SelectionDAG.cpp revision 82c3d8f81ab20dc7571f29ffc46a5bb1b7ed8323
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/Support/MathExtras.h"
22#include "llvm/Target/MRegisterInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/ADT/SetVector.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringExtras.h"
29#include <iostream>
30#include <set>
31#include <cmath>
32#include <algorithm>
33using namespace llvm;
34
35/// makeVTList - Return an instance of the SDVTList struct initialized with the
36/// specified members.
37static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
38  SDVTList Res = {VTs, NumVTs};
39  return Res;
40}
41
42// isInvertibleForFree - Return true if there is no cost to emitting the logical
43// inverse of this node.
44static bool isInvertibleForFree(SDOperand N) {
45  if (isa<ConstantSDNode>(N.Val)) return true;
46  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
47    return true;
48  return false;
49}
50
51//===----------------------------------------------------------------------===//
52//                              ConstantFPSDNode Class
53//===----------------------------------------------------------------------===//
54
55/// isExactlyValue - We don't rely on operator== working on double values, as
56/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
57/// As such, this method can be used to do an exact bit-for-bit comparison of
58/// two floating point values.
59bool ConstantFPSDNode::isExactlyValue(double V) const {
60  return DoubleToBits(V) == DoubleToBits(Value);
61}
62
63//===----------------------------------------------------------------------===//
64//                              ISD Namespace
65//===----------------------------------------------------------------------===//
66
67/// isBuildVectorAllOnes - Return true if the specified node is a
68/// BUILD_VECTOR where all of the elements are ~0 or undef.
69bool ISD::isBuildVectorAllOnes(const SDNode *N) {
70  // Look through a bit convert.
71  if (N->getOpcode() == ISD::BIT_CONVERT)
72    N = N->getOperand(0).Val;
73
74  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
75
76  unsigned i = 0, e = N->getNumOperands();
77
78  // Skip over all of the undef values.
79  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
80    ++i;
81
82  // Do not accept an all-undef vector.
83  if (i == e) return false;
84
85  // Do not accept build_vectors that aren't all constants or which have non-~0
86  // elements.
87  SDOperand NotZero = N->getOperand(i);
88  if (isa<ConstantSDNode>(NotZero)) {
89    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
90      return false;
91  } else if (isa<ConstantFPSDNode>(NotZero)) {
92    MVT::ValueType VT = NotZero.getValueType();
93    if (VT== MVT::f64) {
94      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
95          (uint64_t)-1)
96        return false;
97    } else {
98      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
99          (uint32_t)-1)
100        return false;
101    }
102  } else
103    return false;
104
105  // Okay, we have at least one ~0 value, check to see if the rest match or are
106  // undefs.
107  for (++i; i != e; ++i)
108    if (N->getOperand(i) != NotZero &&
109        N->getOperand(i).getOpcode() != ISD::UNDEF)
110      return false;
111  return true;
112}
113
114
115/// isBuildVectorAllZeros - Return true if the specified node is a
116/// BUILD_VECTOR where all of the elements are 0 or undef.
117bool ISD::isBuildVectorAllZeros(const SDNode *N) {
118  // Look through a bit convert.
119  if (N->getOpcode() == ISD::BIT_CONVERT)
120    N = N->getOperand(0).Val;
121
122  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
123
124  unsigned i = 0, e = N->getNumOperands();
125
126  // Skip over all of the undef values.
127  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
128    ++i;
129
130  // Do not accept an all-undef vector.
131  if (i == e) return false;
132
133  // Do not accept build_vectors that aren't all constants or which have non-~0
134  // elements.
135  SDOperand Zero = N->getOperand(i);
136  if (isa<ConstantSDNode>(Zero)) {
137    if (!cast<ConstantSDNode>(Zero)->isNullValue())
138      return false;
139  } else if (isa<ConstantFPSDNode>(Zero)) {
140    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
141      return false;
142  } else
143    return false;
144
145  // Okay, we have at least one ~0 value, check to see if the rest match or are
146  // undefs.
147  for (++i; i != e; ++i)
148    if (N->getOperand(i) != Zero &&
149        N->getOperand(i).getOpcode() != ISD::UNDEF)
150      return false;
151  return true;
152}
153
154/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
155/// when given the operation for (X op Y).
156ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
157  // To perform this operation, we just need to swap the L and G bits of the
158  // operation.
159  unsigned OldL = (Operation >> 2) & 1;
160  unsigned OldG = (Operation >> 1) & 1;
161  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
162                       (OldL << 1) |       // New G bit
163                       (OldG << 2));        // New L bit.
164}
165
166/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
167/// 'op' is a valid SetCC operation.
168ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
169  unsigned Operation = Op;
170  if (isInteger)
171    Operation ^= 7;   // Flip L, G, E bits, but not U.
172  else
173    Operation ^= 15;  // Flip all of the condition bits.
174  if (Operation > ISD::SETTRUE2)
175    Operation &= ~8;     // Don't let N and U bits get set.
176  return ISD::CondCode(Operation);
177}
178
179
180/// isSignedOp - For an integer comparison, return 1 if the comparison is a
181/// signed operation and 2 if the result is an unsigned comparison.  Return zero
182/// if the operation does not depend on the sign of the input (setne and seteq).
183static int isSignedOp(ISD::CondCode Opcode) {
184  switch (Opcode) {
185  default: assert(0 && "Illegal integer setcc operation!");
186  case ISD::SETEQ:
187  case ISD::SETNE: return 0;
188  case ISD::SETLT:
189  case ISD::SETLE:
190  case ISD::SETGT:
191  case ISD::SETGE: return 1;
192  case ISD::SETULT:
193  case ISD::SETULE:
194  case ISD::SETUGT:
195  case ISD::SETUGE: return 2;
196  }
197}
198
199/// getSetCCOrOperation - Return the result of a logical OR between different
200/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
201/// returns SETCC_INVALID if it is not possible to represent the resultant
202/// comparison.
203ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
204                                       bool isInteger) {
205  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
206    // Cannot fold a signed integer setcc with an unsigned integer setcc.
207    return ISD::SETCC_INVALID;
208
209  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
210
211  // If the N and U bits get set then the resultant comparison DOES suddenly
212  // care about orderedness, and is true when ordered.
213  if (Op > ISD::SETTRUE2)
214    Op &= ~16;     // Clear the U bit if the N bit is set.
215
216  // Canonicalize illegal integer setcc's.
217  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
218    Op = ISD::SETNE;
219
220  return ISD::CondCode(Op);
221}
222
223/// getSetCCAndOperation - Return the result of a logical AND between different
224/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
225/// function returns zero if it is not possible to represent the resultant
226/// comparison.
227ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
228                                        bool isInteger) {
229  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
230    // Cannot fold a signed setcc with an unsigned setcc.
231    return ISD::SETCC_INVALID;
232
233  // Combine all of the condition bits.
234  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
235
236  // Canonicalize illegal integer setcc's.
237  if (isInteger) {
238    switch (Result) {
239    default: break;
240    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
241    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
242    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
243    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
244    }
245  }
246
247  return Result;
248}
249
250const TargetMachine &SelectionDAG::getTarget() const {
251  return TLI.getTargetMachine();
252}
253
254//===----------------------------------------------------------------------===//
255//                              SelectionDAG Class
256//===----------------------------------------------------------------------===//
257
258/// RemoveDeadNodes - This method deletes all unreachable nodes in the
259/// SelectionDAG.
260void SelectionDAG::RemoveDeadNodes() {
261  // Create a dummy node (which is not added to allnodes), that adds a reference
262  // to the root node, preventing it from being deleted.
263  HandleSDNode Dummy(getRoot());
264
265  SmallVector<SDNode*, 128> DeadNodes;
266
267  // Add all obviously-dead nodes to the DeadNodes worklist.
268  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
269    if (I->use_empty())
270      DeadNodes.push_back(I);
271
272  // Process the worklist, deleting the nodes and adding their uses to the
273  // worklist.
274  while (!DeadNodes.empty()) {
275    SDNode *N = DeadNodes.back();
276    DeadNodes.pop_back();
277
278    // Take the node out of the appropriate CSE map.
279    RemoveNodeFromCSEMaps(N);
280
281    // Next, brutally remove the operand list.  This is safe to do, as there are
282    // no cycles in the graph.
283    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
284      SDNode *Operand = I->Val;
285      Operand->removeUser(N);
286
287      // Now that we removed this operand, see if there are no uses of it left.
288      if (Operand->use_empty())
289        DeadNodes.push_back(Operand);
290    }
291    delete[] N->OperandList;
292    N->OperandList = 0;
293    N->NumOperands = 0;
294
295    // Finally, remove N itself.
296    AllNodes.erase(N);
297  }
298
299  // If the root changed (e.g. it was a dead load, update the root).
300  setRoot(Dummy.getValue());
301}
302
303void SelectionDAG::DeleteNode(SDNode *N) {
304  assert(N->use_empty() && "Cannot delete a node that is not dead!");
305
306  // First take this out of the appropriate CSE map.
307  RemoveNodeFromCSEMaps(N);
308
309  // Finally, remove uses due to operands of this node, remove from the
310  // AllNodes list, and delete the node.
311  DeleteNodeNotInCSEMaps(N);
312}
313
314void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
315
316  // Remove it from the AllNodes list.
317  AllNodes.remove(N);
318
319  // Drop all of the operands and decrement used nodes use counts.
320  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
321    I->Val->removeUser(N);
322  delete[] N->OperandList;
323  N->OperandList = 0;
324  N->NumOperands = 0;
325
326  delete N;
327}
328
329/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
330/// correspond to it.  This is useful when we're about to delete or repurpose
331/// the node.  We don't want future request for structurally identical nodes
332/// to return N anymore.
333void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
334  bool Erased = false;
335  switch (N->getOpcode()) {
336  case ISD::HANDLENODE: return;  // noop.
337  case ISD::STRING:
338    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
339    break;
340  case ISD::CONDCODE:
341    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
342           "Cond code doesn't exist!");
343    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
344    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
345    break;
346  case ISD::ExternalSymbol:
347    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
348    break;
349  case ISD::TargetExternalSymbol:
350    Erased =
351      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
352    break;
353  case ISD::VALUETYPE:
354    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
355    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
356    break;
357  default:
358    // Remove it from the CSE Map.
359    Erased = CSEMap.RemoveNode(N);
360    break;
361  }
362#ifndef NDEBUG
363  // Verify that the node was actually in one of the CSE maps, unless it has a
364  // flag result (which cannot be CSE'd) or is one of the special cases that are
365  // not subject to CSE.
366  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
367      !N->isTargetOpcode()) {
368    N->dump();
369    std::cerr << "\n";
370    assert(0 && "Node is not in map!");
371  }
372#endif
373}
374
375/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
376/// has been taken out and modified in some way.  If the specified node already
377/// exists in the CSE maps, do not modify the maps, but return the existing node
378/// instead.  If it doesn't exist, add it and return null.
379///
380SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
381  assert(N->getNumOperands() && "This is a leaf node!");
382  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
383    return 0;    // Never add these nodes.
384
385  // Check that remaining values produced are not flags.
