SelectionDAG.cpp revision 7b55d3665cc1f19859a77426f65218c8083b3142
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/System/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f32:     return &APFloat::IEEEsingle;
66  case MVT::f64:     return &APFloat::IEEEdouble;
67  case MVT::f80:     return &APFloat::x87DoubleExtended;
68  case MVT::f128:    return &APFloat::IEEEquad;
69  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70  }
71}
72
73SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74
75//===----------------------------------------------------------------------===//
76//                              ConstantFPSDNode Class
77//===----------------------------------------------------------------------===//
78
79/// isExactlyValue - We don't rely on operator== working on double values, as
80/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81/// As such, this method can be used to do an exact bit-for-bit comparison of
82/// two floating point values.
83bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84  return getValueAPF().bitwiseIsEqual(V);
85}
86
87bool ConstantFPSDNode::isValueValidForType(EVT VT,
88                                           const APFloat& Val) {
89  assert(VT.isFloatingPoint() && "Can only convert between FP types");
90
91  // PPC long double cannot be converted to any other type.
92  if (VT == MVT::ppcf128 ||
93      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94    return false;
95
96  // convert modifies in place, so make a copy.
97  APFloat Val2 = APFloat(Val);
98  bool losesInfo;
99  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100                      &losesInfo);
101  return !losesInfo;
102}
103
104//===----------------------------------------------------------------------===//
105//                              ISD Namespace
106//===----------------------------------------------------------------------===//
107
108/// isBuildVectorAllOnes - Return true if the specified node is a
109/// BUILD_VECTOR where all of the elements are ~0 or undef.
110bool ISD::isBuildVectorAllOnes(const SDNode *N) {
111  // Look through a bit convert.
112  if (N->getOpcode() == ISD::BIT_CONVERT)
113    N = N->getOperand(0).getNode();
114
115  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116
117  unsigned i = 0, e = N->getNumOperands();
118
119  // Skip over all of the undef values.
120  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121    ++i;
122
123  // Do not accept an all-undef vector.
124  if (i == e) return false;
125
126  // Do not accept build_vectors that aren't all constants or which have non-~0
127  // elements.
128  SDValue NotZero = N->getOperand(i);
129  if (isa<ConstantSDNode>(NotZero)) {
130    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131      return false;
132  } else if (isa<ConstantFPSDNode>(NotZero)) {
133    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134                bitcastToAPInt().isAllOnesValue())
135      return false;
136  } else
137    return false;
138
139  // Okay, we have at least one ~0 value, check to see if the rest match or are
140  // undefs.
141  for (++i; i != e; ++i)
142    if (N->getOperand(i) != NotZero &&
143        N->getOperand(i).getOpcode() != ISD::UNDEF)
144      return false;
145  return true;
146}
147
148
149/// isBuildVectorAllZeros - Return true if the specified node is a
150/// BUILD_VECTOR where all of the elements are 0 or undef.
151bool ISD::isBuildVectorAllZeros(const SDNode *N) {
152  // Look through a bit convert.
153  if (N->getOpcode() == ISD::BIT_CONVERT)
154    N = N->getOperand(0).getNode();
155
156  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157
158  unsigned i = 0, e = N->getNumOperands();
159
160  // Skip over all of the undef values.
161  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162    ++i;
163
164  // Do not accept an all-undef vector.
165  if (i == e) return false;
166
167  // Do not accept build_vectors that aren't all constants or which have non-0
168  // elements.
169  SDValue Zero = N->getOperand(i);
170  if (isa<ConstantSDNode>(Zero)) {
171    if (!cast<ConstantSDNode>(Zero)->isNullValue())
172      return false;
173  } else if (isa<ConstantFPSDNode>(Zero)) {
174    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175      return false;
176  } else
177    return false;
178
179  // Okay, we have at least one 0 value, check to see if the rest match or are
180  // undefs.
181  for (++i; i != e; ++i)
182    if (N->getOperand(i) != Zero &&
183        N->getOperand(i).getOpcode() != ISD::UNDEF)
184      return false;
185  return true;
186}
187
188/// isScalarToVector - Return true if the specified node is a
189/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190/// element is not an undef.
191bool ISD::isScalarToVector(const SDNode *N) {
192  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193    return true;
194
195  if (N->getOpcode() != ISD::BUILD_VECTOR)
196    return false;
197  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198    return false;
199  unsigned NumElems = N->getNumOperands();
200  for (unsigned i = 1; i < NumElems; ++i) {
201    SDValue V = N->getOperand(i);
202    if (V.getOpcode() != ISD::UNDEF)
203      return false;
204  }
205  return true;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211  // To perform this operation, we just need to swap the L and G bits of the
212  // operation.
213  unsigned OldL = (Operation >> 2) & 1;
214  unsigned OldG = (Operation >> 1) & 1;
215  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216                       (OldL << 1) |       // New G bit
217                       (OldG << 2));       // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223  unsigned Operation = Op;
224  if (isInteger)
225    Operation ^= 7;   // Flip L, G, E bits, but not U.
226  else
227    Operation ^= 15;  // Flip all of the condition bits.
228
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;  // Don't let N and U bits get set.
231
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: llvm_unreachable("Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return MF->getTarget();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getNode());
343    ID.AddInteger(Ops->getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356/// the NodeID data.
357static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358  switch (N->getOpcode()) {
359  case ISD::TargetExternalSymbol:
360  case ISD::ExternalSymbol:
361    llvm_unreachable("Should only be used on nodes with operands");
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::TargetConstant:
364  case ISD::Constant:
365    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366    break;
367  case ISD::TargetConstantFP:
368  case ISD::ConstantFP: {
369    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370    break;
371  }
372  case ISD::TargetGlobalAddress:
373  case ISD::GlobalAddress:
374  case ISD::TargetGlobalTLSAddress:
375  case ISD::GlobalTLSAddress: {
376    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377    ID.AddPointer(GA->getGlobal());
378    ID.AddInteger(GA->getOffset());
379    ID.AddInteger(GA->getTargetFlags());
380    break;
381  }
382  case ISD::BasicBlock:
383    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384    break;
385  case ISD::Register:
386    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387    break;
388
389  case ISD::SRCVALUE:
390    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391    break;
392  case ISD::FrameIndex:
393  case ISD::TargetFrameIndex:
394    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395    break;
396  case ISD::JumpTable:
397  case ISD::TargetJumpTable:
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    ID.AddInteger(CP->getTargetFlags());
411    break;
412  }
413  case ISD::LOAD: {
414    const LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getMemoryVT().getRawBits());
416    ID.AddInteger(LD->getRawSubclassData());
417    break;
418  }
419  case ISD::STORE: {
420    const StoreSDNode *ST = cast<StoreSDNode>(N);
421    ID.AddInteger(ST->getMemoryVT().getRawBits());
422    ID.AddInteger(ST->getRawSubclassData());
423    break;
424  }
425  case ISD::ATOMIC_CMP_SWAP:
426  case ISD::ATOMIC_SWAP:
427  case ISD::ATOMIC_LOAD_ADD:
428  case ISD::ATOMIC_LOAD_SUB:
429  case ISD::ATOMIC_LOAD_AND:
430  case ISD::ATOMIC_LOAD_OR:
431  case ISD::ATOMIC_LOAD_XOR:
432  case ISD::ATOMIC_LOAD_NAND:
433  case ISD::ATOMIC_LOAD_MIN:
434  case ISD::ATOMIC_LOAD_MAX:
435  case ISD::ATOMIC_LOAD_UMIN:
436  case ISD::ATOMIC_LOAD_UMAX: {
437    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438    ID.AddInteger(AT->getMemoryVT().getRawBits());
439    ID.AddInteger(AT->getRawSubclassData());
440    break;
441  }
442  case ISD::VECTOR_SHUFFLE: {
443    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445         i != e; ++i)
446      ID.AddInteger(SVN->getMaskElt(i));
447    break;
448  }
449  case ISD::TargetBlockAddress:
450  case ISD::BlockAddress: {
451    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453    break;
454  }
455  } // end switch (N->getOpcode())
456}
457
458/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459/// data.
460static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461  AddNodeIDOpcode(ID, N->getOpcode());
462  // Add the return value info.
463  AddNodeIDValueTypes(ID, N->getVTList());
464  // Add the operand info.
465  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466
467  // Handle SDNode leafs with special info.
468  AddNodeIDCustom(ID, N);
469}
470
471/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472/// the CSE map that carries volatility, temporalness, indexing mode, and
473/// extension/truncation information.
474///
475static inline unsigned
476encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477                     bool isNonTemporal) {
478  assert((ConvType & 3) == ConvType &&
479         "ConvType may not require more than 2 bits!");
480  assert((AM & 7) == AM &&
481         "AM may not require more than 3 bits!");
482  return ConvType |
483         (AM << 2) |
484         (isVolatile << 5) |
485         (isNonTemporal << 6);
486}
487
488//===----------------------------------------------------------------------===//
489//                              SelectionDAG Class
490//===----------------------------------------------------------------------===//
491
492/// doNotCSE - Return true if CSE should not be performed for this node.
493static bool doNotCSE(SDNode *N) {
494  if (N->getValueType(0) == MVT::Flag)
495    return true; // Never CSE anything that produces a flag.
496
497  switch (N->getOpcode()) {
498  default: break;
499  case ISD::HANDLENODE:
500  case ISD::EH_LABEL:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.pop_back_val();
541
542    if (UpdateListener)
543      UpdateListener->NodeDeleted(N, 0);
544
545    // Take the node out of the appropriate CSE map.
546    RemoveNodeFromCSEMaps(N);
547
548    // Next, brutally remove the operand list.  This is safe to do, as there are
549    // no cycles in the graph.
550    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551      SDUse &Use = *I++;
552      SDNode *Operand = Use.getNode();
553      Use.set(SDValue());
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  // First take this out of the appropriate CSE map.
571  RemoveNodeFromCSEMaps(N);
572
573  // Finally, remove uses due to operands of this node, remove from the
574  // AllNodes list, and delete the node.
575  DeleteNodeNotInCSEMaps(N);
576}
577
578void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581
582  // Drop all of the operands and decrement used node's use counts.
583  N->DropOperands();
584
585  DeallocateNode(N);
586}
587
588void SelectionDAG::DeallocateNode(SDNode *N) {
589  if (N->OperandsNeedDelete)
590    delete[] N->OperandList;
591
592  // Set the opcode to DELETED_NODE to help catch bugs when node
593  // memory is reallocated.
594  N->NodeType = ISD::DELETED_NODE;
595
596  NodeAllocator.Deallocate(AllNodes.remove(N));
597
598  // Remove the ordering of this node.
599  Ordering->remove(N);
600
601  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
602  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
603  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
604    DbgVals[i]->setIsInvalidated();
605}
606
607/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
608/// correspond to it.  This is useful when we're about to delete or repurpose
609/// the node.  We don't want future request for structurally identical nodes
610/// to return N anymore.
611bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
612  bool Erased = false;
613  switch (N->getOpcode()) {
614  case ISD::EntryToken:
615    llvm_unreachable("EntryToken should not be in CSEMaps!");
616    return false;
617  case ISD::HANDLENODE: return false;  // noop.
618  case ISD::CONDCODE:
619    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
620           "Cond code doesn't exist!");
621    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
622    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
623    break;
624  case ISD::ExternalSymbol:
625    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
626    break;
627  case ISD::TargetExternalSymbol: {
628    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
629    Erased = TargetExternalSymbols.erase(
630               std::pair<std::string,unsigned char>(ESN->getSymbol(),
631                                                    ESN->getTargetFlags()));
632    break;
633  }
634  case ISD::VALUETYPE: {
635    EVT VT = cast<VTSDNode>(N)->getVT();
636    if (VT.isExtended()) {
637      Erased = ExtendedValueTypeNodes.erase(VT);
638    } else {
639      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
640      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
641    }
642    break;
643  }
644  default:
645    // Remove it from the CSE Map.
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
749void SelectionDAG::VerifyNode(SDNode *N) {
750  switch (N->getOpcode()) {
751  default:
752    break;
753  case ISD::BUILD_PAIR: {
754    EVT VT = N->getValueType(0);
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757           "Wrong return type!");
758    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760           "Mismatched operand types!");
761    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762           "Wrong operand type!");
763    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764           "Wrong return type size");
765    break;
766  }
767  case ISD::BUILD_VECTOR: {
768    assert(N->getNumValues() == 1 && "Too many results!");
769    assert(N->getValueType(0).isVector() && "Wrong return type!");
770    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771           "Wrong number of operands!");
772    EVT EltVT = N->getValueType(0).getVectorElementType();
773    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774      assert((I->getValueType() == EltVT ||
775             (EltVT.isInteger() && I->getValueType().isInteger() &&
776              EltVT.bitsLE(I->getValueType()))) &&
777            "Wrong operand type!");
778    break;
779  }
780  }
781}
782
783/// getEVTAlignment - Compute the default alignment value for the
784/// given type.
785///
786unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
787  const Type *Ty = VT == MVT::iPTR ?
788                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
789                   VT.getTypeForEVT(*getContext());
790
791  return TLI.getTargetData()->getABITypeAlignment(Ty);
792}
793
794// EntryNode could meaningfully have debug info if we can find it...
795SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
796  : TLI(tli), FLI(fli),
797    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
798    Root(getEntryNode()), Ordering(0) {
799  AllNodes.push_back(&EntryNode);
800  Ordering = new SDNodeOrdering();
801  DbgInfo = new SDDbgInfo();
802}
803
804void SelectionDAG::init(MachineFunction &mf) {
805  MF = &mf;
806  Context = &mf.getFunction()->getContext();
807}
808
809SelectionDAG::~SelectionDAG() {
810  allnodes_clear();
811  delete Ordering;
812  DbgInfo->clear();
813  delete DbgInfo;
814}
815
816void SelectionDAG::allnodes_clear() {
817  assert(&*AllNodes.begin() == &EntryNode);
818  AllNodes.remove(AllNodes.begin());
819  while (!AllNodes.empty())
820    DeallocateNode(AllNodes.begin());
821}
822
823void SelectionDAG::clear() {
824  allnodes_clear();
825  OperandAllocator.Reset();
826  CSEMap.clear();
827
828  ExtendedValueTypeNodes.clear();
829  ExternalSymbols.clear();
830  TargetExternalSymbols.clear();
831  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
832            static_cast<CondCodeSDNode*>(0));
833  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
834            static_cast<SDNode*>(0));
835
836  EntryNode.UseList = 0;
837  AllNodes.push_back(&EntryNode);
838  Root = getEntryNode();
839  delete Ordering;
840  Ordering = new SDNodeOrdering();
841  DbgInfo->clear();
842  delete DbgInfo;
843  DbgInfo = new SDDbgInfo();
844}
845
846SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
847  return VT.bitsGT(Op.getValueType()) ?
848    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
849    getNode(ISD::TRUNCATE, DL, VT, Op);
850}
851
852SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
853  return VT.bitsGT(Op.getValueType()) ?
854    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
855    getNode(ISD::TRUNCATE, DL, VT, Op);
856}
857
858SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
859  assert(!VT.isVector() &&
860         "getZeroExtendInReg should use the vector element type instead of "
861         "the vector type!");
862  if (Op.getValueType() == VT) return Op;
863  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
864  APInt Imm = APInt::getLowBitsSet(BitWidth,
865                                   VT.getSizeInBits());
866  return getNode(ISD::AND, DL, Op.getValueType(), Op,
867                 getConstant(Imm, Op.getValueType()));
868}
869
870/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
871///
872SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
873  EVT EltVT = VT.getScalarType();
874  SDValue NegOne =
875    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
876  return getNode(ISD::XOR, DL, VT, Val, NegOne);
877}
878
879SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
880  EVT EltVT = VT.getScalarType();
881  assert((EltVT.getSizeInBits() >= 64 ||
882         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
883         "getConstant with a uint64_t value that doesn't fit in the type!");
884  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
885}
886
887SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
888  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
889}
890
891SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
892  assert(VT.isInteger() && "Cannot create FP integer constant!");
893
894  EVT EltVT = VT.getScalarType();
895  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
896         "APInt size does not match type size!");
897
898  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
899  FoldingSetNodeID ID;
900  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
901  ID.AddPointer(&Val);
902  void *IP = 0;
903  SDNode *N = NULL;
904  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
905    if (!VT.isVector())
906      return SDValue(N, 0);
907
908  if (!N) {
909    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
910    CSEMap.InsertNode(N, IP);
911    AllNodes.push_back(N);
912  }
913
914  SDValue Result(N, 0);
915  if (VT.isVector()) {
916    SmallVector<SDValue, 8> Ops;
917    Ops.assign(VT.getVectorNumElements(), Result);
918    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
919  }
920  return Result;
921}
922
923SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
924  return getConstant(Val, TLI.getPointerTy(), isTarget);
925}
926
927
928SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
929  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
930}
931
932SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
933  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
934
935  EVT EltVT = VT.getScalarType();
936
937  // Do the map lookup using the actual bit pattern for the floating point
938  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
939  // we don't have issues with SNANs.
940  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
941  FoldingSetNodeID ID;
942  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
943  ID.AddPointer(&V);
944  void *IP = 0;
945  SDNode *N = NULL;
946  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
947    if (!VT.isVector())
948      return SDValue(N, 0);
949
950  if (!N) {
951    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
952    CSEMap.InsertNode(N, IP);
953    AllNodes.push_back(N);
954  }
955
956  SDValue Result(N, 0);
957  if (VT.isVector()) {
958    SmallVector<SDValue, 8> Ops;
959    Ops.assign(VT.getVectorNumElements(), Result);
960    // FIXME DebugLoc info might be appropriate here
961    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
962  }
963  return Result;
964}
965
966SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
967  EVT EltVT = VT.getScalarType();
968  if (EltVT==MVT::f32)
969    return getConstantFP(APFloat((float)Val), VT, isTarget);
970  else
971    return getConstantFP(APFloat(Val), VT, isTarget);
972}
973
974SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
975                                       EVT VT, int64_t Offset,
976                                       bool isTargetGA,
977                                       unsigned char TargetFlags) {
978  assert((TargetFlags == 0 || isTargetGA) &&
979         "Cannot set target flags on target-independent globals");
980
981  // Truncate (with sign-extension) the offset value to the pointer size.
982  EVT PTy = TLI.getPointerTy();
983  unsigned BitWidth = PTy.getSizeInBits();
984  if (BitWidth < 64)
985    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
986
987  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
988  if (!GVar) {
989    // If GV is an alias then use the aliasee for determining thread-localness.
990    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
991      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
992  }
993
994  unsigned Opc;
995  if (GVar && GVar->isThreadLocal())
996    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
997  else
998    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
999
1000  FoldingSetNodeID ID;
1001  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1002  ID.AddPointer(GV);
1003  ID.AddInteger(Offset);
1004  ID.AddInteger(TargetFlags);
1005  void *IP = 0;
1006  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1007    return SDValue(E, 0);
1008
1009  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1010                                                      Offset, TargetFlags);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDValue(N, 0);
1014}
1015
1016SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1017  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1018  FoldingSetNodeID ID;
1019  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1020  ID.AddInteger(FI);
1021  void *IP = 0;
1022  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1023    return SDValue(E, 0);
1024
1025  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1026  CSEMap.InsertNode(N, IP);
1027  AllNodes.push_back(N);
1028  return SDValue(N, 0);
1029}
1030
1031SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1032                                   unsigned char TargetFlags) {
1033  assert((TargetFlags == 0 || isTarget) &&
1034         "Cannot set target flags on target-independent jump tables");
1035  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1036  FoldingSetNodeID ID;
1037  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1038  ID.AddInteger(JTI);
1039  ID.AddInteger(TargetFlags);
1040  void *IP = 0;
1041  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1042    return SDValue(E, 0);
1043
1044  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1045                                                  TargetFlags);
1046  CSEMap.InsertNode(N, IP);
1047  AllNodes.push_back(N);
1048  return SDValue(N, 0);
1049}
1050
1051SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1052                                      unsigned Alignment, int Offset,
1053                                      bool isTarget,
1054                                      unsigned char TargetFlags) {
1055  assert((TargetFlags == 0 || isTarget) &&
1056         "Cannot set target flags on target-independent globals");
1057  if (Alignment == 0)
1058    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1059  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1060  FoldingSetNodeID ID;
1061  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1062  ID.AddInteger(Alignment);
1063  ID.AddInteger(Offset);
1064  ID.AddPointer(C);
1065  ID.AddInteger(TargetFlags);
1066  void *IP = 0;
1067  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1068    return SDValue(E, 0);
1069
1070  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1071                                                     Alignment, TargetFlags);
1072  CSEMap.InsertNode(N, IP);
1073  AllNodes.push_back(N);
1074  return SDValue(N, 0);
1075}
1076
1077
1078SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1079                                      unsigned Alignment, int Offset,
1080                                      bool isTarget,
1081                                      unsigned char TargetFlags) {
1082  assert((TargetFlags == 0 || isTarget) &&
1083         "Cannot set target flags on target-independent globals");
1084  if (Alignment == 0)
1085    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1086  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1087  FoldingSetNodeID ID;
1088  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1089  ID.AddInteger(Alignment);
1090  ID.AddInteger(Offset);
1091  C->AddSelectionDAGCSEId(ID);
1092  ID.AddInteger(TargetFlags);
1093  void *IP = 0;
1094  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1095    return SDValue(E, 0);
1096
1097  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1098                                                     Alignment, TargetFlags);
1099  CSEMap.InsertNode(N, IP);
1100  AllNodes.push_back(N);
1101  return SDValue(N, 0);
1102}
1103
1104SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1105  FoldingSetNodeID ID;
1106  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1107  ID.AddPointer(MBB);
1108  void *IP = 0;
1109  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1110    return SDValue(E, 0);
1111
1112  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1113  CSEMap.InsertNode(N, IP);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getValueType(EVT VT) {
1119  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1120      ValueTypeNodes.size())
1121    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1122
1123  SDNode *&N = VT.isExtended() ?
1124    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1125
1126  if (N) return SDValue(N, 0);
1127  N = new (NodeAllocator) VTSDNode(VT);
1128  AllNodes.push_back(N);
1129  return SDValue(N, 0);
1130}
1131
1132SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1133  SDNode *&N = ExternalSymbols[Sym];
1134  if (N) return SDValue(N, 0);
1135  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1141                                              unsigned char TargetFlags) {
1142  SDNode *&N =
1143    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1144                                                               TargetFlags)];
1145  if (N) return SDValue(N, 0);
1146  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1147  AllNodes.push_back(N);
1148  return SDValue(N, 0);
1149}
1150
1151SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1152  if ((unsigned)Cond >= CondCodeNodes.size())
1153    CondCodeNodes.resize(Cond+1);
1154
1155  if (CondCodeNodes[Cond] == 0) {
1156    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1157    CondCodeNodes[Cond] = N;
1158    AllNodes.push_back(N);
1159  }
1160
1161  return SDValue(CondCodeNodes[Cond], 0);
1162}
1163
1164// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1165// the shuffle mask M that point at N1 to point at N2, and indices that point
1166// N2 to point at N1.
1167static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1168  std::swap(N1, N2);
1169  int NElts = M.size();
1170  for (int i = 0; i != NElts; ++i) {
1171    if (M[i] >= NElts)
1172      M[i] -= NElts;
1173    else if (M[i] >= 0)
1174      M[i] += NElts;
1175  }
1176}
1177
1178SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1179                                       SDValue N2, const int *Mask) {
1180  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1181  assert(VT.isVector() && N1.getValueType().isVector() &&
1182         "Vector Shuffle VTs must be a vectors");
1183  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1184         && "Vector Shuffle VTs must have same element type");
1185
1186  // Canonicalize shuffle undef, undef -> undef
1187  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1188    return getUNDEF(VT);
1189
1190  // Validate that all indices in Mask are within the range of the elements
1191  // input to the shuffle.
