSizeInBits() >=
2757                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2758           "Invalid use of small shift amount with oversized value!");
2759
2760    // Always fold shifts of i1 values so the code generator doesn't need to
2761    // handle them.  Since we know the size of the shift has to be less than the
2762    // size of the value, the shift/rotate count is guaranteed to be zero.
2763    if (VT == MVT::i1)
2764      return N1;
2765    if (N2C && N2C->isNullValue())
2766      return N1;
2767    break;
2768  case ISD::FP_ROUND_INREG: {
2769    EVT EVT = cast<VTSDNode>(N2)->getVT();
2770    assert(VT == N1.getValueType() && "Not an inreg round!");
2771    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2772           "Cannot FP_ROUND_INREG integer types");
2773    assert(EVT.isVector() == VT.isVector() &&
2774           "FP_ROUND_INREG type should be vector iff the operand "
2775           "type is vector!");
2776    assert((!EVT.isVector() ||
2777            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2778           "Vector element counts must match in FP_ROUND_INREG");
2779    assert(EVT.bitsLE(VT) && "Not rounding down!");
2780    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2781    break;
2782  }
2783  case ISD::FP_ROUND:
2784    assert(VT.isFloatingPoint() &&
2785           N1.getValueType().isFloatingPoint() &&
2786           VT.bitsLE(N1.getValueType()) &&
2787           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2788    if (N1.getValueType() == VT) return N1;  // noop conversion.
2789    break;
2790  case ISD::AssertSext:
2791  case ISD::AssertZext: {
2792    EVT EVT = cast<VTSDNode>(N2)->getVT();
2793    assert(VT == N1.getValueType() && "Not an inreg extend!");
2794    assert(VT.isInteger() && EVT.isInteger() &&
2795           "Cannot *_EXTEND_INREG FP types");
2796    assert(!EVT.isVector() &&
2797           "AssertSExt/AssertZExt type should be the vector element type "
2798           "rather than the vector type!");
2799    assert(EVT.bitsLE(VT) && "Not extending!");
2800    if (VT == EVT) return N1; // noop assertion.
2801    break;
2802  }
2803  case ISD::SIGN_EXTEND_INREG: {
2804    EVT EVT = cast<VTSDNode>(N2)->getVT();
2805    assert(VT == N1.getValueType() && "Not an inreg extend!");
2806    assert(VT.isInteger() && EVT.isInteger() &&
2807           "Cannot *_EXTEND_INREG FP types");
2808    assert(EVT.isVector() == VT.isVector() &&
2809           "SIGN_EXTEND_INREG type should be vector iff the operand "
2810           "type is vector!");
2811    assert((!EVT.isVector() ||
2812            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2813           "Vector element counts must match in SIGN_EXTEND_INREG");
2814    assert(EVT.bitsLE(VT) && "Not extending!");
2815    if (EVT == VT) return N1;  // Not actually extending
2816
2817    if (N1C) {
2818      APInt Val = N1C->getAPIntValue();
2819      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2820      Val <<= Val.getBitWidth()-FromBits;
2821      Val = Val.ashr(Val.getBitWidth()-FromBits);
2822      return getConstant(Val, VT);
2823    }
2824    break;
2825  }
2826  case ISD::EXTRACT_VECTOR_ELT:
2827    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2828    if (N1.getOpcode() == ISD::UNDEF)
2829      return getUNDEF(VT);
2830
2831    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2832    // expanding copies of large vectors from registers.
2833    if (N2C &&
2834        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2835        N1.getNumOperands() > 0) {
2836      unsigned Factor =
2837        N1.getOperand(0).getValueType().getVectorNumElements();
2838      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2839                     N1.getOperand(N2C->getZExtValue() / Factor),
2840                     getConstant(N2C->getZExtValue() % Factor,
2841                                 N2.getValueType()));
2842    }
2843
2844    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2845    // expanding large vector constants.
2846    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2847      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2848      EVT VEltTy = N1.getValueType().getVectorElementType();
2849      if (Elt.getValueType() != VEltTy) {
2850        // If the vector element type is not legal, the BUILD_VECTOR operands
2851        // are promoted and implicitly truncated.  Make that explicit here.
2852        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2853      }
2854      if (VT != VEltTy) {
2855        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2856        // result is implicitly extended.
2857        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2858      }
2859      return Elt;
2860    }
2861
2862    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2863    // operations are lowered to scalars.
2864    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2865      // If the indices are the same, return the inserted element else
2866      // if the indices are known different, extract the element from
2867      // the original vector.
2868      SDValue N1Op2 = N1.getOperand(2);
2869      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2870
2871      if (N1Op2C && N2C) {
2872        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2873          if (VT == N1.getOperand(1).getValueType())
2874            return N1.getOperand(1);
2875          else
2876            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2877        }
2878
2879        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2880      }
2881    }
2882    break;
2883  case ISD::EXTRACT_ELEMENT:
2884    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2885    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2886           (N1.getValueType().isInteger() == VT.isInteger()) &&
2887           N1.getValueType() != VT &&
2888           "Wrong types for EXTRACT_ELEMENT!");
2889
2890    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2891    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2892    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2893    if (N1.getOpcode() == ISD::BUILD_PAIR)
2894      return N1.getOperand(N2C->getZExtValue());
2895
2896    // EXTRACT_ELEMENT of a constant int is also very common.
2897    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2898      unsigned ElementSize = VT.getSizeInBits();
2899      unsigned Shift = ElementSize * N2C->getZExtValue();
2900      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2901      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2902    }
2903    break;
2904  case ISD::EXTRACT_SUBVECTOR: {
2905    SDValue Index = N2;
2906    if (VT.isSimple() && N1.getValueType().isSimple()) {
2907      assert(VT.isVector() && N1.getValueType().isVector() &&
2908             "Extract subvector VTs must be a vectors!");
2909      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2910             "Extract subvector VTs must have the same element type!");
2911      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2912             "Extract subvector must be from larger vector to smaller vector!");
2913
2914      if (isa<ConstantSDNode>(Index.getNode())) {
2915        assert((VT.getVectorNumElements() +
2916                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2917                <= N1.getValueType().getVectorNumElements())
2918               && "Extract subvector overflow!");
2919      }
2920
2921      // Trivial extraction.
2922      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2923        return N1;
2924    }
2925    break;
2926  }
2927  }
2928
2929  if (N1C) {
2930    if (N2C) {
2931      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2932      if (SV.getNode()) return SV;
2933    } else {      // Cannonicalize constant to RHS if commutative
2934      if (isCommutativeBinOp(Opcode)) {
2935        std::swap(N1C, N2C);
2936        std::swap(N1, N2);
2937      }
2938    }
2939  }
2940
2941  // Constant fold FP operations.
2942  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2943  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2944  if (N1CFP) {
2945    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2946      // Cannonicalize constant to RHS if commutative
2947      std::swap(N1CFP, N2CFP);
2948      std::swap(N1, N2);
2949    } else if (N2CFP && VT != MVT::ppcf128) {
2950      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2951      APFloat::opStatus s;
2952      switch (Opcode) {
2953      case ISD::FADD:
2954        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2955        if (s != APFloat::opInvalidOp)
2956          return getConstantFP(V1, VT);
2957        break;
2958      case ISD::FSUB:
2959        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2960        if (s!=APFloat::opInvalidOp)
2961          return getConstantFP(V1, VT);
2962        break;
2963      case ISD::FMUL:
2964        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2965        if (s!=APFloat::opInvalidOp)
2966          return getConstantFP(V1, VT);
2967        break;
2968      case ISD::FDIV:
2969        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2970        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2971          return getConstantFP(V1, VT);
2972        break;
2973      case ISD::FREM :
2974        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2975        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2976          return getConstantFP(V1, VT);
2977        break;
2978      case ISD::FCOPYSIGN:
2979        V1.copySign(V2);
2980        return getConstantFP(V1, VT);
2981      default: break;
2982      }
2983    }
2984  }
2985
2986  // Canonicalize an UNDEF to the RHS, even over a constant.
2987  if (N1.getOpcode() == ISD::UNDEF) {
2988    if (isCommutativeBinOp(Opcode)) {
2989      std::swap(N1, N2);
2990    } else {
2991      switch (Opcode) {
2992      case ISD::FP_ROUND_INREG:
2993      case ISD::SIGN_EXTEND_INREG:
2994      case ISD::SUB:
2995      case ISD::FSUB:
2996      case ISD::FDIV:
2997      case ISD::FREM:
2998      case ISD::SRA:
2999        return N1;     // fold op(undef, arg2) -> undef
3000      case ISD::UDIV:
3001      case ISD::SDIV:
3002      case ISD::UREM:
3003      case ISD::SREM:
3004      case ISD::SRL:
3005      case ISD::SHL:
3006        if (!VT.isVector())
3007          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3008        // For vectors, we can't easily build an all zero vector, just return
3009        // the LHS.
3010        return N2;
3011      }
3012    }
3013  }
3014
3015  // Fold a bunch of operators when the RHS is undef.
3016  if (N2.getOpcode() == ISD::UNDEF) {
3017    switch (Opcode) {
3018    case ISD::XOR:
3019      if (N1.getOpcode() == ISD::UNDEF)
3020        // Handle undef ^ undef -> 0 special case. This is a common
3021        // idiom (misuse).
3022        return getConstant(0, VT);
3023      // fallthrough
3024    case ISD::ADD:
3025    case ISD::ADDC:
3026    case ISD::ADDE:
3027    case ISD::SUB:
3028    case ISD::UDIV:
3029    case ISD::SDIV:
3030    case ISD::UREM:
3031    case ISD::SREM:
3032      return N2;       // fold op(arg1, undef) -> undef
3033    case ISD::FADD:
3034    case ISD::FSUB:
3035    case ISD::FMUL:
3036    case ISD::FDIV:
3037    case ISD::FREM:
3038      if (UnsafeFPMath)
3039        return N2;
3040      break;
3041    case ISD::MUL:
3042    case ISD::AND:
3043    case ISD::SRL:
3044    case ISD::SHL:
3045      if (!VT.isVector())
3046        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3047      // For vectors, we can't easily build an all zero vector, just return
3048      // the LHS.
3049      return N1;
3050    case ISD::OR:
3051      if (!VT.isVector())
3052        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3053      // For vectors, we can't easily build an all one vector, just return
3054      // the LHS.
3055      return N1;
3056    case ISD::SRA:
3057      return N1;
3058    }
3059  }
3060
3061  // Memoize this node if possible.
3062  SDNode *N;
3063  SDVTList VTs = getVTList(VT);
3064  if (VT != MVT::Glue) {
3065    SDValue Ops[] = { N1, N2 };
3066    FoldingSetNodeID ID;
3067    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3068    void *IP = 0;
3069    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3070      return SDValue(E, 0);
3071
3072    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3073    CSEMap.InsertNode(N, IP);
3074  } else {
3075    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3076  }
3077
3078  AllNodes.push_back(N);
3079#ifndef NDEBUG
3080  VerifySDNode(N);
3081#endif
3082  return SDValue(N, 0);
3083}
3084
3085SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3086                              SDValue N1, SDValue N2, SDValue N3) {
3087  // Perform various simplifications.
3088  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3089  switch (Opcode) {
3090  case ISD::CONCAT_VECTORS:
3091    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3092    // one big BUILD_VECTOR.
3093    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3094        N2.getOpcode() == ISD::BUILD_VECTOR &&
3095        N3.getOpcode() == ISD::BUILD_VECTOR) {
3096      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3097                                    N1.getNode()->op_end());
3098      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3099      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3100      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3101    }
3102    break;
3103  case ISD::SETCC: {
3104    // Use FoldSetCC to simplify SETCC's.
3105    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3106    if (Simp.getNode()) return Simp;
3107    break;
3108  }
3109  case ISD::SELECT:
3110    if (N1C) {
3111     if (N1C->getZExtValue())
3112        return N2;             // select true, X, Y -> X
3113      else
3114        return N3;             // select false, X, Y -> Y
3115    }
3116
3117    if (N2 == N3) return N2;   // select C, X, X -> X
3118    break;
3119  case ISD::VECTOR_SHUFFLE:
3120    llvm_unreachable("should use getVectorShuffle constructor!");
3121    break;
3122  case ISD::INSERT_SUBVECTOR: {
3123    SDValue Index = N3;
3124    if (VT.isSimple() && N1.getValueType().isSimple()
3125        && N2.getValueType().isSimple()) {
3126      assert(VT.isVector() && N1.getValueType().isVector() &&
3127             N2.getValueType().isVector() &&
3128             "Insert subvector VTs must be a vectors");
3129      assert(VT == N1.getValueType() &&
3130             "Dest and insert subvector source types must match!");
3131      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3132             "Insert subvector must be from smaller vector to larger vector!");
3133      if (isa<ConstantSDNode>(Index.getNode())) {
3134        assert((N2.getValueType().getVectorNumElements() +
3135                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3136                <= VT.getVectorNumElements())
3137               && "Insert subvector overflow!");
3138      }
3139
3140      // Trivial insertion.
3141      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3142        return N2;
3143    }
3144    break;
3145  }
3146  case ISD::BITCAST:
3147    // Fold bit_convert nodes from a type to themselves.
3148    if (N1.getValueType() == VT)
3149      return N1;
3150    break;
3151  }
3152
3153  // Memoize node if it doesn't produce a flag.
3154  SDNode *N;
3155  SDVTList VTs = getVTList(VT);
3156  if (VT != MVT::Glue) {
3157    SDValue Ops[] = { N1, N2, N3 };
3158    FoldingSetNodeID ID;
3159    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3160    void *IP = 0;
3161    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3162      return SDValue(E, 0);
3163
3164    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3165    CSEMap.InsertNode(N, IP);
3166  } else {
3167    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3168  }
3169
3170  AllNodes.push_back(N);
3171#ifndef NDEBUG
3172  VerifySDNode(N);
3173#endif
3174  return SDValue(N, 0);
3175}
3176
3177SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3178                              SDValue N1, SDValue N2, SDValue N3,
3179                              SDValue N4) {
3180  SDValue Ops[] = { N1, N2, N3, N4 };
3181  return getNode(Opcode, DL, VT, Ops, 4);
3182}
3183
3184SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3185                              SDValue N1, SDValue N2, SDValue N3,
3186                              SDValue N4, SDValue N5) {
3187  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3188  return getNode(Opcode, DL, VT, Ops, 5);
3189}
3190
3191/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3192/// the incoming stack arguments to be loaded from the stack.
3193SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3194  SmallVector<SDValue, 8> ArgChains;
3195
3196  // Include the original chain at the beginning of the list. When this is
3197  // used by target LowerCall hooks, this helps legalize find the
3198  // CALLSEQ_BEGIN node.
3199  ArgChains.push_back(Chain);
3200
3201  // Add a chain value for each stack argument.
3202  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3203       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3204    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3205      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3206        if (FI->getIndex() < 0)
3207          ArgChains.push_back(SDValue(L, 1));
3208
3209  // Build a tokenfactor for all the chains.
3210  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3211                 &ArgChains[0], ArgChains.size());
3212}
3213
3214/// SplatByte - Distribute ByteVal over NumBits bits.
3215static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3216  APInt Val = APInt(NumBits, ByteVal);
3217  unsigned Shift = 8;
3218  for (unsigned i = NumBits; i > 8; i >>= 1) {
3219    Val = (Val << Shift) | Val;
3220    Shift <<= 1;
3221  }
3222  return Val;
3223}
3224
3225/// getMemsetValue - Vectorized representation of the memset value
3226/// operand.
3227static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3228                              DebugLoc dl) {
3229  assert(Value.getOpcode() != ISD::UNDEF);
3230
3231  unsigned NumBits = VT.getScalarType().getSizeInBits();
3232  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3233    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3234    if (VT.isInteger())
3235      return DAG.getConstant(Val, VT);
3236    return DAG.getConstantFP(APFloat(Val), VT);
3237  }
3238
3239  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3240  if (NumBits > 8) {
3241    // Use a multiplication with 0x010101... to extend the input to the
3242    // required length.
