SelectionDAG.cpp revision 77f0b7a50a08614b5ffd58f1864b68a9a30d0cb0
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/GlobalAlias.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CallingConv.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineModuleInfo.h"
25#include "llvm/CodeGen/PseudoSourceValue.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/ADT/SetVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include <algorithm>
38#include <cmath>
39using namespace llvm;
40
41/// makeVTList - Return an instance of the SDVTList struct initialized with the
42/// specified members.
43static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
44  SDVTList Res = {VTs, NumVTs};
45  return Res;
46}
47
48static const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
49  switch (VT) {
50  default: assert(0 && "Unknown FP format");
51  case MVT::f32:     return &APFloat::IEEEsingle;
52  case MVT::f64:     return &APFloat::IEEEdouble;
53  case MVT::f80:     return &APFloat::x87DoubleExtended;
54  case MVT::f128:    return &APFloat::IEEEquad;
55  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
56  }
57}
58
59SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
60
61//===----------------------------------------------------------------------===//
62//                              ConstantFPSDNode Class
63//===----------------------------------------------------------------------===//
64
65/// isExactlyValue - We don't rely on operator== working on double values, as
66/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
67/// As such, this method can be used to do an exact bit-for-bit comparison of
68/// two floating point values.
69bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
70  return Value.bitwiseIsEqual(V);
71}
72
73bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
74                                           const APFloat& Val) {
75  assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
76
77  // PPC long double cannot be converted to any other type.
78  if (VT == MVT::ppcf128 ||
79      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
80    return false;
81
82  // convert modifies in place, so make a copy.
83  APFloat Val2 = APFloat(Val);
84  return Val2.convert(*MVTToAPFloatSemantics(VT),
85                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
86}
87
88//===----------------------------------------------------------------------===//
89//                              ISD Namespace
90//===----------------------------------------------------------------------===//
91
92/// isBuildVectorAllOnes - Return true if the specified node is a
93/// BUILD_VECTOR where all of the elements are ~0 or undef.
94bool ISD::isBuildVectorAllOnes(const SDNode *N) {
95  // Look through a bit convert.
96  if (N->getOpcode() == ISD::BIT_CONVERT)
97    N = N->getOperand(0).Val;
98
99  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
100
101  unsigned i = 0, e = N->getNumOperands();
102
103  // Skip over all of the undef values.
104  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
105    ++i;
106
107  // Do not accept an all-undef vector.
108  if (i == e) return false;
109
110  // Do not accept build_vectors that aren't all constants or which have non-~0
111  // elements.
112  SDOperand NotZero = N->getOperand(i);
113  if (isa<ConstantSDNode>(NotZero)) {
114    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
115      return false;
116  } else if (isa<ConstantFPSDNode>(NotZero)) {
117    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
118                convertToAPInt().isAllOnesValue())
119      return false;
120  } else
121    return false;
122
123  // Okay, we have at least one ~0 value, check to see if the rest match or are
124  // undefs.
125  for (++i; i != e; ++i)
126    if (N->getOperand(i) != NotZero &&
127        N->getOperand(i).getOpcode() != ISD::UNDEF)
128      return false;
129  return true;
130}
131
132
133/// isBuildVectorAllZeros - Return true if the specified node is a
134/// BUILD_VECTOR where all of the elements are 0 or undef.
135bool ISD::isBuildVectorAllZeros(const SDNode *N) {
136  // Look through a bit convert.
137  if (N->getOpcode() == ISD::BIT_CONVERT)
138    N = N->getOperand(0).Val;
139
140  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
141
142  unsigned i = 0, e = N->getNumOperands();
143
144  // Skip over all of the undef values.
145  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
146    ++i;
147
148  // Do not accept an all-undef vector.
149  if (i == e) return false;
150
151  // Do not accept build_vectors that aren't all constants or which have non-~0
152  // elements.
153  SDOperand Zero = N->getOperand(i);
154  if (isa<ConstantSDNode>(Zero)) {
155    if (!cast<ConstantSDNode>(Zero)->isNullValue())
156      return false;
157  } else if (isa<ConstantFPSDNode>(Zero)) {
158    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
159      return false;
160  } else
161    return false;
162
163  // Okay, we have at least one ~0 value, check to see if the rest match or are
164  // undefs.
165  for (++i; i != e; ++i)
166    if (N->getOperand(i) != Zero &&
167        N->getOperand(i).getOpcode() != ISD::UNDEF)
168      return false;
169  return true;
170}
171
172/// isScalarToVector - Return true if the specified node is a
173/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
174/// element is not an undef.
175bool ISD::isScalarToVector(const SDNode *N) {
176  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
177    return true;
178
179  if (N->getOpcode() != ISD::BUILD_VECTOR)
180    return false;
181  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
182    return false;
183  unsigned NumElems = N->getNumOperands();
184  for (unsigned i = 1; i < NumElems; ++i) {
185    SDOperand V = N->getOperand(i);
186    if (V.getOpcode() != ISD::UNDEF)
187      return false;
188  }
189  return true;
190}
191
192
193/// isDebugLabel - Return true if the specified node represents a debug
194/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
195/// is 0).
196bool ISD::isDebugLabel(const SDNode *N) {
197  SDOperand Zero;
198  if (N->getOpcode() == ISD::LABEL)
199    Zero = N->getOperand(2);
200  else if (N->isTargetOpcode() &&
201           N->getTargetOpcode() == TargetInstrInfo::LABEL)
202    // Chain moved to last operand.
203    Zero = N->getOperand(1);
204  else
205    return false;
206  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
207}
208
209/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
210/// when given the operation for (X op Y).
211ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
212  // To perform this operation, we just need to swap the L and G bits of the
213  // operation.
214  unsigned OldL = (Operation >> 2) & 1;
215  unsigned OldG = (Operation >> 1) & 1;
216  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
217                       (OldL << 1) |       // New G bit
218                       (OldG << 2));        // New L bit.
219}
220
221/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
222/// 'op' is a valid SetCC operation.
223ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
224  unsigned Operation = Op;
225  if (isInteger)
226    Operation ^= 7;   // Flip L, G, E bits, but not U.
227  else
228    Operation ^= 15;  // Flip all of the condition bits.
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;     // Don't let N and U bits get set.
231  return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239  switch (Opcode) {
240  default: assert(0 && "Illegal integer setcc operation!");
241  case ISD::SETEQ:
242  case ISD::SETNE: return 0;
243  case ISD::SETLT:
244  case ISD::SETLE:
245  case ISD::SETGT:
246  case ISD::SETGE: return 1;
247  case ISD::SETULT:
248  case ISD::SETULE:
249  case ISD::SETUGT:
250  case ISD::SETUGE: return 2;
251  }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259                                       bool isInteger) {
260  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262    return ISD::SETCC_INVALID;
263
264  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265
266  // If the N and U bits get set then the resultant comparison DOES suddenly
267  // care about orderedness, and is true when ordered.
268  if (Op > ISD::SETTRUE2)
269    Op &= ~16;     // Clear the U bit if the N bit is set.
270
271  // Canonicalize illegal integer setcc's.
272  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273    Op = ISD::SETNE;
274
275  return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283                                        bool isInteger) {
284  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285    // Cannot fold a signed setcc with an unsigned setcc.
286    return ISD::SETCC_INVALID;
287
288  // Combine all of the condition bits.
289  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291  // Canonicalize illegal integer setcc's.
292  if (isInteger) {
293    switch (Result) {
294    default: break;
295    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
297    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
298    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
299    }
300  }
301
302  return Result;
303}
304
305const TargetMachine &SelectionDAG::getTarget() const {
306  return TLI.getTargetMachine();
307}
308
309//===----------------------------------------------------------------------===//
310//                           SDNode Profile Support
311//===----------------------------------------------------------------------===//
312
313/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314///
315static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316  ID.AddInteger(OpC);
317}
318
319/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320/// solely with their pointer.
321static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322  ID.AddPointer(VTList.VTs);
323}
324
325/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326///
327static void AddNodeIDOperands(FoldingSetNodeID &ID,
328                              SDOperandPtr Ops, unsigned NumOps) {
329  for (; NumOps; --NumOps, ++Ops) {
330    ID.AddPointer(Ops->Val);
331    ID.AddInteger(Ops->ResNo);
332  }
333}
334
335static void AddNodeIDNode(FoldingSetNodeID &ID,
336                          unsigned short OpC, SDVTList VTList,
337                          SDOperandPtr OpList, unsigned N) {
338  AddNodeIDOpcode(ID, OpC);
339  AddNodeIDValueTypes(ID, VTList);
340  AddNodeIDOperands(ID, OpList, N);
341}
342
343
344/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
345/// data.
346static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
347  AddNodeIDOpcode(ID, N->getOpcode());
348  // Add the return value info.
349  AddNodeIDValueTypes(ID, N->getVTList());
350  // Add the operand info.
351  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
352
353  // Handle SDNode leafs with special info.
354  switch (N->getOpcode()) {
355  default: break;  // Normal nodes don't need extra info.
356  case ISD::ARG_FLAGS:
357    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
358    break;
359  case ISD::TargetConstant:
360  case ISD::Constant:
361    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
362    break;
363  case ISD::TargetConstantFP:
364  case ISD::ConstantFP: {
365    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
366    break;
367  }
368  case ISD::TargetGlobalAddress:
369  case ISD::GlobalAddress:
370  case ISD::TargetGlobalTLSAddress:
371  case ISD::GlobalTLSAddress: {
372    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
373    ID.AddPointer(GA->getGlobal());
374    ID.AddInteger(GA->getOffset());
375    break;
376  }
377  case ISD::BasicBlock:
378    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
379    break;
380  case ISD::Register:
381    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
382    break;
383  case ISD::SRCVALUE:
384    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
385    break;
386  case ISD::MEMOPERAND: {
387    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
388    ID.AddPointer(MO.getValue());
389    ID.AddInteger(MO.getFlags());
390    ID.AddInteger(MO.getOffset());
391    ID.AddInteger(MO.getSize());
392    ID.AddInteger(MO.getAlignment());
393    break;
394  }
395  case ISD::FrameIndex:
396  case ISD::TargetFrameIndex:
397    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
398    break;
399  case ISD::JumpTable:
400  case ISD::TargetJumpTable:
401    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
402    break;
403  case ISD::ConstantPool:
404  case ISD::TargetConstantPool: {
405    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
406    ID.AddInteger(CP->getAlignment());
407    ID.AddInteger(CP->getOffset());
408    if (CP->isMachineConstantPoolEntry())
409      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
410    else
411      ID.AddPointer(CP->getConstVal());
412    break;
413  }
414  case ISD::LOAD: {
415    LoadSDNode *LD = cast<LoadSDNode>(N);
416    ID.AddInteger(LD->getAddressingMode());
417    ID.AddInteger(LD->getExtensionType());
418    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
419    ID.AddInteger(LD->getAlignment());
420    ID.AddInteger(LD->isVolatile());
421    break;
422  }
423  case ISD::STORE: {
424    StoreSDNode *ST = cast<StoreSDNode>(N);
425    ID.AddInteger(ST->getAddressingMode());
426    ID.AddInteger(ST->isTruncatingStore());
427    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
428    ID.AddInteger(ST->getAlignment());
429    ID.AddInteger(ST->isVolatile());
430    break;
431  }
432  }
433}
434
435//===----------------------------------------------------------------------===//
436//                              SelectionDAG Class
437//===----------------------------------------------------------------------===//
438
439/// RemoveDeadNodes - This method deletes all unreachable nodes in the
440/// SelectionDAG.
441void SelectionDAG::RemoveDeadNodes() {
442  // Create a dummy node (which is not added to allnodes), that adds a reference
443  // to the root node, preventing it from being deleted.
444  HandleSDNode Dummy(getRoot());
445
446  SmallVector<SDNode*, 128> DeadNodes;
447
448  // Add all obviously-dead nodes to the DeadNodes worklist.
449  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
450    if (I->use_empty())
451      DeadNodes.push_back(I);
452
453  // Process the worklist, deleting the nodes and adding their uses to the
454  // worklist.
455  while (!DeadNodes.empty()) {
456    SDNode *N = DeadNodes.back();
457    DeadNodes.pop_back();
458
459    // Take the node out of the appropriate CSE map.
460    RemoveNodeFromCSEMaps(N);
461
462    // Next, brutally remove the operand list.  This is safe to do, as there are
463    // no cycles in the graph.
464    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
465      SDNode *Operand = I->getVal();
466      Operand->removeUser(std::distance(N->op_begin(), I), N);
467
468      // Now that we removed this operand, see if there are no uses of it left.
469      if (Operand->use_empty())
470        DeadNodes.push_back(Operand);
471    }
472    if (N->OperandsNeedDelete) {
473      delete[] N->OperandList;
474    }
475    N->OperandList = 0;
476    N->NumOperands = 0;
477
478    // Finally, remove N itself.
479    AllNodes.erase(N);
480  }
481
482  // If the root changed (e.g. it was a dead load, update the root).
483  setRoot(Dummy.getValue());
484}
485
486void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
487  SmallVector<SDNode*, 16> DeadNodes;
488  DeadNodes.push_back(N);
489
490  // Process the worklist, deleting the nodes and adding their uses to the
491  // worklist.
492  while (!DeadNodes.empty()) {
493    SDNode *N = DeadNodes.back();
494    DeadNodes.pop_back();
495
496    if (UpdateListener)
497      UpdateListener->NodeDeleted(N);
498
499    // Take the node out of the appropriate CSE map.
500    RemoveNodeFromCSEMaps(N);
501
502    // Next, brutally remove the operand list.  This is safe to do, as there are
503    // no cycles in the graph.
504    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
505      SDNode *Operand = I->getVal();
506      Operand->removeUser(std::distance(N->op_begin(), I), N);
507
508      // Now that we removed this operand, see if there are no uses of it left.
509      if (Operand->use_empty())
510        DeadNodes.push_back(Operand);
511    }
512    if (N->OperandsNeedDelete) {
513      delete[] N->OperandList;
514    }
515    N->OperandList = 0;
516    N->NumOperands = 0;
517
518    // Finally, remove N itself.
519    AllNodes.erase(N);
520  }
521}
522
523void SelectionDAG::DeleteNode(SDNode *N) {
524  assert(N->use_empty() && "Cannot delete a node that is not dead!");
525
526  // First take this out of the appropriate CSE map.
527  RemoveNodeFromCSEMaps(N);
528
529  // Finally, remove uses due to operands of this node, remove from the
530  // AllNodes list, and delete the node.
531  DeleteNodeNotInCSEMaps(N);
532}
533
534void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
535
536  // Remove it from the AllNodes list.
537  AllNodes.remove(N);
538
539  // Drop all of the operands and decrement used nodes use counts.
540  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
541    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
542  if (N->OperandsNeedDelete) {
543    delete[] N->OperandList;
544  }
545  N->OperandList = 0;
546  N->NumOperands = 0;
547
548  delete N;
549}
550
551/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
552/// correspond to it.  This is useful when we're about to delete or repurpose
553/// the node.  We don't want future request for structurally identical nodes
554/// to return N anymore.
555void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
556  bool Erased = false;
557  switch (N->getOpcode()) {
558  case ISD::HANDLENODE: return;  // noop.
559  case ISD::STRING:
560    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
561    break;
562  case ISD::CONDCODE:
563    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
564           "Cond code doesn't exist!");
565    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
566    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
567    break;
568  case ISD::ExternalSymbol:
569    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
570    break;
571  case ISD::TargetExternalSymbol:
572    Erased =
573      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
574    break;
575  case ISD::VALUETYPE: {
576    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
577    if (MVT::isExtendedVT(VT)) {
578      Erased = ExtendedValueTypeNodes.erase(VT);
579    } else {
580      Erased = ValueTypeNodes[VT] != 0;
581      ValueTypeNodes[VT] = 0;
582    }
583    break;
584  }
585  default:
586    // Remove it from the CSE Map.
587    Erased = CSEMap.RemoveNode(N);
588    break;
589  }
590#ifndef NDEBUG
591  // Verify that the node was actually in one of the CSE maps, unless it has a
592  // flag result (which cannot be CSE'd) or is one of the special cases that are
593  // not subject to CSE.
594  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
595      !N->isTargetOpcode()) {
596    N->dump(this);
597    cerr << "\n";
598    assert(0 && "Node is not in map!");
599  }
600#endif
601}
602
603/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
604/// has been taken out and modified in some way.  If the specified node already
605/// exists in the CSE maps, do not modify the maps, but return the existing node
606/// instead.  If it doesn't exist, add it and return null.
607///
608SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
609  assert(N->getNumOperands() && "This is a leaf node!");
610  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
611    return 0;    // Never add these nodes.
612
613  // Check that remaining values produced are not flags.
614  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
615    if (N->getValueType(i) == MVT::Flag)
616      return 0;   // Never CSE anything that produces a flag.
617
618  SDNode *New = CSEMap.GetOrInsertNode(N);
619  if (New != N) return New;  // Node already existed.
620  return 0;
621}
622
623/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
624/// were replaced with those specified.  If this node is never memoized,
625/// return null, otherwise return a pointer to the slot it would take.  If a
626/// node already exists with these operands, the slot will be non-null.
627SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
628                                           void *&InsertPos) {
629  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
630    return 0;    // Never add these nodes.
631
632  // Check that remaining values produced are not flags.
633  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
634    if (N->getValueType(i) == MVT::Flag)
635      return 0;   // Never CSE anything that produces a flag.
636
637  SDOperand Ops[] = { Op };
638  FoldingSetNodeID ID;
639  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
640  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
641}
642
643/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
644/// were replaced with those specified.  If this node is never memoized,
645/// return null, otherwise return a pointer to the slot it would take.  If a
646/// node already exists with these operands, the slot will be non-null.
647SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
648                                           SDOperand Op1, SDOperand Op2,
649                                           void *&InsertPos) {
650  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
651    return 0;    // Never add these nodes.
652
653  // Check that remaining values produced are not flags.
654  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
655    if (N->getValueType(i) == MVT::Flag)
656      return 0;   // Never CSE anything that produces a flag.
657
658  SDOperand Ops[] = { Op1, Op2 };
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
661  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
662}
663
664
665/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
666/// were replaced with those specified.  If this node is never memoized,
667/// return null, otherwise return a pointer to the slot it would take.  If a
668/// node already exists with these operands, the slot will be non-null.
669SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
670                                           SDOperandPtr Ops,unsigned NumOps,
671                                           void *&InsertPos) {
672  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
673    return 0;    // Never add these nodes.
674
675  // Check that remaining values produced are not flags.
676  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
677    if (N->getValueType(i) == MVT::Flag)
678      return 0;   // Never CSE anything that produces a flag.