386  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
387    if (N->getValueType(i) == MVT::Flag)
388      return 0;   // Never CSE anything that produces a flag.
389
390  SDNode *New = CSEMap.GetOrInsertNode(N);
391  if (New != N) return New;  // Node already existed.
392  return 0;
393}
394
395/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
396/// were replaced with those specified.  If this node is never memoized,
397/// return null, otherwise return a pointer to the slot it would take.  If a
398/// node already exists with these operands, the slot will be non-null.
399SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
400                                           void *&InsertPos) {
401  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
402    return 0;    // Never add these nodes.
403
404  // Check that remaining values produced are not flags.
405  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
406    if (N->getValueType(i) == MVT::Flag)
407      return 0;   // Never CSE anything that produces a flag.
408
409  SelectionDAGCSEMap::NodeID ID;
410  ID.SetOpcode(N->getOpcode());
411  ID.SetValueTypes(N->getVTList());
412  ID.SetOperands(Op);
413  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
414}
415
416/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
417/// were replaced with those specified.  If this node is never memoized,
418/// return null, otherwise return a pointer to the slot it would take.  If a
419/// node already exists with these operands, the slot will be non-null.
420SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
421                                           SDOperand Op1, SDOperand Op2,
422                                           void *&InsertPos) {
423  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
424    return 0;    // Never add these nodes.
425
426  // Check that remaining values produced are not flags.
427  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
428    if (N->getValueType(i) == MVT::Flag)
429      return 0;   // Never CSE anything that produces a flag.
430
431  SelectionDAGCSEMap::NodeID ID;
432  ID.SetOpcode(N->getOpcode());
433  ID.SetValueTypes(N->getVTList());
434  ID.SetOperands(Op1, Op2);
435  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
436}
437
438
439/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
440/// were replaced with those specified.  If this node is never memoized,
441/// return null, otherwise return a pointer to the slot it would take.  If a
442/// node already exists with these operands, the slot will be non-null.
443SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
444                                           const SDOperand *Ops,unsigned NumOps,
445                                           void *&InsertPos) {
446  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
447    return 0;    // Never add these nodes.
448
449  // Check that remaining values produced are not flags.
450  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
451    if (N->getValueType(i) == MVT::Flag)
452      return 0;   // Never CSE anything that produces a flag.
453
454  SelectionDAGCSEMap::NodeID ID;
455  ID.SetOpcode(N->getOpcode());
456  ID.SetValueTypes(N->getVTList());
457  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
458    ID.AddInteger(LD->getAddressingMode());
459    ID.AddInteger(LD->getExtensionType());
460    ID.AddInteger(LD->getLoadVT());
461    ID.AddPointer(LD->getSrcValue());
462    ID.AddInteger(LD->getSrcValueOffset());
463    ID.AddInteger(LD->getAlignment());
464    ID.AddInteger(LD->isVolatile());
465  }
466  ID.SetOperands(Ops, NumOps);
467  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
468}
469
470
471SelectionDAG::~SelectionDAG() {
472  while (!AllNodes.empty()) {
473    SDNode *N = AllNodes.begin();
474    N->SetNextInBucket(0);
475    delete [] N->OperandList;
476    N->OperandList = 0;
477    N->NumOperands = 0;
478    AllNodes.pop_front();
479  }
480}
481
482SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
483  if (Op.getValueType() == VT) return Op;
484  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
485  return getNode(ISD::AND, Op.getValueType(), Op,
486                 getConstant(Imm, Op.getValueType()));
487}
488
489SDOperand SelectionDAG::getString(const std::string &Val) {
490  StringSDNode *&N = StringNodes[Val];
491  if (!N) {
492    N = new StringSDNode(Val);
493    AllNodes.push_back(N);
494  }
495  return SDOperand(N, 0);
496}
497
498SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
499  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
500  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
501
502  // Mask out any bits that are not valid for this constant.
503  Val &= MVT::getIntVTBitMask(VT);
504
505  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
506  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
507  ID.AddInteger(Val);
508  void *IP = 0;
509  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
510    return SDOperand(E, 0);
511  SDNode *N = new ConstantSDNode(isT, Val, VT);
512  CSEMap.InsertNode(N, IP);
513  AllNodes.push_back(N);
514  return SDOperand(N, 0);
515}
516
517
518SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
519                                      bool isTarget) {
520  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
521  if (VT == MVT::f32)
522    Val = (float)Val;  // Mask out extra precision.
523
524  // Do the map lookup using the actual bit pattern for the floating point
525  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
526  // we don't have issues with SNANs.
527  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
528  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
529  ID.AddInteger(DoubleToBits(Val));
530  void *IP = 0;
531  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
532    return SDOperand(E, 0);
533  SDNode *N = new ConstantFPSDNode(isTarget, Val, VT);
534  CSEMap.InsertNode(N, IP);
535  AllNodes.push_back(N);
536  return SDOperand(N, 0);
537}
538
539SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
540                                         MVT::ValueType VT, int Offset,
541                                         bool isTargetGA) {
542  unsigned Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
543  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
544  ID.AddPointer(GV);
545  ID.AddInteger(Offset);
546  void *IP = 0;
547  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
548   return SDOperand(E, 0);
549  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
550  CSEMap.InsertNode(N, IP);
551  AllNodes.push_back(N);
552  return SDOperand(N, 0);
553}
554
555SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
556                                      bool isTarget) {
557  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
558  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
559  ID.AddInteger(FI);
560  void *IP = 0;
561  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
562    return SDOperand(E, 0);
563  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
564  CSEMap.InsertNode(N, IP);
565  AllNodes.push_back(N);
566  return SDOperand(N, 0);
567}
568
569SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
570  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
571  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
572  ID.AddInteger(JTI);
573  void *IP = 0;
574  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
575    return SDOperand(E, 0);
576  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
577  CSEMap.InsertNode(N, IP);
578  AllNodes.push_back(N);
579  return SDOperand(N, 0);
580}
581
582SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
583                                        unsigned Alignment, int Offset,
584                                        bool isTarget) {
585  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
586  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
587  ID.AddInteger(Alignment);
588  ID.AddInteger(Offset);
589  ID.AddPointer(C);
590  void *IP = 0;
591  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
592    return SDOperand(E, 0);
593  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
594  CSEMap.InsertNode(N, IP);
595  AllNodes.push_back(N);
596  return SDOperand(N, 0);
597}
598
599
600SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
601                                        MVT::ValueType VT,
602                                        unsigned Alignment, int Offset,
603                                        bool isTarget) {
604  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
605  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
606  ID.AddInteger(Alignment);
607  ID.AddInteger(Offset);
608  C->AddSelectionDAGCSEId(&ID);
609  void *IP = 0;
610  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
611    return SDOperand(E, 0);
612  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
613  CSEMap.InsertNode(N, IP);
614  AllNodes.push_back(N);
615  return SDOperand(N, 0);
616}
617
618
619SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
620  SelectionDAGCSEMap::NodeID ID(ISD::BasicBlock, getVTList(MVT::Other));
621  ID.AddPointer(MBB);
622  void *IP = 0;
623  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
624    return SDOperand(E, 0);
625  SDNode *N = new BasicBlockSDNode(MBB);
626  CSEMap.InsertNode(N, IP);
627  AllNodes.push_back(N);
628  return SDOperand(N, 0);
629}
630
631SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
632  if ((unsigned)VT >= ValueTypeNodes.size())
633    ValueTypeNodes.resize(VT+1);
634  if (ValueTypeNodes[VT] == 0) {
635    ValueTypeNodes[VT] = new VTSDNode(VT);
636    AllNodes.push_back(ValueTypeNodes[VT]);
637  }
638
639  return SDOperand(ValueTypeNodes[VT], 0);
640}
641
642SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
643  SDNode *&N = ExternalSymbols[Sym];
644  if (N) return SDOperand(N, 0);
645  N = new ExternalSymbolSDNode(false, Sym, VT);
646  AllNodes.push_back(N);
647  return SDOperand(N, 0);
648}
649
650SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
651                                                MVT::ValueType VT) {
652  SDNode *&N = TargetExternalSymbols[Sym];
653  if (N) return SDOperand(N, 0);
654  N = new ExternalSymbolSDNode(true, Sym, VT);
655  AllNodes.push_back(N);
656  return SDOperand(N, 0);
657}
658
659SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
660  if ((unsigned)Cond >= CondCodeNodes.size())
661    CondCodeNodes.resize(Cond+1);
662
663  if (CondCodeNodes[Cond] == 0) {
664    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
665    AllNodes.push_back(CondCodeNodes[Cond]);
666  }
667  return SDOperand(CondCodeNodes[Cond], 0);
668}
669
670SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
671  SelectionDAGCSEMap::NodeID ID(ISD::Register, getVTList(VT));
672  ID.AddInteger(RegNo);
673  void *IP = 0;
674  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
675    return SDOperand(E, 0);
676  SDNode *N = new RegisterSDNode(RegNo, VT);
677  CSEMap.InsertNode(N, IP);
678  AllNodes.push_back(N);
679  return SDOperand(N, 0);
680}
681
682SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
683  assert((!V || isa<PointerType>(V->getType())) &&
684         "SrcValue is not a pointer?");
685
686  SelectionDAGCSEMap::NodeID ID(ISD::SRCVALUE, getVTList(MVT::Other));
687  ID.AddPointer(V);
688  ID.AddInteger(Offset);
689  void *IP = 0;
690  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
691    return SDOperand(E, 0);
692  SDNode *N = new SrcValueSDNode(V, Offset);
693  CSEMap.InsertNode(N, IP);
694  AllNodes.push_back(N);
695  return SDOperand(N, 0);
696}
697
698SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
699                                      SDOperand N2, ISD::CondCode Cond) {
700  // These setcc operations always fold.
701  switch (Cond) {
702  default: break;
703  case ISD::SETFALSE:
704  case ISD::SETFALSE2: return getConstant(0, VT);
705  case ISD::SETTRUE:
706  case ISD::SETTRUE2:  return getConstant(1, VT);
707
708  case ISD::SETOEQ:
709  case ISD::SETOGT:
710  case ISD::SETOGE:
711  case ISD::SETOLT:
712  case ISD::SETOLE:
713  case ISD::SETONE:
714  case ISD::SETO:
715  case ISD::SETUO:
716  case ISD::SETUEQ:
717  case ISD::SETUNE:
718    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
719    break;
720  }
721
722  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
723    uint64_t C2 = N2C->getValue();
724    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
725      uint64_t C1 = N1C->getValue();
726
727      // Sign extend the operands if required
728      if (ISD::isSignedIntSetCC(Cond)) {
729        C1 = N1C->getSignExtended();
730        C2 = N2C->getSignExtended();
731      }
732
733      switch (Cond) {
734      default: assert(0 && "Unknown integer setcc!");
735      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
736      case ISD::SETNE:  return getConstant(C1 != C2, VT);
737      case ISD::SETULT: return getConstant(C1 <  C2, VT);
738      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
739      case ISD::SETULE: return getConstant(C1 <= C2, VT);
740      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
741      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
742      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
743      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
744      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
745      }
746    } else {
747      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
748      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
749        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
750
751        // If the comparison constant has bits in the upper part, the
752        // zero-extended value could never match.
