SelectionDAG.cpp revision 8819c84aed10777ba91d4e862229882b8da0b272
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeDbgValue.h"
16#include "llvm/ADT/SetVector.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/Analysis/TargetTransformInfo.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/Assembly/Writer.h"
24#include "llvm/CodeGen/MachineBasicBlock.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/DebugInfo.h"
29#include "llvm/IR/CallingConv.h"
30#include "llvm/IR/Constants.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/GlobalAlias.h"
35#include "llvm/IR/GlobalVariable.h"
36#include "llvm/IR/Intrinsics.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/ManagedStatic.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/Support/Mutex.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetIntrinsicInfo.h"
46#include "llvm/Target/TargetLowering.h"
47#include "llvm/Target/TargetMachine.h"
48#include "llvm/Target/TargetOptions.h"
49#include "llvm/Target/TargetRegisterInfo.h"
50#include "llvm/Target/TargetSelectionDAGInfo.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62// Default null implementations of the callbacks.
63void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
64void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
65
66//===----------------------------------------------------------------------===//
67//                              ConstantFPSDNode Class
68//===----------------------------------------------------------------------===//
69
70/// isExactlyValue - We don't rely on operator== working on double values, as
71/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
72/// As such, this method can be used to do an exact bit-for-bit comparison of
73/// two floating point values.
74bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
75  return getValueAPF().bitwiseIsEqual(V);
76}
77
78bool ConstantFPSDNode::isValueValidForType(EVT VT,
79                                           const APFloat& Val) {
80  assert(VT.isFloatingPoint() && "Can only convert between FP types");
81
82  // convert modifies in place, so make a copy.
83  APFloat Val2 = APFloat(Val);
84  bool losesInfo;
85  (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
86                      APFloat::rmNearestTiesToEven,
87                      &losesInfo);
88  return !losesInfo;
89}
90
91//===----------------------------------------------------------------------===//
92//                              ISD Namespace
93//===----------------------------------------------------------------------===//
94
95/// isBuildVectorAllOnes - Return true if the specified node is a
96/// BUILD_VECTOR where all of the elements are ~0 or undef.
97bool ISD::isBuildVectorAllOnes(const SDNode *N) {
98  // Look through a bit convert.
99  if (N->getOpcode() == ISD::BITCAST)
100    N = N->getOperand(0).getNode();
101
102  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
103
104  unsigned i = 0, e = N->getNumOperands();
105
106  // Skip over all of the undef values.
107  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
108    ++i;
109
110  // Do not accept an all-undef vector.
111  if (i == e) return false;
112
113  // Do not accept build_vectors that aren't all constants or which have non-~0
114  // elements. We have to be a bit careful here, as the type of the constant
115  // may not be the same as the type of the vector elements due to type
116  // legalization (the elements are promoted to a legal type for the target and
117  // a vector of a type may be legal when the base element type is not).
118  // We only want to check enough bits to cover the vector elements, because
119  // we care if the resultant vector is all ones, not whether the individual
120  // constants are.
121  SDValue NotZero = N->getOperand(i);
122  unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
123  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
124    if (CN->getAPIntValue().countTrailingOnes() < EltSize)
125      return false;
126  } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
127    if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
128      return false;
129  } else
130    return false;
131
132  // Okay, we have at least one ~0 value, check to see if the rest match or are
133  // undefs. Even with the above element type twiddling, this should be OK, as
134  // the same type legalization should have applied to all the elements.
135  for (++i; i != e; ++i)
136    if (N->getOperand(i) != NotZero &&
137        N->getOperand(i).getOpcode() != ISD::UNDEF)
138      return false;
139  return true;
140}
141
142
143/// isBuildVectorAllZeros - Return true if the specified node is a
144/// BUILD_VECTOR where all of the elements are 0 or undef.
145bool ISD::isBuildVectorAllZeros(const SDNode *N) {
146  // Look through a bit convert.
147  if (N->getOpcode() == ISD::BITCAST)
148    N = N->getOperand(0).getNode();
149
150  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
151
152  unsigned i = 0, e = N->getNumOperands();
153
154  // Skip over all of the undef values.
155  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
156    ++i;
157
158  // Do not accept an all-undef vector.
159  if (i == e) return false;
160
161  // Do not accept build_vectors that aren't all constants or which have non-0
162  // elements.
163  SDValue Zero = N->getOperand(i);
164  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Zero)) {
165    if (!CN->isNullValue())
166      return false;
167  } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Zero)) {
168    if (!CFPN->getValueAPF().isPosZero())
169      return false;
170  } else
171    return false;
172
173  // Okay, we have at least one 0 value, check to see if the rest match or are
174  // undefs.
175  for (++i; i != e; ++i)
176    if (N->getOperand(i) != Zero &&
177        N->getOperand(i).getOpcode() != ISD::UNDEF)
178      return false;
179  return true;
180}
181
182/// isScalarToVector - Return true if the specified node is a
183/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
184/// element is not an undef.
185bool ISD::isScalarToVector(const SDNode *N) {
186  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
187    return true;
188
189  if (N->getOpcode() != ISD::BUILD_VECTOR)
190    return false;
191  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
192    return false;
193  unsigned NumElems = N->getNumOperands();
194  if (NumElems == 1)
195    return false;
196  for (unsigned i = 1; i < NumElems; ++i) {
197    SDValue V = N->getOperand(i);
198    if (V.getOpcode() != ISD::UNDEF)
199      return false;
200  }
201  return true;
202}
203
204/// allOperandsUndef - Return true if the node has at least one operand
205/// and all operands of the specified node are ISD::UNDEF.
206bool ISD::allOperandsUndef(const SDNode *N) {
207  // Return false if the node has no operands.
208  // This is "logically inconsistent" with the definition of "all" but
209  // is probably the desired behavior.
210  if (N->getNumOperands() == 0)
211    return false;
212
213  for (unsigned i = 0, e = N->getNumOperands(); i != e ; ++i)
214    if (N->getOperand(i).getOpcode() != ISD::UNDEF)
215      return false;
216
217  return true;
218}
219
220/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
221/// when given the operation for (X op Y).
222ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
223  // To perform this operation, we just need to swap the L and G bits of the
224  // operation.
225  unsigned OldL = (Operation >> 2) & 1;
226  unsigned OldG = (Operation >> 1) & 1;
227  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
228                       (OldL << 1) |       // New G bit
229                       (OldG << 2));       // New L bit.
230}
231
232/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
233/// 'op' is a valid SetCC operation.
234ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
235  unsigned Operation = Op;
236  if (isInteger)
237    Operation ^= 7;   // Flip L, G, E bits, but not U.
238  else
239    Operation ^= 15;  // Flip all of the condition bits.
240
241  if (Operation > ISD::SETTRUE2)
242    Operation &= ~8;  // Don't let N and U bits get set.
243
244  return ISD::CondCode(Operation);
245}
246
247
248/// isSignedOp - For an integer comparison, return 1 if the comparison is a
249/// signed operation and 2 if the result is an unsigned comparison.  Return zero
250/// if the operation does not depend on the sign of the input (setne and seteq).
251static int isSignedOp(ISD::CondCode Opcode) {
252  switch (Opcode) {
253  default: llvm_unreachable("Illegal integer setcc operation!");
254  case ISD::SETEQ:
255  case ISD::SETNE: return 0;
256  case ISD::SETLT:
257  case ISD::SETLE:
258  case ISD::SETGT:
259  case ISD::SETGE: return 1;
260  case ISD::SETULT:
261  case ISD::SETULE:
262  case ISD::SETUGT:
263  case ISD::SETUGE: return 2;
264  }
265}
266
267/// getSetCCOrOperation - Return the result of a logical OR between different
268/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
269/// returns SETCC_INVALID if it is not possible to represent the resultant
270/// comparison.
271ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
272                                       bool isInteger) {
273  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
274    // Cannot fold a signed integer setcc with an unsigned integer setcc.
275    return ISD::SETCC_INVALID;
276
277  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
278
279  // If the N and U bits get set then the resultant comparison DOES suddenly
280  // care about orderedness, and is true when ordered.
281  if (Op > ISD::SETTRUE2)
282    Op &= ~16;     // Clear the U bit if the N bit is set.
283
284  // Canonicalize illegal integer setcc's.
285  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
286    Op = ISD::SETNE;
287
288  return ISD::CondCode(Op);
289}
290
291/// getSetCCAndOperation - Return the result of a logical AND between different
292/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
293/// function returns zero if it is not possible to represent the resultant
294/// comparison.
295ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
296                                        bool isInteger) {
297  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
298    // Cannot fold a signed setcc with an unsigned setcc.
299    return ISD::SETCC_INVALID;
300
301  // Combine all of the condition bits.
302  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
303
304  // Canonicalize illegal integer setcc's.
305  if (isInteger) {
306    switch (Result) {
307    default: break;
308    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
309    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
310    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
311    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
312    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
313    }
314  }
315
316  return Result;
317}
318
319//===----------------------------------------------------------------------===//
320//                           SDNode Profile Support
321//===----------------------------------------------------------------------===//
322
323/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
324///
325static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
326  ID.AddInteger(OpC);
327}
328
329/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
330/// solely with their pointer.
331static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
332  ID.AddPointer(VTList.VTs);
333}
334
335/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336///
337static void AddNodeIDOperands(FoldingSetNodeID &ID,
338                              const SDValue *Ops, unsigned NumOps) {
339  for (; NumOps; --NumOps, ++Ops) {
340    ID.AddPointer(Ops->getNode());
341    ID.AddInteger(Ops->getResNo());
342  }
343}
344
345/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
346///
347static void AddNodeIDOperands(FoldingSetNodeID &ID,
348                              const SDUse *Ops, unsigned NumOps) {
349  for (; NumOps; --NumOps, ++Ops) {
350    ID.AddPointer(Ops->getNode());
351    ID.AddInteger(Ops->getResNo());
352  }
353}
354
355static void AddNodeIDNode(FoldingSetNodeID &ID,
356                          unsigned short OpC, SDVTList VTList,
357                          const SDValue *OpList, unsigned N) {
358  AddNodeIDOpcode(ID, OpC);
359  AddNodeIDValueTypes(ID, VTList);
360  AddNodeIDOperands(ID, OpList, N);
361}
362
363/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
364/// the NodeID data.
365static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
366  switch (N->getOpcode()) {
367  case ISD::TargetExternalSymbol:
368  case ISD::ExternalSymbol:
369    llvm_unreachable("Should only be used on nodes with operands");
370  default: break;  // Normal nodes don't need extra info.
371  case ISD::TargetConstant:
372  case ISD::Constant:
373    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
374    break;
375  case ISD::TargetConstantFP:
376  case ISD::ConstantFP: {
377    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
378    break;
379  }
380  case ISD::TargetGlobalAddress:
381  case ISD::GlobalAddress:
382  case ISD::TargetGlobalTLSAddress:
383  case ISD::GlobalTLSAddress: {
384    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
385    ID.AddPointer(GA->getGlobal());
386    ID.AddInteger(GA->getOffset());
387    ID.AddInteger(GA->getTargetFlags());
388    ID.AddInteger(GA->getAddressSpace());
389    break;
390  }
391  case ISD::BasicBlock:
392    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
393    break;
394  case ISD::Register:
395    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
396    break;
397  case ISD::RegisterMask:
398    ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
399    break;
400  case ISD::SRCVALUE:
401    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
402    break;
403  case ISD::FrameIndex:
404  case ISD::TargetFrameIndex:
405    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
406    break;
407  case ISD::JumpTable:
408  case ISD::TargetJumpTable:
409    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
411    break;
412  case ISD::ConstantPool:
413  case ISD::TargetConstantPool: {
414    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
415    ID.AddInteger(CP->getAlignment());
416    ID.AddInteger(CP->getOffset());
417    if (CP->isMachineConstantPoolEntry())
418      CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
419    else
420      ID.AddPointer(CP->getConstVal());
421    ID.AddInteger(CP->getTargetFlags());
422    break;
423  }
424  case ISD::TargetIndex: {
425    const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
426    ID.AddInteger(TI->getIndex());
427    ID.AddInteger(TI->getOffset());
428    ID.AddInteger(TI->getTargetFlags());
429    break;
430  }
431  case ISD::LOAD: {
432    const LoadSDNode *LD = cast<LoadSDNode>(N);
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawSubclassData());
435    ID.AddInteger(LD->getPointerInfo().getAddrSpace());
436    break;
437  }
438  case ISD::STORE: {
439    const StoreSDNode *ST = cast<StoreSDNode>(N);
440    ID.AddInteger(ST->getMemoryVT().getRawBits());
441    ID.AddInteger(ST->getRawSubclassData());
442    ID.AddInteger(ST->getPointerInfo().getAddrSpace());
443    break;
444  }
445  case ISD::ATOMIC_CMP_SWAP:
446  case ISD::ATOMIC_SWAP:
447  case ISD::ATOMIC_LOAD_ADD:
448  case ISD::ATOMIC_LOAD_SUB:
449  case ISD::ATOMIC_LOAD_AND:
450  case ISD::ATOMIC_LOAD_OR:
451  case ISD::ATOMIC_LOAD_XOR:
452  case ISD::ATOMIC_LOAD_NAND:
453  case ISD::ATOMIC_LOAD_MIN:
454  case ISD::ATOMIC_LOAD_MAX:
455  case ISD::ATOMIC_LOAD_UMIN:
456  case ISD::ATOMIC_LOAD_UMAX:
457  case ISD::ATOMIC_LOAD:
458  case ISD::ATOMIC_STORE: {
459    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
460    ID.AddInteger(AT->getMemoryVT().getRawBits());
461    ID.AddInteger(AT->getRawSubclassData());
462    ID.AddInteger(AT->getPointerInfo().getAddrSpace());
463    break;
464  }
465  case ISD::PREFETCH: {
466    const MemSDNode *PF = cast<MemSDNode>(N);
467    ID.AddInteger(PF->getPointerInfo().getAddrSpace());
468    break;
469  }
470  case ISD::VECTOR_SHUFFLE: {
471    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
472    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
473         i != e; ++i)
474      ID.AddInteger(SVN->getMaskElt(i));
475    break;
476  }
477  case ISD::TargetBlockAddress:
478  case ISD::BlockAddress: {
479    const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
480    ID.AddPointer(BA->getBlockAddress());
481    ID.AddInteger(BA->getOffset());
482    ID.AddInteger(BA->getTargetFlags());
483    break;
484  }
485  } // end switch (N->getOpcode())
486
487  // Target specific memory nodes could also have address spaces to check.
488  if (N->isTargetMemoryOpcode())
489    ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
490}
491
492/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
493/// data.
494static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
495  AddNodeIDOpcode(ID, N->getOpcode());
496  // Add the return value info.
497  AddNodeIDValueTypes(ID, N->getVTList());
498  // Add the operand info.
499  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
500
501  // Handle SDNode leafs with special info.
502  AddNodeIDCustom(ID, N);
503}
504
505/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
506/// the CSE map that carries volatility, temporalness, indexing mode, and
507/// extension/truncation information.