1192  unsigned NElts = VT.getVectorNumElements();
1193  SmallVector<int, 8> MaskVec;
1194  for (unsigned i = 0; i != NElts; ++i) {
1195    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1196    MaskVec.push_back(Mask[i]);
1197  }
1198
1199  // Canonicalize shuffle v, v -> v, undef
1200  if (N1 == N2) {
1201    N2 = getUNDEF(VT);
1202    for (unsigned i = 0; i != NElts; ++i)
1203      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1204  }
1205
1206  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1207  if (N1.getOpcode() == ISD::UNDEF)
1208    commuteShuffle(N1, N2, MaskVec);
1209
1210  // Canonicalize all index into lhs, -> shuffle lhs, undef
1211  // Canonicalize all index into rhs, -> shuffle rhs, undef
1212  bool AllLHS = true, AllRHS = true;
1213  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1214  for (unsigned i = 0; i != NElts; ++i) {
1215    if (MaskVec[i] >= (int)NElts) {
1216      if (N2Undef)
1217        MaskVec[i] = -1;
1218      else
1219        AllLHS = false;
1220    } else if (MaskVec[i] >= 0) {
1221      AllRHS = false;
1222    }
1223  }
1224  if (AllLHS && AllRHS)
1225    return getUNDEF(VT);
1226  if (AllLHS && !N2Undef)
1227    N2 = getUNDEF(VT);
1228  if (AllRHS) {
1229    N1 = getUNDEF(VT);
1230    commuteShuffle(N1, N2, MaskVec);
1231  }
1232
1233  // If Identity shuffle, or all shuffle in to undef, return that node.
1234  bool AllUndef = true;
1235  bool Identity = true;
1236  for (unsigned i = 0; i != NElts; ++i) {
1237    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1238    if (MaskVec[i] >= 0) AllUndef = false;
1239  }
1240  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1241    return N1;
1242  if (AllUndef)
1243    return getUNDEF(VT);
1244
1245  FoldingSetNodeID ID;
1246  SDValue Ops[2] = { N1, N2 };
1247  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1248  for (unsigned i = 0; i != NElts; ++i)
1249    ID.AddInteger(MaskVec[i]);
1250
1251  void* IP = 0;
1252  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1253    return SDValue(E, 0);
1254
1255  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1256  // SDNode doesn't have access to it.  This memory will be "leaked" when
1257  // the node is deallocated, but recovered when the NodeAllocator is released.
1258  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1259  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1260
1261  ShuffleVectorSDNode *N =
1262    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1263  CSEMap.InsertNode(N, IP);
1264  AllNodes.push_back(N);
1265  return SDValue(N, 0);
1266}
1267
1268SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1269                                       SDValue Val, SDValue DTy,
1270                                       SDValue STy, SDValue Rnd, SDValue Sat,
1271                                       ISD::CvtCode Code) {
1272  // If the src and dest types are the same and the conversion is between
1273  // integer types of the same sign or two floats, no conversion is necessary.
1274  if (DTy == STy &&
1275      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1276    return Val;
1277
1278  FoldingSetNodeID ID;
1279  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1280  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1281  void* IP = 0;
1282  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1283    return SDValue(E, 0);
1284
1285  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1286                                                           Code);
1287  CSEMap.InsertNode(N, IP);
1288  AllNodes.push_back(N);
1289  return SDValue(N, 0);
1290}
1291
1292SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1293  FoldingSetNodeID ID;
1294  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1295  ID.AddInteger(RegNo);
1296  void *IP = 0;
1297  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1298    return SDValue(E, 0);
1299
1300  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1301  CSEMap.InsertNode(N, IP);
1302  AllNodes.push_back(N);
1303  return SDValue(N, 0);
1304}
1305
1306SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1307  FoldingSetNodeID ID;
1308  SDValue Ops[] = { Root };
1309  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1310  ID.AddPointer(Label);
1311  void *IP = 0;
1312  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1313    return SDValue(E, 0);
1314
1315  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1316  CSEMap.InsertNode(N, IP);
1317  AllNodes.push_back(N);
1318  return SDValue(N, 0);
1319}
1320
1321
1322SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1323                                      bool isTarget,
1324                                      unsigned char TargetFlags) {
1325  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1326
1327  FoldingSetNodeID ID;
1328  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1329  ID.AddPointer(BA);
1330  ID.AddInteger(TargetFlags);
1331  void *IP = 0;
1332  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1333    return SDValue(E, 0);
1334
1335  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1336  CSEMap.InsertNode(N, IP);
1337  AllNodes.push_back(N);
1338  return SDValue(N, 0);
1339}
1340
1341SDValue SelectionDAG::getSrcValue(const Value *V) {
1342  assert((!V || V->getType()->isPointerTy()) &&
1343         "SrcValue is not a pointer?");
1344
1345  FoldingSetNodeID ID;
1346  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1347  ID.AddPointer(V);
1348
1349  void *IP = 0;
1350  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1351    return SDValue(E, 0);
1352
1353  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1354  CSEMap.InsertNode(N, IP);
1355  AllNodes.push_back(N);
1356  return SDValue(N, 0);
1357}
1358
1359/// getShiftAmountOperand - Return the specified value casted to
1360/// the target's desired shift amount type.
1361SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1362  EVT OpTy = Op.getValueType();
1363  MVT ShTy = TLI.getShiftAmountTy();
1364  if (OpTy == ShTy || OpTy.isVector()) return Op;
1365
1366  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1367  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1368}
1369
1370/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1371/// specified value type.
1372SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1373  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1374  unsigned ByteSize = VT.getStoreSize();
1375  const Type *Ty = VT.getTypeForEVT(*getContext());
1376  unsigned StackAlign =
1377  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1378
1379  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1380  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1381}
1382
1383/// CreateStackTemporary - Create a stack temporary suitable for holding
1384/// either of the specified value types.
1385SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1386  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1387                            VT2.getStoreSizeInBits())/8;
1388  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1389  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1390  const TargetData *TD = TLI.getTargetData();
1391  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1392                            TD->getPrefTypeAlignment(Ty2));
1393
1394  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1395  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1396  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1397}
1398
1399SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1400                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1401  // These setcc operations always fold.
1402  switch (Cond) {
1403  default: break;
1404  case ISD::SETFALSE:
1405  case ISD::SETFALSE2: return getConstant(0, VT);
1406  case ISD::SETTRUE:
1407  case ISD::SETTRUE2:  return getConstant(1, VT);
1408
1409  case ISD::SETOEQ:
1410  case ISD::SETOGT:
1411  case ISD::SETOGE:
1412  case ISD::SETOLT:
1413  case ISD::SETOLE:
1414  case ISD::SETONE:
1415  case ISD::SETO:
1416  case ISD::SETUO:
1417  case ISD::SETUEQ:
1418  case ISD::SETUNE:
1419    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1420    break;
1421  }
1422
1423  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1424    const APInt &C2 = N2C->getAPIntValue();
1425    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1426      const APInt &C1 = N1C->getAPIntValue();
1427
1428      switch (Cond) {
1429      default: llvm_unreachable("Unknown integer setcc!");
1430      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1431      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1432      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1433      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1434      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1435      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1436      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1437      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1438      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1439      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1440      }
1441    }
1442  }
1443  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1444    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1445      // No compile time operations on this type yet.
1446      if (N1C->getValueType(0) == MVT::ppcf128)
1447        return SDValue();
1448
1449      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1450      switch (Cond) {
1451      default: break;
1452      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1453                          return getUNDEF(VT);
1454                        // fall through
1455      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1456      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1457                          return getUNDEF(VT);
1458                        // fall through
1459      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1460                                           R==APFloat::cmpLessThan, VT);
1461      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1462                          return getUNDEF(VT);
1463                        // fall through
1464      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1465      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1466                          return getUNDEF(VT);
1467                        // fall through
1468      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1469      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1470                          return getUNDEF(VT);
1471                        // fall through
1472      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1473                                           R==APFloat::cmpEqual, VT);
1474      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1475                          return getUNDEF(VT);
1476                        // fall through
1477      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1478                                           R==APFloat::cmpEqual, VT);
1479      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1480      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1481      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1482                                           R==APFloat::cmpEqual, VT);
1483      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1484      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1485                                           R==APFloat::cmpLessThan, VT);
1486      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1487                                           R==APFloat::cmpUnordered, VT);
1488      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1489      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1490      }
1491    } else {
1492      // Ensure that the constant occurs on the RHS.
1493      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1494    }
1495  }
1496
1497  // Could not fold it.
1498  return SDValue();
1499}
1500
1501/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1502/// use this predicate to simplify operations downstream.
1503bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1504  // This predicate is not safe for vector operations.
1505  if (Op.getValueType().isVector())
1506    return false;
1507
1508  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1509  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1510}
1511
1512/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1513/// this predicate to simplify operations downstream.  Mask is known to be zero
1514/// for bits that V cannot have.
1515bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1516                                     unsigned Depth) const {
1517  APInt KnownZero, KnownOne;
1518  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1519  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1520  return (KnownZero & Mask) == Mask;
1521}
1522
1523/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1524/// known to be either zero or one and return them in the KnownZero/KnownOne
1525/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1526/// processing.
1527void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1528                                     APInt &KnownZero, APInt &KnownOne,
1529                                     unsigned Depth) const {
1530  unsigned BitWidth = Mask.getBitWidth();
1531  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1532         "Mask size mismatches value type size!");
1533
1534  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1535  if (Depth == 6 || Mask == 0)
1536    return;  // Limit search depth.
1537
1538  APInt KnownZero2, KnownOne2;
1539
1540  switch (Op.getOpcode()) {
1541  case ISD::Constant:
1542    // We know all of the bits for a constant!
1543    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1544    KnownZero = ~KnownOne & Mask;
1545    return;
1546  case ISD::AND:
1547    // If either the LHS or the RHS are Zero, the result is zero.
1548    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1549    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1550                      KnownZero2, KnownOne2, Depth+1);
1551    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1552    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1553
1554    // Output known-1 bits are only known if set in both the LHS & RHS.
1555    KnownOne &= KnownOne2;
1556    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1557    KnownZero |= KnownZero2;
1558    return;
1559  case ISD::OR:
1560    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1561    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1562                      KnownZero2, KnownOne2, Depth+1);
1563    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1564    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1565
1566    // Output known-0 bits are only known if clear in both the LHS & RHS.
1567    KnownZero &= KnownZero2;
1568    // Output known-1 are known to be set if set in either the LHS | RHS.
1569    KnownOne |= KnownOne2;
1570    return;
1571  case ISD::XOR: {
1572    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1573    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1574    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1575    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1576
1577    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1578    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1579    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1580    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1581    KnownZero = KnownZeroOut;
1582    return;
1583  }
1584  case ISD::MUL: {
1585    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1586    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1587    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1588    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1589    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1590
1591    // If low bits are zero in either operand, output low known-0 bits.
1592    // Also compute a conserative estimate for high known-0 bits.
1593    // More trickiness is possible, but this is sufficient for the
1594    // interesting case of alignment computation.
1595    KnownOne.clear();
1596    unsigned TrailZ = KnownZero.countTrailingOnes() +
1597                      KnownZero2.countTrailingOnes();
1598    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1599                               KnownZero2.countLeadingOnes(),
1600                               BitWidth) - BitWidth;
1601
1602    TrailZ = std::min(TrailZ, BitWidth);
1603    LeadZ = std::min(LeadZ, BitWidth);
1604    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1605                APInt::getHighBitsSet(BitWidth, LeadZ);
1606    KnownZero &= Mask;
1607    return;
1608  }
1609  case ISD::UDIV: {
1610    // For the purposes of computing leading zeros we can conservatively
1611    // treat a udiv as a logical right shift by the power of 2 known to
1612    // be less than the denominator.
1613    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1614    ComputeMaskedBits(Op.getOperand(0),
1615                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1616    unsigned LeadZ = KnownZero2.countLeadingOnes();
1617
1618    KnownOne2.clear();
1619    KnownZero2.clear();
1620    ComputeMaskedBits(Op.getOperand(1),
1621                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1622    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1623    if (RHSUnknownLeadingOnes != BitWidth)
1624      LeadZ = std::min(BitWidth,
1625                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1626
1627    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1628    return;
1629  }
1630  case ISD::SELECT:
1631    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1632    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1633    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1634    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1635
1636    // Only known if known in both the LHS and RHS.
1637    KnownOne &= KnownOne2;
1638    KnownZero &= KnownZero2;
1639    return;
1640  case ISD::SELECT_CC:
1641    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1642    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1643    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1644    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1645
1646    // Only known if known in both the LHS and RHS.
1647    KnownOne &= KnownOne2;
1648    KnownZero &= KnownZero2;
1649    return;
1650  case ISD::SADDO:
1651  case ISD::UADDO:
1652  case ISD::SSUBO:
1653  case ISD::USUBO:
1654  case ISD::SMULO:
1655  case ISD::UMULO:
1656    if (Op.getResNo() != 1)
1657      return;
1658    // The boolean result conforms to getBooleanContents.  Fall through.
1659  case ISD::SETCC:
1660    // If we know the result of a setcc has the top bits zero, use this info.
1661    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1662        BitWidth > 1)
1663      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1664    return;
1665  case ISD::SHL:
1666    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1667    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1668      unsigned ShAmt = SA->getZExtValue();
1669
1670      // If the shift count is an invalid immediate, don't do anything.
1671      if (ShAmt >= BitWidth)
1672        return;
1673
1674      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1675                        KnownZero, KnownOne, Depth+1);
1676      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1677      KnownZero <<= ShAmt;
1678      KnownOne  <<= ShAmt;
1679      // low bits known zero.
1680      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1681    }
1682    return;
1683  case ISD::SRL:
1684    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1685    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1686      unsigned ShAmt = SA->getZExtValue();
1687
1688      // If the shift count is an invalid immediate, don't do anything.
1689      if (ShAmt >= BitWidth)
1690        return;
1691
1692      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1693                        KnownZero, KnownOne, Depth+1);
1694      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1695      KnownZero = KnownZero.lshr(ShAmt);
1696      KnownOne  = KnownOne.lshr(ShAmt);
1697
1698      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1699      KnownZero |= HighBits;  // High bits known zero.
1700    }
1701    return;
1702  case ISD::SRA:
1703    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1704      unsigned ShAmt = SA->getZExtValue();
1705
1706      // If the shift count is an invalid immediate, don't do anything.
1707      if (ShAmt >= BitWidth)
1708        return;
1709
1710      APInt InDemandedMask = (Mask << ShAmt);
1711      // If any of the demanded bits are produced by the sign extension, we also
1712      // demand the input sign bit.
1713      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1714      if (HighBits.getBoolValue())
1715        InDemandedMask |= APInt::getSignBit(BitWidth);
1716
1717      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1718                        Depth+1);
1719      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1720      KnownZero = KnownZero.lshr(ShAmt);
1721      KnownOne  = KnownOne.lshr(ShAmt);
1722
1723      // Handle the sign bits.
1724      APInt SignBit = APInt::getSignBit(BitWidth);
1725      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1726
1727      if (KnownZero.intersects(SignBit)) {
1728        KnownZero |= HighBits;  // New bits are known zero.
1729      } else if (KnownOne.intersects(SignBit)) {
1730        KnownOne  |= HighBits;  // New bits are known one.
1731      }
1732    }
1733    return;
1734  case ISD::SIGN_EXTEND_INREG: {
1735    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1736    unsigned EBits = EVT.getScalarType().getSizeInBits();
1737
1738    // Sign extension.  Compute the demanded bits in the result that are not
1739    // present in the input.
1740    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1741
1742    APInt InSignBit = APInt::getSignBit(EBits);
1743    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1744
1745    // If the sign extended bits are demanded, we know that the sign
1746    // bit is demanded.
1747    InSignBit.zext(BitWidth);
1748    if (NewBits.getBoolValue())
1749      InputDemandedBits |= InSignBit;
1750
1751    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1752                      KnownZero, KnownOne, Depth+1);
1753    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1754
1755    // If the sign bit of the input is known set or clear, then we know the
1756    // top bits of the result.
1757    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1758      KnownZero |= NewBits;
1759      KnownOne  &= ~NewBits;
1760    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1761      KnownOne  |= NewBits;
1762      KnownZero &= ~NewBits;
1763    } else {                              // Input sign bit unknown
1764      KnownZero &= ~NewBits;
1765      KnownOne  &= ~NewBits;
1766    }
1767    return;
1768  }
1769  case ISD::CTTZ:
1770  case ISD::CTLZ:
1771  case ISD::CTPOP: {
1772    unsigned LowBits = Log2_32(BitWidth)+1;
1773    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1774    KnownOne.clear();
1775    return;
1776  }
1777  case ISD::LOAD: {
1778    if (ISD::isZEXTLoad(Op.getNode())) {
1779      LoadSDNode *LD = cast<LoadSDNode>(Op);
1780      EVT VT = LD->getMemoryVT();
1781      unsigned MemBits = VT.getScalarType().getSizeInBits();
1782      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1783    }
1784    return;
1785  }
1786  case ISD::ZERO_EXTEND: {
1787    EVT InVT = Op.getOperand(0).getValueType();
1788    unsigned InBits = InVT.getScalarType().getSizeInBits();
1789    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1790    APInt InMask    = Mask;
1791    InMask.trunc(InBits);
1792    KnownZero.trunc(InBits);
1793    KnownOne.trunc(InBits);
1794    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1795    KnownZero.zext(BitWidth);
1796    KnownOne.zext(BitWidth);
1797    KnownZero |= NewBits;
1798    return;
1799  }
1800  case ISD::SIGN_EXTEND: {
1801    EVT InVT = Op.getOperand(0).getValueType();
1802    unsigned InBits = InVT.getScalarType().getSizeInBits();
1803    APInt InSignBit = APInt::getSignBit(InBits);
1804    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1805    APInt InMask = Mask;
1806    InMask.trunc(InBits);
1807
1808    // If any of the sign extended bits are demanded, we know that the sign
1809    // bit is demanded. Temporarily set this bit in the mask for our callee.
1810    if (NewBits.getBoolValue())
1811      InMask |= InSignBit;
1812
1813    KnownZero.trunc(InBits);
1814    KnownOne.trunc(InBits);
1815    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1816
1817    // Note if the sign bit is known to be zero or one.
1818    bool SignBitKnownZero = KnownZero.isNegative();
1819    bool SignBitKnownOne  = KnownOne.isNegative();
1820    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1821           "Sign bit can't be known to be both zero and one!");
1822
1823    // If the sign bit wasn't actually demanded by our caller, we don't
1824    // want it set in the KnownZero and KnownOne result values. Reset the
1825    // mask and reapply it to the result values.
1826    InMask = Mask;
1827    InMask.trunc(InBits);
1828    KnownZero &= InMask;
1829    KnownOne  &= InMask;
1830
1831    KnownZero.zext(BitWidth);
1832    KnownOne.zext(BitWidth);
1833
1834    // If the sign bit is known zero or one, the top bits match.
1835    if (SignBitKnownZero)
1836      KnownZero |= NewBits;
1837    else if (SignBitKnownOne)
1838      KnownOne  |= NewBits;
1839    return;
1840  }
1841  case ISD::ANY_EXTEND: {
1842    EVT InVT = Op.getOperand(0).getValueType();
1843    unsigned InBits = InVT.getScalarType().getSizeInBits();
1844    APInt InMask = Mask;
1845    InMask.trunc(InBits);
1846    KnownZero.trunc(InBits);
1847    KnownOne.trunc(InBits);
1848    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1849    KnownZero.zext(BitWidth);
1850    KnownOne.zext(BitWidth);
1851    return;
1852  }
1853  case ISD::TRUNCATE: {
1854    EVT InVT = Op.getOperand(0).getValueType();
1855    unsigned InBits = InVT.getScalarType().getSizeInBits();
1856    APInt InMask = Mask;
1857    InMask.zext(InBits);
1858    KnownZero.zext(InBits);
1859    KnownOne.zext(InBits);
1860    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1861    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1862    KnownZero.trunc(BitWidth);
1863    KnownOne.trunc(BitWidth);
1864    break;
1865  }
1866  case ISD::AssertZext: {
1867    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1868    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1869    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1870                      KnownOne, Depth+1);
1871    KnownZero |= (~InMask) & Mask;
1872    return;
1873  }
1874  case ISD::FGETSIGN:
1875    // All bits are zero except the low bit.
1876    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1877    return;
1878
1879  case ISD::SUB: {
1880    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1881      // We know that the top bits of C-X are clear if X contains less bits
1882      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1883      // positive if we can prove that X is >= 0 and < 16.
1884      if (CLHS->getAPIntValue().isNonNegative()) {
1885        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1886        // NLZ can't be BitWidth with no sign bit
1887        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1888        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1889                          Depth+1);
1890
1891        // If all of the MaskV bits are known to be zero, then we know the
1892        // output top bits are zero, because we now know that the output is
1893        // from [0-C].
1894        if ((KnownZero2 & MaskV) == MaskV) {
1895          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1896          // Top bits known zero.
1897          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1898        }
1899      }
1900    }
1901  }
1902  // fall through
1903  case ISD::ADD: {
1904    // Output known-0 bits are known if clear or set in both the low clear bits
1905    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1906    // low 3 bits clear.
1907    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1908    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1909    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1910    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1911
1912    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1913    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1914    KnownZeroOut = std::min(KnownZeroOut,
1915                            KnownZero2.countTrailingOnes());
1916
1917    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1918    return;
1919  }
1920  case ISD::SREM:
1921    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1922      const APInt &RA = Rem->getAPIntValue().abs();
1923      if (RA.isPowerOf2()) {
1924        APInt LowBits = RA - 1;
1925        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1926        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1927
1928        // The low bits of the first operand are unchanged by the srem.
1929        KnownZero = KnownZero2 & LowBits;
1930        KnownOne = KnownOne2 & LowBits;
1931
1932        // If the first operand is non-negative or has all low bits zero, then
1933        // the upper bits are all zero.
1934        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1935          KnownZero |= ~LowBits;
1936
1937        // If the first operand is negative and not all low bits are zero, then
1938        // the upper bits are all one.
1939        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1940          KnownOne |= ~LowBits;
1941
1942        KnownZero &= Mask;
1943        KnownOne &= Mask;
1944
1945        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1946      }
1947    }
1948    return;
1949  case ISD::UREM: {
1950    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1951      const APInt &RA = Rem->getAPIntValue();
1952      if (RA.isPowerOf2()) {
1953        APInt LowBits = (RA - 1);
1954        APInt Mask2 = LowBits & Mask;
1955        KnownZero |= ~LowBits & Mask;
1956        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1957        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1958        break;
1959      }
1960    }
1961
1962    // Since the result is less than or equal to either operand, any leading
1963    // zero bits in either operand must also exist in the result.
1964    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1965    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1966                      Depth+1);
1967    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1968                      Depth+1);
1969
1970    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1971                                KnownZero2.countLeadingOnes());
1972    KnownOne.clear();
1973    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1974    return;
1975  }
1976  default:
1977    // Allow the target to implement this method for its nodes.
1978    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1979  case ISD::INTRINSIC_WO_CHAIN:
1980  case ISD::INTRINSIC_W_CHAIN:
1981  case ISD::INTRINSIC_VOID:
1982      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1983                                         Depth);
1984    }
1985    return;
1986  }
1987}
1988
1989/// ComputeNumSignBits - Return the number of times the sign bit of the
1990/// register is replicated into the other bits.  We know that at least 1 bit
1991/// is always equal to the sign bit (itself), but other cases can give us
1992/// information.  For example, immediately after an "SRA X, 2", we know that
1993/// the top 3 bits are all equal to each other, so we return 3.