679
680  FoldingSetNodeID ID;
681  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
682
683  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
684    ID.AddInteger(LD->getAddressingMode());
685    ID.AddInteger(LD->getExtensionType());
686    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
687    ID.AddInteger(LD->getAlignment());
688    ID.AddInteger(LD->isVolatile());
689  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
690    ID.AddInteger(ST->getAddressingMode());
691    ID.AddInteger(ST->isTruncatingStore());
692    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
693    ID.AddInteger(ST->getAlignment());
694    ID.AddInteger(ST->isVolatile());
695  }
696
697  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
698}
699
700
701SelectionDAG::~SelectionDAG() {
702  while (!AllNodes.empty()) {
703    SDNode *N = AllNodes.begin();
704    N->SetNextInBucket(0);
705    if (N->OperandsNeedDelete) {
706      delete [] N->OperandList;
707    }
708    N->OperandList = 0;
709    N->NumOperands = 0;
710    AllNodes.pop_front();
711  }
712}
713
714SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
715  if (Op.getValueType() == VT) return Op;
716  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
717                                   MVT::getSizeInBits(VT));
718  return getNode(ISD::AND, Op.getValueType(), Op,
719                 getConstant(Imm, Op.getValueType()));
720}
721
722SDOperand SelectionDAG::getString(const std::string &Val) {
723  StringSDNode *&N = StringNodes[Val];
724  if (!N) {
725    N = new StringSDNode(Val);
726    AllNodes.push_back(N);
727  }
728  return SDOperand(N, 0);
729}
730
731SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
732  MVT::ValueType EltVT =
733    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
734
735  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
736}
737
738SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
739  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
740
741  MVT::ValueType EltVT =
742    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
743
744  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
745         "APInt size does not match type size!");
746
747  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
748  FoldingSetNodeID ID;
749  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
750  ID.Add(Val);
751  void *IP = 0;
752  SDNode *N = NULL;
753  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
754    if (!MVT::isVector(VT))
755      return SDOperand(N, 0);
756  if (!N) {
757    N = new ConstantSDNode(isT, Val, EltVT);
758    CSEMap.InsertNode(N, IP);
759    AllNodes.push_back(N);
760  }
761
762  SDOperand Result(N, 0);
763  if (MVT::isVector(VT)) {
764    SmallVector<SDOperand, 8> Ops;
765    Ops.assign(MVT::getVectorNumElements(VT), Result);
766    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
767  }
768  return Result;
769}
770
771SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
772  return getConstant(Val, TLI.getPointerTy(), isTarget);
773}
774
775
776SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
777                                      bool isTarget) {
778  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
779
780  MVT::ValueType EltVT =
781    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
782
783  // Do the map lookup using the actual bit pattern for the floating point
784  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
785  // we don't have issues with SNANs.
786  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
787  FoldingSetNodeID ID;
788  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
789  ID.Add(V);
790  void *IP = 0;
791  SDNode *N = NULL;
792  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
793    if (!MVT::isVector(VT))
794      return SDOperand(N, 0);
795  if (!N) {
796    N = new ConstantFPSDNode(isTarget, V, EltVT);
797    CSEMap.InsertNode(N, IP);
798    AllNodes.push_back(N);
799  }
800
801  SDOperand Result(N, 0);
802  if (MVT::isVector(VT)) {
803    SmallVector<SDOperand, 8> Ops;
804    Ops.assign(MVT::getVectorNumElements(VT), Result);
805    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
806  }
807  return Result;
808}
809
810SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
811                                      bool isTarget) {
812  MVT::ValueType EltVT =
813    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
814  if (EltVT==MVT::f32)
815    return getConstantFP(APFloat((float)Val), VT, isTarget);
816  else
817    return getConstantFP(APFloat(Val), VT, isTarget);
818}
819
820SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
821                                         MVT::ValueType VT, int Offset,
822                                         bool isTargetGA) {
823  unsigned Opc;
824
825  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
826  if (!GVar) {
827    // If GV is an alias then use the aliasee for determining thread-localness.
828    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
829      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
830  }
831
832  if (GVar && GVar->isThreadLocal())
833    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
834  else
835    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
836
837  FoldingSetNodeID ID;
838  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
839  ID.AddPointer(GV);
840  ID.AddInteger(Offset);
841  void *IP = 0;
842  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
843   return SDOperand(E, 0);
844  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
845  CSEMap.InsertNode(N, IP);
846  AllNodes.push_back(N);
847  return SDOperand(N, 0);
848}
849
850SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
851                                      bool isTarget) {
852  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
853  FoldingSetNodeID ID;
854  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
855  ID.AddInteger(FI);
856  void *IP = 0;
857  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
858    return SDOperand(E, 0);
859  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
860  CSEMap.InsertNode(N, IP);
861  AllNodes.push_back(N);
862  return SDOperand(N, 0);
863}
864
865SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
866  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
867  FoldingSetNodeID ID;
868  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
869  ID.AddInteger(JTI);
870  void *IP = 0;
871  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
872    return SDOperand(E, 0);
873  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
874  CSEMap.InsertNode(N, IP);
875  AllNodes.push_back(N);
876  return SDOperand(N, 0);
877}
878
879SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
880                                        unsigned Alignment, int Offset,
881                                        bool isTarget) {
882  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
883  FoldingSetNodeID ID;
884  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
885  ID.AddInteger(Alignment);
886  ID.AddInteger(Offset);
887  ID.AddPointer(C);
888  void *IP = 0;
889  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
890    return SDOperand(E, 0);
891  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
892  CSEMap.InsertNode(N, IP);
893  AllNodes.push_back(N);
894  return SDOperand(N, 0);
895}
896
897
898SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
899                                        MVT::ValueType VT,
900                                        unsigned Alignment, int Offset,
901                                        bool isTarget) {
902  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
903  FoldingSetNodeID ID;
904  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
905  ID.AddInteger(Alignment);
906  ID.AddInteger(Offset);
907  C->AddSelectionDAGCSEId(ID);
908  void *IP = 0;
909  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
910    return SDOperand(E, 0);
911  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
912  CSEMap.InsertNode(N, IP);
913  AllNodes.push_back(N);
914  return SDOperand(N, 0);
915}
916
917
918SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
919  FoldingSetNodeID ID;
920  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), (SDOperand*)0, 0);
921  ID.AddPointer(MBB);
922  void *IP = 0;
923  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
924    return SDOperand(E, 0);
925  SDNode *N = new BasicBlockSDNode(MBB);
926  CSEMap.InsertNode(N, IP);
927  AllNodes.push_back(N);
928  return SDOperand(N, 0);
929}
930
931SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), (SDOperand*)0, 0);
934  ID.AddInteger(Flags.getRawBits());
935  void *IP = 0;
936  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
937    return SDOperand(E, 0);
938  SDNode *N = new ARG_FLAGSSDNode(Flags);
939  CSEMap.InsertNode(N, IP);
940  AllNodes.push_back(N);
941  return SDOperand(N, 0);
942}
943
944SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
945  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
946    ValueTypeNodes.resize(VT+1);
947
948  SDNode *&N = MVT::isExtendedVT(VT) ?
949    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
950
951  if (N) return SDOperand(N, 0);
952  N = new VTSDNode(VT);
953  AllNodes.push_back(N);
954  return SDOperand(N, 0);
955}
956
957SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
958  SDNode *&N = ExternalSymbols[Sym];
959  if (N) return SDOperand(N, 0);
960  N = new ExternalSymbolSDNode(false, Sym, VT);
961  AllNodes.push_back(N);
962  return SDOperand(N, 0);
963}
964
965SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
966                                                MVT::ValueType VT) {
967  SDNode *&N = TargetExternalSymbols[Sym];
968  if (N) return SDOperand(N, 0);
969  N = new ExternalSymbolSDNode(true, Sym, VT);
970  AllNodes.push_back(N);
971  return SDOperand(N, 0);
972}
973
974SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
975  if ((unsigned)Cond >= CondCodeNodes.size())
976    CondCodeNodes.resize(Cond+1);
977
978  if (CondCodeNodes[Cond] == 0) {
979    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
980    AllNodes.push_back(CondCodeNodes[Cond]);
981  }
982  return SDOperand(CondCodeNodes[Cond], 0);
983}
984
985SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
986  FoldingSetNodeID ID;
987  AddNodeIDNode(ID, ISD::Register, getVTList(VT), (SDOperand*)0, 0);
988  ID.AddInteger(RegNo);
989  void *IP = 0;
990  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
991    return SDOperand(E, 0);
992  SDNode *N = new RegisterSDNode(RegNo, VT);
993  CSEMap.InsertNode(N, IP);
994  AllNodes.push_back(N);
995  return SDOperand(N, 0);
996}
997
998SDOperand SelectionDAG::getSrcValue(const Value *V) {
999  assert((!V || isa<PointerType>(V->getType())) &&
1000         "SrcValue is not a pointer?");
1001
1002  FoldingSetNodeID ID;
1003  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), (SDOperand*)0, 0);
1004  ID.AddPointer(V);
1005
1006  void *IP = 0;
1007  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1008    return SDOperand(E, 0);
1009
1010  SDNode *N = new SrcValueSDNode(V);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDOperand(N, 0);
1014}
1015
1016SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1017  const Value *v = MO.getValue();
1018  assert((!v || isa<PointerType>(v->getType())) &&
1019         "SrcValue is not a pointer?");
1020
1021  FoldingSetNodeID ID;
1022  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), (SDOperand*)0, 0);
1023  ID.AddPointer(v);
1024  ID.AddInteger(MO.getFlags());
1025  ID.AddInteger(MO.getOffset());
1026  ID.AddInteger(MO.getSize());
1027  ID.AddInteger(MO.getAlignment());
1028
1029  void *IP = 0;
1030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1031    return SDOperand(E, 0);
1032
1033  SDNode *N = new MemOperandSDNode(MO);
1034  CSEMap.InsertNode(N, IP);
1035  AllNodes.push_back(N);
1036  return SDOperand(N, 0);
1037}
1038
1039/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1040/// specified value type.
1041SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1042  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1043  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1044  const Type *Ty = MVT::getTypeForValueType(VT);
1045  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1046  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1047  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1048}
1049
1050
1051SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1052                                  SDOperand N2, ISD::CondCode Cond) {
1053  // These setcc operations always fold.
1054  switch (Cond) {
1055  default: break;
1056  case ISD::SETFALSE:
1057  case ISD::SETFALSE2: return getConstant(0, VT);
1058  case ISD::SETTRUE:
1059  case ISD::SETTRUE2:  return getConstant(1, VT);
1060
1061  case ISD::SETOEQ:
1062  case ISD::SETOGT:
1063  case ISD::SETOGE:
1064  case ISD::SETOLT:
1065  case ISD::SETOLE:
1066  case ISD::SETONE:
1067  case ISD::SETO:
1068  case ISD::SETUO:
1069  case ISD::SETUEQ:
1070  case ISD::SETUNE:
1071    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1072    break;
1073  }
1074
1075  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1076    const APInt &C2 = N2C->getAPIntValue();
1077    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1078      const APInt &C1 = N1C->getAPIntValue();
1079
1080      switch (Cond) {
1081      default: assert(0 && "Unknown integer setcc!");
1082      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1083      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1084      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1085      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1086      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1087      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1088      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1089      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1090      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1091      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1092      }
1093    }
1094  }
1095  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1096    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1097      // No compile time operations on this type yet.
1098      if (N1C->getValueType(0) == MVT::ppcf128)
1099        return SDOperand();
1100
1101      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1102      switch (Cond) {
1103      default: break;
1104      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1105                          return getNode(ISD::UNDEF, VT);
1106                        // fall through
1107      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1108      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1109                          return getNode(ISD::UNDEF, VT);
1110                        // fall through
1111      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1112                                           R==APFloat::cmpLessThan, VT);
1113      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1114                          return getNode(ISD::UNDEF, VT);
1115                        // fall through
1116      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1117      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1118                          return getNode(ISD::UNDEF, VT);
1119                        // fall through
1120      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1121      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1122                          return getNode(ISD::UNDEF, VT);
1123                        // fall through
1124      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1125                                           R==APFloat::cmpEqual, VT);
1126      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1127                          return getNode(ISD::UNDEF, VT);
1128                        // fall through
1129      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1130                                           R==APFloat::cmpEqual, VT);
1131      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1132      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1133      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1134                                           R==APFloat::cmpEqual, VT);
1135      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1136      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1137                                           R==APFloat::cmpLessThan, VT);
1138      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1139                                           R==APFloat::cmpUnordered, VT);
1140      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1141      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1142      }
1143    } else {
1144      // Ensure that the constant occurs on the RHS.
1145      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1146    }
1147  }
1148
1149  // Could not fold it.
1150  return SDOperand();
1151}
1152
1153/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1154/// use this predicate to simplify operations downstream.
1155bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1156  unsigned BitWidth = Op.getValueSizeInBits();
1157  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1158}
1159
1160/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1161/// this predicate to simplify operations downstream.  Mask is known to be zero
1162/// for bits that V cannot have.
1163bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1164                                     unsigned Depth) const {
1165  APInt KnownZero, KnownOne;
1166  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1167  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1168  return (KnownZero & Mask) == Mask;
1169}
1170
1171/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1172/// known to be either zero or one and return them in the KnownZero/KnownOne
1173/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1174/// processing.
1175void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1176                                     APInt &KnownZero, APInt &KnownOne,
1177                                     unsigned Depth) const {
1178  unsigned BitWidth = Mask.getBitWidth();
1179  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1180         "Mask size mismatches value type size!");
1181
1182  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1183  if (Depth == 6 || Mask == 0)
1184    return;  // Limit search depth.
1185
1186  APInt KnownZero2, KnownOne2;
1187
1188  switch (Op.getOpcode()) {
1189  case ISD::Constant:
1190    // We know all of the bits for a constant!
1191    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1192    KnownZero = ~KnownOne & Mask;
1193    return;
1194  case ISD::AND:
1195    // If either the LHS or the RHS are Zero, the result is zero.
1196    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1197    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1198                      KnownZero2, KnownOne2, Depth+1);
1199    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1200    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1201
1202    // Output known-1 bits are only known if set in both the LHS & RHS.
1203    KnownOne &= KnownOne2;
1204    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1205    KnownZero |= KnownZero2;
1206    return;
1207  case ISD::OR:
1208    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1209    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1210                      KnownZero2, KnownOne2, Depth+1);
1211    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1212    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1213
1214    // Output known-0 bits are only known if clear in both the LHS & RHS.
1215    KnownZero &= KnownZero2;
1216    // Output known-1 are known to be set if set in either the LHS | RHS.
1217    KnownOne |= KnownOne2;
1218    return;
1219  case ISD::XOR: {
1220    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1221    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1222    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1223    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1224
1225    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1226    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1227    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1228    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1229    KnownZero = KnownZeroOut;
1230    return;
1231  }
1232  case ISD::MUL: {
1233    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1234    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1235    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1236    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1237    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1238
1239    // If low bits are zero in either operand, output low known-0 bits.
1240    // Also compute a conserative estimate for high known-0 bits.
1241    // More trickiness is possible, but this is sufficient for the
1242    // interesting case of alignment computation.
1243    KnownOne.clear();
1244    unsigned TrailZ = KnownZero.countTrailingOnes() +
1245                      KnownZero2.countTrailingOnes();
1246    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1247                               KnownZero2.countLeadingOnes(),
1248                               BitWidth) - BitWidth;
1249
1250    TrailZ = std::min(TrailZ, BitWidth);
1251    LeadZ = std::min(LeadZ, BitWidth);
1252    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1253                APInt::getHighBitsSet(BitWidth, LeadZ);
1254    KnownZero &= Mask;
1255    return;
1256  }
1257  case ISD::UDIV: {
1258    // For the purposes of computing leading zeros we can conservatively
1259    // treat a udiv as a logical right shift by the power of 2 known to
1260    // be less than the denominator.
1261    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1262    ComputeMaskedBits(Op.getOperand(0),
1263                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1264    unsigned LeadZ = KnownZero2.countLeadingOnes();
1265
1266    KnownOne2.clear();
1267    KnownZero2.clear();
1268    ComputeMaskedBits(Op.getOperand(1),
1269                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1270    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1271    if (RHSUnknownLeadingOnes != BitWidth)
1272      LeadZ = std::min(BitWidth,
1273                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1274
1275    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1276    return;
1277  }
1278  case ISD::SELECT:
1279    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1280    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1281    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1282    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1283
1284    // Only known if known in both the LHS and RHS.
1285    KnownOne &= KnownOne2;
1286    KnownZero &= KnownZero2;
1287    return;
1288  case ISD::SELECT_CC:
1289    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1290    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1291    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1292    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1293
1294    // Only known if known in both the LHS and RHS.
1295    KnownOne &= KnownOne2;
1296    KnownZero &= KnownZero2;
1297    return;
1298  case ISD::SETCC:
1299    // If we know the result of a setcc has the top bits zero, use this info.
1300    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1301        BitWidth > 1)
1302      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1303    return;
1304  case ISD::SHL:
1305    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1306    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1307      unsigned ShAmt = SA->getValue();
1308
1309      // If the shift count is an invalid immediate, don't do anything.
1310      if (ShAmt >= BitWidth)
1311        return;
1312
1313      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1314                        KnownZero, KnownOne, Depth+1);
1315      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1316      KnownZero <<= ShAmt;
1317      KnownOne  <<= ShAmt;
1318      // low bits known zero.
1319      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1320    }
1321    return;
1322  case ISD::SRL:
1323    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1324    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1325      unsigned ShAmt = SA->getValue();
1326
1327      // If the shift count is an invalid immediate, don't do anything.
1328      if (ShAmt >= BitWidth)
1329        return;
1330
1331      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1332                        KnownZero, KnownOne, Depth+1);
1333      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1334      KnownZero = KnownZero.lshr(ShAmt);
1335      KnownOne  = KnownOne.lshr(ShAmt);
1336
1337      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1338      KnownZero |= HighBits;  // High bits known zero.
1339    }
1340    return;
1341  case ISD::SRA:
1342    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1343      unsigned ShAmt = SA->getValue();
1344
1345      // If the shift count is an invalid immediate, don't do anything.
1346      if (ShAmt >= BitWidth)
1347        return;
1348
1349      APInt InDemandedMask = (Mask << ShAmt);
1350      // If any of the demanded bits are produced by the sign extension, we also
1351      // demand the input sign bit.
1352      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1353      if (HighBits.getBoolValue())
1354        InDemandedMask |= APInt::getSignBit(BitWidth);
1355
1356      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1357                        Depth+1);
1358      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1359      KnownZero = KnownZero.lshr(ShAmt);
1360      KnownOne  = KnownOne.lshr(ShAmt);
1361
1362      // Handle the sign bits.