508///
509static inline unsigned
510encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
511                     bool isNonTemporal, bool isInvariant) {
512  assert((ConvType & 3) == ConvType &&
513         "ConvType may not require more than 2 bits!");
514  assert((AM & 7) == AM &&
515         "AM may not require more than 3 bits!");
516  return ConvType |
517         (AM << 2) |
518         (isVolatile << 5) |
519         (isNonTemporal << 6) |
520         (isInvariant << 7);
521}
522
523//===----------------------------------------------------------------------===//
524//                              SelectionDAG Class
525//===----------------------------------------------------------------------===//
526
527/// doNotCSE - Return true if CSE should not be performed for this node.
528static bool doNotCSE(SDNode *N) {
529  if (N->getValueType(0) == MVT::Glue)
530    return true; // Never CSE anything that produces a flag.
531
532  switch (N->getOpcode()) {
533  default: break;
534  case ISD::HANDLENODE:
535  case ISD::EH_LABEL:
536    return true;   // Never CSE these nodes.
537  }
538
539  // Check that remaining values produced are not flags.
540  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
541    if (N->getValueType(i) == MVT::Glue)
542      return true; // Never CSE anything that produces a flag.
543
544  return false;
545}
546
547/// RemoveDeadNodes - This method deletes all unreachable nodes in the
548/// SelectionDAG.
549void SelectionDAG::RemoveDeadNodes() {
550  // Create a dummy node (which is not added to allnodes), that adds a reference
551  // to the root node, preventing it from being deleted.
552  HandleSDNode Dummy(getRoot());
553
554  SmallVector<SDNode*, 128> DeadNodes;
555
556  // Add all obviously-dead nodes to the DeadNodes worklist.
557  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
558    if (I->use_empty())
559      DeadNodes.push_back(I);
560
561  RemoveDeadNodes(DeadNodes);
562
563  // If the root changed (e.g. it was a dead load, update the root).
564  setRoot(Dummy.getValue());
565}
566
567/// RemoveDeadNodes - This method deletes the unreachable nodes in the
568/// given list, and any nodes that become unreachable as a result.
569void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
570
571  // Process the worklist, deleting the nodes and adding their uses to the
572  // worklist.
573  while (!DeadNodes.empty()) {
574    SDNode *N = DeadNodes.pop_back_val();
575
576    for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
577      DUL->NodeDeleted(N, 0);
578
579    // Take the node out of the appropriate CSE map.
580    RemoveNodeFromCSEMaps(N);
581
582    // Next, brutally remove the operand list.  This is safe to do, as there are
583    // no cycles in the graph.
584    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
585      SDUse &Use = *I++;
586      SDNode *Operand = Use.getNode();
587      Use.set(SDValue());
588
589      // Now that we removed this operand, see if there are no uses of it left.
590      if (Operand->use_empty())
591        DeadNodes.push_back(Operand);
592    }
593
594    DeallocateNode(N);
595  }
596}
597
598void SelectionDAG::RemoveDeadNode(SDNode *N){
599  SmallVector<SDNode*, 16> DeadNodes(1, N);
600
601  // Create a dummy node that adds a reference to the root node, preventing
602  // it from being deleted.  (This matters if the root is an operand of the
603  // dead node.)
604  HandleSDNode Dummy(getRoot());
605
606  RemoveDeadNodes(DeadNodes);
607}
608
609void SelectionDAG::DeleteNode(SDNode *N) {
610  // First take this out of the appropriate CSE map.
611  RemoveNodeFromCSEMaps(N);
612
613  // Finally, remove uses due to operands of this node, remove from the
614  // AllNodes list, and delete the node.
615  DeleteNodeNotInCSEMaps(N);
616}
617
618void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
619  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
620  assert(N->use_empty() && "Cannot delete a node that is not dead!");
621
622  // Drop all of the operands and decrement used node's use counts.
623  N->DropOperands();
624
625  DeallocateNode(N);
626}
627
628void SelectionDAG::DeallocateNode(SDNode *N) {
629  if (N->OperandsNeedDelete)
630    delete[] N->OperandList;
631
632  // Set the opcode to DELETED_NODE to help catch bugs when node
633  // memory is reallocated.
634  N->NodeType = ISD::DELETED_NODE;
635
636  NodeAllocator.Deallocate(AllNodes.remove(N));
637
638  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
639  ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
640  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
641    DbgVals[i]->setIsInvalidated();
642}
643
644/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
645/// correspond to it.  This is useful when we're about to delete or repurpose
646/// the node.  We don't want future request for structurally identical nodes
647/// to return N anymore.
648bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
649  bool Erased = false;
650  switch (N->getOpcode()) {
651  case ISD::HANDLENODE: return false;  // noop.
652  case ISD::CONDCODE:
653    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
654           "Cond code doesn't exist!");
655    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
656    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
657    break;
658  case ISD::ExternalSymbol:
659    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
660    break;
661  case ISD::TargetExternalSymbol: {
662    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
663    Erased = TargetExternalSymbols.erase(
664               std::pair<std::string,unsigned char>(ESN->getSymbol(),
665                                                    ESN->getTargetFlags()));
666    break;
667  }
668  case ISD::VALUETYPE: {
669    EVT VT = cast<VTSDNode>(N)->getVT();
670    if (VT.isExtended()) {
671      Erased = ExtendedValueTypeNodes.erase(VT);
672    } else {
673      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
674      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
675    }
676    break;
677  }
678  default:
679    // Remove it from the CSE Map.
680    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
681    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
682    Erased = CSEMap.RemoveNode(N);
683    break;
684  }
685#ifndef NDEBUG
686  // Verify that the node was actually in one of the CSE maps, unless it has a
687  // flag result (which cannot be CSE'd) or is one of the special cases that are
688  // not subject to CSE.
689  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
690      !N->isMachineOpcode() && !doNotCSE(N)) {
691    N->dump(this);
692    dbgs() << "\n";
693    llvm_unreachable("Node is not in map!");
694  }
695#endif
696  return Erased;
697}
698
699/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
700/// maps and modified in place. Add it back to the CSE maps, unless an identical
701/// node already exists, in which case transfer all its users to the existing
702/// node. This transfer can potentially trigger recursive merging.
703///
704void
705SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
706  // For node types that aren't CSE'd, just act as if no identical node
707  // already exists.
708  if (!doNotCSE(N)) {
709    SDNode *Existing = CSEMap.GetOrInsertNode(N);
710    if (Existing != N) {
711      // If there was already an existing matching node, use ReplaceAllUsesWith
712      // to replace the dead one with the existing one.  This can cause
713      // recursive merging of other unrelated nodes down the line.
714      ReplaceAllUsesWith(N, Existing);
715
716      // N is now dead. Inform the listeners and delete it.
717      for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
718        DUL->NodeDeleted(N, Existing);
719      DeleteNodeNotInCSEMaps(N);
720      return;
721    }
722  }
723
724  // If the node doesn't already exist, we updated it.  Inform listeners.
725  for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
726    DUL->NodeUpdated(N);
727}
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
734                                           void *&InsertPos) {
735  if (doNotCSE(N))
736    return 0;
737
738  SDValue Ops[] = { Op };
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
747/// were replaced with those specified.  If this node is never memoized,
748/// return null, otherwise return a pointer to the slot it would take.  If a
749/// node already exists with these operands, the slot will be non-null.
750SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
751                                           SDValue Op1, SDValue Op2,
752                                           void *&InsertPos) {
753  if (doNotCSE(N))
754    return 0;
755
756  SDValue Ops[] = { Op1, Op2 };
757  FoldingSetNodeID ID;
758  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
759  AddNodeIDCustom(ID, N);
760  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
761  return Node;
762}
763
764
765/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
766/// were replaced with those specified.  If this node is never memoized,
767/// return null, otherwise return a pointer to the slot it would take.  If a
768/// node already exists with these operands, the slot will be non-null.
769SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
770                                           const SDValue *Ops,unsigned NumOps,
771                                           void *&InsertPos) {
772  if (doNotCSE(N))
773    return 0;
774
775  FoldingSetNodeID ID;
776  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
777  AddNodeIDCustom(ID, N);
778  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
779  return Node;
780}
781
782#ifndef NDEBUG
783/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
784static void VerifyNodeCommon(SDNode *N) {
785  switch (N->getOpcode()) {
786  default:
787    break;
788  case ISD::BUILD_PAIR: {
789    EVT VT = N->getValueType(0);
790    assert(N->getNumValues() == 1 && "Too many results!");
791    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
792           "Wrong return type!");
793    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
794    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
795           "Mismatched operand types!");
796    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
797           "Wrong operand type!");
798    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
799           "Wrong return type size");
800    break;
801  }
802  case ISD::BUILD_VECTOR: {
803    assert(N->getNumValues() == 1 && "Too many results!");
804    assert(N->getValueType(0).isVector() && "Wrong return type!");
805    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
806           "Wrong number of operands!");
807    EVT EltVT = N->getValueType(0).getVectorElementType();
808    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
809      assert((I->getValueType() == EltVT ||
810             (EltVT.isInteger() && I->getValueType().isInteger() &&
811              EltVT.bitsLE(I->getValueType()))) &&
812            "Wrong operand type!");
813      assert(I->getValueType() == N->getOperand(0).getValueType() &&
814             "Operands must all have the same type");
815    }
816    break;
817  }
818  }
819}
820
821/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
822static void VerifySDNode(SDNode *N) {
823  // The SDNode allocators cannot be used to allocate nodes with fields that are
824  // not present in an SDNode!
825  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
826  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
827  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
828  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
829  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
830  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
831  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
832  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
833  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
834  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
835  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
836  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
837  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
838  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
839  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
840  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
841  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
842  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
843  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
844
845  VerifyNodeCommon(N);
846}
847
848/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
849/// invalid.
850static void VerifyMachineNode(SDNode *N) {
851  // The MachineNode allocators cannot be used to allocate nodes with fields
852  // that are not present in a MachineNode!
853  // Currently there are no such nodes.
854
855  VerifyNodeCommon(N);
856}
857#endif // NDEBUG
858
859/// getEVTAlignment - Compute the default alignment value for the
860/// given type.
861///
862unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
863  Type *Ty = VT == MVT::iPTR ?
864                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
865                   VT.getTypeForEVT(*getContext());
866
867  return TM.getTargetLowering()->getDataLayout()->getABITypeAlignment(Ty);
868}
869
870// EntryNode could meaningfully have debug info if we can find it...
871SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
872  : TM(tm), TSI(*tm.getSelectionDAGInfo()), TTI(0), OptLevel(OL),
873    EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
874    Root(getEntryNode()), UpdateListeners(0) {
875  AllNodes.push_back(&EntryNode);
876  DbgInfo = new SDDbgInfo();
877}
878
879void SelectionDAG::init(MachineFunction &mf, const TargetTransformInfo *tti) {
880  MF = &mf;
881  TTI = tti;
882  Context = &mf.getFunction()->getContext();
883}
884
885SelectionDAG::~SelectionDAG() {
886  assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
887  allnodes_clear();
888  delete DbgInfo;
889}
890
891void SelectionDAG::allnodes_clear() {
892  assert(&*AllNodes.begin() == &EntryNode);
893  AllNodes.remove(AllNodes.begin());
894  while (!AllNodes.empty())
895    DeallocateNode(AllNodes.begin());
896}
897
898void SelectionDAG::clear() {
899  allnodes_clear();
900  OperandAllocator.Reset();
901  CSEMap.clear();
902
903  ExtendedValueTypeNodes.clear();
904  ExternalSymbols.clear();
905  TargetExternalSymbols.clear();
906  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
907            static_cast<CondCodeSDNode*>(0));
908  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
909            static_cast<SDNode*>(0));
910
911  EntryNode.UseList = 0;
912  AllNodes.push_back(&EntryNode);
913  Root = getEntryNode();
914  DbgInfo->clear();
915}
916
917SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, SDLoc DL, EVT VT) {
918  return VT.bitsGT(Op.getValueType()) ?
919    getNode(ISD::ANY_EXTEND, DL, VT, Op) :
920    getNode(ISD::TRUNCATE, DL, VT, Op);
921}
922
923SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, SDLoc DL, EVT VT) {
924  return VT.bitsGT(Op.getValueType()) ?
925    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
926    getNode(ISD::TRUNCATE, DL, VT, Op);
927}
928
929SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, SDLoc DL, EVT VT) {
930  return VT.bitsGT(Op.getValueType()) ?
931    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
932    getNode(ISD::TRUNCATE, DL, VT, Op);
933}
934
935SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, SDLoc DL, EVT VT) {
936  assert(!VT.isVector() &&
937         "getZeroExtendInReg should use the vector element type instead of "
938         "the vector type!");
939  if (Op.getValueType() == VT) return Op;
940  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
941  APInt Imm = APInt::getLowBitsSet(BitWidth,
942                                   VT.getSizeInBits());
943  return getNode(ISD::AND, DL, Op.getValueType(), Op,
944                 getConstant(Imm, Op.getValueType()));
945}
946
947/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
948///
949SDValue SelectionDAG::getNOT(SDLoc DL, SDValue Val, EVT VT) {
950  EVT EltVT = VT.getScalarType();
951  SDValue NegOne =
952    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
953  return getNode(ISD::XOR, DL, VT, Val, NegOne);
954}
955
956SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
957  EVT EltVT = VT.getScalarType();
958  assert((EltVT.getSizeInBits() >= 64 ||
959         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
960         "getConstant with a uint64_t value that doesn't fit in the type!");
961  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
962}
963
964SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
965  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
966}
967
968SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
969  assert(VT.isInteger() && "Cannot create FP integer constant!");
970
971  EVT EltVT = VT.getScalarType();
972  const ConstantInt *Elt = &Val;
973
974  const TargetLowering *TLI = TM.getTargetLowering();
975
976  // In some cases the vector type is legal but the element type is illegal and
977  // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
978  // inserted value (the type does not need to match the vector element type).
979  // Any extra bits introduced will be truncated away.
980  if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
981      TargetLowering::TypePromoteInteger) {
982   EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
983   APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
984   Elt = ConstantInt::get(*getContext(), NewVal);
985  }
986
987  assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
988         "APInt size does not match type size!");
989  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
990  FoldingSetNodeID ID;
991  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
992  ID.AddPointer(Elt);
993  void *IP = 0;
994  SDNode *N = NULL;
995  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
996    if (!VT.isVector())
997      return SDValue(N, 0);
998
999  if (!N) {
1000    N = new (NodeAllocator) ConstantSDNode(isT, Elt, EltVT);
1001    CSEMap.InsertNode(N, IP);
1002    AllNodes.push_back(N);
1003  }
1004
1005  SDValue Result(N, 0);
1006  if (VT.isVector()) {
1007    SmallVector<SDValue, 8> Ops;
1008    Ops.assign(VT.getVectorNumElements(), Result);
1009    Result = getNode(ISD::BUILD_VECTOR, SDLoc(), VT, &Ops[0], Ops.size());
1010  }
1011  return Result;
1012}
1013
1014SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
1015  return getConstant(Val, TM.getTargetLowering()->getPointerTy(), isTarget);
1016}
1017
1018
1019SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
1020  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
1021}
1022
1023SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
1024  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1025
1026  EVT EltVT = VT.getScalarType();
1027
1028  // Do the map lookup using the actual bit pattern for the floating point
1029  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1030  // we don't have issues with SNANs.
