SelectionDAG.cpp revision 6ce610f04bb232ce8b57e50e885f30f65d19e1a6
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getAddressingMode());
433    ID.AddInteger(LD->getExtensionType());
434    ID.AddInteger(LD->getMemoryVT().getRawBits());
435    ID.AddInteger(LD->getRawFlags());
436    break;
437  }
438  case ISD::STORE: {
439    const StoreSDNode *ST = cast<StoreSDNode>(N);
440    ID.AddInteger(ST->getAddressingMode());
441    ID.AddInteger(ST->isTruncatingStore());
442    ID.AddInteger(ST->getMemoryVT().getRawBits());
443    ID.AddInteger(ST->getRawFlags());
444    break;
445  }
446  case ISD::ATOMIC_CMP_SWAP:
447  case ISD::ATOMIC_SWAP:
448  case ISD::ATOMIC_LOAD_ADD:
449  case ISD::ATOMIC_LOAD_SUB:
450  case ISD::ATOMIC_LOAD_AND:
451  case ISD::ATOMIC_LOAD_OR:
452  case ISD::ATOMIC_LOAD_XOR:
453  case ISD::ATOMIC_LOAD_NAND:
454  case ISD::ATOMIC_LOAD_MIN:
455  case ISD::ATOMIC_LOAD_MAX:
456  case ISD::ATOMIC_LOAD_UMIN:
457  case ISD::ATOMIC_LOAD_UMAX: {
458    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
459    ID.AddInteger(AT->getRawFlags());
460    break;
461  }
462  } // end switch (N->getOpcode())
463}
464
465/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
466/// data.
467static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
468  AddNodeIDOpcode(ID, N->getOpcode());
469  // Add the return value info.
470  AddNodeIDValueTypes(ID, N->getVTList());
471  // Add the operand info.
472  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
473
474  // Handle SDNode leafs with special info.
475  AddNodeIDCustom(ID, N);
476}
477
478/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
479/// the CSE map that carries both alignment and volatility information.
480///
481static inline unsigned
482encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
483  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
484}
485
486//===----------------------------------------------------------------------===//
487//                              SelectionDAG Class
488//===----------------------------------------------------------------------===//
489
490/// doNotCSE - Return true if CSE should not be performed for this node.
491static bool doNotCSE(SDNode *N) {
492  if (N->getValueType(0) == MVT::Flag)
493    return true; // Never CSE anything that produces a flag.
494
495  switch (N->getOpcode()) {
496  default: break;
497  case ISD::HANDLENODE:
498  case ISD::DBG_LABEL:
499  case ISD::DBG_STOPPOINT:
500  case ISD::EH_LABEL:
501  case ISD::DECLARE:
502    return true;   // Never CSE these nodes.
503  }
504
505  // Check that remaining values produced are not flags.
506  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
507    if (N->getValueType(i) == MVT::Flag)
508      return true; // Never CSE anything that produces a flag.
509
510  return false;
511}
512
513/// RemoveDeadNodes - This method deletes all unreachable nodes in the
514/// SelectionDAG.
515void SelectionDAG::RemoveDeadNodes() {
516  // Create a dummy node (which is not added to allnodes), that adds a reference
517  // to the root node, preventing it from being deleted.
518  HandleSDNode Dummy(getRoot());
519
520  SmallVector<SDNode*, 128> DeadNodes;
521
522  // Add all obviously-dead nodes to the DeadNodes worklist.
523  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
524    if (I->use_empty())
525      DeadNodes.push_back(I);
526
527  RemoveDeadNodes(DeadNodes);
528
529  // If the root changed (e.g. it was a dead load, update the root).
530  setRoot(Dummy.getValue());
531}
532
533/// RemoveDeadNodes - This method deletes the unreachable nodes in the
534/// given list, and any nodes that become unreachable as a result.
535void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
536                                   DAGUpdateListener *UpdateListener) {
537
538  // Process the worklist, deleting the nodes and adding their uses to the
539  // worklist.
540  while (!DeadNodes.empty()) {
541    SDNode *N = DeadNodes.pop_back_val();
542
543    if (UpdateListener)
544      UpdateListener->NodeDeleted(N, 0);
545
546    // Take the node out of the appropriate CSE map.
547    RemoveNodeFromCSEMaps(N);
548
549    // Next, brutally remove the operand list.  This is safe to do, as there are
550    // no cycles in the graph.
551    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
552      SDUse &Use = *I++;
553      SDNode *Operand = Use.getNode();
554      Use.set(SDValue());
555
556      // Now that we removed this operand, see if there are no uses of it left.
557      if (Operand->use_empty())
558        DeadNodes.push_back(Operand);
559    }
560
561    DeallocateNode(N);
562  }
563}
564
565void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
566  SmallVector<SDNode*, 16> DeadNodes(1, N);
567  RemoveDeadNodes(DeadNodes, UpdateListener);
568}
569
570void SelectionDAG::DeleteNode(SDNode *N) {
571  // First take this out of the appropriate CSE map.
572  RemoveNodeFromCSEMaps(N);
573
574  // Finally, remove uses due to operands of this node, remove from the
575  // AllNodes list, and delete the node.
576  DeleteNodeNotInCSEMaps(N);
577}
578
579void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
580  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
581  assert(N->use_empty() && "Cannot delete a node that is not dead!");
582
583  // Drop all of the operands and decrement used node's use counts.
584  N->DropOperands();
585
586  DeallocateNode(N);
587}
588
589void SelectionDAG::DeallocateNode(SDNode *N) {
590  if (N->OperandsNeedDelete)
591    delete[] N->OperandList;
592
593  // Set the opcode to DELETED_NODE to help catch bugs when node
594  // memory is reallocated.
595  N->NodeType = ISD::DELETED_NODE;
596
597  NodeAllocator.Deallocate(AllNodes.remove(N));
598}
599
600/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
601/// correspond to it.  This is useful when we're about to delete or repurpose
602/// the node.  We don't want future request for structurally identical nodes
603/// to return N anymore.
604bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
605  bool Erased = false;
606  switch (N->getOpcode()) {
607  case ISD::EntryToken:
608    assert(0 && "EntryToken should not be in CSEMaps!");
609    return false;
610  case ISD::HANDLENODE: return false;  // noop.
611  case ISD::CONDCODE:
612    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
613           "Cond code doesn't exist!");
614    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
615    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
616    break;
617  case ISD::ExternalSymbol:
618    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
619    break;
620  case ISD::TargetExternalSymbol:
621    Erased =
622      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
623    break;
624  case ISD::VALUETYPE: {
625    MVT VT = cast<VTSDNode>(N)->getVT();
626    if (VT.isExtended()) {
627      Erased = ExtendedValueTypeNodes.erase(VT);
628    } else {
629      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
630      ValueTypeNodes[VT.getSimpleVT()] = 0;
631    }
632    break;
633  }
634  default:
635    // Remove it from the CSE Map.
636    Erased = CSEMap.RemoveNode(N);
637    break;
638  }
639#ifndef NDEBUG
640  // Verify that the node was actually in one of the CSE maps, unless it has a
641  // flag result (which cannot be CSE'd) or is one of the special cases that are
642  // not subject to CSE.
643  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
644      !N->isMachineOpcode() && !doNotCSE(N)) {
645    N->dump(this);
646    cerr << "\n";
647    assert(0 && "Node is not in map!");
648  }
649#endif
650  return Erased;
651}
652
653/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
654/// maps and modified in place. Add it back to the CSE maps, unless an identical
655/// node already exists, in which case transfer all its users to the existing
656/// node. This transfer can potentially trigger recursive merging.
657///
658void
659SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
660                                       DAGUpdateListener *UpdateListener) {
661  // For node types that aren't CSE'd, just act as if no identical node
662  // already exists.
663  if (!doNotCSE(N)) {
664    SDNode *Existing = CSEMap.GetOrInsertNode(N);
665    if (Existing != N) {
666      // If there was already an existing matching node, use ReplaceAllUsesWith
667      // to replace the dead one with the existing one.  This can cause
668      // recursive merging of other unrelated nodes down the line.
669      ReplaceAllUsesWith(N, Existing, UpdateListener);
670
671      // N is now dead.  Inform the listener if it exists and delete it.
672      if (UpdateListener)
673        UpdateListener->NodeDeleted(N, Existing);
674      DeleteNodeNotInCSEMaps(N);
675      return;
676    }
677  }
678
679  // If the node doesn't already exist, we updated it.  Inform a listener if
680  // it exists.
681  if (UpdateListener)
682    UpdateListener->NodeUpdated(N);
683}
684
685/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
686/// were replaced with those specified.  If this node is never memoized,
687/// return null, otherwise return a pointer to the slot it would take.  If a
688/// node already exists with these operands, the slot will be non-null.
689SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
690                                           void *&InsertPos) {
691  if (doNotCSE(N))
692    return 0;
693
694  SDValue Ops[] = { Op };
695  FoldingSetNodeID ID;
696  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
697  AddNodeIDCustom(ID, N);
698  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
699}
700
701/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
702/// were replaced with those specified.  If this node is never memoized,
703/// return null, otherwise return a pointer to the slot it would take.  If a
704/// node already exists with these operands, the slot will be non-null.
705SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
706                                           SDValue Op1, SDValue Op2,
707                                           void *&InsertPos) {
708  if (doNotCSE(N))
709    return 0;
710
711  SDValue Ops[] = { Op1, Op2 };
712  FoldingSetNodeID ID;
713  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
714  AddNodeIDCustom(ID, N);
715  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
716}
717
718
719/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
720/// were replaced with those specified.  If this node is never memoized,
721/// return null, otherwise return a pointer to the slot it would take.  If a
722/// node already exists with these operands, the slot will be non-null.
723SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
724                                           const SDValue *Ops,unsigned NumOps,
725                                           void *&InsertPos) {
726  if (doNotCSE(N))
727    return 0;
728
729  FoldingSetNodeID ID;
730  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
731  AddNodeIDCustom(ID, N);
732  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
733}
734
735/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
736void SelectionDAG::VerifyNode(SDNode *N) {
737  switch (N->getOpcode()) {
738  default:
739    break;
740  case ISD::BUILD_PAIR: {
741    MVT VT = N->getValueType(0);
742    assert(N->getNumValues() == 1 && "Too many results!");
743    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
744           "Wrong return type!");
745    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
746    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
747           "Mismatched operand types!");
748    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
749           "Wrong operand type!");
750    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
751           "Wrong return type size");
752    break;
753  }
754  case ISD::BUILD_VECTOR: {
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(N->getValueType(0).isVector() && "Wrong return type!");
757    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
758           "Wrong number of operands!");
759    // FIXME: Change vector_shuffle to a variadic node with mask elements being
760    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
761    // operand, and it is not always possible to legalize it.  Turning off the
762    // following checks at least makes it possible to legalize most of the time.
763//    MVT EltVT = N->getValueType(0).getVectorElementType();
764//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
765//      assert(I->getValueType() == EltVT &&
766//             "Wrong operand type!");
767    break;
768  }
769  }
770}
771
772/// getMVTAlignment - Compute the default alignment value for the
773/// given type.
774///
775unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
776  const Type *Ty = VT == MVT::iPTR ?
777                   PointerType::get(Type::Int8Ty, 0) :
778                   VT.getTypeForMVT();
779
780  return TLI.getTargetData()->getABITypeAlignment(Ty);
781}
782
783SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
784  : TLI(tli), FLI(fli),
785    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
786    Root(getEntryNode()) {
787  AllNodes.push_back(&EntryNode);
788}
789
790void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
791                        DwarfWriter *dw) {
792  MF = &mf;
793  MMI = mmi;
794  DW = dw;
795}
796
797SelectionDAG::~SelectionDAG() {
798  allnodes_clear();
799}
800
801void SelectionDAG::allnodes_clear() {
802  assert(&*AllNodes.begin() == &EntryNode);
803  AllNodes.remove(AllNodes.begin());
804  while (!AllNodes.empty())
805    DeallocateNode(AllNodes.begin());
806}
807
808void SelectionDAG::clear() {
809  allnodes_clear();
810  OperandAllocator.Reset();
811  CSEMap.clear();
812
813  ExtendedValueTypeNodes.clear();
814  ExternalSymbols.clear();
815  TargetExternalSymbols.clear();
816  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
817            static_cast<CondCodeSDNode*>(0));
818  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
819            static_cast<SDNode*>(0));
820
821  EntryNode.UseList = 0;
822  AllNodes.push_back(&EntryNode);
823  Root = getEntryNode();
824}
825
826SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
827  if (Op.getValueType() == VT) return Op;
828  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
829                                   VT.getSizeInBits());
830  return getNode(ISD::AND, Op.getValueType(), Op,
831                 getConstant(Imm, Op.getValueType()));
832}
833
834SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
835  if (Op.getValueType() == VT) return Op;
836  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
837                                   VT.getSizeInBits());
838  return getNode(ISD::AND, DL, Op.getValueType(), Op,
839                 getConstant(Imm, Op.getValueType()));
840}
841
842/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
843///
844SDValue SelectionDAG::getNOT(SDValue Val, MVT VT) {
845  SDValue NegOne;
846  if (VT.isVector()) {
847    MVT EltVT = VT.getVectorElementType();
848    SDValue NegOneElt = getConstant(EltVT.getIntegerVTBitMask(), EltVT);
849    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
850    NegOne = getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0], NegOnes.size());
851  } else
852    NegOne = getConstant(VT.getIntegerVTBitMask(), VT);
853
854  return getNode(ISD::XOR, VT, Val, NegOne);
855}
856
857/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
858///
859SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
860  SDValue NegOne;
861  if (VT.isVector()) {
862    MVT EltVT = VT.getVectorElementType();
863    SDValue NegOneElt = getConstant(EltVT.getIntegerVTBitMask(), EltVT);
864    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
865    NegOne = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(), VT,
866                     &NegOnes[0], NegOnes.size());
867  } else {
868    NegOne = getConstant(VT.getIntegerVTBitMask(), VT);
869  }
870
871  return getNode(ISD::XOR, DL, VT, Val, NegOne);
872}
873
874SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
875  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
876  assert((EltVT.getSizeInBits() >= 64 ||
877         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
878         "getConstant with a uint64_t value that doesn't fit in the type!");
879  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
880}
881
882SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
883  return getConstant(*ConstantInt::get(Val), VT, isT);
884}
885
886SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
887  assert(VT.isInteger() && "Cannot create FP integer constant!");
888
889  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
890  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
891         "APInt size does not match type size!");
892
893  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
894  FoldingSetNodeID ID;
895  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
896  ID.AddPointer(&Val);
897  void *IP = 0;
898  SDNode *N = NULL;
899  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
900    if (!VT.isVector())
901      return SDValue(N, 0);
902  if (!N) {
903    N = NodeAllocator.Allocate<ConstantSDNode>();
904    new (N) ConstantSDNode(isT, &Val, EltVT);
905    CSEMap.InsertNode(N, IP);
906    AllNodes.push_back(N);
907  }
908
909  SDValue Result(N, 0);
910  if (VT.isVector()) {
911    SmallVector<SDValue, 8> Ops;
912    Ops.assign(VT.getVectorNumElements(), Result);
913    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
914  }
915  return Result;
916}
917
918SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
919  return getConstant(Val, TLI.getPointerTy(), isTarget);
920}
921
922
923SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
924  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
925}
926
927SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
928  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
929
930  MVT EltVT =
931    VT.isVector() ? VT.getVectorElementType() : VT;
932
933  // Do the map lookup using the actual bit pattern for the floating point
934  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
935  // we don't have issues with SNANs.
936  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
937  FoldingSetNodeID ID;
938  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
939  ID.AddPointer(&V);
940  void *IP = 0;
941  SDNode *N = NULL;
942  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
943    if (!VT.isVector())
944      return SDValue(N, 0);
945  if (!N) {
946    N = NodeAllocator.Allocate<ConstantFPSDNode>();
947    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
948    CSEMap.InsertNode(N, IP);
949    AllNodes.push_back(N);
950  }
951
952  SDValue Result(N, 0);
953  if (VT.isVector()) {
954    SmallVector<SDValue, 8> Ops;
955    Ops.assign(VT.getVectorNumElements(), Result);
956    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
957  }
958  return Result;
959}
960
961SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
962  MVT EltVT =
963    VT.isVector() ? VT.getVectorElementType() : VT;
964  if (EltVT==MVT::f32)
965    return getConstantFP(APFloat((float)Val), VT, isTarget);
966  else
967    return getConstantFP(APFloat(Val), VT, isTarget);
968}
969
970SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
971                                       MVT VT, int64_t Offset,
972                                       bool isTargetGA) {
973  unsigned Opc;
974
975  // Truncate (with sign-extension) the offset value to the pointer size.
976  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
977  if (BitWidth < 64)
978    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
979
980  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
981  if (!GVar) {
982    // If GV is an alias then use the aliasee for determining thread-localness.
983    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
984      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
985  }
986
987  if (GVar && GVar->isThreadLocal())
988    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
989  else
990    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
991
992  FoldingSetNodeID ID;
993  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
994  ID.AddPointer(GV);
995  ID.AddInteger(Offset);
996  void *IP = 0;
997  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
998    return SDValue(E, 0);
999  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1000  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
1001  CSEMap.InsertNode(N, IP);
1002  AllNodes.push_back(N);
1003  return SDValue(N, 0);
1004}
1005
1006SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
1007  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1008  FoldingSetNodeID ID;
1009  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1010  ID.AddInteger(FI);
1011  void *IP = 0;
1012  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1013    return SDValue(E, 0);
1014  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1015  new (N) FrameIndexSDNode(FI, VT, isTarget);
1016  CSEMap.InsertNode(N, IP);
1017  AllNodes.push_back(N);
1018  return SDValue(N, 0);
1019}
1020
1021SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1022  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1023  FoldingSetNodeID ID;
1024  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1025  ID.AddInteger(JTI);
1026  void *IP = 0;
1027  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1028    return SDValue(E, 0);
1029  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1030  new (N) JumpTableSDNode(JTI, VT, isTarget);
1031  CSEMap.InsertNode(N, IP);
1032  AllNodes.push_back(N);
1033  return SDValue(N, 0);
1034}
1035
1036SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1037                                      unsigned Alignment, int Offset,
1038                                      bool isTarget) {
1039  if (Alignment == 0)
1040    Alignment =
1041      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1042  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1043  FoldingSetNodeID ID;
1044  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1045  ID.AddInteger(Alignment);
1046  ID.AddInteger(Offset);
1047  ID.AddPointer(C);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1052  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1053  CSEMap.InsertNode(N, IP);
1054  AllNodes.push_back(N);
1055  return SDValue(N, 0);
1056}
1057
1058
1059SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1060                                      unsigned Alignment, int Offset,
1061                                      bool isTarget) {
1062  if (Alignment == 0)
1063    Alignment =
1064      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1065  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1066  FoldingSetNodeID ID;
1067  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1068  ID.AddInteger(Alignment);
1069  ID.AddInteger(Offset);
1070  C->AddSelectionDAGCSEId(ID);
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDValue(E, 0);
1074  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1075  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1076  CSEMap.InsertNode(N, IP);
1077  AllNodes.push_back(N);
1078  return SDValue(N, 0);
1079}
1080
1081
1082SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1083  FoldingSetNodeID ID;
1084  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1085  ID.AddPointer(MBB);
1086  void *IP = 0;
1087  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1088    return SDValue(E, 0);
1089  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1090  new (N) BasicBlockSDNode(MBB);
1091  CSEMap.InsertNode(N, IP);
1092  AllNodes.push_back(N);
1093  return SDValue(N, 0);
1094}
1095
1096SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB, DebugLoc dl) {
1097  FoldingSetNodeID ID;
1098  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1099  ID.AddPointer(MBB);
1100  void *IP = 0;
1101  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1102    return SDValue(E, 0);
1103  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1104  new (N) BasicBlockSDNode(MBB, dl);
1105  CSEMap.InsertNode(N, IP);
1106  AllNodes.push_back(N);
1107  return SDValue(N, 0);
1108}
1109
1110SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1111  FoldingSetNodeID ID;
1112  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1113  ID.AddInteger(Flags.getRawBits());
1114  void *IP = 0;
1115  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1116    return SDValue(E, 0);
1117  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1118  new (N) ARG_FLAGSSDNode(Flags);
1119  CSEMap.InsertNode(N, IP);
1120  AllNodes.push_back(N);
1121  return SDValue(N, 0);
1122}
1123
1124SDValue SelectionDAG::getValueType(MVT VT) {
1125  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1126    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1127
1128  SDNode *&N = VT.isExtended() ?
1129    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1130
1131  if (N) return SDValue(N, 0);
1132  N = NodeAllocator.Allocate<VTSDNode>();
1133  new (N) VTSDNode(VT);
1134  AllNodes.push_back(N);
1135  return SDValue(N, 0);
1136}
1137
1138SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1139  SDNode *&N = ExternalSymbols[Sym];
1140  if (N) return SDValue(N, 0);
1141  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1142  new (N) ExternalSymbolSDNode(false, Sym, VT);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getExternalSymbol(const char *Sym, DebugLoc dl, MVT VT) {
1148  SDNode *&N = ExternalSymbols[Sym];
1149  if (N) return SDValue(N, 0);
1150  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1151  new (N) ExternalSymbolSDNode(false, dl, Sym, VT);
1152  AllNodes.push_back(N);
1153  return SDValue(N, 0);
1154}
1155
1156SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1157  SDNode *&N = TargetExternalSymbols[Sym];
1158  if (N) return SDValue(N, 0);
1159  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1160  new (N) ExternalSymbolSDNode(true, Sym, VT);
1161  AllNodes.push_back(N);
1162  return SDValue(N, 0);
1163}
1164
1165SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, DebugLoc dl,
1166                                              MVT VT) {
1167  SDNode *&N = TargetExternalSymbols[Sym];
1168  if (N) return SDValue(N, 0);
1169  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1170  new (N) ExternalSymbolSDNode(true, dl, Sym, VT);
1171  AllNodes.push_back(N);
1172  return SDValue(N, 0);
1173}
1174
1175SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1176  if ((unsigned)Cond >= CondCodeNodes.size())
1177    CondCodeNodes.resize(Cond+1);
1178
1179  if (CondCodeNodes[Cond] == 0) {
1180    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1181    new (N) CondCodeSDNode(Cond);
1182    CondCodeNodes[Cond] = N;
1183    AllNodes.push_back(N);
1184  }
1185  return SDValue(CondCodeNodes[Cond], 0);
1186}
1187
1188SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1189                                       SDValue STy, SDValue Rnd, SDValue Sat,
1190                                       ISD::CvtCode Code) {
1191  // If the src and dest types are the same, no conversion is necessary.