3243    APInt Magic = SplatByte(NumBits, 0x01);
3244    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3245  }
3246
3247  return Value;
3248}
3249
3250/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3251/// used when a memcpy is turned into a memset when the source is a constant
3252/// string ptr.
3253static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3254                                  const TargetLowering &TLI,
3255                                  std::string &Str, unsigned Offset) {
3256  // Handle vector with all elements zero.
3257  if (Str.empty()) {
3258    if (VT.isInteger())
3259      return DAG.getConstant(0, VT);
3260    else if (VT == MVT::f32 || VT == MVT::f64)
3261      return DAG.getConstantFP(0.0, VT);
3262    else if (VT.isVector()) {
3263      unsigned NumElts = VT.getVectorNumElements();
3264      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3265      return DAG.getNode(ISD::BITCAST, dl, VT,
3266                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3267                                                             EltVT, NumElts)));
3268    } else
3269      llvm_unreachable("Expected type!");
3270  }
3271
3272  assert(!VT.isVector() && "Can't handle vector type here!");
3273  unsigned NumBits = VT.getSizeInBits();
3274  unsigned MSB = NumBits / 8;
3275  uint64_t Val = 0;
3276  if (TLI.isLittleEndian())
3277    Offset = Offset + MSB - 1;
3278  for (unsigned i = 0; i != MSB; ++i) {
3279    Val = (Val << 8) | (unsigned char)Str[Offset];
3280    Offset += TLI.isLittleEndian() ? -1 : 1;
3281  }
3282  return DAG.getConstant(Val, VT);
3283}
3284
3285/// getMemBasePlusOffset - Returns base and offset node for the
3286///
3287static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3288                                      SelectionDAG &DAG) {
3289  EVT VT = Base.getValueType();
3290  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3291                     VT, Base, DAG.getConstant(Offset, VT));
3292}
3293
3294/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3295///
3296static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3297  unsigned SrcDelta = 0;
3298  GlobalAddressSDNode *G = NULL;
3299  if (Src.getOpcode() == ISD::GlobalAddress)
3300    G = cast<GlobalAddressSDNode>(Src);
3301  else if (Src.getOpcode() == ISD::ADD &&
3302           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3303           Src.getOperand(1).getOpcode() == ISD::Constant) {
3304    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3305    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3306  }
3307  if (!G)
3308    return false;
3309
3310  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3311  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3312    return true;
3313
3314  return false;
3315}
3316
3317/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3318/// to replace the memset / memcpy. Return true if the number of memory ops
3319/// is below the threshold. It returns the types of the sequence of
3320/// memory ops to perform memset / memcpy by reference.
3321static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3322                                     unsigned Limit, uint64_t Size,
3323                                     unsigned DstAlign, unsigned SrcAlign,
3324                                     bool NonScalarIntSafe,
3325                                     bool MemcpyStrSrc,
3326                                     SelectionDAG &DAG,
3327                                     const TargetLowering &TLI) {
3328  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3329         "Expecting memcpy / memset source to meet alignment requirement!");
3330  // If 'SrcAlign' is zero, that means the memory operation does not need to
3331  // load the value, i.e. memset or memcpy from constant string. Otherwise,
3332  // it's the inferred alignment of the source. 'DstAlign', on the other hand,
3333  // is the specified alignment of the memory operation. If it is zero, that
3334  // means it's possible to change the alignment of the destination.
3335  // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
3336  // not need to be loaded.
3337  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3338                                   NonScalarIntSafe, MemcpyStrSrc,
3339                                   DAG.getMachineFunction());
3340
3341  if (VT == MVT::Other) {
3342    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3343        TLI.allowsUnalignedMemoryAccesses(VT)) {
3344      VT = TLI.getPointerTy();
3345    } else {
3346      switch (DstAlign & 7) {
3347      case 0:  VT = MVT::i64; break;
3348      case 4:  VT = MVT::i32; break;
3349      case 2:  VT = MVT::i16; break;
3350      default: VT = MVT::i8;  break;
3351      }
3352    }
3353
3354    MVT LVT = MVT::i64;
3355    while (!TLI.isTypeLegal(LVT))
3356      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3357    assert(LVT.isInteger());
3358
3359    if (VT.bitsGT(LVT))
3360      VT = LVT;
3361  }
3362
3363  unsigned NumMemOps = 0;
3364  while (Size != 0) {
3365    unsigned VTSize = VT.getSizeInBits() / 8;
3366    while (VTSize > Size) {
3367      // For now, only use non-vector load / store's for the left-over pieces.
3368      if (VT.isVector() || VT.isFloatingPoint()) {
3369        VT = MVT::i64;
3370        while (!TLI.isTypeLegal(VT))
3371          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3372        VTSize = VT.getSizeInBits() / 8;
3373      } else {
3374        // This can result in a type that is not legal on the target, e.g.
3375        // 1 or 2 bytes on PPC.
3376        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3377        VTSize >>= 1;
3378      }
3379    }
3380
3381    if (++NumMemOps > Limit)
3382      return false;
3383    MemOps.push_back(VT);
3384    Size -= VTSize;
3385  }
3386
3387  return true;
3388}
3389
3390static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3391                                       SDValue Chain, SDValue Dst,
3392                                       SDValue Src, uint64_t Size,
3393                                       unsigned Align, bool isVol,
3394                                       bool AlwaysInline,
3395                                       MachinePointerInfo DstPtrInfo,
3396                                       MachinePointerInfo SrcPtrInfo) {
3397  // Turn a memcpy of undef to nop.
3398  if (Src.getOpcode() == ISD::UNDEF)
3399    return Chain;
3400
3401  // Expand memcpy to a series of load and store ops if the size operand falls
3402  // below a certain threshold.
3403  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3404  // rather than maybe a humongous number of loads and stores.
3405  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3406  std::vector<EVT> MemOps;
3407  bool DstAlignCanChange = false;
3408  MachineFunction &MF = DAG.getMachineFunction();
3409  MachineFrameInfo *MFI = MF.getFrameInfo();
3410  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3411  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3412  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3413    DstAlignCanChange = true;
3414  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3415  if (Align > SrcAlign)
3416    SrcAlign = Align;
3417  std::string Str;
3418  bool CopyFromStr = isMemSrcFromString(Src, Str);
3419  bool isZeroStr = CopyFromStr && Str.empty();
3420  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3421
3422  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3423                                (DstAlignCanChange ? 0 : Align),
3424                                (isZeroStr ? 0 : SrcAlign),
3425                                true, CopyFromStr, DAG, TLI))
3426    return SDValue();
3427
3428  if (DstAlignCanChange) {
3429    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3430    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3431    if (NewAlign > Align) {
3432      // Give the stack frame object a larger alignment if needed.
3433      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3434        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3435      Align = NewAlign;
3436    }
3437  }
3438
3439  SmallVector<SDValue, 8> OutChains;
3440  unsigned NumMemOps = MemOps.size();
3441  uint64_t SrcOff = 0, DstOff = 0;
3442  for (unsigned i = 0; i != NumMemOps; ++i) {
3443    EVT VT = MemOps[i];
3444    unsigned VTSize = VT.getSizeInBits() / 8;
3445    SDValue Value, Store;
3446
3447    if (CopyFromStr &&
3448        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3449      // It's unlikely a store of a vector immediate can be done in a single
3450      // instruction. It would require a load from a constantpool first.
3451      // We only handle zero vectors here.
3452      // FIXME: Handle other cases where store of vector immediate is done in
3453      // a single instruction.
3454      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3455      Store = DAG.getStore(Chain, dl, Value,
3456                           getMemBasePlusOffset(Dst, DstOff, DAG),
3457                           DstPtrInfo.getWithOffset(DstOff), isVol,
3458                           false, Align);
3459    } else {
3460      // The type might not be legal for the target.  This should only happen
3461      // if the type is smaller than a legal type, as on PPC, so the right
3462      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3463      // to Load/Store if NVT==VT.
3464      // FIXME does the case above also need this?
3465      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3466      assert(NVT.bitsGE(VT));
3467      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3468                             getMemBasePlusOffset(Src, SrcOff, DAG),
3469                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3470                             MinAlign(SrcAlign, SrcOff));
3471      Store = DAG.getTruncStore(Chain, dl, Value,
3472                                getMemBasePlusOffset(Dst, DstOff, DAG),
3473                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3474                                false, Align);
3475    }
3476    OutChains.push_back(Store);
3477    SrcOff += VTSize;
3478    DstOff += VTSize;
3479  }
3480
3481  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3482                     &OutChains[0], OutChains.size());
3483}
3484
3485static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3486                                        SDValue Chain, SDValue Dst,
3487                                        SDValue Src, uint64_t Size,
3488                                        unsigned Align,  bool isVol,
3489                                        bool AlwaysInline,
3490                                        MachinePointerInfo DstPtrInfo,
3491                                        MachinePointerInfo SrcPtrInfo) {
3492  // Turn a memmove of undef to nop.
3493  if (Src.getOpcode() == ISD::UNDEF)
3494    return Chain;
3495
3496  // Expand memmove to a series of load and store ops if the size operand falls
3497  // below a certain threshold.
3498  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3499  std::vector<EVT> MemOps;
3500  bool DstAlignCanChange = false;
3501  MachineFunction &MF = DAG.getMachineFunction();
3502  MachineFrameInfo *MFI = MF.getFrameInfo();
3503  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3504  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3505  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3506    DstAlignCanChange = true;
3507  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3508  if (Align > SrcAlign)
3509    SrcAlign = Align;
3510  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3511
3512  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3513                                (DstAlignCanChange ? 0 : Align),
3514                                SrcAlign, true, false, DAG, TLI))
3515    return SDValue();
3516
3517  if (DstAlignCanChange) {
3518    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3519    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3520    if (NewAlign > Align) {
3521      // Give the stack frame object a larger alignment if needed.
3522      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3523        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3524      Align = NewAlign;
3525    }
3526  }
3527
3528  uint64_t SrcOff = 0, DstOff = 0;
3529  SmallVector<SDValue, 8> LoadValues;
3530  SmallVector<SDValue, 8> LoadChains;
3531  SmallVector<SDValue, 8> OutChains;
3532  unsigned NumMemOps = MemOps.size();
3533  for (unsigned i = 0; i < NumMemOps; i++) {
3534    EVT VT = MemOps[i];
3535    unsigned VTSize = VT.getSizeInBits() / 8;
3536    SDValue Value, Store;
3537
3538    Value = DAG.getLoad(VT, dl, Chain,
3539                        getMemBasePlusOffset(Src, SrcOff, DAG),
3540                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3541                        false, SrcAlign);
3542    LoadValues.push_back(Value);
3543    LoadChains.push_back(Value.getValue(1));
3544    SrcOff += VTSize;
3545  }
3546  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3547                      &LoadChains[0], LoadChains.size());
3548  OutChains.clear();
3549  for (unsigned i = 0; i < NumMemOps; i++) {
3550    EVT VT = MemOps[i];
3551    unsigned VTSize = VT.getSizeInBits() / 8;
3552    SDValue Value, Store;
3553
3554    Store = DAG.getStore(Chain, dl, LoadValues[i],
3555                         getMemBasePlusOffset(Dst, DstOff, DAG),
3556                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3557    OutChains.push_back(Store);
3558    DstOff += VTSize;
3559  }
3560
3561  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3562                     &OutChains[0], OutChains.size());
3563}
3564
3565static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3566                               SDValue Chain, SDValue Dst,
3567                               SDValue Src, uint64_t Size,
3568                               unsigned Align, bool isVol,
3569                               MachinePointerInfo DstPtrInfo) {
3570  // Turn a memset of undef to nop.
3571  if (Src.getOpcode() == ISD::UNDEF)
3572    return Chain;
3573
3574  // Expand memset to a series of load/store ops if the size operand
3575  // falls below a certain threshold.
3576  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3577  std::vector<EVT> MemOps;
3578  bool DstAlignCanChange = false;
3579  MachineFunction &MF = DAG.getMachineFunction();
3580  MachineFrameInfo *MFI = MF.getFrameInfo();
3581  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3582  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3583  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3584    DstAlignCanChange = true;
3585  bool NonScalarIntSafe =
3586    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3587  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3588                                Size, (DstAlignCanChange ? 0 : Align), 0,
3589                                NonScalarIntSafe, false, DAG, TLI))
3590    return SDValue();
3591
3592  if (DstAlignCanChange) {
3593    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3594    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3595    if (NewAlign > Align) {
3596      // Give the stack frame object a larger alignment if needed.
3597      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3598        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3599      Align = NewAlign;
3600    }
3601  }
3602
3603  SmallVector<SDValue, 8> OutChains;
3604  uint64_t DstOff = 0;
3605  unsigned NumMemOps = MemOps.size();
3606
3607  // Find the largest store and generate the bit pattern for it.
3608  EVT LargestVT = MemOps[0];
3609  for (unsigned i = 1; i < NumMemOps; i++)
3610    if (MemOps[i].bitsGT(LargestVT))
3611      LargestVT = MemOps[i];
3612  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3613
3614  for (unsigned i = 0; i < NumMemOps; i++) {
3615    EVT VT = MemOps[i];
3616
3617    // If this store is smaller than the largest store see whether we can get
3618    // the smaller value for free with a truncate.
3619    SDValue Value = MemSetValue;
3620    if (VT.bitsLT(LargestVT)) {
3621      if (!LargestVT.isVector() && !VT.isVector() &&
3622          TLI.isTruncateFree(LargestVT, VT))
3623        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3624      else
3625        Value = getMemsetValue(Src, VT, DAG, dl);
3626    }
3627    assert(Value.getValueType() == VT && "Value with wrong type.");
3628    SDValue Store = DAG.getStore(Chain, dl, Value,
3629                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3630                                 DstPtrInfo.getWithOffset(DstOff),
3631                                 isVol, false, Align);
3632    OutChains.push_back(Store);
3633    DstOff += VT.getSizeInBits() / 8;
3634  }
3635
3636  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3637                     &OutChains[0], OutChains.size());
3638}
3639
3640SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3641                                SDValue Src, SDValue Size,
3642                                unsigned Align, bool isVol, bool AlwaysInline,
3643                                MachinePointerInfo DstPtrInfo,
3644                                MachinePointerInfo SrcPtrInfo) {
3645
3646  // Check to see if we should lower the memcpy to loads and stores first.
3647  // For cases within the target-specified limits, this is the best choice.
3648  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3649  if (ConstantSize) {
3650    // Memcpy with size zero? Just return the original chain.
3651    if (ConstantSize->isNullValue())
3652      return Chain;
3653
3654    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3655                                             ConstantSize->getZExtValue(),Align,
3656                                isVol, false, DstPtrInfo, SrcPtrInfo);
3657    if (Result.getNode())
3658      return Result;
3659  }
3660
3661  // Then check to see if we should lower the memcpy with target-specific
3662  // code. If the target chooses to do this, this is the next best.
3663  SDValue Result =
3664    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3665                                isVol, AlwaysInline,
3666                                DstPtrInfo, SrcPtrInfo);
3667  if (Result.getNode())
3668    return Result;
3669
3670  // If we really need inline code and the target declined to provide it,
3671  // use a (potentially long) sequence of loads and stores.
3672  if (AlwaysInline) {
3673    assert(ConstantSize && "AlwaysInline requires a constant size!");
3674    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3675                                   ConstantSize->getZExtValue(), Align, isVol,
3676                                   true, DstPtrInfo, SrcPtrInfo);
3677  }
3678
3679  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3680  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3681  // respect volatile, so they may do things like read or write memory
3682  // beyond the given memory regions. But fixing this isn't easy, and most
3683  // people don't care.
3684
3685  // Emit a library call.