1363      APInt SignBit = APInt::getSignBit(BitWidth);
1364      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1365
1366      if (KnownZero.intersects(SignBit)) {
1367        KnownZero |= HighBits;  // New bits are known zero.
1368      } else if (KnownOne.intersects(SignBit)) {
1369        KnownOne  |= HighBits;  // New bits are known one.
1370      }
1371    }
1372    return;
1373  case ISD::SIGN_EXTEND_INREG: {
1374    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1375    unsigned EBits = MVT::getSizeInBits(EVT);
1376
1377    // Sign extension.  Compute the demanded bits in the result that are not
1378    // present in the input.
1379    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1380
1381    APInt InSignBit = APInt::getSignBit(EBits);
1382    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1383
1384    // If the sign extended bits are demanded, we know that the sign
1385    // bit is demanded.
1386    InSignBit.zext(BitWidth);
1387    if (NewBits.getBoolValue())
1388      InputDemandedBits |= InSignBit;
1389
1390    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1391                      KnownZero, KnownOne, Depth+1);
1392    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1393
1394    // If the sign bit of the input is known set or clear, then we know the
1395    // top bits of the result.
1396    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1397      KnownZero |= NewBits;
1398      KnownOne  &= ~NewBits;
1399    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1400      KnownOne  |= NewBits;
1401      KnownZero &= ~NewBits;
1402    } else {                              // Input sign bit unknown
1403      KnownZero &= ~NewBits;
1404      KnownOne  &= ~NewBits;
1405    }
1406    return;
1407  }
1408  case ISD::CTTZ:
1409  case ISD::CTLZ:
1410  case ISD::CTPOP: {
1411    unsigned LowBits = Log2_32(BitWidth)+1;
1412    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1413    KnownOne  = APInt(BitWidth, 0);
1414    return;
1415  }
1416  case ISD::LOAD: {
1417    if (ISD::isZEXTLoad(Op.Val)) {
1418      LoadSDNode *LD = cast<LoadSDNode>(Op);
1419      MVT::ValueType VT = LD->getMemoryVT();
1420      unsigned MemBits = MVT::getSizeInBits(VT);
1421      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1422    }
1423    return;
1424  }
1425  case ISD::ZERO_EXTEND: {
1426    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1427    unsigned InBits = MVT::getSizeInBits(InVT);
1428    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1429    APInt InMask    = Mask;
1430    InMask.trunc(InBits);
1431    KnownZero.trunc(InBits);
1432    KnownOne.trunc(InBits);
1433    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1434    KnownZero.zext(BitWidth);
1435    KnownOne.zext(BitWidth);
1436    KnownZero |= NewBits;
1437    return;
1438  }
1439  case ISD::SIGN_EXTEND: {
1440    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1441    unsigned InBits = MVT::getSizeInBits(InVT);
1442    APInt InSignBit = APInt::getSignBit(InBits);
1443    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1444    APInt InMask = Mask;
1445    InMask.trunc(InBits);
1446
1447    // If any of the sign extended bits are demanded, we know that the sign
1448    // bit is demanded. Temporarily set this bit in the mask for our callee.
1449    if (NewBits.getBoolValue())
1450      InMask |= InSignBit;
1451
1452    KnownZero.trunc(InBits);
1453    KnownOne.trunc(InBits);
1454    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1455
1456    // Note if the sign bit is known to be zero or one.
1457    bool SignBitKnownZero = KnownZero.isNegative();
1458    bool SignBitKnownOne  = KnownOne.isNegative();
1459    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1460           "Sign bit can't be known to be both zero and one!");
1461
1462    // If the sign bit wasn't actually demanded by our caller, we don't
1463    // want it set in the KnownZero and KnownOne result values. Reset the
1464    // mask and reapply it to the result values.
1465    InMask = Mask;
1466    InMask.trunc(InBits);
1467    KnownZero &= InMask;
1468    KnownOne  &= InMask;
1469
1470    KnownZero.zext(BitWidth);
1471    KnownOne.zext(BitWidth);
1472
1473    // If the sign bit is known zero or one, the top bits match.
1474    if (SignBitKnownZero)
1475      KnownZero |= NewBits;
1476    else if (SignBitKnownOne)
1477      KnownOne  |= NewBits;
1478    return;
1479  }
1480  case ISD::ANY_EXTEND: {
1481    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1482    unsigned InBits = MVT::getSizeInBits(InVT);
1483    APInt InMask = Mask;
1484    InMask.trunc(InBits);
1485    KnownZero.trunc(InBits);
1486    KnownOne.trunc(InBits);
1487    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1488    KnownZero.zext(BitWidth);
1489    KnownOne.zext(BitWidth);
1490    return;
1491  }
1492  case ISD::TRUNCATE: {
1493    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1494    unsigned InBits = MVT::getSizeInBits(InVT);
1495    APInt InMask = Mask;
1496    InMask.zext(InBits);
1497    KnownZero.zext(InBits);
1498    KnownOne.zext(InBits);
1499    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1500    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1501    KnownZero.trunc(BitWidth);
1502    KnownOne.trunc(BitWidth);
1503    break;
1504  }
1505  case ISD::AssertZext: {
1506    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1507    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1508    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1509                      KnownOne, Depth+1);
1510    KnownZero |= (~InMask) & Mask;
1511    return;
1512  }
1513  case ISD::FGETSIGN:
1514    // All bits are zero except the low bit.
1515    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1516    return;
1517
1518  case ISD::SUB: {
1519    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1520      // We know that the top bits of C-X are clear if X contains less bits
1521      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1522      // positive if we can prove that X is >= 0 and < 16.
1523      if (CLHS->getAPIntValue().isNonNegative()) {
1524        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1525        // NLZ can't be BitWidth with no sign bit
1526        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1527        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1528                          Depth+1);
1529
1530        // If all of the MaskV bits are known to be zero, then we know the
1531        // output top bits are zero, because we now know that the output is
1532        // from [0-C].
1533        if ((KnownZero2 & MaskV) == MaskV) {
1534          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1535          // Top bits known zero.
1536          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1537        }
1538      }
1539    }
1540  }
1541  // fall through
1542  case ISD::ADD: {
1543    // Output known-0 bits are known if clear or set in both the low clear bits
1544    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1545    // low 3 bits clear.
1546    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1547    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1548    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1549    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1550
1551    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1552    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1553    KnownZeroOut = std::min(KnownZeroOut,
1554                            KnownZero2.countTrailingOnes());
1555
1556    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1557    return;
1558  }
1559  case ISD::SREM:
1560    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1561      APInt RA = Rem->getAPIntValue();
1562      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1563        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1564        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1565        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1566
1567        // The sign of a remainder is equal to the sign of the first
1568        // operand (zero being positive).
1569        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1570          KnownZero2 |= ~LowBits;
1571        else if (KnownOne2[BitWidth-1])
1572          KnownOne2 |= ~LowBits;
1573
1574        KnownZero |= KnownZero2 & Mask;
1575        KnownOne |= KnownOne2 & Mask;
1576
1577        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1578      }
1579    }
1580    return;
1581  case ISD::UREM: {
1582    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1583      APInt RA = Rem->getAPIntValue();
1584      if (RA.isPowerOf2()) {
1585        APInt LowBits = (RA - 1);
1586        APInt Mask2 = LowBits & Mask;
1587        KnownZero |= ~LowBits & Mask;
1588        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1589        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1590        break;
1591      }
1592    }
1593
1594    // Since the result is less than or equal to either operand, any leading
1595    // zero bits in either operand must also exist in the result.
1596    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1597    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1598                      Depth+1);
1599    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1600                      Depth+1);
1601
1602    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1603                                KnownZero2.countLeadingOnes());
1604    KnownOne.clear();
1605    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1606    return;
1607  }
1608  default:
1609    // Allow the target to implement this method for its nodes.
1610    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1611  case ISD::INTRINSIC_WO_CHAIN:
1612  case ISD::INTRINSIC_W_CHAIN:
1613  case ISD::INTRINSIC_VOID:
1614      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1615    }
1616    return;
1617  }
1618}
1619
1620/// ComputeNumSignBits - Return the number of times the sign bit of the
1621/// register is replicated into the other bits.  We know that at least 1 bit
1622/// is always equal to the sign bit (itself), but other cases can give us
1623/// information.  For example, immediately after an "SRA X, 2", we know that
1624/// the top 3 bits are all equal to each other, so we return 3.
1625unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1626  MVT::ValueType VT = Op.getValueType();
1627  assert(MVT::isInteger(VT) && "Invalid VT!");
1628  unsigned VTBits = MVT::getSizeInBits(VT);
1629  unsigned Tmp, Tmp2;
1630
1631  if (Depth == 6)
1632    return 1;  // Limit search depth.
1633
1634  switch (Op.getOpcode()) {
1635  default: break;
1636  case ISD::AssertSext:
1637    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1638    return VTBits-Tmp+1;
1639  case ISD::AssertZext:
1640    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1641    return VTBits-Tmp;
1642
1643  case ISD::Constant: {
1644    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1645    // If negative, return # leading ones.
1646    if (Val.isNegative())
1647      return Val.countLeadingOnes();
1648
1649    // Return # leading zeros.
1650    return Val.countLeadingZeros();
1651  }
1652
1653  case ISD::SIGN_EXTEND:
1654    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1655    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1656
1657  case ISD::SIGN_EXTEND_INREG:
1658    // Max of the input and what this extends.
1659    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1660    Tmp = VTBits-Tmp+1;
1661
1662    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1663    return std::max(Tmp, Tmp2);
1664
1665  case ISD::SRA:
1666    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1667    // SRA X, C   -> adds C sign bits.
1668    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1669      Tmp += C->getValue();
1670      if (Tmp > VTBits) Tmp = VTBits;
1671    }
1672    return Tmp;
1673  case ISD::SHL:
1674    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1675      // shl destroys sign bits.
1676      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1677      if (C->getValue() >= VTBits ||      // Bad shift.
1678          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1679      return Tmp - C->getValue();
1680    }
1681    break;
1682  case ISD::AND:
1683  case ISD::OR:
1684  case ISD::XOR:    // NOT is handled here.
1685    // Logical binary ops preserve the number of sign bits.
1686    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1687    if (Tmp == 1) return 1;  // Early out.
1688    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1689    return std::min(Tmp, Tmp2);
1690
1691  case ISD::SELECT:
1692    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1693    if (Tmp == 1) return 1;  // Early out.
1694    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1695    return std::min(Tmp, Tmp2);
1696
1697  case ISD::SETCC:
1698    // If setcc returns 0/-1, all bits are sign bits.
1699    if (TLI.getSetCCResultContents() ==
1700        TargetLowering::ZeroOrNegativeOneSetCCResult)
1701      return VTBits;
1702    break;
1703  case ISD::ROTL:
1704  case ISD::ROTR:
1705    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1706      unsigned RotAmt = C->getValue() & (VTBits-1);
1707
1708      // Handle rotate right by N like a rotate left by 32-N.
1709      if (Op.getOpcode() == ISD::ROTR)
1710        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1711
1712      // If we aren't rotating out all of the known-in sign bits, return the
1713      // number that are left.  This handles rotl(sext(x), 1) for example.
1714      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1715      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1716    }
1717    break;
1718  case ISD::ADD:
1719    // Add can have at most one carry bit.  Thus we know that the output
1720    // is, at worst, one more bit than the inputs.
1721    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1722    if (Tmp == 1) return 1;  // Early out.
1723
1724    // Special case decrementing a value (ADD X, -1):
1725    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1726      if (CRHS->isAllOnesValue()) {
1727        APInt KnownZero, KnownOne;
1728        APInt Mask = APInt::getAllOnesValue(VTBits);
1729        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1730
1731        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1732        // sign bits set.
1733        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1734          return VTBits;
1735
1736        // If we are subtracting one from a positive number, there is no carry
1737        // out of the result.
1738        if (KnownZero.isNegative())
1739          return Tmp;
1740      }
1741
1742    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1743    if (Tmp2 == 1) return 1;
1744      return std::min(Tmp, Tmp2)-1;
1745    break;
1746
1747  case ISD::SUB:
1748    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1749    if (Tmp2 == 1) return 1;
1750
1751    // Handle NEG.
1752    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1753      if (CLHS->isNullValue()) {
1754        APInt KnownZero, KnownOne;
1755        APInt Mask = APInt::getAllOnesValue(VTBits);
1756        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1757        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1758        // sign bits set.
1759        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1760          return VTBits;
1761
1762        // If the input is known to be positive (the sign bit is known clear),
1763        // the output of the NEG has the same number of sign bits as the input.
1764        if (KnownZero.isNegative())
1765          return Tmp2;
1766
1767        // Otherwise, we treat this like a SUB.
1768      }
1769
1770    // Sub can have at most one carry bit.  Thus we know that the output
1771    // is, at worst, one more bit than the inputs.
1772    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1773    if (Tmp == 1) return 1;  // Early out.
1774      return std::min(Tmp, Tmp2)-1;
1775    break;
1776  case ISD::TRUNCATE:
1777    // FIXME: it's tricky to do anything useful for this, but it is an important
1778    // case for targets like X86.
1779    break;
1780  }
1781
1782  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1783  if (Op.getOpcode() == ISD::LOAD) {
1784    LoadSDNode *LD = cast<LoadSDNode>(Op);
1785    unsigned ExtType = LD->getExtensionType();
1786    switch (ExtType) {
1787    default: break;
1788    case ISD::SEXTLOAD:    // '17' bits known
1789      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1790      return VTBits-Tmp+1;
1791    case ISD::ZEXTLOAD:    // '16' bits known
1792      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1793      return VTBits-Tmp;
1794    }
1795  }
1796
1797  // Allow the target to implement this method for its nodes.
1798  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1799      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1800      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1801      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1802    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1803    if (NumBits > 1) return NumBits;
1804  }
1805
1806  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1807  // use this information.
1808  APInt KnownZero, KnownOne;
1809  APInt Mask = APInt::getAllOnesValue(VTBits);
1810  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1811
1812  if (KnownZero.isNegative()) {        // sign bit is 0
1813    Mask = KnownZero;
1814  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1815    Mask = KnownOne;
1816  } else {
1817    // Nothing known.
1818    return 1;
1819  }
1820
1821  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1822  // the number of identical bits in the top of the input value.
1823  Mask = ~Mask;
1824  Mask <<= Mask.getBitWidth()-VTBits;
1825  // Return # leading zeros.  We use 'min' here in case Val was zero before
1826  // shifting.  We don't want to return '64' as for an i32 "0".
1827  return std::min(VTBits, Mask.countLeadingZeros());
1828}
1829
1830
1831bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1832  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1833  if (!GA) return false;
1834  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1835  if (!GV) return false;
1836  MachineModuleInfo *MMI = getMachineModuleInfo();
1837  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1838}
1839
1840
1841/// getShuffleScalarElt - Returns the scalar element that will make up the ith
1842/// element of the result of the vector shuffle.
1843SDOperand SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned Idx) {
1844  MVT::ValueType VT = N->getValueType(0);
1845  SDOperand PermMask = N->getOperand(2);
1846  unsigned NumElems = PermMask.getNumOperands();
1847  SDOperand V = (Idx < NumElems) ? N->getOperand(0) : N->getOperand(1);
1848  Idx %= NumElems;
1849  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1850    return (Idx == 0)
1851     ? V.getOperand(0) : getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
1852  }
1853  if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
1854    SDOperand Elt = PermMask.getOperand(Idx);
1855    if (Elt.getOpcode() == ISD::UNDEF)
1856      return getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
1857    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Elt)->getValue());
1858  }
1859  return SDOperand();
1860}
1861
1862
1863/// getNode - Gets or creates the specified node.
1864///
1865SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1866  FoldingSetNodeID ID;
1867  AddNodeIDNode(ID, Opcode, getVTList(VT), (SDOperand*)0, 0);
1868  void *IP = 0;
1869  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1870    return SDOperand(E, 0);
1871  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1872  CSEMap.InsertNode(N, IP);
1873
1874  AllNodes.push_back(N);
1875  return SDOperand(N, 0);
1876}
1877
1878SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1879                                SDOperand Operand) {
1880  // Constant fold unary operations with an integer constant operand.
1881  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1882    const APInt &Val = C->getAPIntValue();
1883    unsigned BitWidth = MVT::getSizeInBits(VT);
1884    switch (Opcode) {
1885    default: break;
1886    case ISD::SIGN_EXTEND:
1887      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1888    case ISD::ANY_EXTEND:
1889    case ISD::ZERO_EXTEND:
1890    case ISD::TRUNCATE:
1891      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1892    case ISD::UINT_TO_FP:
1893    case ISD::SINT_TO_FP: {
1894      const uint64_t zero[] = {0, 0};
1895      // No compile time operations on this type.
1896      if (VT==MVT::ppcf128)
1897        break;
1898      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1899      (void)apf.convertFromAPInt(Val,
1900                                 Opcode==ISD::SINT_TO_FP,
1901                                 APFloat::rmNearestTiesToEven);
1902      return getConstantFP(apf, VT);
1903    }
1904    case ISD::BIT_CONVERT:
1905      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1906        return getConstantFP(Val.bitsToFloat(), VT);
1907      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1908        return getConstantFP(Val.bitsToDouble(), VT);
1909      break;
1910    case ISD::BSWAP:
1911      return getConstant(Val.byteSwap(), VT);
1912    case ISD::CTPOP:
1913      return getConstant(Val.countPopulation(), VT);
1914    case ISD::CTLZ:
1915      return getConstant(Val.countLeadingZeros(), VT);
1916    case ISD::CTTZ:
1917      return getConstant(Val.countTrailingZeros(), VT);
1918    }
1919  }
1920
1921  // Constant fold unary operations with a floating point constant operand.
1922  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1923    APFloat V = C->getValueAPF();    // make copy
1924    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1925      switch (Opcode) {
1926      case ISD::FNEG:
1927        V.changeSign();
1928        return getConstantFP(V, VT);
1929      case ISD::FABS:
1930        V.clearSign();
1931        return getConstantFP(V, VT);
1932      case ISD::FP_ROUND:
1933      case ISD::FP_EXTEND:
1934        // This can return overflow, underflow, or inexact; we don't care.
1935        // FIXME need to be more flexible about rounding mode.
1936        (void)V.convert(*MVTToAPFloatSemantics(VT),
1937                        APFloat::rmNearestTiesToEven);
1938        return getConstantFP(V, VT);
1939      case ISD::FP_TO_SINT:
1940      case ISD::FP_TO_UINT: {
1941        integerPart x;
1942        assert(integerPartWidth >= 64);
1943        // FIXME need to be more flexible about rounding mode.