1192  if (DTy == STy)
1193    return Val;
1194
1195  FoldingSetNodeID ID;
1196  void* IP = 0;
1197  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1198    return SDValue(E, 0);
1199  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1200  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1201  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1202  CSEMap.InsertNode(N, IP);
1203  AllNodes.push_back(N);
1204  return SDValue(N, 0);
1205}
1206
1207SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1208  FoldingSetNodeID ID;
1209  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1210  ID.AddInteger(RegNo);
1211  void *IP = 0;
1212  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1213    return SDValue(E, 0);
1214  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1215  new (N) RegisterSDNode(RegNo, VT);
1216  CSEMap.InsertNode(N, IP);
1217  AllNodes.push_back(N);
1218  return SDValue(N, 0);
1219}
1220
1221SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1222                                      unsigned Line, unsigned Col,
1223                                      Value *CU) {
1224  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1225  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1226  AllNodes.push_back(N);
1227  return SDValue(N, 0);
1228}
1229
1230SDValue SelectionDAG::getLabel(unsigned Opcode,
1231                               SDValue Root,
1232                               unsigned LabelID) {
1233  FoldingSetNodeID ID;
1234  SDValue Ops[] = { Root };
1235  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1236  ID.AddInteger(LabelID);
1237  void *IP = 0;
1238  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1239    return SDValue(E, 0);
1240  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1241  new (N) LabelSDNode(Opcode, Root, LabelID);
1242  CSEMap.InsertNode(N, IP);
1243  AllNodes.push_back(N);
1244  return SDValue(N, 0);
1245}
1246
1247SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1248                               SDValue Root,
1249                               unsigned LabelID) {
1250  FoldingSetNodeID ID;
1251  SDValue Ops[] = { Root };
1252  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1253  ID.AddInteger(LabelID);
1254  void *IP = 0;
1255  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1256    return SDValue(E, 0);
1257  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1258  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1259  CSEMap.InsertNode(N, IP);
1260  AllNodes.push_back(N);
1261  return SDValue(N, 0);
1262}
1263
1264SDValue SelectionDAG::getSrcValue(const Value *V) {
1265  assert((!V || isa<PointerType>(V->getType())) &&
1266         "SrcValue is not a pointer?");
1267
1268  FoldingSetNodeID ID;
1269  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1270  ID.AddPointer(V);
1271
1272  void *IP = 0;
1273  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1274    return SDValue(E, 0);
1275
1276  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1277  new (N) SrcValueSDNode(V);
1278  CSEMap.InsertNode(N, IP);
1279  AllNodes.push_back(N);
1280  return SDValue(N, 0);
1281}
1282
1283SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1284#ifndef NDEBUG
1285  const Value *v = MO.getValue();
1286  assert((!v || isa<PointerType>(v->getType())) &&
1287         "SrcValue is not a pointer?");
1288#endif
1289
1290  FoldingSetNodeID ID;
1291  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1292  MO.Profile(ID);
1293
1294  void *IP = 0;
1295  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1296    return SDValue(E, 0);
1297
1298  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1299  new (N) MemOperandSDNode(MO);
1300  CSEMap.InsertNode(N, IP);
1301  AllNodes.push_back(N);
1302  return SDValue(N, 0);
1303}
1304
1305/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1306/// specified value type.
1307SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1308  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1309  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1310  const Type *Ty = VT.getTypeForMVT();
1311  unsigned StackAlign =
1312  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1313
1314  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1315  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1316}
1317
1318/// CreateStackTemporary - Create a stack temporary suitable for holding
1319/// either of the specified value types.
1320SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1321  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1322                            VT2.getStoreSizeInBits())/8;
1323  const Type *Ty1 = VT1.getTypeForMVT();
1324  const Type *Ty2 = VT2.getTypeForMVT();
1325  const TargetData *TD = TLI.getTargetData();
1326  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1327                            TD->getPrefTypeAlignment(Ty2));
1328
1329  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1330  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1331  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1332}
1333
1334SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1335                                SDValue N2, ISD::CondCode Cond) {
1336  // These setcc operations always fold.
1337  switch (Cond) {
1338  default: break;
1339  case ISD::SETFALSE:
1340  case ISD::SETFALSE2: return getConstant(0, VT);
1341  case ISD::SETTRUE:
1342  case ISD::SETTRUE2:  return getConstant(1, VT);
1343
1344  case ISD::SETOEQ:
1345  case ISD::SETOGT:
1346  case ISD::SETOGE:
1347  case ISD::SETOLT:
1348  case ISD::SETOLE:
1349  case ISD::SETONE:
1350  case ISD::SETO:
1351  case ISD::SETUO:
1352  case ISD::SETUEQ:
1353  case ISD::SETUNE:
1354    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1355    break;
1356  }
1357
1358  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1359    const APInt &C2 = N2C->getAPIntValue();
1360    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1361      const APInt &C1 = N1C->getAPIntValue();
1362
1363      switch (Cond) {
1364      default: assert(0 && "Unknown integer setcc!");
1365      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1366      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1367      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1368      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1369      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1370      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1371      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1372      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1373      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1374      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1375      }
1376    }
1377  }
1378  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1379    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1380      // No compile time operations on this type yet.
1381      if (N1C->getValueType(0) == MVT::ppcf128)
1382        return SDValue();
1383
1384      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1385      switch (Cond) {
1386      default: break;
1387      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1388                          return getNode(ISD::UNDEF, VT);
1389                        // fall through
1390      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1391      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1392                          return getNode(ISD::UNDEF, VT);
1393                        // fall through
1394      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1395                                           R==APFloat::cmpLessThan, VT);
1396      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1397                          return getNode(ISD::UNDEF, VT);
1398                        // fall through
1399      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1400      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1401                          return getNode(ISD::UNDEF, VT);
1402                        // fall through
1403      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1404      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1405                          return getNode(ISD::UNDEF, VT);
1406                        // fall through
1407      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1408                                           R==APFloat::cmpEqual, VT);
1409      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1410                          return getNode(ISD::UNDEF, VT);
1411                        // fall through
1412      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1413                                           R==APFloat::cmpEqual, VT);
1414      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1415      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1416      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1417                                           R==APFloat::cmpEqual, VT);
1418      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1419      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1420                                           R==APFloat::cmpLessThan, VT);
1421      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1422                                           R==APFloat::cmpUnordered, VT);
1423      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1424      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1425      }
1426    } else {
1427      // Ensure that the constant occurs on the RHS.
1428      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1429    }
1430  }
1431
1432  // Could not fold it.
1433  return SDValue();
1434}
1435
1436/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1437/// use this predicate to simplify operations downstream.
1438bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1439  unsigned BitWidth = Op.getValueSizeInBits();
1440  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1441}
1442
1443/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1444/// this predicate to simplify operations downstream.  Mask is known to be zero
1445/// for bits that V cannot have.
1446bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1447                                     unsigned Depth) const {
1448  APInt KnownZero, KnownOne;
1449  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1450  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1451  return (KnownZero & Mask) == Mask;
1452}
1453
1454/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1455/// known to be either zero or one and return them in the KnownZero/KnownOne
1456/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1457/// processing.
1458void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1459                                     APInt &KnownZero, APInt &KnownOne,
1460                                     unsigned Depth) const {
1461  unsigned BitWidth = Mask.getBitWidth();
1462  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1463         "Mask size mismatches value type size!");
1464
1465  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1466  if (Depth == 6 || Mask == 0)
1467    return;  // Limit search depth.
1468
1469  APInt KnownZero2, KnownOne2;
1470
1471  switch (Op.getOpcode()) {
1472  case ISD::Constant:
1473    // We know all of the bits for a constant!
1474    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1475    KnownZero = ~KnownOne & Mask;
1476    return;
1477  case ISD::AND:
1478    // If either the LHS or the RHS are Zero, the result is zero.
1479    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1480    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1481                      KnownZero2, KnownOne2, Depth+1);
1482    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1483    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1484
1485    // Output known-1 bits are only known if set in both the LHS & RHS.
1486    KnownOne &= KnownOne2;
1487    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1488    KnownZero |= KnownZero2;
1489    return;
1490  case ISD::OR:
1491    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1492    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1493                      KnownZero2, KnownOne2, Depth+1);
1494    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1495    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1496
1497    // Output known-0 bits are only known if clear in both the LHS & RHS.
1498    KnownZero &= KnownZero2;
1499    // Output known-1 are known to be set if set in either the LHS | RHS.
1500    KnownOne |= KnownOne2;
1501    return;
1502  case ISD::XOR: {
1503    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1504    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1505    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1506    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1507
1508    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1509    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1510    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1511    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1512    KnownZero = KnownZeroOut;
1513    return;
1514  }
1515  case ISD::MUL: {
1516    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1517    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1518    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1519    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1520    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1521
1522    // If low bits are zero in either operand, output low known-0 bits.
1523    // Also compute a conserative estimate for high known-0 bits.
1524    // More trickiness is possible, but this is sufficient for the
1525    // interesting case of alignment computation.
1526    KnownOne.clear();
1527    unsigned TrailZ = KnownZero.countTrailingOnes() +
1528                      KnownZero2.countTrailingOnes();
1529    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1530                               KnownZero2.countLeadingOnes(),
1531                               BitWidth) - BitWidth;
1532
1533    TrailZ = std::min(TrailZ, BitWidth);
1534    LeadZ = std::min(LeadZ, BitWidth);
1535    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1536                APInt::getHighBitsSet(BitWidth, LeadZ);
1537    KnownZero &= Mask;
1538    return;
1539  }
1540  case ISD::UDIV: {
1541    // For the purposes of computing leading zeros we can conservatively
1542    // treat a udiv as a logical right shift by the power of 2 known to
1543    // be less than the denominator.
1544    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1545    ComputeMaskedBits(Op.getOperand(0),
1546                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1547    unsigned LeadZ = KnownZero2.countLeadingOnes();
1548
1549    KnownOne2.clear();
1550    KnownZero2.clear();
1551    ComputeMaskedBits(Op.getOperand(1),
1552                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1553    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1554    if (RHSUnknownLeadingOnes != BitWidth)
1555      LeadZ = std::min(BitWidth,
1556                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1557
1558    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1559    return;
1560  }
1561  case ISD::SELECT:
1562    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1563    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1564    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1565    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1566
1567    // Only known if known in both the LHS and RHS.
1568    KnownOne &= KnownOne2;
1569    KnownZero &= KnownZero2;
1570    return;
1571  case ISD::SELECT_CC:
1572    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1573    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1574    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1575    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1576
1577    // Only known if known in both the LHS and RHS.
1578    KnownOne &= KnownOne2;
1579    KnownZero &= KnownZero2;
1580    return;
1581  case ISD::SADDO:
1582  case ISD::UADDO:
1583  case ISD::SSUBO:
1584  case ISD::USUBO:
1585  case ISD::SMULO:
1586  case ISD::UMULO:
1587    if (Op.getResNo() != 1)
1588      return;
1589    // The boolean result conforms to getBooleanContents.  Fall through.
1590  case ISD::SETCC:
1591    // If we know the result of a setcc has the top bits zero, use this info.
1592    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1593        BitWidth > 1)
1594      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1595    return;
1596  case ISD::SHL:
1597    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1598    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1599      unsigned ShAmt = SA->getZExtValue();
1600
1601      // If the shift count is an invalid immediate, don't do anything.
1602      if (ShAmt >= BitWidth)
1603        return;
1604
1605      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1606                        KnownZero, KnownOne, Depth+1);
1607      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1608      KnownZero <<= ShAmt;
1609      KnownOne  <<= ShAmt;
1610      // low bits known zero.
1611      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1612    }
1613    return;
1614  case ISD::SRL:
1615    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1616    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1617      unsigned ShAmt = SA->getZExtValue();
1618
1619      // If the shift count is an invalid immediate, don't do anything.
1620      if (ShAmt >= BitWidth)
1621        return;
1622
1623      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1624                        KnownZero, KnownOne, Depth+1);
1625      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1626      KnownZero = KnownZero.lshr(ShAmt);
1627      KnownOne  = KnownOne.lshr(ShAmt);
1628
1629      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1630      KnownZero |= HighBits;  // High bits known zero.
1631    }
1632    return;
1633  case ISD::SRA:
1634    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1635      unsigned ShAmt = SA->getZExtValue();
1636
1637      // If the shift count is an invalid immediate, don't do anything.
1638      if (ShAmt >= BitWidth)
1639        return;
1640
1641      APInt InDemandedMask = (Mask << ShAmt);
1642      // If any of the demanded bits are produced by the sign extension, we also
1643      // demand the input sign bit.
1644      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1645      if (HighBits.getBoolValue())
1646        InDemandedMask |= APInt::getSignBit(BitWidth);
1647
1648      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1649                        Depth+1);
1650      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1651      KnownZero = KnownZero.lshr(ShAmt);
1652      KnownOne  = KnownOne.lshr(ShAmt);
1653
1654      // Handle the sign bits.
1655      APInt SignBit = APInt::getSignBit(BitWidth);
1656      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1657
1658      if (KnownZero.intersects(SignBit)) {
1659        KnownZero |= HighBits;  // New bits are known zero.
1660      } else if (KnownOne.intersects(SignBit)) {
1661        KnownOne  |= HighBits;  // New bits are known one.
1662      }
1663    }
1664    return;
1665  case ISD::SIGN_EXTEND_INREG: {
1666    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1667    unsigned EBits = EVT.getSizeInBits();
1668
1669    // Sign extension.  Compute the demanded bits in the result that are not
1670    // present in the input.
1671    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1672
1673    APInt InSignBit = APInt::getSignBit(EBits);
1674    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1675
1676    // If the sign extended bits are demanded, we know that the sign
1677    // bit is demanded.
1678    InSignBit.zext(BitWidth);
1679    if (NewBits.getBoolValue())
1680      InputDemandedBits |= InSignBit;
1681
1682    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1683                      KnownZero, KnownOne, Depth+1);
1684    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1685
1686    // If the sign bit of the input is known set or clear, then we know the
1687    // top bits of the result.
1688    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1689      KnownZero |= NewBits;
1690      KnownOne  &= ~NewBits;
1691    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1692      KnownOne  |= NewBits;
1693      KnownZero &= ~NewBits;
1694    } else {                              // Input sign bit unknown
1695      KnownZero &= ~NewBits;
1696      KnownOne  &= ~NewBits;
1697    }
1698    return;
1699  }
1700  case ISD::CTTZ:
1701  case ISD::CTLZ:
1702  case ISD::CTPOP: {
1703    unsigned LowBits = Log2_32(BitWidth)+1;
1704    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1705    KnownOne.clear();
1706    return;
1707  }
1708  case ISD::LOAD: {
1709    if (ISD::isZEXTLoad(Op.getNode())) {
1710      LoadSDNode *LD = cast<LoadSDNode>(Op);
1711      MVT VT = LD->getMemoryVT();
1712      unsigned MemBits = VT.getSizeInBits();
1713      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1714    }
1715    return;
1716  }
1717  case ISD::ZERO_EXTEND: {
1718    MVT InVT = Op.getOperand(0).getValueType();
1719    unsigned InBits = InVT.getSizeInBits();
1720    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1721    APInt InMask    = Mask;
1722    InMask.trunc(InBits);
1723    KnownZero.trunc(InBits);
1724    KnownOne.trunc(InBits);
1725    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1726    KnownZero.zext(BitWidth);
1727    KnownOne.zext(BitWidth);
1728    KnownZero |= NewBits;
1729    return;
1730  }
1731  case ISD::SIGN_EXTEND: {
1732    MVT InVT = Op.getOperand(0).getValueType();
1733    unsigned InBits = InVT.getSizeInBits();
1734    APInt InSignBit = APInt::getSignBit(InBits);
1735    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1736    APInt InMask = Mask;
1737    InMask.trunc(InBits);
1738
1739    // If any of the sign extended bits are demanded, we know that the sign
1740    // bit is demanded. Temporarily set this bit in the mask for our callee.
1741    if (NewBits.getBoolValue())
1742      InMask |= InSignBit;
1743
1744    KnownZero.trunc(InBits);
1745    KnownOne.trunc(InBits);
1746    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1747
1748    // Note if the sign bit is known to be zero or one.
1749    bool SignBitKnownZero = KnownZero.isNegative();
1750    bool SignBitKnownOne  = KnownOne.isNegative();
1751    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1752           "Sign bit can't be known to be both zero and one!");
1753
1754    // If the sign bit wasn't actually demanded by our caller, we don't
1755    // want it set in the KnownZero and KnownOne result values. Reset the
1756    // mask and reapply it to the result values.
1757    InMask = Mask;
1758    InMask.trunc(InBits);
1759    KnownZero &= InMask;
1760    KnownOne  &= InMask;
1761
1762    KnownZero.zext(BitWidth);
1763    KnownOne.zext(BitWidth);
1764
1765    // If the sign bit is known zero or one, the top bits match.
1766    if (SignBitKnownZero)
1767      KnownZero |= NewBits;
1768    else if (SignBitKnownOne)
1769      KnownOne  |= NewBits;
1770    return;
1771  }
1772  case ISD::ANY_EXTEND: {
1773    MVT InVT = Op.getOperand(0).getValueType();
1774    unsigned InBits = InVT.getSizeInBits();
1775    APInt InMask = Mask;
1776    InMask.trunc(InBits);
1777    KnownZero.trunc(InBits);
1778    KnownOne.trunc(InBits);
1779    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1780    KnownZero.zext(BitWidth);
1781    KnownOne.zext(BitWidth);
1782    return;
1783  }
1784  case ISD::TRUNCATE: {
1785    MVT InVT = Op.getOperand(0).getValueType();
1786    unsigned InBits = InVT.getSizeInBits();
1787    APInt InMask = Mask;
1788    InMask.zext(InBits);
1789    KnownZero.zext(InBits);
1790    KnownOne.zext(InBits);
1791    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1792    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1793    KnownZero.trunc(BitWidth);
1794    KnownOne.trunc(BitWidth);
1795    break;
1796  }
1797  case ISD::AssertZext: {
1798    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1799    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1800    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1801                      KnownOne, Depth+1);
1802    KnownZero |= (~InMask) & Mask;
1803    return;
1804  }
1805  case ISD::FGETSIGN:
1806    // All bits are zero except the low bit.
1807    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1808    return;
1809
1810  case ISD::SUB: {
1811    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1812      // We know that the top bits of C-X are clear if X contains less bits
1813      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1814      // positive if we can prove that X is >= 0 and < 16.
1815      if (CLHS->getAPIntValue().isNonNegative()) {
1816        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1817        // NLZ can't be BitWidth with no sign bit
1818        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1819        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1820                          Depth+1);
1821
1822        // If all of the MaskV bits are known to be zero, then we know the
1823        // output top bits are zero, because we now know that the output is
1824        // from [0-C].
1825        if ((KnownZero2 & MaskV) == MaskV) {
1826          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1827          // Top bits known zero.
1828          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1829        }
1830      }
1831    }
1832  }
1833  // fall through
1834  case ISD::ADD: {
1835    // Output known-0 bits are known if clear or set in both the low clear bits
1836    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1837    // low 3 bits clear.
1838    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1839    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1840    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1841    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1842
1843    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1844    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1845    KnownZeroOut = std::min(KnownZeroOut,
1846                            KnownZero2.countTrailingOnes());
1847
1848    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1849    return;
1850  }
1851  case ISD::SREM:
1852    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1853      const APInt &RA = Rem->getAPIntValue();
1854      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1855        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1856        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1857        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1858
1859        // If the sign bit of the first operand is zero, the sign bit of
1860        // the result is zero. If the first operand has no one bits below
1861        // the second operand's single 1 bit, its sign will be zero.
1862        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1863          KnownZero2 |= ~LowBits;
1864
1865        KnownZero |= KnownZero2 & Mask;
1866
1867        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1868      }
1869    }
1870    return;
1871  case ISD::UREM: {
1872    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1873      const APInt &RA = Rem->getAPIntValue();
1874      if (RA.isPowerOf2()) {
1875        APInt LowBits = (RA - 1);
1876        APInt Mask2 = LowBits & Mask;
1877        KnownZero |= ~LowBits & Mask;
1878        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1879        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1880        break;
1881      }
1882    }
1883
1884    // Since the result is less than or equal to either operand, any leading
1885    // zero bits in either operand must also exist in the result.
1886    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1887    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1888                      Depth+1);
1889    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1890                      Depth+1);
1891
1892    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1893                                KnownZero2.countLeadingOnes());
1894    KnownOne.clear();
1895    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1896    return;
1897  }
1898  default:
1899    // Allow the target to implement this method for its nodes.
1900    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1901  case ISD::INTRINSIC_WO_CHAIN:
1902  case ISD::INTRINSIC_W_CHAIN:
1903  case ISD::INTRINSIC_VOID:
1904      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1905    }
1906    return;
1907  }
1908}
1909
1910/// ComputeNumSignBits - Return the number of times the sign bit of the
1911/// register is replicated into the other bits.  We know that at least 1 bit
1912/// is always equal to the sign bit (itself), but other cases can give us
1913/// information.  For example, immediately after an "SRA X, 2", we know that
1914/// the top 3 bits are all equal to each other, so we return 3.
1915unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1916  MVT VT = Op.getValueType();
1917  assert(VT.isInteger() && "Invalid VT!");
1918  unsigned VTBits = VT.getSizeInBits();
1919  unsigned Tmp, Tmp2;
1920  unsigned FirstAnswer = 1;
1921
1922  if (Depth == 6)
1923    return 1;  // Limit search depth.
1924
1925  switch (Op.getOpcode()) {
1926  default: break;
1927  case ISD::AssertSext:
1928    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1929    return VTBits-Tmp+1;
1930  case ISD::AssertZext:
1931    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1932    return VTBits-Tmp;
1933
1934  case ISD::Constant: {
1935    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1936    // If negative, return # leading ones.
1937    if (Val.isNegative())
1938      return Val.countLeadingOnes();
1939
1940    // Return # leading zeros.
1941    return Val.countLeadingZeros();
1942  }
1943
1944  case ISD::SIGN_EXTEND:
1945    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1946    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1947
1948  case ISD::SIGN_EXTEND_INREG:
1949    // Max of the input and what this extends.