1031  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1032  FoldingSetNodeID ID;
1033  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
1034  ID.AddPointer(&V);
1035  void *IP = 0;
1036  SDNode *N = NULL;
1037  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
1038    if (!VT.isVector())
1039      return SDValue(N, 0);
1040
1041  if (!N) {
1042    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
1043    CSEMap.InsertNode(N, IP);
1044    AllNodes.push_back(N);
1045  }
1046
1047  SDValue Result(N, 0);
1048  if (VT.isVector()) {
1049    SmallVector<SDValue, 8> Ops;
1050    Ops.assign(VT.getVectorNumElements(), Result);
1051    // FIXME SDLoc info might be appropriate here
1052    Result = getNode(ISD::BUILD_VECTOR, SDLoc(), VT, &Ops[0], Ops.size());
1053  }
1054  return Result;
1055}
1056
1057SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1058  EVT EltVT = VT.getScalarType();
1059  if (EltVT==MVT::f32)
1060    return getConstantFP(APFloat((float)Val), VT, isTarget);
1061  else if (EltVT==MVT::f64)
1062    return getConstantFP(APFloat(Val), VT, isTarget);
1063  else if (EltVT==MVT::f80 || EltVT==MVT::f128 || EltVT==MVT::ppcf128 ||
1064           EltVT==MVT::f16) {
1065    bool ignored;
1066    APFloat apf = APFloat(Val);
1067    apf.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1068                &ignored);
1069    return getConstantFP(apf, VT, isTarget);
1070  } else
1071    llvm_unreachable("Unsupported type in getConstantFP");
1072}
1073
1074SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, SDLoc DL,
1075                                       EVT VT, int64_t Offset,
1076                                       bool isTargetGA,
1077                                       unsigned char TargetFlags) {
1078  assert((TargetFlags == 0 || isTargetGA) &&
1079         "Cannot set target flags on target-independent globals");
1080
1081  // Truncate (with sign-extension) the offset value to the pointer size.
1082  unsigned BitWidth = TM.getTargetLowering()->getPointerTy().getSizeInBits();
1083  if (BitWidth < 64)
1084    Offset = SignExtend64(Offset, BitWidth);
1085
1086  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1087  if (!GVar) {
1088    // If GV is an alias then use the aliasee for determining thread-localness.
1089    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1090      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1091  }
1092
1093  unsigned Opc;
1094  if (GVar && GVar->isThreadLocal())
1095    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1096  else
1097    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1098
1099  FoldingSetNodeID ID;
1100  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1101  ID.AddPointer(GV);
1102  ID.AddInteger(Offset);
1103  ID.AddInteger(TargetFlags);
1104  ID.AddInteger(GV->getType()->getAddressSpace());
1105  void *IP = 0;
1106  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1107    return SDValue(E, 0);
1108
1109  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL.getIROrder(),
1110                                                      DL.getDebugLoc(), GV, VT,
1111                                                      Offset, TargetFlags);
1112  CSEMap.InsertNode(N, IP);
1113  AllNodes.push_back(N);
1114  return SDValue(N, 0);
1115}
1116
1117SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1118  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1119  FoldingSetNodeID ID;
1120  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1121  ID.AddInteger(FI);
1122  void *IP = 0;
1123  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1124    return SDValue(E, 0);
1125
1126  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1127  CSEMap.InsertNode(N, IP);
1128  AllNodes.push_back(N);
1129  return SDValue(N, 0);
1130}
1131
1132SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1133                                   unsigned char TargetFlags) {
1134  assert((TargetFlags == 0 || isTarget) &&
1135         "Cannot set target flags on target-independent jump tables");
1136  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1137  FoldingSetNodeID ID;
1138  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1139  ID.AddInteger(JTI);
1140  ID.AddInteger(TargetFlags);
1141  void *IP = 0;
1142  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1143    return SDValue(E, 0);
1144
1145  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1146                                                  TargetFlags);
1147  CSEMap.InsertNode(N, IP);
1148  AllNodes.push_back(N);
1149  return SDValue(N, 0);
1150}
1151
1152SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1153                                      unsigned Alignment, int Offset,
1154                                      bool isTarget,
1155                                      unsigned char TargetFlags) {
1156  assert((TargetFlags == 0 || isTarget) &&
1157         "Cannot set target flags on target-independent globals");
1158  if (Alignment == 0)
1159    Alignment =
1160    TM.getTargetLowering()->getDataLayout()->getPrefTypeAlignment(C->getType());
1161  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1162  FoldingSetNodeID ID;
1163  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1164  ID.AddInteger(Alignment);
1165  ID.AddInteger(Offset);
1166  ID.AddPointer(C);
1167  ID.AddInteger(TargetFlags);
1168  void *IP = 0;
1169  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1170    return SDValue(E, 0);
1171
1172  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1173                                                     Alignment, TargetFlags);
1174  CSEMap.InsertNode(N, IP);
1175  AllNodes.push_back(N);
1176  return SDValue(N, 0);
1177}
1178
1179
1180SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1181                                      unsigned Alignment, int Offset,
1182                                      bool isTarget,
1183                                      unsigned char TargetFlags) {
1184  assert((TargetFlags == 0 || isTarget) &&
1185         "Cannot set target flags on target-independent globals");
1186  if (Alignment == 0)
1187    Alignment =
1188    TM.getTargetLowering()->getDataLayout()->getPrefTypeAlignment(C->getType());
1189  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1190  FoldingSetNodeID ID;
1191  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1192  ID.AddInteger(Alignment);
1193  ID.AddInteger(Offset);
1194  C->addSelectionDAGCSEId(ID);
1195  ID.AddInteger(TargetFlags);
1196  void *IP = 0;
1197  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1198    return SDValue(E, 0);
1199
1200  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1201                                                     Alignment, TargetFlags);
1202  CSEMap.InsertNode(N, IP);
1203  AllNodes.push_back(N);
1204  return SDValue(N, 0);
1205}
1206
1207SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1208                                     unsigned char TargetFlags) {
1209  FoldingSetNodeID ID;
1210  AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), 0, 0);
1211  ID.AddInteger(Index);
1212  ID.AddInteger(Offset);
1213  ID.AddInteger(TargetFlags);
1214  void *IP = 0;
1215  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1216    return SDValue(E, 0);
1217
1218  SDNode *N = new (NodeAllocator) TargetIndexSDNode(Index, VT, Offset,
1219                                                    TargetFlags);
1220  CSEMap.InsertNode(N, IP);
1221  AllNodes.push_back(N);
1222  return SDValue(N, 0);
1223}
1224
1225SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1226  FoldingSetNodeID ID;
1227  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1228  ID.AddPointer(MBB);
1229  void *IP = 0;
1230  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1231    return SDValue(E, 0);
1232
1233  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1234  CSEMap.InsertNode(N, IP);
1235  AllNodes.push_back(N);
1236  return SDValue(N, 0);
1237}
1238
1239SDValue SelectionDAG::getValueType(EVT VT) {
1240  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1241      ValueTypeNodes.size())
