SelectionDAG.cpp revision 6f17966a804f53518aa06fd0b5f035d5b1a51589
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/ADT/SetVector.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/StringExtras.h"
38#include <algorithm>
39#include <cmath>
40using namespace llvm;
41
42/// makeVTList - Return an instance of the SDVTList struct initialized with the
43/// specified members.
44static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
45  SDVTList Res = {VTs, NumVTs};
46  return Res;
47}
48
49static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
50  switch (VT.getSimpleVT()) {
51  default: assert(0 && "Unknown FP format");
52  case MVT::f32:     return &APFloat::IEEEsingle;
53  case MVT::f64:     return &APFloat::IEEEdouble;
54  case MVT::f80:     return &APFloat::x87DoubleExtended;
55  case MVT::f128:    return &APFloat::IEEEquad;
56  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
57  }
58}
59
60SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
61
62//===----------------------------------------------------------------------===//
63//                              ConstantFPSDNode Class
64//===----------------------------------------------------------------------===//
65
66/// isExactlyValue - We don't rely on operator== working on double values, as
67/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
68/// As such, this method can be used to do an exact bit-for-bit comparison of
69/// two floating point values.
70bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
71  return Value.bitwiseIsEqual(V);
72}
73
74bool ConstantFPSDNode::isValueValidForType(MVT VT,
75                                           const APFloat& Val) {
76  assert(VT.isFloatingPoint() && "Can only convert between FP types");
77
78  // PPC long double cannot be converted to any other type.
79  if (VT == MVT::ppcf128 ||
80      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
81    return false;
82
83  // convert modifies in place, so make a copy.
84  APFloat Val2 = APFloat(Val);
85  return Val2.convert(*MVTToAPFloatSemantics(VT),
86                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
87}
88
89//===----------------------------------------------------------------------===//
90//                              ISD Namespace
91//===----------------------------------------------------------------------===//
92
93/// isBuildVectorAllOnes - Return true if the specified node is a
94/// BUILD_VECTOR where all of the elements are ~0 or undef.
95bool ISD::isBuildVectorAllOnes(const SDNode *N) {
96  // Look through a bit convert.
97  if (N->getOpcode() == ISD::BIT_CONVERT)
98    N = N->getOperand(0).Val;
99
100  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
101
102  unsigned i = 0, e = N->getNumOperands();
103
104  // Skip over all of the undef values.
105  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
106    ++i;
107
108  // Do not accept an all-undef vector.
109  if (i == e) return false;
110
111  // Do not accept build_vectors that aren't all constants or which have non-~0
112  // elements.
113  SDValue NotZero = N->getOperand(i);
114  if (isa<ConstantSDNode>(NotZero)) {
115    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
116      return false;
117  } else if (isa<ConstantFPSDNode>(NotZero)) {
118    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                convertToAPInt().isAllOnesValue())
120      return false;
121  } else
122    return false;
123
124  // Okay, we have at least one ~0 value, check to see if the rest match or are
125  // undefs.
126  for (++i; i != e; ++i)
127    if (N->getOperand(i) != NotZero &&
128        N->getOperand(i).getOpcode() != ISD::UNDEF)
129      return false;
130  return true;
131}
132
133
134/// isBuildVectorAllZeros - Return true if the specified node is a
135/// BUILD_VECTOR where all of the elements are 0 or undef.
136bool ISD::isBuildVectorAllZeros(const SDNode *N) {
137  // Look through a bit convert.
138  if (N->getOpcode() == ISD::BIT_CONVERT)
139    N = N->getOperand(0).Val;
140
141  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
142
143  unsigned i = 0, e = N->getNumOperands();
144
145  // Skip over all of the undef values.
146  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
147    ++i;
148
149  // Do not accept an all-undef vector.
150  if (i == e) return false;
151
152  // Do not accept build_vectors that aren't all constants or which have non-~0
153  // elements.
154  SDValue Zero = N->getOperand(i);
155  if (isa<ConstantSDNode>(Zero)) {
156    if (!cast<ConstantSDNode>(Zero)->isNullValue())
157      return false;
158  } else if (isa<ConstantFPSDNode>(Zero)) {
159    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
160      return false;
161  } else
162    return false;
163
164  // Okay, we have at least one ~0 value, check to see if the rest match or are
165  // undefs.
166  for (++i; i != e; ++i)
167    if (N->getOperand(i) != Zero &&
168        N->getOperand(i).getOpcode() != ISD::UNDEF)
169      return false;
170  return true;
171}
172
173/// isScalarToVector - Return true if the specified node is a
174/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
175/// element is not an undef.
176bool ISD::isScalarToVector(const SDNode *N) {
177  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
178    return true;
179
180  if (N->getOpcode() != ISD::BUILD_VECTOR)
181    return false;
182  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
183    return false;
184  unsigned NumElems = N->getNumOperands();
185  for (unsigned i = 1; i < NumElems; ++i) {
186    SDValue V = N->getOperand(i);
187    if (V.getOpcode() != ISD::UNDEF)
188      return false;
189  }
190  return true;
191}
192
193
194/// isDebugLabel - Return true if the specified node represents a debug
195/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
196bool ISD::isDebugLabel(const SDNode *N) {
197  SDValue Zero;
198  if (N->getOpcode() == ISD::DBG_LABEL)
199    return true;
200  if (N->isMachineOpcode() &&
201      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
202    return true;
203  return false;
204}
205
206/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
207/// when given the operation for (X op Y).
208ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
209  // To perform this operation, we just need to swap the L and G bits of the
210  // operation.
211  unsigned OldL = (Operation >> 2) & 1;
212  unsigned OldG = (Operation >> 1) & 1;
213  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
214                       (OldL << 1) |       // New G bit
215                       (OldG << 2));        // New L bit.
216}
217
218/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
219/// 'op' is a valid SetCC operation.
220ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
221  unsigned Operation = Op;
222  if (isInteger)
223    Operation ^= 7;   // Flip L, G, E bits, but not U.
224  else
225    Operation ^= 15;  // Flip all of the condition bits.
226  if (Operation > ISD::SETTRUE2)
227    Operation &= ~8;     // Don't let N and U bits get set.
228  return ISD::CondCode(Operation);
229}
230
231
232/// isSignedOp - For an integer comparison, return 1 if the comparison is a
233/// signed operation and 2 if the result is an unsigned comparison.  Return zero
234/// if the operation does not depend on the sign of the input (setne and seteq).
235static int isSignedOp(ISD::CondCode Opcode) {
236  switch (Opcode) {
237  default: assert(0 && "Illegal integer setcc operation!");
238  case ISD::SETEQ:
239  case ISD::SETNE: return 0;
240  case ISD::SETLT:
241  case ISD::SETLE:
242  case ISD::SETGT:
243  case ISD::SETGE: return 1;
244  case ISD::SETULT:
245  case ISD::SETULE:
246  case ISD::SETUGT:
247  case ISD::SETUGE: return 2;
248  }
249}
250
251/// getSetCCOrOperation - Return the result of a logical OR between different
252/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
253/// returns SETCC_INVALID if it is not possible to represent the resultant
254/// comparison.
255ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
256                                       bool isInteger) {
257  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
258    // Cannot fold a signed integer setcc with an unsigned integer setcc.
259    return ISD::SETCC_INVALID;
260
261  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
262
263  // If the N and U bits get set then the resultant comparison DOES suddenly
264  // care about orderedness, and is true when ordered.
265  if (Op > ISD::SETTRUE2)
266    Op &= ~16;     // Clear the U bit if the N bit is set.
267
268  // Canonicalize illegal integer setcc's.
269  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
270    Op = ISD::SETNE;
271
272  return ISD::CondCode(Op);
273}
274
275/// getSetCCAndOperation - Return the result of a logical AND between different
276/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
277/// function returns zero if it is not possible to represent the resultant
278/// comparison.
279ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
280                                        bool isInteger) {
281  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
282    // Cannot fold a signed setcc with an unsigned setcc.
283    return ISD::SETCC_INVALID;
284
285  // Combine all of the condition bits.
286  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
287
288  // Canonicalize illegal integer setcc's.
289  if (isInteger) {
290    switch (Result) {
291    default: break;
292    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
293    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
294    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
295    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
296    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
297    }
298  }
299
300  return Result;
301}
302
303const TargetMachine &SelectionDAG::getTarget() const {
304  return TLI.getTargetMachine();
305}
306
307//===----------------------------------------------------------------------===//
308//                           SDNode Profile Support
309//===----------------------------------------------------------------------===//
310
311/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
312///
313static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
314  ID.AddInteger(OpC);
315}
316
317/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
318/// solely with their pointer.
319static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
320  ID.AddPointer(VTList.VTs);
321}
322
323/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
324///
325static void AddNodeIDOperands(FoldingSetNodeID &ID,
326                              const SDValue *Ops, unsigned NumOps) {
327  for (; NumOps; --NumOps, ++Ops) {
328    ID.AddPointer(Ops->Val);
329    ID.AddInteger(Ops->ResNo);
330  }
331}
332
333/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
334///
335static void AddNodeIDOperands(FoldingSetNodeID &ID,
336                              const SDUse *Ops, unsigned NumOps) {
337  for (; NumOps; --NumOps, ++Ops) {
338    ID.AddPointer(Ops->getVal());
339    ID.AddInteger(Ops->getSDValue().ResNo);
340  }
341}
342
343static void AddNodeIDNode(FoldingSetNodeID &ID,
344                          unsigned short OpC, SDVTList VTList,
345                          const SDValue *OpList, unsigned N) {
346  AddNodeIDOpcode(ID, OpC);
347  AddNodeIDValueTypes(ID, VTList);
348  AddNodeIDOperands(ID, OpList, N);
349}
350
351
352/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
353/// data.
354static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
355  AddNodeIDOpcode(ID, N->getOpcode());
356  // Add the return value info.
357  AddNodeIDValueTypes(ID, N->getVTList());
358  // Add the operand info.
359  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
360
361  // Handle SDNode leafs with special info.
362  switch (N->getOpcode()) {
363  default: break;  // Normal nodes don't need extra info.
364  case ISD::ARG_FLAGS:
365    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
366    break;
367  case ISD::TargetConstant:
368  case ISD::Constant:
369    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
370    break;
371  case ISD::TargetConstantFP:
372  case ISD::ConstantFP: {
373    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
374    break;
375  }
376  case ISD::TargetGlobalAddress:
377  case ISD::GlobalAddress:
378  case ISD::TargetGlobalTLSAddress:
379  case ISD::GlobalTLSAddress: {
380    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
381    ID.AddPointer(GA->getGlobal());
382    ID.AddInteger(GA->getOffset());
383    break;
384  }
385  case ISD::BasicBlock:
386    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
387    break;
388  case ISD::Register:
389    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
390    break;
391  case ISD::DBG_STOPPOINT: {
392    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
393    ID.AddInteger(DSP->getLine());
394    ID.AddInteger(DSP->getColumn());
395    ID.AddPointer(DSP->getCompileUnit());
396    break;
397  }
398  case ISD::SRCVALUE:
399    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
400    break;
401  case ISD::MEMOPERAND: {
402    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
403    MO.Profile(ID);
404    break;
405  }
406  case ISD::FrameIndex:
407  case ISD::TargetFrameIndex:
408    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
409    break;
410  case ISD::JumpTable:
411  case ISD::TargetJumpTable:
412    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
413    break;
414  case ISD::ConstantPool:
415  case ISD::TargetConstantPool: {
416    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
417    ID.AddInteger(CP->getAlignment());
418    ID.AddInteger(CP->getOffset());
419    if (CP->isMachineConstantPoolEntry())
420      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
421    else
422      ID.AddPointer(CP->getConstVal());
423    break;
424  }
425  case ISD::LOAD: {
426    const LoadSDNode *LD = cast<LoadSDNode>(N);
427    ID.AddInteger(LD->getAddressingMode());
428    ID.AddInteger(LD->getExtensionType());
429    ID.AddInteger(LD->getMemoryVT().getRawBits());
430    ID.AddInteger(LD->getRawFlags());
431    break;
432  }
433  case ISD::STORE: {
434    const StoreSDNode *ST = cast<StoreSDNode>(N);
435    ID.AddInteger(ST->getAddressingMode());
436    ID.AddInteger(ST->isTruncatingStore());
437    ID.AddInteger(ST->getMemoryVT().getRawBits());
438    ID.AddInteger(ST->getRawFlags());
439    break;
440  }
441  case ISD::ATOMIC_CMP_SWAP:
442  case ISD::ATOMIC_LOAD_ADD:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_SUB:
445  case ISD::ATOMIC_LOAD_AND:
446  case ISD::ATOMIC_LOAD_OR:
447  case ISD::ATOMIC_LOAD_XOR:
448  case ISD::ATOMIC_LOAD_NAND:
449  case ISD::ATOMIC_LOAD_MIN:
450  case ISD::ATOMIC_LOAD_MAX:
451  case ISD::ATOMIC_LOAD_UMIN:
452  case ISD::ATOMIC_LOAD_UMAX: {
453    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
454    ID.AddInteger(AT->getRawFlags());
455    break;
456  }
457  } // end switch (N->getOpcode())
458}
459
460/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
461/// the CSE map that carries both alignment and volatility information.
462///
463static unsigned encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
464  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
465}
466
467//===----------------------------------------------------------------------===//
468//                              SelectionDAG Class
469//===----------------------------------------------------------------------===//
470
471/// RemoveDeadNodes - This method deletes all unreachable nodes in the
472/// SelectionDAG.
473void SelectionDAG::RemoveDeadNodes() {
474  // Create a dummy node (which is not added to allnodes), that adds a reference
475  // to the root node, preventing it from being deleted.
476  HandleSDNode Dummy(getRoot());
477
478  SmallVector<SDNode*, 128> DeadNodes;
479
480  // Add all obviously-dead nodes to the DeadNodes worklist.
481  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
482    if (I->use_empty())
483      DeadNodes.push_back(I);
484
485  RemoveDeadNodes(DeadNodes);
486
487  // If the root changed (e.g. it was a dead load, update the root).
488  setRoot(Dummy.getValue());
489}
490
491/// RemoveDeadNodes - This method deletes the unreachable nodes in the
492/// given list, and any nodes that become unreachable as a result.
493void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
494                                   DAGUpdateListener *UpdateListener) {
495
496  // Process the worklist, deleting the nodes and adding their uses to the
497  // worklist.
498  while (!DeadNodes.empty()) {
499    SDNode *N = DeadNodes.back();
500    DeadNodes.pop_back();
501
502    if (UpdateListener)
503      UpdateListener->NodeDeleted(N, 0);
504
505    // Take the node out of the appropriate CSE map.
506    RemoveNodeFromCSEMaps(N);
507
508    // Next, brutally remove the operand list.  This is safe to do, as there are
509    // no cycles in the graph.
510    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
511      SDNode *Operand = I->getVal();
512      Operand->removeUser(std::distance(N->op_begin(), I), N);
513
514      // Now that we removed this operand, see if there are no uses of it left.
515      if (Operand->use_empty())
516        DeadNodes.push_back(Operand);
517    }
518    if (N->OperandsNeedDelete) {
519      delete[] N->OperandList;
520    }
521    N->OperandList = 0;
522    N->NumOperands = 0;
523
524    // Finally, remove N itself.
525    AllNodes.remove(N);
526  }
527}
528
529void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
530  SmallVector<SDNode*, 16> DeadNodes(1, N);
531  RemoveDeadNodes(DeadNodes, UpdateListener);
532}
533
534void SelectionDAG::DeleteNode(SDNode *N) {
535  assert(N->use_empty() && "Cannot delete a node that is not dead!");
536
537  // First take this out of the appropriate CSE map.
538  RemoveNodeFromCSEMaps(N);
539
540  // Finally, remove uses due to operands of this node, remove from the
541  // AllNodes list, and delete the node.
542  DeleteNodeNotInCSEMaps(N);
543}
544
545void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
546
547  // Drop all of the operands and decrement used nodes use counts.
548  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
549    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
550  if (N->OperandsNeedDelete) {
551    delete[] N->OperandList;
552  }
553  N->OperandList = 0;
554  N->NumOperands = 0;
555
556  AllNodes.remove(N);
557}
558
559/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
560/// correspond to it.  This is useful when we're about to delete or repurpose
561/// the node.  We don't want future request for structurally identical nodes
562/// to return N anymore.
563void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
564  bool Erased = false;
565  switch (N->getOpcode()) {
566  case ISD::HANDLENODE: return;  // noop.
567  case ISD::CONDCODE:
568    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
569           "Cond code doesn't exist!");
570    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
571    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
572    break;
573  case ISD::ExternalSymbol:
574    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
575    break;
576  case ISD::TargetExternalSymbol:
577    Erased =
578      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
579    break;
580  case ISD::VALUETYPE: {
581    MVT VT = cast<VTSDNode>(N)->getVT();
582    if (VT.isExtended()) {
583      Erased = ExtendedValueTypeNodes.erase(VT);
584    } else {
585      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
586      ValueTypeNodes[VT.getSimpleVT()] = 0;
587    }
588    break;
589  }
590  default:
591    // Remove it from the CSE Map.
592    Erased = CSEMap.RemoveNode(N);
593    break;
594  }
595#ifndef NDEBUG
596  // Verify that the node was actually in one of the CSE maps, unless it has a
597  // flag result (which cannot be CSE'd) or is one of the special cases that are
598  // not subject to CSE.
599  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
600      !N->isTargetOpcode() &&
601      N->getOpcode() != ISD::DBG_LABEL &&
602      N->getOpcode() != ISD::DBG_STOPPOINT &&
603      N->getOpcode() != ISD::EH_LABEL &&
604      N->getOpcode() != ISD::DECLARE) {
605    N->dump(this);
606    cerr << "\n";
607    assert(0 && "Node is not in map!");
608  }
609#endif
610}
611
612/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
613/// has been taken out and modified in some way.  If the specified node already
614/// exists in the CSE maps, do not modify the maps, but return the existing node
615/// instead.  If it doesn't exist, add it and return null.
616///
617SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
618  assert(N->getNumOperands() && "This is a leaf node!");
619
620  if (N->getValueType(0) == MVT::Flag)
621    return 0;   // Never CSE anything that produces a flag.
622
623  switch (N->getOpcode()) {
624  default: break;
625  case ISD::HANDLENODE:
626  case ISD::DBG_LABEL:
627  case ISD::DBG_STOPPOINT:
628  case ISD::EH_LABEL:
629  case ISD::DECLARE:
630    return 0;    // Never add these nodes.
631  }
632
633  // Check that remaining values produced are not flags.
634  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
635    if (N->getValueType(i) == MVT::Flag)
636      return 0;   // Never CSE anything that produces a flag.
637
638  SDNode *New = CSEMap.GetOrInsertNode(N);
639  if (New != N) return New;  // Node already existed.
640  return 0;
641}
642
643/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
644/// were replaced with those specified.  If this node is never memoized,
645/// return null, otherwise return a pointer to the slot it would take.  If a
646/// node already exists with these operands, the slot will be non-null.
647SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
648                                           void *&InsertPos) {
649  if (N->getValueType(0) == MVT::Flag)
650    return 0;   // Never CSE anything that produces a flag.
651
652  switch (N->getOpcode()) {
653  default: break;
654  case ISD::HANDLENODE:
655  case ISD::DBG_LABEL:
656  case ISD::DBG_STOPPOINT:
657  case ISD::EH_LABEL:
658    return 0;    // Never add these nodes.
659  }
660
661  // Check that remaining values produced are not flags.
662  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
663    if (N->getValueType(i) == MVT::Flag)
664      return 0;   // Never CSE anything that produces a flag.
665
666  SDValue Ops[] = { Op };
667  FoldingSetNodeID ID;
668  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
669  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
670}
671
672/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
673/// were replaced with those specified.  If this node is never memoized,
674/// return null, otherwise return a pointer to the slot it would take.  If a
675/// node already exists with these operands, the slot will be non-null.
676SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
677                                           SDValue Op1, SDValue Op2,
678                                           void *&InsertPos) {
679  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
680
681  // Check that remaining values produced are not flags.
682  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
683    if (N->getValueType(i) == MVT::Flag)
684      return 0;   // Never CSE anything that produces a flag.
685
686  SDValue Ops[] = { Op1, Op2 };
687  FoldingSetNodeID ID;
688  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
689  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
690}
691
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
698                                           const SDValue *Ops,unsigned NumOps,
699                                           void *&InsertPos) {
700  if (N->getValueType(0) == MVT::Flag)
701    return 0;   // Never CSE anything that produces a flag.
702
703  switch (N->getOpcode()) {
704  default: break;
705  case ISD::HANDLENODE:
706  case ISD::DBG_LABEL:
707  case ISD::DBG_STOPPOINT:
708  case ISD::EH_LABEL:
709  case ISD::DECLARE:
710    return 0;    // Never add these nodes.
711  }
712
713  // Check that remaining values produced are not flags.