1994unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1995  EVT VT = Op.getValueType();
1996  assert(VT.isInteger() && "Invalid VT!");
1997  unsigned VTBits = VT.getScalarType().getSizeInBits();
1998  unsigned Tmp, Tmp2;
1999  unsigned FirstAnswer = 1;
2000
2001  if (Depth == 6)
2002    return 1;  // Limit search depth.
2003
2004  switch (Op.getOpcode()) {
2005  default: break;
2006  case ISD::AssertSext:
2007    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2008    return VTBits-Tmp+1;
2009  case ISD::AssertZext:
2010    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2011    return VTBits-Tmp;
2012
2013  case ISD::Constant: {
2014    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2015    // If negative, return # leading ones.
2016    if (Val.isNegative())
2017      return Val.countLeadingOnes();
2018
2019    // Return # leading zeros.
2020    return Val.countLeadingZeros();
2021  }
2022
2023  case ISD::SIGN_EXTEND:
2024    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2025    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2026
2027  case ISD::SIGN_EXTEND_INREG:
2028    // Max of the input and what this extends.
2029    Tmp =
2030      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2031    Tmp = VTBits-Tmp+1;
2032
2033    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2034    return std::max(Tmp, Tmp2);
2035
2036  case ISD::SRA:
2037    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2038    // SRA X, C   -> adds C sign bits.
2039    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2040      Tmp += C->getZExtValue();
2041      if (Tmp > VTBits) Tmp = VTBits;
2042    }
2043    return Tmp;
2044  case ISD::SHL:
2045    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2046      // shl destroys sign bits.
2047      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2048      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2049          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2050      return Tmp - C->getZExtValue();
2051    }
2052    break;
2053  case ISD::AND:
2054  case ISD::OR:
2055  case ISD::XOR:    // NOT is handled here.
2056    // Logical binary ops preserve the number of sign bits at the worst.
2057    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2058    if (Tmp != 1) {
2059      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2060      FirstAnswer = std::min(Tmp, Tmp2);
2061      // We computed what we know about the sign bits as our first
2062      // answer. Now proceed to the generic code that uses
2063      // ComputeMaskedBits, and pick whichever answer is better.
2064    }
2065    break;
2066
2067  case ISD::SELECT:
2068    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2069    if (Tmp == 1) return 1;  // Early out.
2070    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2071    return std::min(Tmp, Tmp2);
2072
2073  case ISD::SADDO:
2074  case ISD::UADDO:
2075  case ISD::SSUBO:
2076  case ISD::USUBO:
2077  case ISD::SMULO:
2078  case ISD::UMULO:
2079    if (Op.getResNo() != 1)
2080      break;
2081    // The boolean result conforms to getBooleanContents.  Fall through.
2082  case ISD::SETCC:
2083    // If setcc returns 0/-1, all bits are sign bits.
2084    if (TLI.getBooleanContents() ==
2085        TargetLowering::ZeroOrNegativeOneBooleanContent)
2086      return VTBits;
2087    break;
2088  case ISD::ROTL:
2089  case ISD::ROTR:
2090    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2091      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2092
2093      // Handle rotate right by N like a rotate left by 32-N.
2094      if (Op.getOpcode() == ISD::ROTR)
2095        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2096
2097      // If we aren't rotating out all of the known-in sign bits, return the
2098      // number that are left.  This handles rotl(sext(x), 1) for example.
2099      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2100      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2101    }
2102    break;
2103  case ISD::ADD:
2104    // Add can have at most one carry bit.  Thus we know that the output
2105    // is, at worst, one more bit than the inputs.
2106    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2107    if (Tmp == 1) return 1;  // Early out.
2108
2109    // Special case decrementing a value (ADD X, -1):
2110    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2111      if (CRHS->isAllOnesValue()) {
2112        APInt KnownZero, KnownOne;
2113        APInt Mask = APInt::getAllOnesValue(VTBits);
2114        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2115
2116        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2117        // sign bits set.
2118        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2119          return VTBits;
2120
2121        // If we are subtracting one from a positive number, there is no carry
2122        // out of the result.
2123        if (KnownZero.isNegative())
2124          return Tmp;
2125      }
2126
2127    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2128    if (Tmp2 == 1) return 1;
2129      return std::min(Tmp, Tmp2)-1;
2130    break;
2131
2132  case ISD::SUB:
2133    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2134    if (Tmp2 == 1) return 1;
2135
2136    // Handle NEG.
2137    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2138      if (CLHS->isNullValue()) {
2139        APInt KnownZero, KnownOne;
2140        APInt Mask = APInt::getAllOnesValue(VTBits);
2141        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2142        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2143        // sign bits set.
2144        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2145          return VTBits;
2146
2147        // If the input is known to be positive (the sign bit is known clear),
2148        // the output of the NEG has the same number of sign bits as the input.
2149        if (KnownZero.isNegative())
2150          return Tmp2;
2151
2152        // Otherwise, we treat this like a SUB.
2153      }
2154
2155    // Sub can have at most one carry bit.  Thus we know that the output
2156    // is, at worst, one more bit than the inputs.
2157    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2158    if (Tmp == 1) return 1;  // Early out.
2159      return std::min(Tmp, Tmp2)-1;
2160    break;
2161  case ISD::TRUNCATE:
2162    // FIXME: it's tricky to do anything useful for this, but it is an important
2163    // case for targets like X86.
2164    break;
2165  }
2166
2167  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2168  if (Op.getOpcode() == ISD::LOAD) {
2169    LoadSDNode *LD = cast<LoadSDNode>(Op);
2170    unsigned ExtType = LD->getExtensionType();
2171    switch (ExtType) {
2172    default: break;
2173    case ISD::SEXTLOAD:    // '17' bits known
2174      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2175      return VTBits-Tmp+1;
2176    case ISD::ZEXTLOAD:    // '16' bits known
2177      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2178      return VTBits-Tmp;
2179    }
2180  }
2181
2182  // Allow the target to implement this method for its nodes.
2183  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2184      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2185      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2186      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2187    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2188    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2189  }
2190
2191  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2192  // use this information.
2193  APInt KnownZero, KnownOne;
2194  APInt Mask = APInt::getAllOnesValue(VTBits);
2195  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2196
2197  if (KnownZero.isNegative()) {        // sign bit is 0
2198    Mask = KnownZero;
2199  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2200    Mask = KnownOne;
2201  } else {
2202    // Nothing known.
2203    return FirstAnswer;
2204  }
2205
2206  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2207  // the number of identical bits in the top of the input value.
2208  Mask = ~Mask;
2209  Mask <<= Mask.getBitWidth()-VTBits;
2210  // Return # leading zeros.  We use 'min' here in case Val was zero before
2211  // shifting.  We don't want to return '64' as for an i32 "0".
2212  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2213}
2214
2215bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2216  // If we're told that NaNs won't happen, assume they won't.
2217  if (FiniteOnlyFPMath())
2218    return true;
2219
2220  // If the value is a constant, we can obviously see if it is a NaN or not.
2221  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2222    return !C->getValueAPF().isNaN();
2223
2224  // TODO: Recognize more cases here.
2225
2226  return false;
2227}
2228
2229bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2230  // If the value is a constant, we can obviously see if it is a zero or not.
2231  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2232    return !C->isZero();
2233
2234  // TODO: Recognize more cases here.
2235
2236  return false;
2237}
2238
2239bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2240  // Check the obvious case.
2241  if (A == B) return true;
2242
2243  // For for negative and positive zero.
2244  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2245    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2246      if (CA->isZero() && CB->isZero()) return true;
2247
2248  // Otherwise they may not be equal.
2249  return false;
2250}
2251
2252bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2253  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2254  if (!GA) return false;
2255  if (GA->getOffset() != 0) return false;
2256  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2257  if (!GV) return false;
2258  return MF->getMMI().hasDebugInfo();
2259}
2260
2261
2262/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2263/// element of the result of the vector shuffle.
2264SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2265                                          unsigned i) {
2266  EVT VT = N->getValueType(0);
2267  DebugLoc dl = N->getDebugLoc();
2268  if (N->getMaskElt(i) < 0)
2269    return getUNDEF(VT.getVectorElementType());
2270  unsigned Index = N->getMaskElt(i);
2271  unsigned NumElems = VT.getVectorNumElements();
2272  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2273  Index %= NumElems;
2274
2275  if (V.getOpcode() == ISD::BIT_CONVERT) {
2276    V = V.getOperand(0);
2277    EVT VVT = V.getValueType();
2278    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2279      return SDValue();
2280  }
2281  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2282    return (Index == 0) ? V.getOperand(0)
2283                      : getUNDEF(VT.getVectorElementType());
2284  if (V.getOpcode() == ISD::BUILD_VECTOR)
2285    return V.getOperand(Index);
2286  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2287    return getShuffleScalarElt(SVN, Index);
2288  return SDValue();
2289}
2290
2291
2292/// getNode - Gets or creates the specified node.
2293///
2294SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2295  FoldingSetNodeID ID;
2296  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2297  void *IP = 0;
2298  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2299    return SDValue(E, 0);
2300
2301  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2302  CSEMap.InsertNode(N, IP);
2303
2304  AllNodes.push_back(N);
2305#ifndef NDEBUG
2306  VerifyNode(N);
2307#endif
2308  return SDValue(N, 0);
2309}
2310
2311SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2312                              EVT VT, SDValue Operand) {
2313  // Constant fold unary operations with an integer constant operand.
2314  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2315    const APInt &Val = C->getAPIntValue();
2316    switch (Opcode) {
2317    default: break;
2318    case ISD::SIGN_EXTEND:
2319      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2320    case ISD::ANY_EXTEND:
2321    case ISD::ZERO_EXTEND:
2322    case ISD::TRUNCATE:
2323      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2324    case ISD::UINT_TO_FP:
2325    case ISD::SINT_TO_FP: {
2326      const uint64_t zero[] = {0, 0};
2327      // No compile time operations on ppcf128.
2328      if (VT == MVT::ppcf128) break;
2329      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2330      (void)apf.convertFromAPInt(Val,
2331                                 Opcode==ISD::SINT_TO_FP,
2332                                 APFloat::rmNearestTiesToEven);
2333      return getConstantFP(apf, VT);
2334    }
2335    case ISD::BIT_CONVERT:
2336      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2337        return getConstantFP(Val.bitsToFloat(), VT);
2338      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2339        return getConstantFP(Val.bitsToDouble(), VT);
2340      break;
2341    case ISD::BSWAP:
2342      return getConstant(Val.byteSwap(), VT);
2343    case ISD::CTPOP:
2344      return getConstant(Val.countPopulation(), VT);
2345    case ISD::CTLZ:
2346      return getConstant(Val.countLeadingZeros(), VT);
2347    case ISD::CTTZ:
2348      return getConstant(Val.countTrailingZeros(), VT);
2349    }
2350  }
2351
2352  // Constant fold unary operations with a floating point constant operand.
2353  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2354    APFloat V = C->getValueAPF();    // make copy
2355    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2356      switch (Opcode) {
2357      case ISD::FNEG:
2358        V.changeSign();
2359        return getConstantFP(V, VT);
2360      case ISD::FABS:
2361        V.clearSign();
2362        return getConstantFP(V, VT);
2363      case ISD::FP_ROUND:
2364      case ISD::FP_EXTEND: {
2365        bool ignored;
2366        // This can return overflow, underflow, or inexact; we don't care.
2367        // FIXME need to be more flexible about rounding mode.
2368        (void)V.convert(*EVTToAPFloatSemantics(VT),
2369                        APFloat::rmNearestTiesToEven, &ignored);
2370        return getConstantFP(V, VT);
2371      }
2372      case ISD::FP_TO_SINT:
2373      case ISD::FP_TO_UINT: {
2374        integerPart x[2];
2375        bool ignored;
2376        assert(integerPartWidth >= 64);
2377        // FIXME need to be more flexible about rounding mode.
2378        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2379                              Opcode==ISD::FP_TO_SINT,
2380                              APFloat::rmTowardZero, &ignored);
2381        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2382          break;
2383        APInt api(VT.getSizeInBits(), 2, x);
2384        return getConstant(api, VT);
2385      }
2386      case ISD::BIT_CONVERT:
2387        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2388          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2389        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2390          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2391        break;
2392      }
2393    }
2394  }
2395
2396  unsigned OpOpcode = Operand.getNode()->getOpcode();
2397  switch (Opcode) {
2398  case ISD::TokenFactor:
2399  case ISD::MERGE_VALUES:
2400  case ISD::CONCAT_VECTORS:
2401    return Operand;         // Factor, merge or concat of one node?  No need.
2402  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2403  case ISD::FP_EXTEND:
2404    assert(VT.isFloatingPoint() &&
2405           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2406    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2407    assert((!VT.isVector() ||
2408            VT.getVectorNumElements() ==
2409            Operand.getValueType().getVectorNumElements()) &&
2410           "Vector element count mismatch!");
2411    if (Operand.getOpcode() == ISD::UNDEF)
2412      return getUNDEF(VT);
2413    break;
2414  case ISD::SIGN_EXTEND:
2415    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2416           "Invalid SIGN_EXTEND!");
2417    if (Operand.getValueType() == VT) return Operand;   // noop extension
2418    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2419           "Invalid sext node, dst < src!");
2420    assert((!VT.isVector() ||
2421            VT.getVectorNumElements() ==
2422            Operand.getValueType().getVectorNumElements()) &&
2423           "Vector element count mismatch!");
2424    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2425      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2426    break;
2427  case ISD::ZERO_EXTEND:
2428    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2429           "Invalid ZERO_EXTEND!");
2430    if (Operand.getValueType() == VT) return Operand;   // noop extension
2431    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2432           "Invalid zext node, dst < src!");
2433    assert((!VT.isVector() ||
2434            VT.getVectorNumElements() ==
2435            Operand.getValueType().getVectorNumElements()) &&
2436           "Vector element count mismatch!");
2437    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2438      return getNode(ISD::ZERO_EXTEND, DL, VT,
2439                     Operand.getNode()->getOperand(0));
2440    break;
2441  case ISD::ANY_EXTEND:
2442    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2443           "Invalid ANY_EXTEND!");
2444    if (Operand.getValueType() == VT) return Operand;   // noop extension
2445    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2446           "Invalid anyext node, dst < src!");
2447    assert((!VT.isVector() ||
2448            VT.getVectorNumElements() ==
2449            Operand.getValueType().getVectorNumElements()) &&
2450           "Vector element count mismatch!");
2451    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2452      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2453      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2454    break;
2455  case ISD::TRUNCATE:
2456    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2457           "Invalid TRUNCATE!");
2458    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2459    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2460           "Invalid truncate node, src < dst!");
2461    assert((!VT.isVector() ||
2462            VT.getVectorNumElements() ==
2463            Operand.getValueType().getVectorNumElements()) &&
2464           "Vector element count mismatch!");
2465    if (OpOpcode == ISD::TRUNCATE)
2466      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2467    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2468             OpOpcode == ISD::ANY_EXTEND) {
2469      // If the source is smaller than the dest, we still need an extend.
2470      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2471            .bitsLT(VT.getScalarType()))
2472        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2473      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2474        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2475      else
2476        return Operand.getNode()->getOperand(0);
2477    }
2478    break;
2479  case ISD::BIT_CONVERT:
2480    // Basic sanity checking.
2481    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2482           && "Cannot BIT_CONVERT between types of different sizes!");
2483    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2484    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2485      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2486    if (OpOpcode == ISD::UNDEF)
2487      return getUNDEF(VT);
2488    break;
2489  case ISD::SCALAR_TO_VECTOR:
2490    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2491           (VT.getVectorElementType() == Operand.getValueType() ||
2492            (VT.getVectorElementType().isInteger() &&
2493             Operand.getValueType().isInteger() &&
2494             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2495           "Illegal SCALAR_TO_VECTOR node!");
2496    if (OpOpcode == ISD::UNDEF)
2497      return getUNDEF(VT);
2498    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2499    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2500        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2501        Operand.getConstantOperandVal(1) == 0 &&
2502        Operand.getOperand(0).getValueType() == VT)
2503      return Operand.getOperand(0);
2504    break;
2505  case ISD::FNEG:
2506    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2507    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2508      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2509                     Operand.getNode()->getOperand(0));
2510    if (OpOpcode == ISD::FNEG)  // --X -> X
2511      return Operand.getNode()->getOperand(0);
2512    break;
2513  case ISD::FABS:
2514    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2515      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2516    break;
2517  }
2518
2519  SDNode *N;
2520  SDVTList VTs = getVTList(VT);
2521  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2522    FoldingSetNodeID ID;
2523    SDValue Ops[1] = { Operand };
2524    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2525    void *IP = 0;
2526    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2527      return SDValue(E, 0);
2528
2529    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2530    CSEMap.InsertNode(N, IP);
2531  } else {
2532    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2533  }
2534
2535  AllNodes.push_back(N);
2536#ifndef NDEBUG
2537  VerifyNode(N);
2538#endif
2539  return SDValue(N, 0);
2540}
2541
2542SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2543                                             EVT VT,
2544                                             ConstantSDNode *Cst1,
2545                                             ConstantSDNode *Cst2) {
2546  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2547
2548  switch (Opcode) {
2549  case ISD::ADD:  return getConstant(C1 + C2, VT);
2550  case ISD::SUB:  return getConstant(C1 - C2, VT);
2551  case ISD::MUL:  return getConstant(C1 * C2, VT);
2552  case ISD::UDIV:
2553    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2554    break;
2555  case ISD::UREM:
2556    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2557    break;
2558  case ISD::SDIV:
2559    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2560    break;
2561  case ISD::SREM:
2562    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2563    break;
2564  case ISD::AND:  return getConstant(C1 & C2, VT);
2565  case ISD::OR:   return getConstant(C1 | C2, VT);
2566  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2567  case ISD::SHL:  return getConstant(C1 << C2, VT);
2568  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2569  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2570  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2571  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2572  default: break;
2573  }
2574
2575  return SDValue();
2576}
2577
2578SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2579                              SDValue N1, SDValue N2) {
2580  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2581  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2582  switch (Opcode) {
2583  default: break;
2584  case ISD::TokenFactor:
2585    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2586           N2.getValueType() == MVT::Other && "Invalid token factor!");
2587    // Fold trivial token factors.
2588    if (N1.getOpcode() == ISD::EntryToken) return N2;
2589    if (N2.getOpcode() == ISD::EntryToken) return N1;
2590    if (N1 == N2) return N1;
2591    break;
2592  case ISD::CONCAT_VECTORS:
2593    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2594    // one big BUILD_VECTOR.
2595    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2596        N2.getOpcode() == ISD::BUILD_VECTOR) {
2597      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2598      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2599      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2600    }
2601    break;
2602  case ISD::AND:
2603    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2604           N1.getValueType() == VT && "Binary operator types must match!");
2605    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2606    // worth handling here.
2607    if (N2C && N2C->isNullValue())
2608      return N2;
2609    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2610      return N1;
2611    break;
2612  case ISD::OR:
2613  case ISD::XOR:
2614  case ISD::ADD:
2615  case ISD::SUB:
2616    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2617           N1.getValueType() == VT && "Binary operator types must match!");
2618    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2619    // it's worth handling here.
2620    if (N2C && N2C->isNullValue())
2621      return N1;
2622    break;
2623  case ISD::UDIV:
2624  case ISD::UREM:
2625  case ISD::MULHU:
2626  case ISD::MULHS:
2627  case ISD::MUL:
2628  case ISD::SDIV:
2629  case ISD::SREM:
2630    assert(VT.isInteger() && "This operator does not apply to FP types!");
2631    // fall through
2632  case ISD::FADD:
2633  case ISD::FSUB:
2634  case ISD::FMUL:
2635  case ISD::FDIV:
2636  case ISD::FREM:
2637    if (UnsafeFPMath) {
2638      if (Opcode == ISD::FADD) {
2639        // 0+x --> x
2640        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2641          if (CFP->getValueAPF().isZero())
2642            return N2;
2643        // x+0 --> x
2644        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2645          if (CFP->getValueAPF().isZero())
2646            return N1;
2647      } else if (Opcode == ISD::FSUB) {
2648        // x-0 --> x
2649        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2650          if (CFP->getValueAPF().isZero())
2651            return N1;
2652      }
2653    }
2654    assert(N1.getValueType() == N2.getValueType() &&
2655           N1.getValueType() == VT && "Binary operator types must match!");
2656    break;
2657  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2658    assert(N1.getValueType() == VT &&
2659           N1.getValueType().isFloatingPoint() &&
2660           N2.getValueType().isFloatingPoint() &&
2661           "Invalid FCOPYSIGN!");
2662    break;
2663  case ISD::SHL:
2664  case ISD::SRA:
2665  case ISD::SRL:
2666  case ISD::ROTL:
2667  case ISD::ROTR:
2668    assert(VT == N1.getValueType() &&
2669           "Shift operators return type must be the same as their first arg");
2670    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2671           "Shifts only work on integers");
2672
2673    // Always fold shifts of i1 values so the code generator doesn't need to
2674    // handle them.  Since we know the size of the shift has to be less than the
2675    // size of the value, the shift/rotate count is guaranteed to be zero.
2676    if (VT == MVT::i1)
2677      return N1;
2678    if (N2C && N2C->isNullValue())
2679      return N1;
2680    break;
2681  case ISD::FP_ROUND_INREG: {
2682    EVT EVT = cast<VTSDNode>(N2)->getVT();
2683    assert(VT == N1.getValueType() && "Not an inreg round!");
2684    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2685           "Cannot FP_ROUND_INREG integer types");
2686    assert(EVT.isVector() == VT.isVector() &&
2687           "FP_ROUND_INREG type should be vector iff the operand "
2688           "type is vector!");
2689    assert((!EVT.isVector() ||
2690            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2691           "Vector element counts must match in FP_ROUND_INREG");
2692    assert(EVT.bitsLE(VT) && "Not rounding down!");
2693    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2694    break;
2695  }
2696  case ISD::FP_ROUND:
2697    assert(VT.isFloatingPoint() &&
2698           N1.getValueType().isFloatingPoint() &&
2699           VT.bitsLE(N1.getValueType()) &&
2700           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2701    if (N1.getValueType() == VT) return N1;  // noop conversion.
2702    break;
2703  case ISD::AssertSext:
2704  case ISD::AssertZext: {
2705    EVT EVT = cast<VTSDNode>(N2)->getVT();
2706    assert(VT == N1.getValueType() && "Not an inreg extend!");
2707    assert(VT.isInteger() && EVT.isInteger() &&
2708           "Cannot *_EXTEND_INREG FP types");
2709    assert(!EVT.isVector() &&
2710           "AssertSExt/AssertZExt type should be the vector element type "
2711           "rather than the vector type!");
2712    assert(EVT.bitsLE(VT) && "Not extending!");
2713    if (VT == EVT) return N1; // noop assertion.