3686  TargetLowering::ArgListTy Args;
3687  TargetLowering::ArgListEntry Entry;
3688  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3689  Entry.Node = Dst; Args.push_back(Entry);
3690  Entry.Node = Src; Args.push_back(Entry);
3691  Entry.Node = Size; Args.push_back(Entry);
3692  // FIXME: pass in DebugLoc
3693  std::pair<SDValue,SDValue> CallResult =
3694    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3695                    false, false, false, false, 0,
3696                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3697                    /*isReturnValueUsed=*/false,
3698                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3699                                      TLI.getPointerTy()),
3700                    Args, *this, dl);
3701  return CallResult.second;
3702}
3703
3704SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3705                                 SDValue Src, SDValue Size,
3706                                 unsigned Align, bool isVol,
3707                                 MachinePointerInfo DstPtrInfo,
3708                                 MachinePointerInfo SrcPtrInfo) {
3709
3710  // Check to see if we should lower the memmove to loads and stores first.
3711  // For cases within the target-specified limits, this is the best choice.
3712  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3713  if (ConstantSize) {
3714    // Memmove with size zero? Just return the original chain.
3715    if (ConstantSize->isNullValue())
3716      return Chain;
3717
3718    SDValue Result =
3719      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3720                               ConstantSize->getZExtValue(), Align, isVol,
3721                               false, DstPtrInfo, SrcPtrInfo);
3722    if (Result.getNode())
3723      return Result;
3724  }
3725
3726  // Then check to see if we should lower the memmove with target-specific
3727  // code. If the target chooses to do this, this is the next best.
3728  SDValue Result =
3729    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3730                                 DstPtrInfo, SrcPtrInfo);
3731  if (Result.getNode())
3732    return Result;
3733
3734  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3735  // not be safe.  See memcpy above for more details.
3736
3737  // Emit a library call.
3738  TargetLowering::ArgListTy Args;
3739  TargetLowering::ArgListEntry Entry;
3740  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3741  Entry.Node = Dst; Args.push_back(Entry);
3742  Entry.Node = Src; Args.push_back(Entry);
3743  Entry.Node = Size; Args.push_back(Entry);
3744  // FIXME:  pass in DebugLoc
3745  std::pair<SDValue,SDValue> CallResult =
3746    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3747                    false, false, false, false, 0,
3748                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3749                    /*isReturnValueUsed=*/false,
3750                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3751                                      TLI.getPointerTy()),
3752                    Args, *this, dl);
3753  return CallResult.second;
3754}
3755
3756SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3757                                SDValue Src, SDValue Size,
3758                                unsigned Align, bool isVol,
3759                                MachinePointerInfo DstPtrInfo) {
3760
3761  // Check to see if we should lower the memset to stores first.
3762  // For cases within the target-specified limits, this is the best choice.
3763  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3764  if (ConstantSize) {
3765    // Memset with size zero? Just return the original chain.
3766    if (ConstantSize->isNullValue())
3767      return Chain;
3768
3769    SDValue Result =
3770      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3771                      Align, isVol, DstPtrInfo);
3772
3773    if (Result.getNode())
3774      return Result;
3775  }
3776
3777  // Then check to see if we should lower the memset with target-specific
3778  // code. If the target chooses to do this, this is the next best.
3779  SDValue Result =
3780    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3781                                DstPtrInfo);
3782  if (Result.getNode())
3783    return Result;
3784
3785  // Emit a library call.
3786  Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3787  TargetLowering::ArgListTy Args;
3788  TargetLowering::ArgListEntry Entry;
3789  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3790  Args.push_back(Entry);
3791  // Extend or truncate the argument to be an i32 value for the call.
3792  if (Src.getValueType().bitsGT(MVT::i32))
3793    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3794  else
3795    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3796  Entry.Node = Src;
3797  Entry.Ty = Type::getInt32Ty(*getContext());
3798  Entry.isSExt = true;
3799  Args.push_back(Entry);
3800  Entry.Node = Size;
3801  Entry.Ty = IntPtrTy;
3802  Entry.isSExt = false;
3803  Args.push_back(Entry);
3804  // FIXME: pass in DebugLoc
3805  std::pair<SDValue,SDValue> CallResult =
3806    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3807                    false, false, false, false, 0,
3808                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3809                    /*isReturnValueUsed=*/false,
3810                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3811                                      TLI.getPointerTy()),
3812                    Args, *this, dl);
3813  return CallResult.second;
3814}
3815
3816SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3817                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3818                                SDValue Swp, MachinePointerInfo PtrInfo,
3819                                unsigned Alignment,
3820                                AtomicOrdering Ordering,
3821                                SynchronizationScope SynchScope) {
3822  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3823    Alignment = getEVTAlignment(MemVT);
3824
3825  MachineFunction &MF = getMachineFunction();
3826  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3827
3828  // For now, atomics are considered to be volatile always.
3829  Flags |= MachineMemOperand::MOVolatile;
3830
3831  MachineMemOperand *MMO =
3832    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3833
3834  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
3835                   Ordering, SynchScope);
3836}
3837
3838SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3839                                SDValue Chain,
3840                                SDValue Ptr, SDValue Cmp,
3841                                SDValue Swp, MachineMemOperand *MMO,
3842                                AtomicOrdering Ordering,
3843                                SynchronizationScope SynchScope) {
3844  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3845  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3846
3847  EVT VT = Cmp.getValueType();
3848
3849  SDVTList VTs = getVTList(VT, MVT::Other);
3850  FoldingSetNodeID ID;
3851  ID.AddInteger(MemVT.getRawBits());
3852  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3853  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3854  void* IP = 0;
3855  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3856    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3857    return SDValue(E, 0);
3858  }
3859  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3860                                               Ptr, Cmp, Swp, MMO, Ordering,
3861                                               SynchScope);
3862  CSEMap.InsertNode(N, IP);
3863  AllNodes.push_back(N);
3864  return SDValue(N, 0);
3865}
3866
3867SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3868                                SDValue Chain,
3869                                SDValue Ptr, SDValue Val,
3870                                const Value* PtrVal,
3871                                unsigned Alignment,
3872                                AtomicOrdering Ordering,
3873                                SynchronizationScope SynchScope) {
3874  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3875    Alignment = getEVTAlignment(MemVT);
3876
3877  MachineFunction &MF = getMachineFunction();
3878  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3879
3880  // For now, atomics are considered to be volatile always.
3881  Flags |= MachineMemOperand::MOVolatile;
3882
3883  MachineMemOperand *MMO =
3884    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3885                            MemVT.getStoreSize(), Alignment);
3886
3887  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
3888                   Ordering, SynchScope);
3889}
3890
3891SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3892                                SDValue Chain,
3893                                SDValue Ptr, SDValue Val,
3894                                MachineMemOperand *MMO,
3895                                AtomicOrdering Ordering,
3896                                SynchronizationScope SynchScope) {
3897  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3898          Opcode == ISD::ATOMIC_LOAD_SUB ||
3899          Opcode == ISD::ATOMIC_LOAD_AND ||
3900          Opcode == ISD::ATOMIC_LOAD_OR ||
3901          Opcode == ISD::ATOMIC_LOAD_XOR ||
3902          Opcode == ISD::ATOMIC_LOAD_NAND ||
3903          Opcode == ISD::ATOMIC_LOAD_MIN ||
3904          Opcode == ISD::ATOMIC_LOAD_MAX ||
3905          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3906          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3907          Opcode == ISD::ATOMIC_SWAP) &&
3908         "Invalid Atomic Op");
3909
3910  EVT VT = Val.getValueType();
3911
3912  SDVTList VTs = getVTList(VT, MVT::Other);
3913  FoldingSetNodeID ID;
3914  ID.AddInteger(MemVT.getRawBits());
3915  SDValue Ops[] = {Chain, Ptr, Val};
3916  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3917  void* IP = 0;
3918  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3919    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3920    return SDValue(E, 0);
3921  }
3922  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3923                                               Ptr, Val, MMO,
3924                                               Ordering, SynchScope);
3925  CSEMap.InsertNode(N, IP);
3926  AllNodes.push_back(N);
3927  return SDValue(N, 0);
3928}
3929
3930/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3931SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3932                                     DebugLoc dl) {
3933  if (NumOps == 1)
3934    return Ops[0];
3935
3936  SmallVector<EVT, 4> VTs;
3937  VTs.reserve(NumOps);
3938  for (unsigned i = 0; i < NumOps; ++i)
3939    VTs.push_back(Ops[i].getValueType());
3940  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3941                 Ops, NumOps);
3942}
3943
3944SDValue
3945SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3946                                  const EVT *VTs, unsigned NumVTs,
3947                                  const SDValue *Ops, unsigned NumOps,
3948                                  EVT MemVT, MachinePointerInfo PtrInfo,
3949                                  unsigned Align, bool Vol,
3950                                  bool ReadMem, bool WriteMem) {
3951  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3952                             MemVT, PtrInfo, Align, Vol,
3953                             ReadMem, WriteMem);
3954}
3955
3956SDValue
3957SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3958                                  const SDValue *Ops, unsigned NumOps,
3959                                  EVT MemVT, MachinePointerInfo PtrInfo,
3960                                  unsigned Align, bool Vol,
3961                                  bool ReadMem, bool WriteMem) {
3962  if (Align == 0)  // Ensure that codegen never sees alignment 0
3963    Align = getEVTAlignment(MemVT);
3964
3965  MachineFunction &MF = getMachineFunction();
3966  unsigned Flags = 0;
3967  if (WriteMem)
3968    Flags |= MachineMemOperand::MOStore;
3969  if (ReadMem)
3970    Flags |= MachineMemOperand::MOLoad;
3971  if (Vol)
3972    Flags |= MachineMemOperand::MOVolatile;
3973  MachineMemOperand *MMO =
3974    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3975
3976  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3977}
3978
3979SDValue
3980SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3981                                  const SDValue *Ops, unsigned NumOps,
3982                                  EVT MemVT, MachineMemOperand *MMO) {
3983  assert((Opcode == ISD::INTRINSIC_VOID ||
3984          Opcode == ISD::INTRINSIC_W_CHAIN ||
3985          Opcode == ISD::PREFETCH ||
3986          (Opcode <= INT_MAX &&
3987           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3988         "Opcode is not a memory-accessing opcode!");
3989
3990  // Memoize the node unless it returns a flag.
3991  MemIntrinsicSDNode *N;
3992  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
3993    FoldingSetNodeID ID;
3994    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3995    void *IP = 0;
3996    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3997      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3998      return SDValue(E, 0);
3999    }
4000
4001    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4002                                               MemVT, MMO);
4003    CSEMap.InsertNode(N, IP);
4004  } else {
4005    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4006                                               MemVT, MMO);
4007  }
4008  AllNodes.push_back(N);
4009  return SDValue(N, 0);
4010}
4011
4012/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4013/// MachinePointerInfo record from it.  This is particularly useful because the
4014/// code generator has many cases where it doesn't bother passing in a
4015/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4016static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4017  // If this is FI+Offset, we can model it.
4018  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4019    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4020
4021  // If this is (FI+Offset1)+Offset2, we can model it.
4022  if (Ptr.getOpcode() != ISD::ADD ||
4023      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4024      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4025    return MachinePointerInfo();
4026
4027  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4028  return MachinePointerInfo::getFixedStack(FI, Offset+
4029                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4030}
4031
4032/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4033/// MachinePointerInfo record from it.  This is particularly useful because the
4034/// code generator has many cases where it doesn't bother passing in a
4035/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4036static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4037  // If the 'Offset' value isn't a constant, we can't handle this.
4038  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4039    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4040  if (OffsetOp.getOpcode() == ISD::UNDEF)
4041    return InferPointerInfo(Ptr);
4042  return MachinePointerInfo();
4043}
4044
4045
4046SDValue
4047SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4048                      EVT VT, DebugLoc dl, SDValue Chain,
4049                      SDValue Ptr, SDValue Offset,
4050                      MachinePointerInfo PtrInfo, EVT MemVT,
4051                      bool isVolatile, bool isNonTemporal,
4052                      unsigned Alignment, const MDNode *TBAAInfo) {
4053  assert(Chain.getValueType() == MVT::Other &&
4054        "Invalid chain type");
4055  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4056    Alignment = getEVTAlignment(VT);
4057
4058  unsigned Flags = MachineMemOperand::MOLoad;
4059  if (isVolatile)
4060    Flags |= MachineMemOperand::MOVolatile;
4061  if (isNonTemporal)
4062    Flags |= MachineMemOperand::MONonTemporal;
4063
4064  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4065  // clients.
4066  if (PtrInfo.V == 0)
4067    PtrInfo = InferPointerInfo(Ptr, Offset);
4068
4069  MachineFunction &MF = getMachineFunction();
4070  MachineMemOperand *MMO =
4071    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4072                            TBAAInfo);
4073  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4074}
4075
4076SDValue
4077SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4078                      EVT VT, DebugLoc dl, SDValue Chain,
4079                      SDValue Ptr, SDValue Offset, EVT MemVT,
4080                      MachineMemOperand *MMO) {
4081  if (VT == MemVT) {
4082    ExtType = ISD::NON_EXTLOAD;
4083  } else if (ExtType == ISD::NON_EXTLOAD) {
4084    assert(VT == MemVT && "Non-extending load from different memory type!");
4085  } else {
4086    // Extending load.
4087    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4088           "Should only be an extending load, not truncating!");
4089    assert(VT.isInteger() == MemVT.isInteger() &&
4090           "Cannot convert from FP to Int or Int -> FP!");
4091    assert(VT.isVector() == MemVT.isVector() &&
4092           "Cannot use trunc store to convert to or from a vector!");
4093    assert((!VT.isVector() ||
4094            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4095           "Cannot use trunc store to change the number of vector elements!");
4096  }
4097
4098  bool Indexed = AM != ISD::UNINDEXED;
4099  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4100         "Unindexed load with an offset!");