714  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
715    if (N->getValueType(i) == MVT::Flag)
716      return 0;   // Never CSE anything that produces a flag.
717
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
720
721  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
722    ID.AddInteger(LD->getAddressingMode());
723    ID.AddInteger(LD->getExtensionType());
724    ID.AddInteger(LD->getMemoryVT().getRawBits());
725    ID.AddInteger(LD->getRawFlags());
726  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
727    ID.AddInteger(ST->getAddressingMode());
728    ID.AddInteger(ST->isTruncatingStore());
729    ID.AddInteger(ST->getMemoryVT().getRawBits());
730    ID.AddInteger(ST->getRawFlags());
731  }
732
733  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
734}
735
736/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
737void SelectionDAG::VerifyNode(SDNode *N) {
738  switch (N->getOpcode()) {
739  default:
740    break;
741  case ISD::BUILD_VECTOR: {
742    assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!");
743    assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!");
744    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
745           "Wrong number of BUILD_VECTOR operands!");
746    MVT EltVT = N->getValueType(0).getVectorElementType();
747    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
748      assert(I->getSDValue().getValueType() == EltVT &&
749             "Wrong BUILD_VECTOR operand type!");
750    break;
751  }
752  }
753}
754
755/// getMVTAlignment - Compute the default alignment value for the
756/// given type.
757///
758unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
759  const Type *Ty = VT == MVT::iPTR ?
760                   PointerType::get(Type::Int8Ty, 0) :
761                   VT.getTypeForMVT();
762
763  return TLI.getTargetData()->getABITypeAlignment(Ty);
764}
765
766SelectionDAG::SelectionDAG(TargetLowering &tli, MachineFunction &mf,
767                           FunctionLoweringInfo &fli, MachineModuleInfo *mmi,
768                           NodeAllocatorType &nodeallocator)
769  : TLI(tli), MF(mf), FLI(fli), MMI(mmi), NodeAllocator(nodeallocator) {
770  EntryNode = Root = getNode(ISD::EntryToken, MVT::Other);
771}
772
773SelectionDAG::~SelectionDAG() {
774  while (!AllNodes.empty()) {
775    SDNode *N = AllNodes.remove(AllNodes.begin());
776    N->SetNextInBucket(0);
777    if (N->OperandsNeedDelete) {
778      delete [] N->OperandList;
779    }
780    N->OperandList = 0;
781    N->NumOperands = 0;
782  }
783}
784
785SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
786  if (Op.getValueType() == VT) return Op;
787  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
788                                   VT.getSizeInBits());
789  return getNode(ISD::AND, Op.getValueType(), Op,
790                 getConstant(Imm, Op.getValueType()));
791}
792
793SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
794  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
795  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
796}
797
798SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
799  assert(VT.isInteger() && "Cannot create FP integer constant!");
800
801  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
802  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
803         "APInt size does not match type size!");
804
805  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
806  FoldingSetNodeID ID;
807  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
808  ID.Add(Val);
809  void *IP = 0;
810  SDNode *N = NULL;
811  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
812    if (!VT.isVector())
813      return SDValue(N, 0);
814  if (!N) {
815    N = NodeAllocator.Allocate<ConstantSDNode>();
816    new (N) ConstantSDNode(isT, Val, EltVT);
817    CSEMap.InsertNode(N, IP);
818    AllNodes.push_back(N);
819  }
820
821  SDValue Result(N, 0);
822  if (VT.isVector()) {
823    SmallVector<SDValue, 8> Ops;
824    Ops.assign(VT.getVectorNumElements(), Result);
825    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
826  }
827  return Result;
828}
829
830SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
831  return getConstant(Val, TLI.getPointerTy(), isTarget);
832}
833
834
835SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
836  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
837
838  MVT EltVT =
839    VT.isVector() ? VT.getVectorElementType() : VT;
840
841  // Do the map lookup using the actual bit pattern for the floating point
842  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
843  // we don't have issues with SNANs.
844  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
845  FoldingSetNodeID ID;
846  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
847  ID.Add(V);
848  void *IP = 0;
849  SDNode *N = NULL;
850  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
851    if (!VT.isVector())
852      return SDValue(N, 0);
853  if (!N) {
854    N = NodeAllocator.Allocate<ConstantFPSDNode>();
855    new (N) ConstantFPSDNode(isTarget, V, EltVT);
856    CSEMap.InsertNode(N, IP);
857    AllNodes.push_back(N);
858  }
859
860  SDValue Result(N, 0);
861  if (VT.isVector()) {
862    SmallVector<SDValue, 8> Ops;
863    Ops.assign(VT.getVectorNumElements(), Result);
864    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
865  }
866  return Result;
867}
868
869SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
870  MVT EltVT =
871    VT.isVector() ? VT.getVectorElementType() : VT;
872  if (EltVT==MVT::f32)
873    return getConstantFP(APFloat((float)Val), VT, isTarget);
874  else
875    return getConstantFP(APFloat(Val), VT, isTarget);
876}
877
878SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
879                                       MVT VT, int Offset,
880                                       bool isTargetGA) {
881  unsigned Opc;
882
883  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
884  if (!GVar) {
885    // If GV is an alias then use the aliasee for determining thread-localness.
886    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
887      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
888  }
889
890  if (GVar && GVar->isThreadLocal())
891    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
892  else
893    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
894
895  FoldingSetNodeID ID;
896  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
897  ID.AddPointer(GV);
898  ID.AddInteger(Offset);
899  void *IP = 0;
900  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
901   return SDValue(E, 0);
902  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
903  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
904  CSEMap.InsertNode(N, IP);
905  AllNodes.push_back(N);
906  return SDValue(N, 0);
907}
908
909SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
910  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
911  FoldingSetNodeID ID;
912  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
913  ID.AddInteger(FI);
914  void *IP = 0;
915  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
916    return SDValue(E, 0);
917  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
918  new (N) FrameIndexSDNode(FI, VT, isTarget);
919  CSEMap.InsertNode(N, IP);
920  AllNodes.push_back(N);
921  return SDValue(N, 0);
922}
923
924SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
925  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
926  FoldingSetNodeID ID;
927  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
928  ID.AddInteger(JTI);
929  void *IP = 0;
930  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
931    return SDValue(E, 0);
932  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
933  new (N) JumpTableSDNode(JTI, VT, isTarget);
934  CSEMap.InsertNode(N, IP);
935  AllNodes.push_back(N);
936  return SDValue(N, 0);
937}
938
939SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
940                                      unsigned Alignment, int Offset,
941                                      bool isTarget) {
942  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
943  FoldingSetNodeID ID;
944  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
945  ID.AddInteger(Alignment);
946  ID.AddInteger(Offset);
947  ID.AddPointer(C);
948  void *IP = 0;
949  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
950    return SDValue(E, 0);
951  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
952  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
953  CSEMap.InsertNode(N, IP);
954  AllNodes.push_back(N);
955  return SDValue(N, 0);
956}
957
958
959SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
960                                      unsigned Alignment, int Offset,
961                                      bool isTarget) {
962  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
963  FoldingSetNodeID ID;
964  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
965  ID.AddInteger(Alignment);
966  ID.AddInteger(Offset);
967  C->AddSelectionDAGCSEId(ID);
968  void *IP = 0;
969  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
970    return SDValue(E, 0);
971  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
972  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
973  CSEMap.InsertNode(N, IP);
974  AllNodes.push_back(N);
975  return SDValue(N, 0);
976}
977
978
979SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
980  FoldingSetNodeID ID;
981  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
982  ID.AddPointer(MBB);
983  void *IP = 0;
984  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
985    return SDValue(E, 0);
986  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
987  new (N) BasicBlockSDNode(MBB);
988  CSEMap.InsertNode(N, IP);
989  AllNodes.push_back(N);
990  return SDValue(N, 0);
991}
992
993SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
994  FoldingSetNodeID ID;
995  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
996  ID.AddInteger(Flags.getRawBits());
997  void *IP = 0;
998  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
999    return SDValue(E, 0);
1000  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1001  new (N) ARG_FLAGSSDNode(Flags);
1002  CSEMap.InsertNode(N, IP);
1003  AllNodes.push_back(N);
1004  return SDValue(N, 0);
1005}
1006
1007SDValue SelectionDAG::getValueType(MVT VT) {
1008  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1009    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1010
1011  SDNode *&N = VT.isExtended() ?
1012    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1013
1014  if (N) return SDValue(N, 0);
1015  N = NodeAllocator.Allocate<VTSDNode>();
1016  new (N) VTSDNode(VT);
1017  AllNodes.push_back(N);
1018  return SDValue(N, 0);
1019}
1020
1021SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1022  SDNode *&N = ExternalSymbols[Sym];
1023  if (N) return SDValue(N, 0);
1024  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1025  new (N) ExternalSymbolSDNode(false, Sym, VT);
1026  AllNodes.push_back(N);
1027  return SDValue(N, 0);
1028}
1029
1030SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1031  SDNode *&N = TargetExternalSymbols[Sym];
1032  if (N) return SDValue(N, 0);
1033  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1034  new (N) ExternalSymbolSDNode(true, Sym, VT);
1035  AllNodes.push_back(N);
1036  return SDValue(N, 0);
1037}
1038
1039SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1040  if ((unsigned)Cond >= CondCodeNodes.size())
1041    CondCodeNodes.resize(Cond+1);
1042
1043  if (CondCodeNodes[Cond] == 0) {
1044    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1045    new (N) CondCodeSDNode(Cond);
1046    CondCodeNodes[Cond] = N;
1047    AllNodes.push_back(N);
1048  }
1049  return SDValue(CondCodeNodes[Cond], 0);
1050}
1051
1052SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1053  FoldingSetNodeID ID;
1054  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1055  ID.AddInteger(RegNo);
1056  void *IP = 0;
1057  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1058    return SDValue(E, 0);
1059  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1060  new (N) RegisterSDNode(RegNo, VT);
1061  CSEMap.InsertNode(N, IP);
1062  AllNodes.push_back(N);
1063  return SDValue(N, 0);
1064}
1065
1066SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1067                                        unsigned Line, unsigned Col,
1068                                        const CompileUnitDesc *CU) {
1069  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1070  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1071  AllNodes.push_back(N);
1072  return SDValue(N, 0);
1073}
1074
1075SDValue SelectionDAG::getLabel(unsigned Opcode,
1076                               SDValue Root,
1077                               unsigned LabelID) {
1078  FoldingSetNodeID ID;
1079  SDValue Ops[] = { Root };
1080  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1081  ID.AddInteger(LabelID);
1082  void *IP = 0;
1083  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1084    return SDValue(E, 0);
1085  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1086  new (N) LabelSDNode(Opcode, Root, LabelID);
1087  CSEMap.InsertNode(N, IP);
1088  AllNodes.push_back(N);
1089  return SDValue(N, 0);
1090}
1091
1092SDValue SelectionDAG::getSrcValue(const Value *V) {
1093  assert((!V || isa<PointerType>(V->getType())) &&
1094         "SrcValue is not a pointer?");
1095
1096  FoldingSetNodeID ID;
1097  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1098  ID.AddPointer(V);
1099
1100  void *IP = 0;
1101  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1102    return SDValue(E, 0);
1103
1104  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1105  new (N) SrcValueSDNode(V);
1106  CSEMap.InsertNode(N, IP);
1107  AllNodes.push_back(N);
1108  return SDValue(N, 0);
1109}
1110
1111SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1112  const Value *v = MO.getValue();
1113  assert((!v || isa<PointerType>(v->getType())) &&
1114         "SrcValue is not a pointer?");
1115
1116  FoldingSetNodeID ID;
1117  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1118  MO.Profile(ID);
1119
1120  void *IP = 0;
1121  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1122    return SDValue(E, 0);
1123
1124  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1125  new (N) MemOperandSDNode(MO);
1126  CSEMap.InsertNode(N, IP);
1127  AllNodes.push_back(N);
1128  return SDValue(N, 0);
1129}
1130
1131/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1132/// specified value type.
1133SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1134  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1135  unsigned ByteSize = VT.getSizeInBits()/8;
1136  const Type *Ty = VT.getTypeForMVT();
1137  unsigned StackAlign =
1138  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1139
1140  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1141  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1142}
1143
1144SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1145                                SDValue N2, ISD::CondCode Cond) {
1146  // These setcc operations always fold.
1147  switch (Cond) {
1148  default: break;
1149  case ISD::SETFALSE:
1150  case ISD::SETFALSE2: return getConstant(0, VT);
1151  case ISD::SETTRUE:
1152  case ISD::SETTRUE2:  return getConstant(1, VT);
1153
1154  case ISD::SETOEQ:
1155  case ISD::SETOGT:
1156  case ISD::SETOGE:
1157  case ISD::SETOLT:
1158  case ISD::SETOLE:
1159  case ISD::SETONE:
1160  case ISD::SETO:
1161  case ISD::SETUO:
1162  case ISD::SETUEQ:
1163  case ISD::SETUNE:
1164    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1165    break;
1166  }
1167
1168  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1169    const APInt &C2 = N2C->getAPIntValue();
1170    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1171      const APInt &C1 = N1C->getAPIntValue();
1172
1173      switch (Cond) {
1174      default: assert(0 && "Unknown integer setcc!");
1175      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1176      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1177      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1178      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1179      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1180      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1181      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1182      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1183      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1184      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1185      }
1186    }
1187  }
1188  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1189    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1190      // No compile time operations on this type yet.
1191      if (N1C->getValueType(0) == MVT::ppcf128)
1192        return SDValue();
1193
1194      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1195      switch (Cond) {
1196      default: break;
1197      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1198                          return getNode(ISD::UNDEF, VT);
1199                        // fall through
1200      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1201      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1202                          return getNode(ISD::UNDEF, VT);
1203                        // fall through
1204      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1205                                           R==APFloat::cmpLessThan, VT);
1206      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1207                          return getNode(ISD::UNDEF, VT);
1208                        // fall through
1209      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1210      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1211                          return getNode(ISD::UNDEF, VT);
1212                        // fall through
1213      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1214      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1215                          return getNode(ISD::UNDEF, VT);
1216                        // fall through
1217      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1218                                           R==APFloat::cmpEqual, VT);
1219      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1220                          return getNode(ISD::UNDEF, VT);
1221                        // fall through
1222      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1223                                           R==APFloat::cmpEqual, VT);
1224      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1225      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1226      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1227                                           R==APFloat::cmpEqual, VT);
1228      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1229      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1230                                           R==APFloat::cmpLessThan, VT);
1231      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1232                                           R==APFloat::cmpUnordered, VT);
1233      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1234      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1235      }
1236    } else {
1237      // Ensure that the constant occurs on the RHS.
1238      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1239    }
1240  }
1241
1242  // Could not fold it.
1243  return SDValue();
1244}
1245
1246/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1247/// use this predicate to simplify operations downstream.
1248bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1249  unsigned BitWidth = Op.getValueSizeInBits();
1250  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1251}
1252
1253/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1254/// this predicate to simplify operations downstream.  Mask is known to be zero
1255/// for bits that V cannot have.
1256bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1257                                     unsigned Depth) const {
1258  APInt KnownZero, KnownOne;
1259  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1260  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1261  return (KnownZero & Mask) == Mask;
1262}
1263
1264/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1265/// known to be either zero or one and return them in the KnownZero/KnownOne
1266/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1267/// processing.
1268void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1269                                     APInt &KnownZero, APInt &KnownOne,
1270                                     unsigned Depth) const {
1271  unsigned BitWidth = Mask.getBitWidth();
1272  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1273         "Mask size mismatches value type size!");
1274
1275  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1276  if (Depth == 6 || Mask == 0)
1277    return;  // Limit search depth.
1278
1279  APInt KnownZero2, KnownOne2;
1280
1281  switch (Op.getOpcode()) {
1282  case ISD::Constant:
1283    // We know all of the bits for a constant!
1284    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1285    KnownZero = ~KnownOne & Mask;
1286    return;
1287  case ISD::AND:
1288    // If either the LHS or the RHS are Zero, the result is zero.
1289    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1290    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1291                      KnownZero2, KnownOne2, Depth+1);
1292    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1293    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1294
1295    // Output known-1 bits are only known if set in both the LHS & RHS.
1296    KnownOne &= KnownOne2;
1297    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1298    KnownZero |= KnownZero2;
1299    return;
1300  case ISD::OR:
1301    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1302    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1303                      KnownZero2, KnownOne2, Depth+1);
1304    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1305    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1306
1307    // Output known-0 bits are only known if clear in both the LHS & RHS.
1308    KnownZero &= KnownZero2;
1309    // Output known-1 are known to be set if set in either the LHS | RHS.
1310    KnownOne |= KnownOne2;
1311    return;
1312  case ISD::XOR: {
1313    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1314    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1315    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1316    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1317
1318    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1319    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1320    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1321    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1322    KnownZero = KnownZeroOut;
1323    return;
1324  }
1325  case ISD::MUL: {
1326    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1327    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1328    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1329    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1330    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1331
1332    // If low bits are zero in either operand, output low known-0 bits.
1333    // Also compute a conserative estimate for high known-0 bits.
1334    // More trickiness is possible, but this is sufficient for the
1335    // interesting case of alignment computation.
1336    KnownOne.clear();
1337    unsigned TrailZ = KnownZero.countTrailingOnes() +
1338                      KnownZero2.countTrailingOnes();
1339    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1340                               KnownZero2.countLeadingOnes(),
1341                               BitWidth) - BitWidth;
1342
1343    TrailZ = std::min(TrailZ, BitWidth);
1344    LeadZ = std::min(LeadZ, BitWidth);
1345    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1346                APInt::getHighBitsSet(BitWidth, LeadZ);
1347    KnownZero &= Mask;
1348    return;
1349  }
1350  case ISD::UDIV: {
1351    // For the purposes of computing leading zeros we can conservatively
1352    // treat a udiv as a logical right shift by the power of 2 known to
1353    // be less than the denominator.
1354    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1355    ComputeMaskedBits(Op.getOperand(0),
1356                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1357    unsigned LeadZ = KnownZero2.countLeadingOnes();
1358
1359    KnownOne2.clear();
1360    KnownZero2.clear();
1361    ComputeMaskedBits(Op.getOperand(1),
1362                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1363    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1364    if (RHSUnknownLeadingOnes != BitWidth)
1365      LeadZ = std::min(BitWidth,
1366                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1367
1368    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1369    return;
1370  }
1371  case ISD::SELECT:
1372    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1373    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1374    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1375    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1376
1377    // Only known if known in both the LHS and RHS.
1378    KnownOne &= KnownOne2;
1379    KnownZero &= KnownZero2;
1380    return;
1381  case ISD::SELECT_CC:
1382    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1383    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1384    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1385    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1386
1387    // Only known if known in both the LHS and RHS.
1388    KnownOne &= KnownOne2;
1389    KnownZero &= KnownZero2;
1390    return;
1391  case ISD::SETCC:
1392    // If we know the result of a setcc has the top bits zero, use this info.
1393    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1394        BitWidth > 1)
1395      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1396    return;
1397  case ISD::SHL:
1398    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1399    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1400      unsigned ShAmt = SA->getValue();
1401
1402      // If the shift count is an invalid immediate, don't do anything.
1403      if (ShAmt >= BitWidth)
1404        return;
1405
1406      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1407                        KnownZero, KnownOne, Depth+1);
1408      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1409      KnownZero <<= ShAmt;
1410      KnownOne  <<= ShAmt;
1411      // low bits known zero.
1412      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1413    }
1414    return;
1415  case ISD::SRL:
1416    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1417    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1418      unsigned ShAmt = SA->getValue();
1419
1420      // If the shift count is an invalid immediate, don't do anything.
1421      if (ShAmt >= BitWidth)
1422        return;
1423
1424      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1425                        KnownZero, KnownOne, Depth+1);
1426      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1427      KnownZero = KnownZero.lshr(ShAmt);
1428      KnownOne  = KnownOne.lshr(ShAmt);
1429
1430      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1431      KnownZero |= HighBits;  // High bits known zero.
1432    }
1433    return;
1434  case ISD::SRA:
1435    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1436      unsigned ShAmt = SA->getValue();
1437
1438      // If the shift count is an invalid immediate, don't do anything.
1439      if (ShAmt >= BitWidth)
1440        return;
1441
1442      APInt InDemandedMask = (Mask << ShAmt);
1443      // If any of the demanded bits are produced by the sign extension, we also
1444      // demand the input sign bit.
1445      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1446      if (HighBits.getBoolValue())
1447        InDemandedMask |= APInt::getSignBit(BitWidth);
1448
1449      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1450                        Depth+1);
1451      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1452      KnownZero = KnownZero.lshr(ShAmt);
1453      KnownOne  = KnownOne.lshr(ShAmt);
1454
1455      // Handle the sign bits.