2714    break;
2715  }
2716  case ISD::SIGN_EXTEND_INREG: {
2717    EVT EVT = cast<VTSDNode>(N2)->getVT();
2718    assert(VT == N1.getValueType() && "Not an inreg extend!");
2719    assert(VT.isInteger() && EVT.isInteger() &&
2720           "Cannot *_EXTEND_INREG FP types");
2721    assert(EVT.isVector() == VT.isVector() &&
2722           "SIGN_EXTEND_INREG type should be vector iff the operand "
2723           "type is vector!");
2724    assert((!EVT.isVector() ||
2725            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2726           "Vector element counts must match in SIGN_EXTEND_INREG");
2727    assert(EVT.bitsLE(VT) && "Not extending!");
2728    if (EVT == VT) return N1;  // Not actually extending
2729
2730    if (N1C) {
2731      APInt Val = N1C->getAPIntValue();
2732      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2733      Val <<= Val.getBitWidth()-FromBits;
2734      Val = Val.ashr(Val.getBitWidth()-FromBits);
2735      return getConstant(Val, VT);
2736    }
2737    break;
2738  }
2739  case ISD::EXTRACT_VECTOR_ELT:
2740    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2741    if (N1.getOpcode() == ISD::UNDEF)
2742      return getUNDEF(VT);
2743
2744    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2745    // expanding copies of large vectors from registers.
2746    if (N2C &&
2747        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2748        N1.getNumOperands() > 0) {
2749      unsigned Factor =
2750        N1.getOperand(0).getValueType().getVectorNumElements();
2751      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2752                     N1.getOperand(N2C->getZExtValue() / Factor),
2753                     getConstant(N2C->getZExtValue() % Factor,
2754                                 N2.getValueType()));
2755    }
2756
2757    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2758    // expanding large vector constants.
2759    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2760      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2761      EVT VEltTy = N1.getValueType().getVectorElementType();
2762      if (Elt.getValueType() != VEltTy) {
2763        // If the vector element type is not legal, the BUILD_VECTOR operands
2764        // are promoted and implicitly truncated.  Make that explicit here.
2765        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2766      }
2767      if (VT != VEltTy) {
2768        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2769        // result is implicitly extended.
2770        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2771      }
2772      return Elt;
2773    }
2774
2775    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2776    // operations are lowered to scalars.
2777    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2778      // If the indices are the same, return the inserted element else
2779      // if the indices are known different, extract the element from
2780      // the original vector.
2781      if (N1.getOperand(2) == N2) {
2782        if (VT == N1.getOperand(1).getValueType())
2783          return N1.getOperand(1);
2784        else
2785          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2786      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2787                 isa<ConstantSDNode>(N2))
2788        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2789    }
2790    break;
2791  case ISD::EXTRACT_ELEMENT:
2792    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2793    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2794           (N1.getValueType().isInteger() == VT.isInteger()) &&
2795           "Wrong types for EXTRACT_ELEMENT!");
2796
2797    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2798    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2799    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2800    if (N1.getOpcode() == ISD::BUILD_PAIR)
2801      return N1.getOperand(N2C->getZExtValue());
2802
2803    // EXTRACT_ELEMENT of a constant int is also very common.
2804    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2805      unsigned ElementSize = VT.getSizeInBits();
2806      unsigned Shift = ElementSize * N2C->getZExtValue();
2807      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2808      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2809    }
2810    break;
2811  case ISD::EXTRACT_SUBVECTOR:
2812    if (N1.getValueType() == VT) // Trivial extraction.
2813      return N1;
2814    break;
2815  }
2816
2817  if (N1C) {
2818    if (N2C) {
2819      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2820      if (SV.getNode()) return SV;
2821    } else {      // Cannonicalize constant to RHS if commutative
2822      if (isCommutativeBinOp(Opcode)) {
2823        std::swap(N1C, N2C);
2824        std::swap(N1, N2);
2825      }
2826    }
2827  }
2828
2829  // Constant fold FP operations.
2830  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2831  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2832  if (N1CFP) {
2833    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2834      // Cannonicalize constant to RHS if commutative
2835      std::swap(N1CFP, N2CFP);
2836      std::swap(N1, N2);
2837    } else if (N2CFP && VT != MVT::ppcf128) {
2838      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2839      APFloat::opStatus s;
2840      switch (Opcode) {
2841      case ISD::FADD:
2842        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2843        if (s != APFloat::opInvalidOp)
2844          return getConstantFP(V1, VT);
2845        break;
2846      case ISD::FSUB:
2847        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2848        if (s!=APFloat::opInvalidOp)
2849          return getConstantFP(V1, VT);
2850        break;
2851      case ISD::FMUL:
2852        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2853        if (s!=APFloat::opInvalidOp)
2854          return getConstantFP(V1, VT);
2855        break;
2856      case ISD::FDIV:
2857        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2858        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2859          return getConstantFP(V1, VT);
2860        break;
2861      case ISD::FREM :
2862        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2863        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2864          return getConstantFP(V1, VT);
2865        break;
2866      case ISD::FCOPYSIGN:
2867        V1.copySign(V2);
2868        return getConstantFP(V1, VT);
2869      default: break;
2870      }
2871    }
2872  }
2873
2874  // Canonicalize an UNDEF to the RHS, even over a constant.
2875  if (N1.getOpcode() == ISD::UNDEF) {
2876    if (isCommutativeBinOp(Opcode)) {
2877      std::swap(N1, N2);
2878    } else {
2879      switch (Opcode) {
2880      case ISD::FP_ROUND_INREG:
2881      case ISD::SIGN_EXTEND_INREG:
2882      case ISD::SUB:
2883      case ISD::FSUB:
2884      case ISD::FDIV:
2885      case ISD::FREM:
2886      case ISD::SRA:
2887        return N1;     // fold op(undef, arg2) -> undef
2888      case ISD::UDIV:
2889      case ISD::SDIV:
2890      case ISD::UREM:
2891      case ISD::SREM:
2892      case ISD::SRL:
2893      case ISD::SHL:
2894        if (!VT.isVector())
2895          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2896        // For vectors, we can't easily build an all zero vector, just return
2897        // the LHS.
2898        return N2;
2899      }
2900    }
2901  }
2902
2903  // Fold a bunch of operators when the RHS is undef.
2904  if (N2.getOpcode() == ISD::UNDEF) {
2905    switch (Opcode) {
2906    case ISD::XOR:
2907      if (N1.getOpcode() == ISD::UNDEF)
2908        // Handle undef ^ undef -> 0 special case. This is a common
2909        // idiom (misuse).
2910        return getConstant(0, VT);
2911      // fallthrough
2912    case ISD::ADD:
2913    case ISD::ADDC:
2914    case ISD::ADDE:
2915    case ISD::SUB:
2916    case ISD::UDIV:
2917    case ISD::SDIV:
2918    case ISD::UREM:
2919    case ISD::SREM:
2920      return N2;       // fold op(arg1, undef) -> undef
2921    case ISD::FADD:
2922    case ISD::FSUB:
2923    case ISD::FMUL:
2924    case ISD::FDIV:
2925    case ISD::FREM:
2926      if (UnsafeFPMath)
2927        return N2;
2928      break;
2929    case ISD::MUL:
2930    case ISD::AND:
2931    case ISD::SRL:
2932    case ISD::SHL:
2933      if (!VT.isVector())
2934        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2935      // For vectors, we can't easily build an all zero vector, just return
2936      // the LHS.
2937      return N1;
2938    case ISD::OR:
2939      if (!VT.isVector())
2940        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2941      // For vectors, we can't easily build an all one vector, just return
2942      // the LHS.
2943      return N1;
2944    case ISD::SRA:
2945      return N1;
2946    }
2947  }
2948
2949  // Memoize this node if possible.
2950  SDNode *N;
2951  SDVTList VTs = getVTList(VT);
2952  if (VT != MVT::Flag) {
2953    SDValue Ops[] = { N1, N2 };
2954    FoldingSetNodeID ID;
2955    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2956    void *IP = 0;
2957    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2958      return SDValue(E, 0);
2959
2960    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2961    CSEMap.InsertNode(N, IP);
2962  } else {
2963    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2964  }
2965
2966  AllNodes.push_back(N);
2967#ifndef NDEBUG
2968  VerifyNode(N);
2969#endif
2970  return SDValue(N, 0);
2971}
2972
2973SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2974                              SDValue N1, SDValue N2, SDValue N3) {
2975  // Perform various simplifications.
2976  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2977  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2978  switch (Opcode) {
2979  case ISD::CONCAT_VECTORS:
2980    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2981    // one big BUILD_VECTOR.
2982    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2983        N2.getOpcode() == ISD::BUILD_VECTOR &&
2984        N3.getOpcode() == ISD::BUILD_VECTOR) {
2985      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2986      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2987      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2988      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2989    }
2990    break;
2991  case ISD::SETCC: {
2992    // Use FoldSetCC to simplify SETCC's.
2993    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2994    if (Simp.getNode()) return Simp;
2995    break;
2996  }
2997  case ISD::SELECT:
2998    if (N1C) {
2999     if (N1C->getZExtValue())
3000        return N2;             // select true, X, Y -> X
3001      else
3002        return N3;             // select false, X, Y -> Y
3003    }
3004
3005    if (N2 == N3) return N2;   // select C, X, X -> X
3006    break;
3007  case ISD::BRCOND:
3008    if (N2C) {
3009      if (N2C->getZExtValue()) // Unconditional branch
3010        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3011      else
3012        return N1;         // Never-taken branch
3013    }
3014    break;
3015  case ISD::VECTOR_SHUFFLE:
3016    llvm_unreachable("should use getVectorShuffle constructor!");
3017    break;
3018  case ISD::BIT_CONVERT:
3019    // Fold bit_convert nodes from a type to themselves.
3020    if (N1.getValueType() == VT)
3021      return N1;
3022    break;
3023  }
3024
3025  // Memoize node if it doesn't produce a flag.
3026  SDNode *N;
3027  SDVTList VTs = getVTList(VT);
3028  if (VT != MVT::Flag) {
3029    SDValue Ops[] = { N1, N2, N3 };
3030    FoldingSetNodeID ID;
3031    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3032    void *IP = 0;
3033    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3034      return SDValue(E, 0);
3035
3036    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3037    CSEMap.InsertNode(N, IP);
3038  } else {
3039    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3040  }
3041
3042  AllNodes.push_back(N);
3043#ifndef NDEBUG
3044  VerifyNode(N);
3045#endif
3046  return SDValue(N, 0);
3047}
3048
3049SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3050                              SDValue N1, SDValue N2, SDValue N3,
3051                              SDValue N4) {
3052  SDValue Ops[] = { N1, N2, N3, N4 };
3053  return getNode(Opcode, DL, VT, Ops, 4);
3054}
3055
3056SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3057                              SDValue N1, SDValue N2, SDValue N3,
3058                              SDValue N4, SDValue N5) {
3059  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3060  return getNode(Opcode, DL, VT, Ops, 5);
3061}
3062
3063/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3064/// the incoming stack arguments to be loaded from the stack.
3065SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3066  SmallVector<SDValue, 8> ArgChains;
3067
3068  // Include the original chain at the beginning of the list. When this is
3069  // used by target LowerCall hooks, this helps legalize find the
3070  // CALLSEQ_BEGIN node.
3071  ArgChains.push_back(Chain);
3072
3073  // Add a chain value for each stack argument.
3074  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3075       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3076    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3077      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3078        if (FI->getIndex() < 0)
3079          ArgChains.push_back(SDValue(L, 1));
3080
3081  // Build a tokenfactor for all the chains.
3082  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3083                 &ArgChains[0], ArgChains.size());
3084}
3085
3086/// getMemsetValue - Vectorized representation of the memset value
3087/// operand.
3088static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3089                              DebugLoc dl) {
3090  assert(Value.getOpcode() != ISD::UNDEF);
3091
3092  unsigned NumBits = VT.getScalarType().getSizeInBits();
3093  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3094    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3095    unsigned Shift = 8;
3096    for (unsigned i = NumBits; i > 8; i >>= 1) {
3097      Val = (Val << Shift) | Val;
3098      Shift <<= 1;
3099    }
3100    if (VT.isInteger())
3101      return DAG.getConstant(Val, VT);
3102    return DAG.getConstantFP(APFloat(Val), VT);
3103  }
3104
3105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3106  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3107  unsigned Shift = 8;
3108  for (unsigned i = NumBits; i > 8; i >>= 1) {
3109    Value = DAG.getNode(ISD::OR, dl, VT,
3110                        DAG.getNode(ISD::SHL, dl, VT, Value,
3111                                    DAG.getConstant(Shift,
3112                                                    TLI.getShiftAmountTy())),
3113                        Value);
3114    Shift <<= 1;
3115  }
3116
3117  return Value;
3118}
3119
3120/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3121/// used when a memcpy is turned into a memset when the source is a constant
3122/// string ptr.
3123static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3124                                  const TargetLowering &TLI,
3125                                  std::string &Str, unsigned Offset) {
3126  // Handle vector with all elements zero.
3127  if (Str.empty()) {
3128    if (VT.isInteger())
3129      return DAG.getConstant(0, VT);
3130    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3131             VT.getSimpleVT().SimpleTy == MVT::f64)
3132      return DAG.getConstantFP(0.0, VT);
3133    else if (VT.isVector()) {
3134      unsigned NumElts = VT.getVectorNumElements();
3135      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3136      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3137                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3138                                                             EltVT, NumElts)));
3139    } else
3140      llvm_unreachable("Expected type!");
3141  }
3142
3143  assert(!VT.isVector() && "Can't handle vector type here!");
3144  unsigned NumBits = VT.getSizeInBits();
3145  unsigned MSB = NumBits / 8;
3146  uint64_t Val = 0;
3147  if (TLI.isLittleEndian())
3148    Offset = Offset + MSB - 1;
3149  for (unsigned i = 0; i != MSB; ++i) {
3150    Val = (Val << 8) | (unsigned char)Str[Offset];
3151    Offset += TLI.isLittleEndian() ? -1 : 1;
3152  }
3153  return DAG.getConstant(Val, VT);
3154}
3155
3156/// getMemBasePlusOffset - Returns base and offset node for the
3157///
3158static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3159                                      SelectionDAG &DAG) {
3160  EVT VT = Base.getValueType();
3161  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3162                     VT, Base, DAG.getConstant(Offset, VT));
3163}
3164
3165/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3166///
3167static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3168  unsigned SrcDelta = 0;
3169  GlobalAddressSDNode *G = NULL;
3170  if (Src.getOpcode() == ISD::GlobalAddress)
3171    G = cast<GlobalAddressSDNode>(Src);
3172  else if (Src.getOpcode() == ISD::ADD &&
3173           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3174           Src.getOperand(1).getOpcode() == ISD::Constant) {
3175    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3176    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3177  }
3178  if (!G)
3179    return false;
3180
3181  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3182  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3183    return true;
3184
3185  return false;
3186}
3187
3188/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3189/// to replace the memset / memcpy. Return true if the number of memory ops
3190/// is below the threshold. It returns the types of the sequence of
3191/// memory ops to perform memset / memcpy by reference.
3192static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3193                                     unsigned Limit, uint64_t Size,
3194                                     unsigned DstAlign, unsigned SrcAlign,
3195                                     bool NonScalarIntSafe,
3196                                     SelectionDAG &DAG,
3197                                     const TargetLowering &TLI) {
3198  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3199         "Expecting memcpy / memset source to meet alignment requirement!");
3200  // If 'SrcAlign' is zero, that means the memory operation does not need load
3201  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3202  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3203  // specified alignment of the memory operation. If it is zero, that means
3204  // it's possible to change the alignment of the destination.
3205  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3206                                   NonScalarIntSafe, DAG);
3207
3208  if (VT == MVT::Other) {
3209    VT = TLI.getPointerTy();
3210    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3211    if (DstAlign >= TLI.getTargetData()->getABITypeAlignment(Ty) ||
3212        TLI.allowsUnalignedMemoryAccesses(VT)) {
3213      VT = MVT::i64;
3214    } else {
3215      switch (DstAlign & 7) {
3216      case 0:  VT = MVT::i64; break;
3217      case 4:  VT = MVT::i32; break;
3218      case 2:  VT = MVT::i16; break;
3219      default: VT = MVT::i8;  break;
3220      }
3221    }
3222
3223    MVT LVT = MVT::i64;
3224    while (!TLI.isTypeLegal(LVT))
3225      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3226    assert(LVT.isInteger());
3227
3228    if (VT.bitsGT(LVT))
3229      VT = LVT;
3230  }
3231
3232  unsigned NumMemOps = 0;
3233  while (Size != 0) {
3234    unsigned VTSize = VT.getSizeInBits() / 8;
3235    while (VTSize > Size) {
3236      // For now, only use non-vector load / store's for the left-over pieces.
3237      if (VT.isVector() || VT.isFloatingPoint()) {
3238        VT = MVT::i64;
3239        while (!TLI.isTypeLegal(VT))
3240          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3241        VTSize = VT.getSizeInBits() / 8;
3242      } else {
3243        // This can result in a type that is not legal on the target, e.g.
3244        // 1 or 2 bytes on PPC.
3245        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3246        VTSize >>= 1;
3247      }
3248    }
3249
3250    if (++NumMemOps > Limit)
3251      return false;
3252    MemOps.push_back(VT);
3253    Size -= VTSize;
3254  }
3255
3256  return true;
3257}
3258
3259static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3260                                       SDValue Chain, SDValue Dst,
3261                                       SDValue Src, uint64_t Size,
3262                                       unsigned Align, bool isVol,
3263                                       bool AlwaysInline,
3264                                       const Value *DstSV, uint64_t DstSVOff,
3265                                       const Value *SrcSV, uint64_t SrcSVOff) {
3266  // Turn a memcpy of undef to nop.
3267  if (Src.getOpcode() == ISD::UNDEF)
3268    return Chain;
3269
3270  // Expand memcpy to a series of load and store ops if the size operand falls
3271  // below a certain threshold.
3272  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3273  std::vector<EVT> MemOps;
3274  uint64_t Limit = -1ULL;
3275  if (!AlwaysInline)
3276    Limit = TLI.getMaxStoresPerMemcpy();
3277  bool DstAlignCanChange = false;
3278  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3279  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3280  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3281    DstAlignCanChange = true;
3282  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3283  if (Align > SrcAlign)
3284    SrcAlign = Align;
3285  std::string Str;
3286  bool CopyFromStr = isMemSrcFromString(Src, Str);
3287  bool isZeroStr = CopyFromStr && Str.empty();
3288  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3289                                (DstAlignCanChange ? 0 : Align),
3290                                (isZeroStr ? 0 : SrcAlign), true, DAG, TLI))
3291    return SDValue();
3292
3293  if (DstAlignCanChange) {
3294    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3295    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3296    if (NewAlign > Align) {
3297      // Give the stack frame object a larger alignment if needed.
3298      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3299        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3300      Align = NewAlign;
3301    }
3302  }
3303
3304  SmallVector<SDValue, 8> OutChains;
3305  unsigned NumMemOps = MemOps.size();
3306  uint64_t SrcOff = 0, DstOff = 0;
3307  for (unsigned i = 0; i != NumMemOps; ++i) {
3308    EVT VT = MemOps[i];
3309    unsigned VTSize = VT.getSizeInBits() / 8;
3310    SDValue Value, Store;
3311
3312    if (CopyFromStr &&
3313        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3314      // It's unlikely a store of a vector immediate can be done in a single
3315      // instruction. It would require a load from a constantpool first.
3316      // We only handle zero vectors here.
3317      // FIXME: Handle other cases where store of vector immediate is done in
3318      // a single instruction.
3319      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3320      Store = DAG.getStore(Chain, dl, Value,
3321                           getMemBasePlusOffset(Dst, DstOff, DAG),
3322                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3323    } else {
3324      // The type might not be legal for the target.  This should only happen
3325      // if the type is smaller than a legal type, as on PPC, so the right
3326      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3327      // to Load/Store if NVT==VT.
3328      // FIXME does the case above also need this?
3329      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3330      assert(NVT.bitsGE(VT));
3331      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3332                             getMemBasePlusOffset(Src, SrcOff, DAG),
3333                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3334                             MinAlign(SrcAlign, SrcOff));
3335      Store = DAG.getTruncStore(Chain, dl, Value,
3336                                getMemBasePlusOffset(Dst, DstOff, DAG),
3337                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3338                                Align);
3339    }
3340    OutChains.push_back(Store);
3341    SrcOff += VTSize;
3342    DstOff += VTSize;
3343  }
3344
3345  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3346                     &OutChains[0], OutChains.size());
3347}
3348
3349static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3350                                        SDValue Chain, SDValue Dst,
3351                                        SDValue Src, uint64_t Size,
3352                                        unsigned Align,  bool isVol,
3353                                        bool AlwaysInline,
3354                                        const Value *DstSV, uint64_t DstSVOff,
3355                                        const Value *SrcSV, uint64_t SrcSVOff) {
3356  // Turn a memmove of undef to nop.
3357  if (Src.getOpcode() == ISD::UNDEF)
3358    return Chain;
3359
3360  // Expand memmove to a series of load and store ops if the size operand falls
3361  // below a certain threshold.
3362  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3363  std::vector<EVT> MemOps;
3364  uint64_t Limit = -1ULL;
3365  if (!AlwaysInline)
3366    Limit = TLI.getMaxStoresPerMemmove();
3367  bool DstAlignCanChange = false;
3368  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3369  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3370  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3371    DstAlignCanChange = true;
3372  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3373  if (Align > SrcAlign)
3374    SrcAlign = Align;
3375
3376  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3377                                (DstAlignCanChange ? 0 : Align),
3378                                SrcAlign, true, DAG, TLI))
3379    return SDValue();
3380
3381  if (DstAlignCanChange) {
3382    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3383    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3384    if (NewAlign > Align) {
3385      // Give the stack frame object a larger alignment if needed.
3386      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3387        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3388      Align = NewAlign;
3389    }
3390  }
3391
3392  uint64_t SrcOff = 0, DstOff = 0;
3393  SmallVector<SDValue, 8> LoadValues;
3394  SmallVector<SDValue, 8> LoadChains;
3395  SmallVector<SDValue, 8> OutChains;
3396  unsigned NumMemOps = MemOps.size();
3397  for (unsigned i = 0; i < NumMemOps; i++) {
3398    EVT VT = MemOps[i];
3399    unsigned VTSize = VT.getSizeInBits() / 8;
3400    SDValue Value, Store;
3401
3402    Value = DAG.getLoad(VT, dl, Chain,
3403                        getMemBasePlusOffset(Src, SrcOff, DAG),
3404                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3405    LoadValues.push_back(Value);
3406    LoadChains.push_back(Value.getValue(1));
3407    SrcOff += VTSize;
3408  }
3409  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3410                      &LoadChains[0], LoadChains.size());
3411  OutChains.clear();
3412  for (unsigned i = 0; i < NumMemOps; i++) {
3413    EVT VT = MemOps[i];
3414    unsigned VTSize = VT.getSizeInBits() / 8;
3415    SDValue Value, Store;
3416
3417    Store = DAG.getStore(Chain, dl, LoadValues[i],
3418                         getMemBasePlusOffset(Dst, DstOff, DAG),
3419                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3420    OutChains.push_back(Store);
3421    DstOff += VTSize;
3422  }
3423
3424  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3425                     &OutChains[0], OutChains.size());
3426}
3427
3428static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3429                               SDValue Chain, SDValue Dst,
3430                               SDValue Src, uint64_t Size,
3431                               unsigned Align, bool isVol,
3432                               const Value *DstSV, uint64_t DstSVOff) {
3433  // Turn a memset of undef to nop.
3434  if (Src.getOpcode() == ISD::UNDEF)
3435    return Chain;
3436
3437  // Expand memset to a series of load/store ops if the size operand
3438  // falls below a certain threshold.
3439  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3440  std::vector<EVT> MemOps;
3441  bool DstAlignCanChange = false;
3442  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3443  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3444  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3445    DstAlignCanChange = true;
3446  bool NonScalarIntSafe =
3447    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3448  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3449                                Size, (DstAlignCanChange ? 0 : Align), 0,
3450                                NonScalarIntSafe, DAG, TLI))
3451    return SDValue();
3452
3453  if (DstAlignCanChange) {
3454    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3455    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3456    if (NewAlign > Align) {
3457      // Give the stack frame object a larger alignment if needed.