1950    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1951    Tmp = VTBits-Tmp+1;
1952
1953    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1954    return std::max(Tmp, Tmp2);
1955
1956  case ISD::SRA:
1957    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1958    // SRA X, C   -> adds C sign bits.
1959    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1960      Tmp += C->getZExtValue();
1961      if (Tmp > VTBits) Tmp = VTBits;
1962    }
1963    return Tmp;
1964  case ISD::SHL:
1965    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1966      // shl destroys sign bits.
1967      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1968      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1969          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1970      return Tmp - C->getZExtValue();
1971    }
1972    break;
1973  case ISD::AND:
1974  case ISD::OR:
1975  case ISD::XOR:    // NOT is handled here.
1976    // Logical binary ops preserve the number of sign bits at the worst.
1977    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1978    if (Tmp != 1) {
1979      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1980      FirstAnswer = std::min(Tmp, Tmp2);
1981      // We computed what we know about the sign bits as our first
1982      // answer. Now proceed to the generic code that uses
1983      // ComputeMaskedBits, and pick whichever answer is better.
1984    }
1985    break;
1986
1987  case ISD::SELECT:
1988    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1989    if (Tmp == 1) return 1;  // Early out.
1990    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1991    return std::min(Tmp, Tmp2);
1992
1993  case ISD::SADDO:
1994  case ISD::UADDO:
1995  case ISD::SSUBO:
1996  case ISD::USUBO:
1997  case ISD::SMULO:
1998  case ISD::UMULO:
1999    if (Op.getResNo() != 1)
2000      break;
2001    // The boolean result conforms to getBooleanContents.  Fall through.
2002  case ISD::SETCC:
2003    // If setcc returns 0/-1, all bits are sign bits.
2004    if (TLI.getBooleanContents() ==
2005        TargetLowering::ZeroOrNegativeOneBooleanContent)
2006      return VTBits;
2007    break;
2008  case ISD::ROTL:
2009  case ISD::ROTR:
2010    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2011      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2012
2013      // Handle rotate right by N like a rotate left by 32-N.
2014      if (Op.getOpcode() == ISD::ROTR)
2015        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2016
2017      // If we aren't rotating out all of the known-in sign bits, return the
2018      // number that are left.  This handles rotl(sext(x), 1) for example.
2019      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2020      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2021    }
2022    break;
2023  case ISD::ADD:
2024    // Add can have at most one carry bit.  Thus we know that the output
2025    // is, at worst, one more bit than the inputs.
2026    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2027    if (Tmp == 1) return 1;  // Early out.
2028
2029    // Special case decrementing a value (ADD X, -1):
2030    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2031      if (CRHS->isAllOnesValue()) {
2032        APInt KnownZero, KnownOne;
2033        APInt Mask = APInt::getAllOnesValue(VTBits);
2034        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2035
2036        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2037        // sign bits set.
2038        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2039          return VTBits;
2040
2041        // If we are subtracting one from a positive number, there is no carry
2042        // out of the result.
2043        if (KnownZero.isNegative())
2044          return Tmp;
2045      }
2046
2047    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2048    if (Tmp2 == 1) return 1;
2049      return std::min(Tmp, Tmp2)-1;
2050    break;
2051
2052  case ISD::SUB:
2053    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2054    if (Tmp2 == 1) return 1;
2055
2056    // Handle NEG.
2057    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2058      if (CLHS->isNullValue()) {
2059        APInt KnownZero, KnownOne;
2060        APInt Mask = APInt::getAllOnesValue(VTBits);
2061        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2062        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2063        // sign bits set.
2064        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2065          return VTBits;
2066
2067        // If the input is known to be positive (the sign bit is known clear),
2068        // the output of the NEG has the same number of sign bits as the input.
2069        if (KnownZero.isNegative())
2070          return Tmp2;
2071
2072        // Otherwise, we treat this like a SUB.
2073      }
2074
2075    // Sub can have at most one carry bit.  Thus we know that the output
2076    // is, at worst, one more bit than the inputs.
2077    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2078    if (Tmp == 1) return 1;  // Early out.
2079      return std::min(Tmp, Tmp2)-1;
2080    break;
2081  case ISD::TRUNCATE:
2082    // FIXME: it's tricky to do anything useful for this, but it is an important
2083    // case for targets like X86.
2084    break;
2085  }
2086
2087  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2088  if (Op.getOpcode() == ISD::LOAD) {
2089    LoadSDNode *LD = cast<LoadSDNode>(Op);
2090    unsigned ExtType = LD->getExtensionType();
2091    switch (ExtType) {
2092    default: break;
2093    case ISD::SEXTLOAD:    // '17' bits known
2094      Tmp = LD->getMemoryVT().getSizeInBits();
2095      return VTBits-Tmp+1;
2096    case ISD::ZEXTLOAD:    // '16' bits known
2097      Tmp = LD->getMemoryVT().getSizeInBits();
2098      return VTBits-Tmp;
2099    }
2100  }
2101
2102  // Allow the target to implement this method for its nodes.
2103  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2104      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2105      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2106      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2107    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2108    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2109  }
2110
2111  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2112  // use this information.
2113  APInt KnownZero, KnownOne;
2114  APInt Mask = APInt::getAllOnesValue(VTBits);
2115  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2116
2117  if (KnownZero.isNegative()) {        // sign bit is 0
2118    Mask = KnownZero;
2119  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2120    Mask = KnownOne;
2121  } else {
2122    // Nothing known.
2123    return FirstAnswer;
2124  }
2125
2126  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2127  // the number of identical bits in the top of the input value.
2128  Mask = ~Mask;
2129  Mask <<= Mask.getBitWidth()-VTBits;
2130  // Return # leading zeros.  We use 'min' here in case Val was zero before
2131  // shifting.  We don't want to return '64' as for an i32 "0".
2132  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2133}
2134
2135
2136bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2137  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2138  if (!GA) return false;
2139  if (GA->getOffset() != 0) return false;
2140  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2141  if (!GV) return false;
2142  MachineModuleInfo *MMI = getMachineModuleInfo();
2143  return MMI && MMI->hasDebugInfo();
2144}
2145
2146
2147/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2148/// element of the result of the vector shuffle.
2149SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2150  MVT VT = N->getValueType(0);
2151  SDValue PermMask = N->getOperand(2);
2152  SDValue Idx = PermMask.getOperand(i);
2153  if (Idx.getOpcode() == ISD::UNDEF)
2154    return getNode(ISD::UNDEF, VT.getVectorElementType());
2155  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2156  unsigned NumElems = PermMask.getNumOperands();
2157  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2158  Index %= NumElems;
2159
2160  if (V.getOpcode() == ISD::BIT_CONVERT) {
2161    V = V.getOperand(0);
2162    MVT VVT = V.getValueType();
2163    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2164      return SDValue();
2165  }
2166  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2167    return (Index == 0) ? V.getOperand(0)
2168                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2169  if (V.getOpcode() == ISD::BUILD_VECTOR)
2170    return V.getOperand(Index);
2171  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2172    return getShuffleScalarElt(V.getNode(), Index);
2173  return SDValue();
2174}
2175
2176
2177/// getNode - Gets or creates the specified node.
2178///
2179SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2180  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT);
2181}
2182
2183SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2184  FoldingSetNodeID ID;
2185  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2186  void *IP = 0;
2187  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2188    return SDValue(E, 0);
2189  SDNode *N = NodeAllocator.Allocate<SDNode>();
2190  new (N) SDNode(Opcode, DL, SDNode::getSDVTList(VT));
2191  CSEMap.InsertNode(N, IP);
2192
2193  AllNodes.push_back(N);
2194#ifndef NDEBUG
2195  VerifyNode(N);
2196#endif
2197  return SDValue(N, 0);
2198}
2199
2200SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2201  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Operand);
2202}
2203
2204SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2205                              MVT VT, SDValue Operand) {
2206  // Constant fold unary operations with an integer constant operand.
2207  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2208    const APInt &Val = C->getAPIntValue();
2209    unsigned BitWidth = VT.getSizeInBits();
2210    switch (Opcode) {
2211    default: break;
2212    case ISD::SIGN_EXTEND:
2213      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2214    case ISD::ANY_EXTEND:
2215    case ISD::ZERO_EXTEND:
2216    case ISD::TRUNCATE:
2217      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2218    case ISD::UINT_TO_FP:
2219    case ISD::SINT_TO_FP: {
2220      const uint64_t zero[] = {0, 0};
2221      // No compile time operations on this type.
2222      if (VT==MVT::ppcf128)
2223        break;
2224      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2225      (void)apf.convertFromAPInt(Val,
2226                                 Opcode==ISD::SINT_TO_FP,
2227                                 APFloat::rmNearestTiesToEven);
2228      return getConstantFP(apf, VT);
2229    }
2230    case ISD::BIT_CONVERT:
2231      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2232        return getConstantFP(Val.bitsToFloat(), VT);
2233      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2234        return getConstantFP(Val.bitsToDouble(), VT);
2235      break;
2236    case ISD::BSWAP:
2237      return getConstant(Val.byteSwap(), VT);
2238    case ISD::CTPOP:
2239      return getConstant(Val.countPopulation(), VT);
2240    case ISD::CTLZ:
2241      return getConstant(Val.countLeadingZeros(), VT);
2242    case ISD::CTTZ:
2243      return getConstant(Val.countTrailingZeros(), VT);
2244    }
2245  }
2246
2247  // Constant fold unary operations with a floating point constant operand.
2248  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2249    APFloat V = C->getValueAPF();    // make copy
2250    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2251      switch (Opcode) {
2252      case ISD::FNEG:
2253        V.changeSign();
2254        return getConstantFP(V, VT);
2255      case ISD::FABS:
2256        V.clearSign();
2257        return getConstantFP(V, VT);
2258      case ISD::FP_ROUND:
2259      case ISD::FP_EXTEND: {
2260        bool ignored;
2261        // This can return overflow, underflow, or inexact; we don't care.
2262        // FIXME need to be more flexible about rounding mode.
2263        (void)V.convert(*MVTToAPFloatSemantics(VT),
2264                        APFloat::rmNearestTiesToEven, &ignored);
2265        return getConstantFP(V, VT);
2266      }
2267      case ISD::FP_TO_SINT:
2268      case ISD::FP_TO_UINT: {
2269        integerPart x;
2270        bool ignored;
2271        assert(integerPartWidth >= 64);
2272        // FIXME need to be more flexible about rounding mode.
2273        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2274                              Opcode==ISD::FP_TO_SINT,
2275                              APFloat::rmTowardZero, &ignored);
2276        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2277          break;
2278        return getConstant(x, VT);
2279      }
2280      case ISD::BIT_CONVERT:
2281        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2282          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2283        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2284          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2285        break;
2286      }
2287    }
2288  }
2289
2290  unsigned OpOpcode = Operand.getNode()->getOpcode();
2291  switch (Opcode) {
2292  case ISD::TokenFactor:
2293  case ISD::MERGE_VALUES:
2294  case ISD::CONCAT_VECTORS:
2295    return Operand;         // Factor, merge or concat of one node?  No need.
2296  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2297  case ISD::FP_EXTEND:
2298    assert(VT.isFloatingPoint() &&
2299           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2300    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2301    if (Operand.getOpcode() == ISD::UNDEF)
2302      return getNode(ISD::UNDEF, VT);
2303    break;
2304  case ISD::SIGN_EXTEND:
2305    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2306           "Invalid SIGN_EXTEND!");
2307    if (Operand.getValueType() == VT) return Operand;   // noop extension
2308    assert(Operand.getValueType().bitsLT(VT)
2309           && "Invalid sext node, dst < src!");
2310    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2311      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2312    break;
2313  case ISD::ZERO_EXTEND:
2314    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2315           "Invalid ZERO_EXTEND!");
2316    if (Operand.getValueType() == VT) return Operand;   // noop extension
2317    assert(Operand.getValueType().bitsLT(VT)
2318           && "Invalid zext node, dst < src!");
2319    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2320      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2321    break;
2322  case ISD::ANY_EXTEND:
2323    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2324           "Invalid ANY_EXTEND!");
2325    if (Operand.getValueType() == VT) return Operand;   // noop extension
2326    assert(Operand.getValueType().bitsLT(VT)
2327           && "Invalid anyext node, dst < src!");
2328    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2329      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2330      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2331    break;
2332  case ISD::TRUNCATE:
2333    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2334           "Invalid TRUNCATE!");
2335    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2336    assert(Operand.getValueType().bitsGT(VT)
2337           && "Invalid truncate node, src < dst!");
2338    if (OpOpcode == ISD::TRUNCATE)
2339      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2340    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2341             OpOpcode == ISD::ANY_EXTEND) {
2342      // If the source is smaller than the dest, we still need an extend.
2343      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2344        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2345      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2346        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2347      else
2348        return Operand.getNode()->getOperand(0);
2349    }
2350    break;
2351  case ISD::BIT_CONVERT:
2352    // Basic sanity checking.
2353    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2354           && "Cannot BIT_CONVERT between types of different sizes!");
2355    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2356    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2357      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2358    if (OpOpcode == ISD::UNDEF)
2359      return getNode(ISD::UNDEF, VT);
2360    break;
2361  case ISD::SCALAR_TO_VECTOR:
2362    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2363           VT.getVectorElementType() == Operand.getValueType() &&
2364           "Illegal SCALAR_TO_VECTOR node!");
2365    if (OpOpcode == ISD::UNDEF)
2366      return getNode(ISD::UNDEF, VT);
2367    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2368    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2369        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2370        Operand.getConstantOperandVal(1) == 0 &&
2371        Operand.getOperand(0).getValueType() == VT)
2372      return Operand.getOperand(0);
2373    break;
2374  case ISD::FNEG:
2375    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2376      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2377                     Operand.getNode()->getOperand(0));
2378    if (OpOpcode == ISD::FNEG)  // --X -> X
2379      return Operand.getNode()->getOperand(0);
2380    break;
2381  case ISD::FABS:
2382    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2383      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2384    break;
2385  }
2386
2387  SDNode *N;
2388  SDVTList VTs = getVTList(VT);
2389  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2390    FoldingSetNodeID ID;
2391    SDValue Ops[1] = { Operand };
2392    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2393    void *IP = 0;
2394    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2395      return SDValue(E, 0);
2396    N = NodeAllocator.Allocate<UnarySDNode>();
2397    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2398    CSEMap.InsertNode(N, IP);
2399  } else {
2400    N = NodeAllocator.Allocate<UnarySDNode>();
2401    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2402  }
2403
2404  AllNodes.push_back(N);
2405#ifndef NDEBUG
2406  VerifyNode(N);
2407#endif
2408  return SDValue(N, 0);
2409}
2410
2411SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2412                                             MVT VT,
2413                                             ConstantSDNode *Cst1,
2414                                             ConstantSDNode *Cst2) {
2415  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2416
2417  switch (Opcode) {
2418  case ISD::ADD:  return getConstant(C1 + C2, VT);
2419  case ISD::SUB:  return getConstant(C1 - C2, VT);
2420  case ISD::MUL:  return getConstant(C1 * C2, VT);
2421  case ISD::UDIV:
2422    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2423    break;
2424  case ISD::UREM:
2425    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2426    break;
2427  case ISD::SDIV:
2428    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2429    break;
2430  case ISD::SREM:
2431    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2432    break;
2433  case ISD::AND:  return getConstant(C1 & C2, VT);
2434  case ISD::OR:   return getConstant(C1 | C2, VT);
2435  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2436  case ISD::SHL:  return getConstant(C1 << C2, VT);
2437  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2438  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2439  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2440  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2441  default: break;
2442  }
2443
2444  return SDValue();
2445}
2446
2447SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2448                              SDValue N1, SDValue N2) {
2449  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2);
2450}
2451
2452SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2453                              SDValue N1, SDValue N2) {
2454  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2455  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2456  switch (Opcode) {
2457  default: break;
2458  case ISD::TokenFactor:
2459    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2460           N2.getValueType() == MVT::Other && "Invalid token factor!");
2461    // Fold trivial token factors.
2462    if (N1.getOpcode() == ISD::EntryToken) return N2;
2463    if (N2.getOpcode() == ISD::EntryToken) return N1;
2464    if (N1 == N2) return N1;
2465    break;
2466  case ISD::CONCAT_VECTORS:
2467    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2468    // one big BUILD_VECTOR.
2469    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2470        N2.getOpcode() == ISD::BUILD_VECTOR) {
2471      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2472      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2473      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2474    }
2475    break;
2476  case ISD::AND:
2477    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2478           N1.getValueType() == VT && "Binary operator types must match!");
2479    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2480    // worth handling here.
2481    if (N2C && N2C->isNullValue())
2482      return N2;
2483    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2484      return N1;
2485    break;
2486  case ISD::OR:
2487  case ISD::XOR:
2488  case ISD::ADD:
2489  case ISD::SUB:
2490    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2491           N1.getValueType() == VT && "Binary operator types must match!");
2492    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2493    // it's worth handling here.
2494    if (N2C && N2C->isNullValue())
2495      return N1;
2496    break;
2497  case ISD::UDIV:
2498  case ISD::UREM:
2499  case ISD::MULHU:
2500  case ISD::MULHS:
2501  case ISD::MUL:
2502  case ISD::SDIV:
2503  case ISD::SREM:
2504    assert(VT.isInteger() && "This operator does not apply to FP types!");
2505    // fall through
2506  case ISD::FADD:
2507  case ISD::FSUB:
2508  case ISD::FMUL:
2509  case ISD::FDIV:
2510  case ISD::FREM:
2511    if (UnsafeFPMath) {
2512      if (Opcode == ISD::FADD) {
2513        // 0+x --> x
2514        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2515          if (CFP->getValueAPF().isZero())
2516            return N2;
2517        // x+0 --> x
2518        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2519          if (CFP->getValueAPF().isZero())
2520            return N1;
2521      } else if (Opcode == ISD::FSUB) {
2522        // x-0 --> x
2523        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2524          if (CFP->getValueAPF().isZero())
2525            return N1;
2526      }
2527    }
2528    assert(N1.getValueType() == N2.getValueType() &&
2529           N1.getValueType() == VT && "Binary operator types must match!");
2530    break;
2531  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2532    assert(N1.getValueType() == VT &&
2533           N1.getValueType().isFloatingPoint() &&
2534           N2.getValueType().isFloatingPoint() &&
2535           "Invalid FCOPYSIGN!");
2536    break;
2537  case ISD::SHL:
2538  case ISD::SRA:
2539  case ISD::SRL:
2540  case ISD::ROTL:
2541  case ISD::ROTR:
2542    assert(VT == N1.getValueType() &&
2543           "Shift operators return type must be the same as their first arg");
2544    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2545           "Shifts only work on integers");
2546    assert((N2.getValueType() == TLI.getShiftAmountTy() ||
2547            (N2.getValueType().isVector() && N2.getValueType().isInteger())) &&
2548           "Wrong type for shift amount");
2549
2550    // Always fold shifts of i1 values so the code generator doesn't need to
2551    // handle them.  Since we know the size of the shift has to be less than the
2552    // size of the value, the shift/rotate count is guaranteed to be zero.
2553    if (VT == MVT::i1)
2554      return N1;
2555    break;
2556  case ISD::FP_ROUND_INREG: {
2557    MVT EVT = cast<VTSDNode>(N2)->getVT();
2558    assert(VT == N1.getValueType() && "Not an inreg round!");
2559    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2560           "Cannot FP_ROUND_INREG integer types");
2561    assert(EVT.bitsLE(VT) && "Not rounding down!");
2562    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2563    break;
2564  }
2565  case ISD::FP_ROUND:
2566    assert(VT.isFloatingPoint() &&
2567           N1.getValueType().isFloatingPoint() &&
2568           VT.bitsLE(N1.getValueType()) &&
2569           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2570    if (N1.getValueType() == VT) return N1;  // noop conversion.
2571    break;
2572  case ISD::AssertSext:
2573  case ISD::AssertZext: {
2574    MVT EVT = cast<VTSDNode>(N2)->getVT();
2575    assert(VT == N1.getValueType() && "Not an inreg extend!");
2576    assert(VT.isInteger() && EVT.isInteger() &&
2577           "Cannot *_EXTEND_INREG FP types");
2578    assert(EVT.bitsLE(VT) && "Not extending!");
2579    if (VT == EVT) return N1; // noop assertion.
2580    break;
2581  }
2582  case ISD::SIGN_EXTEND_INREG: {
2583    MVT EVT = cast<VTSDNode>(N2)->getVT();
2584    assert(VT == N1.getValueType() && "Not an inreg extend!");
2585    assert(VT.isInteger() && EVT.isInteger() &&
2586           "Cannot *_EXTEND_INREG FP types");
2587    assert(EVT.bitsLE(VT) && "Not extending!");
2588    if (EVT == VT) return N1;  // Not actually extending
2589
2590    if (N1C) {
2591      APInt Val = N1C->getAPIntValue();
2592      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2593      Val <<= Val.getBitWidth()-FromBits;
2594      Val = Val.ashr(Val.getBitWidth()-FromBits);
2595      return getConstant(Val, VT);
2596    }
2597    break;
2598  }
2599  case ISD::EXTRACT_VECTOR_ELT:
2600    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2601    if (N1.getOpcode() == ISD::UNDEF)
2602      return getNode(ISD::UNDEF, VT);
2603
2604    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2605    // expanding copies of large vectors from registers.
2606    if (N2C &&
2607        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2608        N1.getNumOperands() > 0) {
2609      unsigned Factor =
2610        N1.getOperand(0).getValueType().getVectorNumElements();
2611      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2612                     N1.getOperand(N2C->getZExtValue() / Factor),
2613                     getConstant(N2C->getZExtValue() % Factor,
2614                                 N2.getValueType()));
2615    }
2616
2617    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2618    // expanding large vector constants.
2619    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2620      return N1.getOperand(N2C->getZExtValue());
2621
2622    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2623    // operations are lowered to scalars.
2624    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2625      // If the indices are the same, return the inserted element.
2626      if (N1.getOperand(2) == N2)
2627        return N1.getOperand(1);
2628      // If the indices are known different, extract the element from
2629      // the original vector.