1456      APInt SignBit = APInt::getSignBit(BitWidth);
1457      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1458
1459      if (KnownZero.intersects(SignBit)) {
1460        KnownZero |= HighBits;  // New bits are known zero.
1461      } else if (KnownOne.intersects(SignBit)) {
1462        KnownOne  |= HighBits;  // New bits are known one.
1463      }
1464    }
1465    return;
1466  case ISD::SIGN_EXTEND_INREG: {
1467    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1468    unsigned EBits = EVT.getSizeInBits();
1469
1470    // Sign extension.  Compute the demanded bits in the result that are not
1471    // present in the input.
1472    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1473
1474    APInt InSignBit = APInt::getSignBit(EBits);
1475    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1476
1477    // If the sign extended bits are demanded, we know that the sign
1478    // bit is demanded.
1479    InSignBit.zext(BitWidth);
1480    if (NewBits.getBoolValue())
1481      InputDemandedBits |= InSignBit;
1482
1483    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1484                      KnownZero, KnownOne, Depth+1);
1485    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1486
1487    // If the sign bit of the input is known set or clear, then we know the
1488    // top bits of the result.
1489    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1490      KnownZero |= NewBits;
1491      KnownOne  &= ~NewBits;
1492    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1493      KnownOne  |= NewBits;
1494      KnownZero &= ~NewBits;
1495    } else {                              // Input sign bit unknown
1496      KnownZero &= ~NewBits;
1497      KnownOne  &= ~NewBits;
1498    }
1499    return;
1500  }
1501  case ISD::CTTZ:
1502  case ISD::CTLZ:
1503  case ISD::CTPOP: {
1504    unsigned LowBits = Log2_32(BitWidth)+1;
1505    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1506    KnownOne.clear();
1507    return;
1508  }
1509  case ISD::LOAD: {
1510    if (ISD::isZEXTLoad(Op.Val)) {
1511      LoadSDNode *LD = cast<LoadSDNode>(Op);
1512      MVT VT = LD->getMemoryVT();
1513      unsigned MemBits = VT.getSizeInBits();
1514      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1515    }
1516    return;
1517  }
1518  case ISD::ZERO_EXTEND: {
1519    MVT InVT = Op.getOperand(0).getValueType();
1520    unsigned InBits = InVT.getSizeInBits();
1521    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1522    APInt InMask    = Mask;
1523    InMask.trunc(InBits);
1524    KnownZero.trunc(InBits);
1525    KnownOne.trunc(InBits);
1526    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1527    KnownZero.zext(BitWidth);
1528    KnownOne.zext(BitWidth);
1529    KnownZero |= NewBits;
1530    return;
1531  }
1532  case ISD::SIGN_EXTEND: {
1533    MVT InVT = Op.getOperand(0).getValueType();
1534    unsigned InBits = InVT.getSizeInBits();
1535    APInt InSignBit = APInt::getSignBit(InBits);
1536    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1537    APInt InMask = Mask;
1538    InMask.trunc(InBits);
1539
1540    // If any of the sign extended bits are demanded, we know that the sign
1541    // bit is demanded. Temporarily set this bit in the mask for our callee.
1542    if (NewBits.getBoolValue())
1543      InMask |= InSignBit;
1544
1545    KnownZero.trunc(InBits);
1546    KnownOne.trunc(InBits);
1547    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1548
1549    // Note if the sign bit is known to be zero or one.
1550    bool SignBitKnownZero = KnownZero.isNegative();
1551    bool SignBitKnownOne  = KnownOne.isNegative();
1552    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1553           "Sign bit can't be known to be both zero and one!");
1554
1555    // If the sign bit wasn't actually demanded by our caller, we don't
1556    // want it set in the KnownZero and KnownOne result values. Reset the
1557    // mask and reapply it to the result values.
1558    InMask = Mask;
1559    InMask.trunc(InBits);
1560    KnownZero &= InMask;
1561    KnownOne  &= InMask;
1562
1563    KnownZero.zext(BitWidth);
1564    KnownOne.zext(BitWidth);
1565
1566    // If the sign bit is known zero or one, the top bits match.
1567    if (SignBitKnownZero)
1568      KnownZero |= NewBits;
1569    else if (SignBitKnownOne)
1570      KnownOne  |= NewBits;
1571    return;
1572  }
1573  case ISD::ANY_EXTEND: {
1574    MVT InVT = Op.getOperand(0).getValueType();
1575    unsigned InBits = InVT.getSizeInBits();
1576    APInt InMask = Mask;
1577    InMask.trunc(InBits);
1578    KnownZero.trunc(InBits);
1579    KnownOne.trunc(InBits);
1580    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1581    KnownZero.zext(BitWidth);
1582    KnownOne.zext(BitWidth);
1583    return;
1584  }
1585  case ISD::TRUNCATE: {
1586    MVT InVT = Op.getOperand(0).getValueType();
1587    unsigned InBits = InVT.getSizeInBits();
1588    APInt InMask = Mask;
1589    InMask.zext(InBits);
1590    KnownZero.zext(InBits);
1591    KnownOne.zext(InBits);
1592    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1593    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1594    KnownZero.trunc(BitWidth);
1595    KnownOne.trunc(BitWidth);
1596    break;
1597  }
1598  case ISD::AssertZext: {
1599    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1600    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1601    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1602                      KnownOne, Depth+1);
1603    KnownZero |= (~InMask) & Mask;
1604    return;
1605  }
1606  case ISD::FGETSIGN:
1607    // All bits are zero except the low bit.
1608    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1609    return;
1610
1611  case ISD::SUB: {
1612    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1613      // We know that the top bits of C-X are clear if X contains less bits
1614      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1615      // positive if we can prove that X is >= 0 and < 16.
1616      if (CLHS->getAPIntValue().isNonNegative()) {
1617        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1618        // NLZ can't be BitWidth with no sign bit
1619        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1620        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1621                          Depth+1);
1622
1623        // If all of the MaskV bits are known to be zero, then we know the
1624        // output top bits are zero, because we now know that the output is
1625        // from [0-C].
1626        if ((KnownZero2 & MaskV) == MaskV) {
1627          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1628          // Top bits known zero.
1629          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1630        }
1631      }
1632    }
1633  }
1634  // fall through
1635  case ISD::ADD: {
1636    // Output known-0 bits are known if clear or set in both the low clear bits
1637    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1638    // low 3 bits clear.
1639    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1640    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1641    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1642    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1643
1644    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1645    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1646    KnownZeroOut = std::min(KnownZeroOut,
1647                            KnownZero2.countTrailingOnes());
1648
1649    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1650    return;
1651  }
1652  case ISD::SREM:
1653    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1654      const APInt &RA = Rem->getAPIntValue();
1655      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1656        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1657        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1658        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1659
1660        // If the sign bit of the first operand is zero, the sign bit of
1661        // the result is zero. If the first operand has no one bits below
1662        // the second operand's single 1 bit, its sign will be zero.
1663        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1664          KnownZero2 |= ~LowBits;
1665
1666        KnownZero |= KnownZero2 & Mask;
1667
1668        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1669      }
1670    }
1671    return;
1672  case ISD::UREM: {
1673    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1674      const APInt &RA = Rem->getAPIntValue();
1675      if (RA.isPowerOf2()) {
1676        APInt LowBits = (RA - 1);
1677        APInt Mask2 = LowBits & Mask;
1678        KnownZero |= ~LowBits & Mask;
1679        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1680        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1681        break;
1682      }
1683    }
1684
1685    // Since the result is less than or equal to either operand, any leading
1686    // zero bits in either operand must also exist in the result.
1687    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1688    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1689                      Depth+1);
1690    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1691                      Depth+1);
1692
1693    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1694                                KnownZero2.countLeadingOnes());
1695    KnownOne.clear();
1696    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1697    return;
1698  }
1699  default:
1700    // Allow the target to implement this method for its nodes.
1701    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1702  case ISD::INTRINSIC_WO_CHAIN:
1703  case ISD::INTRINSIC_W_CHAIN:
1704  case ISD::INTRINSIC_VOID:
1705      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1706    }
1707    return;
1708  }
1709}
1710
1711/// ComputeNumSignBits - Return the number of times the sign bit of the
1712/// register is replicated into the other bits.  We know that at least 1 bit
1713/// is always equal to the sign bit (itself), but other cases can give us
1714/// information.  For example, immediately after an "SRA X, 2", we know that
1715/// the top 3 bits are all equal to each other, so we return 3.
1716unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1717  MVT VT = Op.getValueType();
1718  assert(VT.isInteger() && "Invalid VT!");
1719  unsigned VTBits = VT.getSizeInBits();
1720  unsigned Tmp, Tmp2;
1721  unsigned FirstAnswer = 1;
1722
1723  if (Depth == 6)
1724    return 1;  // Limit search depth.
1725
1726  switch (Op.getOpcode()) {
1727  default: break;
1728  case ISD::AssertSext:
1729    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1730    return VTBits-Tmp+1;
1731  case ISD::AssertZext:
1732    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1733    return VTBits-Tmp;
1734
1735  case ISD::Constant: {
1736    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1737    // If negative, return # leading ones.
1738    if (Val.isNegative())
1739      return Val.countLeadingOnes();
1740
1741    // Return # leading zeros.
1742    return Val.countLeadingZeros();
1743  }
1744
1745  case ISD::SIGN_EXTEND:
1746    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1747    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1748
1749  case ISD::SIGN_EXTEND_INREG:
1750    // Max of the input and what this extends.
1751    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1752    Tmp = VTBits-Tmp+1;
1753
1754    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1755    return std::max(Tmp, Tmp2);
1756
1757  case ISD::SRA:
1758    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1759    // SRA X, C   -> adds C sign bits.
1760    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1761      Tmp += C->getValue();
1762      if (Tmp > VTBits) Tmp = VTBits;
1763    }
1764    return Tmp;
1765  case ISD::SHL:
1766    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1767      // shl destroys sign bits.
1768      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1769      if (C->getValue() >= VTBits ||      // Bad shift.
1770          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1771      return Tmp - C->getValue();
1772    }
1773    break;
1774  case ISD::AND:
1775  case ISD::OR:
1776  case ISD::XOR:    // NOT is handled here.
1777    // Logical binary ops preserve the number of sign bits at the worst.
1778    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1779    if (Tmp != 1) {
1780      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1781      FirstAnswer = std::min(Tmp, Tmp2);
1782      // We computed what we know about the sign bits as our first
1783      // answer. Now proceed to the generic code that uses
1784      // ComputeMaskedBits, and pick whichever answer is better.
1785    }
1786    break;
1787
1788  case ISD::SELECT:
1789    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1790    if (Tmp == 1) return 1;  // Early out.
1791    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1792    return std::min(Tmp, Tmp2);
1793
1794  case ISD::SETCC:
1795    // If setcc returns 0/-1, all bits are sign bits.
1796    if (TLI.getSetCCResultContents() ==
1797        TargetLowering::ZeroOrNegativeOneSetCCResult)
1798      return VTBits;
1799    break;
1800  case ISD::ROTL:
1801  case ISD::ROTR:
1802    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1803      unsigned RotAmt = C->getValue() & (VTBits-1);
1804
1805      // Handle rotate right by N like a rotate left by 32-N.
1806      if (Op.getOpcode() == ISD::ROTR)
1807        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1808
1809      // If we aren't rotating out all of the known-in sign bits, return the
1810      // number that are left.  This handles rotl(sext(x), 1) for example.
1811      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1812      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1813    }
1814    break;
1815  case ISD::ADD:
1816    // Add can have at most one carry bit.  Thus we know that the output
1817    // is, at worst, one more bit than the inputs.
1818    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1819    if (Tmp == 1) return 1;  // Early out.
1820
1821    // Special case decrementing a value (ADD X, -1):
1822    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1823      if (CRHS->isAllOnesValue()) {
1824        APInt KnownZero, KnownOne;
1825        APInt Mask = APInt::getAllOnesValue(VTBits);
1826        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1827
1828        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1829        // sign bits set.
1830        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1831          return VTBits;
1832
1833        // If we are subtracting one from a positive number, there is no carry
1834        // out of the result.
1835        if (KnownZero.isNegative())
1836          return Tmp;
1837      }
1838
1839    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1840    if (Tmp2 == 1) return 1;
1841      return std::min(Tmp, Tmp2)-1;
1842    break;
1843
1844  case ISD::SUB:
1845    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1846    if (Tmp2 == 1) return 1;
1847
1848    // Handle NEG.
1849    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1850      if (CLHS->isNullValue()) {
1851        APInt KnownZero, KnownOne;
1852        APInt Mask = APInt::getAllOnesValue(VTBits);
1853        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1854        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1855        // sign bits set.
1856        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1857          return VTBits;
1858
1859        // If the input is known to be positive (the sign bit is known clear),
1860        // the output of the NEG has the same number of sign bits as the input.
1861        if (KnownZero.isNegative())
1862          return Tmp2;
1863
1864        // Otherwise, we treat this like a SUB.
1865      }
1866
1867    // Sub can have at most one carry bit.  Thus we know that the output
1868    // is, at worst, one more bit than the inputs.
1869    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1870    if (Tmp == 1) return 1;  // Early out.
1871      return std::min(Tmp, Tmp2)-1;
1872    break;
1873  case ISD::TRUNCATE:
1874    // FIXME: it's tricky to do anything useful for this, but it is an important
1875    // case for targets like X86.
1876    break;
1877  }
1878
1879  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1880  if (Op.getOpcode() == ISD::LOAD) {
1881    LoadSDNode *LD = cast<LoadSDNode>(Op);
1882    unsigned ExtType = LD->getExtensionType();
1883    switch (ExtType) {
1884    default: break;
1885    case ISD::SEXTLOAD:    // '17' bits known
1886      Tmp = LD->getMemoryVT().getSizeInBits();
1887      return VTBits-Tmp+1;
1888    case ISD::ZEXTLOAD:    // '16' bits known
1889      Tmp = LD->getMemoryVT().getSizeInBits();
1890      return VTBits-Tmp;
1891    }
1892  }
1893
1894  // Allow the target to implement this method for its nodes.
1895  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1896      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1897      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1898      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1899    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1900    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1901  }
1902
1903  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1904  // use this information.
1905  APInt KnownZero, KnownOne;
1906  APInt Mask = APInt::getAllOnesValue(VTBits);
1907  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1908
1909  if (KnownZero.isNegative()) {        // sign bit is 0
1910    Mask = KnownZero;
1911  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1912    Mask = KnownOne;
1913  } else {
1914    // Nothing known.
1915    return FirstAnswer;
1916  }
1917
1918  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1919  // the number of identical bits in the top of the input value.
1920  Mask = ~Mask;
1921  Mask <<= Mask.getBitWidth()-VTBits;
1922  // Return # leading zeros.  We use 'min' here in case Val was zero before
1923  // shifting.  We don't want to return '64' as for an i32 "0".
1924  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
1925}
1926
1927
1928bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
1929  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1930  if (!GA) return false;
1931  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1932  if (!GV) return false;
1933  MachineModuleInfo *MMI = getMachineModuleInfo();
1934  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1935}
1936
1937
1938/// getShuffleScalarElt - Returns the scalar element that will make up the ith
1939/// element of the result of the vector shuffle.
1940SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
1941  MVT VT = N->getValueType(0);
1942  SDValue PermMask = N->getOperand(2);
1943  SDValue Idx = PermMask.getOperand(i);
1944  if (Idx.getOpcode() == ISD::UNDEF)
1945    return getNode(ISD::UNDEF, VT.getVectorElementType());
1946  unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
1947  unsigned NumElems = PermMask.getNumOperands();
1948  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
1949  Index %= NumElems;
1950
1951  if (V.getOpcode() == ISD::BIT_CONVERT) {
1952    V = V.getOperand(0);
1953    if (V.getValueType().getVectorNumElements() != NumElems)
1954      return SDValue();
1955  }
1956  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
1957    return (Index == 0) ? V.getOperand(0)
1958                      : getNode(ISD::UNDEF, VT.getVectorElementType());
1959  if (V.getOpcode() == ISD::BUILD_VECTOR)
1960    return V.getOperand(Index);
1961  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
1962    return getShuffleScalarElt(V.Val, Index);
1963  return SDValue();
1964}
1965
1966
1967/// getNode - Gets or creates the specified node.
1968///
1969SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
1970  FoldingSetNodeID ID;
1971  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1972  void *IP = 0;
1973  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1974    return SDValue(E, 0);
1975  SDNode *N = NodeAllocator.Allocate<SDNode>();
1976  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
1977  CSEMap.InsertNode(N, IP);
1978
1979  AllNodes.push_back(N);
1980#ifndef NDEBUG
1981  VerifyNode(N);
1982#endif
1983  return SDValue(N, 0);
1984}
1985
1986SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
1987  // Constant fold unary operations with an integer constant operand.
1988  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1989    const APInt &Val = C->getAPIntValue();
1990    unsigned BitWidth = VT.getSizeInBits();
1991    switch (Opcode) {
1992    default: break;
1993    case ISD::SIGN_EXTEND:
1994      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1995    case ISD::ANY_EXTEND:
1996    case ISD::ZERO_EXTEND:
1997    case ISD::TRUNCATE:
1998      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1999    case ISD::UINT_TO_FP:
2000    case ISD::SINT_TO_FP: {
2001      const uint64_t zero[] = {0, 0};
2002      // No compile time operations on this type.
2003      if (VT==MVT::ppcf128)
2004        break;
2005      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2006      (void)apf.convertFromAPInt(Val,
2007                                 Opcode==ISD::SINT_TO_FP,
2008                                 APFloat::rmNearestTiesToEven);
2009      return getConstantFP(apf, VT);
2010    }
2011    case ISD::BIT_CONVERT:
2012      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2013        return getConstantFP(Val.bitsToFloat(), VT);
2014      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2015        return getConstantFP(Val.bitsToDouble(), VT);
2016      break;
2017    case ISD::BSWAP:
2018      return getConstant(Val.byteSwap(), VT);
2019    case ISD::CTPOP:
2020      return getConstant(Val.countPopulation(), VT);
2021    case ISD::CTLZ:
2022      return getConstant(Val.countLeadingZeros(), VT);
2023    case ISD::CTTZ:
2024      return getConstant(Val.countTrailingZeros(), VT);
2025    }
2026  }
2027
2028  // Constant fold unary operations with a floating point constant operand.
2029  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
2030    APFloat V = C->getValueAPF();    // make copy
2031    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2032      switch (Opcode) {
2033      case ISD::FNEG:
2034        V.changeSign();
2035        return getConstantFP(V, VT);
2036      case ISD::FABS:
2037        V.clearSign();
2038        return getConstantFP(V, VT);
2039      case ISD::FP_ROUND:
2040      case ISD::FP_EXTEND:
2041        // This can return overflow, underflow, or inexact; we don't care.
2042        // FIXME need to be more flexible about rounding mode.
2043        (void)V.convert(*MVTToAPFloatSemantics(VT),
2044                        APFloat::rmNearestTiesToEven);
2045        return getConstantFP(V, VT);
2046      case ISD::FP_TO_SINT:
2047      case ISD::FP_TO_UINT: {
2048        integerPart x;
2049        assert(integerPartWidth >= 64);
2050        // FIXME need to be more flexible about rounding mode.
2051        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2052                              Opcode==ISD::FP_TO_SINT,
2053                              APFloat::rmTowardZero);
2054        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2055          break;
2056        return getConstant(x, VT);
2057      }
2058      case ISD::BIT_CONVERT:
2059        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2060          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
2061        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2062          return getConstant(V.convertToAPInt().getZExtValue(), VT);
2063        break;
2064      }
2065    }
2066  }
2067
2068  unsigned OpOpcode = Operand.Val->getOpcode();
2069  switch (Opcode) {
2070  case ISD::TokenFactor:
2071  case ISD::CONCAT_VECTORS:
2072    return Operand;         // Factor or concat of one node?  No need.
2073  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2074  case ISD::FP_EXTEND:
2075    assert(VT.isFloatingPoint() &&
2076           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2077    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2078    if (Operand.getOpcode() == ISD::UNDEF)
2079      return getNode(ISD::UNDEF, VT);
2080    break;
2081  case ISD::SIGN_EXTEND:
2082    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2083           "Invalid SIGN_EXTEND!");
2084    if (Operand.getValueType() == VT) return Operand;   // noop extension
2085    assert(Operand.getValueType().bitsLT(VT)
2086           && "Invalid sext node, dst < src!");
2087    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2088      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2089    break;
2090  case ISD::ZERO_EXTEND:
2091    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2092           "Invalid ZERO_EXTEND!");
2093    if (Operand.getValueType() == VT) return Operand;   // noop extension
2094    assert(Operand.getValueType().bitsLT(VT)
2095           && "Invalid zext node, dst < src!");
2096    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2097      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
2098    break;
2099  case ISD::ANY_EXTEND:
2100    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2101           "Invalid ANY_EXTEND!");
2102    if (Operand.getValueType() == VT) return Operand;   // noop extension
2103    assert(Operand.getValueType().bitsLT(VT)
2104           && "Invalid anyext node, dst < src!");
2105    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2106      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2107      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2108    break;
2109  case ISD::TRUNCATE:
2110    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2111           "Invalid TRUNCATE!");
2112    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2113    assert(Operand.getValueType().bitsGT(VT)
2114           && "Invalid truncate node, src < dst!");
2115    if (OpOpcode == ISD::TRUNCATE)
2116      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2117    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2118             OpOpcode == ISD::ANY_EXTEND) {
2119      // If the source is smaller than the dest, we still need an extend.