1242    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1243
1244  SDNode *&N = VT.isExtended() ?
1245    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1246
1247  if (N) return SDValue(N, 0);
1248  N = new (NodeAllocator) VTSDNode(VT);
1249  AllNodes.push_back(N);
1250  return SDValue(N, 0);
1251}
1252
1253SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1254  SDNode *&N = ExternalSymbols[Sym];
1255  if (N) return SDValue(N, 0);
1256  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1257  AllNodes.push_back(N);
1258  return SDValue(N, 0);
1259}
1260
1261SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1262                                              unsigned char TargetFlags) {
1263  SDNode *&N =
1264    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1265                                                               TargetFlags)];
1266  if (N) return SDValue(N, 0);
1267  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1268  AllNodes.push_back(N);
1269  return SDValue(N, 0);
1270}
1271
1272SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1273  if ((unsigned)Cond >= CondCodeNodes.size())
1274    CondCodeNodes.resize(Cond+1);
1275
1276  if (CondCodeNodes[Cond] == 0) {
1277    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1278    CondCodeNodes[Cond] = N;
1279    AllNodes.push_back(N);
1280  }
1281
1282  return SDValue(CondCodeNodes[Cond], 0);
1283}
1284
1285// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1286// the shuffle mask M that point at N1 to point at N2, and indices that point
1287// N2 to point at N1.
1288static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1289  std::swap(N1, N2);
1290  int NElts = M.size();
1291  for (int i = 0; i != NElts; ++i) {
1292    if (M[i] >= NElts)
1293      M[i] -= NElts;
1294    else if (M[i] >= 0)
1295      M[i] += NElts;
1296  }
1297}
1298
1299SDValue SelectionDAG::getVectorShuffle(EVT VT, SDLoc dl, SDValue N1,
1300                                       SDValue N2, const int *Mask) {
1301  assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1302         "Invalid VECTOR_SHUFFLE");
1303
1304  // Canonicalize shuffle undef, undef -> undef
1305  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1306    return getUNDEF(VT);
1307
1308  // Validate that all indices in Mask are within the range of the elements
1309  // input to the shuffle.
1310  unsigned NElts = VT.getVectorNumElements();
1311  SmallVector<int, 8> MaskVec;
1312  for (unsigned i = 0; i != NElts; ++i) {
1313    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1314    MaskVec.push_back(Mask[i]);
1315  }
1316
1317  // Canonicalize shuffle v, v -> v, undef
1318  if (N1 == N2) {
1319    N2 = getUNDEF(VT);
1320    for (unsigned i = 0; i != NElts; ++i)
1321      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1322  }
1323
1324  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1325  if (N1.getOpcode() == ISD::UNDEF)
1326    commuteShuffle(N1, N2, MaskVec);
1327
1328  // Canonicalize all index into lhs, -> shuffle lhs, undef
1329  // Canonicalize all index into rhs, -> shuffle rhs, undef
1330  bool AllLHS = true, AllRHS = true;
1331  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1332  for (unsigned i = 0; i != NElts; ++i) {
1333    if (MaskVec[i] >= (int)NElts) {
1334      if (N2Undef)
1335        MaskVec[i] = -1;
1336      else
1337        AllLHS = false;
1338    } else if (MaskVec[i] >= 0) {
1339      AllRHS = false;
1340    }
1341  }
1342  if (AllLHS && AllRHS)
1343    return getUNDEF(VT);
1344  if (AllLHS && !N2Undef)
1345    N2 = getUNDEF(VT);
1346  if (AllRHS) {
1347    N1 = getUNDEF(VT);
1348    commuteShuffle(N1, N2, MaskVec);
1349  }
1350
1351  // If Identity shuffle return that node.
1352  bool Identity = true;
1353  for (unsigned i = 0; i != NElts; ++i) {
1354    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1355  }
1356  if (Identity && NElts)
1357    return N1;
1358
1359  FoldingSetNodeID ID;
1360  SDValue Ops[2] = { N1, N2 };
1361  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1362  for (unsigned i = 0; i != NElts; ++i)
1363    ID.AddInteger(MaskVec[i]);
1364
1365  void* IP = 0;
1366  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1367    return SDValue(E, 0);
1368
1369  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1370  // SDNode doesn't have access to it.  This memory will be "leaked" when
1371  // the node is deallocated, but recovered when the NodeAllocator is released.
1372  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1373  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1374
1375  ShuffleVectorSDNode *N =
1376    new (NodeAllocator) ShuffleVectorSDNode(VT, dl.getIROrder(),
1377                                            dl.getDebugLoc(), N1, N2,
1378                                            MaskAlloc);
1379  CSEMap.InsertNode(N, IP);
1380  AllNodes.push_back(N);
1381  return SDValue(N, 0);
1382}
1383
1384SDValue SelectionDAG::getConvertRndSat(EVT VT, SDLoc dl,
1385                                       SDValue Val, SDValue DTy,
1386                                       SDValue STy, SDValue Rnd, SDValue Sat,
1387                                       ISD::CvtCode Code) {
1388  // If the src and dest types are the same and the conversion is between
1389  // integer types of the same sign or two floats, no conversion is necessary.
1390  if (DTy == STy &&
1391      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1392    return Val;
1393
1394  FoldingSetNodeID ID;
1395  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1396  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1397  void* IP = 0;
1398  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1399    return SDValue(E, 0);
1400
1401  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl.getIROrder(),
1402                                                           dl.getDebugLoc(),
1403                                                           Ops, 5, Code);
1404  CSEMap.InsertNode(N, IP);
1405  AllNodes.push_back(N);
1406  return SDValue(N, 0);
1407}
1408
1409SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1410  FoldingSetNodeID ID;
1411  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1412  ID.AddInteger(RegNo);
1413  void *IP = 0;
1414  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1415    return SDValue(E, 0);
1416
1417  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1418  CSEMap.InsertNode(N, IP);
1419  AllNodes.push_back(N);
1420  return SDValue(N, 0);
1421}
1422
1423SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1424  FoldingSetNodeID ID;
1425  AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), 0, 0);
1426  ID.AddPointer(RegMask);
1427  void *IP = 0;
1428  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1429    return SDValue(E, 0);
1430
1431  SDNode *N = new (NodeAllocator) RegisterMaskSDNode(RegMask);
1432  CSEMap.InsertNode(N, IP);
1433  AllNodes.push_back(N);
1434  return SDValue(N, 0);
1435}
1436
1437SDValue SelectionDAG::getEHLabel(SDLoc dl, SDValue Root, MCSymbol *Label) {
1438  FoldingSetNodeID ID;
1439  SDValue Ops[] = { Root };
1440  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1441  ID.AddPointer(Label);
1442  void *IP = 0;
1443  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1444    return SDValue(E, 0);
1445
1446  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl.getIROrder(),
1447                                                dl.getDebugLoc(), Root, Label);
1448  CSEMap.InsertNode(N, IP);
1449  AllNodes.push_back(N);
1450  return SDValue(N, 0);
1451}
1452
1453
1454SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1455                                      int64_t Offset,
1456                                      bool isTarget,
1457                                      unsigned char TargetFlags) {
1458  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1459
1460  FoldingSetNodeID ID;
1461  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1462  ID.AddPointer(BA);
1463  ID.AddInteger(Offset);
1464  ID.AddInteger(TargetFlags);
1465  void *IP = 0;
1466  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1467    return SDValue(E, 0);
1468
1469  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, Offset,
1470                                                     TargetFlags);
1471  CSEMap.InsertNode(N, IP);
1472  AllNodes.push_back(N);
1473  return SDValue(N, 0);
1474}
1475
1476SDValue SelectionDAG::getSrcValue(const Value *V) {
1477  assert((!V || V->getType()->isPointerTy()) &&
1478         "SrcValue is not a pointer?");
1479
1480  FoldingSetNodeID ID;
1481  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1482  ID.AddPointer(V);
1483
1484  void *IP = 0;
1485  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1486    return SDValue(E, 0);
1487
1488  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1489  CSEMap.InsertNode(N, IP);
1490  AllNodes.push_back(N);
1491  return SDValue(N, 0);
1492}
1493
1494/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1495SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1496  FoldingSetNodeID ID;
1497  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1498  ID.AddPointer(MD);
1499
1500  void *IP = 0;
1501  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1502    return SDValue(E, 0);
1503
1504  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1505  CSEMap.InsertNode(N, IP);
1506  AllNodes.push_back(N);
1507  return SDValue(N, 0);
1508}
1509
1510
1511/// getShiftAmountOperand - Return the specified value casted to
1512/// the target's desired shift amount type.