4101
4102  SDVTList VTs = Indexed ?
4103    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4104  SDValue Ops[] = { Chain, Ptr, Offset };
4105  FoldingSetNodeID ID;
4106  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4107  ID.AddInteger(MemVT.getRawBits());
4108  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4109                                     MMO->isNonTemporal()));
4110  void *IP = 0;
4111  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4112    cast<LoadSDNode>(E)->refineAlignment(MMO);
4113    return SDValue(E, 0);
4114  }
4115  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4116                                             MemVT, MMO);
4117  CSEMap.InsertNode(N, IP);
4118  AllNodes.push_back(N);
4119  return SDValue(N, 0);
4120}
4121
4122SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4123                              SDValue Chain, SDValue Ptr,
4124                              MachinePointerInfo PtrInfo,
4125                              bool isVolatile, bool isNonTemporal,
4126                              unsigned Alignment, const MDNode *TBAAInfo) {
4127  SDValue Undef = getUNDEF(Ptr.getValueType());
4128  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4129                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4130}
4131
4132SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4133                                 SDValue Chain, SDValue Ptr,
4134                                 MachinePointerInfo PtrInfo, EVT MemVT,
4135                                 bool isVolatile, bool isNonTemporal,
4136                                 unsigned Alignment, const MDNode *TBAAInfo) {
4137  SDValue Undef = getUNDEF(Ptr.getValueType());
4138  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4139                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4140                 TBAAInfo);
4141}
4142
4143
4144SDValue
4145SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4146                             SDValue Offset, ISD::MemIndexedMode AM) {
4147  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4148  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4149         "Load is already a indexed load!");
4150  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4151                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4152                 LD->getMemoryVT(),
4153                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4154}
4155
4156SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4157                               SDValue Ptr, MachinePointerInfo PtrInfo,
4158                               bool isVolatile, bool isNonTemporal,
4159                               unsigned Alignment, const MDNode *TBAAInfo) {
4160  assert(Chain.getValueType() == MVT::Other &&
4161        "Invalid chain type");
4162  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4163    Alignment = getEVTAlignment(Val.getValueType());
4164
4165  unsigned Flags = MachineMemOperand::MOStore;
4166  if (isVolatile)
4167    Flags |= MachineMemOperand::MOVolatile;
4168  if (isNonTemporal)
4169    Flags |= MachineMemOperand::MONonTemporal;
4170
4171  if (PtrInfo.V == 0)
4172    PtrInfo = InferPointerInfo(Ptr);
4173
4174  MachineFunction &MF = getMachineFunction();
4175  MachineMemOperand *MMO =
4176    MF.getMachineMemOperand(PtrInfo, Flags,
4177                            Val.getValueType().getStoreSize(), Alignment,
4178                            TBAAInfo);
4179
4180  return getStore(Chain, dl, Val, Ptr, MMO);
4181}
4182
4183SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4184                               SDValue Ptr, MachineMemOperand *MMO) {
4185  assert(Chain.getValueType() == MVT::Other &&
4186        "Invalid chain type");
4187  EVT VT = Val.getValueType();
4188  SDVTList VTs = getVTList(MVT::Other);
4189  SDValue Undef = getUNDEF(Ptr.getValueType());
4190  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4191  FoldingSetNodeID ID;
4192  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4193  ID.AddInteger(VT.getRawBits());
4194  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4195                                     MMO->isNonTemporal()));
4196  void *IP = 0;
4197  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4198    cast<StoreSDNode>(E)->refineAlignment(MMO);
4199    return SDValue(E, 0);
4200  }
4201  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4202                                              false, VT, MMO);
4203  CSEMap.InsertNode(N, IP);
4204  AllNodes.push_back(N);
4205  return SDValue(N, 0);
4206}
4207
4208SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4209                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4210                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4211                                    unsigned Alignment,
4212                                    const MDNode *TBAAInfo) {
4213  assert(Chain.getValueType() == MVT::Other &&
4214        "Invalid chain type");
4215  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4216    Alignment = getEVTAlignment(SVT);
4217
4218  unsigned Flags = MachineMemOperand::MOStore;
4219  if (isVolatile)
4220    Flags |= MachineMemOperand::MOVolatile;
4221  if (isNonTemporal)
4222    Flags |= MachineMemOperand::MONonTemporal;
4223
4224  if (PtrInfo.V == 0)
4225    PtrInfo = InferPointerInfo(Ptr);
4226
4227  MachineFunction &MF = getMachineFunction();
4228  MachineMemOperand *MMO =
4229    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4230                            TBAAInfo);
4231
4232  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4233}
4234
4235SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4236                                    SDValue Ptr, EVT SVT,
4237                                    MachineMemOperand *MMO) {
4238  EVT VT = Val.getValueType();
4239
4240  assert(Chain.getValueType() == MVT::Other &&
4241        "Invalid chain type");
4242  if (VT == SVT)
4243    return getStore(Chain, dl, Val, Ptr, MMO);
4244
4245  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4246         "Should only be a truncating store, not extending!");
4247  assert(VT.isInteger() == SVT.isInteger() &&
4248         "Can't do FP-INT conversion!");
4249  assert(VT.isVector() == SVT.isVector() &&
4250         "Cannot use trunc store to convert to or from a vector!");
4251  assert((!VT.isVector() ||
4252          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4253         "Cannot use trunc store to change the number of vector elements!");
4254
4255  SDVTList VTs = getVTList(MVT::Other);
4256  SDValue Undef = getUNDEF(Ptr.getValueType());
4257  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4258  FoldingSetNodeID ID;
4259  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4260  ID.AddInteger(SVT.getRawBits());
4261  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4262                                     MMO->isNonTemporal()));
4263  void *IP = 0;
4264  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4265    cast<StoreSDNode>(E)->refineAlignment(MMO);
4266    return SDValue(E, 0);
4267  }
4268  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4269                                              true, SVT, MMO);
4270  CSEMap.InsertNode(N, IP);
4271  AllNodes.push_back(N);
4272  return SDValue(N, 0);
4273}
4274
4275SDValue
4276SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4277                              SDValue Offset, ISD::MemIndexedMode AM) {
4278  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4279  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4280         "Store is already a indexed store!");
4281  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4282  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4283  FoldingSetNodeID ID;
4284  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4285  ID.AddInteger(ST->getMemoryVT().getRawBits());
4286  ID.AddInteger(ST->getRawSubclassData());
4287  void *IP = 0;
4288  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4289    return SDValue(E, 0);
4290
4291  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4292                                              ST->isTruncatingStore(),
4293                                              ST->getMemoryVT(),
4294                                              ST->getMemOperand());
4295  CSEMap.InsertNode(N, IP);
4296  AllNodes.push_back(N);
4297  return SDValue(N, 0);
4298}
4299
4300SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4301                               SDValue Chain, SDValue Ptr,
4302                               SDValue SV,
4303                               unsigned Align) {
4304  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4305  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4306}
4307
4308SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4309                              const SDUse *Ops, unsigned NumOps) {
4310  switch (NumOps) {
4311  case 0: return getNode(Opcode, DL, VT);
4312  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4313  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4314  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4315  default: break;
4316  }
4317
4318  // Copy from an SDUse array into an SDValue array for use with
4319  // the regular getNode logic.
4320  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4321  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4322}
4323
4324SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4325                              const SDValue *Ops, unsigned NumOps) {
4326  switch (NumOps) {
4327  case 0: return getNode(Opcode, DL, VT);
4328  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4329  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4330  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4331  default: break;
4332  }
4333
4334  switch (Opcode) {
4335  default: break;
4336  case ISD::SELECT_CC: {
4337    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4338    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4339           "LHS and RHS of condition must have same type!");
4340    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4341           "True and False arms of SelectCC must have same type!");
4342    assert(Ops[2].getValueType() == VT &&
4343           "select_cc node must be of same type as true and false value!");
4344    break;
4345  }
4346  case ISD::BR_CC: {
4347    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4348    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4349           "LHS/RHS of comparison should match types!");
4350    break;
4351  }
4352  }
4353
4354  // Memoize nodes.
4355  SDNode *N;
4356  SDVTList VTs = getVTList(VT);
4357
4358  if (VT != MVT::Glue) {
4359    FoldingSetNodeID ID;
4360    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4361    void *IP = 0;
4362
4363    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4364      return SDValue(E, 0);
4365
4366    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4367    CSEMap.InsertNode(N, IP);
4368  } else {
4369    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4370  }
4371
4372  AllNodes.push_back(N);
4373#ifndef NDEBUG
4374  VerifySDNode(N);
4375#endif
4376  return SDValue(N, 0);
4377}
4378
4379SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4380                              const std::vector<EVT> &ResultTys,
4381                              const SDValue *Ops, unsigned NumOps) {
4382  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4383                 Ops, NumOps);
4384}
4385
4386SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4387                              const EVT *VTs, unsigned NumVTs,
4388                              const SDValue *Ops, unsigned NumOps) {
4389  if (NumVTs == 1)
4390    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4391  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4392}
4393
4394SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4395                              const SDValue *Ops, unsigned NumOps) {
4396  if (VTList.NumVTs == 1)
4397    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4398
4399#if 0
4400  switch (Opcode) {
4401  // FIXME: figure out how to safely handle things like
4402  // int foo(int x) { return 1 << (x & 255); }
4403  // int bar() { return foo(256); }
4404  case ISD::SRA_PARTS:
4405  case ISD::SRL_PARTS:
4406  case ISD::SHL_PARTS:
4407    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4408        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4409      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4410    else if (N3.getOpcode() == ISD::AND)
4411      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4412        // If the and is only masking out bits that cannot effect the shift,
4413        // eliminate the and.
4414        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4415        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4416          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4417      }
4418    break;
4419  }
4420#endif
4421
4422  // Memoize the node unless it returns a flag.
4423  SDNode *N;
4424  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4425    FoldingSetNodeID ID;
4426    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4427    void *IP = 0;
4428    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4429      return SDValue(E, 0);
4430
4431    if (NumOps == 1) {
4432      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4433    } else if (NumOps == 2) {
4434      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4435    } else if (NumOps == 3) {
4436      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4437                                            Ops[2]);
4438    } else {
4439      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4440    }
4441    CSEMap.InsertNode(N, IP);
4442  } else {
4443    if (NumOps == 1) {
4444      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4445    } else if (NumOps == 2) {
4446      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4447    } else if (NumOps == 3) {
4448      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4449                                            Ops[2]);
4450    } else {
4451      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4452    }
4453  }
4454  AllNodes.push_back(N);
4455#ifndef NDEBUG
4456  VerifySDNode(N);
4457#endif
4458  return SDValue(N, 0);
4459}
4460
4461SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4462  return getNode(Opcode, DL, VTList, 0, 0);
4463}
4464
4465SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4466                              SDValue N1) {
4467  SDValue Ops[] = { N1 };
4468  return getNode(Opcode, DL, VTList, Ops, 1);
4469}
4470
4471SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4472                              SDValue N1, SDValue N2) {
4473  SDValue Ops[] = { N1, N2 };
4474  return getNode(Opcode, DL, VTList, Ops, 2);
4475}
4476
4477SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4478                              SDValue N1, SDValue N2, SDValue N3) {
4479  SDValue Ops[] = { N1, N2, N3 };
4480  return getNode(Opcode, DL, VTList, Ops, 3);
4481}
4482
4483SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4484                              SDValue N1, SDValue N2, SDValue N3,
4485                              SDValue N4) {
4486  SDValue Ops[] = { N1, N2, N3, N4 };
4487  return getNode(Opcode, DL, VTList, Ops, 4);
4488}
4489
4490SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4491                              SDValue N1, SDValue N2, SDValue N3,
4492                              SDValue N4, SDValue N5) {
4493  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4494  return getNode(Opcode, DL, VTList, Ops, 5);
4495}
4496
4497SDVTList SelectionDAG::getVTList(EVT VT) {
4498  return makeVTList(SDNode::getValueTypeList(VT), 1);
4499}
4500
4501SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4502  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4503       E = VTList.rend(); I != E; ++I)
4504    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4505      return *I;
4506
4507  EVT *Array = Allocator.Allocate<EVT>(2);
4508  Array[0] = VT1;
4509  Array[1] = VT2;
4510  SDVTList Result = makeVTList(Array, 2);
4511  VTList.push_back(Result);
4512  return Result;
4513}
4514
4515SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4516  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4517       E = VTList.rend(); I != E; ++I)
4518    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4519                          I->VTs[2] == VT3)
4520      return *I;
4521
4522  EVT *Array = Allocator.Allocate<EVT>(3);
4523  Array[0] = VT1;
4524  Array[1] = VT2;
4525  Array[2] = VT3;
4526  SDVTList Result = makeVTList(Array, 3);
4527  VTList.push_back(Result);
4528  return Result;
4529}
4530
4531SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4532  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4533       E = VTList.rend(); I != E; ++I)
4534    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4535                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4536      return *I;
4537
4538  EVT *Array = Allocator.Allocate<EVT>(4);
4539  Array[0] = VT1;
4540  Array[1] = VT2;
4541  Array[2] = VT3;
4542  Array[3] = VT4;
4543  SDVTList Result = makeVTList(Array, 4);
4544  VTList.push_back(Result);
4545  return Result;
4546}
4547
4548SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4549  switch (NumVTs) {
4550    case 0: llvm_unreachable("Cannot have nodes without results!");
4551    case 1: return getVTList(VTs[0]);
4552    case 2: return getVTList(VTs[0], VTs[1]);
4553    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4554    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4555    default: break;
4556  }
4557
4558  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4559       E = VTList.rend(); I != E; ++I) {
4560    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4561      continue;
4562
4563    bool NoMatch = false;
4564    for (unsigned i = 2; i != NumVTs; ++i)
4565      if (VTs[i] != I->VTs[i]) {
4566        NoMatch = true;
4567        break;
4568      }
4569    if (!NoMatch)
4570      return *I;
4571  }
4572
4573  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4574  std::copy(VTs, VTs+NumVTs, Array);
4575  SDVTList Result = makeVTList(Array, NumVTs);
4576  VTList.push_back(Result);
4577  return Result;
4578}
4579
4580
4581/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4582/// specified operands.  If the resultant node already exists in the DAG,
4583/// this does not modify the specified node, instead it returns the node that
4584/// already exists.  If the resultant node does not exist in the DAG, the
4585/// input node is returned.  As a degenerate case, if you specify the same
4586/// input operands as the node already has, the input node is returned.
4587SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4588  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4589
4590  // Check to see if there is no change.
4591  if (Op == N->getOperand(0)) return N;
4592
4593  // See if the modified node already exists.
4594  void *InsertPos = 0;
4595  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4596    return Existing;
4597
4598  // Nope it doesn't.  Remove the node from its current place in the maps.
4599  if (InsertPos)
4600    if (!RemoveNodeFromCSEMaps(N))
4601      InsertPos = 0;
4602
4603  // Now we update the operands.
4604  N->OperandList[0].set(Op);
4605
4606  // If this gets put into a CSE map, add it.
4607  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4608  return N;
4609}
4610
4611SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4612  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4613
4614  // Check to see if there is no change.
4615  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4616    return N;   // No operands changed, just return the input node.
4617
4618  // See if the modified node already exists.
4619  void *InsertPos = 0;
4620  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4621    return Existing;
4622
4623  // Nope it doesn't.  Remove the node from its current place in the maps.
4624  if (InsertPos)
4625    if (!RemoveNodeFromCSEMaps(N))
4626      InsertPos = 0;
4627
4628  // Now we update the operands.
4629  if (N->OperandList[0] != Op1)
4630    N->OperandList[0].set(Op1);
4631  if (N->OperandList[1] != Op2)
4632    N->OperandList[1].set(Op2);
4633
4634  // If this gets put into a CSE map, add it.
4635  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4636  return N;
4637}
4638
4639SDNode *SelectionDAG::
4640UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4641  SDValue Ops[] = { Op1, Op2, Op3 };
4642  return UpdateNodeOperands(N, Ops, 3);
4643}
4644
4645SDNode *SelectionDAG::
4646UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4647                   SDValue Op3, SDValue Op4) {
4648  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4649  return UpdateNodeOperands(N, Ops, 4);
4650}
4651
4652SDNode *SelectionDAG::
4653UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4654                   SDValue Op3, SDValue Op4, SDValue Op5) {
4655  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4656  return UpdateNodeOperands(N, Ops, 5);
4657}
4658
4659SDNode *SelectionDAG::
4660UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4661  assert(N->getNumOperands() == NumOps &&
4662         "Update with wrong number of operands");
4663
4664  // Check to see if there is no change.
4665  bool AnyChange = false;
4666  for (unsigned i = 0; i != NumOps; ++i) {
4667    if (Ops[i] != N->getOperand(i)) {
4668      AnyChange = true;
4669      break;
4670    }
4671  }
4672
4673  // No operands changed, just return the input node.
4674  if (!AnyChange) return N;
4675
4676  // See if the modified node already exists.
4677  void *InsertPos = 0;
4678  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4679    return Existing;
4680
4681  // Nope it doesn't.  Remove the node from its current place in the maps.
4682  if (InsertPos)
4683    if (!RemoveNodeFromCSEMaps(N))
4684      InsertPos = 0;
4685
4686  // Now we update the operands.
4687  for (unsigned i = 0; i != NumOps; ++i)
4688    if (N->OperandList[i] != Ops[i])
4689      N->OperandList[i].set(Ops[i]);
4690
4691  // If this gets put into a CSE map, add it.
4692  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4693  return N;
4694}
4695
4696/// DropOperands - Release the operands and set this node to have
4697/// zero operands.
4698void SDNode::DropOperands() {
4699  // Unlike the code in MorphNodeTo that does this, we don't need to
4700  // watch for dead nodes here.
4701  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4702    SDUse &Use = *I++;
4703    Use.set(SDValue());
4704  }
4705}
4706
4707/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4708/// machine opcode.