3458      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3459        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3460      Align = NewAlign;
3461    }
3462  }
3463
3464  SmallVector<SDValue, 8> OutChains;
3465  uint64_t DstOff = 0;
3466  unsigned NumMemOps = MemOps.size();
3467  for (unsigned i = 0; i < NumMemOps; i++) {
3468    EVT VT = MemOps[i];
3469    unsigned VTSize = VT.getSizeInBits() / 8;
3470    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3471    SDValue Store = DAG.getStore(Chain, dl, Value,
3472                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3473                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3474    OutChains.push_back(Store);
3475    DstOff += VTSize;
3476  }
3477
3478  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3479                     &OutChains[0], OutChains.size());
3480}
3481
3482SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3483                                SDValue Src, SDValue Size,
3484                                unsigned Align, bool isVol, bool AlwaysInline,
3485                                const Value *DstSV, uint64_t DstSVOff,
3486                                const Value *SrcSV, uint64_t SrcSVOff) {
3487
3488  // Check to see if we should lower the memcpy to loads and stores first.
3489  // For cases within the target-specified limits, this is the best choice.
3490  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3491  if (ConstantSize) {
3492    // Memcpy with size zero? Just return the original chain.
3493    if (ConstantSize->isNullValue())
3494      return Chain;
3495
3496    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3497                                             ConstantSize->getZExtValue(),Align,
3498                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3499    if (Result.getNode())
3500      return Result;
3501  }
3502
3503  // Then check to see if we should lower the memcpy with target-specific
3504  // code. If the target chooses to do this, this is the next best.
3505  SDValue Result =
3506    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3507                                isVol, AlwaysInline,
3508                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3509  if (Result.getNode())
3510    return Result;
3511
3512  // If we really need inline code and the target declined to provide it,
3513  // use a (potentially long) sequence of loads and stores.
3514  if (AlwaysInline) {
3515    assert(ConstantSize && "AlwaysInline requires a constant size!");
3516    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3517                                   ConstantSize->getZExtValue(), Align, isVol,
3518                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3519  }
3520
3521  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3522  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3523  // respect volatile, so they may do things like read or write memory
3524  // beyond the given memory regions. But fixing this isn't easy, and most
3525  // people don't care.
3526
3527  // Emit a library call.
3528  TargetLowering::ArgListTy Args;
3529  TargetLowering::ArgListEntry Entry;
3530  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3531  Entry.Node = Dst; Args.push_back(Entry);
3532  Entry.Node = Src; Args.push_back(Entry);
3533  Entry.Node = Size; Args.push_back(Entry);
3534  // FIXME: pass in DebugLoc
3535  std::pair<SDValue,SDValue> CallResult =
3536    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3537                    false, false, false, false, 0,
3538                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3539                    /*isReturnValueUsed=*/false,
3540                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3541                                      TLI.getPointerTy()),
3542                    Args, *this, dl);
3543  return CallResult.second;
3544}
3545
3546SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3547                                 SDValue Src, SDValue Size,
3548                                 unsigned Align, bool isVol,
3549                                 const Value *DstSV, uint64_t DstSVOff,
3550                                 const Value *SrcSV, uint64_t SrcSVOff) {
3551
3552  // Check to see if we should lower the memmove to loads and stores first.
3553  // For cases within the target-specified limits, this is the best choice.
3554  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3555  if (ConstantSize) {
3556    // Memmove with size zero? Just return the original chain.
3557    if (ConstantSize->isNullValue())
3558      return Chain;
3559
3560    SDValue Result =
3561      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3562                               ConstantSize->getZExtValue(), Align, isVol,
3563                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3564    if (Result.getNode())
3565      return Result;
3566  }
3567
3568  // Then check to see if we should lower the memmove with target-specific
3569  // code. If the target chooses to do this, this is the next best.
3570  SDValue Result =
3571    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3572                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3573  if (Result.getNode())
3574    return Result;
3575
3576  // Emit a library call.
3577  assert(!isVol && "library memmove does not support volatile");
3578  TargetLowering::ArgListTy Args;
3579  TargetLowering::ArgListEntry Entry;
3580  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3581  Entry.Node = Dst; Args.push_back(Entry);
3582  Entry.Node = Src; Args.push_back(Entry);
3583  Entry.Node = Size; Args.push_back(Entry);
3584  // FIXME:  pass in DebugLoc
3585  std::pair<SDValue,SDValue> CallResult =
3586    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3587                    false, false, false, false, 0,
3588                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3589                    /*isReturnValueUsed=*/false,
3590                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3591                                      TLI.getPointerTy()),
3592                    Args, *this, dl);
3593  return CallResult.second;
3594}
3595
3596SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3597                                SDValue Src, SDValue Size,
3598                                unsigned Align, bool isVol,
3599                                const Value *DstSV, uint64_t DstSVOff) {
3600
3601  // Check to see if we should lower the memset to stores first.
3602  // For cases within the target-specified limits, this is the best choice.
3603  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3604  if (ConstantSize) {
3605    // Memset with size zero? Just return the original chain.
3606    if (ConstantSize->isNullValue())
3607      return Chain;
3608
3609    SDValue Result =
3610      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3611                      Align, isVol, DstSV, DstSVOff);
3612
3613    if (Result.getNode())
3614      return Result;
3615  }
3616
3617  // Then check to see if we should lower the memset with target-specific
3618  // code. If the target chooses to do this, this is the next best.
3619  SDValue Result =
3620    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3621                                DstSV, DstSVOff);
3622  if (Result.getNode())
3623    return Result;
3624
3625  // Emit a library call.
3626  assert(!isVol && "library memset does not support volatile");
3627  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3628  TargetLowering::ArgListTy Args;
3629  TargetLowering::ArgListEntry Entry;
3630  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3631  Args.push_back(Entry);
3632  // Extend or truncate the argument to be an i32 value for the call.
3633  if (Src.getValueType().bitsGT(MVT::i32))
3634    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3635  else
3636    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3637  Entry.Node = Src;
3638  Entry.Ty = Type::getInt32Ty(*getContext());
3639  Entry.isSExt = true;
3640  Args.push_back(Entry);
3641  Entry.Node = Size;
3642  Entry.Ty = IntPtrTy;
3643  Entry.isSExt = false;
3644  Args.push_back(Entry);
3645  // FIXME: pass in DebugLoc
3646  std::pair<SDValue,SDValue> CallResult =
3647    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3648                    false, false, false, false, 0,
3649                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3650                    /*isReturnValueUsed=*/false,
3651                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3652                                      TLI.getPointerTy()),
3653                    Args, *this, dl);
3654  return CallResult.second;
3655}
3656
3657SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3658                                SDValue Chain,
3659                                SDValue Ptr, SDValue Cmp,
3660                                SDValue Swp, const Value* PtrVal,
3661                                unsigned Alignment) {
3662  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3663    Alignment = getEVTAlignment(MemVT);
3664
3665  // Check if the memory reference references a frame index
3666  if (!PtrVal)
3667    if (const FrameIndexSDNode *FI =
3668          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3669      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3670
3671  MachineFunction &MF = getMachineFunction();
3672  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3673
3674  // For now, atomics are considered to be volatile always.
3675  Flags |= MachineMemOperand::MOVolatile;
3676
3677  MachineMemOperand *MMO =
3678    MF.getMachineMemOperand(PtrVal, Flags, 0,
3679                            MemVT.getStoreSize(), Alignment);
3680
3681  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3682}
3683
3684SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3685                                SDValue Chain,
3686                                SDValue Ptr, SDValue Cmp,
3687                                SDValue Swp, MachineMemOperand *MMO) {
3688  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3689  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3690
3691  EVT VT = Cmp.getValueType();
3692
3693  SDVTList VTs = getVTList(VT, MVT::Other);
3694  FoldingSetNodeID ID;
3695  ID.AddInteger(MemVT.getRawBits());
3696  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3697  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3698  void* IP = 0;
3699  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3700    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3701    return SDValue(E, 0);
3702  }
3703  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3704                                               Ptr, Cmp, Swp, MMO);
3705  CSEMap.InsertNode(N, IP);
3706  AllNodes.push_back(N);
3707  return SDValue(N, 0);
3708}
3709
3710SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3711                                SDValue Chain,
3712                                SDValue Ptr, SDValue Val,
3713                                const Value* PtrVal,
3714                                unsigned Alignment) {
3715  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3716    Alignment = getEVTAlignment(MemVT);
3717
3718  // Check if the memory reference references a frame index
3719  if (!PtrVal)
3720    if (const FrameIndexSDNode *FI =
3721          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3722      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3723
3724  MachineFunction &MF = getMachineFunction();
3725  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3726
3727  // For now, atomics are considered to be volatile always.
3728  Flags |= MachineMemOperand::MOVolatile;
3729
3730  MachineMemOperand *MMO =
3731    MF.getMachineMemOperand(PtrVal, Flags, 0,
3732                            MemVT.getStoreSize(), Alignment);
3733
3734  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3735}
3736
3737SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3738                                SDValue Chain,
3739                                SDValue Ptr, SDValue Val,
3740                                MachineMemOperand *MMO) {
3741  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3742          Opcode == ISD::ATOMIC_LOAD_SUB ||
3743          Opcode == ISD::ATOMIC_LOAD_AND ||
3744          Opcode == ISD::ATOMIC_LOAD_OR ||
3745          Opcode == ISD::ATOMIC_LOAD_XOR ||
3746          Opcode == ISD::ATOMIC_LOAD_NAND ||
3747          Opcode == ISD::ATOMIC_LOAD_MIN ||
3748          Opcode == ISD::ATOMIC_LOAD_MAX ||
3749          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3750          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3751          Opcode == ISD::ATOMIC_SWAP) &&
3752         "Invalid Atomic Op");
3753
3754  EVT VT = Val.getValueType();
3755
3756  SDVTList VTs = getVTList(VT, MVT::Other);
3757  FoldingSetNodeID ID;
3758  ID.AddInteger(MemVT.getRawBits());
3759  SDValue Ops[] = {Chain, Ptr, Val};
3760  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3761  void* IP = 0;
3762  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3763    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3764    return SDValue(E, 0);
3765  }
3766  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3767                                               Ptr, Val, MMO);
3768  CSEMap.InsertNode(N, IP);
3769  AllNodes.push_back(N);
3770  return SDValue(N, 0);
3771}
3772
3773/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3774/// Allowed to return something different (and simpler) if Simplify is true.
3775SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3776                                     DebugLoc dl) {
3777  if (NumOps == 1)
3778    return Ops[0];
3779
3780  SmallVector<EVT, 4> VTs;
3781  VTs.reserve(NumOps);
3782  for (unsigned i = 0; i < NumOps; ++i)
3783    VTs.push_back(Ops[i].getValueType());
3784  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3785                 Ops, NumOps);
3786}
3787
3788SDValue
3789SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3790                                  const EVT *VTs, unsigned NumVTs,
3791                                  const SDValue *Ops, unsigned NumOps,
3792                                  EVT MemVT, const Value *srcValue, int SVOff,
3793                                  unsigned Align, bool Vol,
3794                                  bool ReadMem, bool WriteMem) {
3795  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3796                             MemVT, srcValue, SVOff, Align, Vol,
3797                             ReadMem, WriteMem);
3798}
3799
3800SDValue
3801SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3802                                  const SDValue *Ops, unsigned NumOps,
3803                                  EVT MemVT, const Value *srcValue, int SVOff,
3804                                  unsigned Align, bool Vol,
3805                                  bool ReadMem, bool WriteMem) {
3806  if (Align == 0)  // Ensure that codegen never sees alignment 0
3807    Align = getEVTAlignment(MemVT);
3808
3809  MachineFunction &MF = getMachineFunction();
3810  unsigned Flags = 0;
3811  if (WriteMem)
3812    Flags |= MachineMemOperand::MOStore;
3813  if (ReadMem)
3814    Flags |= MachineMemOperand::MOLoad;
3815  if (Vol)
3816    Flags |= MachineMemOperand::MOVolatile;
3817  MachineMemOperand *MMO =
3818    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3819                            MemVT.getStoreSize(), Align);
3820
3821  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3822}
3823
3824SDValue
3825SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3826                                  const SDValue *Ops, unsigned NumOps,
3827                                  EVT MemVT, MachineMemOperand *MMO) {
3828  assert((Opcode == ISD::INTRINSIC_VOID ||
3829          Opcode == ISD::INTRINSIC_W_CHAIN ||
3830          (Opcode <= INT_MAX &&
3831           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3832         "Opcode is not a memory-accessing opcode!");
3833
3834  // Memoize the node unless it returns a flag.
3835  MemIntrinsicSDNode *N;
3836  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3837    FoldingSetNodeID ID;
3838    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3839    void *IP = 0;
3840    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3841      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3842      return SDValue(E, 0);
3843    }
3844
3845    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3846                                               MemVT, MMO);
3847    CSEMap.InsertNode(N, IP);
3848  } else {
3849    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3850                                               MemVT, MMO);
3851  }
3852  AllNodes.push_back(N);
3853  return SDValue(N, 0);
3854}
3855
3856SDValue
3857SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3858                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3859                      SDValue Ptr, SDValue Offset,
3860                      const Value *SV, int SVOffset, EVT MemVT,
3861                      bool isVolatile, bool isNonTemporal,
3862                      unsigned Alignment) {
3863  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3864    Alignment = getEVTAlignment(VT);
3865
3866  // Check if the memory reference references a frame index
3867  if (!SV)
3868    if (const FrameIndexSDNode *FI =
3869          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3870      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3871
3872  MachineFunction &MF = getMachineFunction();
3873  unsigned Flags = MachineMemOperand::MOLoad;
3874  if (isVolatile)
3875    Flags |= MachineMemOperand::MOVolatile;
3876  if (isNonTemporal)
3877    Flags |= MachineMemOperand::MONonTemporal;
3878  MachineMemOperand *MMO =
3879    MF.getMachineMemOperand(SV, Flags, SVOffset,
3880                            MemVT.getStoreSize(), Alignment);
3881  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3882}
3883
3884SDValue
3885SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3886                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3887                      SDValue Ptr, SDValue Offset, EVT MemVT,
3888                      MachineMemOperand *MMO) {
3889  if (VT == MemVT) {
3890    ExtType = ISD::NON_EXTLOAD;
3891  } else if (ExtType == ISD::NON_EXTLOAD) {
3892    assert(VT == MemVT && "Non-extending load from different memory type!");
3893  } else {
3894    // Extending load.
3895    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3896           "Should only be an extending load, not truncating!");
3897    assert(VT.isInteger() == MemVT.isInteger() &&
3898           "Cannot convert from FP to Int or Int -> FP!");
3899    assert(VT.isVector() == MemVT.isVector() &&
3900           "Cannot use trunc store to convert to or from a vector!");
3901    assert((!VT.isVector() ||
3902            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3903           "Cannot use trunc store to change the number of vector elements!");
3904  }
3905
3906  bool Indexed = AM != ISD::UNINDEXED;
3907  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3908         "Unindexed load with an offset!");
3909
3910  SDVTList VTs = Indexed ?
3911    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3912  SDValue Ops[] = { Chain, Ptr, Offset };
3913  FoldingSetNodeID ID;
3914  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3915  ID.AddInteger(MemVT.getRawBits());
3916  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3917                                     MMO->isNonTemporal()));
3918  void *IP = 0;
3919  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3920    cast<LoadSDNode>(E)->refineAlignment(MMO);
3921    return SDValue(E, 0);
3922  }
3923  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3924                                             MemVT, MMO);
3925  CSEMap.InsertNode(N, IP);
3926  AllNodes.push_back(N);
3927  return SDValue(N, 0);
3928}
3929
3930SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3931                              SDValue Chain, SDValue Ptr,
3932                              const Value *SV, int SVOffset,
3933                              bool isVolatile, bool isNonTemporal,
3934                              unsigned Alignment) {
3935  SDValue Undef = getUNDEF(Ptr.getValueType());
3936  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3937                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3938}
3939
3940SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3941                                 SDValue Chain, SDValue Ptr,
3942                                 const Value *SV,
3943                                 int SVOffset, EVT MemVT,
3944                                 bool isVolatile, bool isNonTemporal,
3945                                 unsigned Alignment) {
3946  SDValue Undef = getUNDEF(Ptr.getValueType());
3947  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3948                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3949}
3950
3951SDValue
3952SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3953                             SDValue Offset, ISD::MemIndexedMode AM) {
3954  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3955  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3956         "Load is already a indexed load!");
3957  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3958                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3959                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3960                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3961}
3962
3963SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3964                               SDValue Ptr, const Value *SV, int SVOffset,
3965                               bool isVolatile, bool isNonTemporal,
3966                               unsigned Alignment) {
3967  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3968    Alignment = getEVTAlignment(Val.getValueType());
3969
3970  // Check if the memory reference references a frame index
3971  if (!SV)
3972    if (const FrameIndexSDNode *FI =
3973          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3974      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3975
3976  MachineFunction &MF = getMachineFunction();
3977  unsigned Flags = MachineMemOperand::MOStore;
3978  if (isVolatile)
3979    Flags |= MachineMemOperand::MOVolatile;
3980  if (isNonTemporal)
3981    Flags |= MachineMemOperand::MONonTemporal;
3982  MachineMemOperand *MMO =
3983    MF.getMachineMemOperand(SV, Flags, SVOffset,
3984                            Val.getValueType().getStoreSize(), Alignment);
3985
3986  return getStore(Chain, dl, Val, Ptr, MMO);
3987}
3988
3989SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3990                               SDValue Ptr, MachineMemOperand *MMO) {
3991  EVT VT = Val.getValueType();
3992  SDVTList VTs = getVTList(MVT::Other);
3993  SDValue Undef = getUNDEF(Ptr.getValueType());
3994  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3995  FoldingSetNodeID ID;
3996  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3997  ID.AddInteger(VT.getRawBits());
3998  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
3999                                     MMO->isNonTemporal()));
4000  void *IP = 0;
4001  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4002    cast<StoreSDNode>(E)->refineAlignment(MMO);
4003    return SDValue(E, 0);
4004  }
4005  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4006                                              false, VT, MMO);
4007  CSEMap.InsertNode(N, IP);
4008  AllNodes.push_back(N);
4009  return SDValue(N, 0);
4010}
4011
4012SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4013                                    SDValue Ptr, const Value *SV,
4014                                    int SVOffset, EVT SVT,
4015                                    bool isVolatile, bool isNonTemporal,
4016                                    unsigned Alignment) {
4017  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4018    Alignment = getEVTAlignment(SVT);
4019
4020  // Check if the memory reference references a frame index
4021  if (!SV)
4022    if (const FrameIndexSDNode *FI =
4023          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4024      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4025
4026  MachineFunction &MF = getMachineFunction();
4027  unsigned Flags = MachineMemOperand::MOStore;
4028  if (isVolatile)
4029    Flags |= MachineMemOperand::MOVolatile;
4030  if (isNonTemporal)
4031    Flags |= MachineMemOperand::MONonTemporal;
4032  MachineMemOperand *MMO =
4033    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4034
4035  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4036}
4037
4038SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4039                                    SDValue Ptr, EVT SVT,
4040                                    MachineMemOperand *MMO) {
4041  EVT VT = Val.getValueType();
4042
4043  if (VT == SVT)
4044    return getStore(Chain, dl, Val, Ptr, MMO);
4045
4046  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4047         "Should only be a truncating store, not extending!");
4048  assert(VT.isInteger() == SVT.isInteger() &&
4049         "Can't do FP-INT conversion!");
4050  assert(VT.isVector() == SVT.isVector() &&
4051         "Cannot use trunc store to convert to or from a vector!");
4052  assert((!VT.isVector() ||
4053          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4054         "Cannot use trunc store to change the number of vector elements!");
4055
4056  SDVTList VTs = getVTList(MVT::Other);
4057  SDValue Undef = getUNDEF(Ptr.getValueType());
4058  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4059  FoldingSetNodeID ID;
4060  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4061  ID.AddInteger(SVT.getRawBits());
4062  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4063                                     MMO->isNonTemporal()));
4064  void *IP = 0;
4065  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4066    cast<StoreSDNode>(E)->refineAlignment(MMO);
4067    return SDValue(E, 0);
4068  }
4069  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4070                                              true, SVT, MMO);
4071  CSEMap.InsertNode(N, IP);
4072  AllNodes.push_back(N);
4073  return SDValue(N, 0);
4074}
4075
4076SDValue
4077SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4078                              SDValue Offset, ISD::MemIndexedMode AM) {
4079  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4080  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4081         "Store is already a indexed store!");
4082  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4083  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4084  FoldingSetNodeID ID;
4085  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4086  ID.AddInteger(ST->getMemoryVT().getRawBits());
4087  ID.AddInteger(ST->getRawSubclassData());
4088  void *IP = 0;
4089  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4090    return SDValue(E, 0);
4091
4092  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4093                                              ST->isTruncatingStore(),
4094                                              ST->getMemoryVT(),
4095                                              ST->getMemOperand());
4096  CSEMap.InsertNode(N, IP);
4097  AllNodes.push_back(N);
4098  return SDValue(N, 0);
4099}
4100
4101SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4102                               SDValue Chain, SDValue Ptr,
4103                               SDValue SV) {
4104  SDValue Ops[] = { Chain, Ptr, SV };
4105  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4106}
4107
4108SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4109                              const SDUse *Ops, unsigned NumOps) {
4110  switch (NumOps) {
4111  case 0: return getNode(Opcode, DL, VT);
4112  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4113  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4114  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4115  default: break;
4116  }
4117
4118  // Copy from an SDUse array into an SDValue array for use with
4119  // the regular getNode logic.
4120  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4121  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4122}
4123
4124SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4125                              const SDValue *Ops, unsigned NumOps) {
4126  switch (NumOps) {
4127  case 0: return getNode(Opcode, DL, VT);
4128  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4129  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4130  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4131  default: break;
4132  }
4133
4134  switch (Opcode) {
4135  default: break;
4136  case ISD::SELECT_CC: {
4137    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4138    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4139           "LHS and RHS of condition must have same type!");
4140    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4141           "True and False arms of SelectCC must have same type!");
4142    assert(Ops[2].getValueType() == VT &&
4143           "select_cc node must be of same type as true and false value!");
4144    break;
4145  }
4146  case ISD::BR_CC: {
4147    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4148    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4149           "LHS/RHS of comparison should match types!");
4150    break;
4151  }
4152  }
4153
4154  // Memoize nodes.
4155  SDNode *N;
4156  SDVTList VTs = getVTList(VT);
4157
4158  if (VT != MVT::Flag) {
4159    FoldingSetNodeID ID;
4160    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4161    void *IP = 0;
4162
4163    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4164      return SDValue(E, 0);
4165
4166    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4167    CSEMap.InsertNode(N, IP);
4168  } else {
4169    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4170  }
4171
4172  AllNodes.push_back(N);
4173#ifndef NDEBUG
4174  VerifyNode(N);
4175#endif
4176  return SDValue(N, 0);
4177}
4178
4179SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4180                              const std::vector<EVT> &ResultTys,
4181                              const SDValue *Ops, unsigned NumOps) {
4182  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4183                 Ops, NumOps);
4184}
4185
4186SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4187                              const EVT *VTs, unsigned NumVTs,
4188                              const SDValue *Ops, unsigned NumOps) {
4189  if (NumVTs == 1)
4190    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4191  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4192}
4193
4194SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4195                              const SDValue *Ops, unsigned NumOps) {
4196  if (VTList.NumVTs == 1)
4197    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4198
4199#if 0
4200  switch (Opcode) {
4201  // FIXME: figure out how to safely handle things like
4202  // int foo(int x) { return 1 << (x & 255); }
4203  // int bar() { return foo(256); }
4204  case ISD::SRA_PARTS:
4205  case ISD::SRL_PARTS:
4206  case ISD::SHL_PARTS:
4207    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4208        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4209      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4210    else if (N3.getOpcode() == ISD::AND)
4211      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4212        // If the and is only masking out bits that cannot effect the shift,
4213        // eliminate the and.