1513SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1514  EVT OpTy = Op.getValueType();
1515  EVT ShTy = TM.getTargetLowering()->getShiftAmountTy(LHSTy);
1516  if (OpTy == ShTy || OpTy.isVector()) return Op;
1517
1518  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1519  return getNode(Opcode, SDLoc(Op), ShTy, Op);
1520}
1521
1522/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1523/// specified value type.
1524SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1525  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1526  unsigned ByteSize = VT.getStoreSize();
1527  Type *Ty = VT.getTypeForEVT(*getContext());
1528  const TargetLowering *TLI = TM.getTargetLowering();
1529  unsigned StackAlign =
1530  std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), minAlign);
1531
1532  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1533  return getFrameIndex(FrameIdx, TLI->getPointerTy());
1534}
1535
1536/// CreateStackTemporary - Create a stack temporary suitable for holding
1537/// either of the specified value types.
1538SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1539  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1540                            VT2.getStoreSizeInBits())/8;
1541  Type *Ty1 = VT1.getTypeForEVT(*getContext());
1542  Type *Ty2 = VT2.getTypeForEVT(*getContext());
1543  const TargetLowering *TLI = TM.getTargetLowering();
1544  const DataLayout *TD = TLI->getDataLayout();
1545  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1546                            TD->getPrefTypeAlignment(Ty2));
1547
1548  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1549  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1550  return getFrameIndex(FrameIdx, TLI->getPointerTy());
1551}
1552
1553SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1554                                SDValue N2, ISD::CondCode Cond, SDLoc dl) {
1555  // These setcc operations always fold.
1556  switch (Cond) {
1557  default: break;
1558  case ISD::SETFALSE:
1559  case ISD::SETFALSE2: return getConstant(0, VT);
1560  case ISD::SETTRUE:
1561  case ISD::SETTRUE2: {
1562    const TargetLowering *TLI = TM.getTargetLowering();
1563    TargetLowering::BooleanContent Cnt = TLI->getBooleanContents(VT.isVector());
1564    return getConstant(
1565        Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT);
1566  }
1567
1568  case ISD::SETOEQ:
1569  case ISD::SETOGT:
1570  case ISD::SETOGE:
1571  case ISD::SETOLT:
1572  case ISD::SETOLE:
1573  case ISD::SETONE:
1574  case ISD::SETO:
1575  case ISD::SETUO:
1576  case ISD::SETUEQ:
1577  case ISD::SETUNE:
1578    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1579    break;
1580  }
1581
1582  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1583    const APInt &C2 = N2C->getAPIntValue();
1584    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1585      const APInt &C1 = N1C->getAPIntValue();
1586
1587      switch (Cond) {
1588      default: llvm_unreachable("Unknown integer setcc!");
1589      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1590      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1591      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1592      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1593      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1594      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1595      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1596      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1597      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1598      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1599      }
1600    }
1601  }
1602  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1603    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1604      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1605      switch (Cond) {
1606      default: break;
1607      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1608                          return getUNDEF(VT);
1609                        // fall through
1610      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1611      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1612                          return getUNDEF(VT);
1613                        // fall through
1614      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1615                                           R==APFloat::cmpLessThan, VT);
1616      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1617                          return getUNDEF(VT);
1618                        // fall through
1619      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1620      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1621                          return getUNDEF(VT);
1622                        // fall through
1623      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1624      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1625                          return getUNDEF(VT);
1626                        // fall through
1627      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1628                                           R==APFloat::cmpEqual, VT);
1629      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1630                          return getUNDEF(VT);
1631                        // fall through
1632      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1633                                           R==APFloat::cmpEqual, VT);
1634      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1635      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1636      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1637                                           R==APFloat::cmpEqual, VT);
1638      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1639      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1640                                           R==APFloat::cmpLessThan, VT);
1641      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1642                                           R==APFloat::cmpUnordered, VT);
1643      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1644      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1645      }
1646    } else {
1647      // Ensure that the constant occurs on the RHS.
1648      ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
1649      MVT CompVT = N1.getValueType().getSimpleVT();
1650      if (!TM.getTargetLowering()->isCondCodeLegal(SwappedCond, CompVT))
1651        return SDValue();
1652
1653      return getSetCC(dl, VT, N2, N1, SwappedCond);
1654    }
1655  }
1656
1657  // Could not fold it.
1658  return SDValue();
1659}
1660
1661/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1662/// use this predicate to simplify operations downstream.
1663bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1664  // This predicate is not safe for vector operations.
1665  if (Op.getValueType().isVector())
1666    return false;
1667
1668  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1669  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1670}
1671
1672/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1673/// this predicate to simplify operations downstream.  Mask is known to be zero
1674/// for bits that V cannot have.
1675bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1676                                     unsigned Depth) const {
1677  APInt KnownZero, KnownOne;
1678  ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1679  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1680  return (KnownZero & Mask) == Mask;
1681}
1682
1683/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1684/// known to be either zero or one and return them in the KnownZero/KnownOne
1685/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1686/// processing.
1687void SelectionDAG::ComputeMaskedBits(SDValue Op, APInt &KnownZero,
1688                                     APInt &KnownOne, unsigned Depth) const {
1689  const TargetLowering *TLI = TM.getTargetLowering();
1690  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1691
1692  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1693  if (Depth == 6)
1694    return;  // Limit search depth.
1695
1696  APInt KnownZero2, KnownOne2;
1697
1698  switch (Op.getOpcode()) {
1699  case ISD::Constant:
1700    // We know all of the bits for a constant!
1701    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
1702    KnownZero = ~KnownOne;
1703    return;
1704  case ISD::AND:
1705    // If either the LHS or the RHS are Zero, the result is zero.
1706    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1707    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1708    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1709    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1710
1711    // Output known-1 bits are only known if set in both the LHS & RHS.
1712    KnownOne &= KnownOne2;
1713    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1714    KnownZero |= KnownZero2;
1715    return;
1716  case ISD::OR:
1717    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1718    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1719    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1720    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1721
1722    // Output known-0 bits are only known if clear in both the LHS & RHS.
1723    KnownZero &= KnownZero2;
1724    // Output known-1 are known to be set if set in either the LHS | RHS.
1725    KnownOne |= KnownOne2;
1726    return;
1727  case ISD::XOR: {
1728    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1729    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1730    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1731    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1732
1733    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1734    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1735    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1736    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1737    KnownZero = KnownZeroOut;
1738    return;
1739  }
1740  case ISD::MUL: {
1741    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1742    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1743    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1744    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1745
1746    // If low bits are zero in either operand, output low known-0 bits.
1747    // Also compute a conserative estimate for high known-0 bits.