753        if (C2 & (~0ULL << InSize)) {
754          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
755          switch (Cond) {
756          case ISD::SETUGT:
757          case ISD::SETUGE:
758          case ISD::SETEQ: return getConstant(0, VT);
759          case ISD::SETULT:
760          case ISD::SETULE:
761          case ISD::SETNE: return getConstant(1, VT);
762          case ISD::SETGT:
763          case ISD::SETGE:
764            // True if the sign bit of C2 is set.
765            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
766          case ISD::SETLT:
767          case ISD::SETLE:
768            // True if the sign bit of C2 isn't set.
769            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
770          default:
771            break;
772          }
773        }
774
775        // Otherwise, we can perform the comparison with the low bits.
776        switch (Cond) {
777        case ISD::SETEQ:
778        case ISD::SETNE:
779        case ISD::SETUGT:
780        case ISD::SETUGE:
781        case ISD::SETULT:
782        case ISD::SETULE:
783          return getSetCC(VT, N1.getOperand(0),
784                          getConstant(C2, N1.getOperand(0).getValueType()),
785                          Cond);
786        default:
787          break;   // todo, be more careful with signed comparisons
788        }
789      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
790                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
791        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
792        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
793        MVT::ValueType ExtDstTy = N1.getValueType();
794        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
795
796        // If the extended part has any inconsistent bits, it cannot ever
797        // compare equal.  In other words, they have to be all ones or all
798        // zeros.
799        uint64_t ExtBits =
800          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
801        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
802          return getConstant(Cond == ISD::SETNE, VT);
803
804        // Otherwise, make this a use of a zext.
805        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
806                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
807                        Cond);
808      }
809
810      uint64_t MinVal, MaxVal;
811      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
812      if (ISD::isSignedIntSetCC(Cond)) {
813        MinVal = 1ULL << (OperandBitSize-1);
814        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
815          MaxVal = ~0ULL >> (65-OperandBitSize);
816        else
817          MaxVal = 0;
818      } else {
819        MinVal = 0;
820        MaxVal = ~0ULL >> (64-OperandBitSize);
821      }
822
823      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
824      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
825        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
826        --C2;                                          // X >= C1 --> X > (C1-1)
827        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
828                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
829      }
830
831      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
832        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
833        ++C2;                                          // X <= C1 --> X < (C1+1)
834        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
835                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
836      }
837
838      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
839        return getConstant(0, VT);      // X < MIN --> false
840
841      // Canonicalize setgt X, Min --> setne X, Min
842      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
843        return getSetCC(VT, N1, N2, ISD::SETNE);
844
845      // If we have setult X, 1, turn it into seteq X, 0
846      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
847        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
848                        ISD::SETEQ);
849      // If we have setugt X, Max-1, turn it into seteq X, Max
850      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
851        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
852                        ISD::SETEQ);
853
854      // If we have "setcc X, C1", check to see if we can shrink the immediate
855      // by changing cc.
856
857      // SETUGT X, SINTMAX  -> SETLT X, 0
858      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
859          C2 == (~0ULL >> (65-OperandBitSize)))
860        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
861
862      // FIXME: Implement the rest of these.
863
864
865      // Fold bit comparisons when we can.
866      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
867          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
868        if (ConstantSDNode *AndRHS =
869                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
870          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
871            // Perform the xform if the AND RHS is a single bit.
872            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
873              return getNode(ISD::SRL, VT, N1,
874                             getConstant(Log2_64(AndRHS->getValue()),
875                                                   TLI.getShiftAmountTy()));
876            }
877          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
878            // (X & 8) == 8  -->  (X & 8) >> 3
879            // Perform the xform if C2 is a single bit.
880            if ((C2 & (C2-1)) == 0) {
881              return getNode(ISD::SRL, VT, N1,
882                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
883            }
884          }
885        }
886    }
887  } else if (isa<ConstantSDNode>(N1.Val)) {
888      // Ensure that the constant occurs on the RHS.
889    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
890  }
891
892  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
893    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
894      double C1 = N1C->getValue(), C2 = N2C->getValue();
895
896      switch (Cond) {
897      default: break; // FIXME: Implement the rest of these!
898      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
899      case ISD::SETNE:  return getConstant(C1 != C2, VT);
900      case ISD::SETLT:  return getConstant(C1 < C2, VT);
901      case ISD::SETGT:  return getConstant(C1 > C2, VT);
902      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
903      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
904      }
905    } else {
906      // Ensure that the constant occurs on the RHS.
907      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
908    }
909
910  // Could not fold it.
911  return SDOperand();
912}
913
914/// getNode - Gets or creates the specified node.
915///
916SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
917  SelectionDAGCSEMap::NodeID ID(Opcode, getVTList(VT));
918  void *IP = 0;
919  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
920    return SDOperand(E, 0);
921  SDNode *N = new SDNode(Opcode, VT);
922  CSEMap.InsertNode(N, IP);
923
924  AllNodes.push_back(N);
925  return SDOperand(N, 0);
926}
927
928SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
929                                SDOperand Operand) {
930  unsigned Tmp1;
931  // Constant fold unary operations with an integer constant operand.
932  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
933    uint64_t Val = C->getValue();
934    switch (Opcode) {
935    default: break;
936    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
937    case ISD::ANY_EXTEND:
938    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
939    case ISD::TRUNCATE:    return getConstant(Val, VT);
940    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
941    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
942    case ISD::BIT_CONVERT:
943      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
944        return getConstantFP(BitsToFloat(Val), VT);
945      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
946        return getConstantFP(BitsToDouble(Val), VT);
947      break;
948    case ISD::BSWAP:
949      switch(VT) {
950      default: assert(0 && "Invalid bswap!"); break;
951      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
952      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
953      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
954      }
955      break;
956    case ISD::CTPOP:
957      switch(VT) {
958      default: assert(0 && "Invalid ctpop!"); break;
959      case MVT::i1: return getConstant(Val != 0, VT);
960      case MVT::i8:
961        Tmp1 = (unsigned)Val & 0xFF;
962        return getConstant(CountPopulation_32(Tmp1), VT);
963      case MVT::i16:
964        Tmp1 = (unsigned)Val & 0xFFFF;
965        return getConstant(CountPopulation_32(Tmp1), VT);
966      case MVT::i32:
967        return getConstant(CountPopulation_32((unsigned)Val), VT);
968      case MVT::i64:
969        return getConstant(CountPopulation_64(Val), VT);
970      }
971    case ISD::CTLZ:
972      switch(VT) {
973      default: assert(0 && "Invalid ctlz!"); break;
974      case MVT::i1: return getConstant(Val == 0, VT);
975      case MVT::i8:
976        Tmp1 = (unsigned)Val & 0xFF;
977        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
978      case MVT::i16:
979        Tmp1 = (unsigned)Val & 0xFFFF;
980        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
981      case MVT::i32:
982        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
983      case MVT::i64:
984        return getConstant(CountLeadingZeros_64(Val), VT);
985      }
986    case ISD::CTTZ:
987      switch(VT) {
988      default: assert(0 && "Invalid cttz!"); break;
989      case MVT::i1: return getConstant(Val == 0, VT);
990      case MVT::i8:
991        Tmp1 = (unsigned)Val | 0x100;
992        return getConstant(CountTrailingZeros_32(Tmp1), VT);
993      case MVT::i16:
994        Tmp1 = (unsigned)Val | 0x10000;
995        return getConstant(CountTrailingZeros_32(Tmp1), VT);
996      case MVT::i32:
997        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
998      case MVT::i64:
999        return getConstant(CountTrailingZeros_64(Val), VT);
1000      }
1001    }
1002  }
1003
1004  // Constant fold unary operations with an floating point constant operand.
1005  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1006    switch (Opcode) {
1007    case ISD::FNEG:
1008      return getConstantFP(-C->getValue(), VT);
1009    case ISD::FABS:
1010      return getConstantFP(fabs(C->getValue()), VT);
1011    case ISD::FP_ROUND:
1012    case ISD::FP_EXTEND:
1013      return getConstantFP(C->getValue(), VT);
1014    case ISD::FP_TO_SINT:
1015      return getConstant((int64_t)C->getValue(), VT);
1016    case ISD::FP_TO_UINT:
1017      return getConstant((uint64_t)C->getValue(), VT);
1018    case ISD::BIT_CONVERT:
1019      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1020        return getConstant(FloatToBits(C->getValue()), VT);
1021      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1022        return getConstant(DoubleToBits(C->getValue()), VT);
1023      break;
1024    }
1025
1026  unsigned OpOpcode = Operand.Val->getOpcode();
1027  switch (Opcode) {
1028  case ISD::TokenFactor:
1029    return Operand;         // Factor of one node?  No factor.
1030  case ISD::SIGN_EXTEND:
1031    if (Operand.getValueType() == VT) return Operand;   // noop extension
1032    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1033    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1034      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1035    break;
1036  case ISD::ZERO_EXTEND:
1037    if (Operand.getValueType() == VT) return Operand;   // noop extension
1038    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1039    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1040      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1041    break;
1042  case ISD::ANY_EXTEND:
1043    if (Operand.getValueType() == VT) return Operand;   // noop extension
1044    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1045    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1046      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1047      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1048    break;
1049  case ISD::TRUNCATE:
1050    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1051    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1052    if (OpOpcode == ISD::TRUNCATE)
1053      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1054    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1055             OpOpcode == ISD::ANY_EXTEND) {
1056      // If the source is smaller than the dest, we still need an extend.
1057      if (Operand.Val->getOperand(0).getValueType() < VT)
1058        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1059      else if (Operand.Val->getOperand(0).getValueType() > VT)
1060        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1061      else
1062        return Operand.Val->getOperand(0);
1063    }
1064    break;
1065  case ISD::BIT_CONVERT:
1066    // Basic sanity checking.
1067    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1068           && "Cannot BIT_CONVERT between two different types!");
1069    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1070    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1071      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1072    if (OpOpcode == ISD::UNDEF)
1073      return getNode(ISD::UNDEF, VT);
1074    break;
1075  case ISD::SCALAR_TO_VECTOR:
1076    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1077           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1078           "Illegal SCALAR_TO_VECTOR node!");
1079    break;
1080  case ISD::FNEG:
1081    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1082      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1083                     Operand.Val->getOperand(0));
1084    if (OpOpcode == ISD::FNEG)  // --X -> X
1085      return Operand.Val->getOperand(0);
1086    break;
1087  case ISD::FABS:
1088    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1089      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1090    break;
1091  }
1092
1093  SDNode *N;
1094  SDVTList VTs = getVTList(VT);
1095  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1096    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Operand);
1097    void *IP = 0;
1098    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1099      return SDOperand(E, 0);
1100    N = new SDNode(Opcode, Operand);
1101    N->setValueTypes(VTs);
1102    CSEMap.InsertNode(N, IP);
1103  } else {
1104    N = new SDNode(Opcode, Operand);
1105    N->setValueTypes(VTs);
1106  }
1107  AllNodes.push_back(N);
1108  return SDOperand(N, 0);
1109}
1110
1111
1112
1113SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1114                                SDOperand N1, SDOperand N2) {
1115#ifndef NDEBUG
1116  switch (Opcode) {
1117  case ISD::TokenFactor:
1118    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1119           N2.getValueType() == MVT::Other && "Invalid token factor!");
1120    break;
1121  case ISD::AND:
1122  case ISD::OR:
1123  case ISD::XOR:
1124  case ISD::UDIV:
1125  case ISD::UREM:
1126  case ISD::MULHU:
1127  case ISD::MULHS:
1128    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1129    // fall through
1130  case ISD::ADD:
1131  case ISD::SUB:
1132  case ISD::MUL:
1133  case ISD::SDIV:
1134  case ISD::SREM:
1135    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1136    // fall through.