2630      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2631               isa<ConstantSDNode>(N2))
2632        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2633    }
2634    break;
2635  case ISD::EXTRACT_ELEMENT:
2636    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2637    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2638           (N1.getValueType().isInteger() == VT.isInteger()) &&
2639           "Wrong types for EXTRACT_ELEMENT!");
2640
2641    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2642    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2643    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2644    if (N1.getOpcode() == ISD::BUILD_PAIR)
2645      return N1.getOperand(N2C->getZExtValue());
2646
2647    // EXTRACT_ELEMENT of a constant int is also very common.
2648    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2649      unsigned ElementSize = VT.getSizeInBits();
2650      unsigned Shift = ElementSize * N2C->getZExtValue();
2651      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2652      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2653    }
2654    break;
2655  case ISD::EXTRACT_SUBVECTOR:
2656    if (N1.getValueType() == VT) // Trivial extraction.
2657      return N1;
2658    break;
2659  }
2660
2661  if (N1C) {
2662    if (N2C) {
2663      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2664      if (SV.getNode()) return SV;
2665    } else {      // Cannonicalize constant to RHS if commutative
2666      if (isCommutativeBinOp(Opcode)) {
2667        std::swap(N1C, N2C);
2668        std::swap(N1, N2);
2669      }
2670    }
2671  }
2672
2673  // Constant fold FP operations.
2674  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2675  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2676  if (N1CFP) {
2677    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2678      // Cannonicalize constant to RHS if commutative
2679      std::swap(N1CFP, N2CFP);
2680      std::swap(N1, N2);
2681    } else if (N2CFP && VT != MVT::ppcf128) {
2682      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2683      APFloat::opStatus s;
2684      switch (Opcode) {
2685      case ISD::FADD:
2686        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2687        if (s != APFloat::opInvalidOp)
2688          return getConstantFP(V1, VT);
2689        break;
2690      case ISD::FSUB:
2691        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2692        if (s!=APFloat::opInvalidOp)
2693          return getConstantFP(V1, VT);
2694        break;
2695      case ISD::FMUL:
2696        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2697        if (s!=APFloat::opInvalidOp)
2698          return getConstantFP(V1, VT);
2699        break;
2700      case ISD::FDIV:
2701        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2702        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2703          return getConstantFP(V1, VT);
2704        break;
2705      case ISD::FREM :
2706        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2707        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2708          return getConstantFP(V1, VT);
2709        break;
2710      case ISD::FCOPYSIGN:
2711        V1.copySign(V2);
2712        return getConstantFP(V1, VT);
2713      default: break;
2714      }
2715    }
2716  }
2717
2718  // Canonicalize an UNDEF to the RHS, even over a constant.
2719  if (N1.getOpcode() == ISD::UNDEF) {
2720    if (isCommutativeBinOp(Opcode)) {
2721      std::swap(N1, N2);
2722    } else {
2723      switch (Opcode) {
2724      case ISD::FP_ROUND_INREG:
2725      case ISD::SIGN_EXTEND_INREG:
2726      case ISD::SUB:
2727      case ISD::FSUB:
2728      case ISD::FDIV:
2729      case ISD::FREM:
2730      case ISD::SRA:
2731        return N1;     // fold op(undef, arg2) -> undef
2732      case ISD::UDIV:
2733      case ISD::SDIV:
2734      case ISD::UREM:
2735      case ISD::SREM:
2736      case ISD::SRL:
2737      case ISD::SHL:
2738        if (!VT.isVector())
2739          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2740        // For vectors, we can't easily build an all zero vector, just return
2741        // the LHS.
2742        return N2;
2743      }
2744    }
2745  }
2746
2747  // Fold a bunch of operators when the RHS is undef.
2748  if (N2.getOpcode() == ISD::UNDEF) {
2749    switch (Opcode) {
2750    case ISD::XOR:
2751      if (N1.getOpcode() == ISD::UNDEF)
2752        // Handle undef ^ undef -> 0 special case. This is a common
2753        // idiom (misuse).
2754        return getConstant(0, VT);
2755      // fallthrough
2756    case ISD::ADD:
2757    case ISD::ADDC:
2758    case ISD::ADDE:
2759    case ISD::SUB:
2760    case ISD::FADD:
2761    case ISD::FSUB:
2762    case ISD::FMUL:
2763    case ISD::FDIV:
2764    case ISD::FREM:
2765    case ISD::UDIV:
2766    case ISD::SDIV:
2767    case ISD::UREM:
2768    case ISD::SREM:
2769      return N2;       // fold op(arg1, undef) -> undef
2770    case ISD::MUL:
2771    case ISD::AND:
2772    case ISD::SRL:
2773    case ISD::SHL:
2774      if (!VT.isVector())
2775        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2776      // For vectors, we can't easily build an all zero vector, just return
2777      // the LHS.
2778      return N1;
2779    case ISD::OR:
2780      if (!VT.isVector())
2781        return getConstant(VT.getIntegerVTBitMask(), VT);
2782      // For vectors, we can't easily build an all one vector, just return
2783      // the LHS.
2784      return N1;
2785    case ISD::SRA:
2786      return N1;
2787    }
2788  }
2789
2790  // Memoize this node if possible.
2791  SDNode *N;
2792  SDVTList VTs = getVTList(VT);
2793  if (VT != MVT::Flag) {
2794    SDValue Ops[] = { N1, N2 };
2795    FoldingSetNodeID ID;
2796    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2797    void *IP = 0;
2798    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2799      return SDValue(E, 0);
2800    N = NodeAllocator.Allocate<BinarySDNode>();
2801    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2802    CSEMap.InsertNode(N, IP);
2803  } else {
2804    N = NodeAllocator.Allocate<BinarySDNode>();
2805    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2806  }
2807
2808  AllNodes.push_back(N);
2809#ifndef NDEBUG
2810  VerifyNode(N);
2811#endif
2812  return SDValue(N, 0);
2813}
2814
2815SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2816                              SDValue N1, SDValue N2, SDValue N3) {
2817  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3);
2818}
2819
2820SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2821                              SDValue N1, SDValue N2, SDValue N3) {
2822  // Perform various simplifications.
2823  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2824  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2825  switch (Opcode) {
2826  case ISD::CONCAT_VECTORS:
2827    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2828    // one big BUILD_VECTOR.
2829    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2830        N2.getOpcode() == ISD::BUILD_VECTOR &&
2831        N3.getOpcode() == ISD::BUILD_VECTOR) {
2832      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2833      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2834      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2835      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2836    }
2837    break;
2838  case ISD::SETCC: {
2839    // Use FoldSetCC to simplify SETCC's.
2840    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2841    if (Simp.getNode()) return Simp;
2842    break;
2843  }
2844  case ISD::SELECT:
2845    if (N1C) {
2846     if (N1C->getZExtValue())
2847        return N2;             // select true, X, Y -> X
2848      else
2849        return N3;             // select false, X, Y -> Y
2850    }
2851
2852    if (N2 == N3) return N2;   // select C, X, X -> X
2853    break;
2854  case ISD::BRCOND:
2855    if (N2C) {
2856      if (N2C->getZExtValue()) // Unconditional branch
2857        return getNode(ISD::BR, MVT::Other, N1, N3);
2858      else
2859        return N1;         // Never-taken branch
2860    }
2861    break;
2862  case ISD::VECTOR_SHUFFLE:
2863    assert(N1.getValueType() == N2.getValueType() &&
2864           N1.getValueType().isVector() &&
2865           VT.isVector() && N3.getValueType().isVector() &&
2866           N3.getOpcode() == ISD::BUILD_VECTOR &&
2867           VT.getVectorNumElements() == N3.getNumOperands() &&
2868           "Illegal VECTOR_SHUFFLE node!");
2869    break;
2870  case ISD::BIT_CONVERT:
2871    // Fold bit_convert nodes from a type to themselves.
2872    if (N1.getValueType() == VT)
2873      return N1;
2874    break;
2875  }
2876
2877  // Memoize node if it doesn't produce a flag.
2878  SDNode *N;
2879  SDVTList VTs = getVTList(VT);
2880  if (VT != MVT::Flag) {
2881    SDValue Ops[] = { N1, N2, N3 };
2882    FoldingSetNodeID ID;
2883    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2884    void *IP = 0;
2885    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2886      return SDValue(E, 0);
2887    N = NodeAllocator.Allocate<TernarySDNode>();
2888    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2889    CSEMap.InsertNode(N, IP);
2890  } else {
2891    N = NodeAllocator.Allocate<TernarySDNode>();
2892    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2893  }
2894  AllNodes.push_back(N);
2895#ifndef NDEBUG
2896  VerifyNode(N);
2897#endif
2898  return SDValue(N, 0);
2899}
2900
2901SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2902                              SDValue N1, SDValue N2, SDValue N3,
2903                              SDValue N4) {
2904  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3, N4);
2905}
2906
2907SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2908                              SDValue N1, SDValue N2, SDValue N3,
2909                              SDValue N4) {
2910  SDValue Ops[] = { N1, N2, N3, N4 };
2911  return getNode(Opcode, DL, VT, Ops, 4);
2912}
2913
2914SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2915                              SDValue N1, SDValue N2, SDValue N3,
2916                              SDValue N4, SDValue N5) {
2917  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3, N4, N5);
2918}
2919
2920SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2921                              SDValue N1, SDValue N2, SDValue N3,
2922                              SDValue N4, SDValue N5) {
2923  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2924  return getNode(Opcode, DL, VT, Ops, 5);
2925}
2926
2927/// getMemsetValue - Vectorized representation of the memset value
2928/// operand.
2929static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2930  unsigned NumBits = VT.isVector() ?
2931    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2932  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2933    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2934    unsigned Shift = 8;
2935    for (unsigned i = NumBits; i > 8; i >>= 1) {
2936      Val = (Val << Shift) | Val;
2937      Shift <<= 1;
2938    }
2939    if (VT.isInteger())
2940      return DAG.getConstant(Val, VT);
2941    return DAG.getConstantFP(APFloat(Val), VT);
2942  }
2943
2944  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2945  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2946  unsigned Shift = 8;
2947  for (unsigned i = NumBits; i > 8; i >>= 1) {
2948    Value = DAG.getNode(ISD::OR, VT,
2949                        DAG.getNode(ISD::SHL, VT, Value,
2950                                    DAG.getConstant(Shift,
2951                                                    TLI.getShiftAmountTy())),
2952                        Value);
2953    Shift <<= 1;
2954  }
2955
2956  return Value;
2957}
2958
2959/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2960/// used when a memcpy is turned into a memset when the source is a constant
2961/// string ptr.
2962static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2963                                    const TargetLowering &TLI,
2964                                    std::string &Str, unsigned Offset) {
2965  // Handle vector with all elements zero.
2966  if (Str.empty()) {
2967    if (VT.isInteger())
2968      return DAG.getConstant(0, VT);
2969    unsigned NumElts = VT.getVectorNumElements();
2970    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2971    return DAG.getNode(ISD::BIT_CONVERT, VT,
2972                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2973  }
2974
2975  assert(!VT.isVector() && "Can't handle vector type here!");
2976  unsigned NumBits = VT.getSizeInBits();
2977  unsigned MSB = NumBits / 8;
2978  uint64_t Val = 0;
2979  if (TLI.isLittleEndian())
2980    Offset = Offset + MSB - 1;
2981  for (unsigned i = 0; i != MSB; ++i) {
2982    Val = (Val << 8) | (unsigned char)Str[Offset];
2983    Offset += TLI.isLittleEndian() ? -1 : 1;
2984  }
2985  return DAG.getConstant(Val, VT);
2986}
2987
2988/// getMemBasePlusOffset - Returns base and offset node for the
2989///
2990static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2991                                      SelectionDAG &DAG) {
2992  MVT VT = Base.getValueType();
2993  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2994}
2995
2996/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2997///
2998static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2999  unsigned SrcDelta = 0;
3000  GlobalAddressSDNode *G = NULL;
3001  if (Src.getOpcode() == ISD::GlobalAddress)
3002    G = cast<GlobalAddressSDNode>(Src);
3003  else if (Src.getOpcode() == ISD::ADD &&
3004           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3005           Src.getOperand(1).getOpcode() == ISD::Constant) {
3006    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3007    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3008  }
3009  if (!G)
3010    return false;
3011
3012  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3013  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3014    return true;
3015
3016  return false;
3017}
3018
3019/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3020/// to replace the memset / memcpy is below the threshold. It also returns the
3021/// types of the sequence of memory ops to perform memset / memcpy.
3022static
3023bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
3024                              SDValue Dst, SDValue Src,
3025                              unsigned Limit, uint64_t Size, unsigned &Align,
3026                              std::string &Str, bool &isSrcStr,
3027                              SelectionDAG &DAG,
3028                              const TargetLowering &TLI) {
3029  isSrcStr = isMemSrcFromString(Src, Str);
3030  bool isSrcConst = isa<ConstantSDNode>(Src);
3031  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3032  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
3033  if (VT != MVT::iAny) {
3034    unsigned NewAlign = (unsigned)
3035      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3036    // If source is a string constant, this will require an unaligned load.
3037    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3038      if (Dst.getOpcode() != ISD::FrameIndex) {
3039        // Can't change destination alignment. It requires a unaligned store.
3040        if (AllowUnalign)
3041          VT = MVT::iAny;
3042      } else {
3043        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3044        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3045        if (MFI->isFixedObjectIndex(FI)) {
3046          // Can't change destination alignment. It requires a unaligned store.
3047          if (AllowUnalign)
3048            VT = MVT::iAny;
3049        } else {
3050          // Give the stack frame object a larger alignment if needed.
3051          if (MFI->getObjectAlignment(FI) < NewAlign)
3052            MFI->setObjectAlignment(FI, NewAlign);
3053          Align = NewAlign;
3054        }
3055      }
3056    }
3057  }
3058
3059  if (VT == MVT::iAny) {
3060    if (AllowUnalign) {
3061      VT = MVT::i64;
3062    } else {
3063      switch (Align & 7) {
3064      case 0:  VT = MVT::i64; break;
3065      case 4:  VT = MVT::i32; break;
3066      case 2:  VT = MVT::i16; break;
3067      default: VT = MVT::i8;  break;
3068      }
3069    }
3070
3071    MVT LVT = MVT::i64;
3072    while (!TLI.isTypeLegal(LVT))
3073      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3074    assert(LVT.isInteger());
3075
3076    if (VT.bitsGT(LVT))
3077      VT = LVT;
3078  }
3079
3080  unsigned NumMemOps = 0;
3081  while (Size != 0) {
3082    unsigned VTSize = VT.getSizeInBits() / 8;
3083    while (VTSize > Size) {
3084      // For now, only use non-vector load / store's for the left-over pieces.
3085      if (VT.isVector()) {
3086        VT = MVT::i64;
3087        while (!TLI.isTypeLegal(VT))
3088          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3089        VTSize = VT.getSizeInBits() / 8;
3090      } else {
3091        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3092        VTSize >>= 1;
3093      }
3094    }
3095
3096    if (++NumMemOps > Limit)
3097      return false;
3098    MemOps.push_back(VT);
3099    Size -= VTSize;
3100  }
3101
3102  return true;
3103}
3104
3105static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
3106                                         SDValue Chain, SDValue Dst,
3107                                         SDValue Src, uint64_t Size,
3108                                         unsigned Align, bool AlwaysInline,
3109                                         const Value *DstSV, uint64_t DstSVOff,
3110                                         const Value *SrcSV, uint64_t SrcSVOff){
3111  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3112
3113  // Expand memcpy to a series of load and store ops if the size operand falls
3114  // below a certain threshold.
3115  std::vector<MVT> MemOps;
3116  uint64_t Limit = -1ULL;
3117  if (!AlwaysInline)
3118    Limit = TLI.getMaxStoresPerMemcpy();
3119  unsigned DstAlign = Align;  // Destination alignment can change.
3120  std::string Str;
3121  bool CopyFromStr;
3122  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3123                                Str, CopyFromStr, DAG, TLI))
3124    return SDValue();
3125
3126
3127  bool isZeroStr = CopyFromStr && Str.empty();
3128  SmallVector<SDValue, 8> OutChains;
3129  unsigned NumMemOps = MemOps.size();
3130  uint64_t SrcOff = 0, DstOff = 0;
3131  for (unsigned i = 0; i < NumMemOps; i++) {
3132    MVT VT = MemOps[i];
3133    unsigned VTSize = VT.getSizeInBits() / 8;
3134    SDValue Value, Store;
3135
3136    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3137      // It's unlikely a store of a vector immediate can be done in a single
3138      // instruction. It would require a load from a constantpool first.
3139      // We also handle store a vector with all zero's.
3140      // FIXME: Handle other cases where store of vector immediate is done in
3141      // a single instruction.
3142      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3143      Store = DAG.getStore(Chain, Value,
3144                           getMemBasePlusOffset(Dst, DstOff, DAG),
3145                           DstSV, DstSVOff + DstOff, false, DstAlign);
3146    } else {
3147      Value = DAG.getLoad(VT, Chain,
3148                          getMemBasePlusOffset(Src, SrcOff, DAG),
3149                          SrcSV, SrcSVOff + SrcOff, false, Align);
3150      Store = DAG.getStore(Chain, Value,
3151                           getMemBasePlusOffset(Dst, DstOff, DAG),
3152                           DstSV, DstSVOff + DstOff, false, DstAlign);
3153    }
3154    OutChains.push_back(Store);
3155    SrcOff += VTSize;
3156    DstOff += VTSize;
3157  }
3158
3159  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3160                     &OutChains[0], OutChains.size());
3161}
3162
3163static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3164                                          SDValue Chain, SDValue Dst,
3165                                          SDValue Src, uint64_t Size,
3166                                          unsigned Align, bool AlwaysInline,
3167                                          const Value *DstSV, uint64_t DstSVOff,
3168                                          const Value *SrcSV, uint64_t SrcSVOff){
3169  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3170
3171  // Expand memmove to a series of load and store ops if the size operand falls
3172  // below a certain threshold.
3173  std::vector<MVT> MemOps;
3174  uint64_t Limit = -1ULL;
3175  if (!AlwaysInline)
3176    Limit = TLI.getMaxStoresPerMemmove();
3177  unsigned DstAlign = Align;  // Destination alignment can change.
3178  std::string Str;
3179  bool CopyFromStr;
3180  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3181                                Str, CopyFromStr, DAG, TLI))
3182    return SDValue();
3183
3184  uint64_t SrcOff = 0, DstOff = 0;
3185
3186  SmallVector<SDValue, 8> LoadValues;
3187  SmallVector<SDValue, 8> LoadChains;
3188  SmallVector<SDValue, 8> OutChains;
3189  unsigned NumMemOps = MemOps.size();
3190  for (unsigned i = 0; i < NumMemOps; i++) {
3191    MVT VT = MemOps[i];
3192    unsigned VTSize = VT.getSizeInBits() / 8;
3193    SDValue Value, Store;
3194
3195    Value = DAG.getLoad(VT, Chain,
3196                        getMemBasePlusOffset(Src, SrcOff, DAG),
3197                        SrcSV, SrcSVOff + SrcOff, false, Align);
3198    LoadValues.push_back(Value);
3199    LoadChains.push_back(Value.getValue(1));
3200    SrcOff += VTSize;
3201  }
3202  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3203                      &LoadChains[0], LoadChains.size());
3204  OutChains.clear();
3205  for (unsigned i = 0; i < NumMemOps; i++) {
3206    MVT VT = MemOps[i];
3207    unsigned VTSize = VT.getSizeInBits() / 8;
3208    SDValue Value, Store;
3209
3210    Store = DAG.getStore(Chain, LoadValues[i],
3211                         getMemBasePlusOffset(Dst, DstOff, DAG),
3212                         DstSV, DstSVOff + DstOff, false, DstAlign);
3213    OutChains.push_back(Store);
3214    DstOff += VTSize;
3215  }
3216
3217  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3218                     &OutChains[0], OutChains.size());
3219}
3220
3221static SDValue getMemsetStores(SelectionDAG &DAG,
3222                                 SDValue Chain, SDValue Dst,
3223                                 SDValue Src, uint64_t Size,
3224                                 unsigned Align,
3225                                 const Value *DstSV, uint64_t DstSVOff) {
3226  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3227
3228  // Expand memset to a series of load/store ops if the size operand
3229  // falls below a certain threshold.
3230  std::vector<MVT> MemOps;
3231  std::string Str;
3232  bool CopyFromStr;
3233  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3234                                Size, Align, Str, CopyFromStr, DAG, TLI))
3235    return SDValue();
3236
3237  SmallVector<SDValue, 8> OutChains;
3238  uint64_t DstOff = 0;
3239
3240  unsigned NumMemOps = MemOps.size();
3241  for (unsigned i = 0; i < NumMemOps; i++) {
3242    MVT VT = MemOps[i];
3243    unsigned VTSize = VT.getSizeInBits() / 8;
3244    SDValue Value = getMemsetValue(Src, VT, DAG);
3245    SDValue Store = DAG.getStore(Chain, Value,
3246                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3247                                 DstSV, DstSVOff + DstOff);
3248    OutChains.push_back(Store);
3249    DstOff += VTSize;
3250  }
3251
3252  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3253                     &OutChains[0], OutChains.size());
3254}
3255
3256SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3257                                SDValue Src, SDValue Size,
3258                                unsigned Align, bool AlwaysInline,
3259                                const Value *DstSV, uint64_t DstSVOff,
3260                                const Value *SrcSV, uint64_t SrcSVOff) {
3261
3262  // Check to see if we should lower the memcpy to loads and stores first.
3263  // For cases within the target-specified limits, this is the best choice.
3264  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3265  if (ConstantSize) {
3266    // Memcpy with size zero? Just return the original chain.
3267    if (ConstantSize->isNullValue())
3268      return Chain;
3269
3270    SDValue Result =
3271      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3272                              ConstantSize->getZExtValue(),
3273                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3274    if (Result.getNode())
3275      return Result;
3276  }
3277
3278  // Then check to see if we should lower the memcpy with target-specific
3279  // code. If the target chooses to do this, this is the next best.
3280  SDValue Result =
3281    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3282                                AlwaysInline,
3283                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3284  if (Result.getNode())
3285    return Result;
3286
3287  // If we really need inline code and the target declined to provide it,
3288  // use a (potentially long) sequence of loads and stores.
3289  if (AlwaysInline) {
3290    assert(ConstantSize && "AlwaysInline requires a constant size!");
3291    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3292                                   ConstantSize->getZExtValue(), Align, true,
3293                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3294  }
3295
3296  // Emit a library call.