2120      if (Operand.Val->getOperand(0).getValueType().bitsLT(VT))
2121        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2122      else if (Operand.Val->getOperand(0).getValueType().bitsGT(VT))
2123        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2124      else
2125        return Operand.Val->getOperand(0);
2126    }
2127    break;
2128  case ISD::BIT_CONVERT:
2129    // Basic sanity checking.
2130    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2131           && "Cannot BIT_CONVERT between types of different sizes!");
2132    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2133    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2134      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2135    if (OpOpcode == ISD::UNDEF)
2136      return getNode(ISD::UNDEF, VT);
2137    break;
2138  case ISD::SCALAR_TO_VECTOR:
2139    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2140           VT.getVectorElementType() == Operand.getValueType() &&
2141           "Illegal SCALAR_TO_VECTOR node!");
2142    if (OpOpcode == ISD::UNDEF)
2143      return getNode(ISD::UNDEF, VT);
2144    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2145    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2146        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2147        Operand.getConstantOperandVal(1) == 0 &&
2148        Operand.getOperand(0).getValueType() == VT)
2149      return Operand.getOperand(0);
2150    break;
2151  case ISD::FNEG:
2152    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2153      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
2154                     Operand.Val->getOperand(0));
2155    if (OpOpcode == ISD::FNEG)  // --X -> X
2156      return Operand.Val->getOperand(0);
2157    break;
2158  case ISD::FABS:
2159    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2160      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
2161    break;
2162  }
2163
2164  SDNode *N;
2165  SDVTList VTs = getVTList(VT);
2166  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2167    FoldingSetNodeID ID;
2168    SDValue Ops[1] = { Operand };
2169    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2170    void *IP = 0;
2171    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2172      return SDValue(E, 0);
2173    N = NodeAllocator.Allocate<UnarySDNode>();
2174    new (N) UnarySDNode(Opcode, VTs, Operand);
2175    CSEMap.InsertNode(N, IP);
2176  } else {
2177    N = NodeAllocator.Allocate<UnarySDNode>();
2178    new (N) UnarySDNode(Opcode, VTs, Operand);
2179  }
2180
2181  AllNodes.push_back(N);
2182#ifndef NDEBUG
2183  VerifyNode(N);
2184#endif
2185  return SDValue(N, 0);
2186}
2187
2188SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2189                              SDValue N1, SDValue N2) {
2190  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2191  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2192  switch (Opcode) {
2193  default: break;
2194  case ISD::TokenFactor:
2195    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2196           N2.getValueType() == MVT::Other && "Invalid token factor!");
2197    // Fold trivial token factors.
2198    if (N1.getOpcode() == ISD::EntryToken) return N2;
2199    if (N2.getOpcode() == ISD::EntryToken) return N1;
2200    break;
2201  case ISD::CONCAT_VECTORS:
2202    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2203    // one big BUILD_VECTOR.
2204    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2205        N2.getOpcode() == ISD::BUILD_VECTOR) {
2206      SmallVector<SDValue, 16> Elts(N1.Val->op_begin(), N1.Val->op_end());
2207      Elts.insert(Elts.end(), N2.Val->op_begin(), N2.Val->op_end());
2208      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2209    }
2210    break;
2211  case ISD::AND:
2212    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2213           N1.getValueType() == VT && "Binary operator types must match!");
2214    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2215    // worth handling here.
2216    if (N2C && N2C->isNullValue())
2217      return N2;
2218    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2219      return N1;
2220    break;
2221  case ISD::OR:
2222  case ISD::XOR:
2223  case ISD::ADD:
2224  case ISD::SUB:
2225    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2226           N1.getValueType() == VT && "Binary operator types must match!");
2227    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2228    // it's worth handling here.
2229    if (N2C && N2C->isNullValue())
2230      return N1;
2231    break;
2232  case ISD::UDIV:
2233  case ISD::UREM:
2234  case ISD::MULHU:
2235  case ISD::MULHS:
2236    assert(VT.isInteger() && "This operator does not apply to FP types!");
2237    // fall through
2238  case ISD::MUL:
2239  case ISD::SDIV:
2240  case ISD::SREM:
2241  case ISD::FADD:
2242  case ISD::FSUB:
2243  case ISD::FMUL:
2244  case ISD::FDIV:
2245  case ISD::FREM:
2246    assert(N1.getValueType() == N2.getValueType() &&
2247           N1.getValueType() == VT && "Binary operator types must match!");
2248    break;
2249  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2250    assert(N1.getValueType() == VT &&
2251           N1.getValueType().isFloatingPoint() &&
2252           N2.getValueType().isFloatingPoint() &&
2253           "Invalid FCOPYSIGN!");
2254    break;
2255  case ISD::SHL:
2256  case ISD::SRA:
2257  case ISD::SRL:
2258  case ISD::ROTL:
2259  case ISD::ROTR:
2260    assert(VT == N1.getValueType() &&
2261           "Shift operators return type must be the same as their first arg");
2262    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2263           "Shifts only work on integers");
2264
2265    // Always fold shifts of i1 values so the code generator doesn't need to
2266    // handle them.  Since we know the size of the shift has to be less than the
2267    // size of the value, the shift/rotate count is guaranteed to be zero.
2268    if (VT == MVT::i1)
2269      return N1;
2270    break;
2271  case ISD::FP_ROUND_INREG: {
2272    MVT EVT = cast<VTSDNode>(N2)->getVT();
2273    assert(VT == N1.getValueType() && "Not an inreg round!");
2274    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2275           "Cannot FP_ROUND_INREG integer types");
2276    assert(EVT.bitsLE(VT) && "Not rounding down!");
2277    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2278    break;
2279  }
2280  case ISD::FP_ROUND:
2281    assert(VT.isFloatingPoint() &&
2282           N1.getValueType().isFloatingPoint() &&
2283           VT.bitsLE(N1.getValueType()) &&
2284           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2285    if (N1.getValueType() == VT) return N1;  // noop conversion.
2286    break;
2287  case ISD::AssertSext:
2288  case ISD::AssertZext: {
2289    MVT EVT = cast<VTSDNode>(N2)->getVT();
2290    assert(VT == N1.getValueType() && "Not an inreg extend!");
2291    assert(VT.isInteger() && EVT.isInteger() &&
2292           "Cannot *_EXTEND_INREG FP types");
2293    assert(EVT.bitsLE(VT) && "Not extending!");
2294    if (VT == EVT) return N1; // noop assertion.
2295    break;
2296  }
2297  case ISD::SIGN_EXTEND_INREG: {
2298    MVT EVT = cast<VTSDNode>(N2)->getVT();
2299    assert(VT == N1.getValueType() && "Not an inreg extend!");
2300    assert(VT.isInteger() && EVT.isInteger() &&
2301           "Cannot *_EXTEND_INREG FP types");
2302    assert(EVT.bitsLE(VT) && "Not extending!");
2303    if (EVT == VT) return N1;  // Not actually extending
2304
2305    if (N1C) {
2306      APInt Val = N1C->getAPIntValue();
2307      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2308      Val <<= Val.getBitWidth()-FromBits;
2309      Val = Val.ashr(Val.getBitWidth()-FromBits);
2310      return getConstant(Val, VT);
2311    }
2312    break;
2313  }
2314  case ISD::EXTRACT_VECTOR_ELT:
2315    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2316    if (N1.getOpcode() == ISD::UNDEF)
2317      return getNode(ISD::UNDEF, VT);
2318
2319    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2320    // expanding copies of large vectors from registers.
2321    if (N2C &&
2322        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2323        N1.getNumOperands() > 0) {
2324      unsigned Factor =
2325        N1.getOperand(0).getValueType().getVectorNumElements();
2326      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2327                     N1.getOperand(N2C->getValue() / Factor),
2328                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2329    }
2330
2331    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2332    // expanding large vector constants.
2333    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2334      return N1.getOperand(N2C->getValue());
2335
2336    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2337    // operations are lowered to scalars.
2338    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2339      if (N1.getOperand(2) == N2)
2340        return N1.getOperand(1);
2341      else
2342        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2343    }
2344    break;
2345  case ISD::EXTRACT_ELEMENT:
2346    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2347    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2348           (N1.getValueType().isInteger() == VT.isInteger()) &&
2349           "Wrong types for EXTRACT_ELEMENT!");
2350
2351    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2352    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2353    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2354    if (N1.getOpcode() == ISD::BUILD_PAIR)
2355      return N1.getOperand(N2C->getValue());
2356
2357    // EXTRACT_ELEMENT of a constant int is also very common.
2358    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2359      unsigned ElementSize = VT.getSizeInBits();
2360      unsigned Shift = ElementSize * N2C->getValue();
2361      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2362      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2363    }
2364    break;
2365  case ISD::EXTRACT_SUBVECTOR:
2366    if (N1.getValueType() == VT) // Trivial extraction.
2367      return N1;
2368    break;
2369  }
2370
2371  if (N1C) {
2372    if (N2C) {
2373      const APInt &C1 = N1C->getAPIntValue(), &C2 = N2C->getAPIntValue();
2374      switch (Opcode) {
2375      case ISD::ADD: return getConstant(C1 + C2, VT);
2376      case ISD::SUB: return getConstant(C1 - C2, VT);
2377      case ISD::MUL: return getConstant(C1 * C2, VT);
2378      case ISD::UDIV:
2379        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2380        break;
2381      case ISD::UREM :
2382        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2383        break;
2384      case ISD::SDIV :
2385        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2386        break;
2387      case ISD::SREM :
2388        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2389        break;
2390      case ISD::AND  : return getConstant(C1 & C2, VT);
2391      case ISD::OR   : return getConstant(C1 | C2, VT);
2392      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2393      case ISD::SHL  : return getConstant(C1 << C2, VT);
2394      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2395      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2396      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2397      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2398      default: break;
2399      }
2400    } else {      // Cannonicalize constant to RHS if commutative
2401      if (isCommutativeBinOp(Opcode)) {
2402        std::swap(N1C, N2C);
2403        std::swap(N1, N2);
2404      }
2405    }
2406  }
2407
2408  // Constant fold FP operations.
2409  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2410  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2411  if (N1CFP) {
2412    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2413      // Cannonicalize constant to RHS if commutative
2414      std::swap(N1CFP, N2CFP);
2415      std::swap(N1, N2);
2416    } else if (N2CFP && VT != MVT::ppcf128) {
2417      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2418      APFloat::opStatus s;
2419      switch (Opcode) {
2420      case ISD::FADD:
2421        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2422        if (s != APFloat::opInvalidOp)
2423          return getConstantFP(V1, VT);
2424        break;
2425      case ISD::FSUB:
2426        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2427        if (s!=APFloat::opInvalidOp)
2428          return getConstantFP(V1, VT);
2429        break;
2430      case ISD::FMUL:
2431        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2432        if (s!=APFloat::opInvalidOp)
2433          return getConstantFP(V1, VT);
2434        break;
2435      case ISD::FDIV:
2436        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2437        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2438          return getConstantFP(V1, VT);
2439        break;
2440      case ISD::FREM :
2441        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2442        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2443          return getConstantFP(V1, VT);
2444        break;
2445      case ISD::FCOPYSIGN:
2446        V1.copySign(V2);
2447        return getConstantFP(V1, VT);
2448      default: break;
2449      }
2450    }
2451  }
2452
2453  // Canonicalize an UNDEF to the RHS, even over a constant.
2454  if (N1.getOpcode() == ISD::UNDEF) {
2455    if (isCommutativeBinOp(Opcode)) {
2456      std::swap(N1, N2);
2457    } else {
2458      switch (Opcode) {
2459      case ISD::FP_ROUND_INREG:
2460      case ISD::SIGN_EXTEND_INREG:
2461      case ISD::SUB:
2462      case ISD::FSUB:
2463      case ISD::FDIV:
2464      case ISD::FREM:
2465      case ISD::SRA:
2466        return N1;     // fold op(undef, arg2) -> undef
2467      case ISD::UDIV:
2468      case ISD::SDIV:
2469      case ISD::UREM:
2470      case ISD::SREM:
2471      case ISD::SRL:
2472      case ISD::SHL:
2473        if (!VT.isVector())
2474          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2475        // For vectors, we can't easily build an all zero vector, just return
2476        // the LHS.
2477        return N2;
2478      }
2479    }
2480  }
2481
2482  // Fold a bunch of operators when the RHS is undef.
2483  if (N2.getOpcode() == ISD::UNDEF) {
2484    switch (Opcode) {
2485    case ISD::XOR:
2486      if (N1.getOpcode() == ISD::UNDEF)
2487        // Handle undef ^ undef -> 0 special case. This is a common
2488        // idiom (misuse).
2489        return getConstant(0, VT);
2490      // fallthrough
2491    case ISD::ADD:
2492    case ISD::ADDC:
2493    case ISD::ADDE:
2494    case ISD::SUB:
2495    case ISD::FADD:
2496    case ISD::FSUB:
2497    case ISD::FMUL:
2498    case ISD::FDIV:
2499    case ISD::FREM:
2500    case ISD::UDIV:
2501    case ISD::SDIV:
2502    case ISD::UREM:
2503    case ISD::SREM:
2504      return N2;       // fold op(arg1, undef) -> undef
2505    case ISD::MUL:
2506    case ISD::AND:
2507    case ISD::SRL:
2508    case ISD::SHL:
2509      if (!VT.isVector())
2510        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2511      // For vectors, we can't easily build an all zero vector, just return
2512      // the LHS.
2513      return N1;
2514    case ISD::OR:
2515      if (!VT.isVector())
2516        return getConstant(VT.getIntegerVTBitMask(), VT);
2517      // For vectors, we can't easily build an all one vector, just return
2518      // the LHS.
2519      return N1;
2520    case ISD::SRA:
2521      return N1;
2522    }
2523  }
2524
2525  // Memoize this node if possible.
2526  SDNode *N;
2527  SDVTList VTs = getVTList(VT);
2528  if (VT != MVT::Flag) {
2529    SDValue Ops[] = { N1, N2 };
2530    FoldingSetNodeID ID;
2531    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2532    void *IP = 0;
2533    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2534      return SDValue(E, 0);
2535    N = NodeAllocator.Allocate<BinarySDNode>();
2536    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2537    CSEMap.InsertNode(N, IP);
2538  } else {
2539    N = NodeAllocator.Allocate<BinarySDNode>();
2540    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2541  }
2542
2543  AllNodes.push_back(N);
2544#ifndef NDEBUG
2545  VerifyNode(N);
2546#endif
2547  return SDValue(N, 0);
2548}
2549
2550SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2551                              SDValue N1, SDValue N2, SDValue N3) {
2552  // Perform various simplifications.
2553  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2554  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2555  switch (Opcode) {
2556  case ISD::CONCAT_VECTORS:
2557    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2558    // one big BUILD_VECTOR.
2559    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2560        N2.getOpcode() == ISD::BUILD_VECTOR &&
2561        N3.getOpcode() == ISD::BUILD_VECTOR) {
2562      SmallVector<SDValue, 16> Elts(N1.Val->op_begin(), N1.Val->op_end());
2563      Elts.insert(Elts.end(), N2.Val->op_begin(), N2.Val->op_end());
2564      Elts.insert(Elts.end(), N3.Val->op_begin(), N3.Val->op_end());
2565      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2566    }
2567    break;
2568  case ISD::SETCC: {
2569    // Use FoldSetCC to simplify SETCC's.
2570    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2571    if (Simp.Val) return Simp;
2572    break;
2573  }
2574  case ISD::SELECT:
2575    if (N1C) {
2576     if (N1C->getValue())
2577        return N2;             // select true, X, Y -> X
2578      else
2579        return N3;             // select false, X, Y -> Y
2580    }
2581
2582    if (N2 == N3) return N2;   // select C, X, X -> X
2583    break;
2584  case ISD::BRCOND:
2585    if (N2C) {
2586      if (N2C->getValue()) // Unconditional branch
2587        return getNode(ISD::BR, MVT::Other, N1, N3);
2588      else
2589        return N1;         // Never-taken branch
2590    }
2591    break;
2592  case ISD::VECTOR_SHUFFLE:
2593    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2594           VT.isVector() && N3.getValueType().isVector() &&
2595           N3.getOpcode() == ISD::BUILD_VECTOR &&
2596           VT.getVectorNumElements() == N3.getNumOperands() &&
2597           "Illegal VECTOR_SHUFFLE node!");
2598    break;
2599  case ISD::BIT_CONVERT:
2600    // Fold bit_convert nodes from a type to themselves.
2601    if (N1.getValueType() == VT)
2602      return N1;
2603    break;
2604  }
2605
2606  // Memoize node if it doesn't produce a flag.
2607  SDNode *N;
2608  SDVTList VTs = getVTList(VT);
2609  if (VT != MVT::Flag) {
2610    SDValue Ops[] = { N1, N2, N3 };
2611    FoldingSetNodeID ID;
2612    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2613    void *IP = 0;
2614    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2615      return SDValue(E, 0);
2616    N = NodeAllocator.Allocate<TernarySDNode>();
2617    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2618    CSEMap.InsertNode(N, IP);
2619  } else {
2620    N = NodeAllocator.Allocate<TernarySDNode>();
2621    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2622  }
2623  AllNodes.push_back(N);
2624#ifndef NDEBUG
2625  VerifyNode(N);
2626#endif
2627  return SDValue(N, 0);
2628}
2629
2630SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2631                              SDValue N1, SDValue N2, SDValue N3,
2632                              SDValue N4) {
2633  SDValue Ops[] = { N1, N2, N3, N4 };
2634  return getNode(Opcode, VT, Ops, 4);
2635}
2636
2637SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2638                              SDValue N1, SDValue N2, SDValue N3,
2639                              SDValue N4, SDValue N5) {
2640  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2641  return getNode(Opcode, VT, Ops, 5);
2642}
2643
2644/// getMemsetValue - Vectorized representation of the memset value
2645/// operand.
2646static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2647  unsigned NumBits = VT.isVector() ?
2648    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2649  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2650    APInt Val = APInt(NumBits, C->getValue() & 255);
2651    unsigned Shift = 8;
2652    for (unsigned i = NumBits; i > 8; i >>= 1) {
2653      Val = (Val << Shift) | Val;
2654      Shift <<= 1;
2655    }
2656    if (VT.isInteger())
2657      return DAG.getConstant(Val, VT);
2658    return DAG.getConstantFP(APFloat(Val), VT);
2659  }
2660
2661  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2662  unsigned Shift = 8;
2663  for (unsigned i = NumBits; i > 8; i >>= 1) {
2664    Value = DAG.getNode(ISD::OR, VT,
2665                        DAG.getNode(ISD::SHL, VT, Value,
2666                                    DAG.getConstant(Shift, MVT::i8)), Value);
2667    Shift <<= 1;
2668  }
2669
2670  return Value;
2671}
2672
2673/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2674/// used when a memcpy is turned into a memset when the source is a constant
2675/// string ptr.
2676static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2677                                    const TargetLowering &TLI,
2678                                    std::string &Str, unsigned Offset) {
2679  // Handle vector with all elements zero.
2680  if (Str.empty()) {
2681    if (VT.isInteger())
2682      return DAG.getConstant(0, VT);
2683    unsigned NumElts = VT.getVectorNumElements();
2684    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2685    return DAG.getNode(ISD::BIT_CONVERT, VT,
2686                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2687  }
2688
2689  assert(!VT.isVector() && "Can't handle vector type here!");
2690  unsigned NumBits = VT.getSizeInBits();
2691  unsigned MSB = NumBits / 8;
2692  uint64_t Val = 0;
2693  if (TLI.isLittleEndian())
2694    Offset = Offset + MSB - 1;
2695  for (unsigned i = 0; i != MSB; ++i) {
2696    Val = (Val << 8) | (unsigned char)Str[Offset];
2697    Offset += TLI.isLittleEndian() ? -1 : 1;
2698  }
2699  return DAG.getConstant(Val, VT);
2700}
2701
2702/// getMemBasePlusOffset - Returns base and offset node for the
2703///
2704static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2705                                      SelectionDAG &DAG) {
2706  MVT VT = Base.getValueType();
2707  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2708}
2709
2710/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2711///
2712static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2713  unsigned SrcDelta = 0;
2714  GlobalAddressSDNode *G = NULL;
2715  if (Src.getOpcode() == ISD::GlobalAddress)
2716    G = cast<GlobalAddressSDNode>(Src);
2717  else if (Src.getOpcode() == ISD::ADD &&
2718           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2719           Src.getOperand(1).getOpcode() == ISD::Constant) {
2720    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2721    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2722  }
2723  if (!G)
2724    return false;
2725
2726  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2727  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2728    return true;
2729
2730  return false;
2731}
2732
2733/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2734/// to replace the memset / memcpy is below the threshold. It also returns the
2735/// types of the sequence of memory ops to perform memset / memcpy.