1137  case ISD::FADD:
1138  case ISD::FSUB:
1139  case ISD::FMUL:
1140  case ISD::FDIV:
1141  case ISD::FREM:
1142    assert(N1.getValueType() == N2.getValueType() &&
1143           N1.getValueType() == VT && "Binary operator types must match!");
1144    break;
1145  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1146    assert(N1.getValueType() == VT &&
1147           MVT::isFloatingPoint(N1.getValueType()) &&
1148           MVT::isFloatingPoint(N2.getValueType()) &&
1149           "Invalid FCOPYSIGN!");
1150    break;
1151  case ISD::SHL:
1152  case ISD::SRA:
1153  case ISD::SRL:
1154  case ISD::ROTL:
1155  case ISD::ROTR:
1156    assert(VT == N1.getValueType() &&
1157           "Shift operators return type must be the same as their first arg");
1158    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1159           VT != MVT::i1 && "Shifts only work on integers");
1160    break;
1161  case ISD::FP_ROUND_INREG: {
1162    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1163    assert(VT == N1.getValueType() && "Not an inreg round!");
1164    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1165           "Cannot FP_ROUND_INREG integer types");
1166    assert(EVT <= VT && "Not rounding down!");
1167    break;
1168  }
1169  case ISD::AssertSext:
1170  case ISD::AssertZext:
1171  case ISD::SIGN_EXTEND_INREG: {
1172    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1173    assert(VT == N1.getValueType() && "Not an inreg extend!");
1174    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1175           "Cannot *_EXTEND_INREG FP types");
1176    assert(EVT <= VT && "Not extending!");
1177  }
1178
1179  default: break;
1180  }
1181#endif
1182
1183  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1184  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1185  if (N1C) {
1186    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1187      int64_t Val = N1C->getValue();
1188      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1189      Val <<= 64-FromBits;
1190      Val >>= 64-FromBits;
1191      return getConstant(Val, VT);
1192    }
1193
1194    if (N2C) {
1195      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1196      switch (Opcode) {
1197      case ISD::ADD: return getConstant(C1 + C2, VT);
1198      case ISD::SUB: return getConstant(C1 - C2, VT);
1199      case ISD::MUL: return getConstant(C1 * C2, VT);
1200      case ISD::UDIV:
1201        if (C2) return getConstant(C1 / C2, VT);
1202        break;
1203      case ISD::UREM :
1204        if (C2) return getConstant(C1 % C2, VT);
1205        break;
1206      case ISD::SDIV :
1207        if (C2) return getConstant(N1C->getSignExtended() /
1208                                   N2C->getSignExtended(), VT);
1209        break;
1210      case ISD::SREM :
1211        if (C2) return getConstant(N1C->getSignExtended() %
1212                                   N2C->getSignExtended(), VT);
1213        break;
1214      case ISD::AND  : return getConstant(C1 & C2, VT);
1215      case ISD::OR   : return getConstant(C1 | C2, VT);
1216      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1217      case ISD::SHL  : return getConstant(C1 << C2, VT);
1218      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1219      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1220      case ISD::ROTL :
1221        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1222                           VT);
1223      case ISD::ROTR :
1224        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1225                           VT);
1226      default: break;
1227      }
1228    } else {      // Cannonicalize constant to RHS if commutative
1229      if (isCommutativeBinOp(Opcode)) {
1230        std::swap(N1C, N2C);
1231        std::swap(N1, N2);
1232      }
1233    }
1234  }
1235
1236  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1237  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1238  if (N1CFP) {
1239    if (N2CFP) {
1240      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1241      switch (Opcode) {
1242      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1243      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1244      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1245      case ISD::FDIV:
1246        if (C2) return getConstantFP(C1 / C2, VT);
1247        break;
1248      case ISD::FREM :
1249        if (C2) return getConstantFP(fmod(C1, C2), VT);
1250        break;
1251      case ISD::FCOPYSIGN: {
1252        union {
1253          double   F;
1254          uint64_t I;
1255        } u1;
1256        union {
1257          double  F;
1258          int64_t I;
1259        } u2;
1260        u1.F = C1;
1261        u2.F = C2;
1262        if (u2.I < 0)  // Sign bit of RHS set?
1263          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1264        else
1265          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1266        return getConstantFP(u1.F, VT);
1267      }
1268      default: break;
1269      }
1270    } else {      // Cannonicalize constant to RHS if commutative
1271      if (isCommutativeBinOp(Opcode)) {
1272        std::swap(N1CFP, N2CFP);
1273        std::swap(N1, N2);
1274      }
1275    }
1276  }
1277
1278  // Canonicalize an UNDEF to the RHS, even over a constant.
1279  if (N1.getOpcode() == ISD::UNDEF) {
1280    if (isCommutativeBinOp(Opcode)) {
1281      std::swap(N1, N2);
1282    } else {
1283      switch (Opcode) {
1284      case ISD::FP_ROUND_INREG:
1285      case ISD::SIGN_EXTEND_INREG:
1286      case ISD::SUB:
1287      case ISD::FSUB:
1288      case ISD::FDIV:
1289      case ISD::FREM:
1290      case ISD::SRA:
1291        return N1;     // fold op(undef, arg2) -> undef
1292      case ISD::UDIV:
1293      case ISD::SDIV:
1294      case ISD::UREM:
1295      case ISD::SREM:
1296      case ISD::SRL:
1297      case ISD::SHL:
1298        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1299      }
1300    }
1301  }
1302
1303  // Fold a bunch of operators when the RHS is undef.
1304  if (N2.getOpcode() == ISD::UNDEF) {
1305    switch (Opcode) {
1306    case ISD::ADD:
1307    case ISD::SUB:
1308    case ISD::FADD:
1309    case ISD::FSUB:
1310    case ISD::FMUL:
1311    case ISD::FDIV:
1312    case ISD::FREM:
1313    case ISD::UDIV:
1314    case ISD::SDIV:
1315    case ISD::UREM:
1316    case ISD::SREM:
1317    case ISD::XOR:
1318      return N2;       // fold op(arg1, undef) -> undef
1319    case ISD::MUL:
1320    case ISD::AND:
1321    case ISD::SRL:
1322    case ISD::SHL:
1323      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1324    case ISD::OR:
1325      return getConstant(MVT::getIntVTBitMask(VT), VT);
1326    case ISD::SRA:
1327      return N1;
1328    }
1329  }
1330
1331  // Finally, fold operations that do not require constants.
1332  switch (Opcode) {
1333  case ISD::FP_ROUND_INREG:
1334    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1335    break;
1336  case ISD::SIGN_EXTEND_INREG: {
1337    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1338    if (EVT == VT) return N1;  // Not actually extending
1339    break;
1340  }
1341  case ISD::EXTRACT_ELEMENT:
1342    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1343
1344    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
1345    // 64-bit integers into 32-bit parts.  Instead of building the extract of
1346    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
1347    if (N1.getOpcode() == ISD::BUILD_PAIR)
1348      return N1.getOperand(N2C->getValue());
1349
1350    // EXTRACT_ELEMENT of a constant int is also very common.
1351    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
1352      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
1353      return getConstant(C->getValue() >> Shift, VT);
1354    }
1355    break;
1356
1357  // FIXME: figure out how to safely handle things like
1358  // int foo(int x) { return 1 << (x & 255); }
1359  // int bar() { return foo(256); }
1360#if 0
1361  case ISD::SHL:
1362  case ISD::SRL:
1363  case ISD::SRA:
1364    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1365        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1366      return getNode(Opcode, VT, N1, N2.getOperand(0));
1367    else if (N2.getOpcode() == ISD::AND)
1368      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1369        // If the and is only masking out bits that cannot effect the shift,
1370        // eliminate the and.
1371        unsigned NumBits = MVT::getSizeInBits(VT);
1372        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1373          return getNode(Opcode, VT, N1, N2.getOperand(0));
1374      }
1375    break;
1376#endif
1377  }
1378
1379  // Memoize this node if possible.
1380  SDNode *N;
1381  SDVTList VTs = getVTList(VT);
1382  if (VT != MVT::Flag) {
1383    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2);
1384    void *IP = 0;
1385    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1386      return SDOperand(E, 0);
1387    N = new SDNode(Opcode, N1, N2);
1388    N->setValueTypes(VTs);
1389    CSEMap.InsertNode(N, IP);
1390  } else {
1391    N = new SDNode(Opcode, N1, N2);
1392    N->setValueTypes(VTs);
1393  }
1394
1395  AllNodes.push_back(N);
1396  return SDOperand(N, 0);
1397}
1398
1399SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1400                                SDOperand N1, SDOperand N2, SDOperand N3) {
1401  // Perform various simplifications.
1402  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1403  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1404  //ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1405  switch (Opcode) {
1406  case ISD::SETCC: {
1407    // Use SimplifySetCC  to simplify SETCC's.
1408    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1409    if (Simp.Val) return Simp;
1410    break;
1411  }
1412  case ISD::SELECT:
1413    if (N1C)
1414      if (N1C->getValue())
1415        return N2;             // select true, X, Y -> X
1416      else
1417        return N3;             // select false, X, Y -> Y
1418
1419    if (N2 == N3) return N2;   // select C, X, X -> X
1420    break;
1421  case ISD::BRCOND:
1422    if (N2C)
1423      if (N2C->getValue()) // Unconditional branch
1424        return getNode(ISD::BR, MVT::Other, N1, N3);
1425      else
1426        return N1;         // Never-taken branch
1427    break;
1428  case ISD::VECTOR_SHUFFLE:
1429    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1430           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1431           N3.getOpcode() == ISD::BUILD_VECTOR &&
1432           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1433           "Illegal VECTOR_SHUFFLE node!");
1434    break;
1435  }
1436
1437  // Memoize node if it doesn't produce a flag.