3297  TargetLowering::ArgListTy Args;
3298  TargetLowering::ArgListEntry Entry;
3299  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3300  Entry.Node = Dst; Args.push_back(Entry);
3301  Entry.Node = Src; Args.push_back(Entry);
3302  Entry.Node = Size; Args.push_back(Entry);
3303  std::pair<SDValue,SDValue> CallResult =
3304    TLI.LowerCallTo(Chain, Type::VoidTy,
3305                    false, false, false, false, CallingConv::C, false,
3306                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3307                    Args, *this);
3308  return CallResult.second;
3309}
3310
3311SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3312                                 SDValue Src, SDValue Size,
3313                                 unsigned Align,
3314                                 const Value *DstSV, uint64_t DstSVOff,
3315                                 const Value *SrcSV, uint64_t SrcSVOff) {
3316
3317  // Check to see if we should lower the memmove to loads and stores first.
3318  // For cases within the target-specified limits, this is the best choice.
3319  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3320  if (ConstantSize) {
3321    // Memmove with size zero? Just return the original chain.
3322    if (ConstantSize->isNullValue())
3323      return Chain;
3324
3325    SDValue Result =
3326      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3327                               ConstantSize->getZExtValue(),
3328                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3329    if (Result.getNode())
3330      return Result;
3331  }
3332
3333  // Then check to see if we should lower the memmove with target-specific
3334  // code. If the target chooses to do this, this is the next best.
3335  SDValue Result =
3336    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3337                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3338  if (Result.getNode())
3339    return Result;
3340
3341  // Emit a library call.
3342  TargetLowering::ArgListTy Args;
3343  TargetLowering::ArgListEntry Entry;
3344  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3345  Entry.Node = Dst; Args.push_back(Entry);
3346  Entry.Node = Src; Args.push_back(Entry);
3347  Entry.Node = Size; Args.push_back(Entry);
3348  std::pair<SDValue,SDValue> CallResult =
3349    TLI.LowerCallTo(Chain, Type::VoidTy,
3350                    false, false, false, false, CallingConv::C, false,
3351                    getExternalSymbol("memmove", TLI.getPointerTy()),
3352                    Args, *this);
3353  return CallResult.second;
3354}
3355
3356SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3357                                SDValue Src, SDValue Size,
3358                                unsigned Align,
3359                                const Value *DstSV, uint64_t DstSVOff) {
3360
3361  // Check to see if we should lower the memset to stores first.
3362  // For cases within the target-specified limits, this is the best choice.
3363  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3364  if (ConstantSize) {
3365    // Memset with size zero? Just return the original chain.
3366    if (ConstantSize->isNullValue())
3367      return Chain;
3368
3369    SDValue Result =
3370      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3371                      Align, DstSV, DstSVOff);
3372    if (Result.getNode())
3373      return Result;
3374  }
3375
3376  // Then check to see if we should lower the memset with target-specific
3377  // code. If the target chooses to do this, this is the next best.
3378  SDValue Result =
3379    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3380                                DstSV, DstSVOff);
3381  if (Result.getNode())
3382    return Result;
3383
3384  // Emit a library call.
3385  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3386  TargetLowering::ArgListTy Args;
3387  TargetLowering::ArgListEntry Entry;
3388  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3389  Args.push_back(Entry);
3390  // Extend or truncate the argument to be an i32 value for the call.
3391  if (Src.getValueType().bitsGT(MVT::i32))
3392    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3393  else
3394    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3395  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3396  Args.push_back(Entry);
3397  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3398  Args.push_back(Entry);
3399  std::pair<SDValue,SDValue> CallResult =
3400    TLI.LowerCallTo(Chain, Type::VoidTy,
3401                    false, false, false, false, CallingConv::C, false,
3402                    getExternalSymbol("memset", TLI.getPointerTy()),
3403                    Args, *this);
3404  return CallResult.second;
3405}
3406
3407SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3408                                SDValue Chain,
3409                                SDValue Ptr, SDValue Cmp,
3410                                SDValue Swp, const Value* PtrVal,
3411                                unsigned Alignment) {
3412  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3413  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3414
3415  MVT VT = Cmp.getValueType();
3416
3417  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3418    Alignment = getMVTAlignment(MemVT);
3419
3420  SDVTList VTs = getVTList(VT, MVT::Other);
3421  FoldingSetNodeID ID;
3422  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3423  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3424  void* IP = 0;
3425  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3426    return SDValue(E, 0);
3427  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3428  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3429                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3430  CSEMap.InsertNode(N, IP);
3431  AllNodes.push_back(N);
3432  return SDValue(N, 0);
3433}
3434
3435SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3436                                SDValue Chain,
3437                                SDValue Ptr, SDValue Cmp,
3438                                SDValue Swp, const Value* PtrVal,
3439                                unsigned Alignment) {
3440  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3441  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3442
3443  MVT VT = Cmp.getValueType();
3444
3445  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3446    Alignment = getMVTAlignment(MemVT);
3447
3448  SDVTList VTs = getVTList(VT, MVT::Other);
3449  FoldingSetNodeID ID;
3450  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3451  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3452  void* IP = 0;
3453  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3454    return SDValue(E, 0);
3455  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3456  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3457                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3458  CSEMap.InsertNode(N, IP);
3459  AllNodes.push_back(N);
3460  return SDValue(N, 0);
3461}
3462
3463SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3464                                SDValue Chain,
3465                                SDValue Ptr, SDValue Val,
3466                                const Value* PtrVal,
3467                                unsigned Alignment) {
3468  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3469          Opcode == ISD::ATOMIC_LOAD_SUB ||
3470          Opcode == ISD::ATOMIC_LOAD_AND ||
3471          Opcode == ISD::ATOMIC_LOAD_OR ||
3472          Opcode == ISD::ATOMIC_LOAD_XOR ||
3473          Opcode == ISD::ATOMIC_LOAD_NAND ||
3474          Opcode == ISD::ATOMIC_LOAD_MIN ||
3475          Opcode == ISD::ATOMIC_LOAD_MAX ||
3476          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3477          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3478          Opcode == ISD::ATOMIC_SWAP) &&
3479         "Invalid Atomic Op");
3480
3481  MVT VT = Val.getValueType();
3482
3483  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3484    Alignment = getMVTAlignment(MemVT);
3485
3486  SDVTList VTs = getVTList(VT, MVT::Other);
3487  FoldingSetNodeID ID;
3488  SDValue Ops[] = {Chain, Ptr, Val};
3489  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3490  void* IP = 0;
3491  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3492    return SDValue(E, 0);
3493  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3494  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3495                       Chain, Ptr, Val, PtrVal, Alignment);
3496  CSEMap.InsertNode(N, IP);
3497  AllNodes.push_back(N);
3498  return SDValue(N, 0);
3499}
3500
3501SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3502                                SDValue Chain,
3503                                SDValue Ptr, SDValue Val,
3504                                const Value* PtrVal,
3505                                unsigned Alignment) {
3506  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3507          Opcode == ISD::ATOMIC_LOAD_SUB ||
3508          Opcode == ISD::ATOMIC_LOAD_AND ||
3509          Opcode == ISD::ATOMIC_LOAD_OR ||
3510          Opcode == ISD::ATOMIC_LOAD_XOR ||
3511          Opcode == ISD::ATOMIC_LOAD_NAND ||
3512          Opcode == ISD::ATOMIC_LOAD_MIN ||
3513          Opcode == ISD::ATOMIC_LOAD_MAX ||
3514          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3515          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3516          Opcode == ISD::ATOMIC_SWAP) &&
3517         "Invalid Atomic Op");
3518
3519  MVT VT = Val.getValueType();
3520
3521  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3522    Alignment = getMVTAlignment(MemVT);
3523
3524  SDVTList VTs = getVTList(VT, MVT::Other);
3525  FoldingSetNodeID ID;
3526  SDValue Ops[] = {Chain, Ptr, Val};
3527  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3528  void* IP = 0;
3529  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3530    return SDValue(E, 0);
3531  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3532  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3533                       Chain, Ptr, Val, PtrVal, Alignment);
3534  CSEMap.InsertNode(N, IP);
3535  AllNodes.push_back(N);
3536  return SDValue(N, 0);
3537}
3538
3539/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3540/// Allowed to return something different (and simpler) if Simplify is true.
3541SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3542  if (NumOps == 1)
3543    return Ops[0];
3544
3545  SmallVector<MVT, 4> VTs;
3546  VTs.reserve(NumOps);
3547  for (unsigned i = 0; i < NumOps; ++i)
3548    VTs.push_back(Ops[i].getValueType());
3549  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3550}
3551
3552SDValue
3553SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3554                                  const MVT *VTs, unsigned NumVTs,
3555                                  const SDValue *Ops, unsigned NumOps,
3556                                  MVT MemVT, const Value *srcValue, int SVOff,
3557                                  unsigned Align, bool Vol,
3558                                  bool ReadMem, bool WriteMem) {
3559  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3560                             MemVT, srcValue, SVOff, Align, Vol,
3561                             ReadMem, WriteMem);
3562}
3563
3564SDValue
3565SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3566                                  const MVT *VTs, unsigned NumVTs,
3567                                  const SDValue *Ops, unsigned NumOps,
3568                                  MVT MemVT, const Value *srcValue, int SVOff,
3569                                  unsigned Align, bool Vol,
3570                                  bool ReadMem, bool WriteMem) {
3571  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3572                             MemVT, srcValue, SVOff, Align, Vol,
3573                             ReadMem, WriteMem);
3574}
3575
3576SDValue
3577SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3578                                  const SDValue *Ops, unsigned NumOps,
3579                                  MVT MemVT, const Value *srcValue, int SVOff,
3580                                  unsigned Align, bool Vol,
3581                                  bool ReadMem, bool WriteMem) {
3582  // Memoize the node unless it returns a flag.
3583  MemIntrinsicSDNode *N;
3584  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3585    FoldingSetNodeID ID;
3586    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3587    void *IP = 0;
3588    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3589      return SDValue(E, 0);
3590
3591    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3592    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3593                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3594    CSEMap.InsertNode(N, IP);
3595  } else {
3596    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3597    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3598                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3599  }
3600  AllNodes.push_back(N);
3601  return SDValue(N, 0);
3602}
3603
3604SDValue
3605SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3606                                  const SDValue *Ops, unsigned NumOps,
3607                                  MVT MemVT, const Value *srcValue, int SVOff,
3608                                  unsigned Align, bool Vol,
3609                                  bool ReadMem, bool WriteMem) {
3610  // Memoize the node unless it returns a flag.
3611  MemIntrinsicSDNode *N;
3612  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3613    FoldingSetNodeID ID;
3614    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3615    void *IP = 0;
3616    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3617      return SDValue(E, 0);
3618
3619    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3620    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3621                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3622    CSEMap.InsertNode(N, IP);
3623  } else {
3624    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3625    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3626                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3627  }
3628  AllNodes.push_back(N);
3629  return SDValue(N, 0);
3630}
3631
3632SDValue
3633SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3634                      bool IsInreg, SDVTList VTs,
3635                      const SDValue *Operands, unsigned NumOperands) {
3636  // Do not include isTailCall in the folding set profile.
3637  FoldingSetNodeID ID;
3638  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3639  ID.AddInteger(CallingConv);
3640  ID.AddInteger(IsVarArgs);
3641  void *IP = 0;
3642  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3643    // Instead of including isTailCall in the folding set, we just
3644    // set the flag of the existing node.
3645    if (!IsTailCall)
3646      cast<CallSDNode>(E)->setNotTailCall();
3647    return SDValue(E, 0);
3648  }
3649  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3650  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3651                     VTs, Operands, NumOperands);
3652  CSEMap.InsertNode(N, IP);
3653  AllNodes.push_back(N);
3654  return SDValue(N, 0);
3655}
3656
3657SDValue
3658SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3659                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3660                      const SDValue *Operands, unsigned NumOperands) {
3661  // Do not include isTailCall in the folding set profile.
3662  FoldingSetNodeID ID;
3663  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3664  ID.AddInteger(CallingConv);
3665  ID.AddInteger(IsVarArgs);
3666  void *IP = 0;
3667  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3668    // Instead of including isTailCall in the folding set, we just
3669    // set the flag of the existing node.
3670    if (!IsTailCall)
3671      cast<CallSDNode>(E)->setNotTailCall();
3672    return SDValue(E, 0);
3673  }
3674  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3675  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3676                     VTs, Operands, NumOperands);
3677  CSEMap.InsertNode(N, IP);
3678  AllNodes.push_back(N);
3679  return SDValue(N, 0);
3680}
3681
3682SDValue
3683SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3684                      MVT VT, SDValue Chain,
3685                      SDValue Ptr, SDValue Offset,
3686                      const Value *SV, int SVOffset, MVT EVT,
3687                      bool isVolatile, unsigned Alignment) {
3688  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3689    Alignment = getMVTAlignment(VT);
3690
3691  if (VT == EVT) {
3692    ExtType = ISD::NON_EXTLOAD;
3693  } else if (ExtType == ISD::NON_EXTLOAD) {
3694    assert(VT == EVT && "Non-extending load from different memory type!");
3695  } else {
3696    // Extending load.
3697    if (VT.isVector())
3698      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3699             "Invalid vector extload!");
3700    else
3701      assert(EVT.bitsLT(VT) &&
3702             "Should only be an extending load, not truncating!");
3703    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3704           "Cannot sign/zero extend a FP/Vector load!");
3705    assert(VT.isInteger() == EVT.isInteger() &&
3706           "Cannot convert from FP to Int or Int -> FP!");
3707  }
3708
3709  bool Indexed = AM != ISD::UNINDEXED;
3710  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3711         "Unindexed load with an offset!");
3712
3713  SDVTList VTs = Indexed ?
3714    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3715  SDValue Ops[] = { Chain, Ptr, Offset };
3716  FoldingSetNodeID ID;
3717  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3718  ID.AddInteger(AM);
3719  ID.AddInteger(ExtType);
3720  ID.AddInteger(EVT.getRawBits());
3721  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3722  void *IP = 0;
3723  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3724    return SDValue(E, 0);
3725  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3726  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3727                     Alignment, isVolatile);
3728  CSEMap.InsertNode(N, IP);
3729  AllNodes.push_back(N);
3730  return SDValue(N, 0);
3731}
3732
3733SDValue
3734SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3735                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3736                      SDValue Ptr, SDValue Offset,
3737                      const Value *SV, int SVOffset, MVT EVT,
3738                      bool isVolatile, unsigned Alignment) {
3739  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3740    Alignment = getMVTAlignment(VT);
3741
3742  if (VT == EVT) {
3743    ExtType = ISD::NON_EXTLOAD;
3744  } else if (ExtType == ISD::NON_EXTLOAD) {
3745    assert(VT == EVT && "Non-extending load from different memory type!");
3746  } else {
3747    // Extending load.
3748    if (VT.isVector())
3749      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3750             "Invalid vector extload!");
3751    else
3752      assert(EVT.bitsLT(VT) &&
3753             "Should only be an extending load, not truncating!");
3754    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3755           "Cannot sign/zero extend a FP/Vector load!");
3756    assert(VT.isInteger() == EVT.isInteger() &&
3757           "Cannot convert from FP to Int or Int -> FP!");
3758  }
3759
3760  bool Indexed = AM != ISD::UNINDEXED;
3761  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3762         "Unindexed load with an offset!");
3763
3764  SDVTList VTs = Indexed ?
3765    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3766  SDValue Ops[] = { Chain, Ptr, Offset };
3767  FoldingSetNodeID ID;
3768  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3769  ID.AddInteger(AM);
3770  ID.AddInteger(ExtType);
3771  ID.AddInteger(EVT.getRawBits());
3772  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3773  void *IP = 0;
3774  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3775    return SDValue(E, 0);
3776  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3777  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3778                     Alignment, isVolatile);
3779  CSEMap.InsertNode(N, IP);
3780  AllNodes.push_back(N);
3781  return SDValue(N, 0);
3782}
3783
3784SDValue SelectionDAG::getLoad(MVT VT,
3785                              SDValue Chain, SDValue Ptr,
3786                              const Value *SV, int SVOffset,
3787                              bool isVolatile, unsigned Alignment) {
3788  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3789  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3790                 SV, SVOffset, VT, isVolatile, Alignment);
3791}
3792
3793SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3794                              SDValue Chain, SDValue Ptr,
3795                              const Value *SV, int SVOffset,
3796                              bool isVolatile, unsigned Alignment) {
3797  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3798  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3799                 SV, SVOffset, VT, isVolatile, Alignment);
3800}
3801
3802SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3803                                 SDValue Chain, SDValue Ptr,
3804                                 const Value *SV,
3805                                 int SVOffset, MVT EVT,
3806                                 bool isVolatile, unsigned Alignment) {
3807  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3808  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3809                 SV, SVOffset, EVT, isVolatile, Alignment);
3810}
3811
3812SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3813                                 SDValue Chain, SDValue Ptr,
3814                                 const Value *SV,
3815                                 int SVOffset, MVT EVT,
3816                                 bool isVolatile, unsigned Alignment) {
3817  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3818  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3819                 SV, SVOffset, EVT, isVolatile, Alignment);
3820}
3821
3822SDValue
3823SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3824                             SDValue Offset, ISD::MemIndexedMode AM) {
3825  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3826  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3827         "Load is already a indexed load!");
3828  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3829                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3830                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3831                 LD->isVolatile(), LD->getAlignment());
3832}
3833
3834SDValue
3835SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3836                             SDValue Offset, ISD::MemIndexedMode AM) {
3837  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3838  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3839         "Load is already a indexed load!");
3840  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3841                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3842                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3843                 LD->isVolatile(), LD->getAlignment());
3844}
3845
3846SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3847                               SDValue Ptr, const Value *SV, int SVOffset,
3848                               bool isVolatile, unsigned Alignment) {
3849  MVT VT = Val.getValueType();
3850
3851  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3852    Alignment = getMVTAlignment(VT);
3853
3854  SDVTList VTs = getVTList(MVT::Other);
3855  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3856  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3857  FoldingSetNodeID ID;
3858  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3859  ID.AddInteger(ISD::UNINDEXED);
3860  ID.AddInteger(false);
3861  ID.AddInteger(VT.getRawBits());
3862  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3863  void *IP = 0;
3864  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3865    return SDValue(E, 0);
3866  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3867  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3868                      VT, SV, SVOffset, Alignment, isVolatile);
3869  CSEMap.InsertNode(N, IP);
3870  AllNodes.push_back(N);
3871  return SDValue(N, 0);
3872}
3873
3874SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3875                               SDValue Ptr, const Value *SV, int SVOffset,
3876                               bool isVolatile, unsigned Alignment) {
3877  MVT VT = Val.getValueType();
3878
3879  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3880    Alignment = getMVTAlignment(VT);
3881
3882  SDVTList VTs = getVTList(MVT::Other);
3883  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3884  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3885  FoldingSetNodeID ID;
3886  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3887  ID.AddInteger(ISD::UNINDEXED);
3888  ID.AddInteger(false);
3889  ID.AddInteger(VT.getRawBits());
3890  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3891  void *IP = 0;
3892  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3893    return SDValue(E, 0);
3894  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3895  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3896                      VT, SV, SVOffset, Alignment, isVolatile);
3897  CSEMap.InsertNode(N, IP);
3898  AllNodes.push_back(N);
3899  return SDValue(N, 0);
3900}
3901
3902SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3903                                    SDValue Ptr, const Value *SV,
3904                                    int SVOffset, MVT SVT,
3905                                    bool isVolatile, unsigned Alignment) {
3906  MVT VT = Val.getValueType();
3907
3908  if (VT == SVT)
3909    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3910
3911  assert(VT.bitsGT(SVT) && "Not a truncation?");
3912  assert(VT.isInteger() == SVT.isInteger() &&
3913         "Can't do FP-INT conversion!");
3914
3915  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3916    Alignment = getMVTAlignment(VT);
3917
3918  SDVTList VTs = getVTList(MVT::Other);
3919  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3920  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3921  FoldingSetNodeID ID;
3922  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3923  ID.AddInteger(ISD::UNINDEXED);
3924  ID.AddInteger(1);
3925  ID.AddInteger(SVT.getRawBits());
3926  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3927  void *IP = 0;
3928  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3929    return SDValue(E, 0);
3930  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3931  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3932                      SVT, SV, SVOffset, Alignment, isVolatile);
3933  CSEMap.InsertNode(N, IP);
3934  AllNodes.push_back(N);
3935  return SDValue(N, 0);
3936}
3937
3938SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3939                                    SDValue Ptr, const Value *SV,
3940                                    int SVOffset, MVT SVT,
3941                                    bool isVolatile, unsigned Alignment) {
3942  MVT VT = Val.getValueType();
3943
3944  if (VT == SVT)
3945    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3946
3947  assert(VT.bitsGT(SVT) && "Not a truncation?");
3948  assert(VT.isInteger() == SVT.isInteger() &&
3949         "Can't do FP-INT conversion!");
3950
3951  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3952    Alignment = getMVTAlignment(VT);
3953
3954  SDVTList VTs = getVTList(MVT::Other);
3955  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3956  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3957  FoldingSetNodeID ID;
3958  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3959  ID.AddInteger(ISD::UNINDEXED);
3960  ID.AddInteger(1);
3961  ID.AddInteger(SVT.getRawBits());
3962  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3963  void *IP = 0;
3964  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3965    return SDValue(E, 0);
3966  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3967  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3968                      SVT, SV, SVOffset, Alignment, isVolatile);
3969  CSEMap.InsertNode(N, IP);
3970  AllNodes.push_back(N);
3971  return SDValue(N, 0);
3972}
3973
3974SDValue
3975SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3976                              SDValue Offset, ISD::MemIndexedMode AM) {
3977  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3978  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3979         "Store is already a indexed store!");
3980  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3981  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3982  FoldingSetNodeID ID;
3983  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3984  ID.AddInteger(AM);
3985  ID.AddInteger(ST->isTruncatingStore());
3986  ID.AddInteger(ST->getMemoryVT().getRawBits());
3987  ID.AddInteger(ST->getRawFlags());
3988  void *IP = 0;
3989  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3990    return SDValue(E, 0);
3991  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3992  new (N) StoreSDNode(Ops, VTs, AM,
3993                      ST->isTruncatingStore(), ST->getMemoryVT(),
3994                      ST->getSrcValue(), ST->getSrcValueOffset(),
3995                      ST->getAlignment(), ST->isVolatile());
3996  CSEMap.InsertNode(N, IP);
3997  AllNodes.push_back(N);
3998  return SDValue(N, 0);
3999}
4000
4001SDValue
4002SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4003                              SDValue Offset, ISD::MemIndexedMode AM) {
4004  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4005  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4006         "Store is already a indexed store!");
4007  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4008  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4009  FoldingSetNodeID ID;
4010  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4011  ID.AddInteger(AM);
4012  ID.AddInteger(ST->isTruncatingStore());
4013  ID.AddInteger(ST->getMemoryVT().getRawBits());
4014  ID.AddInteger(ST->getRawFlags());
4015  void *IP = 0;
4016  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4017    return SDValue(E, 0);
4018  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4019  new (N) StoreSDNode(Ops, dl, VTs, AM,
4020                      ST->isTruncatingStore(), ST->getMemoryVT(),
4021                      ST->getSrcValue(), ST->getSrcValueOffset(),
4022                      ST->getAlignment(), ST->isVolatile());
4023  CSEMap.InsertNode(N, IP);
4024  AllNodes.push_back(N);
4025  return SDValue(N, 0);
4026}
4027
4028SDValue SelectionDAG::getVAArg(MVT VT,
4029                               SDValue Chain, SDValue Ptr,
4030                               SDValue SV) {
4031  SDValue Ops[] = { Chain, Ptr, SV };
4032  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
4033}
4034
4035SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
4036                              const SDUse *Ops, unsigned NumOps) {
4037  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Ops, NumOps);
4038}
4039
4040SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
4041                              const SDUse *Ops, unsigned NumOps) {
4042  switch (NumOps) {
4043  case 0: return getNode(Opcode, DL, VT);
4044  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4045  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4046  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4047  default: break;
4048  }
4049
4050  // Copy from an SDUse array into an SDValue array for use with
4051  // the regular getNode logic.