1944        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1945                              Opcode==ISD::FP_TO_SINT,
1946                              APFloat::rmTowardZero);
1947        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1948          break;
1949        return getConstant(x, VT);
1950      }
1951      case ISD::BIT_CONVERT:
1952        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1953          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1954        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1955          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1956        break;
1957      }
1958    }
1959  }
1960
1961  unsigned OpOpcode = Operand.Val->getOpcode();
1962  switch (Opcode) {
1963  case ISD::TokenFactor:
1964  case ISD::MERGE_VALUES:
1965    return Operand;         // Factor or merge of one node?  No need.
1966  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1967  case ISD::FP_EXTEND:
1968    assert(MVT::isFloatingPoint(VT) &&
1969           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1970    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1971    if (Operand.getOpcode() == ISD::UNDEF)
1972      return getNode(ISD::UNDEF, VT);
1973    break;
1974  case ISD::SIGN_EXTEND:
1975    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1976           "Invalid SIGN_EXTEND!");
1977    if (Operand.getValueType() == VT) return Operand;   // noop extension
1978    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1979           && "Invalid sext node, dst < src!");
1980    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1981      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1982    break;
1983  case ISD::ZERO_EXTEND:
1984    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1985           "Invalid ZERO_EXTEND!");
1986    if (Operand.getValueType() == VT) return Operand;   // noop extension
1987    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1988           && "Invalid zext node, dst < src!");
1989    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1990      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1991    break;
1992  case ISD::ANY_EXTEND:
1993    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1994           "Invalid ANY_EXTEND!");
1995    if (Operand.getValueType() == VT) return Operand;   // noop extension
1996    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1997           && "Invalid anyext node, dst < src!");
1998    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1999      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2000      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2001    break;
2002  case ISD::TRUNCATE:
2003    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
2004           "Invalid TRUNCATE!");
2005    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2006    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
2007           && "Invalid truncate node, src < dst!");
2008    if (OpOpcode == ISD::TRUNCATE)
2009      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2010    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2011             OpOpcode == ISD::ANY_EXTEND) {
2012      // If the source is smaller than the dest, we still need an extend.
2013      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
2014          < MVT::getSizeInBits(VT))
2015        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2016      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
2017               > MVT::getSizeInBits(VT))
2018        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2019      else
2020        return Operand.Val->getOperand(0);
2021    }
2022    break;
2023  case ISD::BIT_CONVERT:
2024    // Basic sanity checking.
2025    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
2026           && "Cannot BIT_CONVERT between types of different sizes!");
2027    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2028    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2029      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2030    if (OpOpcode == ISD::UNDEF)
2031      return getNode(ISD::UNDEF, VT);
2032    break;
2033  case ISD::SCALAR_TO_VECTOR:
2034    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
2035           MVT::getVectorElementType(VT) == Operand.getValueType() &&
2036           "Illegal SCALAR_TO_VECTOR node!");
2037    if (OpOpcode == ISD::UNDEF)
2038      return getNode(ISD::UNDEF, VT);
2039    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2040    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2041        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2042        Operand.getConstantOperandVal(1) == 0 &&
2043        Operand.getOperand(0).getValueType() == VT)
2044      return Operand.getOperand(0);
2045    break;
2046  case ISD::FNEG:
2047    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2048      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
2049                     Operand.Val->getOperand(0));
2050    if (OpOpcode == ISD::FNEG)  // --X -> X
2051      return Operand.Val->getOperand(0);
2052    break;
2053  case ISD::FABS:
2054    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2055      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
2056    break;
2057  }
2058
2059  SDNode *N;
2060  SDVTList VTs = getVTList(VT);
2061  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2062    FoldingSetNodeID ID;
2063    SDOperand Ops[1] = { Operand };
2064    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2065    void *IP = 0;
2066    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2067      return SDOperand(E, 0);
2068    N = new UnarySDNode(Opcode, VTs, Operand);
2069    CSEMap.InsertNode(N, IP);
2070  } else {
2071    N = new UnarySDNode(Opcode, VTs, Operand);
2072  }
2073  AllNodes.push_back(N);
2074  return SDOperand(N, 0);
2075}
2076
2077
2078
2079SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2080                                SDOperand N1, SDOperand N2) {
2081  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2082  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2083  switch (Opcode) {
2084  default: break;
2085  case ISD::TokenFactor:
2086    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2087           N2.getValueType() == MVT::Other && "Invalid token factor!");
2088    // Fold trivial token factors.
2089    if (N1.getOpcode() == ISD::EntryToken) return N2;
2090    if (N2.getOpcode() == ISD::EntryToken) return N1;
2091    break;
2092  case ISD::AND:
2093    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2094           N1.getValueType() == VT && "Binary operator types must match!");
2095    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2096    // worth handling here.
2097    if (N2C && N2C->isNullValue())
2098      return N2;
2099    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2100      return N1;
2101    break;
2102  case ISD::OR:
2103  case ISD::XOR:
2104    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2105           N1.getValueType() == VT && "Binary operator types must match!");
2106    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2107    // worth handling here.
2108    if (N2C && N2C->isNullValue())
2109      return N1;
2110    break;
2111  case ISD::UDIV:
2112  case ISD::UREM:
2113  case ISD::MULHU:
2114  case ISD::MULHS:
2115    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
2116    // fall through
2117  case ISD::ADD:
2118  case ISD::SUB:
2119  case ISD::MUL:
2120  case ISD::SDIV:
2121  case ISD::SREM:
2122  case ISD::FADD:
2123  case ISD::FSUB:
2124  case ISD::FMUL:
2125  case ISD::FDIV:
2126  case ISD::FREM:
2127    assert(N1.getValueType() == N2.getValueType() &&
2128           N1.getValueType() == VT && "Binary operator types must match!");
2129    break;
2130  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2131    assert(N1.getValueType() == VT &&
2132           MVT::isFloatingPoint(N1.getValueType()) &&
2133           MVT::isFloatingPoint(N2.getValueType()) &&
2134           "Invalid FCOPYSIGN!");
2135    break;
2136  case ISD::SHL:
2137  case ISD::SRA:
2138  case ISD::SRL:
2139  case ISD::ROTL:
2140  case ISD::ROTR:
2141    assert(VT == N1.getValueType() &&
2142           "Shift operators return type must be the same as their first arg");
2143    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2144           VT != MVT::i1 && "Shifts only work on integers");
2145    break;
2146  case ISD::FP_ROUND_INREG: {
2147    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2148    assert(VT == N1.getValueType() && "Not an inreg round!");
2149    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2150           "Cannot FP_ROUND_INREG integer types");
2151    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2152           "Not rounding down!");
2153    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2154    break;
2155  }
2156  case ISD::FP_ROUND:
2157    assert(MVT::isFloatingPoint(VT) &&
2158           MVT::isFloatingPoint(N1.getValueType()) &&
2159           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2160           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2161    if (N1.getValueType() == VT) return N1;  // noop conversion.
2162    break;
2163  case ISD::AssertSext:
2164  case ISD::AssertZext: {
2165    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2166    assert(VT == N1.getValueType() && "Not an inreg extend!");
2167    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2168           "Cannot *_EXTEND_INREG FP types");
2169    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2170           "Not extending!");
2171    if (VT == EVT) return N1; // noop assertion.
2172    break;
2173  }
2174  case ISD::SIGN_EXTEND_INREG: {
2175    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2176    assert(VT == N1.getValueType() && "Not an inreg extend!");
2177    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2178           "Cannot *_EXTEND_INREG FP types");
2179    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2180           "Not extending!");
2181    if (EVT == VT) return N1;  // Not actually extending
2182
2183    if (N1C) {
2184      APInt Val = N1C->getAPIntValue();
2185      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2186      Val <<= Val.getBitWidth()-FromBits;
2187      Val = Val.ashr(Val.getBitWidth()-FromBits);
2188      return getConstant(Val, VT);
2189    }
2190    break;
2191  }
2192  case ISD::EXTRACT_VECTOR_ELT:
2193    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2194
2195    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2196    if (N1.getOpcode() == ISD::UNDEF)
2197      return getNode(ISD::UNDEF, VT);
2198
2199    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2200    // expanding copies of large vectors from registers.
2201    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2202        N1.getNumOperands() > 0) {
2203      unsigned Factor =
2204        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2205      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2206                     N1.getOperand(N2C->getValue() / Factor),
2207                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2208    }
2209
2210    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2211    // expanding large vector constants.
2212    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2213      return N1.getOperand(N2C->getValue());
2214
2215    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2216    // operations are lowered to scalars.
2217    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2218      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2219        if (IEC == N2C)
2220          return N1.getOperand(1);
2221        else
2222          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2223      }
2224    break;
2225  case ISD::EXTRACT_ELEMENT:
2226    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2227    assert(!MVT::isVector(N1.getValueType()) &&
2228           MVT::isInteger(N1.getValueType()) &&
2229           !MVT::isVector(VT) && MVT::isInteger(VT) &&
2230           "EXTRACT_ELEMENT only applies to integers!");
2231
2232    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2233    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2234    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2235    if (N1.getOpcode() == ISD::BUILD_PAIR)
2236      return N1.getOperand(N2C->getValue());
2237
2238    // EXTRACT_ELEMENT of a constant int is also very common.
2239    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2240      unsigned ElementSize = MVT::getSizeInBits(VT);
2241      unsigned Shift = ElementSize * N2C->getValue();
2242      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2243      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2244    }
2245    break;
2246  case ISD::EXTRACT_SUBVECTOR:
2247    if (N1.getValueType() == VT) // Trivial extraction.
2248      return N1;
2249    break;
2250  }
2251
2252  if (N1C) {
2253    if (N2C) {
2254      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2255      switch (Opcode) {
2256      case ISD::ADD: return getConstant(C1 + C2, VT);
2257      case ISD::SUB: return getConstant(C1 - C2, VT);
2258      case ISD::MUL: return getConstant(C1 * C2, VT);
2259      case ISD::UDIV:
2260        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2261        break;
2262      case ISD::UREM :
2263        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2264        break;
2265      case ISD::SDIV :
2266        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2267        break;
2268      case ISD::SREM :
2269        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2270        break;
2271      case ISD::AND  : return getConstant(C1 & C2, VT);
2272      case ISD::OR   : return getConstant(C1 | C2, VT);
2273      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2274      case ISD::SHL  : return getConstant(C1 << C2, VT);
2275      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2276      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2277      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2278      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2279      default: break;
2280      }
2281    } else {      // Cannonicalize constant to RHS if commutative
2282      if (isCommutativeBinOp(Opcode)) {
2283        std::swap(N1C, N2C);
2284        std::swap(N1, N2);
2285      }
2286    }
2287  }
2288
2289  // Constant fold FP operations.
2290  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2291  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2292  if (N1CFP) {
2293    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2294      // Cannonicalize constant to RHS if commutative
2295      std::swap(N1CFP, N2CFP);
2296      std::swap(N1, N2);
2297    } else if (N2CFP && VT != MVT::ppcf128) {
2298      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2299      APFloat::opStatus s;
2300      switch (Opcode) {
2301      case ISD::FADD:
2302        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2303        if (s != APFloat::opInvalidOp)
2304          return getConstantFP(V1, VT);
2305        break;
2306      case ISD::FSUB:
2307        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2308        if (s!=APFloat::opInvalidOp)
2309          return getConstantFP(V1, VT);
2310        break;
2311      case ISD::FMUL:
2312        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2313        if (s!=APFloat::opInvalidOp)
2314          return getConstantFP(V1, VT);
2315        break;
2316      case ISD::FDIV:
2317        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2318        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2319          return getConstantFP(V1, VT);
2320        break;
2321      case ISD::FREM :
2322        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2323        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2324          return getConstantFP(V1, VT);
2325        break;
2326      case ISD::FCOPYSIGN:
2327        V1.copySign(V2);
2328        return getConstantFP(V1, VT);
2329      default: break;
2330      }
2331    }
2332  }
2333
2334  // Canonicalize an UNDEF to the RHS, even over a constant.
2335  if (N1.getOpcode() == ISD::UNDEF) {
2336    if (isCommutativeBinOp(Opcode)) {
2337      std::swap(N1, N2);
2338    } else {
2339      switch (Opcode) {
2340      case ISD::FP_ROUND_INREG:
2341      case ISD::SIGN_EXTEND_INREG:
2342      case ISD::SUB:
2343      case ISD::FSUB:
2344      case ISD::FDIV:
2345      case ISD::FREM:
2346      case ISD::SRA:
2347        return N1;     // fold op(undef, arg2) -> undef
2348      case ISD::UDIV:
2349      case ISD::SDIV:
2350      case ISD::UREM:
2351      case ISD::SREM:
2352      case ISD::SRL:
2353      case ISD::SHL:
2354        if (!MVT::isVector(VT))
2355          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2356        // For vectors, we can't easily build an all zero vector, just return
2357        // the LHS.
2358        return N2;
2359      }
2360    }
2361  }
2362
2363  // Fold a bunch of operators when the RHS is undef.
2364  if (N2.getOpcode() == ISD::UNDEF) {
2365    switch (Opcode) {
2366    case ISD::XOR:
2367      if (N1.getOpcode() == ISD::UNDEF)
2368        // Handle undef ^ undef -> 0 special case. This is a common
2369        // idiom (misuse).
2370        return getConstant(0, VT);
2371      // fallthrough
2372    case ISD::ADD:
2373    case ISD::ADDC:
2374    case ISD::ADDE:
2375    case ISD::SUB:
2376    case ISD::FADD:
2377    case ISD::FSUB:
2378    case ISD::FMUL:
2379    case ISD::FDIV:
2380    case ISD::FREM:
2381    case ISD::UDIV:
2382    case ISD::SDIV:
2383    case ISD::UREM:
2384    case ISD::SREM:
2385      return N2;       // fold op(arg1, undef) -> undef
2386    case ISD::MUL:
2387    case ISD::AND:
2388    case ISD::SRL:
2389    case ISD::SHL:
2390      if (!MVT::isVector(VT))
2391        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2392      // For vectors, we can't easily build an all zero vector, just return
2393      // the LHS.
2394      return N1;
2395    case ISD::OR:
2396      if (!MVT::isVector(VT))
2397        return getConstant(MVT::getIntVTBitMask(VT), VT);
2398      // For vectors, we can't easily build an all one vector, just return
2399      // the LHS.
2400      return N1;
2401    case ISD::SRA:
2402      return N1;
2403    }
2404  }
2405
2406  // Memoize this node if possible.
2407  SDNode *N;
2408  SDVTList VTs = getVTList(VT);
2409  if (VT != MVT::Flag) {
2410    SDOperand Ops[] = { N1, N2 };
2411    FoldingSetNodeID ID;
2412    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2413    void *IP = 0;
2414    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2415      return SDOperand(E, 0);
2416    N = new BinarySDNode(Opcode, VTs, N1, N2);
2417    CSEMap.InsertNode(N, IP);
2418  } else {
2419    N = new BinarySDNode(Opcode, VTs, N1, N2);
2420  }
2421
2422  AllNodes.push_back(N);
2423  return SDOperand(N, 0);
2424}
2425
2426SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2427                                SDOperand N1, SDOperand N2, SDOperand N3) {
2428  // Perform various simplifications.
2429  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2430  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2431  switch (Opcode) {
2432  case ISD::SETCC: {
2433    // Use FoldSetCC to simplify SETCC's.
2434    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2435    if (Simp.Val) return Simp;
2436    break;
2437  }
2438  case ISD::SELECT:
2439    if (N1C) {
2440     if (N1C->getValue())
2441        return N2;             // select true, X, Y -> X
2442      else
2443        return N3;             // select false, X, Y -> Y
2444    }
2445
2446    if (N2 == N3) return N2;   // select C, X, X -> X
2447    break;
2448  case ISD::BRCOND:
2449    if (N2C) {
2450      if (N2C->getValue()) // Unconditional branch
2451        return getNode(ISD::BR, MVT::Other, N1, N3);
2452      else
2453        return N1;         // Never-taken branch
2454    }
2455    break;
2456  case ISD::VECTOR_SHUFFLE:
2457    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2458           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2459           N3.getOpcode() == ISD::BUILD_VECTOR &&
2460           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2461           "Illegal VECTOR_SHUFFLE node!");
2462    break;
2463  case ISD::BIT_CONVERT:
2464    // Fold bit_convert nodes from a type to themselves.
2465    if (N1.getValueType() == VT)
2466      return N1;
2467    break;
2468  }
2469
2470  // Memoize node if it doesn't produce a flag.
2471  SDNode *N;
2472  SDVTList VTs = getVTList(VT);
2473  if (VT != MVT::Flag) {
2474    SDOperand Ops[] = { N1, N2, N3 };
2475    FoldingSetNodeID ID;
2476    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2477    void *IP = 0;
2478    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2479      return SDOperand(E, 0);
2480    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2481    CSEMap.InsertNode(N, IP);
2482  } else {
2483    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2484  }
2485  AllNodes.push_back(N);
2486  return SDOperand(N, 0);
2487}
2488
2489SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2490                                SDOperand N1, SDOperand N2, SDOperand N3,
2491                                SDOperand N4) {
2492  SDOperand Ops[] = { N1, N2, N3, N4 };
2493  return getNode(Opcode, VT, Ops, 4);
2494}
2495
2496SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2497                                SDOperand N1, SDOperand N2, SDOperand N3,
2498                                SDOperand N4, SDOperand N5) {
2499  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2500  return getNode(Opcode, VT, Ops, 5);
2501}
2502
2503/// getMemsetValue - Vectorized representation of the memset value
2504/// operand.
2505static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2506                                SelectionDAG &DAG) {
2507  MVT::ValueType CurVT = VT;
2508  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2509    uint64_t Val   = C->getValue() & 255;
2510    unsigned Shift = 8;
2511    while (CurVT != MVT::i8) {
2512      Val = (Val << Shift) | Val;
2513      Shift <<= 1;
2514      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2515    }
2516    return DAG.getConstant(Val, VT);
2517  } else {
2518    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2519    unsigned Shift = 8;
2520    while (CurVT != MVT::i8) {
2521      Value =
2522        DAG.getNode(ISD::OR, VT,
2523                    DAG.getNode(ISD::SHL, VT, Value,
2524                                DAG.getConstant(Shift, MVT::i8)), Value);
2525      Shift <<= 1;
2526      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2527    }
2528
2529    return Value;
2530  }
2531}
2532
2533/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2534/// used when a memcpy is turned into a memset when the source is a constant
2535/// string ptr.