1438  SDNode *N;
1439  SDVTList VTs = getVTList(VT);
1440  if (VT != MVT::Flag) {
1441    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2, N3);
1442    void *IP = 0;
1443    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1444      return SDOperand(E, 0);
1445    N = new SDNode(Opcode, N1, N2, N3);
1446    N->setValueTypes(VTs);
1447    CSEMap.InsertNode(N, IP);
1448  } else {
1449    N = new SDNode(Opcode, N1, N2, N3);
1450    N->setValueTypes(VTs);
1451  }
1452  AllNodes.push_back(N);
1453  return SDOperand(N, 0);
1454}
1455
1456SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1457                                SDOperand N1, SDOperand N2, SDOperand N3,
1458                                SDOperand N4) {
1459  SDOperand Ops[] = { N1, N2, N3, N4 };
1460  return getNode(Opcode, VT, Ops, 4);
1461}
1462
1463SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1464                                SDOperand N1, SDOperand N2, SDOperand N3,
1465                                SDOperand N4, SDOperand N5) {
1466  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1467  return getNode(Opcode, VT, Ops, 5);
1468}
1469
1470SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1471                                SDOperand Chain, SDOperand Ptr,
1472                                const Value *SV, int SVOffset,
1473                                bool isVolatile) {
1474  // FIXME: Alignment == 1 for now.
1475  unsigned Alignment = 1;
1476  SDVTList VTs = getVTList(VT, MVT::Other);
1477  SDOperand Undef = getNode(ISD::UNDEF, VT);
1478  SelectionDAGCSEMap::NodeID ID(ISD::LOAD, VTs, Chain, Ptr, Undef);
1479  ID.AddInteger(ISD::UNINDEXED);
1480  ID.AddInteger(ISD::NON_EXTLOAD);
1481  ID.AddInteger(VT);
1482  ID.AddPointer(SV);
1483  ID.AddInteger(SVOffset);
1484  ID.AddInteger(Alignment);
1485  ID.AddInteger(isVolatile);
1486  void *IP = 0;
1487  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1488    return SDOperand(E, 0);
1489  SDNode *N = new LoadSDNode(Chain, Ptr, Undef, ISD::NON_EXTLOAD, VT,
1490                             SV, SVOffset, Alignment, isVolatile);
1491  N->setValueTypes(VTs);
1492  CSEMap.InsertNode(N, IP);
1493  AllNodes.push_back(N);
1494  return SDOperand(N, 0);
1495}
1496
1497SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
1498                                   SDOperand Chain, SDOperand Ptr, const Value *SV,
1499                                   int SVOffset, MVT::ValueType EVT,
1500                                   bool isVolatile) {
1501  // If they are asking for an extending load from/to the same thing, return a
1502  // normal load.
1503  if (VT == EVT)
1504    ExtType = ISD::NON_EXTLOAD;
1505
1506  if (MVT::isVector(VT))
1507    assert(EVT == MVT::getVectorBaseType(VT) && "Invalid vector extload!");
1508  else
1509    assert(EVT < VT && "Should only be an extending load, not truncating!");
1510  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
1511         "Cannot sign/zero extend a FP/Vector load!");
1512  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
1513         "Cannot convert from FP to Int or Int -> FP!");
1514
1515  // FIXME: Alignment == 1 for now.
1516  unsigned Alignment = 1;
1517  SDVTList VTs = getVTList(VT, MVT::Other);
1518  SDOperand Undef = getNode(ISD::UNDEF, VT);
1519  SelectionDAGCSEMap::NodeID ID(ISD::LOAD, VTs, Chain, Ptr, Undef);
1520  ID.AddInteger(ISD::UNINDEXED);
1521  ID.AddInteger(ExtType);
1522  ID.AddInteger(EVT);
1523  ID.AddPointer(SV);
1524  ID.AddInteger(SVOffset);
1525  ID.AddInteger(Alignment);
1526  ID.AddInteger(isVolatile);
1527  void *IP = 0;
1528  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1529    return SDOperand(E, 0);
1530  SDNode *N = new LoadSDNode(Chain, Ptr, Undef, ExtType, EVT, SV, SVOffset,
1531                             Alignment, isVolatile);
1532  N->setValueTypes(VTs);
1533  CSEMap.InsertNode(N, IP);
1534  AllNodes.push_back(N);
1535  return SDOperand(N, 0);
1536}
1537
1538SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1539                                   SDOperand Chain, SDOperand Ptr,
1540                                   SDOperand SV) {
1541  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1542                      getValueType(EVT) };
1543  return getNode(ISD::VLOAD, getVTList(MVT::Vector, MVT::Other), Ops, 5);
1544}
1545
1546SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Value,
1547                                 SDOperand Ptr, SDOperand SV) {
1548  SDVTList VTs = getVTList(MVT::Other);
1549  SDOperand Ops[] = { Chain, Value, Ptr, SV };
1550  SelectionDAGCSEMap::NodeID ID(ISD::STORE, VTs, Ops, 4);
1551  void *IP = 0;
1552  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1553    return SDOperand(E, 0);
1554  SDNode *N = new SDNode(ISD::STORE, Chain, Value, Ptr, SV);
1555  N->setValueTypes(VTs);
1556  CSEMap.InsertNode(N, IP);
1557  AllNodes.push_back(N);
1558  return SDOperand(N, 0);
1559}
1560
1561SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1562                                 SDOperand Chain, SDOperand Ptr,
1563                                 SDOperand SV) {
1564  SDOperand Ops[] = { Chain, Ptr, SV };
1565  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
1566}
1567
1568SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1569                                const SDOperand *Ops, unsigned NumOps) {
1570  switch (NumOps) {
1571  case 0: return getNode(Opcode, VT);
1572  case 1: return getNode(Opcode, VT, Ops[0]);
1573  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1574  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1575  default: break;
1576  }
1577
1578  switch (Opcode) {
1579  default: break;
1580  case ISD::TRUNCSTORE: {
1581    assert(NumOps == 5 && "TRUNCSTORE takes 5 operands!");
1582    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1583#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1584    // If this is a truncating store of a constant, convert to the desired type
1585    // and store it instead.
1586    if (isa<Constant>(Ops[0])) {
1587      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1588      if (isa<Constant>(Op))
1589        N1 = Op;
1590    }
1591    // Also for ConstantFP?
1592#endif
1593    if (Ops[0].getValueType() == EVT)       // Normal store?
1594      return getStore(Ops[0], Ops[1], Ops[2], Ops[3]);
1595    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1596    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1597           "Can't do FP-INT conversion!");
1598    break;
1599  }
1600  case ISD::SELECT_CC: {
1601    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1602    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1603           "LHS and RHS of condition must have same type!");
1604    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1605           "True and False arms of SelectCC must have same type!");
1606    assert(Ops[2].getValueType() == VT &&
1607           "select_cc node must be of same type as true and false value!");
1608    break;
1609  }
1610  case ISD::BR_CC: {
1611    assert(NumOps == 5 && "BR_CC takes 5 operands!");
1612    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1613           "LHS/RHS of comparison should match types!");
1614    break;
1615  }
1616  }
1617
1618  // Memoize nodes.
1619  SDNode *N;
1620  SDVTList VTs = getVTList(VT);
1621  if (VT != MVT::Flag) {
1622    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Ops, NumOps);
1623    void *IP = 0;
1624    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1625      return SDOperand(E, 0);
1626    N = new SDNode(Opcode, Ops, NumOps);
1627    N->setValueTypes(VTs);
1628    CSEMap.InsertNode(N, IP);
1629  } else {
1630    N = new SDNode(Opcode, Ops, NumOps);
1631    N->setValueTypes(VTs);
1632  }
1633  AllNodes.push_back(N);
1634  return SDOperand(N, 0);
1635}
1636
1637SDOperand SelectionDAG::getNode(unsigned Opcode,
1638                                std::vector<MVT::ValueType> &ResultTys,
1639                                const SDOperand *Ops, unsigned NumOps) {
1640  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
1641                 Ops, NumOps);
1642}
1643
1644SDOperand SelectionDAG::getNode(unsigned Opcode,
1645                                const MVT::ValueType *VTs, unsigned NumVTs,
1646                                const SDOperand *Ops, unsigned NumOps) {
1647  if (NumVTs == 1)
1648    return getNode(Opcode, VTs[0], Ops, NumOps);
1649  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
1650}
1651
1652SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
1653                                const SDOperand *Ops, unsigned NumOps) {
1654  if (VTList.NumVTs == 1)
1655    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
1656
1657  switch (Opcode) {
1658  // FIXME: figure out how to safely handle things like
1659  // int foo(int x) { return 1 << (x & 255); }
1660  // int bar() { return foo(256); }
1661#if 0
1662  case ISD::SRA_PARTS:
1663  case ISD::SRL_PARTS:
1664  case ISD::SHL_PARTS:
1665    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1666        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1667      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1668    else if (N3.getOpcode() == ISD::AND)
1669      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1670        // If the and is only masking out bits that cannot effect the shift,
1671        // eliminate the and.
1672        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1673        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1674          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1675      }
1676    break;
1677#endif
1678  }
1679
1680  // Memoize the node unless it returns a flag.
1681  SDNode *N;
1682  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
1683    SelectionDAGCSEMap::NodeID ID;
1684    ID.SetOpcode(Opcode);
1685    ID.SetValueTypes(VTList);
1686    ID.SetOperands(&Ops[0], NumOps);
1687    void *IP = 0;
1688    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1689      return SDOperand(E, 0);
1690    N = new SDNode(Opcode, Ops, NumOps);
1691    N->setValueTypes(VTList);
1692    CSEMap.InsertNode(N, IP);
1693  } else {
1694    N = new SDNode(Opcode, Ops, NumOps);
1695    N->setValueTypes(VTList);
1696  }
1697  AllNodes.push_back(N);
1698  return SDOperand(N, 0);
1699}
1700
1701SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
1702  return makeVTList(SDNode::getValueTypeList(VT), 1);
1703}
1704
1705SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
1706  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1707       E = VTList.end(); I != E; ++I) {
1708    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1709      return makeVTList(&(*I)[0], 2);
1710  }
1711  std::vector<MVT::ValueType> V;
1712  V.push_back(VT1);
1713  V.push_back(VT2);
1714  VTList.push_front(V);
1715  return makeVTList(&(*VTList.begin())[0], 2);
1716}
1717SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
1718                                 MVT::ValueType VT3) {
1719  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1720       E = VTList.end(); I != E; ++I) {
1721    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
1722        (*I)[2] == VT3)
1723      return makeVTList(&(*I)[0], 3);
1724  }
1725  std::vector<MVT::ValueType> V;
1726  V.push_back(VT1);
1727  V.push_back(VT2);
1728  V.push_back(VT3);
1729  VTList.push_front(V);
1730  return makeVTList(&(*VTList.begin())[0], 3);
1731}
1732
1733SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
1734  switch (NumVTs) {
1735    case 0: assert(0 && "Cannot have nodes without results!");
1736    case 1: return makeVTList(SDNode::getValueTypeList(VTs[0]), 1);
1737    case 2: return getVTList(VTs[0], VTs[1]);
1738    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
1739    default: break;
1740  }
1741
1742  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1743       E = VTList.end(); I != E; ++I) {
1744    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
1745
1746    bool NoMatch = false;
1747    for (unsigned i = 2; i != NumVTs; ++i)
1748      if (VTs[i] != (*I)[i]) {
1749        NoMatch = true;
1750        break;
1751      }
1752    if (!NoMatch)
1753      return makeVTList(&*I->begin(), NumVTs);
1754  }
1755
1756  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
1757  return makeVTList(&*VTList.begin()->begin(), NumVTs);
1758}
1759
1760
1761/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1762/// specified operands.  If the resultant node already exists in the DAG,
1763/// this does not modify the specified node, instead it returns the node that
1764/// already exists.  If the resultant node does not exist in the DAG, the
1765/// input node is returned.  As a degenerate case, if you specify the same
1766/// input operands as the node already has, the input node is returned.