4709///
4710SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4711                                   EVT VT) {
4712  SDVTList VTs = getVTList(VT);
4713  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4714}
4715
4716SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4717                                   EVT VT, SDValue Op1) {
4718  SDVTList VTs = getVTList(VT);
4719  SDValue Ops[] = { Op1 };
4720  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4721}
4722
4723SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4724                                   EVT VT, SDValue Op1,
4725                                   SDValue Op2) {
4726  SDVTList VTs = getVTList(VT);
4727  SDValue Ops[] = { Op1, Op2 };
4728  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4729}
4730
4731SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4732                                   EVT VT, SDValue Op1,
4733                                   SDValue Op2, SDValue Op3) {
4734  SDVTList VTs = getVTList(VT);
4735  SDValue Ops[] = { Op1, Op2, Op3 };
4736  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4737}
4738
4739SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4740                                   EVT VT, const SDValue *Ops,
4741                                   unsigned NumOps) {
4742  SDVTList VTs = getVTList(VT);
4743  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4744}
4745
4746SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4747                                   EVT VT1, EVT VT2, const SDValue *Ops,
4748                                   unsigned NumOps) {
4749  SDVTList VTs = getVTList(VT1, VT2);
4750  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4751}
4752
4753SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4754                                   EVT VT1, EVT VT2) {
4755  SDVTList VTs = getVTList(VT1, VT2);
4756  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4757}
4758
4759SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4760                                   EVT VT1, EVT VT2, EVT VT3,
4761                                   const SDValue *Ops, unsigned NumOps) {
4762  SDVTList VTs = getVTList(VT1, VT2, VT3);
4763  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4764}
4765
4766SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4767                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4768                                   const SDValue *Ops, unsigned NumOps) {
4769  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4770  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4771}
4772
4773SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4774                                   EVT VT1, EVT VT2,
4775                                   SDValue Op1) {
4776  SDVTList VTs = getVTList(VT1, VT2);
4777  SDValue Ops[] = { Op1 };
4778  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4779}
4780
4781SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4782                                   EVT VT1, EVT VT2,
4783                                   SDValue Op1, SDValue Op2) {
4784  SDVTList VTs = getVTList(VT1, VT2);
4785  SDValue Ops[] = { Op1, Op2 };
4786  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4787}
4788
4789SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4790                                   EVT VT1, EVT VT2,
4791                                   SDValue Op1, SDValue Op2,
4792                                   SDValue Op3) {
4793  SDVTList VTs = getVTList(VT1, VT2);
4794  SDValue Ops[] = { Op1, Op2, Op3 };
4795  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4796}
4797
4798SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4799                                   EVT VT1, EVT VT2, EVT VT3,
4800                                   SDValue Op1, SDValue Op2,
4801                                   SDValue Op3) {
4802  SDVTList VTs = getVTList(VT1, VT2, VT3);
4803  SDValue Ops[] = { Op1, Op2, Op3 };
4804  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4805}
4806
4807SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4808                                   SDVTList VTs, const SDValue *Ops,
4809                                   unsigned NumOps) {
4810  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4811  // Reset the NodeID to -1.
4812  N->setNodeId(-1);
4813  return N;
4814}
4815
4816/// MorphNodeTo - This *mutates* the specified node to have the specified
4817/// return type, opcode, and operands.
4818///
4819/// Note that MorphNodeTo returns the resultant node.  If there is already a
4820/// node of the specified opcode and operands, it returns that node instead of
4821/// the current one.  Note that the DebugLoc need not be the same.
4822///
4823/// Using MorphNodeTo is faster than creating a new node and swapping it in
4824/// with ReplaceAllUsesWith both because it often avoids allocating a new
4825/// node, and because it doesn't require CSE recalculation for any of
4826/// the node's users.
4827///
4828SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4829                                  SDVTList VTs, const SDValue *Ops,
4830                                  unsigned NumOps) {
4831  // If an identical node already exists, use it.
4832  void *IP = 0;
4833  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4834    FoldingSetNodeID ID;
4835    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4836    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4837      return ON;
4838  }
4839
4840  if (!RemoveNodeFromCSEMaps(N))
4841    IP = 0;
4842
4843  // Start the morphing.
4844  N->NodeType = Opc;
4845  N->ValueList = VTs.VTs;
4846  N->NumValues = VTs.NumVTs;
4847
4848  // Clear the operands list, updating used nodes to remove this from their
4849  // use list.  Keep track of any operands that become dead as a result.
4850  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4851  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4852    SDUse &Use = *I++;
4853    SDNode *Used = Use.getNode();
4854    Use.set(SDValue());
4855    if (Used->use_empty())
4856      DeadNodeSet.insert(Used);
4857  }
4858
4859  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4860    // Initialize the memory references information.
4861    MN->setMemRefs(0, 0);
4862    // If NumOps is larger than the # of operands we can have in a
4863    // MachineSDNode, reallocate the operand list.
4864    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4865      if (MN->OperandsNeedDelete)
4866        delete[] MN->OperandList;
4867      if (NumOps > array_lengthof(MN->LocalOperands))
4868        // We're creating a final node that will live unmorphed for the
4869        // remainder of the current SelectionDAG iteration, so we can allocate
4870        // the operands directly out of a pool with no recycling metadata.
4871        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4872                         Ops, NumOps);
4873      else
4874        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4875      MN->OperandsNeedDelete = false;
4876    } else
4877      MN->InitOperands(MN->OperandList, Ops, NumOps);
4878  } else {
4879    // If NumOps is larger than the # of operands we currently have, reallocate
4880    // the operand list.
4881    if (NumOps > N->NumOperands) {
4882      if (N->OperandsNeedDelete)
4883        delete[] N->OperandList;
4884      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4885      N->OperandsNeedDelete = true;
4886    } else
4887      N->InitOperands(N->OperandList, Ops, NumOps);
4888  }
4889
4890  // Delete any nodes that are still dead after adding the uses for the
4891  // new operands.
4892  if (!DeadNodeSet.empty()) {
4893    SmallVector<SDNode *, 16> DeadNodes;
4894    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4895         E = DeadNodeSet.end(); I != E; ++I)
4896      if ((*I)->use_empty())
4897        DeadNodes.push_back(*I);
4898    RemoveDeadNodes(DeadNodes);
4899  }
4900
4901  if (IP)
4902    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4903  return N;
4904}
4905
4906
4907/// getMachineNode - These are used for target selectors to create a new node
4908/// with specified return type(s), MachineInstr opcode, and operands.
4909///
4910/// Note that getMachineNode returns the resultant node.  If there is already a
4911/// node of the specified opcode and operands, it returns that node instead of
4912/// the current one.
4913MachineSDNode *
4914SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4915  SDVTList VTs = getVTList(VT);
4916  return getMachineNode(Opcode, dl, VTs, 0, 0);
4917}
4918
4919MachineSDNode *
4920SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4921  SDVTList VTs = getVTList(VT);
4922  SDValue Ops[] = { Op1 };
4923  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4924}
4925
4926MachineSDNode *
4927SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4928                             SDValue Op1, SDValue Op2) {
4929  SDVTList VTs = getVTList(VT);
4930  SDValue Ops[] = { Op1, Op2 };
4931  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4932}
4933
4934MachineSDNode *
4935SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4936                             SDValue Op1, SDValue Op2, SDValue Op3) {
4937  SDVTList VTs = getVTList(VT);
4938  SDValue Ops[] = { Op1, Op2, Op3 };
4939  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4940}
4941
4942MachineSDNode *
4943SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4944                             const SDValue *Ops, unsigned NumOps) {
4945  SDVTList VTs = getVTList(VT);
4946  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4947}
4948
4949MachineSDNode *
4950SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4951  SDVTList VTs = getVTList(VT1, VT2);
4952  return getMachineNode(Opcode, dl, VTs, 0, 0);
4953}
4954
4955MachineSDNode *
4956SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4957                             EVT VT1, EVT VT2, SDValue Op1) {
4958  SDVTList VTs = getVTList(VT1, VT2);
4959  SDValue Ops[] = { Op1 };
4960  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4961}
4962
4963MachineSDNode *
4964SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4965                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4966  SDVTList VTs = getVTList(VT1, VT2);
4967  SDValue Ops[] = { Op1, Op2 };
4968  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4969}
4970
4971MachineSDNode *
4972SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4973                             EVT VT1, EVT VT2, SDValue Op1,
4974                             SDValue Op2, SDValue Op3) {
4975  SDVTList VTs = getVTList(VT1, VT2);
4976  SDValue Ops[] = { Op1, Op2, Op3 };
4977  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4978}
4979
4980MachineSDNode *
4981SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4982                             EVT VT1, EVT VT2,
4983                             const SDValue *Ops, unsigned NumOps) {
4984  SDVTList VTs = getVTList(VT1, VT2);
4985  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4986}
4987
4988MachineSDNode *
4989SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4990                             EVT VT1, EVT VT2, EVT VT3,
4991                             SDValue Op1, SDValue Op2) {
4992  SDVTList VTs = getVTList(VT1, VT2, VT3);
4993  SDValue Ops[] = { Op1, Op2 };
4994  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4995}
4996
4997MachineSDNode *
4998SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4999                             EVT VT1, EVT VT2, EVT VT3,
5000                             SDValue Op1, SDValue Op2, SDValue Op3) {
5001  SDVTList VTs = getVTList(VT1, VT2, VT3);
5002  SDValue Ops[] = { Op1, Op2, Op3 };
5003  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5004}
5005
5006MachineSDNode *
5007SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5008                             EVT VT1, EVT VT2, EVT VT3,
5009                             const SDValue *Ops, unsigned NumOps) {
5010  SDVTList VTs = getVTList(VT1, VT2, VT3);
5011  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5012}
5013
5014MachineSDNode *
5015SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
5016                             EVT VT2, EVT VT3, EVT VT4,
5017                             const SDValue *Ops, unsigned NumOps) {
5018  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5019  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5020}
5021
5022MachineSDNode *
5023SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5024                             const std::vector<EVT> &ResultTys,
5025                             const SDValue *Ops, unsigned NumOps) {
5026  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5027  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5028}
5029
5030MachineSDNode *
5031SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5032                             const SDValue *Ops, unsigned NumOps) {
5033  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5034  MachineSDNode *N;
5035  void *IP = 0;
5036
5037  if (DoCSE) {
5038    FoldingSetNodeID ID;
5039    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5040    IP = 0;
5041    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5042      return cast<MachineSDNode>(E);
5043  }
5044
5045  // Allocate a new MachineSDNode.
5046  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5047
5048  // Initialize the operands list.
5049  if (NumOps > array_lengthof(N->LocalOperands))
5050    // We're creating a final node that will live unmorphed for the
5051    // remainder of the current SelectionDAG iteration, so we can allocate
5052    // the operands directly out of a pool with no recycling metadata.
5053    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5054                    Ops, NumOps);
5055  else
5056    N->InitOperands(N->LocalOperands, Ops, NumOps);
5057  N->OperandsNeedDelete = false;
5058
5059  if (DoCSE)
5060    CSEMap.InsertNode(N, IP);
5061
5062  AllNodes.push_back(N);
5063#ifndef NDEBUG
5064  VerifyMachineNode(N);
5065#endif
5066  return N;
5067}
5068
5069/// getTargetExtractSubreg - A convenience function for creating
5070/// TargetOpcode::EXTRACT_SUBREG nodes.
5071SDValue
5072SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5073                                     SDValue Operand) {
5074  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5075  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5076                                  VT, Operand, SRIdxVal);
5077  return SDValue(Subreg, 0);
5078}
5079
5080/// getTargetInsertSubreg - A convenience function for creating
5081/// TargetOpcode::INSERT_SUBREG nodes.
5082SDValue
5083SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5084                                    SDValue Operand, SDValue Subreg) {
5085  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5086  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5087                                  VT, Operand, Subreg, SRIdxVal);
5088  return SDValue(Result, 0);
5089}
5090
5091/// getNodeIfExists - Get the specified node if it's already available, or
5092/// else return NULL.
5093SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5094                                      const SDValue *Ops, unsigned NumOps) {
5095  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5096    FoldingSetNodeID ID;
5097    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5098    void *IP = 0;
5099    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5100      return E;
5101  }
5102  return NULL;
5103}
5104
5105/// getDbgValue - Creates a SDDbgValue node.
5106///
5107SDDbgValue *
5108SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5109                          DebugLoc DL, unsigned O) {
5110  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5111}
5112
5113SDDbgValue *
5114SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5115                          DebugLoc DL, unsigned O) {
5116  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5117}
5118
5119SDDbgValue *
5120SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5121                          DebugLoc DL, unsigned O) {
5122  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5123}
5124
5125namespace {
5126
5127/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5128/// pointed to by a use iterator is deleted, increment the use iterator
5129/// so that it doesn't dangle.
5130///
5131/// This class also manages a "downlink" DAGUpdateListener, to forward
5132/// messages to ReplaceAllUsesWith's callers.
5133///
5134class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5135  SelectionDAG::DAGUpdateListener *DownLink;
5136  SDNode::use_iterator &UI;
5137  SDNode::use_iterator &UE;
5138
5139  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5140    // Increment the iterator as needed.
5141    while (UI != UE && N == *UI)
5142      ++UI;
5143
5144    // Then forward the message.
5145    if (DownLink) DownLink->NodeDeleted(N, E);
5146  }
5147
5148  virtual void NodeUpdated(SDNode *N) {
5149    // Just forward the message.
5150    if (DownLink) DownLink->NodeUpdated(N);
5151  }
5152
5153public:
5154  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5155                     SDNode::use_iterator &ui,
5156                     SDNode::use_iterator &ue)
5157    : DownLink(dl), UI(ui), UE(ue) {}
5158};
5159
5160}
5161
5162/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5163/// This can cause recursive merging of nodes in the DAG.
5164///
5165/// This version assumes From has a single result value.
5166///
5167void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5168                                      DAGUpdateListener *UpdateListener) {
5169  SDNode *From = FromN.getNode();
5170  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5171         "Cannot replace with this method!");
5172  assert(From != To.getNode() && "Cannot replace uses of with self");
5173
5174  // Iterate over all the existing uses of From. New uses will be added
5175  // to the beginning of the use list, which we avoid visiting.
5176  // This specifically avoids visiting uses of From that arise while the
5177  // replacement is happening, because any such uses would be the result
5178  // of CSE: If an existing node looks like From after one of its operands
5179  // is replaced by To, we don't want to replace of all its users with To
5180  // too. See PR3018 for more info.
5181  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5182  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5183  while (UI != UE) {
5184    SDNode *User = *UI;
5185
5186    // This node is about to morph, remove its old self from the CSE maps.
5187    RemoveNodeFromCSEMaps(User);
5188
5189    // A user can appear in a use list multiple times, and when this
5190    // happens the uses are usually next to each other in the list.
5191    // To help reduce the number of CSE recomputations, process all
5192    // the uses of this user that we can find this way.
5193    do {
5194      SDUse &Use = UI.getUse();
5195      ++UI;
5196      Use.set(To);
5197    } while (UI != UE && *UI == User);
5198
5199    // Now that we have modified User, add it back to the CSE maps.  If it
5200    // already exists there, recursively merge the results together.
5201    AddModifiedNodeToCSEMaps(User, &Listener);
5202  }
5203}
5204
5205/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5206/// This can cause recursive merging of nodes in the DAG.
5207///
5208/// This version assumes that for each value of From, there is a
5209/// corresponding value in To in the same position with the same type.
5210///
5211void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5212                                      DAGUpdateListener *UpdateListener) {
5213#ifndef NDEBUG
5214  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5215    assert((!From->hasAnyUseOfValue(i) ||
5216            From->getValueType(i) == To->getValueType(i)) &&
5217           "Cannot use this version of ReplaceAllUsesWith!");
5218#endif
5219
5220  // Handle the trivial case.
5221  if (From == To)
5222    return;
5223
5224  // Iterate over just the existing users of From. See the comments in
5225  // the ReplaceAllUsesWith above.
5226  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5227  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5228  while (UI != UE) {
5229    SDNode *User = *UI;
5230
5231    // This node is about to morph, remove its old self from the CSE maps.
5232    RemoveNodeFromCSEMaps(User);
5233
5234    // A user can appear in a use list multiple times, and when this
5235    // happens the uses are usually next to each other in the list.
5236    // To help reduce the number of CSE recomputations, process all
5237    // the uses of this user that we can find this way.