2536static SDOperand getMemsetStringVal(MVT::ValueType VT,
2537                                    SelectionDAG &DAG,
2538                                    const TargetLowering &TLI,
2539                                    std::string &Str, unsigned Offset) {
2540  uint64_t Val = 0;
2541  unsigned MSB = MVT::getSizeInBits(VT) / 8;
2542  if (TLI.isLittleEndian())
2543    Offset = Offset + MSB - 1;
2544  for (unsigned i = 0; i != MSB; ++i) {
2545    Val = (Val << 8) | (unsigned char)Str[Offset];
2546    Offset += TLI.isLittleEndian() ? -1 : 1;
2547  }
2548  return DAG.getConstant(Val, VT);
2549}
2550
2551/// getMemBasePlusOffset - Returns base and offset node for the
2552static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2553                                      SelectionDAG &DAG) {
2554  MVT::ValueType VT = Base.getValueType();
2555  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2556}
2557
2558/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2559/// to replace the memset / memcpy is below the threshold. It also returns the
2560/// types of the sequence of memory ops to perform memset / memcpy.
2561static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2562                                     unsigned Limit, uint64_t Size,
2563                                     unsigned Align,
2564                                     const TargetLowering &TLI) {
2565  MVT::ValueType VT;
2566
2567  if (TLI.allowsUnalignedMemoryAccesses()) {
2568    VT = MVT::i64;
2569  } else {
2570    switch (Align & 7) {
2571    case 0:
2572      VT = MVT::i64;
2573      break;
2574    case 4:
2575      VT = MVT::i32;
2576      break;
2577    case 2:
2578      VT = MVT::i16;
2579      break;
2580    default:
2581      VT = MVT::i8;
2582      break;
2583    }
2584  }
2585
2586  MVT::ValueType LVT = MVT::i64;
2587  while (!TLI.isTypeLegal(LVT))
2588    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2589  assert(MVT::isInteger(LVT));
2590
2591  if (VT > LVT)
2592    VT = LVT;
2593
2594  unsigned NumMemOps = 0;
2595  while (Size != 0) {
2596    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2597    while (VTSize > Size) {
2598      VT = (MVT::ValueType)((unsigned)VT - 1);
2599      VTSize >>= 1;
2600    }
2601    assert(MVT::isInteger(VT));
2602
2603    if (++NumMemOps > Limit)
2604      return false;
2605    MemOps.push_back(VT);
2606    Size -= VTSize;
2607  }
2608
2609  return true;
2610}
2611
2612static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
2613                                         SDOperand Chain, SDOperand Dst,
2614                                         SDOperand Src, uint64_t Size,
2615                                         unsigned Align,
2616                                         bool AlwaysInline,
2617                                         const Value *DstSV, uint64_t DstSVOff,
2618                                         const Value *SrcSV, uint64_t SrcSVOff){
2619  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2620
2621  // Expand memcpy to a series of store ops if the size operand falls below
2622  // a certain threshold.
2623  std::vector<MVT::ValueType> MemOps;
2624  uint64_t Limit = -1;
2625  if (!AlwaysInline)
2626    Limit = TLI.getMaxStoresPerMemcpy();
2627  if (!MeetsMaxMemopRequirement(MemOps, Limit, Size, Align, TLI))
2628    return SDOperand();
2629
2630  SmallVector<SDOperand, 8> OutChains;
2631
2632  unsigned NumMemOps = MemOps.size();
2633  unsigned SrcDelta = 0;
2634  GlobalAddressSDNode *G = NULL;
2635  std::string Str;
2636  bool CopyFromStr = false;
2637  uint64_t SrcOff = 0, DstOff = 0;
2638
2639  if (Src.getOpcode() == ISD::GlobalAddress)
2640    G = cast<GlobalAddressSDNode>(Src);
2641  else if (Src.getOpcode() == ISD::ADD &&
2642           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2643           Src.getOperand(1).getOpcode() == ISD::Constant) {
2644    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2645    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2646  }
2647  if (G) {
2648    GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2649    if (GV && GV->isConstant()) {
2650      Str = GV->getStringValue(false);
2651      if (!Str.empty()) {
2652        CopyFromStr = true;
2653        SrcOff += SrcDelta;
2654      }
2655    }
2656  }
2657
2658  for (unsigned i = 0; i < NumMemOps; i++) {
2659    MVT::ValueType VT = MemOps[i];
2660    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2661    SDOperand Value, Store;
2662
2663    if (CopyFromStr) {
2664      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2665      Store =
2666        DAG.getStore(Chain, Value,
2667                     getMemBasePlusOffset(Dst, DstOff, DAG),
2668                     DstSV, DstSVOff + DstOff);
2669    } else {
2670      Value = DAG.getLoad(VT, Chain,
2671                          getMemBasePlusOffset(Src, SrcOff, DAG),
2672                          SrcSV, SrcSVOff + SrcOff, false, Align);
2673      Store =
2674        DAG.getStore(Chain, Value,
2675                     getMemBasePlusOffset(Dst, DstOff, DAG),
2676                     DstSV, DstSVOff + DstOff, false, Align);
2677    }
2678    OutChains.push_back(Store);
2679    SrcOff += VTSize;
2680    DstOff += VTSize;
2681  }
2682
2683  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2684                     &OutChains[0], OutChains.size());
2685}
2686
2687static SDOperand getMemsetStores(SelectionDAG &DAG,
2688                                 SDOperand Chain, SDOperand Dst,
2689                                 SDOperand Src, uint64_t Size,
2690                                 unsigned Align,
2691                                 const Value *DstSV, uint64_t DstSVOff) {
2692  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2693
2694  // Expand memset to a series of load/store ops if the size operand
2695  // falls below a certain threshold.
2696  std::vector<MVT::ValueType> MemOps;
2697  if (!MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2698                                Size, Align, TLI))
2699    return SDOperand();
2700
2701  SmallVector<SDOperand, 8> OutChains;
2702  uint64_t DstOff = 0;
2703
2704  unsigned NumMemOps = MemOps.size();
2705  for (unsigned i = 0; i < NumMemOps; i++) {
2706    MVT::ValueType VT = MemOps[i];
2707    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2708    SDOperand Value = getMemsetValue(Src, VT, DAG);
2709    SDOperand Store = DAG.getStore(Chain, Value,
2710                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2711                                   DstSV, DstSVOff + DstOff);
2712    OutChains.push_back(Store);
2713    DstOff += VTSize;
2714  }
2715
2716  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2717                     &OutChains[0], OutChains.size());
2718}
2719
2720SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
2721                                  SDOperand Src, SDOperand Size,
2722                                  unsigned Align, bool AlwaysInline,
2723                                  const Value *DstSV, uint64_t DstSVOff,
2724                                  const Value *SrcSV, uint64_t SrcSVOff) {
2725
2726  // Check to see if we should lower the memcpy to loads and stores first.
2727  // For cases within the target-specified limits, this is the best choice.
2728  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2729  if (ConstantSize) {
2730    // Memcpy with size zero? Just return the original chain.
2731    if (ConstantSize->isNullValue())
2732      return Chain;
2733
2734    SDOperand Result =
2735      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2736                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2737    if (Result.Val)
2738      return Result;
2739  }
2740
2741  // Then check to see if we should lower the memcpy with target-specific
2742  // code. If the target chooses to do this, this is the next best.
2743  SDOperand Result =
2744    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2745                                AlwaysInline,
2746                                DstSV, DstSVOff, SrcSV, SrcSVOff);
2747  if (Result.Val)
2748    return Result;
2749
2750  // If we really need inline code and the target declined to provide it,
2751  // use a (potentially long) sequence of loads and stores.
2752  if (AlwaysInline) {
2753    assert(ConstantSize && "AlwaysInline requires a constant size!");
2754    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
2755                                   ConstantSize->getValue(), Align, true,
2756                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
2757  }
2758
2759  // Emit a library call.
2760  TargetLowering::ArgListTy Args;
2761  TargetLowering::ArgListEntry Entry;
2762  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2763  Entry.Node = Dst; Args.push_back(Entry);
2764  Entry.Node = Src; Args.push_back(Entry);
2765  Entry.Node = Size; Args.push_back(Entry);
2766  std::pair<SDOperand,SDOperand> CallResult =
2767    TLI.LowerCallTo(Chain, Type::VoidTy,
2768                    false, false, false, CallingConv::C, false,
2769                    getExternalSymbol("memcpy", TLI.getPointerTy()),
2770                    Args, *this);
2771  return CallResult.second;
2772}
2773
2774SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
2775                                   SDOperand Src, SDOperand Size,
2776                                   unsigned Align,
2777                                   const Value *DstSV, uint64_t DstSVOff,
2778                                   const Value *SrcSV, uint64_t SrcSVOff) {
2779
2780  // TODO: Optimize small memmove cases with simple loads and stores,
2781  // ensuring that all loads precede all stores. This can cause severe
2782  // register pressure, so targets should be careful with the size limit.
2783
2784  // Then check to see if we should lower the memmove with target-specific
2785  // code. If the target chooses to do this, this is the next best.
2786  SDOperand Result =
2787    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
2788                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
2789  if (Result.Val)
2790    return Result;
2791
2792  // Emit a library call.
2793  TargetLowering::ArgListTy Args;
2794  TargetLowering::ArgListEntry Entry;
2795  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2796  Entry.Node = Dst; Args.push_back(Entry);
2797  Entry.Node = Src; Args.push_back(Entry);
2798  Entry.Node = Size; Args.push_back(Entry);
2799  std::pair<SDOperand,SDOperand> CallResult =
2800    TLI.LowerCallTo(Chain, Type::VoidTy,
2801                    false, false, false, CallingConv::C, false,
2802                    getExternalSymbol("memmove", TLI.getPointerTy()),
2803                    Args, *this);
2804  return CallResult.second;
2805}
2806
2807SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
2808                                  SDOperand Src, SDOperand Size,
2809                                  unsigned Align,
2810                                  const Value *DstSV, uint64_t DstSVOff) {
2811
2812  // Check to see if we should lower the memset to stores first.
2813  // For cases within the target-specified limits, this is the best choice.
2814  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2815  if (ConstantSize) {
2816    // Memset with size zero? Just return the original chain.
2817    if (ConstantSize->isNullValue())
2818      return Chain;
2819
2820    SDOperand Result =
2821      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
2822                      DstSV, DstSVOff);
2823    if (Result.Val)
2824      return Result;
2825  }
2826
2827  // Then check to see if we should lower the memset with target-specific
2828  // code. If the target chooses to do this, this is the next best.
2829  SDOperand Result =
2830    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
2831                                DstSV, DstSVOff);
2832  if (Result.Val)
2833    return Result;
2834
2835  // Emit a library call.
2836  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
2837  TargetLowering::ArgListTy Args;
2838  TargetLowering::ArgListEntry Entry;
2839  Entry.Node = Dst; Entry.Ty = IntPtrTy;
2840  Args.push_back(Entry);
2841  // Extend or truncate the argument to be an i32 value for the call.
2842  if (Src.getValueType() > MVT::i32)
2843    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
2844  else
2845    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
2846  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
2847  Args.push_back(Entry);
2848  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
2849  Args.push_back(Entry);
2850  std::pair<SDOperand,SDOperand> CallResult =
2851    TLI.LowerCallTo(Chain, Type::VoidTy,
2852                    false, false, false, CallingConv::C, false,
2853                    getExternalSymbol("memset", TLI.getPointerTy()),
2854                    Args, *this);
2855  return CallResult.second;
2856}
2857
2858SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2859                                  SDOperand Ptr, SDOperand Cmp,
2860                                  SDOperand Swp, MVT::ValueType VT) {
2861  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2862  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2863  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2864  FoldingSetNodeID ID;
2865  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2866  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2867  ID.AddInteger((unsigned int)VT);
2868  void* IP = 0;
2869  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2870    return SDOperand(E, 0);
2871  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2872  CSEMap.InsertNode(N, IP);
2873  AllNodes.push_back(N);
2874  return SDOperand(N, 0);
2875}
2876
2877SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2878                                  SDOperand Ptr, SDOperand Val,
2879                                  MVT::ValueType VT) {
2880  assert((   Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_LSS
2881          || Opcode == ISD::ATOMIC_SWAP || Opcode == ISD::ATOMIC_LOAD_AND
2882          || Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR
2883          || Opcode == ISD::ATOMIC_LOAD_MIN || Opcode == ISD::ATOMIC_LOAD_MAX
2884          || Opcode == ISD::ATOMIC_LOAD_UMIN || Opcode == ISD::ATOMIC_LOAD_UMAX)
2885         && "Invalid Atomic Op");
2886  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
2887  FoldingSetNodeID ID;
2888  SDOperand Ops[] = {Chain, Ptr, Val};
2889  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2890  ID.AddInteger((unsigned int)VT);
2891  void* IP = 0;
2892  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2893    return SDOperand(E, 0);
2894  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
2895  CSEMap.InsertNode(N, IP);
2896  AllNodes.push_back(N);
2897  return SDOperand(N, 0);
2898}
2899
2900SDOperand
2901SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
2902                      MVT::ValueType VT, SDOperand Chain,
2903                      SDOperand Ptr, SDOperand Offset,
2904                      const Value *SV, int SVOffset, MVT::ValueType EVT,
2905                      bool isVolatile, unsigned Alignment) {
2906  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2907    const Type *Ty = 0;
2908    if (VT != MVT::iPTR) {
2909      Ty = MVT::getTypeForValueType(VT);
2910    } else if (SV) {
2911      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2912      assert(PT && "Value for load must be a pointer");
2913      Ty = PT->getElementType();
2914    }
2915    assert(Ty && "Could not get type information for load");
2916    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2917  }
2918
2919  if (VT == EVT) {
2920    ExtType = ISD::NON_EXTLOAD;
2921  } else if (ExtType == ISD::NON_EXTLOAD) {
2922    assert(VT == EVT && "Non-extending load from different memory type!");
2923  } else {
2924    // Extending load.
2925    if (MVT::isVector(VT))
2926      assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2927    else
2928      assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2929             "Should only be an extending load, not truncating!");
2930    assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2931           "Cannot sign/zero extend a FP/Vector load!");
2932    assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2933           "Cannot convert from FP to Int or Int -> FP!");
2934  }
2935
2936  bool Indexed = AM != ISD::UNINDEXED;
2937  assert(Indexed || Offset.getOpcode() == ISD::UNDEF &&
2938         "Unindexed load with an offset!");
2939
2940  SDVTList VTs = Indexed ?
2941    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
2942  SDOperand Ops[] = { Chain, Ptr, Offset };
2943  FoldingSetNodeID ID;
2944  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2945  ID.AddInteger(AM);
2946  ID.AddInteger(ExtType);
2947  ID.AddInteger((unsigned int)EVT);
2948  ID.AddInteger(Alignment);
2949  ID.AddInteger(isVolatile);
2950  void *IP = 0;
2951  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2952    return SDOperand(E, 0);
2953  SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
2954                             Alignment, isVolatile);
2955  CSEMap.InsertNode(N, IP);
2956  AllNodes.push_back(N);
2957  return SDOperand(N, 0);
2958}
2959
2960SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2961                                SDOperand Chain, SDOperand Ptr,
2962                                const Value *SV, int SVOffset,
2963                                bool isVolatile, unsigned Alignment) {
2964  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2965  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
2966                 SV, SVOffset, VT, isVolatile, Alignment);
2967}
2968
2969SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2970                                   SDOperand Chain, SDOperand Ptr,
2971                                   const Value *SV,
2972                                   int SVOffset, MVT::ValueType EVT,
2973                                   bool isVolatile, unsigned Alignment) {
2974  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2975  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
2976                 SV, SVOffset, EVT, isVolatile, Alignment);
2977}
2978
2979SDOperand
2980SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2981                             SDOperand Offset, ISD::MemIndexedMode AM) {
2982  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2983  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2984         "Load is already a indexed load!");
2985  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
2986                 LD->getChain(), Base, Offset, LD->getSrcValue(),
2987                 LD->getSrcValueOffset(), LD->getMemoryVT(),
2988                 LD->isVolatile(), LD->getAlignment());
2989}
2990
2991SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2992                                 SDOperand Ptr, const Value *SV, int SVOffset,
2993                                 bool isVolatile, unsigned Alignment) {
2994  MVT::ValueType VT = Val.getValueType();
2995
2996  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2997    const Type *Ty = 0;
2998    if (VT != MVT::iPTR) {
2999      Ty = MVT::getTypeForValueType(VT);
3000    } else if (SV) {
3001      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3002      assert(PT && "Value for store must be a pointer");
3003      Ty = PT->getElementType();
3004    }
3005    assert(Ty && "Could not get type information for store");
3006    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3007  }
3008  SDVTList VTs = getVTList(MVT::Other);
3009  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3010  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3011  FoldingSetNodeID ID;
3012  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3013  ID.AddInteger(ISD::UNINDEXED);
3014  ID.AddInteger(false);
3015  ID.AddInteger((unsigned int)VT);
3016  ID.AddInteger(Alignment);
3017  ID.AddInteger(isVolatile);
3018  void *IP = 0;
3019  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3020    return SDOperand(E, 0);
3021  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3022                              VT, SV, SVOffset, Alignment, isVolatile);
3023  CSEMap.InsertNode(N, IP);
3024  AllNodes.push_back(N);
3025  return SDOperand(N, 0);
3026}
3027
3028SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
3029                                      SDOperand Ptr, const Value *SV,
3030                                      int SVOffset, MVT::ValueType SVT,
3031                                      bool isVolatile, unsigned Alignment) {
3032  MVT::ValueType VT = Val.getValueType();
3033
3034  if (VT == SVT)
3035    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3036
3037  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
3038         "Not a truncation?");
3039  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
3040         "Can't do FP-INT conversion!");
3041
3042  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3043    const Type *Ty = 0;
3044    if (VT != MVT::iPTR) {
3045      Ty = MVT::getTypeForValueType(VT);
3046    } else if (SV) {
3047      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3048      assert(PT && "Value for store must be a pointer");
3049      Ty = PT->getElementType();
3050    }
3051    assert(Ty && "Could not get type information for store");
3052    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3053  }
3054  SDVTList VTs = getVTList(MVT::Other);
3055  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3056  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3057  FoldingSetNodeID ID;
3058  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3059  ID.AddInteger(ISD::UNINDEXED);
3060  ID.AddInteger(1);
3061  ID.AddInteger((unsigned int)SVT);
3062  ID.AddInteger(Alignment);
3063  ID.AddInteger(isVolatile);
3064  void *IP = 0;
3065  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3066    return SDOperand(E, 0);
3067  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3068                              SVT, SV, SVOffset, Alignment, isVolatile);
3069  CSEMap.InsertNode(N, IP);
3070  AllNodes.push_back(N);
3071  return SDOperand(N, 0);
3072}
3073
3074SDOperand
3075SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
3076                              SDOperand Offset, ISD::MemIndexedMode AM) {
3077  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3078  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3079         "Store is already a indexed store!");
3080  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3081  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3082  FoldingSetNodeID ID;
3083  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3084  ID.AddInteger(AM);
3085  ID.AddInteger(ST->isTruncatingStore());
3086  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
3087  ID.AddInteger(ST->getAlignment());
3088  ID.AddInteger(ST->isVolatile());
3089  void *IP = 0;
3090  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3091    return SDOperand(E, 0);
3092  SDNode *N = new StoreSDNode(Ops, VTs, AM,
3093                              ST->isTruncatingStore(), ST->getMemoryVT(),
3094                              ST->getSrcValue(), ST->getSrcValueOffset(),
3095                              ST->getAlignment(), ST->isVolatile());
3096  CSEMap.InsertNode(N, IP);
3097  AllNodes.push_back(N);
3098  return SDOperand(N, 0);
3099}
3100
3101SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
3102                                 SDOperand Chain, SDOperand Ptr,
3103                                 SDOperand SV) {
3104  SDOperand Ops[] = { Chain, Ptr, SV };
3105  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3106}
3107
3108SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
3109                                SDOperandPtr Ops, unsigned NumOps) {
3110  switch (NumOps) {
3111  case 0: return getNode(Opcode, VT);
3112  case 1: return getNode(Opcode, VT, Ops[0]);
3113  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3114  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3115  default: break;
3116  }
3117
3118  switch (Opcode) {
3119  default: break;
3120  case ISD::SELECT_CC: {
3121    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3122    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3123           "LHS and RHS of condition must have same type!");
3124    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3125           "True and False arms of SelectCC must have same type!");
3126    assert(Ops[2].getValueType() == VT &&
3127           "select_cc node must be of same type as true and false value!");
3128    break;
3129  }
3130  case ISD::BR_CC: {
3131    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3132    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3133           "LHS/RHS of comparison should match types!");
3134    break;
3135  }
3136  }
3137
3138  // Memoize nodes.