1767SDOperand SelectionDAG::
1768UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1769  SDNode *N = InN.Val;
1770  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1771
1772  // Check to see if there is no change.
1773  if (Op == N->getOperand(0)) return InN;
1774
1775  // See if the modified node already exists.
1776  void *InsertPos = 0;
1777  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1778    return SDOperand(Existing, InN.ResNo);
1779
1780  // Nope it doesn't.  Remove the node from it's current place in the maps.
1781  if (InsertPos)
1782    RemoveNodeFromCSEMaps(N);
1783
1784  // Now we update the operands.
1785  N->OperandList[0].Val->removeUser(N);
1786  Op.Val->addUser(N);
1787  N->OperandList[0] = Op;
1788
1789  // If this gets put into a CSE map, add it.
1790  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1791  return InN;
1792}
1793
1794SDOperand SelectionDAG::
1795UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1796  SDNode *N = InN.Val;
1797  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1798
1799  // Check to see if there is no change.
1800  bool AnyChange = false;
1801  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1802    return InN;   // No operands changed, just return the input node.
1803
1804  // See if the modified node already exists.
1805  void *InsertPos = 0;
1806  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
1807    return SDOperand(Existing, InN.ResNo);
1808
1809  // Nope it doesn't.  Remove the node from it's current place in the maps.
1810  if (InsertPos)
1811    RemoveNodeFromCSEMaps(N);
1812
1813  // Now we update the operands.
1814  if (N->OperandList[0] != Op1) {
1815    N->OperandList[0].Val->removeUser(N);
1816    Op1.Val->addUser(N);
1817    N->OperandList[0] = Op1;
1818  }
1819  if (N->OperandList[1] != Op2) {
1820    N->OperandList[1].Val->removeUser(N);
1821    Op2.Val->addUser(N);
1822    N->OperandList[1] = Op2;
1823  }
1824
1825  // If this gets put into a CSE map, add it.
1826  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1827  return InN;
1828}
1829
1830SDOperand SelectionDAG::
1831UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1832  SDOperand Ops[] = { Op1, Op2, Op3 };
1833  return UpdateNodeOperands(N, Ops, 3);
1834}
1835
1836SDOperand SelectionDAG::
1837UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1838                   SDOperand Op3, SDOperand Op4) {
1839  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
1840  return UpdateNodeOperands(N, Ops, 4);
1841}
1842
1843SDOperand SelectionDAG::
1844UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1845                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1846  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
1847  return UpdateNodeOperands(N, Ops, 5);
1848}
1849
1850
1851SDOperand SelectionDAG::
1852UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
1853  SDNode *N = InN.Val;
1854  assert(N->getNumOperands() == NumOps &&
1855         "Update with wrong number of operands");
1856
1857  // Check to see if there is no change.
1858  bool AnyChange = false;
1859  for (unsigned i = 0; i != NumOps; ++i) {
1860    if (Ops[i] != N->getOperand(i)) {
1861      AnyChange = true;
1862      break;
1863    }
1864  }
1865
1866  // No operands changed, just return the input node.
1867  if (!AnyChange) return InN;
1868
1869  // See if the modified node already exists.
1870  void *InsertPos = 0;
1871  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
1872    return SDOperand(Existing, InN.ResNo);
1873
1874  // Nope it doesn't.  Remove the node from it's current place in the maps.
1875  if (InsertPos)
1876    RemoveNodeFromCSEMaps(N);
1877
1878  // Now we update the operands.
1879  for (unsigned i = 0; i != NumOps; ++i) {
1880    if (N->OperandList[i] != Ops[i]) {
1881      N->OperandList[i].Val->removeUser(N);
1882      Ops[i].Val->addUser(N);
1883      N->OperandList[i] = Ops[i];
1884    }
1885  }
1886
1887  // If this gets put into a CSE map, add it.
1888  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1889  return InN;
1890}
1891
1892
1893
1894
1895/// SelectNodeTo - These are used for target selectors to *mutate* the
1896/// specified node to have the specified return type, Target opcode, and
1897/// operands.  Note that target opcodes are stored as
1898/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1899///
1900/// Note that SelectNodeTo returns the resultant node.  If there is already a
1901/// node of the specified opcode and operands, it returns that node instead of
1902/// the current one.
1903SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1904                                   MVT::ValueType VT) {
1905  SDVTList VTs = getVTList(VT);
1906  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1907  void *IP = 0;
1908  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1909    return ON;
1910
1911  RemoveNodeFromCSEMaps(N);
1912
1913  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1914  N->setValueTypes(VTs);
1915
1916  CSEMap.InsertNode(N, IP);
1917  return N;
1918}
1919
1920SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1921                                   MVT::ValueType VT, SDOperand Op1) {
1922  // If an identical node already exists, use it.
1923  SDVTList VTs = getVTList(VT);
1924  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1);
1925  void *IP = 0;
1926  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1927    return ON;
1928
1929  RemoveNodeFromCSEMaps(N);
1930  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1931  N->setValueTypes(VTs);
1932  N->setOperands(Op1);
1933  CSEMap.InsertNode(N, IP);
1934  return N;
1935}
1936
1937SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1938                                   MVT::ValueType VT, SDOperand Op1,
1939                                   SDOperand Op2) {
1940  // If an identical node already exists, use it.
1941  SDVTList VTs = getVTList(VT);
1942  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
1943  void *IP = 0;
1944  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1945    return ON;
1946
1947  RemoveNodeFromCSEMaps(N);
1948  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1949  N->setValueTypes(VTs);
1950  N->setOperands(Op1, Op2);
1951
1952  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1953  return N;
1954}
1955
1956SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1957                                   MVT::ValueType VT, SDOperand Op1,
1958                                   SDOperand Op2, SDOperand Op3) {
1959  // If an identical node already exists, use it.
1960  SDVTList VTs = getVTList(VT);
1961  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs,
1962                                Op1, Op2, Op3);
1963  void *IP = 0;
1964  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1965    return ON;
1966
1967  RemoveNodeFromCSEMaps(N);
1968  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1969  N->setValueTypes(VTs);
1970  N->setOperands(Op1, Op2, Op3);
1971
1972  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1973  return N;
1974}
1975
1976SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1977                                   MVT::ValueType VT, const SDOperand *Ops,
1978                                   unsigned NumOps) {
1979  // If an identical node already exists, use it.
1980  SDVTList VTs = getVTList(VT);
1981  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1982  for (unsigned i = 0; i != NumOps; ++i)
1983    ID.AddOperand(Ops[i]);
1984  void *IP = 0;
1985  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1986    return ON;
1987
1988  RemoveNodeFromCSEMaps(N);
1989  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1990  N->setValueTypes(VTs);
1991  N->setOperands(Ops, NumOps);
1992
1993  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1994  return N;
1995}
1996
1997SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1998                                   MVT::ValueType VT1, MVT::ValueType VT2,
1999                                   SDOperand Op1, SDOperand Op2) {
2000  SDVTList VTs = getVTList(VT1, VT2);
2001  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
2002  void *IP = 0;
2003  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2004    return ON;
2005
2006  RemoveNodeFromCSEMaps(N);
2007  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2008  N->setValueTypes(VTs);
2009  N->setOperands(Op1, Op2);
2010
2011  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2012  return N;
2013}
2014
2015SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2016                                   MVT::ValueType VT1, MVT::ValueType VT2,
2017                                   SDOperand Op1, SDOperand Op2,
2018                                   SDOperand Op3) {
2019  // If an identical node already exists, use it.
2020  SDVTList VTs = getVTList(VT1, VT2);
2021  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs,
2022                                Op1, Op2, Op3);
2023  void *IP = 0;
2024  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2025    return ON;
2026
2027  RemoveNodeFromCSEMaps(N);
2028  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2029  N->setValueTypes(VTs);
2030  N->setOperands(Op1, Op2, Op3);
2031
2032  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2033  return N;
2034}
2035
2036
2037/// getTargetNode - These are used for target selectors to create a new node
2038/// with specified return type(s), target opcode, and operands.
2039///
2040/// Note that getTargetNode returns the resultant node.  If there is already a
2041/// node of the specified opcode and operands, it returns that node instead of
2042/// the current one.
2043SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2044  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2045}
2046SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2047                                    SDOperand Op1) {
2048  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2049}
2050SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2051                                    SDOperand Op1, SDOperand Op2) {
2052  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2053}
2054SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2055                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2056  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2057}
2058SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2059                                    const SDOperand *Ops, unsigned NumOps) {
2060  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2061}
2062SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2063                                    MVT::ValueType VT2, SDOperand Op1) {
2064  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2065  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2066}
2067SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2068                                    MVT::ValueType VT2, SDOperand Op1,
2069                                    SDOperand Op2) {
2070  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2071  SDOperand Ops[] = { Op1, Op2 };
2072  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2073}
2074SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2075                                    MVT::ValueType VT2, SDOperand Op1,
2076                                    SDOperand Op2, SDOperand Op3) {
2077  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2078  SDOperand Ops[] = { Op1, Op2, Op3 };
2079  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2080}
2081SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2082                                    MVT::ValueType VT2,
2083                                    const SDOperand *Ops, unsigned NumOps) {
2084  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2085  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2086}
2087SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2088                                    MVT::ValueType VT2, MVT::ValueType VT3,
2089                                    SDOperand Op1, SDOperand Op2) {
2090  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2091  SDOperand Ops[] = { Op1, Op2 };
2092  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2093}
2094SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2095                                    MVT::ValueType VT2, MVT::ValueType VT3,
2096                                    const SDOperand *Ops, unsigned NumOps) {
2097  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2098  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2099}
2100
2101/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2102/// This can cause recursive merging of nodes in the DAG.
2103///
2104/// This version assumes From/To have a single result value.
2105///
2106void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2107                                      std::vector<SDNode*> *Deleted) {
2108  SDNode *From = FromN.Val, *To = ToN.Val;
2109  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2110         "Cannot replace with this method!");
2111  assert(From != To && "Cannot replace uses of with self");
2112
2113  while (!From->use_empty()) {
2114    // Process users until they are all gone.
2115    SDNode *U = *From->use_begin();
2116
2117    // This node is about to morph, remove its old self from the CSE maps.
2118    RemoveNodeFromCSEMaps(U);
2119
2120    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2121         I != E; ++I)
2122      if (I->Val == From) {
2123        From->removeUser(U);
2124        I->Val = To;
2125        To->addUser(U);
2126      }
2127
2128    // Now that we have modified U, add it back to the CSE maps.  If it already
2129    // exists there, recursively merge the results together.
2130    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2131      ReplaceAllUsesWith(U, Existing, Deleted);
2132      // U is now dead.