5238    do {
5239      SDUse &Use = UI.getUse();
5240      ++UI;
5241      Use.setNode(To);
5242    } while (UI != UE && *UI == User);
5243
5244    // Now that we have modified User, add it back to the CSE maps.  If it
5245    // already exists there, recursively merge the results together.
5246    AddModifiedNodeToCSEMaps(User, &Listener);
5247  }
5248}
5249
5250/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5251/// This can cause recursive merging of nodes in the DAG.
5252///
5253/// This version can replace From with any result values.  To must match the
5254/// number and types of values returned by From.
5255void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5256                                      const SDValue *To,
5257                                      DAGUpdateListener *UpdateListener) {
5258  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5259    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5260
5261  // Iterate over just the existing users of From. See the comments in
5262  // the ReplaceAllUsesWith above.
5263  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5264  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5265  while (UI != UE) {
5266    SDNode *User = *UI;
5267
5268    // This node is about to morph, remove its old self from the CSE maps.
5269    RemoveNodeFromCSEMaps(User);
5270
5271    // A user can appear in a use list multiple times, and when this
5272    // happens the uses are usually next to each other in the list.
5273    // To help reduce the number of CSE recomputations, process all
5274    // the uses of this user that we can find this way.
5275    do {
5276      SDUse &Use = UI.getUse();
5277      const SDValue &ToOp = To[Use.getResNo()];
5278      ++UI;
5279      Use.set(ToOp);
5280    } while (UI != UE && *UI == User);
5281
5282    // Now that we have modified User, add it back to the CSE maps.  If it
5283    // already exists there, recursively merge the results together.
5284    AddModifiedNodeToCSEMaps(User, &Listener);
5285  }
5286}
5287
5288/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5289/// uses of other values produced by From.getNode() alone.  The Deleted
5290/// vector is handled the same way as for ReplaceAllUsesWith.
5291void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5292                                             DAGUpdateListener *UpdateListener){
5293  // Handle the really simple, really trivial case efficiently.
5294  if (From == To) return;
5295
5296  // Handle the simple, trivial, case efficiently.
5297  if (From.getNode()->getNumValues() == 1) {
5298    ReplaceAllUsesWith(From, To, UpdateListener);
5299    return;
5300  }
5301
5302  // Iterate over just the existing users of From. See the comments in
5303  // the ReplaceAllUsesWith above.
5304  SDNode::use_iterator UI = From.getNode()->use_begin(),
5305                       UE = From.getNode()->use_end();
5306  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5307  while (UI != UE) {
5308    SDNode *User = *UI;
5309    bool UserRemovedFromCSEMaps = false;
5310
5311    // A user can appear in a use list multiple times, and when this
5312    // happens the uses are usually next to each other in the list.
5313    // To help reduce the number of CSE recomputations, process all
5314    // the uses of this user that we can find this way.
5315    do {
5316      SDUse &Use = UI.getUse();
5317
5318      // Skip uses of different values from the same node.
5319      if (Use.getResNo() != From.getResNo()) {
5320        ++UI;
5321        continue;
5322      }
5323
5324      // If this node hasn't been modified yet, it's still in the CSE maps,
5325      // so remove its old self from the CSE maps.
5326      if (!UserRemovedFromCSEMaps) {
5327        RemoveNodeFromCSEMaps(User);
5328        UserRemovedFromCSEMaps = true;
5329      }
5330
5331      ++UI;
5332      Use.set(To);
5333    } while (UI != UE && *UI == User);
5334
5335    // We are iterating over all uses of the From node, so if a use
5336    // doesn't use the specific value, no changes are made.
5337    if (!UserRemovedFromCSEMaps)
5338      continue;
5339
5340    // Now that we have modified User, add it back to the CSE maps.  If it
5341    // already exists there, recursively merge the results together.
5342    AddModifiedNodeToCSEMaps(User, &Listener);
5343  }
5344}
5345
5346namespace {
5347  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5348  /// to record information about a use.
5349  struct UseMemo {
5350    SDNode *User;
5351    unsigned Index;
5352    SDUse *Use;
5353  };
5354
5355  /// operator< - Sort Memos by User.
5356  bool operator<(const UseMemo &L, const UseMemo &R) {
5357    return (intptr_t)L.User < (intptr_t)R.User;
5358  }
5359}
5360
5361/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5362/// uses of other values produced by From.getNode() alone.  The same value
5363/// may appear in both the From and To list.  The Deleted vector is
5364/// handled the same way as for ReplaceAllUsesWith.
5365void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5366                                              const SDValue *To,
5367                                              unsigned Num,
5368                                              DAGUpdateListener *UpdateListener){
5369  // Handle the simple, trivial case efficiently.
5370  if (Num == 1)
5371    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5372
5373  // Read up all the uses and make records of them. This helps
5374  // processing new uses that are introduced during the
5375  // replacement process.
5376  SmallVector<UseMemo, 4> Uses;
5377  for (unsigned i = 0; i != Num; ++i) {
5378    unsigned FromResNo = From[i].getResNo();
5379    SDNode *FromNode = From[i].getNode();
5380    for (SDNode::use_iterator UI = FromNode->use_begin(),
5381         E = FromNode->use_end(); UI != E; ++UI) {
5382      SDUse &Use = UI.getUse();
5383      if (Use.getResNo() == FromResNo) {
5384        UseMemo Memo = { *UI, i, &Use };
5385        Uses.push_back(Memo);
5386      }
5387    }
5388  }
5389
5390  // Sort the uses, so that all the uses from a given User are together.
5391  std::sort(Uses.begin(), Uses.end());
5392
5393  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5394       UseIndex != UseIndexEnd; ) {
5395    // We know that this user uses some value of From.  If it is the right
5396    // value, update it.
5397    SDNode *User = Uses[UseIndex].User;
5398
5399    // This node is about to morph, remove its old self from the CSE maps.
5400    RemoveNodeFromCSEMaps(User);
5401
5402    // The Uses array is sorted, so all the uses for a given User
5403    // are next to each other in the list.
5404    // To help reduce the number of CSE recomputations, process all
5405    // the uses of this user that we can find this way.
5406    do {
5407      unsigned i = Uses[UseIndex].Index;
5408      SDUse &Use = *Uses[UseIndex].Use;
5409      ++UseIndex;
5410
5411      Use.set(To[i]);
5412    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5413
5414    // Now that we have modified User, add it back to the CSE maps.  If it
5415    // already exists there, recursively merge the results together.
5416    AddModifiedNodeToCSEMaps(User, UpdateListener);
5417  }
5418}
5419
5420/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5421/// based on their topological order. It returns the maximum id and a vector
5422/// of the SDNodes* in assigned order by reference.
5423unsigned SelectionDAG::AssignTopologicalOrder() {
5424
5425  unsigned DAGSize = 0;
5426
5427  // SortedPos tracks the progress of the algorithm. Nodes before it are
5428  // sorted, nodes after it are unsorted. When the algorithm completes
5429  // it is at the end of the list.
5430  allnodes_iterator SortedPos = allnodes_begin();
5431
5432  // Visit all the nodes. Move nodes with no operands to the front of
5433  // the list immediately. Annotate nodes that do have operands with their
5434  // operand count. Before we do this, the Node Id fields of the nodes
5435  // may contain arbitrary values. After, the Node Id fields for nodes
5436  // before SortedPos will contain the topological sort index, and the
5437  // Node Id fields for nodes At SortedPos and after will contain the
5438  // count of outstanding operands.
5439  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5440    SDNode *N = I++;
5441    checkForCycles(N);
5442    unsigned Degree = N->getNumOperands();
5443    if (Degree == 0) {
5444      // A node with no uses, add it to the result array immediately.
5445      N->setNodeId(DAGSize++);
5446      allnodes_iterator Q = N;
5447      if (Q != SortedPos)
5448        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5449      assert(SortedPos != AllNodes.end() && "Overran node list");
5450      ++SortedPos;
5451    } else {
5452      // Temporarily use the Node Id as scratch space for the degree count.
5453      N->setNodeId(Degree);
5454    }
5455  }
5456
5457  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5458  // such that by the time the end is reached all nodes will be sorted.
5459  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5460    SDNode *N = I;
5461    checkForCycles(N);
5462    // N is in sorted position, so all its uses have one less operand
5463    // that needs to be sorted.
5464    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5465         UI != UE; ++UI) {
5466      SDNode *P = *UI;
5467      unsigned Degree = P->getNodeId();
5468      assert(Degree != 0 && "Invalid node degree");
5469      --Degree;
5470      if (Degree == 0) {
5471        // All of P's operands are sorted, so P may sorted now.
5472        P->setNodeId(DAGSize++);
5473        if (P != SortedPos)
5474          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5475        assert(SortedPos != AllNodes.end() && "Overran node list");
5476        ++SortedPos;
5477      } else {
5478        // Update P's outstanding operand count.
5479        P->setNodeId(Degree);
5480      }
5481    }
5482    if (I == SortedPos) {
5483#ifndef NDEBUG
5484      SDNode *S = ++I;
5485      dbgs() << "Overran sorted position:\n";
5486      S->dumprFull();
5487#endif
5488      llvm_unreachable(0);
5489    }
5490  }
5491
5492  assert(SortedPos == AllNodes.end() &&
5493         "Topological sort incomplete!");
5494  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5495         "First node in topological sort is not the entry token!");
5496  assert(AllNodes.front().getNodeId() == 0 &&
5497         "First node in topological sort has non-zero id!");
5498  assert(AllNodes.front().getNumOperands() == 0 &&
5499         "First node in topological sort has operands!");
5500  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5501         "Last node in topologic sort has unexpected id!");
5502  assert(AllNodes.back().use_empty() &&
5503         "Last node in topologic sort has users!");
5504  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5505  return DAGSize;
5506}
5507
5508/// AssignOrdering - Assign an order to the SDNode.
5509void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5510  assert(SD && "Trying to assign an order to a null node!");
5511  Ordering->add(SD, Order);
5512}
5513
5514/// GetOrdering - Get the order for the SDNode.
5515unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5516  assert(SD && "Trying to get the order of a null node!");
5517  return Ordering->getOrder(SD);
5518}
5519
5520/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5521/// value is produced by SD.
5522void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5523  DbgInfo->add(DB, SD, isParameter);
5524  if (SD)
5525    SD->setHasDebugValue(true);
5526}
5527
5528/// TransferDbgValues - Transfer SDDbgValues.
5529void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5530  if (From == To || !From.getNode()->getHasDebugValue())
5531    return;
5532  SDNode *FromNode = From.getNode();
5533  SDNode *ToNode = To.getNode();
5534  ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
5535  SmallVector<SDDbgValue *, 2> ClonedDVs;
5536  for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
5537       I != E; ++I) {
5538    SDDbgValue *Dbg = *I;
5539    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5540      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5541                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5542                                      Dbg->getOrder());
5543      ClonedDVs.push_back(Clone);
5544    }
5545  }
5546  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5547         E = ClonedDVs.end(); I != E; ++I)
5548    AddDbgValue(*I, ToNode, false);
5549}
5550
5551//===----------------------------------------------------------------------===//
5552//                              SDNode Class
5553//===----------------------------------------------------------------------===//
5554
5555HandleSDNode::~HandleSDNode() {
5556  DropOperands();
5557}
5558
5559GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5560                                         const GlobalValue *GA,
5561                                         EVT VT, int64_t o, unsigned char TF)
5562  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5563  TheGlobal = GA;
5564}
5565
5566MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5567                     MachineMemOperand *mmo)
5568 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5569  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5570                                      MMO->isNonTemporal());
5571  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5572  assert(isNonTemporal() == MMO->isNonTemporal() &&
5573         "Non-temporal encoding error!");
5574  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5575}
5576
5577MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5578                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5579                     MachineMemOperand *mmo)
5580   : SDNode(Opc, dl, VTs, Ops, NumOps),
5581     MemoryVT(memvt), MMO(mmo) {
5582  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5583                                      MMO->isNonTemporal());
5584  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5585  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5586}
5587
5588/// Profile - Gather unique data for the node.
5589///
5590void SDNode::Profile(FoldingSetNodeID &ID) const {
5591  AddNodeIDNode(ID, this);
5592}
5593
5594namespace {
5595  struct EVTArray {
5596    std::vector<EVT> VTs;
5597
5598    EVTArray() {
5599      VTs.reserve(MVT::LAST_VALUETYPE);
5600      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5601        VTs.push_back(MVT((MVT::SimpleValueType)i));
5602    }
5603  };
5604}
5605
5606static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5607static ManagedStatic<EVTArray> SimpleVTArray;
5608static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5609
5610/// getValueTypeList - Return a pointer to the specified value type.
5611///
5612const EVT *SDNode::getValueTypeList(EVT VT) {
5613  if (VT.isExtended()) {
5614    sys::SmartScopedLock<true> Lock(*VTMutex);
5615    return &(*EVTs->insert(VT).first);
5616  } else {
5617    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5618           "Value type out of range!");
5619    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5620  }
5621}
5622
5623/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5624/// indicated value.  This method ignores uses of other values defined by this
5625/// operation.
5626bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5627  assert(Value < getNumValues() && "Bad value!");
5628
5629  // TODO: Only iterate over uses of a given value of the node
5630  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5631    if (UI.getUse().getResNo() == Value) {
5632      if (NUses == 0)
5633        return false;
5634      --NUses;
5635    }
5636  }
5637
5638  // Found exactly the right number of uses?
5639  return NUses == 0;
5640}
5641
5642
5643/// hasAnyUseOfValue - Return true if there are any use of the indicated
5644/// value. This method ignores uses of other values defined by this operation.
5645bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5646  assert(Value < getNumValues() && "Bad value!");
5647
5648  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5649    if (UI.getUse().getResNo() == Value)
5650      return true;
5651
5652  return false;
5653}
5654
5655
5656/// isOnlyUserOf - Return true if this node is the only use of N.
5657///
5658bool SDNode::isOnlyUserOf(SDNode *N) const {
5659  bool Seen = false;
5660  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5661    SDNode *User = *I;
5662    if (User == this)
5663      Seen = true;
5664    else
5665      return false;
5666  }
5667
5668  return Seen;
5669}
5670
5671/// isOperand - Return true if this node is an operand of N.
5672///
5673bool SDValue::isOperandOf(SDNode *N) const {
5674  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5675    if (*this == N->getOperand(i))
5676      return true;
5677  return false;
5678}
5679
5680bool SDNode::isOperandOf(SDNode *N) const {
5681  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5682    if (this == N->OperandList[i].getNode())
5683      return true;
5684  return false;
5685}
5686
5687/// reachesChainWithoutSideEffects - Return true if this operand (which must
5688/// be a chain) reaches the specified operand without crossing any
5689/// side-effecting instructions on any chain path.  In practice, this looks
5690/// through token factors and non-volatile loads.  In order to remain efficient,
5691/// this only looks a couple of nodes in, it does not do an exhaustive search.
5692bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5693                                               unsigned Depth) const {
5694  if (*this == Dest) return true;
5695
5696  // Don't search too deeply, we just want to be able to see through
5697  // TokenFactor's etc.
5698  if (Depth == 0) return false;
5699
5700  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5701  // of the operands of the TF does not reach dest, then we cannot do the xform.
5702  if (getOpcode() == ISD::TokenFactor) {
5703    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5704      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5705        return false;
5706    return true;
5707  }
5708
5709  // Loads don't have side effects, look through them.
5710  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5711    if (!Ld->isVolatile())
5712      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5713  }
5714  return false;
5715}
5716
5717/// hasPredecessor - Return true if N is a predecessor of this node.
5718/// N is either an operand of this node, or can be reached by recursively
5719/// traversing up the operands.
5720/// NOTE: This is an expensive method. Use it carefully.
5721bool SDNode::hasPredecessor(const SDNode *N) const {
5722  SmallPtrSet<const SDNode *, 32> Visited;
5723  SmallVector<const SDNode *, 16> Worklist;
5724  return hasPredecessorHelper(N, Visited, Worklist);
5725}
5726
5727bool SDNode::hasPredecessorHelper(const SDNode *N,
5728                                  SmallPtrSet<const SDNode *, 32> &Visited,
5729                                  SmallVector<const SDNode *, 16> &Worklist) const {
5730  if (Visited.empty()) {
5731    Worklist.push_back(this);
5732  } else {
5733    // Take a look in the visited set. If we've already encountered this node
5734    // we needn't search further.