4052  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4053  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4054}
4055
4056SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
4057                              const SDValue *Ops, unsigned NumOps) {
4058  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Ops, NumOps);
4059}
4060
4061SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
4062                              const SDValue *Ops, unsigned NumOps) {
4063  switch (NumOps) {
4064  case 0: return getNode(Opcode, DL, VT);
4065  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4066  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4067  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4068  default: break;
4069  }
4070
4071  switch (Opcode) {
4072  default: break;
4073  case ISD::SELECT_CC: {
4074    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4075    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4076           "LHS and RHS of condition must have same type!");
4077    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4078           "True and False arms of SelectCC must have same type!");
4079    assert(Ops[2].getValueType() == VT &&
4080           "select_cc node must be of same type as true and false value!");
4081    break;
4082  }
4083  case ISD::BR_CC: {
4084    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4085    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4086           "LHS/RHS of comparison should match types!");
4087    break;
4088  }
4089  }
4090
4091  // Memoize nodes.
4092  SDNode *N;
4093  SDVTList VTs = getVTList(VT);
4094
4095  if (VT != MVT::Flag) {
4096    FoldingSetNodeID ID;
4097    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4098    void *IP = 0;
4099
4100    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4101      return SDValue(E, 0);
4102
4103    N = NodeAllocator.Allocate<SDNode>();
4104    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4105    CSEMap.InsertNode(N, IP);
4106  } else {
4107    N = NodeAllocator.Allocate<SDNode>();
4108    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4109  }
4110
4111  AllNodes.push_back(N);
4112#ifndef NDEBUG
4113  VerifyNode(N);
4114#endif
4115  return SDValue(N, 0);
4116}
4117
4118SDValue SelectionDAG::getNode(unsigned Opcode,
4119                              const std::vector<MVT> &ResultTys,
4120                              const SDValue *Ops, unsigned NumOps) {
4121  return getNode(Opcode, DebugLoc::getUnknownLoc(), ResultTys, Ops, NumOps);
4122}
4123
4124SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4125                              const std::vector<MVT> &ResultTys,
4126                              const SDValue *Ops, unsigned NumOps) {
4127  return getNode(Opcode, DL, getNodeValueTypes(ResultTys), ResultTys.size(),
4128                 Ops, NumOps);
4129}
4130
4131SDValue SelectionDAG::getNode(unsigned Opcode,
4132                              const MVT *VTs, unsigned NumVTs,
4133                              const SDValue *Ops, unsigned NumOps) {
4134  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTs, NumVTs, Ops, NumOps);
4135}
4136
4137SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4138                              const MVT *VTs, unsigned NumVTs,
4139                              const SDValue *Ops, unsigned NumOps) {
4140  if (NumVTs == 1)
4141    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4142  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4143}
4144
4145SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4146                              const SDValue *Ops, unsigned NumOps) {
4147  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, Ops, NumOps);
4148}
4149
4150SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4151                              const SDValue *Ops, unsigned NumOps) {
4152  if (VTList.NumVTs == 1)
4153    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4154
4155  switch (Opcode) {
4156  // FIXME: figure out how to safely handle things like
4157  // int foo(int x) { return 1 << (x & 255); }
4158  // int bar() { return foo(256); }
4159#if 0
4160  case ISD::SRA_PARTS:
4161  case ISD::SRL_PARTS:
4162  case ISD::SHL_PARTS:
4163    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4164        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4165      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4166    else if (N3.getOpcode() == ISD::AND)
4167      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4168        // If the and is only masking out bits that cannot effect the shift,
4169        // eliminate the and.
4170        unsigned NumBits = VT.getSizeInBits()*2;
4171        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4172          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4173      }
4174    break;
4175#endif
4176  }
4177
4178  // Memoize the node unless it returns a flag.
4179  SDNode *N;
4180  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4181    FoldingSetNodeID ID;
4182    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4183    void *IP = 0;
4184    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4185      return SDValue(E, 0);
4186    if (NumOps == 1) {
4187      N = NodeAllocator.Allocate<UnarySDNode>();
4188      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4189    } else if (NumOps == 2) {
4190      N = NodeAllocator.Allocate<BinarySDNode>();
4191      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4192    } else if (NumOps == 3) {
4193      N = NodeAllocator.Allocate<TernarySDNode>();
4194      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4195    } else {
4196      N = NodeAllocator.Allocate<SDNode>();
4197      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4198    }
4199    CSEMap.InsertNode(N, IP);
4200  } else {
4201    if (NumOps == 1) {
4202      N = NodeAllocator.Allocate<UnarySDNode>();
4203      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4204    } else if (NumOps == 2) {
4205      N = NodeAllocator.Allocate<BinarySDNode>();
4206      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4207    } else if (NumOps == 3) {
4208      N = NodeAllocator.Allocate<TernarySDNode>();
4209      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4210    } else {
4211      N = NodeAllocator.Allocate<SDNode>();
4212      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4213    }
4214  }
4215  AllNodes.push_back(N);
4216#ifndef NDEBUG
4217  VerifyNode(N);
4218#endif
4219  return SDValue(N, 0);
4220}
4221
4222SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
4223  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList);
4224}
4225
4226SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4227  return getNode(Opcode, DL, VTList, 0, 0);
4228}
4229
4230SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4231                              SDValue N1) {
4232  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1);
4233}
4234
4235SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4236                              SDValue N1) {
4237  SDValue Ops[] = { N1 };
4238  return getNode(Opcode, DL, VTList, Ops, 1);
4239}
4240
4241SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4242                              SDValue N1, SDValue N2) {
4243  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2);
4244}
4245
4246SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4247                              SDValue N1, SDValue N2) {
4248  SDValue Ops[] = { N1, N2 };
4249  return getNode(Opcode, DL, VTList, Ops, 2);
4250}
4251
4252SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4253                              SDValue N1, SDValue N2, SDValue N3) {
4254  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3);
4255}
4256
4257SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4258                              SDValue N1, SDValue N2, SDValue N3) {
4259  SDValue Ops[] = { N1, N2, N3 };
4260  return getNode(Opcode, DL, VTList, Ops, 3);
4261}
4262
4263SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4264                              SDValue N1, SDValue N2, SDValue N3,
4265                              SDValue N4) {
4266  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3, N4);
4267}
4268
4269SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4270                              SDValue N1, SDValue N2, SDValue N3,
4271                              SDValue N4) {
4272  SDValue Ops[] = { N1, N2, N3, N4 };
4273  return getNode(Opcode, DL, VTList, Ops, 4);
4274}
4275
4276SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4277                              SDValue N1, SDValue N2, SDValue N3,
4278                              SDValue N4, SDValue N5) {
4279  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3, N4, N5);
4280}
4281
4282SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4283                              SDValue N1, SDValue N2, SDValue N3,
4284                              SDValue N4, SDValue N5) {
4285  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4286  return getNode(Opcode, DL, VTList, Ops, 5);
4287}
4288
4289SDVTList SelectionDAG::getVTList(MVT VT) {
4290  return makeVTList(SDNode::getValueTypeList(VT), 1);
4291}
4292
4293SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
4294  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4295       E = VTList.rend(); I != E; ++I)
4296    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4297      return *I;
4298
4299  MVT *Array = Allocator.Allocate<MVT>(2);
4300  Array[0] = VT1;
4301  Array[1] = VT2;
4302  SDVTList Result = makeVTList(Array, 2);
4303  VTList.push_back(Result);
4304  return Result;
4305}
4306
4307SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
4308  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4309       E = VTList.rend(); I != E; ++I)
4310    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4311                          I->VTs[2] == VT3)
4312      return *I;
4313
4314  MVT *Array = Allocator.Allocate<MVT>(3);
4315  Array[0] = VT1;
4316  Array[1] = VT2;
4317  Array[2] = VT3;
4318  SDVTList Result = makeVTList(Array, 3);
4319  VTList.push_back(Result);
4320  return Result;
4321}
4322
4323SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
4324  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4325       E = VTList.rend(); I != E; ++I)
4326    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4327                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4328      return *I;
4329
4330  MVT *Array = Allocator.Allocate<MVT>(3);
4331  Array[0] = VT1;
4332  Array[1] = VT2;
4333  Array[2] = VT3;
4334  Array[3] = VT4;
4335  SDVTList Result = makeVTList(Array, 4);
4336  VTList.push_back(Result);
4337  return Result;
4338}
4339
4340SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4341  switch (NumVTs) {
4342    case 0: assert(0 && "Cannot have nodes without results!");
4343    case 1: return getVTList(VTs[0]);
4344    case 2: return getVTList(VTs[0], VTs[1]);
4345    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4346    default: break;
4347  }
4348
4349  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4350       E = VTList.rend(); I != E; ++I) {
4351    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4352      continue;
4353
4354    bool NoMatch = false;
4355    for (unsigned i = 2; i != NumVTs; ++i)
4356      if (VTs[i] != I->VTs[i]) {
4357        NoMatch = true;
4358        break;
4359      }
4360    if (!NoMatch)
4361      return *I;
4362  }
4363
4364  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4365  std::copy(VTs, VTs+NumVTs, Array);
4366  SDVTList Result = makeVTList(Array, NumVTs);
4367  VTList.push_back(Result);
4368  return Result;
4369}
4370
4371
4372/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4373/// specified operands.  If the resultant node already exists in the DAG,
4374/// this does not modify the specified node, instead it returns the node that
4375/// already exists.  If the resultant node does not exist in the DAG, the
4376/// input node is returned.  As a degenerate case, if you specify the same
4377/// input operands as the node already has, the input node is returned.
4378SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4379  SDNode *N = InN.getNode();
4380  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4381
4382  // Check to see if there is no change.
4383  if (Op == N->getOperand(0)) return InN;
4384
4385  // See if the modified node already exists.
4386  void *InsertPos = 0;
4387  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4388    return SDValue(Existing, InN.getResNo());
4389
4390  // Nope it doesn't.  Remove the node from its current place in the maps.
4391  if (InsertPos)
4392    if (!RemoveNodeFromCSEMaps(N))
4393      InsertPos = 0;
4394
4395  // Now we update the operands.
4396  N->OperandList[0].set(Op);
4397
4398  // If this gets put into a CSE map, add it.
4399  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4400  return InN;
4401}
4402
4403SDValue SelectionDAG::
4404UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4405  SDNode *N = InN.getNode();
4406  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4407
4408  // Check to see if there is no change.
4409  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4410    return InN;   // No operands changed, just return the input node.
4411
4412  // See if the modified node already exists.
4413  void *InsertPos = 0;
4414  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4415    return SDValue(Existing, InN.getResNo());
4416
4417  // Nope it doesn't.  Remove the node from its current place in the maps.
4418  if (InsertPos)
4419    if (!RemoveNodeFromCSEMaps(N))
4420      InsertPos = 0;
4421
4422  // Now we update the operands.
4423  if (N->OperandList[0] != Op1)
4424    N->OperandList[0].set(Op1);
4425  if (N->OperandList[1] != Op2)
4426    N->OperandList[1].set(Op2);
4427
4428  // If this gets put into a CSE map, add it.
4429  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4430  return InN;
4431}
4432
4433SDValue SelectionDAG::
4434UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4435  SDValue Ops[] = { Op1, Op2, Op3 };
4436  return UpdateNodeOperands(N, Ops, 3);
4437}
4438
4439SDValue SelectionDAG::
4440UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4441                   SDValue Op3, SDValue Op4) {
4442  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4443  return UpdateNodeOperands(N, Ops, 4);
4444}
4445
4446SDValue SelectionDAG::
4447UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4448                   SDValue Op3, SDValue Op4, SDValue Op5) {
4449  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4450  return UpdateNodeOperands(N, Ops, 5);
4451}
4452
4453SDValue SelectionDAG::
4454UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4455  SDNode *N = InN.getNode();
4456  assert(N->getNumOperands() == NumOps &&
4457         "Update with wrong number of operands");
4458
4459  // Check to see if there is no change.
4460  bool AnyChange = false;
4461  for (unsigned i = 0; i != NumOps; ++i) {
4462    if (Ops[i] != N->getOperand(i)) {
4463      AnyChange = true;
4464      break;
4465    }
4466  }
4467
4468  // No operands changed, just return the input node.
4469  if (!AnyChange) return InN;
4470
4471  // See if the modified node already exists.
4472  void *InsertPos = 0;
4473  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4474    return SDValue(Existing, InN.getResNo());
4475
4476  // Nope it doesn't.  Remove the node from its current place in the maps.
4477  if (InsertPos)
4478    if (!RemoveNodeFromCSEMaps(N))
4479      InsertPos = 0;
4480
4481  // Now we update the operands.
4482  for (unsigned i = 0; i != NumOps; ++i)
4483    if (N->OperandList[i] != Ops[i])
4484      N->OperandList[i].set(Ops[i]);
4485
4486  // If this gets put into a CSE map, add it.
4487  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4488  return InN;
4489}
4490
4491/// DropOperands - Release the operands and set this node to have
4492/// zero operands.
4493void SDNode::DropOperands() {
4494  // Unlike the code in MorphNodeTo that does this, we don't need to
4495  // watch for dead nodes here.
4496  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4497    SDUse &Use = *I++;
4498    Use.set(SDValue());
4499  }
4500}
4501
4502/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4503/// machine opcode.
4504///
4505SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4506                                   MVT VT) {
4507  SDVTList VTs = getVTList(VT);
4508  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4509}
4510
4511SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4512                                   MVT VT, SDValue Op1) {
4513  SDVTList VTs = getVTList(VT);
4514  SDValue Ops[] = { Op1 };
4515  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4516}
4517
4518SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4519                                   MVT VT, SDValue Op1,
4520                                   SDValue Op2) {
4521  SDVTList VTs = getVTList(VT);
4522  SDValue Ops[] = { Op1, Op2 };
4523  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4524}
4525
4526SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4527                                   MVT VT, SDValue Op1,
4528                                   SDValue Op2, SDValue Op3) {
4529  SDVTList VTs = getVTList(VT);
4530  SDValue Ops[] = { Op1, Op2, Op3 };
4531  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4532}
4533
4534SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4535                                   MVT VT, const SDValue *Ops,
4536                                   unsigned NumOps) {
4537  SDVTList VTs = getVTList(VT);
4538  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4539}
4540
4541SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4542                                   MVT VT1, MVT VT2, const SDValue *Ops,
4543                                   unsigned NumOps) {
4544  SDVTList VTs = getVTList(VT1, VT2);
4545  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4546}
4547
4548SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4549                                   MVT VT1, MVT VT2) {
4550  SDVTList VTs = getVTList(VT1, VT2);
4551  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4552}
4553
4554SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4555                                   MVT VT1, MVT VT2, MVT VT3,
4556                                   const SDValue *Ops, unsigned NumOps) {
4557  SDVTList VTs = getVTList(VT1, VT2, VT3);
4558  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4559}
4560
4561SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4562                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4563                                   const SDValue *Ops, unsigned NumOps) {
4564  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4565  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4566}
4567
4568SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4569                                   MVT VT1, MVT VT2,
4570                                   SDValue Op1) {
4571  SDVTList VTs = getVTList(VT1, VT2);
4572  SDValue Ops[] = { Op1 };
4573  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4574}
4575
4576SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4577                                   MVT VT1, MVT VT2,
4578                                   SDValue Op1, SDValue Op2) {
4579  SDVTList VTs = getVTList(VT1, VT2);
4580  SDValue Ops[] = { Op1, Op2 };
4581  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4582}
4583
4584SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4585                                   MVT VT1, MVT VT2,
4586                                   SDValue Op1, SDValue Op2,
4587                                   SDValue Op3) {
4588  SDVTList VTs = getVTList(VT1, VT2);
4589  SDValue Ops[] = { Op1, Op2, Op3 };
4590  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4591}
4592
4593SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4594                                   MVT VT1, MVT VT2, MVT VT3,
4595                                   SDValue Op1, SDValue Op2,
4596                                   SDValue Op3) {
4597  SDVTList VTs = getVTList(VT1, VT2, VT3);
4598  SDValue Ops[] = { Op1, Op2, Op3 };
4599  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4600}
4601
4602SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4603                                   SDVTList VTs, const SDValue *Ops,
4604                                   unsigned NumOps) {
4605  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4606}
4607
4608SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4609                                  MVT VT) {
4610  SDVTList VTs = getVTList(VT);
4611  return MorphNodeTo(N, Opc, VTs, 0, 0);
4612}
4613
4614SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4615                                  MVT VT, SDValue Op1) {
4616  SDVTList VTs = getVTList(VT);
4617  SDValue Ops[] = { Op1 };
4618  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4619}
4620
4621SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4622                                  MVT VT, SDValue Op1,
4623                                  SDValue Op2) {
4624  SDVTList VTs = getVTList(VT);
4625  SDValue Ops[] = { Op1, Op2 };
4626  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4627}
4628
4629SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4630                                  MVT VT, SDValue Op1,
4631                                  SDValue Op2, SDValue Op3) {
4632  SDVTList VTs = getVTList(VT);
4633  SDValue Ops[] = { Op1, Op2, Op3 };
4634  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4635}
4636
4637SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4638                                  MVT VT, const SDValue *Ops,
4639                                  unsigned NumOps) {
4640  SDVTList VTs = getVTList(VT);
4641  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4642}
4643
4644SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4645                                  MVT VT1, MVT VT2, const SDValue *Ops,
4646                                  unsigned NumOps) {
4647  SDVTList VTs = getVTList(VT1, VT2);
4648  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4649}
4650
4651SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4652                                  MVT VT1, MVT VT2) {
4653  SDVTList VTs = getVTList(VT1, VT2);
4654  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4655}
4656
4657SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4658                                  MVT VT1, MVT VT2, MVT VT3,
4659                                  const SDValue *Ops, unsigned NumOps) {
4660  SDVTList VTs = getVTList(VT1, VT2, VT3);
4661  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4662}
4663
4664SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4665                                  MVT VT1, MVT VT2,
4666                                  SDValue Op1) {
4667  SDVTList VTs = getVTList(VT1, VT2);
4668  SDValue Ops[] = { Op1 };
4669  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4670}
4671
4672SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4673                                  MVT VT1, MVT VT2,
4674                                  SDValue Op1, SDValue Op2) {
4675  SDVTList VTs = getVTList(VT1, VT2);
4676  SDValue Ops[] = { Op1, Op2 };
4677  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4678}
4679
4680SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4681                                  MVT VT1, MVT VT2,
4682                                  SDValue Op1, SDValue Op2,
4683                                  SDValue Op3) {
4684  SDVTList VTs = getVTList(VT1, VT2);
4685  SDValue Ops[] = { Op1, Op2, Op3 };
4686  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4687}
4688
4689/// MorphNodeTo - These *mutate* the specified node to have the specified
4690/// return type, opcode, and operands.
4691///
4692/// Note that MorphNodeTo returns the resultant node.  If there is already a
4693/// node of the specified opcode and operands, it returns that node instead of
4694/// the current one.
4695///
4696/// Using MorphNodeTo is faster than creating a new node and swapping it in
4697/// with ReplaceAllUsesWith both because it often avoids allocating a new
4698/// node, and because it doesn't require CSE recalculation for any of
4699/// the node's users.
4700///
4701SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4702                                  SDVTList VTs, const SDValue *Ops,
4703                                  unsigned NumOps) {
4704  // If an identical node already exists, use it.
4705  void *IP = 0;
4706  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4707    FoldingSetNodeID ID;
4708    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4709    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4710      return ON;
4711  }
4712
4713  if (!RemoveNodeFromCSEMaps(N))
4714    IP = 0;
4715
4716  // Start the morphing.
4717  N->NodeType = Opc;
4718  N->ValueList = VTs.VTs;
4719  N->NumValues = VTs.NumVTs;
4720
4721  // Clear the operands list, updating used nodes to remove this from their
4722  // use list.  Keep track of any operands that become dead as a result.
4723  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4724  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4725    SDUse &Use = *I++;
4726    SDNode *Used = Use.getNode();
4727    Use.set(SDValue());
4728    if (Used->use_empty())
4729      DeadNodeSet.insert(Used);
4730  }
4731
4732  // If NumOps is larger than the # of operands we currently have, reallocate
4733  // the operand list.
4734  if (NumOps > N->NumOperands) {
4735    if (N->OperandsNeedDelete)
4736      delete[] N->OperandList;
4737
4738    if (N->isMachineOpcode()) {
4739      // We're creating a final node that will live unmorphed for the
4740      // remainder of the current SelectionDAG iteration, so we can allocate
4741      // the operands directly out of a pool with no recycling metadata.