2133      if (Deleted) Deleted->push_back(U);
2134      DeleteNodeNotInCSEMaps(U);
2135    }
2136  }
2137}
2138
2139/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2140/// This can cause recursive merging of nodes in the DAG.
2141///
2142/// This version assumes From/To have matching types and numbers of result
2143/// values.
2144///
2145void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2146                                      std::vector<SDNode*> *Deleted) {
2147  assert(From != To && "Cannot replace uses of with self");
2148  assert(From->getNumValues() == To->getNumValues() &&
2149         "Cannot use this version of ReplaceAllUsesWith!");
2150  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2151    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2152    return;
2153  }
2154
2155  while (!From->use_empty()) {
2156    // Process users until they are all gone.
2157    SDNode *U = *From->use_begin();
2158
2159    // This node is about to morph, remove its old self from the CSE maps.
2160    RemoveNodeFromCSEMaps(U);
2161
2162    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2163         I != E; ++I)
2164      if (I->Val == From) {
2165        From->removeUser(U);
2166        I->Val = To;
2167        To->addUser(U);
2168      }
2169
2170    // Now that we have modified U, add it back to the CSE maps.  If it already
2171    // exists there, recursively merge the results together.
2172    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2173      ReplaceAllUsesWith(U, Existing, Deleted);
2174      // U is now dead.
2175      if (Deleted) Deleted->push_back(U);
2176      DeleteNodeNotInCSEMaps(U);
2177    }
2178  }
2179}
2180
2181/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2182/// This can cause recursive merging of nodes in the DAG.
2183///
2184/// This version can replace From with any result values.  To must match the
2185/// number and types of values returned by From.
2186void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2187                                      const SDOperand *To,
2188                                      std::vector<SDNode*> *Deleted) {
2189  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
2190    // Degenerate case handled above.
2191    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2192    return;
2193  }
2194
2195  while (!From->use_empty()) {
2196    // Process users until they are all gone.
2197    SDNode *U = *From->use_begin();
2198
2199    // This node is about to morph, remove its old self from the CSE maps.
2200    RemoveNodeFromCSEMaps(U);
2201
2202    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2203         I != E; ++I)
2204      if (I->Val == From) {
2205        const SDOperand &ToOp = To[I->ResNo];
2206        From->removeUser(U);
2207        *I = ToOp;
2208        ToOp.Val->addUser(U);
2209      }
2210
2211    // Now that we have modified U, add it back to the CSE maps.  If it already
2212    // exists there, recursively merge the results together.
2213    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2214      ReplaceAllUsesWith(U, Existing, Deleted);
2215      // U is now dead.
2216      if (Deleted) Deleted->push_back(U);
2217      DeleteNodeNotInCSEMaps(U);
2218    }
2219  }
2220}
2221
2222/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2223/// uses of other values produced by From.Val alone.  The Deleted vector is
2224/// handled the same was as for ReplaceAllUsesWith.
2225void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2226                                             std::vector<SDNode*> &Deleted) {
2227  assert(From != To && "Cannot replace a value with itself");
2228  // Handle the simple, trivial, case efficiently.
2229  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2230    ReplaceAllUsesWith(From, To, &Deleted);
2231    return;
2232  }
2233
2234  // Get all of the users in a nice, deterministically ordered, uniqued set.
2235  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2236
2237  while (!Users.empty()) {
2238    // We know that this user uses some value of From.  If it is the right
2239    // value, update it.
2240    SDNode *User = Users.back();
2241    Users.pop_back();
2242
2243    for (SDOperand *Op = User->OperandList,
2244         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2245      if (*Op == From) {
2246        // Okay, we know this user needs to be updated.  Remove its old self
2247        // from the CSE maps.
2248        RemoveNodeFromCSEMaps(User);
2249
2250        // Update all operands that match "From".
2251        for (; Op != E; ++Op) {
2252          if (*Op == From) {
2253            From.Val->removeUser(User);
2254            *Op = To;
2255            To.Val->addUser(User);
2256          }
2257        }
2258
2259        // Now that we have modified User, add it back to the CSE maps.  If it
2260        // already exists there, recursively merge the results together.
2261        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2262          unsigned NumDeleted = Deleted.size();
2263          ReplaceAllUsesWith(User, Existing, &Deleted);
2264
2265          // User is now dead.
2266          Deleted.push_back(User);
2267          DeleteNodeNotInCSEMaps(User);
2268
2269          // We have to be careful here, because ReplaceAllUsesWith could have
2270          // deleted a user of From, which means there may be dangling pointers
2271          // in the "Users" setvector.  Scan over the deleted node pointers and
2272          // remove them from the setvector.
2273          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2274            Users.remove(Deleted[i]);
2275        }
2276        break;   // Exit the operand scanning loop.
2277      }
2278    }
2279  }
2280}
2281
2282
2283/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2284/// their allnodes order. It returns the maximum id.
2285unsigned SelectionDAG::AssignNodeIds() {
2286  unsigned Id = 0;
2287  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2288    SDNode *N = I;
2289    N->setNodeId(Id++);
2290  }
2291  return Id;
2292}
2293
2294/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2295/// based on their topological order. It returns the maximum id and a vector
2296/// of the SDNodes* in assigned order by reference.
2297unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2298  unsigned DAGSize = AllNodes.size();
2299  std::vector<unsigned> InDegree(DAGSize);
2300  std::vector<SDNode*> Sources;
2301
2302  // Use a two pass approach to avoid using a std::map which is slow.
2303  unsigned Id = 0;
2304  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2305    SDNode *N = I;
2306    N->setNodeId(Id++);
2307    unsigned Degree = N->use_size();
2308    InDegree[N->getNodeId()] = Degree;
2309    if (Degree == 0)
2310      Sources.push_back(N);
2311  }
2312
2313  TopOrder.clear();
2314  while (!Sources.empty()) {
2315    SDNode *N = Sources.back();
2316    Sources.pop_back();
2317    TopOrder.push_back(N);
2318    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2319      SDNode *P = I->Val;
2320      unsigned Degree = --InDegree[P->getNodeId()];
2321      if (Degree == 0)
2322        Sources.push_back(P);
2323    }
2324  }
2325
2326  // Second pass, assign the actual topological order as node ids.
2327  Id = 0;
2328  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2329       TI != TE; ++TI)
2330    (*TI)->setNodeId(Id++);
2331
2332  return Id;
2333}
2334
2335
2336
2337//===----------------------------------------------------------------------===//
2338//                              SDNode Class
2339//===----------------------------------------------------------------------===//
2340
2341// Out-of-line virtual method to give class a home.
2342void SDNode::ANCHOR() {
2343}
2344
2345/// getValueTypeList - Return a pointer to the specified value type.
2346///
2347MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2348  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2349  VTs[VT] = VT;
2350  return &VTs[VT];
2351}
2352
2353/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2354/// indicated value.  This method ignores uses of other values defined by this
2355/// operation.
2356bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2357  assert(Value < getNumValues() && "Bad value!");
2358
2359  // If there is only one value, this is easy.
2360  if (getNumValues() == 1)
2361    return use_size() == NUses;
2362  if (Uses.size() < NUses) return false;
2363
2364  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2365
2366  std::set<SDNode*> UsersHandled;
2367
2368  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
2369    SDNode *User = *UI;
2370    if (User->getNumOperands() == 1 ||
2371        UsersHandled.insert(User).second)     // First time we've seen this?
2372      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2373        if (User->getOperand(i) == TheValue) {
2374          if (NUses == 0)
2375            return false;   // too many uses
2376          --NUses;
2377        }
2378  }
2379
2380  // Found exactly the right number of uses?
2381  return NUses == 0;
2382}
2383
2384
2385// isOnlyUse - Return true if this node is the only use of N.
2386bool SDNode::isOnlyUse(SDNode *N) const {
2387  bool Seen = false;
2388  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2389    SDNode *User = *I;
2390    if (User == this)
2391      Seen = true;
2392    else
2393      return false;
2394  }
2395
2396  return Seen;
2397}
2398
2399// isOperand - Return true if this node is an operand of N.
2400bool SDOperand::isOperand(SDNode *N) const {
2401  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2402    if (*this == N->getOperand(i))
2403      return true;
2404  return false;
2405}
2406
2407bool SDNode::isOperand(SDNode *N) const {
2408  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2409    if (this == N->OperandList[i].Val)
2410      return true;
2411  return false;
2412}
2413
2414uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
2415  assert(Num < NumOperands && "Invalid child # of SDNode!");
2416  return cast<ConstantSDNode>(OperandList[Num])->getValue();
2417}
2418
2419const char *SDNode::getOperationName(const SelectionDAG *G) const {
2420  switch (getOpcode()) {
2421  default:
2422    if (getOpcode() < ISD::BUILTIN_OP_END)
2423      return "<<Unknown DAG Node>>";
2424    else {
2425      if (G) {
2426        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2427          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2428            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2429
2430        TargetLowering &TLI = G->getTargetLoweringInfo();
2431        const char *Name =
2432          TLI.getTargetNodeName(getOpcode());
2433        if (Name) return Name;
2434      }
2435
2436      return "<<Unknown Target Node>>";
2437    }
2438
2439  case ISD::PCMARKER:      return "PCMarker";
2440  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2441  case ISD::SRCVALUE:      return "SrcValue";
2442  case ISD::EntryToken:    return "EntryToken";
2443  case ISD::TokenFactor:   return "TokenFactor";
2444  case ISD::AssertSext:    return "AssertSext";
2445  case ISD::AssertZext:    return "AssertZext";
2446
2447  case ISD::STRING:        return "String";
2448  case ISD::BasicBlock:    return "BasicBlock";
2449  case ISD::VALUETYPE:     return "ValueType";
2450  case ISD::Register:      return "Register";
2451
2452  case ISD::Constant:      return "Constant";
2453  case ISD::ConstantFP:    return "ConstantFP";
2454  case ISD::GlobalAddress: return "GlobalAddress";
2455  case ISD::FrameIndex:    return "FrameIndex";
2456  case ISD::JumpTable:     return "JumpTable";
2457  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
2458  case ISD::ConstantPool:  return "ConstantPool";
2459  case ISD::ExternalSymbol: return "ExternalSymbol";
2460  case ISD::INTRINSIC_WO_CHAIN: {
2461    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2462    return Intrinsic::getName((Intrinsic::ID)IID);
2463  }
2464  case ISD::INTRINSIC_VOID:
2465  case ISD::INTRINSIC_W_CHAIN: {
2466    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2467    return Intrinsic::getName((Intrinsic::ID)IID);
2468  }
2469
2470  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2471  case ISD::TargetConstant: return "TargetConstant";
2472  case ISD::TargetConstantFP:return "TargetConstantFP";
2473  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2474  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2475  case ISD::TargetJumpTable:  return "TargetJumpTable";
2476  case ISD::TargetConstantPool:  return "TargetConstantPool";
2477  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2478
2479  case ISD::CopyToReg:     return "CopyToReg";
2480  case ISD::CopyFromReg:   return "CopyFromReg";
2481  case ISD::UNDEF:         return "undef";
2482  case ISD::MERGE_VALUES:  return "mergevalues";
2483  case ISD::INLINEASM:     return "inlineasm";
2484  case ISD::HANDLENODE:    return "handlenode";
2485  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2486  case ISD::CALL:          return "call";
2487
2488  // Unary operators
2489  case ISD::FABS:   return "fabs";
2490  case ISD::FNEG:   return "fneg";
2491  case ISD::FSQRT:  return "fsqrt";
2492  case ISD::FSIN:   return "fsin";
2493  case ISD::FCOS:   return "fcos";
2494  case ISD::FPOWI:  return "fpowi";
2495
2496  // Binary operators
2497  case ISD::ADD:    return "add";
2498  case ISD::SUB:    return "sub";
2499  case ISD::MUL:    return "mul";
2500  case ISD::MULHU:  return "mulhu";
2501  case ISD::MULHS:  return "mulhs";
2502  case ISD::SDIV:   return "sdiv";
2503  case ISD::UDIV:   return "udiv";
2504  case ISD::SREM:   return "srem";
2505  case ISD::UREM:   return "urem";
2506  case ISD::AND:    return "and";
2507  case ISD::OR:     return "or";
2508  case ISD::XOR:    return "xor";
2509  case ISD::SHL:    return "shl";
2510  case ISD::SRA:    return "sra";
2511  case ISD::SRL:    return "srl";
2512  case ISD::ROTL:   return "rotl";
2513  case ISD::ROTR:   return "rotr";
2514  case ISD::FADD:   return "fadd";
2515  case ISD::FSUB:   return "fsub";
2516  case ISD::FMUL:   return "fmul";
2517  case ISD::FDIV:   return "fdiv";
2518  case ISD::FREM:   return "frem";
2519  case ISD::FCOPYSIGN: return "fcopysign";
2520  case ISD::VADD:   return "vadd";
2521  case ISD::VSUB:   return "vsub";
2522  case ISD::VMUL:   return "vmul";
2523  case ISD::VSDIV:  return "vsdiv";
2524  case ISD::VUDIV:  return "vudiv";
2525  case ISD::VAND:   return "vand";
2526  case ISD::VOR:    return "vor";
2527  case ISD::VXOR:   return "vxor";
2528
2529  case ISD::SETCC:       return "setcc";
2530  case ISD::SELECT:      return "select";
2531  case ISD::SELECT_CC:   return "select_cc";
2532  case ISD::VSELECT:     return "vselect";
2533  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2534  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2535  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2536  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2537  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2538  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2539  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2540  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2541  case ISD::VBIT_CONVERT:        return "vbit_convert";
2542  case ISD::ADDC:        return "addc";
2543  case ISD::ADDE:        return "adde";
2544  case ISD::SUBC:        return "subc";
2545  case ISD::SUBE:        return "sube";
2546  case ISD::SHL_PARTS:   return "shl_parts";
2547  case ISD::SRA_PARTS:   return "sra_parts";
2548  case ISD::SRL_PARTS:   return "srl_parts";
2549
2550  // Conversion operators.