4214        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4215        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4216          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4217      }
4218    break;
4219  }
4220#endif
4221
4222  // Memoize the node unless it returns a flag.
4223  SDNode *N;
4224  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4225    FoldingSetNodeID ID;
4226    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4227    void *IP = 0;
4228    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4229      return SDValue(E, 0);
4230
4231    if (NumOps == 1) {
4232      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4233    } else if (NumOps == 2) {
4234      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4235    } else if (NumOps == 3) {
4236      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4237                                            Ops[2]);
4238    } else {
4239      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4240    }
4241    CSEMap.InsertNode(N, IP);
4242  } else {
4243    if (NumOps == 1) {
4244      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4245    } else if (NumOps == 2) {
4246      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4247    } else if (NumOps == 3) {
4248      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4249                                            Ops[2]);
4250    } else {
4251      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4252    }
4253  }
4254  AllNodes.push_back(N);
4255#ifndef NDEBUG
4256  VerifyNode(N);
4257#endif
4258  return SDValue(N, 0);
4259}
4260
4261SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4262  return getNode(Opcode, DL, VTList, 0, 0);
4263}
4264
4265SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4266                              SDValue N1) {
4267  SDValue Ops[] = { N1 };
4268  return getNode(Opcode, DL, VTList, Ops, 1);
4269}
4270
4271SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4272                              SDValue N1, SDValue N2) {
4273  SDValue Ops[] = { N1, N2 };
4274  return getNode(Opcode, DL, VTList, Ops, 2);
4275}
4276
4277SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4278                              SDValue N1, SDValue N2, SDValue N3) {
4279  SDValue Ops[] = { N1, N2, N3 };
4280  return getNode(Opcode, DL, VTList, Ops, 3);
4281}
4282
4283SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4284                              SDValue N1, SDValue N2, SDValue N3,
4285                              SDValue N4) {
4286  SDValue Ops[] = { N1, N2, N3, N4 };
4287  return getNode(Opcode, DL, VTList, Ops, 4);
4288}
4289
4290SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4291                              SDValue N1, SDValue N2, SDValue N3,
4292                              SDValue N4, SDValue N5) {
4293  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4294  return getNode(Opcode, DL, VTList, Ops, 5);
4295}
4296
4297SDVTList SelectionDAG::getVTList(EVT VT) {
4298  return makeVTList(SDNode::getValueTypeList(VT), 1);
4299}
4300
4301SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4302  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4303       E = VTList.rend(); I != E; ++I)
4304    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4305      return *I;
4306
4307  EVT *Array = Allocator.Allocate<EVT>(2);
4308  Array[0] = VT1;
4309  Array[1] = VT2;
4310  SDVTList Result = makeVTList(Array, 2);
4311  VTList.push_back(Result);
4312  return Result;
4313}
4314
4315SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4316  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4317       E = VTList.rend(); I != E; ++I)
4318    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4319                          I->VTs[2] == VT3)
4320      return *I;
4321
4322  EVT *Array = Allocator.Allocate<EVT>(3);
4323  Array[0] = VT1;
4324  Array[1] = VT2;
4325  Array[2] = VT3;
4326  SDVTList Result = makeVTList(Array, 3);
4327  VTList.push_back(Result);
4328  return Result;
4329}
4330
4331SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4332  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4333       E = VTList.rend(); I != E; ++I)
4334    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4335                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4336      return *I;
4337
4338  EVT *Array = Allocator.Allocate<EVT>(4);
4339  Array[0] = VT1;
4340  Array[1] = VT2;
4341  Array[2] = VT3;
4342  Array[3] = VT4;
4343  SDVTList Result = makeVTList(Array, 4);
4344  VTList.push_back(Result);
4345  return Result;
4346}
4347
4348SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4349  switch (NumVTs) {
4350    case 0: llvm_unreachable("Cannot have nodes without results!");
4351    case 1: return getVTList(VTs[0]);
4352    case 2: return getVTList(VTs[0], VTs[1]);
4353    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4354    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4355    default: break;
4356  }
4357
4358  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4359       E = VTList.rend(); I != E; ++I) {
4360    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4361      continue;
4362
4363    bool NoMatch = false;
4364    for (unsigned i = 2; i != NumVTs; ++i)
4365      if (VTs[i] != I->VTs[i]) {
4366        NoMatch = true;
4367        break;
4368      }
4369    if (!NoMatch)
4370      return *I;
4371  }
4372
4373  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4374  std::copy(VTs, VTs+NumVTs, Array);
4375  SDVTList Result = makeVTList(Array, NumVTs);
4376  VTList.push_back(Result);
4377  return Result;
4378}
4379
4380
4381/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4382/// specified operands.  If the resultant node already exists in the DAG,
4383/// this does not modify the specified node, instead it returns the node that
4384/// already exists.  If the resultant node does not exist in the DAG, the
4385/// input node is returned.  As a degenerate case, if you specify the same
4386/// input operands as the node already has, the input node is returned.
4387SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4388  SDNode *N = InN.getNode();
4389  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4390
4391  // Check to see if there is no change.
4392  if (Op == N->getOperand(0)) return InN;
4393
4394  // See if the modified node already exists.
4395  void *InsertPos = 0;
4396  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4397    return SDValue(Existing, InN.getResNo());
4398
4399  // Nope it doesn't.  Remove the node from its current place in the maps.
4400  if (InsertPos)
4401    if (!RemoveNodeFromCSEMaps(N))
4402      InsertPos = 0;
4403
4404  // Now we update the operands.
4405  N->OperandList[0].set(Op);
4406
4407  // If this gets put into a CSE map, add it.
4408  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4409  return InN;
4410}
4411
4412SDValue SelectionDAG::
4413UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4414  SDNode *N = InN.getNode();
4415  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4416
4417  // Check to see if there is no change.
4418  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4419    return InN;   // No operands changed, just return the input node.
4420
4421  // See if the modified node already exists.
4422  void *InsertPos = 0;
4423  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4424    return SDValue(Existing, InN.getResNo());
4425
4426  // Nope it doesn't.  Remove the node from its current place in the maps.
4427  if (InsertPos)
4428    if (!RemoveNodeFromCSEMaps(N))
4429      InsertPos = 0;
4430
4431  // Now we update the operands.
4432  if (N->OperandList[0] != Op1)
4433    N->OperandList[0].set(Op1);
4434  if (N->OperandList[1] != Op2)
4435    N->OperandList[1].set(Op2);
4436
4437  // If this gets put into a CSE map, add it.
4438  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4439  return InN;
4440}
4441
4442SDValue SelectionDAG::
4443UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4444  SDValue Ops[] = { Op1, Op2, Op3 };
4445  return UpdateNodeOperands(N, Ops, 3);
4446}
4447
4448SDValue SelectionDAG::
4449UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4450                   SDValue Op3, SDValue Op4) {
4451  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4452  return UpdateNodeOperands(N, Ops, 4);
4453}
4454
4455SDValue SelectionDAG::
4456UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4457                   SDValue Op3, SDValue Op4, SDValue Op5) {
4458  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4459  return UpdateNodeOperands(N, Ops, 5);
4460}
4461
4462SDValue SelectionDAG::
4463UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4464  SDNode *N = InN.getNode();
4465  assert(N->getNumOperands() == NumOps &&
4466         "Update with wrong number of operands");
4467
4468  // Check to see if there is no change.
4469  bool AnyChange = false;
4470  for (unsigned i = 0; i != NumOps; ++i) {
4471    if (Ops[i] != N->getOperand(i)) {
4472      AnyChange = true;
4473      break;
4474    }
4475  }
4476
4477  // No operands changed, just return the input node.
4478  if (!AnyChange) return InN;
4479
4480  // See if the modified node already exists.
4481  void *InsertPos = 0;
4482  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4483    return SDValue(Existing, InN.getResNo());
4484
4485  // Nope it doesn't.  Remove the node from its current place in the maps.
4486  if (InsertPos)
4487    if (!RemoveNodeFromCSEMaps(N))
4488      InsertPos = 0;
4489
4490  // Now we update the operands.
4491  for (unsigned i = 0; i != NumOps; ++i)
4492    if (N->OperandList[i] != Ops[i])
4493      N->OperandList[i].set(Ops[i]);
4494
4495  // If this gets put into a CSE map, add it.
4496  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4497  return InN;
4498}
4499
4500/// DropOperands - Release the operands and set this node to have
4501/// zero operands.
4502void SDNode::DropOperands() {
4503  // Unlike the code in MorphNodeTo that does this, we don't need to
4504  // watch for dead nodes here.
4505  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4506    SDUse &Use = *I++;
4507    Use.set(SDValue());
4508  }
4509}
4510
4511/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4512/// machine opcode.
4513///
4514SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4515                                   EVT VT) {
4516  SDVTList VTs = getVTList(VT);
4517  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4518}
4519
4520SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4521                                   EVT VT, SDValue Op1) {
4522  SDVTList VTs = getVTList(VT);
4523  SDValue Ops[] = { Op1 };
4524  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4525}
4526
4527SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4528                                   EVT VT, SDValue Op1,
4529                                   SDValue Op2) {
4530  SDVTList VTs = getVTList(VT);
4531  SDValue Ops[] = { Op1, Op2 };
4532  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4533}
4534
4535SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4536                                   EVT VT, SDValue Op1,
4537                                   SDValue Op2, SDValue Op3) {
4538  SDVTList VTs = getVTList(VT);
4539  SDValue Ops[] = { Op1, Op2, Op3 };
4540  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4541}
4542
4543SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4544                                   EVT VT, const SDValue *Ops,
4545                                   unsigned NumOps) {
4546  SDVTList VTs = getVTList(VT);
4547  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4548}
4549
4550SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4551                                   EVT VT1, EVT VT2, const SDValue *Ops,
4552                                   unsigned NumOps) {
4553  SDVTList VTs = getVTList(VT1, VT2);
4554  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4555}
4556
4557SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4558                                   EVT VT1, EVT VT2) {
4559  SDVTList VTs = getVTList(VT1, VT2);
4560  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4561}
4562
4563SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4564                                   EVT VT1, EVT VT2, EVT VT3,
4565                                   const SDValue *Ops, unsigned NumOps) {
4566  SDVTList VTs = getVTList(VT1, VT2, VT3);
4567  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4568}
4569
4570SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4571                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4572                                   const SDValue *Ops, unsigned NumOps) {
4573  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4574  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4575}
4576
4577SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4578                                   EVT VT1, EVT VT2,
4579                                   SDValue Op1) {
4580  SDVTList VTs = getVTList(VT1, VT2);
4581  SDValue Ops[] = { Op1 };
4582  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4583}
4584
4585SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4586                                   EVT VT1, EVT VT2,
4587                                   SDValue Op1, SDValue Op2) {
4588  SDVTList VTs = getVTList(VT1, VT2);
4589  SDValue Ops[] = { Op1, Op2 };
4590  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4591}
4592
4593SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4594                                   EVT VT1, EVT VT2,
4595                                   SDValue Op1, SDValue Op2,
4596                                   SDValue Op3) {
4597  SDVTList VTs = getVTList(VT1, VT2);
4598  SDValue Ops[] = { Op1, Op2, Op3 };
4599  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4600}
4601
4602SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4603                                   EVT VT1, EVT VT2, EVT VT3,
4604                                   SDValue Op1, SDValue Op2,
4605                                   SDValue Op3) {
4606  SDVTList VTs = getVTList(VT1, VT2, VT3);
4607  SDValue Ops[] = { Op1, Op2, Op3 };
4608  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4609}
4610
4611SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4612                                   SDVTList VTs, const SDValue *Ops,
4613                                   unsigned NumOps) {
4614  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4615  // Reset the NodeID to -1.
4616  N->setNodeId(-1);
4617  return N;
4618}
4619
4620/// MorphNodeTo - This *mutates* the specified node to have the specified
4621/// return type, opcode, and operands.
4622///
4623/// Note that MorphNodeTo returns the resultant node.  If there is already a
4624/// node of the specified opcode and operands, it returns that node instead of
4625/// the current one.  Note that the DebugLoc need not be the same.
4626///
4627/// Using MorphNodeTo is faster than creating a new node and swapping it in
4628/// with ReplaceAllUsesWith both because it often avoids allocating a new
4629/// node, and because it doesn't require CSE recalculation for any of
4630/// the node's users.
4631///
4632SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4633                                  SDVTList VTs, const SDValue *Ops,
4634                                  unsigned NumOps) {
4635  // If an identical node already exists, use it.
4636  void *IP = 0;
4637  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4638    FoldingSetNodeID ID;
4639    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4640    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4641      return ON;
4642  }
4643
4644  if (!RemoveNodeFromCSEMaps(N))
4645    IP = 0;
4646
4647  // Start the morphing.
4648  N->NodeType = Opc;
4649  N->ValueList = VTs.VTs;
4650  N->NumValues = VTs.NumVTs;
4651
4652  // Clear the operands list, updating used nodes to remove this from their
4653  // use list.  Keep track of any operands that become dead as a result.
4654  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4655  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4656    SDUse &Use = *I++;
4657    SDNode *Used = Use.getNode();
4658    Use.set(SDValue());
4659    if (Used->use_empty())
4660      DeadNodeSet.insert(Used);
4661  }
4662
4663  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4664    // Initialize the memory references information.
4665    MN->setMemRefs(0, 0);
4666    // If NumOps is larger than the # of operands we can have in a
4667    // MachineSDNode, reallocate the operand list.
4668    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4669      if (MN->OperandsNeedDelete)
4670        delete[] MN->OperandList;
4671      if (NumOps > array_lengthof(MN->LocalOperands))
4672        // We're creating a final node that will live unmorphed for the
4673        // remainder of the current SelectionDAG iteration, so we can allocate
4674        // the operands directly out of a pool with no recycling metadata.
4675        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4676                         Ops, NumOps);
4677      else
4678        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4679      MN->OperandsNeedDelete = false;
4680    } else
4681      MN->InitOperands(MN->OperandList, Ops, NumOps);
4682  } else {
4683    // If NumOps is larger than the # of operands we currently have, reallocate
4684    // the operand list.
4685    if (NumOps > N->NumOperands) {
4686      if (N->OperandsNeedDelete)
4687        delete[] N->OperandList;
4688      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4689      N->OperandsNeedDelete = true;
4690    } else
4691      N->InitOperands(N->OperandList, Ops, NumOps);
4692  }
4693
4694  // Delete any nodes that are still dead after adding the uses for the
4695  // new operands.
4696  if (!DeadNodeSet.empty()) {
4697    SmallVector<SDNode *, 16> DeadNodes;
4698    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4699         E = DeadNodeSet.end(); I != E; ++I)
4700      if ((*I)->use_empty())
4701        DeadNodes.push_back(*I);
4702    RemoveDeadNodes(DeadNodes);
4703  }
4704
4705  if (IP)
4706    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4707  return N;
4708}
4709
4710
4711/// getMachineNode - These are used for target selectors to create a new node
4712/// with specified return type(s), MachineInstr opcode, and operands.
4713///
4714/// Note that getMachineNode returns the resultant node.  If there is already a
4715/// node of the specified opcode and operands, it returns that node instead of
4716/// the current one.
4717MachineSDNode *
4718SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4719  SDVTList VTs = getVTList(VT);
4720  return getMachineNode(Opcode, dl, VTs, 0, 0);
4721}
4722
4723MachineSDNode *
4724SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4725  SDVTList VTs = getVTList(VT);
4726  SDValue Ops[] = { Op1 };
4727  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4728}
4729
4730MachineSDNode *
4731SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4732                             SDValue Op1, SDValue Op2) {
4733  SDVTList VTs = getVTList(VT);
4734  SDValue Ops[] = { Op1, Op2 };
4735  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4736}
4737
4738MachineSDNode *
4739SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4740                             SDValue Op1, SDValue Op2, SDValue Op3) {
4741  SDVTList VTs = getVTList(VT);
4742  SDValue Ops[] = { Op1, Op2, Op3 };
4743  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4744}
4745
4746MachineSDNode *
4747SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4748                             const SDValue *Ops, unsigned NumOps) {
4749  SDVTList VTs = getVTList(VT);
4750  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4751}
4752
4753MachineSDNode *
4754SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4755  SDVTList VTs = getVTList(VT1, VT2);
4756  return getMachineNode(Opcode, dl, VTs, 0, 0);
4757}
4758
4759MachineSDNode *
4760SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4761                             EVT VT1, EVT VT2, SDValue Op1) {
4762  SDVTList VTs = getVTList(VT1, VT2);
4763  SDValue Ops[] = { Op1 };
4764  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4765}
4766
4767MachineSDNode *
4768SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4769                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4770  SDVTList VTs = getVTList(VT1, VT2);
4771  SDValue Ops[] = { Op1, Op2 };
4772  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4773}
4774
4775MachineSDNode *
4776SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4777                             EVT VT1, EVT VT2, SDValue Op1,
4778                             SDValue Op2, SDValue Op3) {
4779  SDVTList VTs = getVTList(VT1, VT2);
4780  SDValue Ops[] = { Op1, Op2, Op3 };
4781  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4782}
4783
4784MachineSDNode *
4785SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4786                             EVT VT1, EVT VT2,
4787                             const SDValue *Ops, unsigned NumOps) {
4788  SDVTList VTs = getVTList(VT1, VT2);
4789  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4790}
4791
4792MachineSDNode *
4793SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4794                             EVT VT1, EVT VT2, EVT VT3,
4795                             SDValue Op1, SDValue Op2) {
4796  SDVTList VTs = getVTList(VT1, VT2, VT3);
4797  SDValue Ops[] = { Op1, Op2 };
4798  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4799}
4800
4801MachineSDNode *
4802SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4803                             EVT VT1, EVT VT2, EVT VT3,
4804                             SDValue Op1, SDValue Op2, SDValue Op3) {
4805  SDVTList VTs = getVTList(VT1, VT2, VT3);
4806  SDValue Ops[] = { Op1, Op2, Op3 };
4807  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4808}
4809
4810MachineSDNode *
4811SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4812                             EVT VT1, EVT VT2, EVT VT3,
4813                             const SDValue *Ops, unsigned NumOps) {
4814  SDVTList VTs = getVTList(VT1, VT2, VT3);
4815  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4816}
4817
4818MachineSDNode *
4819SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4820                             EVT VT2, EVT VT3, EVT VT4,
4821                             const SDValue *Ops, unsigned NumOps) {
4822  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4823  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4824}
4825
4826MachineSDNode *
4827SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4828                             const std::vector<EVT> &ResultTys,
4829                             const SDValue *Ops, unsigned NumOps) {
4830  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4831  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4832}
4833
4834MachineSDNode *
4835SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4836                             const SDValue *Ops, unsigned NumOps) {
4837  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4838  MachineSDNode *N;
4839  void *IP;
4840
4841  if (DoCSE) {
4842    FoldingSetNodeID ID;
4843    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4844    IP = 0;
4845    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4846      return cast<MachineSDNode>(E);
4847  }
4848
4849  // Allocate a new MachineSDNode.
4850  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4851
4852  // Initialize the operands list.
4853  if (NumOps > array_lengthof(N->LocalOperands))
4854    // We're creating a final node that will live unmorphed for the
4855    // remainder of the current SelectionDAG iteration, so we can allocate
4856    // the operands directly out of a pool with no recycling metadata.
4857    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4858                    Ops, NumOps);
4859  else
4860    N->InitOperands(N->LocalOperands, Ops, NumOps);
4861  N->OperandsNeedDelete = false;
4862
4863  if (DoCSE)
4864    CSEMap.InsertNode(N, IP);
4865
4866  AllNodes.push_back(N);
4867#ifndef NDEBUG
4868  VerifyNode(N);
4869#endif
4870  return N;
4871}
4872
4873/// getTargetExtractSubreg - A convenience function for creating
4874/// TargetOpcode::EXTRACT_SUBREG nodes.
4875SDValue
4876SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4877                                     SDValue Operand) {
4878  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4879  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4880                                  VT, Operand, SRIdxVal);
4881  return SDValue(Subreg, 0);
4882}
4883
4884/// getTargetInsertSubreg - A convenience function for creating
4885/// TargetOpcode::INSERT_SUBREG nodes.
4886SDValue
4887SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4888                                    SDValue Operand, SDValue Subreg) {
4889  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4890  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4891                                  VT, Operand, Subreg, SRIdxVal);
4892  return SDValue(Result, 0);
4893}
4894
4895/// getNodeIfExists - Get the specified node if it's already available, or
4896/// else return NULL.
4897SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4898                                      const SDValue *Ops, unsigned NumOps) {
4899  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4900    FoldingSetNodeID ID;
4901    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4902    void *IP = 0;
4903    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4904      return E;
4905  }
4906  return NULL;
4907}
4908
4909/// getDbgValue - Creates a SDDbgValue node.
4910///
4911SDDbgValue *
4912SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4913                          DebugLoc DL, unsigned O) {
4914  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4915}
4916
4917SDDbgValue *
4918SelectionDAG::getDbgValue(MDNode *MDPtr, Value *C, uint64_t Off,
4919                          DebugLoc DL, unsigned O) {
4920  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4921}
4922
4923SDDbgValue *
4924SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4925                          DebugLoc DL, unsigned O) {
4926  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4927}
4928
4929namespace {
4930
4931/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4932/// pointed to by a use iterator is deleted, increment the use iterator
4933/// so that it doesn't dangle.
4934///
4935/// This class also manages a "downlink" DAGUpdateListener, to forward
4936/// messages to ReplaceAllUsesWith's callers.
4937///
4938class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4939  SelectionDAG::DAGUpdateListener *DownLink;
4940  SDNode::use_iterator &UI;
4941  SDNode::use_iterator &UE;
4942
4943  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4944    // Increment the iterator as needed.
4945    while (UI != UE && N == *UI)
4946      ++UI;
4947
4948    // Then forward the message.
4949    if (DownLink) DownLink->NodeDeleted(N, E);
4950  }
4951
4952  virtual void NodeUpdated(SDNode *N) {
4953    // Just forward the message.
4954    if (DownLink) DownLink->NodeUpdated(N);
4955  }
4956
4957public:
4958  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4959                     SDNode::use_iterator &ui,
4960                     SDNode::use_iterator &ue)
4961    : DownLink(dl), UI(ui), UE(ue) {}
4962};
4963
4964}
4965
4966/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4967/// This can cause recursive merging of nodes in the DAG.
4968///
4969/// This version assumes From has a single result value.
4970///
4971void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4972                                      DAGUpdateListener *UpdateListener) {
4973  SDNode *From = FromN.getNode();
4974  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4975         "Cannot replace with this method!");
4976  assert(From != To.getNode() && "Cannot replace uses of with self");
4977
4978  // Iterate over all the existing uses of From. New uses will be added
4979  // to the beginning of the use list, which we avoid visiting.
4980  // This specifically avoids visiting uses of From that arise while the
4981  // replacement is happening, because any such uses would be the result
4982  // of CSE: If an existing node looks like From after one of its operands
4983  // is replaced by To, we don't want to replace of all its users with To
4984  // too. See PR3018 for more info.
4985  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4986  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4987  while (UI != UE) {
4988    SDNode *User = *UI;
4989
4990    // This node is about to morph, remove its old self from the CSE maps.