3139  SDNode *N;
3140  SDVTList VTs = getVTList(VT);
3141  if (VT != MVT::Flag) {
3142    FoldingSetNodeID ID;
3143    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3144    void *IP = 0;
3145    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3146      return SDOperand(E, 0);
3147    N = new SDNode(Opcode, VTs, Ops, NumOps);
3148    CSEMap.InsertNode(N, IP);
3149  } else {
3150    N = new SDNode(Opcode, VTs, Ops, NumOps);
3151  }
3152  AllNodes.push_back(N);
3153  return SDOperand(N, 0);
3154}
3155
3156SDOperand SelectionDAG::getNode(unsigned Opcode,
3157                                std::vector<MVT::ValueType> &ResultTys,
3158                                SDOperandPtr Ops, unsigned NumOps) {
3159  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3160                 Ops, NumOps);
3161}
3162
3163SDOperand SelectionDAG::getNode(unsigned Opcode,
3164                                const MVT::ValueType *VTs, unsigned NumVTs,
3165                                SDOperandPtr Ops, unsigned NumOps) {
3166  if (NumVTs == 1)
3167    return getNode(Opcode, VTs[0], Ops, NumOps);
3168  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3169}
3170
3171SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3172                                SDOperandPtr Ops, unsigned NumOps) {
3173  if (VTList.NumVTs == 1)
3174    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3175
3176  switch (Opcode) {
3177  // FIXME: figure out how to safely handle things like
3178  // int foo(int x) { return 1 << (x & 255); }
3179  // int bar() { return foo(256); }
3180#if 0
3181  case ISD::SRA_PARTS:
3182  case ISD::SRL_PARTS:
3183  case ISD::SHL_PARTS:
3184    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3185        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3186      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3187    else if (N3.getOpcode() == ISD::AND)
3188      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3189        // If the and is only masking out bits that cannot effect the shift,
3190        // eliminate the and.
3191        unsigned NumBits = MVT::getSizeInBits(VT)*2;
3192        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3193          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3194      }
3195    break;
3196#endif
3197  }
3198
3199  // Memoize the node unless it returns a flag.
3200  SDNode *N;
3201  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3202    FoldingSetNodeID ID;
3203    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3204    void *IP = 0;
3205    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3206      return SDOperand(E, 0);
3207    if (NumOps == 1)
3208      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3209    else if (NumOps == 2)
3210      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3211    else if (NumOps == 3)
3212      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3213    else
3214      N = new SDNode(Opcode, VTList, Ops, NumOps);
3215    CSEMap.InsertNode(N, IP);
3216  } else {
3217    if (NumOps == 1)
3218      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3219    else if (NumOps == 2)
3220      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3221    else if (NumOps == 3)
3222      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3223    else
3224      N = new SDNode(Opcode, VTList, Ops, NumOps);
3225  }
3226  AllNodes.push_back(N);
3227  return SDOperand(N, 0);
3228}
3229
3230SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3231  return getNode(Opcode, VTList, (SDOperand*)0, 0);
3232}
3233
3234SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3235                                SDOperand N1) {
3236  SDOperand Ops[] = { N1 };
3237  return getNode(Opcode, VTList, Ops, 1);
3238}
3239
3240SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3241                                SDOperand N1, SDOperand N2) {
3242  SDOperand Ops[] = { N1, N2 };
3243  return getNode(Opcode, VTList, Ops, 2);
3244}
3245
3246SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3247                                SDOperand N1, SDOperand N2, SDOperand N3) {
3248  SDOperand Ops[] = { N1, N2, N3 };
3249  return getNode(Opcode, VTList, Ops, 3);
3250}
3251
3252SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3253                                SDOperand N1, SDOperand N2, SDOperand N3,
3254                                SDOperand N4) {
3255  SDOperand Ops[] = { N1, N2, N3, N4 };
3256  return getNode(Opcode, VTList, Ops, 4);
3257}
3258
3259SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3260                                SDOperand N1, SDOperand N2, SDOperand N3,
3261                                SDOperand N4, SDOperand N5) {
3262  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
3263  return getNode(Opcode, VTList, Ops, 5);
3264}
3265
3266SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
3267  return makeVTList(SDNode::getValueTypeList(VT), 1);
3268}
3269
3270SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
3271  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3272       E = VTList.end(); I != E; ++I) {
3273    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
3274      return makeVTList(&(*I)[0], 2);
3275  }
3276  std::vector<MVT::ValueType> V;
3277  V.push_back(VT1);
3278  V.push_back(VT2);
3279  VTList.push_front(V);
3280  return makeVTList(&(*VTList.begin())[0], 2);
3281}
3282SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
3283                                 MVT::ValueType VT3) {
3284  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3285       E = VTList.end(); I != E; ++I) {
3286    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
3287        (*I)[2] == VT3)
3288      return makeVTList(&(*I)[0], 3);
3289  }
3290  std::vector<MVT::ValueType> V;
3291  V.push_back(VT1);
3292  V.push_back(VT2);
3293  V.push_back(VT3);
3294  VTList.push_front(V);
3295  return makeVTList(&(*VTList.begin())[0], 3);
3296}
3297
3298SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
3299  switch (NumVTs) {
3300    case 0: assert(0 && "Cannot have nodes without results!");
3301    case 1: return getVTList(VTs[0]);
3302    case 2: return getVTList(VTs[0], VTs[1]);
3303    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3304    default: break;
3305  }
3306
3307  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3308       E = VTList.end(); I != E; ++I) {
3309    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
3310
3311    bool NoMatch = false;
3312    for (unsigned i = 2; i != NumVTs; ++i)
3313      if (VTs[i] != (*I)[i]) {
3314        NoMatch = true;
3315        break;
3316      }
3317    if (!NoMatch)
3318      return makeVTList(&*I->begin(), NumVTs);
3319  }
3320
3321  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
3322  return makeVTList(&*VTList.begin()->begin(), NumVTs);
3323}
3324
3325
3326/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3327/// specified operands.  If the resultant node already exists in the DAG,
3328/// this does not modify the specified node, instead it returns the node that
3329/// already exists.  If the resultant node does not exist in the DAG, the
3330/// input node is returned.  As a degenerate case, if you specify the same
3331/// input operands as the node already has, the input node is returned.
3332SDOperand SelectionDAG::
3333UpdateNodeOperands(SDOperand InN, SDOperand Op) {
3334  SDNode *N = InN.Val;
3335  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3336
3337  // Check to see if there is no change.
3338  if (Op == N->getOperand(0)) return InN;
3339
3340  // See if the modified node already exists.
3341  void *InsertPos = 0;
3342  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3343    return SDOperand(Existing, InN.ResNo);
3344
3345  // Nope it doesn't.  Remove the node from it's current place in the maps.
3346  if (InsertPos)
3347    RemoveNodeFromCSEMaps(N);
3348
3349  // Now we update the operands.
3350  N->OperandList[0].getVal()->removeUser(0, N);
3351  N->OperandList[0] = Op;
3352  N->OperandList[0].setUser(N);
3353  Op.Val->addUser(0, N);
3354
3355  // If this gets put into a CSE map, add it.
3356  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3357  return InN;
3358}
3359
3360SDOperand SelectionDAG::
3361UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
3362  SDNode *N = InN.Val;
3363  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3364
3365  // Check to see if there is no change.
3366  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3367    return InN;   // No operands changed, just return the input node.
3368
3369  // See if the modified node already exists.
3370  void *InsertPos = 0;
3371  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3372    return SDOperand(Existing, InN.ResNo);
3373
3374  // Nope it doesn't.  Remove the node from it's current place in the maps.
3375  if (InsertPos)
3376    RemoveNodeFromCSEMaps(N);
3377
3378  // Now we update the operands.
3379  if (N->OperandList[0] != Op1) {
3380    N->OperandList[0].getVal()->removeUser(0, N);
3381    N->OperandList[0] = Op1;
3382    N->OperandList[0].setUser(N);
3383    Op1.Val->addUser(0, N);
3384  }
3385  if (N->OperandList[1] != Op2) {
3386    N->OperandList[1].getVal()->removeUser(1, N);
3387    N->OperandList[1] = Op2;
3388    N->OperandList[1].setUser(N);
3389    Op2.Val->addUser(1, N);
3390  }
3391
3392  // If this gets put into a CSE map, add it.
3393  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3394  return InN;
3395}
3396
3397SDOperand SelectionDAG::
3398UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
3399  SDOperand Ops[] = { Op1, Op2, Op3 };
3400  return UpdateNodeOperands(N, Ops, 3);
3401}
3402
3403SDOperand SelectionDAG::
3404UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3405                   SDOperand Op3, SDOperand Op4) {
3406  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3407  return UpdateNodeOperands(N, Ops, 4);
3408}
3409
3410SDOperand SelectionDAG::
3411UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3412                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3413  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3414  return UpdateNodeOperands(N, Ops, 5);
3415}
3416
3417SDOperand SelectionDAG::
3418UpdateNodeOperands(SDOperand InN, SDOperandPtr Ops, unsigned NumOps) {
3419  SDNode *N = InN.Val;
3420  assert(N->getNumOperands() == NumOps &&
3421         "Update with wrong number of operands");
3422
3423  // Check to see if there is no change.
3424  bool AnyChange = false;
3425  for (unsigned i = 0; i != NumOps; ++i) {
3426    if (Ops[i] != N->getOperand(i)) {
3427      AnyChange = true;
3428      break;
3429    }
3430  }
3431
3432  // No operands changed, just return the input node.
3433  if (!AnyChange) return InN;
3434
3435  // See if the modified node already exists.
3436  void *InsertPos = 0;
3437  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3438    return SDOperand(Existing, InN.ResNo);
3439
3440  // Nope it doesn't.  Remove the node from its current place in the maps.
3441  if (InsertPos)
3442    RemoveNodeFromCSEMaps(N);
3443
3444  // Now we update the operands.
3445  for (unsigned i = 0; i != NumOps; ++i) {
3446    if (N->OperandList[i] != Ops[i]) {
3447      N->OperandList[i].getVal()->removeUser(i, N);
3448      N->OperandList[i] = Ops[i];
3449      N->OperandList[i].setUser(N);
3450      Ops[i].Val->addUser(i, N);
3451    }
3452  }
3453
3454  // If this gets put into a CSE map, add it.
3455  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3456  return InN;
3457}
3458
3459/// MorphNodeTo - This frees the operands of the current node, resets the
3460/// opcode, types, and operands to the specified value.  This should only be
3461/// used by the SelectionDAG class.
3462void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3463                         SDOperandPtr Ops, unsigned NumOps) {
3464  NodeType = Opc;
3465  ValueList = L.VTs;
3466  NumValues = L.NumVTs;
3467
3468  // Clear the operands list, updating used nodes to remove this from their
3469  // use list.
3470  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3471    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3472
3473  // If NumOps is larger than the # of operands we currently have, reallocate
3474  // the operand list.
3475  if (NumOps > NumOperands) {
3476    if (OperandsNeedDelete) {
3477      delete [] OperandList;
3478    }
3479    OperandList = new SDUse[NumOps];
3480    OperandsNeedDelete = true;
3481  }
3482
3483  // Assign the new operands.
3484  NumOperands = NumOps;
3485
3486  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3487    OperandList[i] = Ops[i];
3488    OperandList[i].setUser(this);
3489    SDNode *N = OperandList[i].getVal();
3490    N->addUser(i, this);
3491    ++N->UsesSize;
3492  }
3493}
3494
3495/// SelectNodeTo - These are used for target selectors to *mutate* the
3496/// specified node to have the specified return type, Target opcode, and
3497/// operands.  Note that target opcodes are stored as
3498/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3499///
3500/// Note that SelectNodeTo returns the resultant node.  If there is already a
3501/// node of the specified opcode and operands, it returns that node instead of
3502/// the current one.
3503SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3504                                   MVT::ValueType VT) {
3505  SDVTList VTs = getVTList(VT);
3506  FoldingSetNodeID ID;
3507  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, (SDOperand*)0, 0);
3508  void *IP = 0;
3509  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3510    return ON;
3511
3512  RemoveNodeFromCSEMaps(N);
3513
3514  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, SDOperandPtr(), 0);
3515
3516  CSEMap.InsertNode(N, IP);
3517  return N;
3518}
3519
3520SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3521                                   MVT::ValueType VT, SDOperand Op1) {
3522  // If an identical node already exists, use it.
3523  SDVTList VTs = getVTList(VT);
3524  SDOperand Ops[] = { Op1 };
3525
3526  FoldingSetNodeID ID;
3527  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3528  void *IP = 0;
3529  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3530    return ON;
3531
3532  RemoveNodeFromCSEMaps(N);
3533  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3534  CSEMap.InsertNode(N, IP);
3535  return N;
3536}
3537
3538SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3539                                   MVT::ValueType VT, SDOperand Op1,
3540                                   SDOperand Op2) {
3541  // If an identical node already exists, use it.
3542  SDVTList VTs = getVTList(VT);
3543  SDOperand Ops[] = { Op1, Op2 };
3544
3545  FoldingSetNodeID ID;
3546  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3547  void *IP = 0;
3548  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3549    return ON;
3550
3551  RemoveNodeFromCSEMaps(N);
3552
3553  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3554
3555  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3556  return N;
3557}
3558
3559SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3560                                   MVT::ValueType VT, SDOperand Op1,
3561                                   SDOperand Op2, SDOperand Op3) {
3562  // If an identical node already exists, use it.
3563  SDVTList VTs = getVTList(VT);
3564  SDOperand Ops[] = { Op1, Op2, Op3 };
3565  FoldingSetNodeID ID;
3566  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3567  void *IP = 0;
3568  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3569    return ON;
3570
3571  RemoveNodeFromCSEMaps(N);
3572
3573  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3574
3575  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3576  return N;
3577}
3578
3579SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3580                                   MVT::ValueType VT, SDOperandPtr Ops,
3581                                   unsigned NumOps) {
3582  // If an identical node already exists, use it.
3583  SDVTList VTs = getVTList(VT);
3584  FoldingSetNodeID ID;
3585  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3586  void *IP = 0;
3587  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3588    return ON;
3589
3590  RemoveNodeFromCSEMaps(N);
3591  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3592
3593  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3594  return N;
3595}
3596
3597SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3598                                   MVT::ValueType VT1, MVT::ValueType VT2,
3599                                   SDOperand Op1, SDOperand Op2) {
3600  SDVTList VTs = getVTList(VT1, VT2);
3601  FoldingSetNodeID ID;
3602  SDOperand Ops[] = { Op1, Op2 };
3603  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3604  void *IP = 0;
3605  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3606    return ON;
3607
3608  RemoveNodeFromCSEMaps(N);
3609  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3610  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3611  return N;
3612}
3613
3614SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3615                                   MVT::ValueType VT1, MVT::ValueType VT2,
3616                                   SDOperand Op1, SDOperand Op2,
3617                                   SDOperand Op3) {
3618  // If an identical node already exists, use it.
3619  SDVTList VTs = getVTList(VT1, VT2);
3620  SDOperand Ops[] = { Op1, Op2, Op3 };
3621  FoldingSetNodeID ID;
3622  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3623  void *IP = 0;
3624  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3625    return ON;
3626
3627  RemoveNodeFromCSEMaps(N);
3628
3629  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3630  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3631  return N;
3632}
3633
3634
3635/// getTargetNode - These are used for target selectors to create a new node
3636/// with specified return type(s), target opcode, and operands.
3637///
3638/// Note that getTargetNode returns the resultant node.  If there is already a
3639/// node of the specified opcode and operands, it returns that node instead of
3640/// the current one.