5735    if (Visited.count(N))
5736      return true;
5737  }
5738
5739  // Haven't visited N yet. Continue the search.
5740  while (!Worklist.empty()) {
5741    const SDNode *M = Worklist.pop_back_val();
5742    for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
5743      SDNode *Op = M->getOperand(i).getNode();
5744      if (Visited.insert(Op))
5745        Worklist.push_back(Op);
5746      if (Op == N)
5747        return true;
5748    }
5749  }
5750
5751  return false;
5752}
5753
5754uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5755  assert(Num < NumOperands && "Invalid child # of SDNode!");
5756  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5757}
5758
5759std::string SDNode::getOperationName(const SelectionDAG *G) const {
5760  switch (getOpcode()) {
5761  default:
5762    if (getOpcode() < ISD::BUILTIN_OP_END)
5763      return "<<Unknown DAG Node>>";
5764    if (isMachineOpcode()) {
5765      if (G)
5766        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5767          if (getMachineOpcode() < TII->getNumOpcodes())
5768            return TII->get(getMachineOpcode()).getName();
5769      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5770    }
5771    if (G) {
5772      const TargetLowering &TLI = G->getTargetLoweringInfo();
5773      const char *Name = TLI.getTargetNodeName(getOpcode());
5774      if (Name) return Name;
5775      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5776    }
5777    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5778
5779#ifndef NDEBUG
5780  case ISD::DELETED_NODE:
5781    return "<<Deleted Node!>>";
5782#endif
5783  case ISD::PREFETCH:      return "Prefetch";
5784  case ISD::MEMBARRIER:    return "MemBarrier";
5785  case ISD::ATOMIC_FENCE:    return "AtomicFence";
5786  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5787  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5788  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5789  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5790  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5791  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5792  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5793  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5794  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5795  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5796  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5797  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5798  case ISD::PCMARKER:      return "PCMarker";
5799  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5800  case ISD::SRCVALUE:      return "SrcValue";
5801  case ISD::MDNODE_SDNODE: return "MDNode";
5802  case ISD::EntryToken:    return "EntryToken";
5803  case ISD::TokenFactor:   return "TokenFactor";
5804  case ISD::AssertSext:    return "AssertSext";
5805  case ISD::AssertZext:    return "AssertZext";
5806
5807  case ISD::BasicBlock:    return "BasicBlock";
5808  case ISD::VALUETYPE:     return "ValueType";
5809  case ISD::Register:      return "Register";
5810
5811  case ISD::Constant:      return "Constant";
5812  case ISD::ConstantFP:    return "ConstantFP";
5813  case ISD::GlobalAddress: return "GlobalAddress";
5814  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5815  case ISD::FrameIndex:    return "FrameIndex";
5816  case ISD::JumpTable:     return "JumpTable";
5817  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5818  case ISD::RETURNADDR: return "RETURNADDR";
5819  case ISD::FRAMEADDR: return "FRAMEADDR";
5820  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5821  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5822  case ISD::LSDAADDR: return "LSDAADDR";
5823  case ISD::EHSELECTION: return "EHSELECTION";
5824  case ISD::EH_RETURN: return "EH_RETURN";
5825  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5826  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5827  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5828  case ISD::ConstantPool:  return "ConstantPool";
5829  case ISD::ExternalSymbol: return "ExternalSymbol";
5830  case ISD::BlockAddress:  return "BlockAddress";
5831  case ISD::INTRINSIC_WO_CHAIN:
5832  case ISD::INTRINSIC_VOID:
5833  case ISD::INTRINSIC_W_CHAIN: {
5834    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5835    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5836    if (IID < Intrinsic::num_intrinsics)
5837      return Intrinsic::getName((Intrinsic::ID)IID);
5838    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5839      return TII->getName(IID);
5840    llvm_unreachable("Invalid intrinsic ID");
5841  }
5842
5843  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5844  case ISD::TargetConstant: return "TargetConstant";
5845  case ISD::TargetConstantFP:return "TargetConstantFP";
5846  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5847  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5848  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5849  case ISD::TargetJumpTable:  return "TargetJumpTable";
5850  case ISD::TargetConstantPool:  return "TargetConstantPool";
5851  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5852  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5853
5854  case ISD::CopyToReg:     return "CopyToReg";
5855  case ISD::CopyFromReg:   return "CopyFromReg";
5856  case ISD::UNDEF:         return "undef";
5857  case ISD::MERGE_VALUES:  return "merge_values";
5858  case ISD::INLINEASM:     return "inlineasm";
5859  case ISD::EH_LABEL:      return "eh_label";
5860  case ISD::HANDLENODE:    return "handlenode";
5861
5862  // Unary operators
5863  case ISD::FABS:   return "fabs";
5864  case ISD::FNEG:   return "fneg";
5865  case ISD::FSQRT:  return "fsqrt";
5866  case ISD::FSIN:   return "fsin";
5867  case ISD::FCOS:   return "fcos";
5868  case ISD::FTRUNC: return "ftrunc";
5869  case ISD::FFLOOR: return "ffloor";
5870  case ISD::FCEIL:  return "fceil";
5871  case ISD::FRINT:  return "frint";
5872  case ISD::FNEARBYINT: return "fnearbyint";
5873  case ISD::FEXP:   return "fexp";
5874  case ISD::FEXP2:  return "fexp2";
5875  case ISD::FLOG:   return "flog";
5876  case ISD::FLOG2:  return "flog2";
5877  case ISD::FLOG10: return "flog10";
5878
5879  // Binary operators
5880  case ISD::ADD:    return "add";
5881  case ISD::SUB:    return "sub";
5882  case ISD::MUL:    return "mul";
5883  case ISD::MULHU:  return "mulhu";
5884  case ISD::MULHS:  return "mulhs";
5885  case ISD::SDIV:   return "sdiv";
5886  case ISD::UDIV:   return "udiv";
5887  case ISD::SREM:   return "srem";
5888  case ISD::UREM:   return "urem";
5889  case ISD::SMUL_LOHI:  return "smul_lohi";
5890  case ISD::UMUL_LOHI:  return "umul_lohi";
5891  case ISD::SDIVREM:    return "sdivrem";
5892  case ISD::UDIVREM:    return "udivrem";
5893  case ISD::AND:    return "and";
5894  case ISD::OR:     return "or";
5895  case ISD::XOR:    return "xor";
5896  case ISD::SHL:    return "shl";
5897  case ISD::SRA:    return "sra";
5898  case ISD::SRL:    return "srl";
5899  case ISD::ROTL:   return "rotl";
5900  case ISD::ROTR:   return "rotr";
5901  case ISD::FADD:   return "fadd";
5902  case ISD::FSUB:   return "fsub";
5903  case ISD::FMUL:   return "fmul";
5904  case ISD::FDIV:   return "fdiv";
5905  case ISD::FMA:    return "fma";
5906  case ISD::FREM:   return "frem";
5907  case ISD::FCOPYSIGN: return "fcopysign";
5908  case ISD::FGETSIGN:  return "fgetsign";
5909  case ISD::FPOW:   return "fpow";
5910
5911  case ISD::FPOWI:  return "fpowi";
5912  case ISD::SETCC:       return "setcc";
5913  case ISD::VSETCC:      return "vsetcc";
5914  case ISD::SELECT:      return "select";
5915  case ISD::SELECT_CC:   return "select_cc";
5916  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5917  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5918  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5919  case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
5920  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5921  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5922  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5923  case ISD::CARRY_FALSE:         return "carry_false";
5924  case ISD::ADDC:        return "addc";
5925  case ISD::ADDE:        return "adde";
5926  case ISD::SADDO:       return "saddo";
5927  case ISD::UADDO:       return "uaddo";
5928  case ISD::SSUBO:       return "ssubo";
5929  case ISD::USUBO:       return "usubo";
5930  case ISD::SMULO:       return "smulo";
5931  case ISD::UMULO:       return "umulo";
5932  case ISD::SUBC:        return "subc";
5933  case ISD::SUBE:        return "sube";
5934  case ISD::SHL_PARTS:   return "shl_parts";
5935  case ISD::SRA_PARTS:   return "sra_parts";
5936  case ISD::SRL_PARTS:   return "srl_parts";
5937
5938  // Conversion operators.
5939  case ISD::SIGN_EXTEND: return "sign_extend";
5940  case ISD::ZERO_EXTEND: return "zero_extend";
5941  case ISD::ANY_EXTEND:  return "any_extend";
5942  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5943  case ISD::TRUNCATE:    return "truncate";
5944  case ISD::FP_ROUND:    return "fp_round";
5945  case ISD::FLT_ROUNDS_: return "flt_rounds";
5946  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5947  case ISD::FP_EXTEND:   return "fp_extend";
5948
5949  case ISD::SINT_TO_FP:  return "sint_to_fp";
5950  case ISD::UINT_TO_FP:  return "uint_to_fp";
5951  case ISD::FP_TO_SINT:  return "fp_to_sint";
5952  case ISD::FP_TO_UINT:  return "fp_to_uint";
5953  case ISD::BITCAST:     return "bitcast";
5954  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5955  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5956
5957  case ISD::CONVERT_RNDSAT: {
5958    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5959    default: llvm_unreachable("Unknown cvt code!");
5960    case ISD::CVT_FF:  return "cvt_ff";
5961    case ISD::CVT_FS:  return "cvt_fs";
5962    case ISD::CVT_FU:  return "cvt_fu";
5963    case ISD::CVT_SF:  return "cvt_sf";
5964    case ISD::CVT_UF:  return "cvt_uf";
5965    case ISD::CVT_SS:  return "cvt_ss";
5966    case ISD::CVT_SU:  return "cvt_su";
5967    case ISD::CVT_US:  return "cvt_us";
5968    case ISD::CVT_UU:  return "cvt_uu";
5969    }
5970  }
5971
5972    // Control flow instructions
5973  case ISD::BR:      return "br";
5974  case ISD::BRIND:   return "brind";
5975  case ISD::BR_JT:   return "br_jt";
5976  case ISD::BRCOND:  return "brcond";
5977  case ISD::BR_CC:   return "br_cc";
5978  case ISD::CALLSEQ_START:  return "callseq_start";
5979  case ISD::CALLSEQ_END:    return "callseq_end";
5980
5981    // Other operators
5982  case ISD::LOAD:               return "load";
5983  case ISD::STORE:              return "store";
5984  case ISD::VAARG:              return "vaarg";
5985  case ISD::VACOPY:             return "vacopy";
5986  case ISD::VAEND:              return "vaend";
5987  case ISD::VASTART:            return "vastart";
5988  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5989  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5990  case ISD::BUILD_PAIR:         return "build_pair";
5991  case ISD::STACKSAVE:          return "stacksave";
5992  case ISD::STACKRESTORE:       return "stackrestore";
5993  case ISD::TRAP:               return "trap";
5994
5995  // Bit manipulation
5996  case ISD::BSWAP:   return "bswap";
5997  case ISD::CTPOP:   return "ctpop";
5998  case ISD::CTTZ:    return "cttz";
5999  case ISD::CTLZ:    return "ctlz";
6000
6001  // Trampolines
6002  case ISD::TRAMPOLINE: return "trampoline";
6003
6004  case ISD::CONDCODE:
6005    switch (cast<CondCodeSDNode>(this)->get()) {
6006    default: llvm_unreachable("Unknown setcc condition!");
6007    case ISD::SETOEQ:  return "setoeq";
6008    case ISD::SETOGT:  return "setogt";
6009    case ISD::SETOGE:  return "setoge";
6010    case ISD::SETOLT:  return "setolt";
6011    case ISD::SETOLE:  return "setole";
6012    case ISD::SETONE:  return "setone";
6013
6014    case ISD::SETO:    return "seto";
6015    case ISD::SETUO:   return "setuo";
6016    case ISD::SETUEQ:  return "setue";
6017    case ISD::SETUGT:  return "setugt";
6018    case ISD::SETUGE:  return "setuge";
6019    case ISD::SETULT:  return "setult";
6020    case ISD::SETULE:  return "setule";
6021    case ISD::SETUNE:  return "setune";
6022
6023    case ISD::SETEQ:   return "seteq";
6024    case ISD::SETGT:   return "setgt";
6025    case ISD::SETGE:   return "setge";
6026    case ISD::SETLT:   return "setlt";
6027    case ISD::SETLE:   return "setle";
6028    case ISD::SETNE:   return "setne";
6029    }
6030  }
6031}
6032
6033const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
6034  switch (AM) {
6035  default:
6036    return "";
6037  case ISD::PRE_INC:
6038    return "<pre-inc>";
6039  case ISD::PRE_DEC:
6040    return "<pre-dec>";
6041  case ISD::POST_INC:
6042    return "<post-inc>";
6043  case ISD::POST_DEC:
6044    return "<post-dec>";
6045  }
6046}
6047
6048std::string ISD::ArgFlagsTy::getArgFlagsString() {
6049  std::string S = "< ";
6050
6051  if (isZExt())
6052    S += "zext ";
6053  if (isSExt())
6054    S += "sext ";
6055  if (isInReg())
6056    S += "inreg ";
6057  if (isSRet())
6058    S += "sret ";
6059  if (isByVal())
6060    S += "byval ";
6061  if (isNest())
6062    S += "nest ";
6063  if (getByValAlign())
6064    S += "byval-align:" + utostr(getByValAlign()) + " ";
6065  if (getOrigAlign())
6066    S += "orig-align:" + utostr(getOrigAlign()) + " ";
6067  if (getByValSize())
6068    S += "byval-size:" + utostr(getByValSize()) + " ";
6069  return S + ">";
6070}
6071
6072void SDNode::dump() const { dump(0); }
6073void SDNode::dump(const SelectionDAG *G) const {
6074  print(dbgs(), G);
6075  dbgs() << '\n';
6076}
6077
6078void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6079  OS << (void*)this << ": ";
6080
6081  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6082    if (i) OS << ",";
6083    if (getValueType(i) == MVT::Other)
6084      OS << "ch";
6085    else
6086      OS << getValueType(i).getEVTString();
6087  }
6088  OS << " = " << getOperationName(G);
6089}
6090
6091void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6092  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6093    if (!MN->memoperands_empty()) {
6094      OS << "<";
6095      OS << "Mem:";
6096      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6097           e = MN->memoperands_end(); i != e; ++i) {
6098        OS << **i;
6099        if (llvm::next(i) != e)
6100          OS << " ";
6101      }
6102      OS << ">";
6103    }
6104  } else if (const ShuffleVectorSDNode *SVN =
6105               dyn_cast<ShuffleVectorSDNode>(this)) {
6106    OS << "<";
6107    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6108      int Idx = SVN->getMaskElt(i);
6109      if (i) OS << ",";
6110      if (Idx < 0)
6111        OS << "u";
6112      else
6113        OS << Idx;
6114    }
6115    OS << ">";
6116  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6117    OS << '<' << CSDN->getAPIntValue() << '>';
6118  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6119    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6120      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6121    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6122      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6123    else {
6124      OS << "<APFloat(";
6125      CSDN->getValueAPF().bitcastToAPInt().dump();
6126      OS << ")>";
6127    }
6128  } else if (const GlobalAddressSDNode *GADN =
6129             dyn_cast<GlobalAddressSDNode>(this)) {
6130    int64_t offset = GADN->getOffset();
6131    OS << '<';
6132    WriteAsOperand(OS, GADN->getGlobal());
6133    OS << '>';
6134    if (offset > 0)
6135      OS << " + " << offset;
6136    else
6137      OS << " " << offset;
6138    if (unsigned int TF = GADN->getTargetFlags())
6139      OS << " [TF=" << TF << ']';
6140  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6141    OS << "<" << FIDN->getIndex() << ">";
6142  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6143    OS << "<" << JTDN->getIndex() << ">";
6144    if (unsigned int TF = JTDN->getTargetFlags())
6145      OS << " [TF=" << TF << ']';
6146  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6147    int offset = CP->getOffset();
6148    if (CP->isMachineConstantPoolEntry())
6149      OS << "<" << *CP->getMachineCPVal() << ">";
6150    else
6151      OS << "<" << *CP->getConstVal() << ">";
6152    if (offset > 0)
6153      OS << " + " << offset;
6154    else
6155      OS << " " << offset;
6156    if (unsigned int TF = CP->getTargetFlags())
6157      OS << " [TF=" << TF << ']';
6158  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6159    OS << "<";
6160    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6161    if (LBB)
6162      OS << LBB->getName() << " ";
6163    OS << (const void*)BBDN->getBasicBlock() << ">";
6164  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6165    OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6166  } else if (const ExternalSymbolSDNode *ES =
6167             dyn_cast<ExternalSymbolSDNode>(this)) {
6168    OS << "'" << ES->getSymbol() << "'";
6169    if (unsigned int TF = ES->getTargetFlags())
6170      OS << " [TF=" << TF << ']';
6171  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6172    if (M->getValue())
6173      OS << "<" << M->getValue() << ">";
6174    else
6175      OS << "<null>";
6176  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6177    if (MD->getMD())
6178      OS << "<" << MD->getMD() << ">";
6179    else
6180      OS << "<null>";
6181  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6182    OS << ":" << N->getVT().getEVTString();
6183  }
6184  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6185    OS << "<" << *LD->getMemOperand();
6186
6187    bool doExt = true;
6188    switch (LD->getExtensionType()) {
6189    default: doExt = false; break;
6190    case ISD::EXTLOAD: OS << ", anyext"; break;
6191    case ISD::SEXTLOAD: OS << ", sext"; break;
6192    case ISD::ZEXTLOAD: OS << ", zext"; break;
6193    }
6194    if (doExt)
6195      OS << " from " << LD->getMemoryVT().getEVTString();
6196
6197    const char *AM = getIndexedModeName(LD->getAddressingMode());
6198    if (*AM)
6199      OS << ", " << AM;
6200
6201    OS << ">";
6202  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6203    OS << "<" << *ST->getMemOperand();
6204
6205    if (ST->isTruncatingStore())
6206      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6207
6208    const char *AM = getIndexedModeName(ST->getAddressingMode());
6209    if (*AM)
6210      OS << ", " << AM;
6211
6212    OS << ">";
6213  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6214    OS << "<" << *M->getMemOperand() << ">";
6215  } else if (const BlockAddressSDNode *BA =
6216               dyn_cast<BlockAddressSDNode>(this)) {
6217    OS << "<";
6218    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6219    OS << ", ";
6220    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6221    OS << ">";
6222    if (unsigned int TF = BA->getTargetFlags())
6223      OS << " [TF=" << TF << ']';
6224  }
6225
6226  if (G)
6227    if (unsigned Order = G->GetOrdering(this))
6228      OS << " [ORD=" << Order << ']';
6229
6230  if (getNodeId() != -1)
6231    OS << " [ID=" << getNodeId() << ']';
6232
6233  DebugLoc dl = getDebugLoc();
6234  if (G && !dl.isUnknown()) {
6235    DIScope
6236      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6237    OS << " dbg:";
6238    // Omit the directory, since it's usually long and uninteresting.