2736static
2737bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2738                              SDValue Dst, SDValue Src,
2739                              unsigned Limit, uint64_t Size, unsigned &Align,
2740                              std::string &Str, bool &isSrcStr,
2741                              SelectionDAG &DAG,
2742                              const TargetLowering &TLI) {
2743  isSrcStr = isMemSrcFromString(Src, Str);
2744  bool isSrcConst = isa<ConstantSDNode>(Src);
2745  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2746  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2747  if (VT != MVT::iAny) {
2748    unsigned NewAlign = (unsigned)
2749      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2750    // If source is a string constant, this will require an unaligned load.
2751    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2752      if (Dst.getOpcode() != ISD::FrameIndex) {
2753        // Can't change destination alignment. It requires a unaligned store.
2754        if (AllowUnalign)
2755          VT = MVT::iAny;
2756      } else {
2757        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2758        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2759        if (MFI->isFixedObjectIndex(FI)) {
2760          // Can't change destination alignment. It requires a unaligned store.
2761          if (AllowUnalign)
2762            VT = MVT::iAny;
2763        } else {
2764          // Give the stack frame object a larger alignment if needed.
2765          if (MFI->getObjectAlignment(FI) < NewAlign)
2766            MFI->setObjectAlignment(FI, NewAlign);
2767          Align = NewAlign;
2768        }
2769      }
2770    }
2771  }
2772
2773  if (VT == MVT::iAny) {
2774    if (AllowUnalign) {
2775      VT = MVT::i64;
2776    } else {
2777      switch (Align & 7) {
2778      case 0:  VT = MVT::i64; break;
2779      case 4:  VT = MVT::i32; break;
2780      case 2:  VT = MVT::i16; break;
2781      default: VT = MVT::i8;  break;
2782      }
2783    }
2784
2785    MVT LVT = MVT::i64;
2786    while (!TLI.isTypeLegal(LVT))
2787      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2788    assert(LVT.isInteger());
2789
2790    if (VT.bitsGT(LVT))
2791      VT = LVT;
2792  }
2793
2794  unsigned NumMemOps = 0;
2795  while (Size != 0) {
2796    unsigned VTSize = VT.getSizeInBits() / 8;
2797    while (VTSize > Size) {
2798      // For now, only use non-vector load / store's for the left-over pieces.
2799      if (VT.isVector()) {
2800        VT = MVT::i64;
2801        while (!TLI.isTypeLegal(VT))
2802          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2803        VTSize = VT.getSizeInBits() / 8;
2804      } else {
2805        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2806        VTSize >>= 1;
2807      }
2808    }
2809
2810    if (++NumMemOps > Limit)
2811      return false;
2812    MemOps.push_back(VT);
2813    Size -= VTSize;
2814  }
2815
2816  return true;
2817}
2818
2819static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2820                                         SDValue Chain, SDValue Dst,
2821                                         SDValue Src, uint64_t Size,
2822                                         unsigned Align, bool AlwaysInline,
2823                                         const Value *DstSV, uint64_t DstSVOff,
2824                                         const Value *SrcSV, uint64_t SrcSVOff){
2825  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2826
2827  // Expand memcpy to a series of load and store ops if the size operand falls
2828  // below a certain threshold.
2829  std::vector<MVT> MemOps;
2830  uint64_t Limit = -1;
2831  if (!AlwaysInline)
2832    Limit = TLI.getMaxStoresPerMemcpy();
2833  unsigned DstAlign = Align;  // Destination alignment can change.
2834  std::string Str;
2835  bool CopyFromStr;
2836  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2837                                Str, CopyFromStr, DAG, TLI))
2838    return SDValue();
2839
2840
2841  bool isZeroStr = CopyFromStr && Str.empty();
2842  SmallVector<SDValue, 8> OutChains;
2843  unsigned NumMemOps = MemOps.size();
2844  uint64_t SrcOff = 0, DstOff = 0;
2845  for (unsigned i = 0; i < NumMemOps; i++) {
2846    MVT VT = MemOps[i];
2847    unsigned VTSize = VT.getSizeInBits() / 8;
2848    SDValue Value, Store;
2849
2850    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2851      // It's unlikely a store of a vector immediate can be done in a single
2852      // instruction. It would require a load from a constantpool first.
2853      // We also handle store a vector with all zero's.
2854      // FIXME: Handle other cases where store of vector immediate is done in
2855      // a single instruction.
2856      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2857      Store = DAG.getStore(Chain, Value,
2858                           getMemBasePlusOffset(Dst, DstOff, DAG),
2859                           DstSV, DstSVOff + DstOff, false, DstAlign);
2860    } else {
2861      Value = DAG.getLoad(VT, Chain,
2862                          getMemBasePlusOffset(Src, SrcOff, DAG),
2863                          SrcSV, SrcSVOff + SrcOff, false, Align);
2864      Store = DAG.getStore(Chain, Value,
2865                           getMemBasePlusOffset(Dst, DstOff, DAG),
2866                           DstSV, DstSVOff + DstOff, false, DstAlign);
2867    }
2868    OutChains.push_back(Store);
2869    SrcOff += VTSize;
2870    DstOff += VTSize;
2871  }
2872
2873  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2874                     &OutChains[0], OutChains.size());
2875}
2876
2877static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
2878                                          SDValue Chain, SDValue Dst,
2879                                          SDValue Src, uint64_t Size,
2880                                          unsigned Align, bool AlwaysInline,
2881                                          const Value *DstSV, uint64_t DstSVOff,
2882                                          const Value *SrcSV, uint64_t SrcSVOff){
2883  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2884
2885  // Expand memmove to a series of load and store ops if the size operand falls
2886  // below a certain threshold.
2887  std::vector<MVT> MemOps;
2888  uint64_t Limit = -1;
2889  if (!AlwaysInline)
2890    Limit = TLI.getMaxStoresPerMemmove();
2891  unsigned DstAlign = Align;  // Destination alignment can change.
2892  std::string Str;
2893  bool CopyFromStr;
2894  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2895                                Str, CopyFromStr, DAG, TLI))
2896    return SDValue();
2897
2898  uint64_t SrcOff = 0, DstOff = 0;
2899
2900  SmallVector<SDValue, 8> LoadValues;
2901  SmallVector<SDValue, 8> LoadChains;
2902  SmallVector<SDValue, 8> OutChains;
2903  unsigned NumMemOps = MemOps.size();
2904  for (unsigned i = 0; i < NumMemOps; i++) {
2905    MVT VT = MemOps[i];
2906    unsigned VTSize = VT.getSizeInBits() / 8;
2907    SDValue Value, Store;
2908
2909    Value = DAG.getLoad(VT, Chain,
2910                        getMemBasePlusOffset(Src, SrcOff, DAG),
2911                        SrcSV, SrcSVOff + SrcOff, false, Align);
2912    LoadValues.push_back(Value);
2913    LoadChains.push_back(Value.getValue(1));
2914    SrcOff += VTSize;
2915  }
2916  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2917                      &LoadChains[0], LoadChains.size());
2918  OutChains.clear();
2919  for (unsigned i = 0; i < NumMemOps; i++) {
2920    MVT VT = MemOps[i];
2921    unsigned VTSize = VT.getSizeInBits() / 8;
2922    SDValue Value, Store;
2923
2924    Store = DAG.getStore(Chain, LoadValues[i],
2925                         getMemBasePlusOffset(Dst, DstOff, DAG),
2926                         DstSV, DstSVOff + DstOff, false, DstAlign);
2927    OutChains.push_back(Store);
2928    DstOff += VTSize;
2929  }
2930
2931  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2932                     &OutChains[0], OutChains.size());
2933}
2934
2935static SDValue getMemsetStores(SelectionDAG &DAG,
2936                                 SDValue Chain, SDValue Dst,
2937                                 SDValue Src, uint64_t Size,
2938                                 unsigned Align,
2939                                 const Value *DstSV, uint64_t DstSVOff) {
2940  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2941
2942  // Expand memset to a series of load/store ops if the size operand
2943  // falls below a certain threshold.
2944  std::vector<MVT> MemOps;
2945  std::string Str;
2946  bool CopyFromStr;
2947  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
2948                                Size, Align, Str, CopyFromStr, DAG, TLI))
2949    return SDValue();
2950
2951  SmallVector<SDValue, 8> OutChains;
2952  uint64_t DstOff = 0;
2953
2954  unsigned NumMemOps = MemOps.size();
2955  for (unsigned i = 0; i < NumMemOps; i++) {
2956    MVT VT = MemOps[i];
2957    unsigned VTSize = VT.getSizeInBits() / 8;
2958    SDValue Value = getMemsetValue(Src, VT, DAG);
2959    SDValue Store = DAG.getStore(Chain, Value,
2960                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2961                                   DstSV, DstSVOff + DstOff);
2962    OutChains.push_back(Store);
2963    DstOff += VTSize;
2964  }
2965
2966  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2967                     &OutChains[0], OutChains.size());
2968}
2969
2970SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
2971                                SDValue Src, SDValue Size,
2972                                unsigned Align, bool AlwaysInline,
2973                                const Value *DstSV, uint64_t DstSVOff,
2974                                const Value *SrcSV, uint64_t SrcSVOff) {
2975
2976  // Check to see if we should lower the memcpy to loads and stores first.
2977  // For cases within the target-specified limits, this is the best choice.
2978  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2979  if (ConstantSize) {
2980    // Memcpy with size zero? Just return the original chain.
2981    if (ConstantSize->isNullValue())
2982      return Chain;
2983
2984    SDValue Result =
2985      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2986                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2987    if (Result.Val)
2988      return Result;
2989  }
2990
2991  // Then check to see if we should lower the memcpy with target-specific
2992  // code. If the target chooses to do this, this is the next best.
2993  SDValue Result =
2994    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2995                                AlwaysInline,
2996                                DstSV, DstSVOff, SrcSV, SrcSVOff);
2997  if (Result.Val)
2998    return Result;
2999
3000  // If we really need inline code and the target declined to provide it,
3001  // use a (potentially long) sequence of loads and stores.
3002  if (AlwaysInline) {
3003    assert(ConstantSize && "AlwaysInline requires a constant size!");
3004    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3005                                   ConstantSize->getValue(), Align, true,
3006                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3007  }
3008
3009  // Emit a library call.
3010  TargetLowering::ArgListTy Args;
3011  TargetLowering::ArgListEntry Entry;
3012  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3013  Entry.Node = Dst; Args.push_back(Entry);
3014  Entry.Node = Src; Args.push_back(Entry);
3015  Entry.Node = Size; Args.push_back(Entry);
3016  std::pair<SDValue,SDValue> CallResult =
3017    TLI.LowerCallTo(Chain, Type::VoidTy,
3018                    false, false, false, CallingConv::C, false,
3019                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3020                    Args, *this);
3021  return CallResult.second;
3022}
3023
3024SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3025                                 SDValue Src, SDValue Size,
3026                                 unsigned Align,
3027                                 const Value *DstSV, uint64_t DstSVOff,
3028                                 const Value *SrcSV, uint64_t SrcSVOff) {
3029
3030  // Check to see if we should lower the memmove to loads and stores first.
3031  // For cases within the target-specified limits, this is the best choice.
3032  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3033  if (ConstantSize) {
3034    // Memmove with size zero? Just return the original chain.
3035    if (ConstantSize->isNullValue())
3036      return Chain;
3037
3038    SDValue Result =
3039      getMemmoveLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
3040                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3041    if (Result.Val)
3042      return Result;
3043  }
3044
3045  // Then check to see if we should lower the memmove with target-specific
3046  // code. If the target chooses to do this, this is the next best.
3047  SDValue Result =
3048    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3049                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3050  if (Result.Val)
3051    return Result;
3052
3053  // Emit a library call.
3054  TargetLowering::ArgListTy Args;
3055  TargetLowering::ArgListEntry Entry;
3056  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3057  Entry.Node = Dst; Args.push_back(Entry);
3058  Entry.Node = Src; Args.push_back(Entry);
3059  Entry.Node = Size; Args.push_back(Entry);
3060  std::pair<SDValue,SDValue> CallResult =
3061    TLI.LowerCallTo(Chain, Type::VoidTy,
3062                    false, false, false, CallingConv::C, false,
3063                    getExternalSymbol("memmove", TLI.getPointerTy()),
3064                    Args, *this);
3065  return CallResult.second;
3066}
3067
3068SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3069                                SDValue Src, SDValue Size,
3070                                unsigned Align,
3071                                const Value *DstSV, uint64_t DstSVOff) {
3072
3073  // Check to see if we should lower the memset to stores first.
3074  // For cases within the target-specified limits, this is the best choice.
3075  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3076  if (ConstantSize) {
3077    // Memset with size zero? Just return the original chain.
3078    if (ConstantSize->isNullValue())
3079      return Chain;
3080
3081    SDValue Result =
3082      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
3083                      DstSV, DstSVOff);
3084    if (Result.Val)
3085      return Result;
3086  }
3087
3088  // Then check to see if we should lower the memset with target-specific
3089  // code. If the target chooses to do this, this is the next best.
3090  SDValue Result =
3091    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3092                                DstSV, DstSVOff);
3093  if (Result.Val)
3094    return Result;
3095
3096  // Emit a library call.
3097  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3098  TargetLowering::ArgListTy Args;
3099  TargetLowering::ArgListEntry Entry;
3100  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3101  Args.push_back(Entry);
3102  // Extend or truncate the argument to be an i32 value for the call.
3103  if (Src.getValueType().bitsGT(MVT::i32))
3104    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3105  else
3106    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3107  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3108  Args.push_back(Entry);
3109  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3110  Args.push_back(Entry);
3111  std::pair<SDValue,SDValue> CallResult =
3112    TLI.LowerCallTo(Chain, Type::VoidTy,
3113                    false, false, false, CallingConv::C, false,
3114                    getExternalSymbol("memset", TLI.getPointerTy()),
3115                    Args, *this);
3116  return CallResult.second;
3117}
3118
3119SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3120                                SDValue Ptr, SDValue Cmp,
3121                                SDValue Swp, const Value* PtrVal,
3122                                unsigned Alignment) {
3123  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3124  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3125
3126  MVT VT = Cmp.getValueType();
3127
3128  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3129    Alignment = getMVTAlignment(VT);
3130
3131  SDVTList VTs = getVTList(VT, MVT::Other);
3132  FoldingSetNodeID ID;
3133  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3134  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3135  void* IP = 0;
3136  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3137    return SDValue(E, 0);
3138  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3139  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3140  CSEMap.InsertNode(N, IP);
3141  AllNodes.push_back(N);
3142  return SDValue(N, 0);
3143}
3144
3145SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3146                                SDValue Ptr, SDValue Val,
3147                                const Value* PtrVal,
3148                                unsigned Alignment) {
3149  assert((   Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB
3150          || Opcode == ISD::ATOMIC_SWAP || Opcode == ISD::ATOMIC_LOAD_AND
3151          || Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR
3152          || Opcode == ISD::ATOMIC_LOAD_NAND
3153          || Opcode == ISD::ATOMIC_LOAD_MIN || Opcode == ISD::ATOMIC_LOAD_MAX
3154          || Opcode == ISD::ATOMIC_LOAD_UMIN || Opcode == ISD::ATOMIC_LOAD_UMAX)
3155         && "Invalid Atomic Op");
3156
3157  MVT VT = Val.getValueType();
3158
3159  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3160    Alignment = getMVTAlignment(VT);
3161
3162  SDVTList VTs = getVTList(VT, MVT::Other);
3163  FoldingSetNodeID ID;
3164  SDValue Ops[] = {Chain, Ptr, Val};
3165  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3166  void* IP = 0;
3167  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3168    return SDValue(E, 0);
3169  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3170  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3171  CSEMap.InsertNode(N, IP);
3172  AllNodes.push_back(N);
3173  return SDValue(N, 0);
3174}
3175
3176/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3177/// Allowed to return something different (and simpler) if Simplify is true.
3178SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3179                                     bool Simplify) {
3180  if (Simplify && NumOps == 1)
3181    return Ops[0];
3182
3183  SmallVector<MVT, 4> VTs;
3184  VTs.reserve(NumOps);
3185  for (unsigned i = 0; i < NumOps; ++i)
3186    VTs.push_back(Ops[i].getValueType());
3187  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3188}
3189
3190SDValue
3191SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3192                      MVT VT, SDValue Chain,
3193                      SDValue Ptr, SDValue Offset,
3194                      const Value *SV, int SVOffset, MVT EVT,
3195                      bool isVolatile, unsigned Alignment) {
3196  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3197    Alignment = getMVTAlignment(VT);
3198
3199  if (VT == EVT) {
3200    ExtType = ISD::NON_EXTLOAD;
3201  } else if (ExtType == ISD::NON_EXTLOAD) {
3202    assert(VT == EVT && "Non-extending load from different memory type!");
3203  } else {
3204    // Extending load.
3205    if (VT.isVector())
3206      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3207             "Invalid vector extload!");
3208    else
3209      assert(EVT.bitsLT(VT) &&
3210             "Should only be an extending load, not truncating!");
3211    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3212           "Cannot sign/zero extend a FP/Vector load!");
3213    assert(VT.isInteger() == EVT.isInteger() &&
3214           "Cannot convert from FP to Int or Int -> FP!");
3215  }
3216
3217  bool Indexed = AM != ISD::UNINDEXED;
3218  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3219         "Unindexed load with an offset!");
3220
3221  SDVTList VTs = Indexed ?
3222    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3223  SDValue Ops[] = { Chain, Ptr, Offset };
3224  FoldingSetNodeID ID;
3225  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3226  ID.AddInteger(AM);
3227  ID.AddInteger(ExtType);
3228  ID.AddInteger(EVT.getRawBits());
3229  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3230  void *IP = 0;
3231  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3232    return SDValue(E, 0);
3233  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3234  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3235                     Alignment, isVolatile);
3236  CSEMap.InsertNode(N, IP);
3237  AllNodes.push_back(N);
3238  return SDValue(N, 0);
3239}
3240
3241SDValue SelectionDAG::getLoad(MVT VT,
3242                              SDValue Chain, SDValue Ptr,
3243                              const Value *SV, int SVOffset,
3244                              bool isVolatile, unsigned Alignment) {
3245  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3246  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3247                 SV, SVOffset, VT, isVolatile, Alignment);
3248}
3249
3250SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3251                                 SDValue Chain, SDValue Ptr,
3252                                 const Value *SV,
3253                                 int SVOffset, MVT EVT,
3254                                 bool isVolatile, unsigned Alignment) {
3255  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3256  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3257                 SV, SVOffset, EVT, isVolatile, Alignment);
3258}
3259
3260SDValue
3261SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3262                             SDValue Offset, ISD::MemIndexedMode AM) {
3263  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3264  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3265         "Load is already a indexed load!");
3266  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3267                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3268                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3269                 LD->isVolatile(), LD->getAlignment());
3270}
3271
3272SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3273                               SDValue Ptr, const Value *SV, int SVOffset,
3274                               bool isVolatile, unsigned Alignment) {
3275  MVT VT = Val.getValueType();
3276
3277  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3278    Alignment = getMVTAlignment(VT);
3279
3280  SDVTList VTs = getVTList(MVT::Other);
3281  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3282  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3283  FoldingSetNodeID ID;
3284  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3285  ID.AddInteger(ISD::UNINDEXED);
3286  ID.AddInteger(false);
3287  ID.AddInteger(VT.getRawBits());
3288  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3289  void *IP = 0;
3290  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3291    return SDValue(E, 0);
3292  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3293  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3294                      VT, SV, SVOffset, Alignment, isVolatile);
3295  CSEMap.InsertNode(N, IP);
3296  AllNodes.push_back(N);
3297  return SDValue(N, 0);
3298}
3299
3300SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3301                                    SDValue Ptr, const Value *SV,
3302                                    int SVOffset, MVT SVT,
3303                                    bool isVolatile, unsigned Alignment) {
3304  MVT VT = Val.getValueType();
3305
3306  if (VT == SVT)
3307    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3308
3309  assert(VT.bitsGT(SVT) && "Not a truncation?");
3310  assert(VT.isInteger() == SVT.isInteger() &&
3311         "Can't do FP-INT conversion!");
3312
3313  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3314    Alignment = getMVTAlignment(VT);
3315
3316  SDVTList VTs = getVTList(MVT::Other);
3317  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3318  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3319  FoldingSetNodeID ID;
3320  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3321  ID.AddInteger(ISD::UNINDEXED);
3322  ID.AddInteger(1);
3323  ID.AddInteger(SVT.getRawBits());
3324  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3325  void *IP = 0;
3326  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3327    return SDValue(E, 0);
3328  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3329  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3330                      SVT, SV, SVOffset, Alignment, isVolatile);
3331  CSEMap.InsertNode(N, IP);
3332  AllNodes.push_back(N);
3333  return SDValue(N, 0);
3334}
3335
3336SDValue
3337SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3338                              SDValue Offset, ISD::MemIndexedMode AM) {
3339  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3340  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3341         "Store is already a indexed store!");
3342  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3343  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3344  FoldingSetNodeID ID;
3345  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3346  ID.AddInteger(AM);
3347  ID.AddInteger(ST->isTruncatingStore());
3348  ID.AddInteger(ST->getMemoryVT().getRawBits());
3349  ID.AddInteger(ST->getRawFlags());
3350  void *IP = 0;
3351  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3352    return SDValue(E, 0);
3353  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3354  new (N) StoreSDNode(Ops, VTs, AM,
3355                      ST->isTruncatingStore(), ST->getMemoryVT(),
3356                      ST->getSrcValue(), ST->getSrcValueOffset(),
3357                      ST->getAlignment(), ST->isVolatile());
3358  CSEMap.InsertNode(N, IP);
3359  AllNodes.push_back(N);
3360  return SDValue(N, 0);
3361}
3362
3363SDValue SelectionDAG::getVAArg(MVT VT,
3364                               SDValue Chain, SDValue Ptr,
3365                               SDValue SV) {
3366  SDValue Ops[] = { Chain, Ptr, SV };
3367  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3368}
3369
3370SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3371                              const SDUse *Ops, unsigned NumOps) {
3372  switch (NumOps) {
3373  case 0: return getNode(Opcode, VT);
3374  case 1: return getNode(Opcode, VT, Ops[0]);
3375  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3376  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3377  default: break;
3378  }
3379
3380  // Copy from an SDUse array into an SDValue array for use with
3381  // the regular getNode logic.