2551  case ISD::SIGN_EXTEND: return "sign_extend";
2552  case ISD::ZERO_EXTEND: return "zero_extend";
2553  case ISD::ANY_EXTEND:  return "any_extend";
2554  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2555  case ISD::TRUNCATE:    return "truncate";
2556  case ISD::FP_ROUND:    return "fp_round";
2557  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2558  case ISD::FP_EXTEND:   return "fp_extend";
2559
2560  case ISD::SINT_TO_FP:  return "sint_to_fp";
2561  case ISD::UINT_TO_FP:  return "uint_to_fp";
2562  case ISD::FP_TO_SINT:  return "fp_to_sint";
2563  case ISD::FP_TO_UINT:  return "fp_to_uint";
2564  case ISD::BIT_CONVERT: return "bit_convert";
2565
2566    // Control flow instructions
2567  case ISD::BR:      return "br";
2568  case ISD::BRIND:   return "brind";
2569  case ISD::BRCOND:  return "brcond";
2570  case ISD::BR_CC:   return "br_cc";
2571  case ISD::RET:     return "ret";
2572  case ISD::CALLSEQ_START:  return "callseq_start";
2573  case ISD::CALLSEQ_END:    return "callseq_end";
2574
2575    // Other operators
2576  case ISD::LOAD:               return "load";
2577  case ISD::STORE:              return "store";
2578  case ISD::VLOAD:              return "vload";
2579  case ISD::TRUNCSTORE:         return "truncstore";
2580  case ISD::VAARG:              return "vaarg";
2581  case ISD::VACOPY:             return "vacopy";
2582  case ISD::VAEND:              return "vaend";
2583  case ISD::VASTART:            return "vastart";
2584  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2585  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2586  case ISD::BUILD_PAIR:         return "build_pair";
2587  case ISD::STACKSAVE:          return "stacksave";
2588  case ISD::STACKRESTORE:       return "stackrestore";
2589
2590  // Block memory operations.
2591  case ISD::MEMSET:  return "memset";
2592  case ISD::MEMCPY:  return "memcpy";
2593  case ISD::MEMMOVE: return "memmove";
2594
2595  // Bit manipulation
2596  case ISD::BSWAP:   return "bswap";
2597  case ISD::CTPOP:   return "ctpop";
2598  case ISD::CTTZ:    return "cttz";
2599  case ISD::CTLZ:    return "ctlz";
2600
2601  // Debug info
2602  case ISD::LOCATION: return "location";
2603  case ISD::DEBUG_LOC: return "debug_loc";
2604  case ISD::DEBUG_LABEL: return "debug_label";
2605
2606  case ISD::CONDCODE:
2607    switch (cast<CondCodeSDNode>(this)->get()) {
2608    default: assert(0 && "Unknown setcc condition!");
2609    case ISD::SETOEQ:  return "setoeq";
2610    case ISD::SETOGT:  return "setogt";
2611    case ISD::SETOGE:  return "setoge";
2612    case ISD::SETOLT:  return "setolt";
2613    case ISD::SETOLE:  return "setole";
2614    case ISD::SETONE:  return "setone";
2615
2616    case ISD::SETO:    return "seto";
2617    case ISD::SETUO:   return "setuo";
2618    case ISD::SETUEQ:  return "setue";
2619    case ISD::SETUGT:  return "setugt";
2620    case ISD::SETUGE:  return "setuge";
2621    case ISD::SETULT:  return "setult";
2622    case ISD::SETULE:  return "setule";
2623    case ISD::SETUNE:  return "setune";
2624
2625    case ISD::SETEQ:   return "seteq";
2626    case ISD::SETGT:   return "setgt";
2627    case ISD::SETGE:   return "setge";
2628    case ISD::SETLT:   return "setlt";
2629    case ISD::SETLE:   return "setle";
2630    case ISD::SETNE:   return "setne";
2631    }
2632  }
2633}
2634
2635void SDNode::dump() const { dump(0); }
2636void SDNode::dump(const SelectionDAG *G) const {
2637  std::cerr << (void*)this << ": ";
2638
2639  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2640    if (i) std::cerr << ",";
2641    if (getValueType(i) == MVT::Other)
2642      std::cerr << "ch";
2643    else
2644      std::cerr << MVT::getValueTypeString(getValueType(i));
2645  }
2646  std::cerr << " = " << getOperationName(G);
2647
2648  std::cerr << " ";
2649  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2650    if (i) std::cerr << ", ";
2651    std::cerr << (void*)getOperand(i).Val;
2652    if (unsigned RN = getOperand(i).ResNo)
2653      std::cerr << ":" << RN;
2654  }
2655
2656  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2657    std::cerr << "<" << CSDN->getValue() << ">";
2658  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2659    std::cerr << "<" << CSDN->getValue() << ">";
2660  } else if (const GlobalAddressSDNode *GADN =
2661             dyn_cast<GlobalAddressSDNode>(this)) {
2662    int offset = GADN->getOffset();
2663    std::cerr << "<";
2664    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2665    if (offset > 0)
2666      std::cerr << " + " << offset;
2667    else
2668      std::cerr << " " << offset;
2669  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2670    std::cerr << "<" << FIDN->getIndex() << ">";
2671  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2672    int offset = CP->getOffset();
2673    if (CP->isMachineConstantPoolEntry())
2674      std::cerr << "<" << *CP->getMachineCPVal() << ">";
2675    else
2676      std::cerr << "<" << *CP->getConstVal() << ">";
2677    if (offset > 0)
2678      std::cerr << " + " << offset;
2679    else
2680      std::cerr << " " << offset;
2681  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2682    std::cerr << "<";
2683    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2684    if (LBB)
2685      std::cerr << LBB->getName() << " ";
2686    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2687  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2688    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2689      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2690    } else {
2691      std::cerr << " #" << R->getReg();
2692    }
2693  } else if (const ExternalSymbolSDNode *ES =
2694             dyn_cast<ExternalSymbolSDNode>(this)) {
2695    std::cerr << "'" << ES->getSymbol() << "'";
2696  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2697    if (M->getValue())
2698      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2699    else
2700      std::cerr << "<null:" << M->getOffset() << ">";
2701  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2702    std::cerr << ":" << getValueTypeString(N->getVT());
2703  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
2704    bool doExt = true;
2705    switch (LD->getExtensionType()) {
2706    default: doExt = false; break;
2707    case ISD::EXTLOAD:
2708      std::cerr << " <anyext ";
2709      break;
2710    case ISD::SEXTLOAD:
2711      std::cerr << " <sext ";
2712      break;
2713    case ISD::ZEXTLOAD:
2714      std::cerr << " <zext ";
2715      break;
2716    }
2717    if (doExt)
2718      std::cerr << MVT::getValueTypeString(LD->getLoadVT()) << ">";
2719
2720    if (LD->getAddressingMode() == ISD::PRE_INDEXED)
2721      std::cerr << " <pre>";
2722    else if (LD->getAddressingMode() == ISD::POST_INDEXED)
2723      std::cerr << " <post>";
2724  }
2725}
2726
2727static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2728  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2729    if (N->getOperand(i).Val->hasOneUse())
2730      DumpNodes(N->getOperand(i).Val, indent+2, G);
2731    else
2732      std::cerr << "\n" << std::string(indent+2, ' ')
2733                << (void*)N->getOperand(i).Val << ": <multiple use>";
2734
2735
2736  std::cerr << "\n" << std::string(indent, ' ');
2737  N->dump(G);
2738}
2739
2740void SelectionDAG::dump() const {
2741  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2742  std::vector<const SDNode*> Nodes;
2743  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2744       I != E; ++I)
2745    Nodes.push_back(I);
2746
2747  std::sort(Nodes.begin(), Nodes.end());
2748
2749  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2750    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2751      DumpNodes(Nodes[i], 2, this);
2752  }
2753
2754  DumpNodes(getRoot().Val, 2, this);
2755
2756  std::cerr << "\n\n";
2757}
2758
2759const Type *ConstantPoolSDNode::getType() const {
2760  if (isMachineConstantPoolEntry())
2761    return Val.MachineCPVal->getType();
2762  return Val.ConstVal->getType();
2763}
2764