6239    if (Scope.Verify())
6240      OS << Scope.getFilename();
6241    else
6242      OS << "<unknown>";
6243    OS << ':' << dl.getLine();
6244    if (dl.getCol() != 0)
6245      OS << ':' << dl.getCol();
6246  }
6247}
6248
6249void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6250  print_types(OS, G);
6251  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6252    if (i) OS << ", "; else OS << " ";
6253    OS << (void*)getOperand(i).getNode();
6254    if (unsigned RN = getOperand(i).getResNo())
6255      OS << ":" << RN;
6256  }
6257  print_details(OS, G);
6258}
6259
6260static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6261                                  const SelectionDAG *G, unsigned depth,
6262                                  unsigned indent)
6263{
6264  if (depth == 0)
6265    return;
6266
6267  OS.indent(indent);
6268
6269  N->print(OS, G);
6270
6271  if (depth < 1)
6272    return;
6273
6274  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6275    // Don't follow chain operands.
6276    if (N->getOperand(i).getValueType() == MVT::Other)
6277      continue;
6278    OS << '\n';
6279    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6280  }
6281}
6282
6283void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6284                            unsigned depth) const {
6285  printrWithDepthHelper(OS, this, G, depth, 0);
6286}
6287
6288void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6289  // Don't print impossibly deep things.
6290  printrWithDepth(OS, G, 10);
6291}
6292
6293void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6294  printrWithDepth(dbgs(), G, depth);
6295}
6296
6297void SDNode::dumprFull(const SelectionDAG *G) const {
6298  // Don't print impossibly deep things.
6299  dumprWithDepth(G, 10);
6300}
6301
6302static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6303  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6304    if (N->getOperand(i).getNode()->hasOneUse())
6305      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6306    else
6307      dbgs() << "\n" << std::string(indent+2, ' ')
6308           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6309
6310
6311  dbgs() << "\n";
6312  dbgs().indent(indent);
6313  N->dump(G);
6314}
6315
6316SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6317  assert(N->getNumValues() == 1 &&
6318         "Can't unroll a vector with multiple results!");
6319
6320  EVT VT = N->getValueType(0);
6321  unsigned NE = VT.getVectorNumElements();
6322  EVT EltVT = VT.getVectorElementType();
6323  DebugLoc dl = N->getDebugLoc();
6324
6325  SmallVector<SDValue, 8> Scalars;
6326  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6327
6328  // If ResNE is 0, fully unroll the vector op.
6329  if (ResNE == 0)
6330    ResNE = NE;
6331  else if (NE > ResNE)
6332    NE = ResNE;
6333
6334  unsigned i;
6335  for (i= 0; i != NE; ++i) {
6336    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6337      SDValue Operand = N->getOperand(j);
6338      EVT OperandVT = Operand.getValueType();
6339      if (OperandVT.isVector()) {
6340        // A vector operand; extract a single element.
6341        EVT OperandEltVT = OperandVT.getVectorElementType();
6342        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6343                              OperandEltVT,
6344                              Operand,
6345                              getConstant(i, TLI.getPointerTy()));
6346      } else {
6347        // A scalar operand; just use it as is.
6348        Operands[j] = Operand;
6349      }
6350    }
6351
6352    switch (N->getOpcode()) {
6353    default:
6354      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6355                                &Operands[0], Operands.size()));
6356      break;
6357    case ISD::SHL:
6358    case ISD::SRA:
6359    case ISD::SRL:
6360    case ISD::ROTL:
6361    case ISD::ROTR:
6362      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6363                                getShiftAmountOperand(Operands[0].getValueType(),
6364                                                      Operands[1])));
6365      break;
6366    case ISD::SIGN_EXTEND_INREG:
6367    case ISD::FP_ROUND_INREG: {
6368      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6369      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6370                                Operands[0],
6371                                getValueType(ExtVT)));
6372    }
6373    }
6374  }
6375
6376  for (; i < ResNE; ++i)
6377    Scalars.push_back(getUNDEF(EltVT));
6378
6379  return getNode(ISD::BUILD_VECTOR, dl,
6380                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6381                 &Scalars[0], Scalars.size());
6382}
6383
6384
6385/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6386/// location that is 'Dist' units away from the location that the 'Base' load
6387/// is loading from.
6388bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6389                                     unsigned Bytes, int Dist) const {
6390  if (LD->getChain() != Base->getChain())
6391    return false;
6392  EVT VT = LD->getValueType(0);
6393  if (VT.getSizeInBits() / 8 != Bytes)
6394    return false;
6395
6396  SDValue Loc = LD->getOperand(1);
6397  SDValue BaseLoc = Base->getOperand(1);
6398  if (Loc.getOpcode() == ISD::FrameIndex) {
6399    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6400      return false;
6401    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6402    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6403    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6404    int FS  = MFI->getObjectSize(FI);
6405    int BFS = MFI->getObjectSize(BFI);
6406    if (FS != BFS || FS != (int)Bytes) return false;
6407    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6408  }
6409
6410  // Handle X+C
6411  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6412      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6413    return true;
6414
6415  const GlobalValue *GV1 = NULL;
6416  const GlobalValue *GV2 = NULL;
6417  int64_t Offset1 = 0;
6418  int64_t Offset2 = 0;
6419  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6420  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6421  if (isGA1 && isGA2 && GV1 == GV2)
6422    return Offset1 == (Offset2 + Dist*Bytes);
6423  return false;
6424}
6425
6426
6427/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6428/// it cannot be inferred.
6429unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6430  // If this is a GlobalAddress + cst, return the alignment.
6431  const GlobalValue *GV;
6432  int64_t GVOffset = 0;
6433  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6434    // If GV has specified alignment, then use it. Otherwise, use the preferred
6435    // alignment.
6436    unsigned Align = GV->getAlignment();
6437    if (!Align) {
6438      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6439        if (GVar->hasInitializer()) {
6440          const TargetData *TD = TLI.getTargetData();
6441          Align = TD->getPreferredAlignment(GVar);
6442        }
6443      }
6444    }
6445    return MinAlign(Align, GVOffset);
6446  }
6447
6448  // If this is a direct reference to a stack slot, use information about the
6449  // stack slot's alignment.
6450  int FrameIdx = 1 << 31;
6451  int64_t FrameOffset = 0;
6452  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6453    FrameIdx = FI->getIndex();
6454  } else if (isBaseWithConstantOffset(Ptr) &&
6455             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6456    // Handle FI+Cst
6457    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6458    FrameOffset = Ptr.getConstantOperandVal(1);
6459  }
6460
6461  if (FrameIdx != (1 << 31)) {
6462    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6463    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6464                                    FrameOffset);
6465    return FIInfoAlign;
6466  }
6467
6468  return 0;
6469}
6470
6471void SelectionDAG::dump() const {
6472  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6473
6474  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6475       I != E; ++I) {
6476    const SDNode *N = I;
6477    if (!N->hasOneUse() && N != getRoot().getNode())
6478      DumpNodes(N, 2, this);
6479  }
6480
6481  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6482
6483  dbgs() << "\n\n";
6484}
6485
6486void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6487  print_types(OS, G);
6488  print_details(OS, G);
6489}
6490
6491typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6492static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6493                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6494  if (!once.insert(N))          // If we've been here before, return now.
6495    return;
6496
6497  // Dump the current SDNode, but don't end the line yet.
6498  OS << std::string(indent, ' ');
6499  N->printr(OS, G);
6500
6501  // Having printed this SDNode, walk the children:
6502  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6503    const SDNode *child = N->getOperand(i).getNode();
6504
6505    if (i) OS << ",";
6506    OS << " ";
6507
6508    if (child->getNumOperands() == 0) {
6509      // This child has no grandchildren; print it inline right here.
6510      child->printr(OS, G);
6511      once.insert(child);
6512    } else {         // Just the address. FIXME: also print the child's opcode.
6513      OS << (void*)child;
6514      if (unsigned RN = N->getOperand(i).getResNo())
6515        OS << ":" << RN;
6516    }
6517  }
6518
6519  OS << "\n";
6520
6521  // Dump children that have grandchildren on their own line(s).
6522  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6523    const SDNode *child = N->getOperand(i).getNode();
6524    DumpNodesr(OS, child, indent+2, G, once);
6525  }
6526}
6527
6528void SDNode::dumpr() const {
6529  VisitedSDNodeSet once;
6530  DumpNodesr(dbgs(), this, 0, 0, once);
6531}
6532
6533void SDNode::dumpr(const SelectionDAG *G) const {
6534  VisitedSDNodeSet once;
6535  DumpNodesr(dbgs(), this, 0, G, once);
6536}
6537
6538
6539// getAddressSpace - Return the address space this GlobalAddress belongs to.
6540unsigned GlobalAddressSDNode::getAddressSpace() const {
6541  return getGlobal()->getType()->getAddressSpace();
6542}
6543
6544
6545Type *ConstantPoolSDNode::getType() const {
6546  if (isMachineConstantPoolEntry())
6547    return Val.MachineCPVal->getType();
6548  return Val.ConstVal->getType();
6549}
6550
6551bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6552                                        APInt &SplatUndef,
6553                                        unsigned &SplatBitSize,
6554                                        bool &HasAnyUndefs,
6555                                        unsigned MinSplatBits,
6556                                        bool isBigEndian) {
6557  EVT VT = getValueType(0);
6558  assert(VT.isVector() && "Expected a vector type");
6559  unsigned sz = VT.getSizeInBits();
6560  if (MinSplatBits > sz)
6561    return false;
6562
6563  SplatValue = APInt(sz, 0);
6564  SplatUndef = APInt(sz, 0);
6565
6566  // Get the bits.  Bits with undefined values (when the corresponding element
6567  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6568  // in SplatValue.  If any of the values are not constant, give up and return
6569  // false.
6570  unsigned int nOps = getNumOperands();
6571  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6572  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6573
6574  for (unsigned j = 0; j < nOps; ++j) {
6575    unsigned i = isBigEndian ? nOps-1-j : j;
6576    SDValue OpVal = getOperand(i);
6577    unsigned BitPos = j * EltBitSize;
6578
6579    if (OpVal.getOpcode() == ISD::UNDEF)
6580      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6581    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6582      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6583                    zextOrTrunc(sz) << BitPos;
6584    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6585      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6586     else
6587      return false;
6588  }
6589
6590  // The build_vector is all constants or undefs.  Find the smallest element
6591  // size that splats the vector.
6592
6593  HasAnyUndefs = (SplatUndef != 0);
6594  while (sz > 8) {
6595
6596    unsigned HalfSize = sz / 2;
6597    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6598    APInt LowValue = SplatValue.trunc(HalfSize);
6599    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6600    APInt LowUndef = SplatUndef.trunc(HalfSize);
6601
6602    // If the two halves do not match (ignoring undef bits), stop here.
6603    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6604        MinSplatBits > HalfSize)
6605      break;
6606
6607    SplatValue = HighValue | LowValue;
6608    SplatUndef = HighUndef & LowUndef;
6609
6610    sz = HalfSize;
6611  }
6612
6613  SplatBitSize = sz;
6614  return true;
6615}
6616
6617bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6618  // Find the first non-undef value in the shuffle mask.
6619  unsigned i, e;
6620  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6621    /* search */;
6622
6623  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6624
6625  // Make sure all remaining elements are either undef or the same as the first
6626  // non-undef value.
6627  for (int Idx = Mask[i]; i != e; ++i)
6628    if (Mask[i] >= 0 && Mask[i] != Idx)
6629      return false;
6630  return true;
6631}
6632
6633#ifdef XDEBUG
6634static void checkForCyclesHelper(const SDNode *N,
6635                                 SmallPtrSet<const SDNode*, 32> &Visited,
6636                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6637  // If this node has already been checked, don't check it again.
6638  if (Checked.count(N))
6639    return;
6640
6641  // If a node has already been visited on this depth-first walk, reject it as
6642  // a cycle.
6643  if (!Visited.insert(N)) {
6644    dbgs() << "Offending node:\n";
6645    N->dumprFull();
6646    errs() << "Detected cycle in SelectionDAG\n";
6647    abort();
6648  }
6649
6650  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6651    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6652
6653  Checked.insert(N);
6654  Visited.erase(N);
6655}
6656#endif
6657
6658void llvm::checkForCycles(const llvm::SDNode *N) {
6659#ifdef XDEBUG
6660  assert(N && "Checking nonexistant SDNode");
6661  SmallPtrSet<const SDNode*, 32> visited;
6662  SmallPtrSet<const SDNode*, 32> checked;
6663  checkForCyclesHelper(N, visited, checked);
6664#endif
6665}
6666
6667void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6668  checkForCycles(DAG->getRoot().getNode());
6669}
6670