3382  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3383  return getNode(Opcode, VT, &NewOps[0], NumOps);
3384}
3385
3386SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3387                              const SDValue *Ops, unsigned NumOps) {
3388  switch (NumOps) {
3389  case 0: return getNode(Opcode, VT);
3390  case 1: return getNode(Opcode, VT, Ops[0]);
3391  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3392  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3393  default: break;
3394  }
3395
3396  switch (Opcode) {
3397  default: break;
3398  case ISD::SELECT_CC: {
3399    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3400    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3401           "LHS and RHS of condition must have same type!");
3402    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3403           "True and False arms of SelectCC must have same type!");
3404    assert(Ops[2].getValueType() == VT &&
3405           "select_cc node must be of same type as true and false value!");
3406    break;
3407  }
3408  case ISD::BR_CC: {
3409    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3410    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3411           "LHS/RHS of comparison should match types!");
3412    break;
3413  }
3414  }
3415
3416  // Memoize nodes.
3417  SDNode *N;
3418  SDVTList VTs = getVTList(VT);
3419  if (VT != MVT::Flag) {
3420    FoldingSetNodeID ID;
3421    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3422    void *IP = 0;
3423    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3424      return SDValue(E, 0);
3425    N = NodeAllocator.Allocate<SDNode>();
3426    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3427    CSEMap.InsertNode(N, IP);
3428  } else {
3429    N = NodeAllocator.Allocate<SDNode>();
3430    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3431  }
3432  AllNodes.push_back(N);
3433#ifndef NDEBUG
3434  VerifyNode(N);
3435#endif
3436  return SDValue(N, 0);
3437}
3438
3439SDValue SelectionDAG::getNode(unsigned Opcode,
3440                              const std::vector<MVT> &ResultTys,
3441                              const SDValue *Ops, unsigned NumOps) {
3442  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3443                 Ops, NumOps);
3444}
3445
3446SDValue SelectionDAG::getNode(unsigned Opcode,
3447                              const MVT *VTs, unsigned NumVTs,
3448                              const SDValue *Ops, unsigned NumOps) {
3449  if (NumVTs == 1)
3450    return getNode(Opcode, VTs[0], Ops, NumOps);
3451  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3452}
3453
3454SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3455                              const SDValue *Ops, unsigned NumOps) {
3456  if (VTList.NumVTs == 1)
3457    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3458
3459  switch (Opcode) {
3460  // FIXME: figure out how to safely handle things like
3461  // int foo(int x) { return 1 << (x & 255); }
3462  // int bar() { return foo(256); }
3463#if 0
3464  case ISD::SRA_PARTS:
3465  case ISD::SRL_PARTS:
3466  case ISD::SHL_PARTS:
3467    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3468        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3469      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3470    else if (N3.getOpcode() == ISD::AND)
3471      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3472        // If the and is only masking out bits that cannot effect the shift,
3473        // eliminate the and.
3474        unsigned NumBits = VT.getSizeInBits()*2;
3475        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3476          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3477      }
3478    break;
3479#endif
3480  }
3481
3482  // Memoize the node unless it returns a flag.
3483  SDNode *N;
3484  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3485    FoldingSetNodeID ID;
3486    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3487    void *IP = 0;
3488    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3489      return SDValue(E, 0);
3490    if (NumOps == 1) {
3491      N = NodeAllocator.Allocate<UnarySDNode>();
3492      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3493    } else if (NumOps == 2) {
3494      N = NodeAllocator.Allocate<BinarySDNode>();
3495      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3496    } else if (NumOps == 3) {
3497      N = NodeAllocator.Allocate<TernarySDNode>();
3498      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3499    } else {
3500      N = NodeAllocator.Allocate<SDNode>();
3501      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3502    }
3503    CSEMap.InsertNode(N, IP);
3504  } else {
3505    if (NumOps == 1) {
3506      N = NodeAllocator.Allocate<UnarySDNode>();
3507      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3508    } else if (NumOps == 2) {
3509      N = NodeAllocator.Allocate<BinarySDNode>();
3510      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3511    } else if (NumOps == 3) {
3512      N = NodeAllocator.Allocate<TernarySDNode>();
3513      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3514    } else {
3515      N = NodeAllocator.Allocate<SDNode>();
3516      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3517    }
3518  }
3519  AllNodes.push_back(N);
3520#ifndef NDEBUG
3521  VerifyNode(N);
3522#endif
3523  return SDValue(N, 0);
3524}
3525
3526SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3527  return getNode(Opcode, VTList, 0, 0);
3528}
3529
3530SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3531                                SDValue N1) {
3532  SDValue Ops[] = { N1 };
3533  return getNode(Opcode, VTList, Ops, 1);
3534}
3535
3536SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3537                              SDValue N1, SDValue N2) {
3538  SDValue Ops[] = { N1, N2 };
3539  return getNode(Opcode, VTList, Ops, 2);
3540}
3541
3542SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3543                              SDValue N1, SDValue N2, SDValue N3) {
3544  SDValue Ops[] = { N1, N2, N3 };
3545  return getNode(Opcode, VTList, Ops, 3);
3546}
3547
3548SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3549                              SDValue N1, SDValue N2, SDValue N3,
3550                              SDValue N4) {
3551  SDValue Ops[] = { N1, N2, N3, N4 };
3552  return getNode(Opcode, VTList, Ops, 4);
3553}
3554
3555SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3556                              SDValue N1, SDValue N2, SDValue N3,
3557                              SDValue N4, SDValue N5) {
3558  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3559  return getNode(Opcode, VTList, Ops, 5);
3560}
3561
3562SDVTList SelectionDAG::getVTList(MVT VT) {
3563  return makeVTList(SDNode::getValueTypeList(VT), 1);
3564}
3565
3566SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3567  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3568       E = VTList.rend(); I != E; ++I)
3569    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3570      return *I;
3571
3572  MVT *Array = Allocator.Allocate<MVT>(2);
3573  Array[0] = VT1;
3574  Array[1] = VT2;
3575  SDVTList Result = makeVTList(Array, 2);
3576  VTList.push_back(Result);
3577  return Result;
3578}
3579
3580SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3581  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3582       E = VTList.rend(); I != E; ++I)
3583    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3584                          I->VTs[2] == VT3)
3585      return *I;
3586
3587  MVT *Array = Allocator.Allocate<MVT>(3);
3588  Array[0] = VT1;
3589  Array[1] = VT2;
3590  Array[2] = VT3;
3591  SDVTList Result = makeVTList(Array, 3);
3592  VTList.push_back(Result);
3593  return Result;
3594}
3595
3596SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3597  switch (NumVTs) {
3598    case 0: assert(0 && "Cannot have nodes without results!");
3599    case 1: return getVTList(VTs[0]);
3600    case 2: return getVTList(VTs[0], VTs[1]);
3601    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3602    default: break;
3603  }
3604
3605  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3606       E = VTList.rend(); I != E; ++I) {
3607    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3608      continue;
3609
3610    bool NoMatch = false;
3611    for (unsigned i = 2; i != NumVTs; ++i)
3612      if (VTs[i] != I->VTs[i]) {
3613        NoMatch = true;
3614        break;
3615      }
3616    if (!NoMatch)
3617      return *I;
3618  }
3619
3620  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3621  std::copy(VTs, VTs+NumVTs, Array);
3622  SDVTList Result = makeVTList(Array, NumVTs);
3623  VTList.push_back(Result);
3624  return Result;
3625}
3626
3627
3628/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3629/// specified operands.  If the resultant node already exists in the DAG,
3630/// this does not modify the specified node, instead it returns the node that
3631/// already exists.  If the resultant node does not exist in the DAG, the
3632/// input node is returned.  As a degenerate case, if you specify the same
3633/// input operands as the node already has, the input node is returned.
3634SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3635  SDNode *N = InN.Val;
3636  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3637
3638  // Check to see if there is no change.
3639  if (Op == N->getOperand(0)) return InN;
3640
3641  // See if the modified node already exists.
3642  void *InsertPos = 0;
3643  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3644    return SDValue(Existing, InN.ResNo);
3645
3646  // Nope it doesn't.  Remove the node from its current place in the maps.
3647  if (InsertPos)
3648    RemoveNodeFromCSEMaps(N);
3649
3650  // Now we update the operands.
3651  N->OperandList[0].getVal()->removeUser(0, N);
3652  N->OperandList[0] = Op;
3653  N->OperandList[0].setUser(N);
3654  Op.Val->addUser(0, N);
3655
3656  // If this gets put into a CSE map, add it.
3657  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3658  return InN;
3659}
3660
3661SDValue SelectionDAG::
3662UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3663  SDNode *N = InN.Val;
3664  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3665
3666  // Check to see if there is no change.
3667  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3668    return InN;   // No operands changed, just return the input node.
3669
3670  // See if the modified node already exists.
3671  void *InsertPos = 0;
3672  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3673    return SDValue(Existing, InN.ResNo);
3674
3675  // Nope it doesn't.  Remove the node from its current place in the maps.
3676  if (InsertPos)
3677    RemoveNodeFromCSEMaps(N);
3678
3679  // Now we update the operands.
3680  if (N->OperandList[0] != Op1) {
3681    N->OperandList[0].getVal()->removeUser(0, N);
3682    N->OperandList[0] = Op1;
3683    N->OperandList[0].setUser(N);
3684    Op1.Val->addUser(0, N);
3685  }
3686  if (N->OperandList[1] != Op2) {
3687    N->OperandList[1].getVal()->removeUser(1, N);
3688    N->OperandList[1] = Op2;
3689    N->OperandList[1].setUser(N);
3690    Op2.Val->addUser(1, N);
3691  }
3692
3693  // If this gets put into a CSE map, add it.
3694  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3695  return InN;
3696}
3697
3698SDValue SelectionDAG::
3699UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3700  SDValue Ops[] = { Op1, Op2, Op3 };
3701  return UpdateNodeOperands(N, Ops, 3);
3702}
3703
3704SDValue SelectionDAG::
3705UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3706                   SDValue Op3, SDValue Op4) {
3707  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3708  return UpdateNodeOperands(N, Ops, 4);
3709}
3710
3711SDValue SelectionDAG::
3712UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3713                   SDValue Op3, SDValue Op4, SDValue Op5) {
3714  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3715  return UpdateNodeOperands(N, Ops, 5);
3716}
3717
3718SDValue SelectionDAG::
3719UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3720  SDNode *N = InN.Val;
3721  assert(N->getNumOperands() == NumOps &&
3722         "Update with wrong number of operands");
3723
3724  // Check to see if there is no change.
3725  bool AnyChange = false;
3726  for (unsigned i = 0; i != NumOps; ++i) {
3727    if (Ops[i] != N->getOperand(i)) {
3728      AnyChange = true;
3729      break;
3730    }
3731  }
3732
3733  // No operands changed, just return the input node.
3734  if (!AnyChange) return InN;
3735
3736  // See if the modified node already exists.
3737  void *InsertPos = 0;
3738  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3739    return SDValue(Existing, InN.ResNo);
3740
3741  // Nope it doesn't.  Remove the node from its current place in the maps.
3742  if (InsertPos)
3743    RemoveNodeFromCSEMaps(N);
3744
3745  // Now we update the operands.
3746  for (unsigned i = 0; i != NumOps; ++i) {
3747    if (N->OperandList[i] != Ops[i]) {
3748      N->OperandList[i].getVal()->removeUser(i, N);
3749      N->OperandList[i] = Ops[i];
3750      N->OperandList[i].setUser(N);
3751      Ops[i].Val->addUser(i, N);
3752    }
3753  }
3754
3755  // If this gets put into a CSE map, add it.
3756  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3757  return InN;
3758}
3759
3760/// DropOperands - Release the operands and set this node to have
3761/// zero operands.
3762void SDNode::DropOperands() {
3763  // Unlike the code in MorphNodeTo that does this, we don't need to
3764  // watch for dead nodes here.
3765  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3766    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3767
3768  NumOperands = 0;
3769}
3770
3771/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
3772/// machine opcode.
3773///
3774SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3775                                   MVT VT) {
3776  SDVTList VTs = getVTList(VT);
3777  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
3778}
3779
3780SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3781                                   MVT VT, SDValue Op1) {
3782  SDVTList VTs = getVTList(VT);
3783  SDValue Ops[] = { Op1 };
3784  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3785}
3786
3787SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3788                                   MVT VT, SDValue Op1,
3789                                   SDValue Op2) {
3790  SDVTList VTs = getVTList(VT);
3791  SDValue Ops[] = { Op1, Op2 };
3792  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
3793}
3794
3795SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3796                                   MVT VT, SDValue Op1,
3797                                   SDValue Op2, SDValue Op3) {
3798  SDVTList VTs = getVTList(VT);
3799  SDValue Ops[] = { Op1, Op2, Op3 };
3800  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
3801}
3802
3803SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3804                                   MVT VT, const SDValue *Ops,
3805                                   unsigned NumOps) {
3806  SDVTList VTs = getVTList(VT);
3807  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3808}
3809
3810SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3811                                   MVT VT1, MVT VT2, const SDValue *Ops,
3812                                   unsigned NumOps) {
3813  SDVTList VTs = getVTList(VT1, VT2);
3814  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3815}
3816
3817SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3818                                   MVT VT1, MVT VT2) {
3819  SDVTList VTs = getVTList(VT1, VT2);
3820  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
3821}
3822
3823SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3824                                   MVT VT1, MVT VT2, MVT VT3,
3825                                   const SDValue *Ops, unsigned NumOps) {
3826  SDVTList VTs = getVTList(VT1, VT2, VT3);
3827  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3828}
3829
3830SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3831                                   MVT VT1, MVT VT2,
3832                                   SDValue Op1) {
3833  SDVTList VTs = getVTList(VT1, VT2);
3834  SDValue Ops[] = { Op1 };
3835  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3836}
3837
3838SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3839                                   MVT VT1, MVT VT2,
3840                                   SDValue Op1, SDValue Op2) {
3841  SDVTList VTs = getVTList(VT1, VT2);
3842  SDValue Ops[] = { Op1, Op2 };
3843  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
3844}
3845
3846SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3847                                   MVT VT1, MVT VT2,
3848                                   SDValue Op1, SDValue Op2,
3849                                   SDValue Op3) {
3850  SDVTList VTs = getVTList(VT1, VT2);
3851  SDValue Ops[] = { Op1, Op2, Op3 };
3852  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
3853}
3854
3855SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3856                                   SDVTList VTs, const SDValue *Ops,
3857                                   unsigned NumOps) {
3858  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
3859}
3860
3861SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3862                                  MVT VT) {
3863  SDVTList VTs = getVTList(VT);
3864  return MorphNodeTo(N, Opc, VTs, 0, 0);
3865}
3866
3867SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3868                                  MVT VT, SDValue Op1) {
3869  SDVTList VTs = getVTList(VT);
3870  SDValue Ops[] = { Op1 };
3871  return MorphNodeTo(N, Opc, VTs, Ops, 1);
3872}
3873
3874SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3875                                  MVT VT, SDValue Op1,
3876                                  SDValue Op2) {
3877  SDVTList VTs = getVTList(VT);
3878  SDValue Ops[] = { Op1, Op2 };
3879  return MorphNodeTo(N, Opc, VTs, Ops, 2);
3880}
3881
3882SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3883                                  MVT VT, SDValue Op1,
3884                                  SDValue Op2, SDValue Op3) {
3885  SDVTList VTs = getVTList(VT);
3886  SDValue Ops[] = { Op1, Op2, Op3 };
3887  return MorphNodeTo(N, Opc, VTs, Ops, 3);
3888}
3889
3890SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3891                                  MVT VT, const SDValue *Ops,
3892                                  unsigned NumOps) {
3893  SDVTList VTs = getVTList(VT);
3894  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
3895}
3896
3897SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3898                                  MVT VT1, MVT VT2, const SDValue *Ops,
3899                                  unsigned NumOps) {
3900  SDVTList VTs = getVTList(VT1, VT2);
3901  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
3902}
3903
3904SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3905                                  MVT VT1, MVT VT2) {
3906  SDVTList VTs = getVTList(VT1, VT2);
3907  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
3908}
3909
3910SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3911                                  MVT VT1, MVT VT2, MVT VT3,
3912                                  const SDValue *Ops, unsigned NumOps) {
3913  SDVTList VTs = getVTList(VT1, VT2, VT3);
3914  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
3915}
3916
3917SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3918                                  MVT VT1, MVT VT2,
3919                                  SDValue Op1) {
3920  SDVTList VTs = getVTList(VT1, VT2);
3921  SDValue Ops[] = { Op1 };
3922  return MorphNodeTo(N, Opc, VTs, Ops, 1);
3923}
3924
3925SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3926                                  MVT VT1, MVT VT2,
3927                                  SDValue Op1, SDValue Op2) {
3928  SDVTList VTs = getVTList(VT1, VT2);
3929  SDValue Ops[] = { Op1, Op2 };
3930  return MorphNodeTo(N, Opc, VTs, Ops, 2);
3931}
3932
3933SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3934                                  MVT VT1, MVT VT2,
3935                                  SDValue Op1, SDValue Op2,
3936                                  SDValue Op3) {
3937  SDVTList VTs = getVTList(VT1, VT2);
3938  SDValue Ops[] = { Op1, Op2, Op3 };
3939  return MorphNodeTo(N, Opc, VTs, Ops, 3);
3940}
3941
3942/// MorphNodeTo - These *mutate* the specified node to have the specified
3943/// return type, opcode, and operands.
3944///
3945/// Note that MorphNodeTo returns the resultant node.  If there is already a
3946/// node of the specified opcode and operands, it returns that node instead of
3947/// the current one.
3948///
3949/// Using MorphNodeTo is faster than creating a new node and swapping it in
3950/// with ReplaceAllUsesWith both because it often avoids allocating a new
3951/// node, and because it doesn't require CSE recalulation for any of
3952/// the node's users.
3953///
3954SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3955                                  SDVTList VTs, const SDValue *Ops,
3956                                  unsigned NumOps) {
3957  // If an identical node already exists, use it.
3958  void *IP = 0;
3959  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
3960    FoldingSetNodeID ID;
3961    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
3962    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3963      return ON;
3964  }
3965
3966  RemoveNodeFromCSEMaps(N);
3967
3968  // Start the morphing.
3969  N->NodeType = Opc;
3970  N->ValueList = VTs.VTs;
3971  N->NumValues = VTs.NumVTs;
3972
3973  // Clear the operands list, updating used nodes to remove this from their
3974  // use list.  Keep track of any operands that become dead as a result.
3975  SmallPtrSet<SDNode*, 16> DeadNodeSet;
3976  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
3977       I != E; ++I) {
3978    SDNode *Used = I->getVal();
3979    Used->removeUser(std::distance(B, I), N);
3980    if (Used->use_empty())
3981      DeadNodeSet.insert(Used);
3982  }
3983
3984  // If NumOps is larger than the # of operands we currently have, reallocate
3985  // the operand list.
3986  if (NumOps > N->NumOperands) {
3987    if (N->OperandsNeedDelete)
3988      delete[] N->OperandList;
3989    if (N->isMachineOpcode()) {
3990      // We're creating a final node that will live unmorphed for the
3991      // remainder of this SelectionDAG's duration, so we can allocate the
3992      // operands directly out of the pool with no recycling metadata.