3641SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3642  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3643}
3644SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3645                                    SDOperand Op1) {
3646  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3647}
3648SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3649                                    SDOperand Op1, SDOperand Op2) {
3650  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3651}
3652SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3653                                    SDOperand Op1, SDOperand Op2,
3654                                    SDOperand Op3) {
3655  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3656}
3657SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3658                                    SDOperandPtr Ops, unsigned NumOps) {
3659  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3660}
3661SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3662                                    MVT::ValueType VT2) {
3663  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3664  SDOperand Op;
3665  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3666}
3667SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3668                                    MVT::ValueType VT2, SDOperand Op1) {
3669  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3670  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3671}
3672SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3673                                    MVT::ValueType VT2, SDOperand Op1,
3674                                    SDOperand Op2) {
3675  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3676  SDOperand Ops[] = { Op1, Op2 };
3677  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3678}
3679SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3680                                    MVT::ValueType VT2, SDOperand Op1,
3681                                    SDOperand Op2, SDOperand Op3) {
3682  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3683  SDOperand Ops[] = { Op1, Op2, Op3 };
3684  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3685}
3686SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3687                                    MVT::ValueType VT2,
3688                                    SDOperandPtr Ops, unsigned NumOps) {
3689  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3690  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3691}
3692SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3693                                    MVT::ValueType VT2, MVT::ValueType VT3,
3694                                    SDOperand Op1, SDOperand Op2) {
3695  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3696  SDOperand Ops[] = { Op1, Op2 };
3697  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3698}
3699SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3700                                    MVT::ValueType VT2, MVT::ValueType VT3,
3701                                    SDOperand Op1, SDOperand Op2,
3702                                    SDOperand Op3) {
3703  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3704  SDOperand Ops[] = { Op1, Op2, Op3 };
3705  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3706}
3707SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3708                                    MVT::ValueType VT2, MVT::ValueType VT3,
3709                                    SDOperandPtr Ops, unsigned NumOps) {
3710  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3711  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3712}
3713SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3714                                    MVT::ValueType VT2, MVT::ValueType VT3,
3715                                    MVT::ValueType VT4,
3716                                    SDOperandPtr Ops, unsigned NumOps) {
3717  std::vector<MVT::ValueType> VTList;
3718  VTList.push_back(VT1);
3719  VTList.push_back(VT2);
3720  VTList.push_back(VT3);
3721  VTList.push_back(VT4);
3722  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3723  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3724}
3725SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3726                                    std::vector<MVT::ValueType> &ResultTys,
3727                                    SDOperandPtr Ops, unsigned NumOps) {
3728  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3729  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3730                 Ops, NumOps).Val;
3731}
3732
3733/// getNodeIfExists - Get the specified node if it's already available, or
3734/// else return NULL.
3735SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
3736                                      SDOperandPtr Ops, unsigned NumOps) {
3737  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3738    FoldingSetNodeID ID;
3739    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3740    void *IP = 0;
3741    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3742      return E;
3743  }
3744  return NULL;
3745}
3746
3747
3748/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3749/// This can cause recursive merging of nodes in the DAG.
3750///
3751/// This version assumes From has a single result value.
3752///
3753void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3754                                      DAGUpdateListener *UpdateListener) {
3755  SDNode *From = FromN.Val;
3756  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3757         "Cannot replace with this method!");
3758  assert(From != To.Val && "Cannot replace uses of with self");
3759
3760  while (!From->use_empty()) {
3761    SDNode::use_iterator UI = From->use_begin();
3762    SDNode *U = UI->getUser();
3763
3764    // This node is about to morph, remove its old self from the CSE maps.
3765    RemoveNodeFromCSEMaps(U);
3766    int operandNum = 0;
3767    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3768         I != E; ++I, ++operandNum)
3769      if (I->getVal() == From) {
3770        From->removeUser(operandNum, U);
3771        *I = To;
3772        I->setUser(U);
3773        To.Val->addUser(operandNum, U);
3774      }
3775
3776    // Now that we have modified U, add it back to the CSE maps.  If it already
3777    // exists there, recursively merge the results together.
3778    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3779      ReplaceAllUsesWith(U, Existing, UpdateListener);
3780      // U is now dead.  Inform the listener if it exists and delete it.
3781      if (UpdateListener)
3782        UpdateListener->NodeDeleted(U);
3783      DeleteNodeNotInCSEMaps(U);
3784    } else {
3785      // If the node doesn't already exist, we updated it.  Inform a listener if
3786      // it exists.
3787      if (UpdateListener)
3788        UpdateListener->NodeUpdated(U);
3789    }
3790  }
3791}
3792
3793/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3794/// This can cause recursive merging of nodes in the DAG.
3795///
3796/// This version assumes From/To have matching types and numbers of result
3797/// values.
3798///
3799void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3800                                      DAGUpdateListener *UpdateListener) {
3801  assert(From != To && "Cannot replace uses of with self");
3802  assert(From->getNumValues() == To->getNumValues() &&
3803         "Cannot use this version of ReplaceAllUsesWith!");
3804  if (From->getNumValues() == 1)   // If possible, use the faster version.
3805    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3806                              UpdateListener);
3807
3808  while (!From->use_empty()) {
3809    SDNode::use_iterator UI = From->use_begin();
3810    SDNode *U = UI->getUser();
3811
3812    // This node is about to morph, remove its old self from the CSE maps.
3813    RemoveNodeFromCSEMaps(U);
3814    int operandNum = 0;
3815    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3816         I != E; ++I, ++operandNum)
3817      if (I->getVal() == From) {
3818        From->removeUser(operandNum, U);
3819        I->getVal() = To;
3820        To->addUser(operandNum, U);
3821      }
3822
3823    // Now that we have modified U, add it back to the CSE maps.  If it already
3824    // exists there, recursively merge the results together.
3825    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3826      ReplaceAllUsesWith(U, Existing, UpdateListener);
3827      // U is now dead.  Inform the listener if it exists and delete it.
3828      if (UpdateListener)
3829        UpdateListener->NodeDeleted(U);
3830      DeleteNodeNotInCSEMaps(U);
3831    } else {
3832      // If the node doesn't already exist, we updated it.  Inform a listener if
3833      // it exists.
3834      if (UpdateListener)
3835        UpdateListener->NodeUpdated(U);
3836    }
3837  }
3838}
3839
3840/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3841/// This can cause recursive merging of nodes in the DAG.
3842///
3843/// This version can replace From with any result values.  To must match the
3844/// number and types of values returned by From.
3845void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3846                                      SDOperandPtr To,
3847                                      DAGUpdateListener *UpdateListener) {
3848  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3849    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3850
3851  while (!From->use_empty()) {
3852    SDNode::use_iterator UI = From->use_begin();
3853    SDNode *U = UI->getUser();
3854
3855    // This node is about to morph, remove its old self from the CSE maps.
3856    RemoveNodeFromCSEMaps(U);
3857    int operandNum = 0;
3858    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3859         I != E; ++I, ++operandNum)
3860      if (I->getVal() == From) {
3861        const SDOperand &ToOp = To[I->getSDOperand().ResNo];
3862        From->removeUser(operandNum, U);
3863        *I = ToOp;
3864        I->setUser(U);
3865        ToOp.Val->addUser(operandNum, U);
3866      }
3867
3868    // Now that we have modified U, add it back to the CSE maps.  If it already
3869    // exists there, recursively merge the results together.
3870    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3871      ReplaceAllUsesWith(U, Existing, UpdateListener);
3872      // U is now dead.  Inform the listener if it exists and delete it.
3873      if (UpdateListener)
3874        UpdateListener->NodeDeleted(U);
3875      DeleteNodeNotInCSEMaps(U);
3876    } else {
3877      // If the node doesn't already exist, we updated it.  Inform a listener if
3878      // it exists.
3879      if (UpdateListener)
3880        UpdateListener->NodeUpdated(U);
3881    }
3882  }
3883}
3884
3885namespace {
3886  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3887  /// any deleted nodes from the set passed into its constructor and recursively
3888  /// notifies another update listener if specified.
3889  class ChainedSetUpdaterListener :
3890  public SelectionDAG::DAGUpdateListener {
3891    SmallSetVector<SDNode*, 16> &Set;
3892    SelectionDAG::DAGUpdateListener *Chain;
3893  public:
3894    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3895                              SelectionDAG::DAGUpdateListener *chain)
3896      : Set(set), Chain(chain) {}
3897
3898    virtual void NodeDeleted(SDNode *N) {
3899      Set.remove(N);
3900      if (Chain) Chain->NodeDeleted(N);
3901    }
3902    virtual void NodeUpdated(SDNode *N) {
3903      if (Chain) Chain->NodeUpdated(N);
3904    }
3905  };
3906}
3907
3908/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3909/// uses of other values produced by From.Val alone.  The Deleted vector is
3910/// handled the same way as for ReplaceAllUsesWith.
3911void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3912                                             DAGUpdateListener *UpdateListener){
3913  assert(From != To && "Cannot replace a value with itself");
3914
3915  // Handle the simple, trivial, case efficiently.
3916  if (From.Val->getNumValues() == 1) {
3917    ReplaceAllUsesWith(From, To, UpdateListener);
3918    return;
3919  }
3920
3921  if (From.use_empty()) return;
3922
3923  // Get all of the users of From.Val.  We want these in a nice,
3924  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3925  SmallSetVector<SDNode*, 16> Users;
3926  for (SDNode::use_iterator UI = From.Val->use_begin(),
3927      E = From.Val->use_end(); UI != E; ++UI) {
3928    SDNode *User = UI->getUser();
3929    if (!Users.count(User))
3930      Users.insert(User);
3931  }
3932
3933  // When one of the recursive merges deletes nodes from the graph, we need to
3934  // make sure that UpdateListener is notified *and* that the node is removed
3935  // from Users if present.  CSUL does this.
3936  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3937
3938  while (!Users.empty()) {
3939    // We know that this user uses some value of From.  If it is the right
3940    // value, update it.
3941    SDNode *User = Users.back();
3942    Users.pop_back();
3943
3944    // Scan for an operand that matches From.
3945    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
3946    for (; Op != E; ++Op)
3947      if (*Op == From) break;
3948
3949    // If there are no matches, the user must use some other result of From.
3950    if (Op == E) continue;
3951
3952    // Okay, we know this user needs to be updated.  Remove its old self
3953    // from the CSE maps.
3954    RemoveNodeFromCSEMaps(User);
3955
3956    // Update all operands that match "From" in case there are multiple uses.
3957    for (; Op != E; ++Op) {
3958      if (*Op == From) {
3959        From.Val->removeUser(Op-User->op_begin(), User);
3960        *Op = To;
3961        Op->setUser(User);
3962        To.Val->addUser(Op-User->op_begin(), User);
3963      }
3964    }
3965
3966    // Now that we have modified User, add it back to the CSE maps.  If it
3967    // already exists there, recursively merge the results together.
3968    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3969    if (!Existing) {
3970      if (UpdateListener) UpdateListener->NodeUpdated(User);
3971      continue;  // Continue on to next user.
3972    }
3973
3974    // If there was already an existing matching node, use ReplaceAllUsesWith
3975    // to replace the dead one with the existing one.  This can cause
3976    // recursive merging of other unrelated nodes down the line.  The merging
3977    // can cause deletion of nodes that used the old value.  To handle this, we
3978    // use CSUL to remove them from the Users set.
3979    ReplaceAllUsesWith(User, Existing, &CSUL);
3980
3981    // User is now dead.  Notify a listener if present.
3982    if (UpdateListener) UpdateListener->NodeDeleted(User);
3983    DeleteNodeNotInCSEMaps(User);
3984  }
3985}
3986
3987/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3988/// their allnodes order. It returns the maximum id.
3989unsigned SelectionDAG::AssignNodeIds() {
3990  unsigned Id = 0;
3991  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3992    SDNode *N = I;
3993    N->setNodeId(Id++);
3994  }
3995  return Id;
3996}
3997
3998/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3999/// based on their topological order. It returns the maximum id and a vector
4000/// of the SDNodes* in assigned order by reference.
4001unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4002  unsigned DAGSize = AllNodes.size();
4003  std::vector<unsigned> InDegree(DAGSize);
4004  std::vector<SDNode*> Sources;
4005
4006  // Use a two pass approach to avoid using a std::map which is slow.
4007  unsigned Id = 0;
4008  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4009    SDNode *N = I;
4010    N->setNodeId(Id++);
4011    unsigned Degree = N->use_size();
4012    InDegree[N->getNodeId()] = Degree;
4013    if (Degree == 0)
4014      Sources.push_back(N);
4015  }
4016
4017  TopOrder.clear();
4018  while (!Sources.empty()) {
4019    SDNode *N = Sources.back();
4020    Sources.pop_back();
4021    TopOrder.push_back(N);
4022    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4023      SDNode *P = I->getVal();
4024      unsigned Degree = --InDegree[P->getNodeId()];
4025      if (Degree == 0)
4026        Sources.push_back(P);
4027    }
4028  }
4029
4030  // Second pass, assign the actual topological order as node ids.
4031  Id = 0;
4032  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
4033       TI != TE; ++TI)
4034    (*TI)->setNodeId(Id++);
4035
4036  return Id;
4037}
4038
4039
4040
4041//===----------------------------------------------------------------------===//
4042//                              SDNode Class
4043//===----------------------------------------------------------------------===//
4044
4045// Out-of-line virtual method to give class a home.
4046void SDNode::ANCHOR() {}
4047void UnarySDNode::ANCHOR() {}
4048void BinarySDNode::ANCHOR() {}
4049void TernarySDNode::ANCHOR() {}
4050void HandleSDNode::ANCHOR() {}
4051void StringSDNode::ANCHOR() {}
4052void ConstantSDNode::ANCHOR() {}
4053void ConstantFPSDNode::ANCHOR() {}
4054void GlobalAddressSDNode::ANCHOR() {}
4055void FrameIndexSDNode::ANCHOR() {}
4056void JumpTableSDNode::ANCHOR() {}
4057void ConstantPoolSDNode::ANCHOR() {}
4058void BasicBlockSDNode::ANCHOR() {}
4059void SrcValueSDNode::ANCHOR() {}
4060void MemOperandSDNode::ANCHOR() {}
4061void RegisterSDNode::ANCHOR() {}
4062void ExternalSymbolSDNode::ANCHOR() {}
4063void CondCodeSDNode::ANCHOR() {}
4064void ARG_FLAGSSDNode::ANCHOR() {}
4065void VTSDNode::ANCHOR() {}
4066void LoadSDNode::ANCHOR() {}
4067void StoreSDNode::ANCHOR() {}
4068void AtomicSDNode::ANCHOR() {}
4069
4070HandleSDNode::~HandleSDNode() {
4071  SDVTList VTs = { 0, 0 };
4072  MorphNodeTo(ISD::HANDLENODE, VTs, SDOperandPtr(), 0);  // Drops operand uses.
4073}
4074
4075GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4076                                         MVT::ValueType VT, int o)
4077  : SDNode(isa<GlobalVariable>(GA) &&
4078           cast<GlobalVariable>(GA)->isThreadLocal() ?
4079           // Thread Local
4080           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4081           // Non Thread Local
4082           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4083           getSDVTList(VT)), Offset(o) {
4084  TheGlobal = const_cast<GlobalValue*>(GA);
4085}
4086
4087/// getMemOperand - Return a MachineMemOperand object describing the memory
4088/// reference performed by this load or store.
4089MachineMemOperand LSBaseSDNode::getMemOperand() const {
4090  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
4091  int Flags =
4092    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
4093                               MachineMemOperand::MOStore;
4094  if (IsVolatile) Flags |= MachineMemOperand::MOVolatile;
4095
4096  // Check if the load references a frame index, and does not have
4097  // an SV attached.
4098  const FrameIndexSDNode *FI =
4099    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4100  if (!getSrcValue() && FI)
4101    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4102                             FI->getIndex(), Size, Alignment);
4103  else
4104    return MachineMemOperand(getSrcValue(), Flags,
4105                             getSrcValueOffset(), Size, Alignment);
4106}
4107
4108/// Profile - Gather unique data for the node.
4109///
4110void SDNode::Profile(FoldingSetNodeID &ID) {
4111  AddNodeIDNode(ID, this);
4112}
4113
4114/// getValueTypeList - Return a pointer to the specified value type.
4115///
4116const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
4117  if (MVT::isExtendedVT(VT)) {
4118    static std::set<MVT::ValueType> EVTs;
4119    return &(*EVTs.insert(VT).first);
4120  } else {
4121    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
4122    VTs[VT] = VT;
4123    return &VTs[VT];
4124  }
4125}
4126
4127/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4128/// indicated value.  This method ignores uses of other values defined by this
4129/// operation.
4130bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4131  assert(Value < getNumValues() && "Bad value!");
4132
4133  // If there is only one value, this is easy.
4134  if (getNumValues() == 1)
4135    return use_size() == NUses;
4136  if (use_size() < NUses) return false;
4137
4138  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4139
4140  SmallPtrSet<SDNode*, 32> UsersHandled;
4141
4142  // TODO: Only iterate over uses of a given value of the node
4143  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4144    if (*UI == TheValue) {
4145      if (NUses == 0)
4146        return false;
4147      --NUses;
4148    }
4149  }
4150
4151  // Found exactly the right number of uses?
4152  return NUses == 0;
4153}
4154
4155
4156/// hasAnyUseOfValue - Return true if there are any use of the indicated
4157/// value. This method ignores uses of other values defined by this operation.
4158bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4159  assert(Value < getNumValues() && "Bad value!");
4160
4161  if (use_empty()) return false;
4162
4163  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4164
4165  SmallPtrSet<SDNode*, 32> UsersHandled;
4166
4167  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4168    SDNode *User = UI->getUser();
4169    if (User->getNumOperands() == 1 ||
4170        UsersHandled.insert(User))     // First time we've seen this?
4171      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
4172        if (User->getOperand(i) == TheValue) {
4173          return true;
4174        }
4175  }
4176
4177  return false;
4178}
4179
4180
4181/// isOnlyUseOf - Return true if this node is the only use of N.
4182///
4183bool SDNode::isOnlyUseOf(SDNode *N) const {
4184  bool Seen = false;
4185  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4186    SDNode *User = I->getUser();
4187    if (User == this)
4188      Seen = true;
4189    else
4190      return false;
4191  }
4192
4193  return Seen;
4194}
4195
4196/// isOperand - Return true if this node is an operand of N.
4197///
4198bool SDOperand::isOperandOf(SDNode *N) const {
4199  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4200    if (*this == N->getOperand(i))
4201      return true;
4202  return false;
4203}
4204
4205bool SDNode::isOperandOf(SDNode *N) const {
4206  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4207    if (this == N->OperandList[i].getVal())
4208      return true;
4209  return false;
4210}
4211
4212/// reachesChainWithoutSideEffects - Return true if this operand (which must
4213/// be a chain) reaches the specified operand without crossing any
4214/// side-effecting instructions.  In practice, this looks through token
4215/// factors and non-volatile loads.  In order to remain efficient, this only
4216/// looks a couple of nodes in, it does not do an exhaustive search.
4217bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
4218                                               unsigned Depth) const {
4219  if (*this == Dest) return true;
4220
4221  // Don't search too deeply, we just want to be able to see through
4222  // TokenFactor's etc.
4223  if (Depth == 0) return false;
4224
4225  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4226  // of the operands of the TF reach dest, then we can do the xform.
4227  if (getOpcode() == ISD::TokenFactor) {
4228    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4229      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4230        return true;
4231    return false;
4232  }
4233
4234  // Loads don't have side effects, look through them.