4991    RemoveNodeFromCSEMaps(User);
4992
4993    // A user can appear in a use list multiple times, and when this
4994    // happens the uses are usually next to each other in the list.
4995    // To help reduce the number of CSE recomputations, process all
4996    // the uses of this user that we can find this way.
4997    do {
4998      SDUse &Use = UI.getUse();
4999      ++UI;
5000      Use.set(To);
5001    } while (UI != UE && *UI == User);
5002
5003    // Now that we have modified User, add it back to the CSE maps.  If it
5004    // already exists there, recursively merge the results together.
5005    AddModifiedNodeToCSEMaps(User, &Listener);
5006  }
5007}
5008
5009/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5010/// This can cause recursive merging of nodes in the DAG.
5011///
5012/// This version assumes that for each value of From, there is a
5013/// corresponding value in To in the same position with the same type.
5014///
5015void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5016                                      DAGUpdateListener *UpdateListener) {
5017#ifndef NDEBUG
5018  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5019    assert((!From->hasAnyUseOfValue(i) ||
5020            From->getValueType(i) == To->getValueType(i)) &&
5021           "Cannot use this version of ReplaceAllUsesWith!");
5022#endif
5023
5024  // Handle the trivial case.
5025  if (From == To)
5026    return;
5027
5028  // Iterate over just the existing users of From. See the comments in
5029  // the ReplaceAllUsesWith above.
5030  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5031  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5032  while (UI != UE) {
5033    SDNode *User = *UI;
5034
5035    // This node is about to morph, remove its old self from the CSE maps.
5036    RemoveNodeFromCSEMaps(User);
5037
5038    // A user can appear in a use list multiple times, and when this
5039    // happens the uses are usually next to each other in the list.
5040    // To help reduce the number of CSE recomputations, process all
5041    // the uses of this user that we can find this way.
5042    do {
5043      SDUse &Use = UI.getUse();
5044      ++UI;
5045      Use.setNode(To);
5046    } while (UI != UE && *UI == User);
5047
5048    // Now that we have modified User, add it back to the CSE maps.  If it
5049    // already exists there, recursively merge the results together.
5050    AddModifiedNodeToCSEMaps(User, &Listener);
5051  }
5052}
5053
5054/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5055/// This can cause recursive merging of nodes in the DAG.
5056///
5057/// This version can replace From with any result values.  To must match the
5058/// number and types of values returned by From.
5059void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5060                                      const SDValue *To,
5061                                      DAGUpdateListener *UpdateListener) {
5062  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5063    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5064
5065  // Iterate over just the existing users of From. See the comments in
5066  // the ReplaceAllUsesWith above.
5067  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5068  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5069  while (UI != UE) {
5070    SDNode *User = *UI;
5071
5072    // This node is about to morph, remove its old self from the CSE maps.
5073    RemoveNodeFromCSEMaps(User);
5074
5075    // A user can appear in a use list multiple times, and when this
5076    // happens the uses are usually next to each other in the list.
5077    // To help reduce the number of CSE recomputations, process all
5078    // the uses of this user that we can find this way.
5079    do {
5080      SDUse &Use = UI.getUse();
5081      const SDValue &ToOp = To[Use.getResNo()];
5082      ++UI;
5083      Use.set(ToOp);
5084    } while (UI != UE && *UI == User);
5085
5086    // Now that we have modified User, add it back to the CSE maps.  If it
5087    // already exists there, recursively merge the results together.
5088    AddModifiedNodeToCSEMaps(User, &Listener);
5089  }
5090}
5091
5092/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5093/// uses of other values produced by From.getNode() alone.  The Deleted
5094/// vector is handled the same way as for ReplaceAllUsesWith.
5095void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5096                                             DAGUpdateListener *UpdateListener){
5097  // Handle the really simple, really trivial case efficiently.
5098  if (From == To) return;
5099
5100  // Handle the simple, trivial, case efficiently.
5101  if (From.getNode()->getNumValues() == 1) {
5102    ReplaceAllUsesWith(From, To, UpdateListener);
5103    return;
5104  }
5105
5106  // Iterate over just the existing users of From. See the comments in
5107  // the ReplaceAllUsesWith above.
5108  SDNode::use_iterator UI = From.getNode()->use_begin(),
5109                       UE = From.getNode()->use_end();
5110  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5111  while (UI != UE) {
5112    SDNode *User = *UI;
5113    bool UserRemovedFromCSEMaps = false;
5114
5115    // A user can appear in a use list multiple times, and when this
5116    // happens the uses are usually next to each other in the list.
5117    // To help reduce the number of CSE recomputations, process all
5118    // the uses of this user that we can find this way.
5119    do {
5120      SDUse &Use = UI.getUse();
5121
5122      // Skip uses of different values from the same node.
5123      if (Use.getResNo() != From.getResNo()) {
5124        ++UI;
5125        continue;
5126      }
5127
5128      // If this node hasn't been modified yet, it's still in the CSE maps,
5129      // so remove its old self from the CSE maps.
5130      if (!UserRemovedFromCSEMaps) {
5131        RemoveNodeFromCSEMaps(User);
5132        UserRemovedFromCSEMaps = true;
5133      }
5134
5135      ++UI;
5136      Use.set(To);
5137    } while (UI != UE && *UI == User);
5138
5139    // We are iterating over all uses of the From node, so if a use
5140    // doesn't use the specific value, no changes are made.
5141    if (!UserRemovedFromCSEMaps)
5142      continue;
5143
5144    // Now that we have modified User, add it back to the CSE maps.  If it
5145    // already exists there, recursively merge the results together.
5146    AddModifiedNodeToCSEMaps(User, &Listener);
5147  }
5148}
5149
5150namespace {
5151  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5152  /// to record information about a use.
5153  struct UseMemo {
5154    SDNode *User;
5155    unsigned Index;
5156    SDUse *Use;
5157  };
5158
5159  /// operator< - Sort Memos by User.
5160  bool operator<(const UseMemo &L, const UseMemo &R) {
5161    return (intptr_t)L.User < (intptr_t)R.User;
5162  }
5163}
5164
5165/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5166/// uses of other values produced by From.getNode() alone.  The same value
5167/// may appear in both the From and To list.  The Deleted vector is
5168/// handled the same way as for ReplaceAllUsesWith.
5169void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5170                                              const SDValue *To,
5171                                              unsigned Num,
5172                                              DAGUpdateListener *UpdateListener){
5173  // Handle the simple, trivial case efficiently.
5174  if (Num == 1)
5175    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5176
5177  // Read up all the uses and make records of them. This helps
5178  // processing new uses that are introduced during the
5179  // replacement process.
5180  SmallVector<UseMemo, 4> Uses;
5181  for (unsigned i = 0; i != Num; ++i) {
5182    unsigned FromResNo = From[i].getResNo();
5183    SDNode *FromNode = From[i].getNode();
5184    for (SDNode::use_iterator UI = FromNode->use_begin(),
5185         E = FromNode->use_end(); UI != E; ++UI) {
5186      SDUse &Use = UI.getUse();
5187      if (Use.getResNo() == FromResNo) {
5188        UseMemo Memo = { *UI, i, &Use };
5189        Uses.push_back(Memo);
5190      }
5191    }
5192  }
5193
5194  // Sort the uses, so that all the uses from a given User are together.
5195  std::sort(Uses.begin(), Uses.end());
5196
5197  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5198       UseIndex != UseIndexEnd; ) {
5199    // We know that this user uses some value of From.  If it is the right
5200    // value, update it.
5201    SDNode *User = Uses[UseIndex].User;
5202
5203    // This node is about to morph, remove its old self from the CSE maps.
5204    RemoveNodeFromCSEMaps(User);
5205
5206    // The Uses array is sorted, so all the uses for a given User
5207    // are next to each other in the list.
5208    // To help reduce the number of CSE recomputations, process all
5209    // the uses of this user that we can find this way.
5210    do {
5211      unsigned i = Uses[UseIndex].Index;
5212      SDUse &Use = *Uses[UseIndex].Use;
5213      ++UseIndex;
5214
5215      Use.set(To[i]);
5216    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5217
5218    // Now that we have modified User, add it back to the CSE maps.  If it
5219    // already exists there, recursively merge the results together.
5220    AddModifiedNodeToCSEMaps(User, UpdateListener);
5221  }
5222}
5223
5224/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5225/// based on their topological order. It returns the maximum id and a vector
5226/// of the SDNodes* in assigned order by reference.
5227unsigned SelectionDAG::AssignTopologicalOrder() {
5228
5229  unsigned DAGSize = 0;
5230
5231  // SortedPos tracks the progress of the algorithm. Nodes before it are
5232  // sorted, nodes after it are unsorted. When the algorithm completes
5233  // it is at the end of the list.
5234  allnodes_iterator SortedPos = allnodes_begin();
5235
5236  // Visit all the nodes. Move nodes with no operands to the front of
5237  // the list immediately. Annotate nodes that do have operands with their
5238  // operand count. Before we do this, the Node Id fields of the nodes
5239  // may contain arbitrary values. After, the Node Id fields for nodes
5240  // before SortedPos will contain the topological sort index, and the
5241  // Node Id fields for nodes At SortedPos and after will contain the
5242  // count of outstanding operands.
5243  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5244    SDNode *N = I++;
5245    checkForCycles(N);
5246    unsigned Degree = N->getNumOperands();
5247    if (Degree == 0) {
5248      // A node with no uses, add it to the result array immediately.
5249      N->setNodeId(DAGSize++);
5250      allnodes_iterator Q = N;
5251      if (Q != SortedPos)
5252        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5253      assert(SortedPos != AllNodes.end() && "Overran node list");
5254      ++SortedPos;
5255    } else {
5256      // Temporarily use the Node Id as scratch space for the degree count.
5257      N->setNodeId(Degree);
5258    }
5259  }
5260
5261  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5262  // such that by the time the end is reached all nodes will be sorted.
5263  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5264    SDNode *N = I;
5265    checkForCycles(N);
5266    // N is in sorted position, so all its uses have one less operand
5267    // that needs to be sorted.
5268    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5269         UI != UE; ++UI) {
5270      SDNode *P = *UI;
5271      unsigned Degree = P->getNodeId();
5272      assert(Degree != 0 && "Invalid node degree");
5273      --Degree;
5274      if (Degree == 0) {
5275        // All of P's operands are sorted, so P may sorted now.
5276        P->setNodeId(DAGSize++);
5277        if (P != SortedPos)
5278          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5279        assert(SortedPos != AllNodes.end() && "Overran node list");
5280        ++SortedPos;
5281      } else {
5282        // Update P's outstanding operand count.
5283        P->setNodeId(Degree);
5284      }
5285    }
5286    if (I == SortedPos) {
5287#ifndef NDEBUG
5288      SDNode *S = ++I;
5289      dbgs() << "Overran sorted position:\n";
5290      S->dumprFull();
5291#endif
5292      llvm_unreachable(0);
5293    }
5294  }
5295
5296  assert(SortedPos == AllNodes.end() &&
5297         "Topological sort incomplete!");
5298  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5299         "First node in topological sort is not the entry token!");
5300  assert(AllNodes.front().getNodeId() == 0 &&
5301         "First node in topological sort has non-zero id!");
5302  assert(AllNodes.front().getNumOperands() == 0 &&
5303         "First node in topological sort has operands!");
5304  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5305         "Last node in topologic sort has unexpected id!");
5306  assert(AllNodes.back().use_empty() &&
5307         "Last node in topologic sort has users!");
5308  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5309  return DAGSize;
5310}
5311
5312/// AssignOrdering - Assign an order to the SDNode.
5313void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5314  assert(SD && "Trying to assign an order to a null node!");
5315  Ordering->add(SD, Order);
5316}
5317
5318/// GetOrdering - Get the order for the SDNode.
5319unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5320  assert(SD && "Trying to get the order of a null node!");
5321  return Ordering->getOrder(SD);
5322}
5323
5324/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5325/// value is produced by SD.
5326void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD) {
5327  DbgInfo->add(DB, SD);
5328  if (SD)
5329    SD->setHasDebugValue(true);
5330}
5331
5332//===----------------------------------------------------------------------===//
5333//                              SDNode Class
5334//===----------------------------------------------------------------------===//
5335
5336HandleSDNode::~HandleSDNode() {
5337  DropOperands();
5338}
5339
5340GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5341                                         EVT VT, int64_t o, unsigned char TF)
5342  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5343  TheGlobal = const_cast<GlobalValue*>(GA);
5344}
5345
5346MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5347                     MachineMemOperand *mmo)
5348 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5349  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5350                                      MMO->isNonTemporal());
5351  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5352  assert(isNonTemporal() == MMO->isNonTemporal() &&
5353         "Non-temporal encoding error!");
5354  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5355}
5356
5357MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5358                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5359                     MachineMemOperand *mmo)
5360   : SDNode(Opc, dl, VTs, Ops, NumOps),
5361     MemoryVT(memvt), MMO(mmo) {
5362  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5363                                      MMO->isNonTemporal());
5364  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5365  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5366}
5367
5368/// Profile - Gather unique data for the node.
5369///
5370void SDNode::Profile(FoldingSetNodeID &ID) const {
5371  AddNodeIDNode(ID, this);
5372}
5373
5374namespace {
5375  struct EVTArray {
5376    std::vector<EVT> VTs;
5377
5378    EVTArray() {
5379      VTs.reserve(MVT::LAST_VALUETYPE);
5380      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5381        VTs.push_back(MVT((MVT::SimpleValueType)i));
5382    }
5383  };
5384}
5385
5386static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5387static ManagedStatic<EVTArray> SimpleVTArray;
5388static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5389
5390/// getValueTypeList - Return a pointer to the specified value type.
5391///
5392const EVT *SDNode::getValueTypeList(EVT VT) {
5393  if (VT.isExtended()) {
5394    sys::SmartScopedLock<true> Lock(*VTMutex);
5395    return &(*EVTs->insert(VT).first);
5396  } else {
5397    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5398  }
5399}
5400
5401/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5402/// indicated value.  This method ignores uses of other values defined by this
5403/// operation.
5404bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5405  assert(Value < getNumValues() && "Bad value!");
5406
5407  // TODO: Only iterate over uses of a given value of the node
5408  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5409    if (UI.getUse().getResNo() == Value) {
5410      if (NUses == 0)
5411        return false;
5412      --NUses;
5413    }
5414  }
5415
5416  // Found exactly the right number of uses?
5417  return NUses == 0;
5418}
5419
5420
5421/// hasAnyUseOfValue - Return true if there are any use of the indicated
5422/// value. This method ignores uses of other values defined by this operation.
5423bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5424  assert(Value < getNumValues() && "Bad value!");
5425
5426  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5427    if (UI.getUse().getResNo() == Value)
5428      return true;
5429
5430  return false;
5431}
5432
5433
5434/// isOnlyUserOf - Return true if this node is the only use of N.
5435///
5436bool SDNode::isOnlyUserOf(SDNode *N) const {
5437  bool Seen = false;
5438  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5439    SDNode *User = *I;
5440    if (User == this)
5441      Seen = true;
5442    else
5443      return false;
5444  }
5445
5446  return Seen;
5447}
5448
5449/// isOperand - Return true if this node is an operand of N.
5450///
5451bool SDValue::isOperandOf(SDNode *N) const {
5452  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5453    if (*this == N->getOperand(i))
5454      return true;
5455  return false;
5456}
5457
5458bool SDNode::isOperandOf(SDNode *N) const {
5459  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5460    if (this == N->OperandList[i].getNode())
5461      return true;
5462  return false;
5463}
5464
5465/// reachesChainWithoutSideEffects - Return true if this operand (which must
5466/// be a chain) reaches the specified operand without crossing any
5467/// side-effecting instructions.  In practice, this looks through token
5468/// factors and non-volatile loads.  In order to remain efficient, this only
5469/// looks a couple of nodes in, it does not do an exhaustive search.
5470bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5471                                               unsigned Depth) const {
5472  if (*this == Dest) return true;
5473
5474  // Don't search too deeply, we just want to be able to see through
5475  // TokenFactor's etc.
5476  if (Depth == 0) return false;
5477
5478  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5479  // of the operands of the TF reach dest, then we can do the xform.
5480  if (getOpcode() == ISD::TokenFactor) {
5481    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5482      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5483        return true;
5484    return false;
5485  }
5486
5487  // Loads don't have side effects, look through them.
5488  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5489    if (!Ld->isVolatile())
5490      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5491  }
5492  return false;
5493}
5494
5495/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5496/// is either an operand of N or it can be reached by traversing up the operands.
5497/// NOTE: this is an expensive method. Use it carefully.
5498bool SDNode::isPredecessorOf(SDNode *N) const {
5499  SmallPtrSet<SDNode *, 32> Visited;
5500  SmallVector<SDNode *, 16> Worklist;
5501  Worklist.push_back(N);
5502
5503  do {
5504    N = Worklist.pop_back_val();
5505    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5506      SDNode *Op = N->getOperand(i).getNode();
5507      if (Op == this)
5508        return true;
5509      if (Visited.insert(Op))
5510        Worklist.push_back(Op);
5511    }
5512  } while (!Worklist.empty());
5513
5514  return false;
5515}
5516
5517uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5518  assert(Num < NumOperands && "Invalid child # of SDNode!");
5519  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5520}
5521
5522std::string SDNode::getOperationName(const SelectionDAG *G) const {
5523  switch (getOpcode()) {
5524  default:
5525    if (getOpcode() < ISD::BUILTIN_OP_END)
5526      return "<<Unknown DAG Node>>";
5527    if (isMachineOpcode()) {
5528      if (G)
5529        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5530          if (getMachineOpcode() < TII->getNumOpcodes())
5531            return TII->get(getMachineOpcode()).getName();
5532      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5533    }
5534    if (G) {
5535      const TargetLowering &TLI = G->getTargetLoweringInfo();
5536      const char *Name = TLI.getTargetNodeName(getOpcode());
5537      if (Name) return Name;
5538      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5539    }
5540    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5541
5542#ifndef NDEBUG
5543  case ISD::DELETED_NODE:
5544    return "<<Deleted Node!>>";
5545#endif
5546  case ISD::PREFETCH:      return "Prefetch";
5547  case ISD::MEMBARRIER:    return "MemBarrier";
5548  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5549  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5550  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5551  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5552  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5553  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5554  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5555  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5556  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5557  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5558  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5559  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5560  case ISD::PCMARKER:      return "PCMarker";
5561  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5562  case ISD::SRCVALUE:      return "SrcValue";
5563  case ISD::EntryToken:    return "EntryToken";
5564  case ISD::TokenFactor:   return "TokenFactor";
5565  case ISD::AssertSext:    return "AssertSext";
5566  case ISD::AssertZext:    return "AssertZext";
5567
5568  case ISD::BasicBlock:    return "BasicBlock";
5569  case ISD::VALUETYPE:     return "ValueType";
5570  case ISD::Register:      return "Register";
5571
5572  case ISD::Constant:      return "Constant";
5573  case ISD::ConstantFP:    return "ConstantFP";
5574  case ISD::GlobalAddress: return "GlobalAddress";
5575  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5576  case ISD::FrameIndex:    return "FrameIndex";
5577  case ISD::JumpTable:     return "JumpTable";
5578  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5579  case ISD::RETURNADDR: return "RETURNADDR";
5580  case ISD::FRAMEADDR: return "FRAMEADDR";
5581  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5582  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5583  case ISD::LSDAADDR: return "LSDAADDR";
5584  case ISD::EHSELECTION: return "EHSELECTION";
5585  case ISD::EH_RETURN: return "EH_RETURN";
5586  case ISD::ConstantPool:  return "ConstantPool";
5587  case ISD::ExternalSymbol: return "ExternalSymbol";
5588  case ISD::BlockAddress:  return "BlockAddress";
5589  case ISD::INTRINSIC_WO_CHAIN:
5590  case ISD::INTRINSIC_VOID:
5591  case ISD::INTRINSIC_W_CHAIN: {
5592    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5593    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5594    if (IID < Intrinsic::num_intrinsics)
5595      return Intrinsic::getName((Intrinsic::ID)IID);
5596    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5597      return TII->getName(IID);
5598    llvm_unreachable("Invalid intrinsic ID");
5599  }
5600
5601  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5602  case ISD::TargetConstant: return "TargetConstant";
5603  case ISD::TargetConstantFP:return "TargetConstantFP";
5604  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5605  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5606  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5607  case ISD::TargetJumpTable:  return "TargetJumpTable";
5608  case ISD::TargetConstantPool:  return "TargetConstantPool";
5609  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5610  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5611
5612  case ISD::CopyToReg:     return "CopyToReg";
5613  case ISD::CopyFromReg:   return "CopyFromReg";
5614  case ISD::UNDEF:         return "undef";
5615  case ISD::MERGE_VALUES:  return "merge_values";
5616  case ISD::INLINEASM:     return "inlineasm";
5617  case ISD::EH_LABEL:      return "eh_label";
5618  case ISD::HANDLENODE:    return "handlenode";
5619
5620  // Unary operators
5621  case ISD::FABS:   return "fabs";
5622  case ISD::FNEG:   return "fneg";
5623  case ISD::FSQRT:  return "fsqrt";
5624  case ISD::FSIN:   return "fsin";
5625  case ISD::FCOS:   return "fcos";
5626  case ISD::FPOWI:  return "fpowi";
5627  case ISD::FPOW:   return "fpow";
5628  case ISD::FTRUNC: return "ftrunc";
5629  case ISD::FFLOOR: return "ffloor";
5630  case ISD::FCEIL:  return "fceil";
5631  case ISD::FRINT:  return "frint";
5632  case ISD::FNEARBYINT: return "fnearbyint";
5633
5634  // Binary operators
5635  case ISD::ADD:    return "add";
5636  case ISD::SUB:    return "sub";
5637  case ISD::MUL:    return "mul";
5638  case ISD::MULHU:  return "mulhu";
5639  case ISD::MULHS:  return "mulhs";
5640  case ISD::SDIV:   return "sdiv";
5641  case ISD::UDIV:   return "udiv";
5642  case ISD::SREM:   return "srem";
5643  case ISD::UREM:   return "urem";
5644  case ISD::SMUL_LOHI:  return "smul_lohi";
5645  case ISD::UMUL_LOHI:  return "umul_lohi";
5646  case ISD::SDIVREM:    return "sdivrem";
5647  case ISD::UDIVREM:    return "udivrem";
5648  case ISD::AND:    return "and";
5649  case ISD::OR:     return "or";
5650  case ISD::XOR:    return "xor";
5651  case ISD::SHL:    return "shl";
5652  case ISD::SRA:    return "sra";
5653  case ISD::SRL:    return "srl";
5654  case ISD::ROTL:   return "rotl";
5655  case ISD::ROTR:   return "rotr";
5656  case ISD::FADD:   return "fadd";
5657  case ISD::FSUB:   return "fsub";
5658  case ISD::FMUL:   return "fmul";
5659  case ISD::FDIV:   return "fdiv";
5660  case ISD::FREM:   return "frem";
5661  case ISD::FCOPYSIGN: return "fcopysign";
5662  case ISD::FGETSIGN:  return "fgetsign";
5663
5664  case ISD::SETCC:       return "setcc";
5665  case ISD::VSETCC:      return "vsetcc";
5666  case ISD::SELECT:      return "select";
5667  case ISD::SELECT_CC:   return "select_cc";
5668  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5669  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5670  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5671  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5672  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5673  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5674  case ISD::CARRY_FALSE:         return "carry_false";
5675  case ISD::ADDC:        return "addc";
5676  case ISD::ADDE:        return "adde";
5677  case ISD::SADDO:       return "saddo";
5678  case ISD::UADDO:       return "uaddo";
5679  case ISD::SSUBO:       return "ssubo";
5680  case ISD::USUBO:       return "usubo";
5681  case ISD::SMULO:       return "smulo";
5682  case ISD::UMULO:       return "umulo";
5683  case ISD::SUBC:        return "subc";
5684  case ISD::SUBE:        return "sube";
5685  case ISD::SHL_PARTS:   return "shl_parts";
5686  case ISD::SRA_PARTS:   return "sra_parts";
5687  case ISD::SRL_PARTS:   return "srl_parts";
5688
5689  // Conversion operators.