3993      N->OperandList = Allocator.Allocate<SDUse>(NumOps);
3994      N->OperandsNeedDelete = false;
3995    } else {
3996      N->OperandList = new SDUse[NumOps];
3997      N->OperandsNeedDelete = true;
3998    }
3999  }
4000
4001  // Assign the new operands.
4002  N->NumOperands = NumOps;
4003  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4004    N->OperandList[i] = Ops[i];
4005    N->OperandList[i].setUser(N);
4006    SDNode *ToUse = N->OperandList[i].getVal();
4007    ToUse->addUser(i, N);
4008  }
4009
4010  // Delete any nodes that are still dead after adding the uses for the
4011  // new operands.
4012  SmallVector<SDNode *, 16> DeadNodes;
4013  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4014       E = DeadNodeSet.end(); I != E; ++I)
4015    if ((*I)->use_empty())
4016      DeadNodes.push_back(*I);
4017  RemoveDeadNodes(DeadNodes);
4018
4019  if (IP)
4020    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4021  return N;
4022}
4023
4024
4025/// getTargetNode - These are used for target selectors to create a new node
4026/// with specified return type(s), target opcode, and operands.
4027///
4028/// Note that getTargetNode returns the resultant node.  If there is already a
4029/// node of the specified opcode and operands, it returns that node instead of
4030/// the current one.
4031SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4032  return getNode(~Opcode, VT).Val;
4033}
4034SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4035  return getNode(~Opcode, VT, Op1).Val;
4036}
4037SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4038                                    SDValue Op1, SDValue Op2) {
4039  return getNode(~Opcode, VT, Op1, Op2).Val;
4040}
4041SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4042                                    SDValue Op1, SDValue Op2,
4043                                    SDValue Op3) {
4044  return getNode(~Opcode, VT, Op1, Op2, Op3).Val;
4045}
4046SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4047                                    const SDValue *Ops, unsigned NumOps) {
4048  return getNode(~Opcode, VT, Ops, NumOps).Val;
4049}
4050SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4051  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4052  SDValue Op;
4053  return getNode(~Opcode, VTs, 2, &Op, 0).Val;
4054}
4055SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4056                                    MVT VT2, SDValue Op1) {
4057  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4058  return getNode(~Opcode, VTs, 2, &Op1, 1).Val;
4059}
4060SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4061                                    MVT VT2, SDValue Op1,
4062                                    SDValue Op2) {
4063  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4064  SDValue Ops[] = { Op1, Op2 };
4065  return getNode(~Opcode, VTs, 2, Ops, 2).Val;
4066}
4067SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4068                                    MVT VT2, SDValue Op1,
4069                                    SDValue Op2, SDValue Op3) {
4070  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4071  SDValue Ops[] = { Op1, Op2, Op3 };
4072  return getNode(~Opcode, VTs, 2, Ops, 3).Val;
4073}
4074SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4075                                    const SDValue *Ops, unsigned NumOps) {
4076  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4077  return getNode(~Opcode, VTs, 2, Ops, NumOps).Val;
4078}
4079SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4080                                    SDValue Op1, SDValue Op2) {
4081  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4082  SDValue Ops[] = { Op1, Op2 };
4083  return getNode(~Opcode, VTs, 3, Ops, 2).Val;
4084}
4085SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4086                                    SDValue Op1, SDValue Op2,
4087                                    SDValue Op3) {
4088  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4089  SDValue Ops[] = { Op1, Op2, Op3 };
4090  return getNode(~Opcode, VTs, 3, Ops, 3).Val;
4091}
4092SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4093                                    const SDValue *Ops, unsigned NumOps) {
4094  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4095  return getNode(~Opcode, VTs, 3, Ops, NumOps).Val;
4096}
4097SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4098                                    MVT VT2, MVT VT3, MVT VT4,
4099                                    const SDValue *Ops, unsigned NumOps) {
4100  std::vector<MVT> VTList;
4101  VTList.push_back(VT1);
4102  VTList.push_back(VT2);
4103  VTList.push_back(VT3);
4104  VTList.push_back(VT4);
4105  const MVT *VTs = getNodeValueTypes(VTList);
4106  return getNode(~Opcode, VTs, 4, Ops, NumOps).Val;
4107}
4108SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4109                                    const std::vector<MVT> &ResultTys,
4110                                    const SDValue *Ops, unsigned NumOps) {
4111  const MVT *VTs = getNodeValueTypes(ResultTys);
4112  return getNode(~Opcode, VTs, ResultTys.size(),
4113                 Ops, NumOps).Val;
4114}
4115
4116/// getNodeIfExists - Get the specified node if it's already available, or
4117/// else return NULL.
4118SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4119                                      const SDValue *Ops, unsigned NumOps) {
4120  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4121    FoldingSetNodeID ID;
4122    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4123    void *IP = 0;
4124    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4125      return E;
4126  }
4127  return NULL;
4128}
4129
4130
4131/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4132/// This can cause recursive merging of nodes in the DAG.
4133///
4134/// This version assumes From has a single result value.
4135///
4136void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4137                                      DAGUpdateListener *UpdateListener) {
4138  SDNode *From = FromN.Val;
4139  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
4140         "Cannot replace with this method!");
4141  assert(From != To.Val && "Cannot replace uses of with self");
4142
4143  while (!From->use_empty()) {
4144    SDNode::use_iterator UI = From->use_begin();
4145    SDNode *U = *UI;
4146
4147    // This node is about to morph, remove its old self from the CSE maps.
4148    RemoveNodeFromCSEMaps(U);
4149    int operandNum = 0;
4150    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4151         I != E; ++I, ++operandNum)
4152      if (I->getVal() == From) {
4153        From->removeUser(operandNum, U);
4154        *I = To;
4155        I->setUser(U);
4156        To.Val->addUser(operandNum, U);
4157      }
4158
4159    // Now that we have modified U, add it back to the CSE maps.  If it already
4160    // exists there, recursively merge the results together.
4161    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4162      ReplaceAllUsesWith(U, Existing, UpdateListener);
4163      // U is now dead.  Inform the listener if it exists and delete it.
4164      if (UpdateListener)
4165        UpdateListener->NodeDeleted(U, Existing);
4166      DeleteNodeNotInCSEMaps(U);
4167    } else {
4168      // If the node doesn't already exist, we updated it.  Inform a listener if
4169      // it exists.
4170      if (UpdateListener)
4171        UpdateListener->NodeUpdated(U);
4172    }
4173  }
4174}
4175
4176/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4177/// This can cause recursive merging of nodes in the DAG.
4178///
4179/// This version assumes From/To have matching types and numbers of result
4180/// values.
4181///
4182void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4183                                      DAGUpdateListener *UpdateListener) {
4184  assert(From->getVTList().VTs == To->getVTList().VTs &&
4185         From->getNumValues() == To->getNumValues() &&
4186         "Cannot use this version of ReplaceAllUsesWith!");
4187
4188  // Handle the trivial case.
4189  if (From == To)
4190    return;
4191
4192  while (!From->use_empty()) {
4193    SDNode::use_iterator UI = From->use_begin();
4194    SDNode *U = *UI;
4195
4196    // This node is about to morph, remove its old self from the CSE maps.
4197    RemoveNodeFromCSEMaps(U);
4198    int operandNum = 0;
4199    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4200         I != E; ++I, ++operandNum)
4201      if (I->getVal() == From) {
4202        From->removeUser(operandNum, U);
4203        I->getVal() = To;
4204        To->addUser(operandNum, U);
4205      }
4206
4207    // Now that we have modified U, add it back to the CSE maps.  If it already
4208    // exists there, recursively merge the results together.
4209    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4210      ReplaceAllUsesWith(U, Existing, UpdateListener);
4211      // U is now dead.  Inform the listener if it exists and delete it.
4212      if (UpdateListener)
4213        UpdateListener->NodeDeleted(U, Existing);
4214      DeleteNodeNotInCSEMaps(U);
4215    } else {
4216      // If the node doesn't already exist, we updated it.  Inform a listener if
4217      // it exists.
4218      if (UpdateListener)
4219        UpdateListener->NodeUpdated(U);
4220    }
4221  }
4222}
4223
4224/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4225/// This can cause recursive merging of nodes in the DAG.
4226///
4227/// This version can replace From with any result values.  To must match the
4228/// number and types of values returned by From.
4229void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4230                                      const SDValue *To,
4231                                      DAGUpdateListener *UpdateListener) {
4232  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4233    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4234
4235  while (!From->use_empty()) {
4236    SDNode::use_iterator UI = From->use_begin();
4237    SDNode *U = *UI;
4238
4239    // This node is about to morph, remove its old self from the CSE maps.
4240    RemoveNodeFromCSEMaps(U);
4241    int operandNum = 0;
4242    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4243         I != E; ++I, ++operandNum)
4244      if (I->getVal() == From) {
4245        const SDValue &ToOp = To[I->getSDValue().ResNo];
4246        From->removeUser(operandNum, U);
4247        *I = ToOp;
4248        I->setUser(U);
4249        ToOp.Val->addUser(operandNum, U);
4250      }
4251
4252    // Now that we have modified U, add it back to the CSE maps.  If it already
4253    // exists there, recursively merge the results together.
4254    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4255      ReplaceAllUsesWith(U, Existing, UpdateListener);
4256      // U is now dead.  Inform the listener if it exists and delete it.
4257      if (UpdateListener)
4258        UpdateListener->NodeDeleted(U, Existing);
4259      DeleteNodeNotInCSEMaps(U);
4260    } else {
4261      // If the node doesn't already exist, we updated it.  Inform a listener if
4262      // it exists.
4263      if (UpdateListener)
4264        UpdateListener->NodeUpdated(U);
4265    }
4266  }
4267}
4268
4269/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4270/// uses of other values produced by From.Val alone.  The Deleted vector is
4271/// handled the same way as for ReplaceAllUsesWith.
4272void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4273                                             DAGUpdateListener *UpdateListener){
4274  // Handle the really simple, really trivial case efficiently.
4275  if (From == To) return;
4276
4277  // Handle the simple, trivial, case efficiently.
4278  if (From.Val->getNumValues() == 1) {
4279    ReplaceAllUsesWith(From, To, UpdateListener);
4280    return;
4281  }
4282
4283  // Get all of the users of From.Val.  We want these in a nice,
4284  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4285  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
4286
4287  while (!Users.empty()) {
4288    // We know that this user uses some value of From.  If it is the right
4289    // value, update it.
4290    SDNode *User = Users.back();
4291    Users.pop_back();
4292
4293    // Scan for an operand that matches From.
4294    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4295    for (; Op != E; ++Op)
4296      if (*Op == From) break;
4297
4298    // If there are no matches, the user must use some other result of From.
4299    if (Op == E) continue;
4300
4301    // Okay, we know this user needs to be updated.  Remove its old self
4302    // from the CSE maps.
4303    RemoveNodeFromCSEMaps(User);
4304
4305    // Update all operands that match "From" in case there are multiple uses.
4306    for (; Op != E; ++Op) {
4307      if (*Op == From) {
4308        From.Val->removeUser(Op-User->op_begin(), User);
4309        *Op = To;
4310        Op->setUser(User);
4311        To.Val->addUser(Op-User->op_begin(), User);
4312      }
4313    }
4314
4315    // Now that we have modified User, add it back to the CSE maps.  If it
4316    // already exists there, recursively merge the results together.
4317    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4318    if (!Existing) {
4319      if (UpdateListener) UpdateListener->NodeUpdated(User);
4320      continue;  // Continue on to next user.
4321    }
4322
4323    // If there was already an existing matching node, use ReplaceAllUsesWith
4324    // to replace the dead one with the existing one.  This can cause
4325    // recursive merging of other unrelated nodes down the line.
4326    ReplaceAllUsesWith(User, Existing, UpdateListener);
4327
4328    // User is now dead.  Notify a listener if present.
4329    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4330    DeleteNodeNotInCSEMaps(User);
4331  }
4332}
4333
4334/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4335/// uses of other values produced by From.Val alone.  The same value may
4336/// appear in both the From and To list.  The Deleted vector is
4337/// handled the same way as for ReplaceAllUsesWith.
4338void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4339                                              const SDValue *To,
4340                                              unsigned Num,
4341                                              DAGUpdateListener *UpdateListener){
4342  // Handle the simple, trivial case efficiently.
4343  if (Num == 1)
4344    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4345
4346  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4347  for (unsigned i = 0; i != Num; ++i)
4348    for (SDNode::use_iterator UI = From[i].Val->use_begin(),
4349         E = From[i].Val->use_end(); UI != E; ++UI)
4350      Users.push_back(std::make_pair(*UI, i));
4351
4352  while (!Users.empty()) {
4353    // We know that this user uses some value of From.  If it is the right
4354    // value, update it.
4355    SDNode *User = Users.back().first;
4356    unsigned i = Users.back().second;
4357    Users.pop_back();
4358
4359    // Scan for an operand that matches From.
4360    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4361    for (; Op != E; ++Op)
4362      if (*Op == From[i]) break;
4363
4364    // If there are no matches, the user must use some other result of From.
4365    if (Op == E) continue;
4366
4367    // Okay, we know this user needs to be updated.  Remove its old self
4368    // from the CSE maps.
4369    RemoveNodeFromCSEMaps(User);
4370
4371    // Update all operands that match "From" in case there are multiple uses.
4372    for (; Op != E; ++Op) {
4373      if (*Op == From[i]) {
4374        From[i].Val->removeUser(Op-User->op_begin(), User);
4375        *Op = To[i];
4376        Op->setUser(User);
4377        To[i].Val->addUser(Op-User->op_begin(), User);
4378      }
4379    }
4380
4381    // Now that we have modified User, add it back to the CSE maps.  If it
4382    // already exists there, recursively merge the results together.
4383    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4384    if (!Existing) {
4385      if (UpdateListener) UpdateListener->NodeUpdated(User);
4386      continue;  // Continue on to next user.
4387    }
4388
4389    // If there was already an existing matching node, use ReplaceAllUsesWith
4390    // to replace the dead one with the existing one.  This can cause
4391    // recursive merging of other unrelated nodes down the line.
4392    ReplaceAllUsesWith(User, Existing, UpdateListener);
4393
4394    // User is now dead.  Notify a listener if present.
4395    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4396    DeleteNodeNotInCSEMaps(User);
4397  }
4398}
4399
4400/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4401/// based on their topological order. It returns the maximum id and a vector
4402/// of the SDNodes* in assigned order by reference.
4403unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4404  unsigned DAGSize = AllNodes.size();
4405  std::vector<unsigned> InDegree(DAGSize);
4406  std::vector<SDNode*> Sources;
4407
4408  // Use a two pass approach to avoid using a std::map which is slow.
4409  unsigned Id = 0;
4410  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4411    SDNode *N = I;
4412    N->setNodeId(Id++);
4413    unsigned Degree = N->use_size();
4414    InDegree[N->getNodeId()] = Degree;
4415    if (Degree == 0)
4416      Sources.push_back(N);
4417  }
4418
4419  TopOrder.clear();
4420  TopOrder.reserve(DAGSize);
4421  while (!Sources.empty()) {
4422    SDNode *N = Sources.back();
4423    Sources.pop_back();
4424    TopOrder.push_back(N);
4425    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4426      SDNode *P = I->getVal();
4427      unsigned Degree = --InDegree[P->getNodeId()];
4428      if (Degree == 0)
4429        Sources.push_back(P);
4430    }
4431  }
4432
4433  // Second pass, assign the actual topological order as node ids.
4434  Id = 0;
4435  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
4436       TI != TE; ++TI)
4437    (*TI)->setNodeId(Id++);
4438
4439  return Id;
4440}
4441
4442
4443
4444//===----------------------------------------------------------------------===//
4445//                              SDNode Class
4446//===----------------------------------------------------------------------===//
4447
4448// Out-of-line virtual method to give class a home.
4449void SDNode::ANCHOR() {}
4450void UnarySDNode::ANCHOR() {}
4451void BinarySDNode::ANCHOR() {}
4452void TernarySDNode::ANCHOR() {}
4453void HandleSDNode::ANCHOR() {}
4454void ConstantSDNode::ANCHOR() {}
4455void ConstantFPSDNode::ANCHOR() {}
4456void GlobalAddressSDNode::ANCHOR() {}
4457void FrameIndexSDNode::ANCHOR() {}
4458void JumpTableSDNode::ANCHOR() {}
4459void ConstantPoolSDNode::ANCHOR() {}
4460void BasicBlockSDNode::ANCHOR() {}
4461void SrcValueSDNode::ANCHOR() {}
4462void MemOperandSDNode::ANCHOR() {}
4463void RegisterSDNode::ANCHOR() {}
4464void DbgStopPointSDNode::ANCHOR() {}
4465void LabelSDNode::ANCHOR() {}
4466void ExternalSymbolSDNode::ANCHOR() {}
4467void CondCodeSDNode::ANCHOR() {}
4468void ARG_FLAGSSDNode::ANCHOR() {}
4469void VTSDNode::ANCHOR() {}
4470void MemSDNode::ANCHOR() {}
4471void LoadSDNode::ANCHOR() {}
4472void StoreSDNode::ANCHOR() {}
4473void AtomicSDNode::ANCHOR() {}
4474
4475HandleSDNode::~HandleSDNode() {
4476  DropOperands();
4477}
4478
4479GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4480                                         MVT VT, int o)
4481  : SDNode(isa<GlobalVariable>(GA) &&
4482           cast<GlobalVariable>(GA)->isThreadLocal() ?
4483           // Thread Local
4484           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4485           // Non Thread Local
4486           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4487           getSDVTList(VT)), Offset(o) {
4488  TheGlobal = const_cast<GlobalValue*>(GA);
4489}
4490
4491MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4492                     const Value *srcValue, int SVO,
4493                     unsigned alignment, bool vol)
4494 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4495   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4496
4497  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4498  assert(getAlignment() == alignment && "Alignment representation error!");
4499  assert(isVolatile() == vol && "Volatile representation error!");
4500}
4501
4502/// getMemOperand - Return a MachineMemOperand object describing the memory
4503/// reference performed by this memory reference.
4504MachineMemOperand MemSDNode::getMemOperand() const {
4505  int Flags;
4506  if (isa<LoadSDNode>(this))
4507    Flags = MachineMemOperand::MOLoad;
4508  else if (isa<StoreSDNode>(this))
4509    Flags = MachineMemOperand::MOStore;
4510  else {
4511    assert(isa<AtomicSDNode>(this) && "Unknown MemSDNode opcode!");
4512    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4513  }
4514
4515  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4516  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4517
4518  // Check if the memory reference references a frame index
4519  const FrameIndexSDNode *FI =
4520  dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4521  if (!getSrcValue() && FI)
4522    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4523                             Flags, 0, Size, getAlignment());
4524  else
4525    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4526                             Size, getAlignment());
4527}
4528
4529/// Profile - Gather unique data for the node.
4530///
4531void SDNode::Profile(FoldingSetNodeID &ID) const {
4532  AddNodeIDNode(ID, this);
4533}
4534
4535/// getValueTypeList - Return a pointer to the specified value type.
4536///
4537const MVT *SDNode::getValueTypeList(MVT VT) {
4538  if (VT.isExtended()) {
4539    static std::set<MVT, MVT::compareRawBits> EVTs;
4540    return &(*EVTs.insert(VT).first);
4541  } else {
4542    static MVT VTs[MVT::LAST_VALUETYPE];
4543    VTs[VT.getSimpleVT()] = VT;
4544    return &VTs[VT.getSimpleVT()];
4545  }
4546}
4547
4548/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4549/// indicated value.  This method ignores uses of other values defined by this
4550/// operation.
4551bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4552  assert(Value < getNumValues() && "Bad value!");
4553
4554  // TODO: Only iterate over uses of a given value of the node
4555  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4556    if (UI.getUse().getSDValue().ResNo == Value) {
4557      if (NUses == 0)
4558        return false;
4559      --NUses;
4560    }
4561  }
4562
4563  // Found exactly the right number of uses?
4564  return NUses == 0;
4565}
4566
4567
4568/// hasAnyUseOfValue - Return true if there are any use of the indicated
4569/// value. This method ignores uses of other values defined by this operation.
4570bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4571  assert(Value < getNumValues() && "Bad value!");
4572
4573  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4574    if (UI.getUse().getSDValue().ResNo == Value)
4575      return true;
4576
4577  return false;
4578}
4579
4580
4581/// isOnlyUserOf - Return true if this node is the only use of N.
4582///
4583bool SDNode::isOnlyUserOf(SDNode *N) const {
4584  bool Seen = false;
4585  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4586    SDNode *User = *I;
4587    if (User == this)
4588      Seen = true;
4589    else
4590      return false;
4591  }
4592
4593  return Seen;
4594}
4595
4596/// isOperand - Return true if this node is an operand of N.