4742      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4743      N->OperandsNeedDelete = false;
4744    } else {
4745      N->OperandList = new SDUse[NumOps];
4746      N->OperandsNeedDelete = true;
4747    }
4748  }
4749
4750  // Assign the new operands.
4751  N->NumOperands = NumOps;
4752  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4753    N->OperandList[i].setUser(N);
4754    N->OperandList[i].setInitial(Ops[i]);
4755  }
4756
4757  // Delete any nodes that are still dead after adding the uses for the
4758  // new operands.
4759  SmallVector<SDNode *, 16> DeadNodes;
4760  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4761       E = DeadNodeSet.end(); I != E; ++I)
4762    if ((*I)->use_empty())
4763      DeadNodes.push_back(*I);
4764  RemoveDeadNodes(DeadNodes);
4765
4766  if (IP)
4767    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4768  return N;
4769}
4770
4771
4772/// getTargetNode - These are used for target selectors to create a new node
4773/// with specified return type(s), target opcode, and operands.
4774///
4775/// Note that getTargetNode returns the resultant node.  If there is already a
4776/// node of the specified opcode and operands, it returns that node instead of
4777/// the current one.
4778SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4779  return getNode(~Opcode, VT).getNode();
4780}
4781SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4782  return getNode(~Opcode, dl, VT).getNode();
4783}
4784
4785SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4786  return getNode(~Opcode, VT, Op1).getNode();
4787}
4788SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4789                                    SDValue Op1) {
4790  return getNode(~Opcode, dl, VT, Op1).getNode();
4791}
4792
4793SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4794                                    SDValue Op1, SDValue Op2) {
4795  return getNode(~Opcode, VT, Op1, Op2).getNode();
4796}
4797SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4798                                    SDValue Op1, SDValue Op2) {
4799  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4800}
4801
4802SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4803                                    SDValue Op1, SDValue Op2,
4804                                    SDValue Op3) {
4805  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4806}
4807SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4808                                    SDValue Op1, SDValue Op2,
4809                                    SDValue Op3) {
4810  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4811}
4812
4813SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4814                                    const SDValue *Ops, unsigned NumOps) {
4815  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4816}
4817SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4818                                    const SDValue *Ops, unsigned NumOps) {
4819  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4820}
4821
4822SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4823  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4824  SDValue Op;
4825  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4826}
4827SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4828                                    MVT VT1, MVT VT2) {
4829  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4830  SDValue Op;
4831  return getNode(~Opcode, dl, VTs, 2, &Op, 0).getNode();
4832}
4833
4834SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4835                                    MVT VT2, SDValue Op1) {
4836  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4837  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4838}
4839SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4840                                    MVT VT2, SDValue Op1) {
4841  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4842  return getNode(~Opcode, dl, VTs, 2, &Op1, 1).getNode();
4843}
4844
4845SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4846                                    MVT VT2, SDValue Op1,
4847                                    SDValue Op2) {
4848  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4849  SDValue Ops[] = { Op1, Op2 };
4850  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4851}
4852SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4853                                    MVT VT2, SDValue Op1,
4854                                    SDValue Op2) {
4855  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4856  SDValue Ops[] = { Op1, Op2 };
4857  return getNode(~Opcode, dl, VTs, 2, Ops, 2).getNode();
4858}
4859
4860SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4861                                    MVT VT2, SDValue Op1,
4862                                    SDValue Op2, SDValue Op3) {
4863  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4864  SDValue Ops[] = { Op1, Op2, Op3 };
4865  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4866}
4867SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4868                                    MVT VT2, SDValue Op1,
4869                                    SDValue Op2, SDValue Op3) {
4870  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4871  SDValue Ops[] = { Op1, Op2, Op3 };
4872  return getNode(~Opcode, dl, VTs, 2, Ops, 3).getNode();
4873}
4874
4875SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4876                                    const SDValue *Ops, unsigned NumOps) {
4877  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4878  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4879}
4880SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4881                                    MVT VT1, MVT VT2,
4882                                    const SDValue *Ops, unsigned NumOps) {
4883  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4884  return getNode(~Opcode, dl, VTs, 2, Ops, NumOps).getNode();
4885}
4886
4887SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4888                                    SDValue Op1, SDValue Op2) {
4889  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4890  SDValue Ops[] = { Op1, Op2 };
4891  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4892}
4893SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4894                                    MVT VT1, MVT VT2, MVT VT3,
4895                                    SDValue Op1, SDValue Op2) {
4896  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4897  SDValue Ops[] = { Op1, Op2 };
4898  return getNode(~Opcode, dl, VTs, 3, Ops, 2).getNode();
4899}
4900
4901SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4902                                    SDValue Op1, SDValue Op2,
4903                                    SDValue Op3) {
4904  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4905  SDValue Ops[] = { Op1, Op2, Op3 };
4906  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4907}
4908SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4909                                    MVT VT1, MVT VT2, MVT VT3,
4910                                    SDValue Op1, SDValue Op2,
4911                                    SDValue Op3) {
4912  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4913  SDValue Ops[] = { Op1, Op2, Op3 };
4914  return getNode(~Opcode, dl, VTs, 3, Ops, 3).getNode();
4915}
4916
4917SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4918                                    const SDValue *Ops, unsigned NumOps) {
4919  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4920  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4921}
4922SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4923                                    MVT VT1, MVT VT2, MVT VT3,
4924                                    const SDValue *Ops, unsigned NumOps) {
4925  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4926  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4927}
4928
4929SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4930                                    MVT VT2, MVT VT3, MVT VT4,
4931                                    const SDValue *Ops, unsigned NumOps) {
4932  std::vector<MVT> VTList;
4933  VTList.push_back(VT1);
4934  VTList.push_back(VT2);
4935  VTList.push_back(VT3);
4936  VTList.push_back(VT4);
4937  const MVT *VTs = getNodeValueTypes(VTList);
4938  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4939}
4940SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4941                                    MVT VT2, MVT VT3, MVT VT4,
4942                                    const SDValue *Ops, unsigned NumOps) {
4943  std::vector<MVT> VTList;
4944  VTList.push_back(VT1);
4945  VTList.push_back(VT2);
4946  VTList.push_back(VT3);
4947  VTList.push_back(VT4);
4948  const MVT *VTs = getNodeValueTypes(VTList);
4949  return getNode(~Opcode, dl, VTs, 4, Ops, NumOps).getNode();
4950}
4951
4952SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4953                                    const std::vector<MVT> &ResultTys,
4954                                    const SDValue *Ops, unsigned NumOps) {
4955  const MVT *VTs = getNodeValueTypes(ResultTys);
4956  return getNode(~Opcode, VTs, ResultTys.size(),
4957                 Ops, NumOps).getNode();
4958}
4959SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4960                                    const std::vector<MVT> &ResultTys,
4961                                    const SDValue *Ops, unsigned NumOps) {
4962  const MVT *VTs = getNodeValueTypes(ResultTys);
4963  return getNode(~Opcode, dl, VTs, ResultTys.size(),
4964                 Ops, NumOps).getNode();
4965}
4966
4967/// getNodeIfExists - Get the specified node if it's already available, or
4968/// else return NULL.
4969SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4970                                      const SDValue *Ops, unsigned NumOps) {
4971  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4972    FoldingSetNodeID ID;
4973    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4974    void *IP = 0;
4975    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4976      return E;
4977  }
4978  return NULL;
4979}
4980
4981/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4982/// This can cause recursive merging of nodes in the DAG.
4983///
4984/// This version assumes From has a single result value.
4985///
4986void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4987                                      DAGUpdateListener *UpdateListener) {
4988  SDNode *From = FromN.getNode();
4989  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4990         "Cannot replace with this method!");
4991  assert(From != To.getNode() && "Cannot replace uses of with self");
4992
4993  // Iterate over all the existing uses of From. New uses will be added
4994  // to the beginning of the use list, which we avoid visiting.
4995  // This specifically avoids visiting uses of From that arise while the
4996  // replacement is happening, because any such uses would be the result
4997  // of CSE: If an existing node looks like From after one of its operands
4998  // is replaced by To, we don't want to replace of all its users with To
4999  // too. See PR3018 for more info.
5000  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5001  while (UI != UE) {
5002    SDNode *User = *UI;
5003
5004    // This node is about to morph, remove its old self from the CSE maps.
5005    RemoveNodeFromCSEMaps(User);
5006
5007    // A user can appear in a use list multiple times, and when this
5008    // happens the uses are usually next to each other in the list.
5009    // To help reduce the number of CSE recomputations, process all
5010    // the uses of this user that we can find this way.
5011    do {
5012      SDUse &Use = UI.getUse();
5013      ++UI;
5014      Use.set(To);
5015    } while (UI != UE && *UI == User);
5016
5017    // Now that we have modified User, add it back to the CSE maps.  If it
5018    // already exists there, recursively merge the results together.
5019    AddModifiedNodeToCSEMaps(User, UpdateListener);
5020  }
5021}
5022
5023/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5024/// This can cause recursive merging of nodes in the DAG.
5025///
5026/// This version assumes From/To have matching types and numbers of result
5027/// values.
5028///
5029void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5030                                      DAGUpdateListener *UpdateListener) {
5031  assert(From->getVTList().VTs == To->getVTList().VTs &&
5032         From->getNumValues() == To->getNumValues() &&
5033         "Cannot use this version of ReplaceAllUsesWith!");
5034
5035  // Handle the trivial case.
5036  if (From == To)
5037    return;
5038
5039  // Iterate over just the existing users of From. See the comments in
5040  // the ReplaceAllUsesWith above.
5041  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5042  while (UI != UE) {
5043    SDNode *User = *UI;
5044
5045    // This node is about to morph, remove its old self from the CSE maps.
5046    RemoveNodeFromCSEMaps(User);
5047
5048    // A user can appear in a use list multiple times, and when this
5049    // happens the uses are usually next to each other in the list.
5050    // To help reduce the number of CSE recomputations, process all
5051    // the uses of this user that we can find this way.
5052    do {
5053      SDUse &Use = UI.getUse();
5054      ++UI;
5055      Use.setNode(To);
5056    } while (UI != UE && *UI == User);
5057
5058    // Now that we have modified User, add it back to the CSE maps.  If it
5059    // already exists there, recursively merge the results together.
5060    AddModifiedNodeToCSEMaps(User, UpdateListener);
5061  }
5062}
5063
5064/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5065/// This can cause recursive merging of nodes in the DAG.
5066///
5067/// This version can replace From with any result values.  To must match the
5068/// number and types of values returned by From.
5069void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5070                                      const SDValue *To,
5071                                      DAGUpdateListener *UpdateListener) {
5072  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5073    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5074
5075  // Iterate over just the existing users of From. See the comments in
5076  // the ReplaceAllUsesWith above.
5077  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5078  while (UI != UE) {
5079    SDNode *User = *UI;
5080
5081    // This node is about to morph, remove its old self from the CSE maps.
5082    RemoveNodeFromCSEMaps(User);
5083
5084    // A user can appear in a use list multiple times, and when this
5085    // happens the uses are usually next to each other in the list.
5086    // To help reduce the number of CSE recomputations, process all
5087    // the uses of this user that we can find this way.
5088    do {
5089      SDUse &Use = UI.getUse();
5090      const SDValue &ToOp = To[Use.getResNo()];
5091      ++UI;
5092      Use.set(ToOp);
5093    } while (UI != UE && *UI == User);
5094
5095    // Now that we have modified User, add it back to the CSE maps.  If it
5096    // already exists there, recursively merge the results together.
5097    AddModifiedNodeToCSEMaps(User, UpdateListener);
5098  }
5099}
5100
5101/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5102/// uses of other values produced by From.getNode() alone.  The Deleted
5103/// vector is handled the same way as for ReplaceAllUsesWith.
5104void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5105                                             DAGUpdateListener *UpdateListener){
5106  // Handle the really simple, really trivial case efficiently.
5107  if (From == To) return;
5108
5109  // Handle the simple, trivial, case efficiently.
5110  if (From.getNode()->getNumValues() == 1) {
5111    ReplaceAllUsesWith(From, To, UpdateListener);
5112    return;
5113  }
5114
5115  // Iterate over just the existing users of From. See the comments in
5116  // the ReplaceAllUsesWith above.
5117  SDNode::use_iterator UI = From.getNode()->use_begin(),
5118                       UE = From.getNode()->use_end();
5119  while (UI != UE) {
5120    SDNode *User = *UI;
5121    bool UserRemovedFromCSEMaps = false;
5122
5123    // A user can appear in a use list multiple times, and when this
5124    // happens the uses are usually next to each other in the list.
5125    // To help reduce the number of CSE recomputations, process all
5126    // the uses of this user that we can find this way.
5127    do {
5128      SDUse &Use = UI.getUse();
5129
5130      // Skip uses of different values from the same node.
5131      if (Use.getResNo() != From.getResNo()) {
5132        ++UI;
5133        continue;
5134      }
5135
5136      // If this node hasn't been modified yet, it's still in the CSE maps,
5137      // so remove its old self from the CSE maps.
5138      if (!UserRemovedFromCSEMaps) {
5139        RemoveNodeFromCSEMaps(User);
5140        UserRemovedFromCSEMaps = true;
5141      }
5142
5143      ++UI;
5144      Use.set(To);
5145    } while (UI != UE && *UI == User);
5146
5147    // We are iterating over all uses of the From node, so if a use
5148    // doesn't use the specific value, no changes are made.
5149    if (!UserRemovedFromCSEMaps)
5150      continue;
5151
5152    // Now that we have modified User, add it back to the CSE maps.  If it
5153    // already exists there, recursively merge the results together.
5154    AddModifiedNodeToCSEMaps(User, UpdateListener);
5155  }
5156}
5157
5158namespace {
5159  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5160  /// to record information about a use.
5161  struct UseMemo {
5162    SDNode *User;
5163    unsigned Index;
5164    SDUse *Use;
5165  };
5166
5167  /// operator< - Sort Memos by User.
5168  bool operator<(const UseMemo &L, const UseMemo &R) {
5169    return (intptr_t)L.User < (intptr_t)R.User;
5170  }
5171}
5172
5173/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5174/// uses of other values produced by From.getNode() alone.  The same value
5175/// may appear in both the From and To list.  The Deleted vector is
5176/// handled the same way as for ReplaceAllUsesWith.
5177void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5178                                              const SDValue *To,
5179                                              unsigned Num,
5180                                              DAGUpdateListener *UpdateListener){
5181  // Handle the simple, trivial case efficiently.
5182  if (Num == 1)
5183    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5184
5185  // Read up all the uses and make records of them. This helps
5186  // processing new uses that are introduced during the
5187  // replacement process.
5188  SmallVector<UseMemo, 4> Uses;
5189  for (unsigned i = 0; i != Num; ++i) {
5190    unsigned FromResNo = From[i].getResNo();
5191    SDNode *FromNode = From[i].getNode();
5192    for (SDNode::use_iterator UI = FromNode->use_begin(),
5193         E = FromNode->use_end(); UI != E; ++UI) {
5194      SDUse &Use = UI.getUse();
5195      if (Use.getResNo() == FromResNo) {
5196        UseMemo Memo = { *UI, i, &Use };
5197        Uses.push_back(Memo);
5198      }
5199    }
5200  }
5201
5202  // Sort the uses, so that all the uses from a given User are together.
5203  std::sort(Uses.begin(), Uses.end());
5204
5205  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5206       UseIndex != UseIndexEnd; ) {
5207    // We know that this user uses some value of From.  If it is the right
5208    // value, update it.
5209    SDNode *User = Uses[UseIndex].User;
5210
5211    // This node is about to morph, remove its old self from the CSE maps.
5212    RemoveNodeFromCSEMaps(User);
5213
5214    // The Uses array is sorted, so all the uses for a given User
5215    // are next to each other in the list.
5216    // To help reduce the number of CSE recomputations, process all
5217    // the uses of this user that we can find this way.
5218    do {
5219      unsigned i = Uses[UseIndex].Index;
5220      SDUse &Use = *Uses[UseIndex].Use;
5221      ++UseIndex;
5222
5223      Use.set(To[i]);
5224    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5225
5226    // Now that we have modified User, add it back to the CSE maps.  If it
5227    // already exists there, recursively merge the results together.
5228    AddModifiedNodeToCSEMaps(User, UpdateListener);
5229  }
5230}
5231
5232/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5233/// based on their topological order. It returns the maximum id and a vector
5234/// of the SDNodes* in assigned order by reference.
5235unsigned SelectionDAG::AssignTopologicalOrder() {
5236
5237  unsigned DAGSize = 0;
5238
5239  // SortedPos tracks the progress of the algorithm. Nodes before it are
5240  // sorted, nodes after it are unsorted. When the algorithm completes
5241  // it is at the end of the list.
5242  allnodes_iterator SortedPos = allnodes_begin();
5243
5244  // Visit all the nodes. Move nodes with no operands to the front of
5245  // the list immediately. Annotate nodes that do have operands with their
5246  // operand count. Before we do this, the Node Id fields of the nodes
5247  // may contain arbitrary values. After, the Node Id fields for nodes
5248  // before SortedPos will contain the topological sort index, and the
5249  // Node Id fields for nodes At SortedPos and after will contain the
5250  // count of outstanding operands.
5251  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5252    SDNode *N = I++;
5253    unsigned Degree = N->getNumOperands();
5254    if (Degree == 0) {
5255      // A node with no uses, add it to the result array immediately.
5256      N->setNodeId(DAGSize++);
5257      allnodes_iterator Q = N;
5258      if (Q != SortedPos)
5259        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5260      ++SortedPos;
5261    } else {
5262      // Temporarily use the Node Id as scratch space for the degree count.
5263      N->setNodeId(Degree);
5264    }
5265  }
5266
5267  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5268  // such that by the time the end is reached all nodes will be sorted.
5269  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5270    SDNode *N = I;
5271    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5272         UI != UE; ++UI) {
5273      SDNode *P = *UI;
5274      unsigned Degree = P->getNodeId();
5275      --Degree;
5276      if (Degree == 0) {
5277        // All of P's operands are sorted, so P may sorted now.
5278        P->setNodeId(DAGSize++);
5279        if (P != SortedPos)
5280          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5281        ++SortedPos;
5282      } else {
5283        // Update P's outstanding operand count.
5284        P->setNodeId(Degree);
5285      }
5286    }
5287  }
5288
5289  assert(SortedPos == AllNodes.end() &&
5290         "Topological sort incomplete!");
5291  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5292         "First node in topological sort is not the entry token!");
5293  assert(AllNodes.front().getNodeId() == 0 &&
5294         "First node in topological sort has non-zero id!");
5295  assert(AllNodes.front().getNumOperands() == 0 &&
5296         "First node in topological sort has operands!");
5297  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5298         "Last node in topologic sort has unexpected id!");
5299  assert(AllNodes.back().use_empty() &&
5300         "Last node in topologic sort has users!");
5301  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5302  return DAGSize;
5303}
5304
5305
5306
5307//===----------------------------------------------------------------------===//
5308//                              SDNode Class
5309//===----------------------------------------------------------------------===//
5310
5311HandleSDNode::~HandleSDNode() {
5312  DropOperands();
5313}
5314
5315GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
5316                                         MVT VT, int64_t o)
5317  : SDNode(isa<GlobalVariable>(GA) &&
5318           cast<GlobalVariable>(GA)->isThreadLocal() ?
5319           // Thread Local
5320           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
5321           // Non Thread Local
5322           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
5323           getSDVTList(VT)), Offset(o) {
5324  TheGlobal = const_cast<GlobalValue*>(GA);
5325}
5326
5327MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
5328                     const Value *srcValue, int SVO,
5329                     unsigned alignment, bool vol)
5330 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5331   Flags(encodeMemSDNodeFlags(vol, alignment)) {
5332
5333  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5334  assert(getAlignment() == alignment && "Alignment representation error!");
5335  assert(isVolatile() == vol && "Volatile representation error!");
5336}
5337
5338MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
5339                     unsigned NumOps, MVT memvt, const Value *srcValue,
5340                     int SVO, unsigned alignment, bool vol)
5341   : SDNode(Opc, VTs, Ops, NumOps),
5342     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5343     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
5344  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5345  assert(getAlignment() == alignment && "Alignment representation error!");
5346  assert(isVolatile() == vol && "Volatile representation error!");
5347}
5348
5349MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
5350                     const Value *srcValue, int SVO,
5351                     unsigned alignment, bool vol)
5352 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5353   Flags(encodeMemSDNodeFlags(vol, alignment)) {
5354
5355  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5356  assert(getAlignment() == alignment && "Alignment representation error!");
5357  assert(isVolatile() == vol && "Volatile representation error!");
5358}
5359
5360MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5361                     const SDValue *Ops,
5362                     unsigned NumOps, MVT memvt, const Value *srcValue,
5363                     int SVO, unsigned alignment, bool vol)
5364   : SDNode(Opc, dl, VTs, Ops, NumOps),
5365     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5366     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
5367  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5368  assert(getAlignment() == alignment && "Alignment representation error!");
5369  assert(isVolatile() == vol && "Volatile representation error!");
5370}
5371
5372/// getMemOperand - Return a MachineMemOperand object describing the memory
5373/// reference performed by this memory reference.
5374MachineMemOperand MemSDNode::getMemOperand() const {
5375  int Flags = 0;
5376  if (isa<LoadSDNode>(this))
5377    Flags = MachineMemOperand::MOLoad;
5378  else if (isa<StoreSDNode>(this))
5379    Flags = MachineMemOperand::MOStore;
5380  else if (isa<AtomicSDNode>(this)) {
5381    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
5382  }
5383  else {
5384    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
5385    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
5386    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
5387    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
5388  }
5389
5390  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
5391  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
5392
5393  // Check if the memory reference references a frame index
5394  const FrameIndexSDNode *FI =
5395  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
5396  if (!getSrcValue() && FI)
5397    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
5398                             Flags, 0, Size, getAlignment());
5399  else
5400    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
5401                             Size, getAlignment());
5402}
5403
5404/// Profile - Gather unique data for the node.
5405///
5406void SDNode::Profile(FoldingSetNodeID &ID) const {
5407  AddNodeIDNode(ID, this);
5408}
5409
5410/// getValueTypeList - Return a pointer to the specified value type.