5690  case ISD::SIGN_EXTEND: return "sign_extend";
5691  case ISD::ZERO_EXTEND: return "zero_extend";
5692  case ISD::ANY_EXTEND:  return "any_extend";
5693  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5694  case ISD::TRUNCATE:    return "truncate";
5695  case ISD::FP_ROUND:    return "fp_round";
5696  case ISD::FLT_ROUNDS_: return "flt_rounds";
5697  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5698  case ISD::FP_EXTEND:   return "fp_extend";
5699
5700  case ISD::SINT_TO_FP:  return "sint_to_fp";
5701  case ISD::UINT_TO_FP:  return "uint_to_fp";
5702  case ISD::FP_TO_SINT:  return "fp_to_sint";
5703  case ISD::FP_TO_UINT:  return "fp_to_uint";
5704  case ISD::BIT_CONVERT: return "bit_convert";
5705  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5706  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5707
5708  case ISD::CONVERT_RNDSAT: {
5709    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5710    default: llvm_unreachable("Unknown cvt code!");
5711    case ISD::CVT_FF:  return "cvt_ff";
5712    case ISD::CVT_FS:  return "cvt_fs";
5713    case ISD::CVT_FU:  return "cvt_fu";
5714    case ISD::CVT_SF:  return "cvt_sf";
5715    case ISD::CVT_UF:  return "cvt_uf";
5716    case ISD::CVT_SS:  return "cvt_ss";
5717    case ISD::CVT_SU:  return "cvt_su";
5718    case ISD::CVT_US:  return "cvt_us";
5719    case ISD::CVT_UU:  return "cvt_uu";
5720    }
5721  }
5722
5723    // Control flow instructions
5724  case ISD::BR:      return "br";
5725  case ISD::BRIND:   return "brind";
5726  case ISD::BR_JT:   return "br_jt";
5727  case ISD::BRCOND:  return "brcond";
5728  case ISD::BR_CC:   return "br_cc";
5729  case ISD::CALLSEQ_START:  return "callseq_start";
5730  case ISD::CALLSEQ_END:    return "callseq_end";
5731
5732    // Other operators
5733  case ISD::LOAD:               return "load";
5734  case ISD::STORE:              return "store";
5735  case ISD::VAARG:              return "vaarg";
5736  case ISD::VACOPY:             return "vacopy";
5737  case ISD::VAEND:              return "vaend";
5738  case ISD::VASTART:            return "vastart";
5739  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5740  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5741  case ISD::BUILD_PAIR:         return "build_pair";
5742  case ISD::STACKSAVE:          return "stacksave";
5743  case ISD::STACKRESTORE:       return "stackrestore";
5744  case ISD::TRAP:               return "trap";
5745
5746  // Bit manipulation
5747  case ISD::BSWAP:   return "bswap";
5748  case ISD::CTPOP:   return "ctpop";
5749  case ISD::CTTZ:    return "cttz";
5750  case ISD::CTLZ:    return "ctlz";
5751
5752  // Trampolines
5753  case ISD::TRAMPOLINE: return "trampoline";
5754
5755  case ISD::CONDCODE:
5756    switch (cast<CondCodeSDNode>(this)->get()) {
5757    default: llvm_unreachable("Unknown setcc condition!");
5758    case ISD::SETOEQ:  return "setoeq";
5759    case ISD::SETOGT:  return "setogt";
5760    case ISD::SETOGE:  return "setoge";
5761    case ISD::SETOLT:  return "setolt";
5762    case ISD::SETOLE:  return "setole";
5763    case ISD::SETONE:  return "setone";
5764
5765    case ISD::SETO:    return "seto";
5766    case ISD::SETUO:   return "setuo";
5767    case ISD::SETUEQ:  return "setue";
5768    case ISD::SETUGT:  return "setugt";
5769    case ISD::SETUGE:  return "setuge";
5770    case ISD::SETULT:  return "setult";
5771    case ISD::SETULE:  return "setule";
5772    case ISD::SETUNE:  return "setune";
5773
5774    case ISD::SETEQ:   return "seteq";
5775    case ISD::SETGT:   return "setgt";
5776    case ISD::SETGE:   return "setge";
5777    case ISD::SETLT:   return "setlt";
5778    case ISD::SETLE:   return "setle";
5779    case ISD::SETNE:   return "setne";
5780    }
5781  }
5782}
5783
5784const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5785  switch (AM) {
5786  default:
5787    return "";
5788  case ISD::PRE_INC:
5789    return "<pre-inc>";
5790  case ISD::PRE_DEC:
5791    return "<pre-dec>";
5792  case ISD::POST_INC:
5793    return "<post-inc>";
5794  case ISD::POST_DEC:
5795    return "<post-dec>";
5796  }
5797}
5798
5799std::string ISD::ArgFlagsTy::getArgFlagsString() {
5800  std::string S = "< ";
5801
5802  if (isZExt())
5803    S += "zext ";
5804  if (isSExt())
5805    S += "sext ";
5806  if (isInReg())
5807    S += "inreg ";
5808  if (isSRet())
5809    S += "sret ";
5810  if (isByVal())
5811    S += "byval ";
5812  if (isNest())
5813    S += "nest ";
5814  if (getByValAlign())
5815    S += "byval-align:" + utostr(getByValAlign()) + " ";
5816  if (getOrigAlign())
5817    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5818  if (getByValSize())
5819    S += "byval-size:" + utostr(getByValSize()) + " ";
5820  return S + ">";
5821}
5822
5823void SDNode::dump() const { dump(0); }
5824void SDNode::dump(const SelectionDAG *G) const {
5825  print(dbgs(), G);
5826}
5827
5828void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5829  OS << (void*)this << ": ";
5830
5831  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5832    if (i) OS << ",";
5833    if (getValueType(i) == MVT::Other)
5834      OS << "ch";
5835    else
5836      OS << getValueType(i).getEVTString();
5837  }
5838  OS << " = " << getOperationName(G);
5839}
5840
5841void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5842  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5843    if (!MN->memoperands_empty()) {
5844      OS << "<";
5845      OS << "Mem:";
5846      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5847           e = MN->memoperands_end(); i != e; ++i) {
5848        OS << **i;
5849        if (next(i) != e)
5850          OS << " ";
5851      }
5852      OS << ">";
5853    }
5854  } else if (const ShuffleVectorSDNode *SVN =
5855               dyn_cast<ShuffleVectorSDNode>(this)) {
5856    OS << "<";
5857    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5858      int Idx = SVN->getMaskElt(i);
5859      if (i) OS << ",";
5860      if (Idx < 0)
5861        OS << "u";
5862      else
5863        OS << Idx;
5864    }
5865    OS << ">";
5866  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5867    OS << '<' << CSDN->getAPIntValue() << '>';
5868  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5869    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5870      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5871    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5872      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5873    else {
5874      OS << "<APFloat(";
5875      CSDN->getValueAPF().bitcastToAPInt().dump();
5876      OS << ")>";
5877    }
5878  } else if (const GlobalAddressSDNode *GADN =
5879             dyn_cast<GlobalAddressSDNode>(this)) {
5880    int64_t offset = GADN->getOffset();
5881    OS << '<';
5882    WriteAsOperand(OS, GADN->getGlobal());
5883    OS << '>';
5884    if (offset > 0)
5885      OS << " + " << offset;
5886    else
5887      OS << " " << offset;
5888    if (unsigned int TF = GADN->getTargetFlags())
5889      OS << " [TF=" << TF << ']';
5890  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5891    OS << "<" << FIDN->getIndex() << ">";
5892  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5893    OS << "<" << JTDN->getIndex() << ">";
5894    if (unsigned int TF = JTDN->getTargetFlags())
5895      OS << " [TF=" << TF << ']';
5896  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5897    int offset = CP->getOffset();
5898    if (CP->isMachineConstantPoolEntry())
5899      OS << "<" << *CP->getMachineCPVal() << ">";
5900    else
5901      OS << "<" << *CP->getConstVal() << ">";
5902    if (offset > 0)
5903      OS << " + " << offset;
5904    else
5905      OS << " " << offset;
5906    if (unsigned int TF = CP->getTargetFlags())
5907      OS << " [TF=" << TF << ']';
5908  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5909    OS << "<";
5910    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5911    if (LBB)
5912      OS << LBB->getName() << " ";
5913    OS << (const void*)BBDN->getBasicBlock() << ">";
5914  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5915    if (G && R->getReg() &&
5916        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5917      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5918    } else {
5919      OS << " %reg" << R->getReg();
5920    }
5921  } else if (const ExternalSymbolSDNode *ES =
5922             dyn_cast<ExternalSymbolSDNode>(this)) {
5923    OS << "'" << ES->getSymbol() << "'";
5924    if (unsigned int TF = ES->getTargetFlags())
5925      OS << " [TF=" << TF << ']';
5926  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5927    if (M->getValue())
5928      OS << "<" << M->getValue() << ">";
5929    else
5930      OS << "<null>";
5931  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5932    OS << ":" << N->getVT().getEVTString();
5933  }
5934  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5935    OS << "<" << *LD->getMemOperand();
5936
5937    bool doExt = true;
5938    switch (LD->getExtensionType()) {
5939    default: doExt = false; break;
5940    case ISD::EXTLOAD: OS << ", anyext"; break;
5941    case ISD::SEXTLOAD: OS << ", sext"; break;
5942    case ISD::ZEXTLOAD: OS << ", zext"; break;
5943    }
5944    if (doExt)
5945      OS << " from " << LD->getMemoryVT().getEVTString();
5946
5947    const char *AM = getIndexedModeName(LD->getAddressingMode());
5948    if (*AM)
5949      OS << ", " << AM;
5950
5951    OS << ">";
5952  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5953    OS << "<" << *ST->getMemOperand();
5954
5955    if (ST->isTruncatingStore())
5956      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5957
5958    const char *AM = getIndexedModeName(ST->getAddressingMode());
5959    if (*AM)
5960      OS << ", " << AM;
5961
5962    OS << ">";
5963  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5964    OS << "<" << *M->getMemOperand() << ">";
5965  } else if (const BlockAddressSDNode *BA =
5966               dyn_cast<BlockAddressSDNode>(this)) {
5967    OS << "<";
5968    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5969    OS << ", ";
5970    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5971    OS << ">";
5972    if (unsigned int TF = BA->getTargetFlags())
5973      OS << " [TF=" << TF << ']';
5974  }
5975
5976  if (G)
5977    if (unsigned Order = G->GetOrdering(this))
5978      OS << " [ORD=" << Order << ']';
5979
5980  if (getNodeId() != -1)
5981    OS << " [ID=" << getNodeId() << ']';
5982}
5983
5984void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5985  print_types(OS, G);
5986  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5987    if (i) OS << ", "; else OS << " ";
5988    OS << (void*)getOperand(i).getNode();
5989    if (unsigned RN = getOperand(i).getResNo())
5990      OS << ":" << RN;
5991  }
5992  print_details(OS, G);
5993}
5994
5995static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5996                                  const SelectionDAG *G, unsigned depth,
5997                                  unsigned indent)
5998{
5999  if (depth == 0)
6000    return;
6001
6002  OS.indent(indent);
6003
6004  N->print(OS, G);
6005
6006  if (depth < 1)
6007    return;
6008
6009  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6010    OS << '\n';
6011    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6012  }
6013}
6014
6015void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6016                            unsigned depth) const {
6017  printrWithDepthHelper(OS, this, G, depth, 0);
6018}
6019
6020void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6021  // Don't print impossibly deep things.
6022  printrWithDepth(OS, G, 100);
6023}
6024
6025void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6026  printrWithDepth(dbgs(), G, depth);
6027}
6028
6029void SDNode::dumprFull(const SelectionDAG *G) const {
6030  // Don't print impossibly deep things.
6031  dumprWithDepth(G, 100);
6032}
6033
6034static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6035  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6036    if (N->getOperand(i).getNode()->hasOneUse())
6037      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6038    else
6039      dbgs() << "\n" << std::string(indent+2, ' ')
6040           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6041
6042
6043  dbgs() << "\n";
6044  dbgs().indent(indent);
6045  N->dump(G);
6046}
6047
6048SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6049  assert(N->getNumValues() == 1 &&
6050         "Can't unroll a vector with multiple results!");
6051
6052  EVT VT = N->getValueType(0);
6053  unsigned NE = VT.getVectorNumElements();
6054  EVT EltVT = VT.getVectorElementType();
6055  DebugLoc dl = N->getDebugLoc();
6056
6057  SmallVector<SDValue, 8> Scalars;
6058  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6059
6060  // If ResNE is 0, fully unroll the vector op.
6061  if (ResNE == 0)
6062    ResNE = NE;
6063  else if (NE > ResNE)
6064    NE = ResNE;
6065
6066  unsigned i;
6067  for (i= 0; i != NE; ++i) {
6068    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6069      SDValue Operand = N->getOperand(j);
6070      EVT OperandVT = Operand.getValueType();
6071      if (OperandVT.isVector()) {
6072        // A vector operand; extract a single element.
6073        EVT OperandEltVT = OperandVT.getVectorElementType();
6074        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6075                              OperandEltVT,
6076                              Operand,
6077                              getConstant(i, MVT::i32));
6078      } else {
6079        // A scalar operand; just use it as is.
6080        Operands[j] = Operand;
6081      }
6082    }
6083
6084    switch (N->getOpcode()) {
6085    default:
6086      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6087                                &Operands[0], Operands.size()));
6088      break;
6089    case ISD::SHL:
6090    case ISD::SRA:
6091    case ISD::SRL:
6092    case ISD::ROTL:
6093    case ISD::ROTR:
6094      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6095                                getShiftAmountOperand(Operands[1])));
6096      break;
6097    case ISD::SIGN_EXTEND_INREG:
6098    case ISD::FP_ROUND_INREG: {
6099      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6100      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6101                                Operands[0],
6102                                getValueType(ExtVT)));
6103    }
6104    }
6105  }
6106
6107  for (; i < ResNE; ++i)
6108    Scalars.push_back(getUNDEF(EltVT));
6109
6110  return getNode(ISD::BUILD_VECTOR, dl,
6111                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6112                 &Scalars[0], Scalars.size());
6113}
6114
6115
6116/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6117/// location that is 'Dist' units away from the location that the 'Base' load
6118/// is loading from.
6119bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6120                                     unsigned Bytes, int Dist) const {
6121  if (LD->getChain() != Base->getChain())
6122    return false;
6123  EVT VT = LD->getValueType(0);
6124  if (VT.getSizeInBits() / 8 != Bytes)
6125    return false;
6126
6127  SDValue Loc = LD->getOperand(1);
6128  SDValue BaseLoc = Base->getOperand(1);
6129  if (Loc.getOpcode() == ISD::FrameIndex) {
6130    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6131      return false;
6132    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6133    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6134    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6135    int FS  = MFI->getObjectSize(FI);
6136    int BFS = MFI->getObjectSize(BFI);
6137    if (FS != BFS || FS != (int)Bytes) return false;
6138    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6139  }
6140  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6141    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6142    if (V && (V->getSExtValue() == Dist*Bytes))
6143      return true;
6144  }
6145
6146  GlobalValue *GV1 = NULL;
6147  GlobalValue *GV2 = NULL;
6148  int64_t Offset1 = 0;
6149  int64_t Offset2 = 0;
6150  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6151  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6152  if (isGA1 && isGA2 && GV1 == GV2)
6153    return Offset1 == (Offset2 + Dist*Bytes);
6154  return false;
6155}
6156
6157
6158/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6159/// it cannot be inferred.
6160unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6161  // If this is a GlobalAddress + cst, return the alignment.
6162  GlobalValue *GV;
6163  int64_t GVOffset = 0;
6164  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6165    // If GV has specified alignment, then use it. Otherwise, use the preferred
6166    // alignment.
6167    unsigned Align = GV->getAlignment();
6168    if (!Align) {
6169      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6170        if (GVar->hasInitializer()) {
6171          const TargetData *TD = TLI.getTargetData();
6172          Align = TD->getPreferredAlignment(GVar);
6173        }
6174      }
6175    }
6176    return MinAlign(Align, GVOffset);
6177  }
6178
6179  // If this is a direct reference to a stack slot, use information about the
6180  // stack slot's alignment.
6181  int FrameIdx = 1 << 31;
6182  int64_t FrameOffset = 0;
6183  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6184    FrameIdx = FI->getIndex();
6185  } else if (Ptr.getOpcode() == ISD::ADD &&
6186             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6187             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6188    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6189    FrameOffset = Ptr.getConstantOperandVal(1);
6190  }
6191
6192  if (FrameIdx != (1 << 31)) {
6193    // FIXME: Handle FI+CST.
6194    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6195    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6196                                    FrameOffset);
6197    if (MFI.isFixedObjectIndex(FrameIdx)) {
6198      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6199
6200      // The alignment of the frame index can be determined from its offset from
6201      // the incoming frame position.  If the frame object is at offset 32 and
6202      // the stack is guaranteed to be 16-byte aligned, then we know that the
6203      // object is 16-byte aligned.
6204      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6205      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6206
6207      // Finally, the frame object itself may have a known alignment.  Factor
6208      // the alignment + offset into a new alignment.  For example, if we know
6209      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6210      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6211      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6212      return std::max(Align, FIInfoAlign);
6213    }
6214    return FIInfoAlign;
6215  }
6216
6217  return 0;
6218}
6219
6220void SelectionDAG::dump() const {
6221  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6222
6223  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6224       I != E; ++I) {
6225    const SDNode *N = I;
6226    if (!N->hasOneUse() && N != getRoot().getNode())
6227      DumpNodes(N, 2, this);
6228  }
6229
6230  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6231
6232  dbgs() << "\n\n";
6233}
6234
6235void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6236  print_types(OS, G);
6237  print_details(OS, G);
6238}
6239
6240typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6241static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6242                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6243  if (!once.insert(N))          // If we've been here before, return now.
6244    return;
6245
6246  // Dump the current SDNode, but don't end the line yet.
6247  OS << std::string(indent, ' ');
6248  N->printr(OS, G);
6249
6250  // Having printed this SDNode, walk the children:
6251  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6252    const SDNode *child = N->getOperand(i).getNode();
6253
6254    if (i) OS << ",";
6255    OS << " ";
6256
6257    if (child->getNumOperands() == 0) {
6258      // This child has no grandchildren; print it inline right here.
6259      child->printr(OS, G);
6260      once.insert(child);
6261    } else {         // Just the address. FIXME: also print the child's opcode.
6262      OS << (void*)child;
6263      if (unsigned RN = N->getOperand(i).getResNo())
6264        OS << ":" << RN;
6265    }
6266  }
6267
6268  OS << "\n";
6269
6270  // Dump children that have grandchildren on their own line(s).
6271  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6272    const SDNode *child = N->getOperand(i).getNode();
6273    DumpNodesr(OS, child, indent+2, G, once);
6274  }
6275}
6276
6277void SDNode::dumpr() const {
6278  VisitedSDNodeSet once;
6279  DumpNodesr(dbgs(), this, 0, 0, once);
6280}
6281
6282void SDNode::dumpr(const SelectionDAG *G) const {
6283  VisitedSDNodeSet once;
6284  DumpNodesr(dbgs(), this, 0, G, once);
6285}
6286
6287
6288// getAddressSpace - Return the address space this GlobalAddress belongs to.
6289unsigned GlobalAddressSDNode::getAddressSpace() const {
6290  return getGlobal()->getType()->getAddressSpace();
6291}
6292
6293
6294const Type *ConstantPoolSDNode::getType() const {
6295  if (isMachineConstantPoolEntry())
6296    return Val.MachineCPVal->getType();
6297  return Val.ConstVal->getType();
6298}
6299
6300bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6301                                        APInt &SplatUndef,
6302                                        unsigned &SplatBitSize,
6303                                        bool &HasAnyUndefs,
6304                                        unsigned MinSplatBits,
6305                                        bool isBigEndian) {
6306  EVT VT = getValueType(0);
6307  assert(VT.isVector() && "Expected a vector type");
6308  unsigned sz = VT.getSizeInBits();
6309  if (MinSplatBits > sz)
6310    return false;
6311
6312  SplatValue = APInt(sz, 0);
6313  SplatUndef = APInt(sz, 0);
6314
6315  // Get the bits.  Bits with undefined values (when the corresponding element
6316  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6317  // in SplatValue.  If any of the values are not constant, give up and return
6318  // false.
6319  unsigned int nOps = getNumOperands();
6320  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6321  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6322
6323  for (unsigned j = 0; j < nOps; ++j) {
6324    unsigned i = isBigEndian ? nOps-1-j : j;
6325    SDValue OpVal = getOperand(i);
6326    unsigned BitPos = j * EltBitSize;
6327
6328    if (OpVal.getOpcode() == ISD::UNDEF)
6329      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6330    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6331      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6332                     zextOrTrunc(sz) << BitPos);
6333    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6334      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6335     else
6336      return false;
6337  }
6338
6339  // The build_vector is all constants or undefs.  Find the smallest element
6340  // size that splats the vector.
6341
6342  HasAnyUndefs = (SplatUndef != 0);
6343  while (sz > 8) {
6344
6345    unsigned HalfSize = sz / 2;
6346    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6347    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6348    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6349    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6350
6351    // If the two halves do not match (ignoring undef bits), stop here.
6352    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6353        MinSplatBits > HalfSize)
6354      break;
6355
6356    SplatValue = HighValue | LowValue;
6357    SplatUndef = HighUndef & LowUndef;
6358
6359    sz = HalfSize;
6360  }
6361
6362  SplatBitSize = sz;
6363  return true;
6364}
6365
6366bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6367  // Find the first non-undef value in the shuffle mask.
6368  unsigned i, e;
6369  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6370    /* search */;
6371
6372  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6373
6374  // Make sure all remaining elements are either undef or the same as the first
6375  // non-undef value.
6376  for (int Idx = Mask[i]; i != e; ++i)
6377    if (Mask[i] >= 0 && Mask[i] != Idx)
6378      return false;
6379  return true;
6380}
6381
6382#ifdef XDEBUG
6383static void checkForCyclesHelper(const SDNode *N,
6384                                 SmallPtrSet<const SDNode*, 32> &Visited,
6385                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6386  // If this node has already been checked, don't check it again.
6387  if (Checked.count(N))
6388    return;
6389
6390  // If a node has already been visited on this depth-first walk, reject it as
6391  // a cycle.
6392  if (!Visited.insert(N)) {
6393    dbgs() << "Offending node:\n";
6394    N->dumprFull();
6395    errs() << "Detected cycle in SelectionDAG\n";
6396    abort();
6397  }
6398
6399  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6400    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6401
6402  Checked.insert(N);
6403  Visited.erase(N);
6404}
6405#endif
6406
6407void llvm::checkForCycles(const llvm::SDNode *N) {
6408#ifdef XDEBUG
6409  assert(N && "Checking nonexistant SDNode");
6410  SmallPtrSet<const SDNode*, 32> visited;
6411  SmallPtrSet<const SDNode*, 32> checked;
6412  checkForCyclesHelper(N, visited, checked);
6413#endif
6414}
6415
6416void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6417  checkForCycles(DAG->getRoot().getNode());
6418}
6419