4597///
4598bool SDValue::isOperandOf(SDNode *N) const {
4599  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4600    if (*this == N->getOperand(i))
4601      return true;
4602  return false;
4603}
4604
4605bool SDNode::isOperandOf(SDNode *N) const {
4606  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4607    if (this == N->OperandList[i].getVal())
4608      return true;
4609  return false;
4610}
4611
4612/// reachesChainWithoutSideEffects - Return true if this operand (which must
4613/// be a chain) reaches the specified operand without crossing any
4614/// side-effecting instructions.  In practice, this looks through token
4615/// factors and non-volatile loads.  In order to remain efficient, this only
4616/// looks a couple of nodes in, it does not do an exhaustive search.
4617bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4618                                               unsigned Depth) const {
4619  if (*this == Dest) return true;
4620
4621  // Don't search too deeply, we just want to be able to see through
4622  // TokenFactor's etc.
4623  if (Depth == 0) return false;
4624
4625  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4626  // of the operands of the TF reach dest, then we can do the xform.
4627  if (getOpcode() == ISD::TokenFactor) {
4628    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4629      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4630        return true;
4631    return false;
4632  }
4633
4634  // Loads don't have side effects, look through them.
4635  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4636    if (!Ld->isVolatile())
4637      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4638  }
4639  return false;
4640}
4641
4642
4643static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4644                            SmallPtrSet<SDNode *, 32> &Visited) {
4645  if (found || !Visited.insert(N))
4646    return;
4647
4648  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4649    SDNode *Op = N->getOperand(i).Val;
4650    if (Op == P) {
4651      found = true;
4652      return;
4653    }
4654    findPredecessor(Op, P, found, Visited);
4655  }
4656}
4657
4658/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4659/// is either an operand of N or it can be reached by recursively traversing
4660/// up the operands.
4661/// NOTE: this is an expensive method. Use it carefully.
4662bool SDNode::isPredecessorOf(SDNode *N) const {
4663  SmallPtrSet<SDNode *, 32> Visited;
4664  bool found = false;
4665  findPredecessor(N, this, found, Visited);
4666  return found;
4667}
4668
4669uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4670  assert(Num < NumOperands && "Invalid child # of SDNode!");
4671  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4672}
4673
4674std::string SDNode::getOperationName(const SelectionDAG *G) const {
4675  switch (getOpcode()) {
4676  default:
4677    if (getOpcode() < ISD::BUILTIN_OP_END)
4678      return "<<Unknown DAG Node>>";
4679    if (isMachineOpcode()) {
4680      if (G)
4681        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4682          if (getMachineOpcode() < TII->getNumOpcodes())
4683            return TII->get(getMachineOpcode()).getName();
4684      return "<<Unknown Machine Node>>";
4685    }
4686    if (G) {
4687      TargetLowering &TLI = G->getTargetLoweringInfo();
4688      const char *Name = TLI.getTargetNodeName(getOpcode());
4689      if (Name) return Name;
4690      return "<<Unknown Target Node>>";
4691    }
4692    return "<<Unknown Node>>";
4693
4694#ifndef NDEBUG
4695  case ISD::DELETED_NODE:
4696    return "<<Deleted Node!>>";
4697#endif
4698  case ISD::PREFETCH:      return "Prefetch";
4699  case ISD::MEMBARRIER:    return "MemBarrier";
4700  case ISD::ATOMIC_CMP_SWAP:  return "AtomicCmpSwap";
4701  case ISD::ATOMIC_LOAD_ADD:  return "AtomicLoadAdd";
4702  case ISD::ATOMIC_LOAD_SUB:  return "AtomicLoadSub";
4703  case ISD::ATOMIC_LOAD_AND:  return "AtomicLoadAnd";
4704  case ISD::ATOMIC_LOAD_OR:   return "AtomicLoadOr";
4705  case ISD::ATOMIC_LOAD_XOR:  return "AtomicLoadXor";
4706  case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
4707  case ISD::ATOMIC_LOAD_MIN:  return "AtomicLoadMin";
4708  case ISD::ATOMIC_LOAD_MAX:  return "AtomicLoadMax";
4709  case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
4710  case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
4711  case ISD::ATOMIC_SWAP:   return "AtomicSWAP";
4712  case ISD::PCMARKER:      return "PCMarker";
4713  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4714  case ISD::SRCVALUE:      return "SrcValue";
4715  case ISD::MEMOPERAND:    return "MemOperand";
4716  case ISD::EntryToken:    return "EntryToken";
4717  case ISD::TokenFactor:   return "TokenFactor";
4718  case ISD::AssertSext:    return "AssertSext";
4719  case ISD::AssertZext:    return "AssertZext";
4720
4721  case ISD::BasicBlock:    return "BasicBlock";
4722  case ISD::ARG_FLAGS:     return "ArgFlags";
4723  case ISD::VALUETYPE:     return "ValueType";
4724  case ISD::Register:      return "Register";
4725
4726  case ISD::Constant:      return "Constant";
4727  case ISD::ConstantFP:    return "ConstantFP";
4728  case ISD::GlobalAddress: return "GlobalAddress";
4729  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4730  case ISD::FrameIndex:    return "FrameIndex";
4731  case ISD::JumpTable:     return "JumpTable";
4732  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4733  case ISD::RETURNADDR: return "RETURNADDR";
4734  case ISD::FRAMEADDR: return "FRAMEADDR";
4735  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4736  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4737  case ISD::EHSELECTION: return "EHSELECTION";
4738  case ISD::EH_RETURN: return "EH_RETURN";
4739  case ISD::ConstantPool:  return "ConstantPool";
4740  case ISD::ExternalSymbol: return "ExternalSymbol";
4741  case ISD::INTRINSIC_WO_CHAIN: {
4742    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4743    return Intrinsic::getName((Intrinsic::ID)IID);
4744  }
4745  case ISD::INTRINSIC_VOID:
4746  case ISD::INTRINSIC_W_CHAIN: {
4747    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4748    return Intrinsic::getName((Intrinsic::ID)IID);
4749  }
4750
4751  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4752  case ISD::TargetConstant: return "TargetConstant";
4753  case ISD::TargetConstantFP:return "TargetConstantFP";
4754  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4755  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4756  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4757  case ISD::TargetJumpTable:  return "TargetJumpTable";
4758  case ISD::TargetConstantPool:  return "TargetConstantPool";
4759  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4760
4761  case ISD::CopyToReg:     return "CopyToReg";
4762  case ISD::CopyFromReg:   return "CopyFromReg";
4763  case ISD::UNDEF:         return "undef";
4764  case ISD::MERGE_VALUES:  return "merge_values";
4765  case ISD::INLINEASM:     return "inlineasm";
4766  case ISD::DBG_LABEL:     return "dbg_label";
4767  case ISD::EH_LABEL:      return "eh_label";
4768  case ISD::DECLARE:       return "declare";
4769  case ISD::HANDLENODE:    return "handlenode";
4770  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4771  case ISD::CALL:          return "call";
4772
4773  // Unary operators
4774  case ISD::FABS:   return "fabs";
4775  case ISD::FNEG:   return "fneg";
4776  case ISD::FSQRT:  return "fsqrt";
4777  case ISD::FSIN:   return "fsin";
4778  case ISD::FCOS:   return "fcos";
4779  case ISD::FPOWI:  return "fpowi";
4780  case ISD::FPOW:   return "fpow";
4781  case ISD::FTRUNC: return "ftrunc";
4782  case ISD::FFLOOR: return "ffloor";
4783  case ISD::FCEIL:  return "fceil";
4784  case ISD::FRINT:  return "frint";
4785  case ISD::FNEARBYINT: return "fnearbyint";
4786
4787  // Binary operators
4788  case ISD::ADD:    return "add";
4789  case ISD::SUB:    return "sub";
4790  case ISD::MUL:    return "mul";
4791  case ISD::MULHU:  return "mulhu";
4792  case ISD::MULHS:  return "mulhs";
4793  case ISD::SDIV:   return "sdiv";
4794  case ISD::UDIV:   return "udiv";
4795  case ISD::SREM:   return "srem";
4796  case ISD::UREM:   return "urem";
4797  case ISD::SMUL_LOHI:  return "smul_lohi";
4798  case ISD::UMUL_LOHI:  return "umul_lohi";
4799  case ISD::SDIVREM:    return "sdivrem";
4800  case ISD::UDIVREM:    return "divrem";
4801  case ISD::AND:    return "and";
4802  case ISD::OR:     return "or";
4803  case ISD::XOR:    return "xor";
4804  case ISD::SHL:    return "shl";
4805  case ISD::SRA:    return "sra";
4806  case ISD::SRL:    return "srl";
4807  case ISD::ROTL:   return "rotl";
4808  case ISD::ROTR:   return "rotr";
4809  case ISD::FADD:   return "fadd";
4810  case ISD::FSUB:   return "fsub";
4811  case ISD::FMUL:   return "fmul";
4812  case ISD::FDIV:   return "fdiv";
4813  case ISD::FREM:   return "frem";
4814  case ISD::FCOPYSIGN: return "fcopysign";
4815  case ISD::FGETSIGN:  return "fgetsign";
4816
4817  case ISD::SETCC:       return "setcc";
4818  case ISD::VSETCC:      return "vsetcc";
4819  case ISD::SELECT:      return "select";
4820  case ISD::SELECT_CC:   return "select_cc";
4821  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4822  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4823  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4824  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4825  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4826  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4827  case ISD::CARRY_FALSE:         return "carry_false";
4828  case ISD::ADDC:        return "addc";
4829  case ISD::ADDE:        return "adde";
4830  case ISD::SUBC:        return "subc";
4831  case ISD::SUBE:        return "sube";
4832  case ISD::SHL_PARTS:   return "shl_parts";
4833  case ISD::SRA_PARTS:   return "sra_parts";
4834  case ISD::SRL_PARTS:   return "srl_parts";
4835
4836  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4837  case ISD::INSERT_SUBREG:      return "insert_subreg";
4838
4839  // Conversion operators.
4840  case ISD::SIGN_EXTEND: return "sign_extend";
4841  case ISD::ZERO_EXTEND: return "zero_extend";
4842  case ISD::ANY_EXTEND:  return "any_extend";
4843  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4844  case ISD::TRUNCATE:    return "truncate";
4845  case ISD::FP_ROUND:    return "fp_round";
4846  case ISD::FLT_ROUNDS_: return "flt_rounds";
4847  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4848  case ISD::FP_EXTEND:   return "fp_extend";
4849
4850  case ISD::SINT_TO_FP:  return "sint_to_fp";
4851  case ISD::UINT_TO_FP:  return "uint_to_fp";
4852  case ISD::FP_TO_SINT:  return "fp_to_sint";
4853  case ISD::FP_TO_UINT:  return "fp_to_uint";
4854  case ISD::BIT_CONVERT: return "bit_convert";
4855
4856    // Control flow instructions
4857  case ISD::BR:      return "br";
4858  case ISD::BRIND:   return "brind";
4859  case ISD::BR_JT:   return "br_jt";
4860  case ISD::BRCOND:  return "brcond";
4861  case ISD::BR_CC:   return "br_cc";
4862  case ISD::RET:     return "ret";
4863  case ISD::CALLSEQ_START:  return "callseq_start";
4864  case ISD::CALLSEQ_END:    return "callseq_end";
4865
4866    // Other operators
4867  case ISD::LOAD:               return "load";
4868  case ISD::STORE:              return "store";
4869  case ISD::VAARG:              return "vaarg";
4870  case ISD::VACOPY:             return "vacopy";
4871  case ISD::VAEND:              return "vaend";
4872  case ISD::VASTART:            return "vastart";
4873  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4874  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4875  case ISD::BUILD_PAIR:         return "build_pair";
4876  case ISD::STACKSAVE:          return "stacksave";
4877  case ISD::STACKRESTORE:       return "stackrestore";
4878  case ISD::TRAP:               return "trap";
4879
4880  // Bit manipulation
4881  case ISD::BSWAP:   return "bswap";
4882  case ISD::CTPOP:   return "ctpop";
4883  case ISD::CTTZ:    return "cttz";
4884  case ISD::CTLZ:    return "ctlz";
4885
4886  // Debug info
4887  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
4888  case ISD::DEBUG_LOC: return "debug_loc";
4889
4890  // Trampolines
4891  case ISD::TRAMPOLINE: return "trampoline";
4892
4893  case ISD::CONDCODE:
4894    switch (cast<CondCodeSDNode>(this)->get()) {
4895    default: assert(0 && "Unknown setcc condition!");
4896    case ISD::SETOEQ:  return "setoeq";
4897    case ISD::SETOGT:  return "setogt";
4898    case ISD::SETOGE:  return "setoge";
4899    case ISD::SETOLT:  return "setolt";
4900    case ISD::SETOLE:  return "setole";
4901    case ISD::SETONE:  return "setone";
4902
4903    case ISD::SETO:    return "seto";
4904    case ISD::SETUO:   return "setuo";
4905    case ISD::SETUEQ:  return "setue";
4906    case ISD::SETUGT:  return "setugt";
4907    case ISD::SETUGE:  return "setuge";
4908    case ISD::SETULT:  return "setult";
4909    case ISD::SETULE:  return "setule";
4910    case ISD::SETUNE:  return "setune";
4911
4912    case ISD::SETEQ:   return "seteq";
4913    case ISD::SETGT:   return "setgt";
4914    case ISD::SETGE:   return "setge";
4915    case ISD::SETLT:   return "setlt";
4916    case ISD::SETLE:   return "setle";
4917    case ISD::SETNE:   return "setne";
4918    }
4919  }
4920}
4921
4922const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4923  switch (AM) {
4924  default:
4925    return "";
4926  case ISD::PRE_INC:
4927    return "<pre-inc>";
4928  case ISD::PRE_DEC:
4929    return "<pre-dec>";
4930  case ISD::POST_INC:
4931    return "<post-inc>";
4932  case ISD::POST_DEC:
4933    return "<post-dec>";
4934  }
4935}
4936
4937std::string ISD::ArgFlagsTy::getArgFlagsString() {
4938  std::string S = "< ";
4939
4940  if (isZExt())
4941    S += "zext ";
4942  if (isSExt())
4943    S += "sext ";
4944  if (isInReg())
4945    S += "inreg ";
4946  if (isSRet())
4947    S += "sret ";
4948  if (isByVal())
4949    S += "byval ";
4950  if (isNest())
4951    S += "nest ";
4952  if (getByValAlign())
4953    S += "byval-align:" + utostr(getByValAlign()) + " ";
4954  if (getOrigAlign())
4955    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4956  if (getByValSize())
4957    S += "byval-size:" + utostr(getByValSize()) + " ";
4958  return S + ">";
4959}
4960
4961void SDNode::dump() const { dump(0); }
4962void SDNode::dump(const SelectionDAG *G) const {
4963  cerr << (void*)this << ": ";
4964
4965  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4966    if (i) cerr << ",";
4967    if (getValueType(i) == MVT::Other)
4968      cerr << "ch";
4969    else
4970      cerr << getValueType(i).getMVTString();
4971  }
4972  cerr << " = " << getOperationName(G);
4973
4974  cerr << " ";
4975  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4976    if (i) cerr << ", ";
4977    cerr << (void*)getOperand(i).Val;
4978    if (unsigned RN = getOperand(i).ResNo)
4979      cerr << ":" << RN;
4980  }
4981
4982  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4983    SDNode *Mask = getOperand(2).Val;
4984    cerr << "<";
4985    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4986      if (i) cerr << ",";
4987      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4988        cerr << "u";
4989      else
4990        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4991    }
4992    cerr << ">";
4993  }
4994
4995  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4996    cerr << '<' << CSDN->getAPIntValue() << '>';
4997  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4998    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4999      cerr << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5000    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5001      cerr << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5002    else {
5003      cerr << "<APFloat(";
5004      CSDN->getValueAPF().convertToAPInt().dump();
5005      cerr << ")>";
5006    }
5007  } else if (const GlobalAddressSDNode *GADN =
5008             dyn_cast<GlobalAddressSDNode>(this)) {
5009    int offset = GADN->getOffset();
5010    cerr << '<';
5011    WriteAsOperand(*cerr.stream(), GADN->getGlobal());
5012    cerr << '>';
5013    if (offset > 0)
5014      cerr << " + " << offset;
5015    else
5016      cerr << " " << offset;
5017  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5018    cerr << "<" << FIDN->getIndex() << ">";
5019  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5020    cerr << "<" << JTDN->getIndex() << ">";
5021  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5022    int offset = CP->getOffset();
5023    if (CP->isMachineConstantPoolEntry())
5024      cerr << "<" << *CP->getMachineCPVal() << ">";
5025    else
5026      cerr << "<" << *CP->getConstVal() << ">";
5027    if (offset > 0)
5028      cerr << " + " << offset;
5029    else
5030      cerr << " " << offset;
5031  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5032    cerr << "<";
5033    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5034    if (LBB)
5035      cerr << LBB->getName() << " ";
5036    cerr << (const void*)BBDN->getBasicBlock() << ">";
5037  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5038    if (G && R->getReg() &&
5039        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5040      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5041    } else {
5042      cerr << " #" << R->getReg();
5043    }
5044  } else if (const ExternalSymbolSDNode *ES =
5045             dyn_cast<ExternalSymbolSDNode>(this)) {
5046    cerr << "'" << ES->getSymbol() << "'";
5047  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5048    if (M->getValue())
5049      cerr << "<" << M->getValue() << ">";
5050    else
5051      cerr << "<null>";
5052  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5053    if (M->MO.getValue())
5054      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5055    else
5056      cerr << "<null:" << M->MO.getOffset() << ">";
5057  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5058    cerr << N->getArgFlags().getArgFlagsString();
5059  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5060    cerr << ":" << N->getVT().getMVTString();
5061  }
5062  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5063    const Value *SrcValue = LD->getSrcValue();
5064    int SrcOffset = LD->getSrcValueOffset();
5065    cerr << " <";
5066    if (SrcValue)
5067      cerr << SrcValue;
5068    else
5069      cerr << "null";
5070    cerr << ":" << SrcOffset << ">";
5071
5072    bool doExt = true;
5073    switch (LD->getExtensionType()) {
5074    default: doExt = false; break;
5075    case ISD::EXTLOAD:
5076      cerr << " <anyext ";
5077      break;
5078    case ISD::SEXTLOAD:
5079      cerr << " <sext ";
5080      break;
5081    case ISD::ZEXTLOAD:
5082      cerr << " <zext ";
5083      break;
5084    }
5085    if (doExt)
5086      cerr << LD->getMemoryVT().getMVTString() << ">";
5087
5088    const char *AM = getIndexedModeName(LD->getAddressingMode());
5089    if (*AM)
5090      cerr << " " << AM;
5091    if (LD->isVolatile())
5092      cerr << " <volatile>";
5093    cerr << " alignment=" << LD->getAlignment();
5094  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5095    const Value *SrcValue = ST->getSrcValue();
5096    int SrcOffset = ST->getSrcValueOffset();
5097    cerr << " <";
5098    if (SrcValue)
5099      cerr << SrcValue;
5100    else
5101      cerr << "null";
5102    cerr << ":" << SrcOffset << ">";
5103
5104    if (ST->isTruncatingStore())
5105      cerr << " <trunc "
5106           << ST->getMemoryVT().getMVTString() << ">";
5107
5108    const char *AM = getIndexedModeName(ST->getAddressingMode());
5109    if (*AM)
5110      cerr << " " << AM;
5111    if (ST->isVolatile())
5112      cerr << " <volatile>";
5113    cerr << " alignment=" << ST->getAlignment();
5114  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5115    const Value *SrcValue = AT->getSrcValue();
5116    int SrcOffset = AT->getSrcValueOffset();
5117    cerr << " <";
5118    if (SrcValue)
5119      cerr << SrcValue;
5120    else
5121      cerr << "null";
5122    cerr << ":" << SrcOffset << ">";
5123    if (AT->isVolatile())
5124      cerr << " <volatile>";
5125    cerr << " alignment=" << AT->getAlignment();
5126  }
5127}
5128
5129static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5130  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5131    if (N->getOperand(i).Val->hasOneUse())
5132      DumpNodes(N->getOperand(i).Val, indent+2, G);
5133    else
5134      cerr << "\n" << std::string(indent+2, ' ')
5135           << (void*)N->getOperand(i).Val << ": <multiple use>";
5136
5137
5138  cerr << "\n" << std::string(indent, ' ');
5139  N->dump(G);
5140}
5141
5142void SelectionDAG::dump() const {
5143  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5144
5145  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5146       I != E; ++I) {
5147    const SDNode *N = I;
5148    if (!N->hasOneUse() && N != getRoot().Val)
5149      DumpNodes(N, 2, this);
5150  }
5151
5152  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
5153
5154  cerr << "\n\n";
5155}
5156
5157const Type *ConstantPoolSDNode::getType() const {
5158  if (isMachineConstantPoolEntry())
5159    return Val.MachineCPVal->getType();
5160  return Val.ConstVal->getType();
5161}
5162