5411///
5412const MVT *SDNode::getValueTypeList(MVT VT) {
5413  if (VT.isExtended()) {
5414    static std::set<MVT, MVT::compareRawBits> EVTs;
5415    return &(*EVTs.insert(VT).first);
5416  } else {
5417    static MVT VTs[MVT::LAST_VALUETYPE];
5418    VTs[VT.getSimpleVT()] = VT;
5419    return &VTs[VT.getSimpleVT()];
5420  }
5421}
5422
5423/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5424/// indicated value.  This method ignores uses of other values defined by this
5425/// operation.
5426bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5427  assert(Value < getNumValues() && "Bad value!");
5428
5429  // TODO: Only iterate over uses of a given value of the node
5430  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5431    if (UI.getUse().getResNo() == Value) {
5432      if (NUses == 0)
5433        return false;
5434      --NUses;
5435    }
5436  }
5437
5438  // Found exactly the right number of uses?
5439  return NUses == 0;
5440}
5441
5442
5443/// hasAnyUseOfValue - Return true if there are any use of the indicated
5444/// value. This method ignores uses of other values defined by this operation.
5445bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5446  assert(Value < getNumValues() && "Bad value!");
5447
5448  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5449    if (UI.getUse().getResNo() == Value)
5450      return true;
5451
5452  return false;
5453}
5454
5455
5456/// isOnlyUserOf - Return true if this node is the only use of N.
5457///
5458bool SDNode::isOnlyUserOf(SDNode *N) const {
5459  bool Seen = false;
5460  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5461    SDNode *User = *I;
5462    if (User == this)
5463      Seen = true;
5464    else
5465      return false;
5466  }
5467
5468  return Seen;
5469}
5470
5471/// isOperand - Return true if this node is an operand of N.
5472///
5473bool SDValue::isOperandOf(SDNode *N) const {
5474  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5475    if (*this == N->getOperand(i))
5476      return true;
5477  return false;
5478}
5479
5480bool SDNode::isOperandOf(SDNode *N) const {
5481  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5482    if (this == N->OperandList[i].getNode())
5483      return true;
5484  return false;
5485}
5486
5487/// reachesChainWithoutSideEffects - Return true if this operand (which must
5488/// be a chain) reaches the specified operand without crossing any
5489/// side-effecting instructions.  In practice, this looks through token
5490/// factors and non-volatile loads.  In order to remain efficient, this only
5491/// looks a couple of nodes in, it does not do an exhaustive search.
5492bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5493                                               unsigned Depth) const {
5494  if (*this == Dest) return true;
5495
5496  // Don't search too deeply, we just want to be able to see through
5497  // TokenFactor's etc.
5498  if (Depth == 0) return false;
5499
5500  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5501  // of the operands of the TF reach dest, then we can do the xform.
5502  if (getOpcode() == ISD::TokenFactor) {
5503    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5504      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5505        return true;
5506    return false;
5507  }
5508
5509  // Loads don't have side effects, look through them.
5510  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5511    if (!Ld->isVolatile())
5512      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5513  }
5514  return false;
5515}
5516
5517
5518static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5519                            SmallPtrSet<SDNode *, 32> &Visited) {
5520  if (found || !Visited.insert(N))
5521    return;
5522
5523  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5524    SDNode *Op = N->getOperand(i).getNode();
5525    if (Op == P) {
5526      found = true;
5527      return;
5528    }
5529    findPredecessor(Op, P, found, Visited);
5530  }
5531}
5532
5533/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5534/// is either an operand of N or it can be reached by recursively traversing
5535/// up the operands.
5536/// NOTE: this is an expensive method. Use it carefully.
5537bool SDNode::isPredecessorOf(SDNode *N) const {
5538  SmallPtrSet<SDNode *, 32> Visited;
5539  bool found = false;
5540  findPredecessor(N, this, found, Visited);
5541  return found;
5542}
5543
5544uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5545  assert(Num < NumOperands && "Invalid child # of SDNode!");
5546  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5547}
5548
5549std::string SDNode::getOperationName(const SelectionDAG *G) const {
5550  switch (getOpcode()) {
5551  default:
5552    if (getOpcode() < ISD::BUILTIN_OP_END)
5553      return "<<Unknown DAG Node>>";
5554    if (isMachineOpcode()) {
5555      if (G)
5556        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5557          if (getMachineOpcode() < TII->getNumOpcodes())
5558            return TII->get(getMachineOpcode()).getName();
5559      return "<<Unknown Machine Node>>";
5560    }
5561    if (G) {
5562      const TargetLowering &TLI = G->getTargetLoweringInfo();
5563      const char *Name = TLI.getTargetNodeName(getOpcode());
5564      if (Name) return Name;
5565      return "<<Unknown Target Node>>";
5566    }
5567    return "<<Unknown Node>>";
5568
5569#ifndef NDEBUG
5570  case ISD::DELETED_NODE:
5571    return "<<Deleted Node!>>";
5572#endif
5573  case ISD::PREFETCH:      return "Prefetch";
5574  case ISD::MEMBARRIER:    return "MemBarrier";
5575  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5576  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5577  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5578  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5579  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5580  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5581  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5582  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5583  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5584  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5585  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5586  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5587  case ISD::PCMARKER:      return "PCMarker";
5588  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5589  case ISD::SRCVALUE:      return "SrcValue";
5590  case ISD::MEMOPERAND:    return "MemOperand";
5591  case ISD::EntryToken:    return "EntryToken";
5592  case ISD::TokenFactor:   return "TokenFactor";
5593  case ISD::AssertSext:    return "AssertSext";
5594  case ISD::AssertZext:    return "AssertZext";
5595
5596  case ISD::BasicBlock:    return "BasicBlock";
5597  case ISD::ARG_FLAGS:     return "ArgFlags";
5598  case ISD::VALUETYPE:     return "ValueType";
5599  case ISD::Register:      return "Register";
5600
5601  case ISD::Constant:      return "Constant";
5602  case ISD::ConstantFP:    return "ConstantFP";
5603  case ISD::GlobalAddress: return "GlobalAddress";
5604  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5605  case ISD::FrameIndex:    return "FrameIndex";
5606  case ISD::JumpTable:     return "JumpTable";
5607  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5608  case ISD::RETURNADDR: return "RETURNADDR";
5609  case ISD::FRAMEADDR: return "FRAMEADDR";
5610  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5611  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5612  case ISD::EHSELECTION: return "EHSELECTION";
5613  case ISD::EH_RETURN: return "EH_RETURN";
5614  case ISD::ConstantPool:  return "ConstantPool";
5615  case ISD::ExternalSymbol: return "ExternalSymbol";
5616  case ISD::INTRINSIC_WO_CHAIN: {
5617    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5618    return Intrinsic::getName((Intrinsic::ID)IID);
5619  }
5620  case ISD::INTRINSIC_VOID:
5621  case ISD::INTRINSIC_W_CHAIN: {
5622    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5623    return Intrinsic::getName((Intrinsic::ID)IID);
5624  }
5625
5626  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5627  case ISD::TargetConstant: return "TargetConstant";
5628  case ISD::TargetConstantFP:return "TargetConstantFP";
5629  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5630  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5631  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5632  case ISD::TargetJumpTable:  return "TargetJumpTable";
5633  case ISD::TargetConstantPool:  return "TargetConstantPool";
5634  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5635
5636  case ISD::CopyToReg:     return "CopyToReg";
5637  case ISD::CopyFromReg:   return "CopyFromReg";
5638  case ISD::UNDEF:         return "undef";
5639  case ISD::MERGE_VALUES:  return "merge_values";
5640  case ISD::INLINEASM:     return "inlineasm";
5641  case ISD::DBG_LABEL:     return "dbg_label";
5642  case ISD::EH_LABEL:      return "eh_label";
5643  case ISD::DECLARE:       return "declare";
5644  case ISD::HANDLENODE:    return "handlenode";
5645  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5646  case ISD::CALL:          return "call";
5647
5648  // Unary operators
5649  case ISD::FABS:   return "fabs";
5650  case ISD::FNEG:   return "fneg";
5651  case ISD::FSQRT:  return "fsqrt";
5652  case ISD::FSIN:   return "fsin";
5653  case ISD::FCOS:   return "fcos";
5654  case ISD::FPOWI:  return "fpowi";
5655  case ISD::FPOW:   return "fpow";
5656  case ISD::FTRUNC: return "ftrunc";
5657  case ISD::FFLOOR: return "ffloor";
5658  case ISD::FCEIL:  return "fceil";
5659  case ISD::FRINT:  return "frint";
5660  case ISD::FNEARBYINT: return "fnearbyint";
5661
5662  // Binary operators
5663  case ISD::ADD:    return "add";
5664  case ISD::SUB:    return "sub";
5665  case ISD::MUL:    return "mul";
5666  case ISD::MULHU:  return "mulhu";
5667  case ISD::MULHS:  return "mulhs";
5668  case ISD::SDIV:   return "sdiv";
5669  case ISD::UDIV:   return "udiv";
5670  case ISD::SREM:   return "srem";
5671  case ISD::UREM:   return "urem";
5672  case ISD::SMUL_LOHI:  return "smul_lohi";
5673  case ISD::UMUL_LOHI:  return "umul_lohi";
5674  case ISD::SDIVREM:    return "sdivrem";
5675  case ISD::UDIVREM:    return "udivrem";
5676  case ISD::AND:    return "and";
5677  case ISD::OR:     return "or";
5678  case ISD::XOR:    return "xor";
5679  case ISD::SHL:    return "shl";
5680  case ISD::SRA:    return "sra";
5681  case ISD::SRL:    return "srl";
5682  case ISD::ROTL:   return "rotl";
5683  case ISD::ROTR:   return "rotr";
5684  case ISD::FADD:   return "fadd";
5685  case ISD::FSUB:   return "fsub";
5686  case ISD::FMUL:   return "fmul";
5687  case ISD::FDIV:   return "fdiv";
5688  case ISD::FREM:   return "frem";
5689  case ISD::FCOPYSIGN: return "fcopysign";
5690  case ISD::FGETSIGN:  return "fgetsign";
5691
5692  case ISD::SETCC:       return "setcc";
5693  case ISD::VSETCC:      return "vsetcc";
5694  case ISD::SELECT:      return "select";
5695  case ISD::SELECT_CC:   return "select_cc";
5696  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5697  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5698  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5699  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5700  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5701  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5702  case ISD::CARRY_FALSE:         return "carry_false";
5703  case ISD::ADDC:        return "addc";
5704  case ISD::ADDE:        return "adde";
5705  case ISD::SADDO:       return "saddo";
5706  case ISD::UADDO:       return "uaddo";
5707  case ISD::SSUBO:       return "ssubo";
5708  case ISD::USUBO:       return "usubo";
5709  case ISD::SMULO:       return "smulo";
5710  case ISD::UMULO:       return "umulo";
5711  case ISD::SUBC:        return "subc";
5712  case ISD::SUBE:        return "sube";
5713  case ISD::SHL_PARTS:   return "shl_parts";
5714  case ISD::SRA_PARTS:   return "sra_parts";
5715  case ISD::SRL_PARTS:   return "srl_parts";
5716
5717  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5718  case ISD::INSERT_SUBREG:      return "insert_subreg";
5719
5720  // Conversion operators.
5721  case ISD::SIGN_EXTEND: return "sign_extend";
5722  case ISD::ZERO_EXTEND: return "zero_extend";
5723  case ISD::ANY_EXTEND:  return "any_extend";
5724  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5725  case ISD::TRUNCATE:    return "truncate";
5726  case ISD::FP_ROUND:    return "fp_round";
5727  case ISD::FLT_ROUNDS_: return "flt_rounds";
5728  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5729  case ISD::FP_EXTEND:   return "fp_extend";
5730
5731  case ISD::SINT_TO_FP:  return "sint_to_fp";
5732  case ISD::UINT_TO_FP:  return "uint_to_fp";
5733  case ISD::FP_TO_SINT:  return "fp_to_sint";
5734  case ISD::FP_TO_UINT:  return "fp_to_uint";
5735  case ISD::BIT_CONVERT: return "bit_convert";
5736
5737  case ISD::CONVERT_RNDSAT: {
5738    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5739    default: assert(0 && "Unknown cvt code!");
5740    case ISD::CVT_FF:  return "cvt_ff";
5741    case ISD::CVT_FS:  return "cvt_fs";
5742    case ISD::CVT_FU:  return "cvt_fu";
5743    case ISD::CVT_SF:  return "cvt_sf";
5744    case ISD::CVT_UF:  return "cvt_uf";
5745    case ISD::CVT_SS:  return "cvt_ss";
5746    case ISD::CVT_SU:  return "cvt_su";
5747    case ISD::CVT_US:  return "cvt_us";
5748    case ISD::CVT_UU:  return "cvt_uu";
5749    }
5750  }
5751
5752    // Control flow instructions
5753  case ISD::BR:      return "br";
5754  case ISD::BRIND:   return "brind";
5755  case ISD::BR_JT:   return "br_jt";
5756  case ISD::BRCOND:  return "brcond";
5757  case ISD::BR_CC:   return "br_cc";
5758  case ISD::RET:     return "ret";
5759  case ISD::CALLSEQ_START:  return "callseq_start";
5760  case ISD::CALLSEQ_END:    return "callseq_end";
5761
5762    // Other operators
5763  case ISD::LOAD:               return "load";
5764  case ISD::STORE:              return "store";
5765  case ISD::VAARG:              return "vaarg";
5766  case ISD::VACOPY:             return "vacopy";
5767  case ISD::VAEND:              return "vaend";
5768  case ISD::VASTART:            return "vastart";
5769  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5770  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5771  case ISD::BUILD_PAIR:         return "build_pair";
5772  case ISD::STACKSAVE:          return "stacksave";
5773  case ISD::STACKRESTORE:       return "stackrestore";
5774  case ISD::TRAP:               return "trap";
5775
5776  // Bit manipulation
5777  case ISD::BSWAP:   return "bswap";
5778  case ISD::CTPOP:   return "ctpop";
5779  case ISD::CTTZ:    return "cttz";
5780  case ISD::CTLZ:    return "ctlz";
5781
5782  // Debug info
5783  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5784  case ISD::DEBUG_LOC: return "debug_loc";
5785
5786  // Trampolines
5787  case ISD::TRAMPOLINE: return "trampoline";
5788
5789  case ISD::CONDCODE:
5790    switch (cast<CondCodeSDNode>(this)->get()) {
5791    default: assert(0 && "Unknown setcc condition!");
5792    case ISD::SETOEQ:  return "setoeq";
5793    case ISD::SETOGT:  return "setogt";
5794    case ISD::SETOGE:  return "setoge";
5795    case ISD::SETOLT:  return "setolt";
5796    case ISD::SETOLE:  return "setole";
5797    case ISD::SETONE:  return "setone";
5798
5799    case ISD::SETO:    return "seto";
5800    case ISD::SETUO:   return "setuo";
5801    case ISD::SETUEQ:  return "setue";
5802    case ISD::SETUGT:  return "setugt";
5803    case ISD::SETUGE:  return "setuge";
5804    case ISD::SETULT:  return "setult";
5805    case ISD::SETULE:  return "setule";
5806    case ISD::SETUNE:  return "setune";
5807
5808    case ISD::SETEQ:   return "seteq";
5809    case ISD::SETGT:   return "setgt";
5810    case ISD::SETGE:   return "setge";
5811    case ISD::SETLT:   return "setlt";
5812    case ISD::SETLE:   return "setle";
5813    case ISD::SETNE:   return "setne";
5814    }
5815  }
5816}
5817
5818const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5819  switch (AM) {
5820  default:
5821    return "";
5822  case ISD::PRE_INC:
5823    return "<pre-inc>";
5824  case ISD::PRE_DEC:
5825    return "<pre-dec>";
5826  case ISD::POST_INC:
5827    return "<post-inc>";
5828  case ISD::POST_DEC:
5829    return "<post-dec>";
5830  }
5831}
5832
5833std::string ISD::ArgFlagsTy::getArgFlagsString() {
5834  std::string S = "< ";
5835
5836  if (isZExt())
5837    S += "zext ";
5838  if (isSExt())
5839    S += "sext ";
5840  if (isInReg())
5841    S += "inreg ";
5842  if (isSRet())
5843    S += "sret ";
5844  if (isByVal())
5845    S += "byval ";
5846  if (isNest())
5847    S += "nest ";
5848  if (getByValAlign())
5849    S += "byval-align:" + utostr(getByValAlign()) + " ";
5850  if (getOrigAlign())
5851    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5852  if (getByValSize())
5853    S += "byval-size:" + utostr(getByValSize()) + " ";
5854  return S + ">";
5855}
5856
5857void SDNode::dump() const { dump(0); }
5858void SDNode::dump(const SelectionDAG *G) const {
5859  print(errs(), G);
5860  errs().flush();
5861}
5862
5863void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5864  OS << (void*)this << ": ";
5865
5866  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5867    if (i) OS << ",";
5868    if (getValueType(i) == MVT::Other)
5869      OS << "ch";
5870    else
5871      OS << getValueType(i).getMVTString();
5872  }
5873  OS << " = " << getOperationName(G);
5874
5875  OS << " ";
5876  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5877    if (i) OS << ", ";
5878    OS << (void*)getOperand(i).getNode();
5879    if (unsigned RN = getOperand(i).getResNo())
5880      OS << ":" << RN;
5881  }
5882
5883  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5884    SDNode *Mask = getOperand(2).getNode();
5885    OS << "<";
5886    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5887      if (i) OS << ",";
5888      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5889        OS << "u";
5890      else
5891        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5892    }
5893    OS << ">";
5894  }
5895
5896  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5897    OS << '<' << CSDN->getAPIntValue() << '>';
5898  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5899    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5900      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5901    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5902      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5903    else {
5904      OS << "<APFloat(";
5905      CSDN->getValueAPF().bitcastToAPInt().dump();
5906      OS << ")>";
5907    }
5908  } else if (const GlobalAddressSDNode *GADN =
5909             dyn_cast<GlobalAddressSDNode>(this)) {
5910    int64_t offset = GADN->getOffset();
5911    OS << '<';
5912    WriteAsOperand(OS, GADN->getGlobal());
5913    OS << '>';
5914    if (offset > 0)
5915      OS << " + " << offset;
5916    else
5917      OS << " " << offset;
5918  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5919    OS << "<" << FIDN->getIndex() << ">";
5920  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5921    OS << "<" << JTDN->getIndex() << ">";
5922  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5923    int offset = CP->getOffset();
5924    if (CP->isMachineConstantPoolEntry())
5925      OS << "<" << *CP->getMachineCPVal() << ">";
5926    else
5927      OS << "<" << *CP->getConstVal() << ">";
5928    if (offset > 0)
5929      OS << " + " << offset;
5930    else
5931      OS << " " << offset;
5932  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5933    OS << "<";
5934    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5935    if (LBB)
5936      OS << LBB->getName() << " ";
5937    OS << (const void*)BBDN->getBasicBlock() << ">";
5938  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5939    if (G && R->getReg() &&
5940        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5941      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5942    } else {
5943      OS << " #" << R->getReg();
5944    }
5945  } else if (const ExternalSymbolSDNode *ES =
5946             dyn_cast<ExternalSymbolSDNode>(this)) {
5947    OS << "'" << ES->getSymbol() << "'";
5948  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5949    if (M->getValue())
5950      OS << "<" << M->getValue() << ">";
5951    else
5952      OS << "<null>";
5953  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5954    if (M->MO.getValue())
5955      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5956    else
5957      OS << "<null:" << M->MO.getOffset() << ">";
5958  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5959    OS << N->getArgFlags().getArgFlagsString();
5960  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5961    OS << ":" << N->getVT().getMVTString();
5962  }
5963  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5964    const Value *SrcValue = LD->getSrcValue();
5965    int SrcOffset = LD->getSrcValueOffset();
5966    OS << " <";
5967    if (SrcValue)
5968      OS << SrcValue;
5969    else
5970      OS << "null";
5971    OS << ":" << SrcOffset << ">";
5972
5973    bool doExt = true;
5974    switch (LD->getExtensionType()) {
5975    default: doExt = false; break;
5976    case ISD::EXTLOAD: OS << " <anyext "; break;
5977    case ISD::SEXTLOAD: OS << " <sext "; break;
5978    case ISD::ZEXTLOAD: OS << " <zext "; break;
5979    }
5980    if (doExt)
5981      OS << LD->getMemoryVT().getMVTString() << ">";
5982
5983    const char *AM = getIndexedModeName(LD->getAddressingMode());
5984    if (*AM)
5985      OS << " " << AM;
5986    if (LD->isVolatile())
5987      OS << " <volatile>";
5988    OS << " alignment=" << LD->getAlignment();
5989  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5990    const Value *SrcValue = ST->getSrcValue();
5991    int SrcOffset = ST->getSrcValueOffset();
5992    OS << " <";
5993    if (SrcValue)
5994      OS << SrcValue;
5995    else
5996      OS << "null";
5997    OS << ":" << SrcOffset << ">";
5998
5999    if (ST->isTruncatingStore())
6000      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
6001
6002    const char *AM = getIndexedModeName(ST->getAddressingMode());
6003    if (*AM)
6004      OS << " " << AM;
6005    if (ST->isVolatile())
6006      OS << " <volatile>";
6007    OS << " alignment=" << ST->getAlignment();
6008  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
6009    const Value *SrcValue = AT->getSrcValue();
6010    int SrcOffset = AT->getSrcValueOffset();
6011    OS << " <";
6012    if (SrcValue)
6013      OS << SrcValue;
6014    else
6015      OS << "null";
6016    OS << ":" << SrcOffset << ">";
6017    if (AT->isVolatile())
6018      OS << " <volatile>";
6019    OS << " alignment=" << AT->getAlignment();
6020  }
6021}
6022
6023static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6024  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6025    if (N->getOperand(i).getNode()->hasOneUse())
6026      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6027    else
6028      cerr << "\n" << std::string(indent+2, ' ')
6029           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6030
6031
6032  cerr << "\n" << std::string(indent, ' ');
6033  N->dump(G);
6034}
6035
6036void SelectionDAG::dump() const {
6037  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
6038
6039  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6040       I != E; ++I) {
6041    const SDNode *N = I;
6042    if (!N->hasOneUse() && N != getRoot().getNode())
6043      DumpNodes(N, 2, this);
6044  }
6045
6046  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6047
6048  cerr << "\n\n";
6049}
6050
6051const Type *ConstantPoolSDNode::getType() const {
6052  if (isMachineConstantPoolEntry())
6053    return Val.MachineCPVal->getType();
6054  return Val.ConstVal->getType();
6055}
6056