4235  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4236    if (!Ld->isVolatile())
4237      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4238  }
4239  return false;
4240}
4241
4242
4243static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4244                            SmallPtrSet<SDNode *, 32> &Visited) {
4245  if (found || !Visited.insert(N))
4246    return;
4247
4248  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4249    SDNode *Op = N->getOperand(i).Val;
4250    if (Op == P) {
4251      found = true;
4252      return;
4253    }
4254    findPredecessor(Op, P, found, Visited);
4255  }
4256}
4257
4258/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4259/// is either an operand of N or it can be reached by recursively traversing
4260/// up the operands.
4261/// NOTE: this is an expensive method. Use it carefully.
4262bool SDNode::isPredecessorOf(SDNode *N) const {
4263  SmallPtrSet<SDNode *, 32> Visited;
4264  bool found = false;
4265  findPredecessor(N, this, found, Visited);
4266  return found;
4267}
4268
4269uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4270  assert(Num < NumOperands && "Invalid child # of SDNode!");
4271  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4272}
4273
4274std::string SDNode::getOperationName(const SelectionDAG *G) const {
4275  switch (getOpcode()) {
4276  default:
4277    if (getOpcode() < ISD::BUILTIN_OP_END)
4278      return "<<Unknown DAG Node>>";
4279    else {
4280      if (G) {
4281        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4282          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
4283            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
4284
4285        TargetLowering &TLI = G->getTargetLoweringInfo();
4286        const char *Name =
4287          TLI.getTargetNodeName(getOpcode());
4288        if (Name) return Name;
4289      }
4290
4291      return "<<Unknown Target Node>>";
4292    }
4293
4294  case ISD::PREFETCH:      return "Prefetch";
4295  case ISD::MEMBARRIER:    return "MemBarrier";
4296  case ISD::ATOMIC_LCS:    return "AtomicLCS";
4297  case ISD::ATOMIC_LAS:    return "AtomicLAS";
4298  case ISD::ATOMIC_LSS:    return "AtomicLSS";
4299  case ISD::ATOMIC_LOAD_AND:  return "AtomicLoadAnd";
4300  case ISD::ATOMIC_LOAD_OR:   return "AtomicLoadOr";
4301  case ISD::ATOMIC_LOAD_XOR:  return "AtomicLoadXor";
4302  case ISD::ATOMIC_LOAD_MIN:  return "AtomicLoadMin";
4303  case ISD::ATOMIC_LOAD_MAX:  return "AtomicLoadMax";
4304  case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
4305  case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
4306  case ISD::ATOMIC_SWAP:   return "AtomicSWAP";
4307  case ISD::PCMARKER:      return "PCMarker";
4308  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4309  case ISD::SRCVALUE:      return "SrcValue";
4310  case ISD::MEMOPERAND:    return "MemOperand";
4311  case ISD::EntryToken:    return "EntryToken";
4312  case ISD::TokenFactor:   return "TokenFactor";
4313  case ISD::AssertSext:    return "AssertSext";
4314  case ISD::AssertZext:    return "AssertZext";
4315
4316  case ISD::STRING:        return "String";
4317  case ISD::BasicBlock:    return "BasicBlock";
4318  case ISD::ARG_FLAGS:     return "ArgFlags";
4319  case ISD::VALUETYPE:     return "ValueType";
4320  case ISD::Register:      return "Register";
4321
4322  case ISD::Constant:      return "Constant";
4323  case ISD::ConstantFP:    return "ConstantFP";
4324  case ISD::GlobalAddress: return "GlobalAddress";
4325  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4326  case ISD::FrameIndex:    return "FrameIndex";
4327  case ISD::JumpTable:     return "JumpTable";
4328  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4329  case ISD::RETURNADDR: return "RETURNADDR";
4330  case ISD::FRAMEADDR: return "FRAMEADDR";
4331  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4332  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4333  case ISD::EHSELECTION: return "EHSELECTION";
4334  case ISD::EH_RETURN: return "EH_RETURN";
4335  case ISD::ConstantPool:  return "ConstantPool";
4336  case ISD::ExternalSymbol: return "ExternalSymbol";
4337  case ISD::INTRINSIC_WO_CHAIN: {
4338    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4339    return Intrinsic::getName((Intrinsic::ID)IID);
4340  }
4341  case ISD::INTRINSIC_VOID:
4342  case ISD::INTRINSIC_W_CHAIN: {
4343    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4344    return Intrinsic::getName((Intrinsic::ID)IID);
4345  }
4346
4347  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4348  case ISD::TargetConstant: return "TargetConstant";
4349  case ISD::TargetConstantFP:return "TargetConstantFP";
4350  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4351  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4352  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4353  case ISD::TargetJumpTable:  return "TargetJumpTable";
4354  case ISD::TargetConstantPool:  return "TargetConstantPool";
4355  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4356
4357  case ISD::CopyToReg:     return "CopyToReg";
4358  case ISD::CopyFromReg:   return "CopyFromReg";
4359  case ISD::UNDEF:         return "undef";
4360  case ISD::MERGE_VALUES:  return "merge_values";
4361  case ISD::INLINEASM:     return "inlineasm";
4362  case ISD::LABEL:         return "label";
4363  case ISD::DECLARE:       return "declare";
4364  case ISD::HANDLENODE:    return "handlenode";
4365  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4366  case ISD::CALL:          return "call";
4367
4368  // Unary operators
4369  case ISD::FABS:   return "fabs";
4370  case ISD::FNEG:   return "fneg";
4371  case ISD::FSQRT:  return "fsqrt";
4372  case ISD::FSIN:   return "fsin";
4373  case ISD::FCOS:   return "fcos";
4374  case ISD::FPOWI:  return "fpowi";
4375  case ISD::FPOW:   return "fpow";
4376
4377  // Binary operators
4378  case ISD::ADD:    return "add";
4379  case ISD::SUB:    return "sub";
4380  case ISD::MUL:    return "mul";
4381  case ISD::MULHU:  return "mulhu";
4382  case ISD::MULHS:  return "mulhs";
4383  case ISD::SDIV:   return "sdiv";
4384  case ISD::UDIV:   return "udiv";
4385  case ISD::SREM:   return "srem";
4386  case ISD::UREM:   return "urem";
4387  case ISD::SMUL_LOHI:  return "smul_lohi";
4388  case ISD::UMUL_LOHI:  return "umul_lohi";
4389  case ISD::SDIVREM:    return "sdivrem";
4390  case ISD::UDIVREM:    return "divrem";
4391  case ISD::AND:    return "and";
4392  case ISD::OR:     return "or";
4393  case ISD::XOR:    return "xor";
4394  case ISD::SHL:    return "shl";
4395  case ISD::SRA:    return "sra";
4396  case ISD::SRL:    return "srl";
4397  case ISD::ROTL:   return "rotl";
4398  case ISD::ROTR:   return "rotr";
4399  case ISD::FADD:   return "fadd";
4400  case ISD::FSUB:   return "fsub";
4401  case ISD::FMUL:   return "fmul";
4402  case ISD::FDIV:   return "fdiv";
4403  case ISD::FREM:   return "frem";
4404  case ISD::FCOPYSIGN: return "fcopysign";
4405  case ISD::FGETSIGN:  return "fgetsign";
4406
4407  case ISD::SETCC:       return "setcc";
4408  case ISD::VSETCC:      return "vsetcc";
4409  case ISD::SELECT:      return "select";
4410  case ISD::SELECT_CC:   return "select_cc";
4411  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4412  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4413  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4414  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4415  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4416  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4417  case ISD::CARRY_FALSE:         return "carry_false";
4418  case ISD::ADDC:        return "addc";
4419  case ISD::ADDE:        return "adde";
4420  case ISD::SUBC:        return "subc";
4421  case ISD::SUBE:        return "sube";
4422  case ISD::SHL_PARTS:   return "shl_parts";
4423  case ISD::SRA_PARTS:   return "sra_parts";
4424  case ISD::SRL_PARTS:   return "srl_parts";
4425
4426  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4427  case ISD::INSERT_SUBREG:      return "insert_subreg";
4428
4429  // Conversion operators.
4430  case ISD::SIGN_EXTEND: return "sign_extend";
4431  case ISD::ZERO_EXTEND: return "zero_extend";
4432  case ISD::ANY_EXTEND:  return "any_extend";
4433  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4434  case ISD::TRUNCATE:    return "truncate";
4435  case ISD::FP_ROUND:    return "fp_round";
4436  case ISD::FLT_ROUNDS_: return "flt_rounds";
4437  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4438  case ISD::FP_EXTEND:   return "fp_extend";
4439
4440  case ISD::SINT_TO_FP:  return "sint_to_fp";
4441  case ISD::UINT_TO_FP:  return "uint_to_fp";
4442  case ISD::FP_TO_SINT:  return "fp_to_sint";
4443  case ISD::FP_TO_UINT:  return "fp_to_uint";
4444  case ISD::BIT_CONVERT: return "bit_convert";
4445
4446    // Control flow instructions
4447  case ISD::BR:      return "br";
4448  case ISD::BRIND:   return "brind";
4449  case ISD::BR_JT:   return "br_jt";
4450  case ISD::BRCOND:  return "brcond";
4451  case ISD::BR_CC:   return "br_cc";
4452  case ISD::RET:     return "ret";
4453  case ISD::CALLSEQ_START:  return "callseq_start";
4454  case ISD::CALLSEQ_END:    return "callseq_end";
4455
4456    // Other operators
4457  case ISD::LOAD:               return "load";
4458  case ISD::STORE:              return "store";
4459  case ISD::VAARG:              return "vaarg";
4460  case ISD::VACOPY:             return "vacopy";
4461  case ISD::VAEND:              return "vaend";
4462  case ISD::VASTART:            return "vastart";
4463  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4464  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4465  case ISD::BUILD_PAIR:         return "build_pair";
4466  case ISD::STACKSAVE:          return "stacksave";
4467  case ISD::STACKRESTORE:       return "stackrestore";
4468  case ISD::TRAP:               return "trap";
4469
4470  // Bit manipulation
4471  case ISD::BSWAP:   return "bswap";
4472  case ISD::CTPOP:   return "ctpop";
4473  case ISD::CTTZ:    return "cttz";
4474  case ISD::CTLZ:    return "ctlz";
4475
4476  // Debug info
4477  case ISD::LOCATION: return "location";
4478  case ISD::DEBUG_LOC: return "debug_loc";
4479
4480  // Trampolines
4481  case ISD::TRAMPOLINE: return "trampoline";
4482
4483  case ISD::CONDCODE:
4484    switch (cast<CondCodeSDNode>(this)->get()) {
4485    default: assert(0 && "Unknown setcc condition!");
4486    case ISD::SETOEQ:  return "setoeq";
4487    case ISD::SETOGT:  return "setogt";
4488    case ISD::SETOGE:  return "setoge";
4489    case ISD::SETOLT:  return "setolt";
4490    case ISD::SETOLE:  return "setole";
4491    case ISD::SETONE:  return "setone";
4492
4493    case ISD::SETO:    return "seto";
4494    case ISD::SETUO:   return "setuo";
4495    case ISD::SETUEQ:  return "setue";
4496    case ISD::SETUGT:  return "setugt";
4497    case ISD::SETUGE:  return "setuge";
4498    case ISD::SETULT:  return "setult";
4499    case ISD::SETULE:  return "setule";
4500    case ISD::SETUNE:  return "setune";
4501
4502    case ISD::SETEQ:   return "seteq";
4503    case ISD::SETGT:   return "setgt";
4504    case ISD::SETGE:   return "setge";
4505    case ISD::SETLT:   return "setlt";
4506    case ISD::SETLE:   return "setle";
4507    case ISD::SETNE:   return "setne";
4508    }
4509  }
4510}
4511
4512const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4513  switch (AM) {
4514  default:
4515    return "";
4516  case ISD::PRE_INC:
4517    return "<pre-inc>";
4518  case ISD::PRE_DEC:
4519    return "<pre-dec>";
4520  case ISD::POST_INC:
4521    return "<post-inc>";
4522  case ISD::POST_DEC:
4523    return "<post-dec>";
4524  }
4525}
4526
4527std::string ISD::ArgFlagsTy::getArgFlagsString() {
4528  std::string S = "< ";
4529
4530  if (isZExt())
4531    S += "zext ";
4532  if (isSExt())
4533    S += "sext ";
4534  if (isInReg())
4535    S += "inreg ";
4536  if (isSRet())
4537    S += "sret ";
4538  if (isByVal())
4539    S += "byval ";
4540  if (isNest())
4541    S += "nest ";
4542  if (getByValAlign())
4543    S += "byval-align:" + utostr(getByValAlign()) + " ";
4544  if (getOrigAlign())
4545    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4546  if (getByValSize())
4547    S += "byval-size:" + utostr(getByValSize()) + " ";
4548  return S + ">";
4549}
4550
4551void SDNode::dump() const { dump(0); }
4552void SDNode::dump(const SelectionDAG *G) const {
4553  cerr << (void*)this << ": ";
4554
4555  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4556    if (i) cerr << ",";
4557    if (getValueType(i) == MVT::Other)
4558      cerr << "ch";
4559    else
4560      cerr << MVT::getValueTypeString(getValueType(i));
4561  }
4562  cerr << " = " << getOperationName(G);
4563
4564  cerr << " ";
4565  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4566    if (i) cerr << ", ";
4567    cerr << (void*)getOperand(i).Val;
4568    if (unsigned RN = getOperand(i).ResNo)
4569      cerr << ":" << RN;
4570  }
4571
4572  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4573    SDNode *Mask = getOperand(2).Val;
4574    cerr << "<";
4575    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4576      if (i) cerr << ",";
4577      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4578        cerr << "u";
4579      else
4580        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4581    }
4582    cerr << ">";
4583  }
4584
4585  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4586    cerr << "<" << CSDN->getValue() << ">";
4587  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4588    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4589      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4590    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4591      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4592    else {
4593      cerr << "<APFloat(";
4594      CSDN->getValueAPF().convertToAPInt().dump();
4595      cerr << ")>";
4596    }
4597  } else if (const GlobalAddressSDNode *GADN =
4598             dyn_cast<GlobalAddressSDNode>(this)) {
4599    int offset = GADN->getOffset();
4600    cerr << "<";
4601    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4602    if (offset > 0)
4603      cerr << " + " << offset;
4604    else
4605      cerr << " " << offset;
4606  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4607    cerr << "<" << FIDN->getIndex() << ">";
4608  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4609    cerr << "<" << JTDN->getIndex() << ">";
4610  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4611    int offset = CP->getOffset();
4612    if (CP->isMachineConstantPoolEntry())
4613      cerr << "<" << *CP->getMachineCPVal() << ">";
4614    else
4615      cerr << "<" << *CP->getConstVal() << ">";
4616    if (offset > 0)
4617      cerr << " + " << offset;
4618    else
4619      cerr << " " << offset;
4620  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4621    cerr << "<";
4622    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4623    if (LBB)
4624      cerr << LBB->getName() << " ";
4625    cerr << (const void*)BBDN->getBasicBlock() << ">";
4626  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4627    if (G && R->getReg() &&
4628        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4629      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4630    } else {
4631      cerr << " #" << R->getReg();
4632    }
4633  } else if (const ExternalSymbolSDNode *ES =
4634             dyn_cast<ExternalSymbolSDNode>(this)) {
4635    cerr << "'" << ES->getSymbol() << "'";
4636  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4637    if (M->getValue())
4638      cerr << "<" << M->getValue() << ">";
4639    else
4640      cerr << "<null>";
4641  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4642    if (M->MO.getValue())
4643      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4644    else
4645      cerr << "<null:" << M->MO.getOffset() << ">";
4646  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4647    cerr << N->getArgFlags().getArgFlagsString();
4648  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4649    cerr << ":" << MVT::getValueTypeString(N->getVT());
4650  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4651    const Value *SrcValue = LD->getSrcValue();
4652    int SrcOffset = LD->getSrcValueOffset();
4653    cerr << " <";
4654    if (SrcValue)
4655      cerr << SrcValue;
4656    else
4657      cerr << "null";
4658    cerr << ":" << SrcOffset << ">";
4659
4660    bool doExt = true;
4661    switch (LD->getExtensionType()) {
4662    default: doExt = false; break;
4663    case ISD::EXTLOAD:
4664      cerr << " <anyext ";
4665      break;
4666    case ISD::SEXTLOAD:
4667      cerr << " <sext ";
4668      break;
4669    case ISD::ZEXTLOAD:
4670      cerr << " <zext ";
4671      break;
4672    }
4673    if (doExt)
4674      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4675
4676    const char *AM = getIndexedModeName(LD->getAddressingMode());
4677    if (*AM)
4678      cerr << " " << AM;
4679    if (LD->isVolatile())
4680      cerr << " <volatile>";
4681    cerr << " alignment=" << LD->getAlignment();
4682  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4683    const Value *SrcValue = ST->getSrcValue();
4684    int SrcOffset = ST->getSrcValueOffset();
4685    cerr << " <";
4686    if (SrcValue)
4687      cerr << SrcValue;
4688    else
4689      cerr << "null";
4690    cerr << ":" << SrcOffset << ">";
4691
4692    if (ST->isTruncatingStore())
4693      cerr << " <trunc "
4694           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4695
4696    const char *AM = getIndexedModeName(ST->getAddressingMode());
4697    if (*AM)
4698      cerr << " " << AM;
4699    if (ST->isVolatile())
4700      cerr << " <volatile>";
4701    cerr << " alignment=" << ST->getAlignment();
4702  }
4703}
4704
4705static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4706  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4707    if (N->getOperand(i).Val->hasOneUse())
4708      DumpNodes(N->getOperand(i).Val, indent+2, G);
4709    else
4710      cerr << "\n" << std::string(indent+2, ' ')
4711           << (void*)N->getOperand(i).Val << ": <multiple use>";
4712
4713
4714  cerr << "\n" << std::string(indent, ' ');
4715  N->dump(G);
4716}
4717
4718void SelectionDAG::dump() const {
4719  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4720  std::vector<const SDNode*> Nodes;
4721  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4722       I != E; ++I)
4723    Nodes.push_back(I);
4724
4725  std::sort(Nodes.begin(), Nodes.end());
4726
4727  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4728    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4729      DumpNodes(Nodes[i], 2, this);
4730  }
4731
4732  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4733
4734  cerr << "\n\n";
4735}
4736
4737const Type *ConstantPoolSDNode::getType() const {
4738  if (isMachineConstantPoolEntry())
4739    return Val.MachineCPVal->getType();
4740  return Val.ConstVal->getType();
4741}
4742