1748    // More trickiness is possible, but this is sufficient for the
1749    // interesting case of alignment computation.
1750    KnownOne.clearAllBits();
1751    unsigned TrailZ = KnownZero.countTrailingOnes() +
1752                      KnownZero2.countTrailingOnes();
1753    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1754                               KnownZero2.countLeadingOnes(),
1755                               BitWidth) - BitWidth;
1756
1757    TrailZ = std::min(TrailZ, BitWidth);
1758    LeadZ = std::min(LeadZ, BitWidth);
1759    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1760                APInt::getHighBitsSet(BitWidth, LeadZ);
1761    return;
1762  }
1763  case ISD::UDIV: {
1764    // For the purposes of computing leading zeros we can conservatively
1765    // treat a udiv as a logical right shift by the power of 2 known to
1766    // be less than the denominator.
1767    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1768    unsigned LeadZ = KnownZero2.countLeadingOnes();
1769
1770    KnownOne2.clearAllBits();
1771    KnownZero2.clearAllBits();
1772    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
1773    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1774    if (RHSUnknownLeadingOnes != BitWidth)
1775      LeadZ = std::min(BitWidth,
1776                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1777
1778    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
1779    return;
1780  }
1781  case ISD::SELECT:
1782    ComputeMaskedBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
1783    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
1784    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1785    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1786
1787    // Only known if known in both the LHS and RHS.
1788    KnownOne &= KnownOne2;
1789    KnownZero &= KnownZero2;
1790    return;
1791  case ISD::SELECT_CC:
1792    ComputeMaskedBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
1793    ComputeMaskedBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
1794    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1795    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1796
1797    // Only known if known in both the LHS and RHS.
1798    KnownOne &= KnownOne2;
1799    KnownZero &= KnownZero2;
1800    return;
1801  case ISD::SADDO:
1802  case ISD::UADDO:
1803  case ISD::SSUBO:
1804  case ISD::USUBO:
1805  case ISD::SMULO:
1806  case ISD::UMULO:
1807    if (Op.getResNo() != 1)
1808      return;
1809    // The boolean result conforms to getBooleanContents.  Fall through.
1810  case ISD::SETCC:
1811    // If we know the result of a setcc has the top bits zero, use this info.
1812    if (TLI->getBooleanContents(Op.getValueType().isVector()) ==
1813        TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1)
1814      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1815    return;
1816  case ISD::SHL:
1817    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1818    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1819      unsigned ShAmt = SA->getZExtValue();
1820
1821      // If the shift count is an invalid immediate, don't do anything.
1822      if (ShAmt >= BitWidth)
1823        return;
1824
1825      ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1826      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1827      KnownZero <<= ShAmt;
1828      KnownOne  <<= ShAmt;
1829      // low bits known zero.
1830      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1831    }
1832    return;
1833  case ISD::SRL:
1834    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1835    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1836      unsigned ShAmt = SA->getZExtValue();
1837
1838      // If the shift count is an invalid immediate, don't do anything.
1839      if (ShAmt >= BitWidth)
1840        return;
1841
1842      ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1843      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1844      KnownZero = KnownZero.lshr(ShAmt);
1845      KnownOne  = KnownOne.lshr(ShAmt);
1846
1847      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1848      KnownZero |= HighBits;  // High bits known zero.
1849    }
1850    return;
1851  case ISD::SRA:
1852    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1853      unsigned ShAmt = SA->getZExtValue();
1854
1855      // If the shift count is an invalid immediate, don't do anything.
1856      if (ShAmt >= BitWidth)
1857        return;
1858
1859      // If any of the demanded bits are produced by the sign extension, we also
1860      // demand the input sign bit.
1861      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1862
1863      ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1864      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1865      KnownZero = KnownZero.lshr(ShAmt);
1866      KnownOne  = KnownOne.lshr(ShAmt);
1867
1868      // Handle the sign bits.
1869      APInt SignBit = APInt::getSignBit(BitWidth);
1870      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1871
1872      if (KnownZero.intersects(SignBit)) {
1873        KnownZero |= HighBits;  // New bits are known zero.
1874      } else if (KnownOne.intersects(SignBit)) {
1875        KnownOne  |= HighBits;  // New bits are known one.
1876      }
1877    }
1878    return;
1879  case ISD::SIGN_EXTEND_INREG: {
1880    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1881    unsigned EBits = EVT.getScalarType().getSizeInBits();
1882
1883    // Sign extension.  Compute the demanded bits in the result that are not
1884    // present in the input.
1885    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
1886
1887    APInt InSignBit = APInt::getSignBit(EBits);
1888    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
1889
1890    // If the sign extended bits are demanded, we know that the sign
1891    // bit is demanded.
1892    InSignBit = InSignBit.zext(BitWidth);
1893    if (NewBits.getBoolValue())
1894      InputDemandedBits |= InSignBit;
1895
1896    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1897    KnownOne &= InputDemandedBits;
1898    KnownZero &= InputDemandedBits;
1899    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1900
1901    // If the sign bit of the input is known set or clear, then we know the
1902    // top bits of the result.
1903    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1904      KnownZero |= NewBits;
1905      KnownOne  &= ~NewBits;
1906    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1907      KnownOne  |= NewBits;
1908      KnownZero &= ~NewBits;
1909    } else {                              // Input sign bit unknown
1910      KnownZero &= ~NewBits;
1911      KnownOne  &= ~NewBits;
1912    }
1913    return;
1914  }
1915  case ISD::CTTZ:
1916  case ISD::CTTZ_ZERO_UNDEF:
1917  case ISD::CTLZ:
1918  case ISD::CTLZ_ZERO_UNDEF:
1919  case ISD::CTPOP: {
1920    unsigned LowBits = Log2_32(BitWidth)+1;
1921    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1922    KnownOne.clearAllBits();
1923    return;
1924  }
1925  case ISD::LOAD: {
1926    LoadSDNode *LD = cast<LoadSDNode>(Op);
1927    // If this is a ZEXTLoad and we are looking at the loaded value.
1928    if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1929      EVT VT = LD->getMemoryVT();
1930      unsigned MemBits = VT.getScalarType().getSizeInBits();
1931      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
1932    } else if (const MDNode *Ranges = LD->getRanges()) {
1933      computeMaskedBitsLoad(*Ranges, KnownZero);
1934    }
1935    return;
1936  }
1937  case ISD::ZERO_EXTEND: {
1938    EVT InVT = Op.getOperand(0).getValueType();
1939    unsigned InBits = InVT.getScalarType().getSizeInBits();
1940    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
1941    KnownZero = KnownZero.trunc(InBits);
1942    KnownOne = KnownOne.trunc(InBits);
1943    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1944    KnownZero = KnownZero.zext(BitWidth);
1945    KnownOne = KnownOne.zext(BitWidth);
1946    KnownZero |= NewBits;
1947    return;
1948  }
1949  case ISD::SIGN_EXTEND: {
1950    EVT InVT = Op.getOperand(0).getValueType();
1951    unsigned InBits = InVT.getScalarType().getSizeInBits();
1952    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
1953
1954    KnownZero = KnownZero.trunc(InBits);
1955    KnownOne = KnownOne.trunc(InBits);
1956    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1957
1958    // Note if the sign bit is known to be zero or one.
1959    bool SignBitKnownZero = KnownZero.isNegative();
1960    bool SignBitKnownOne  = KnownOne.isNegative();
1961    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1962           "Sign bit can't be known to be both zero and one!");
1963
1964    KnownZero = KnownZero.zext(BitWidth);
1965    KnownOne = KnownOne.zext(BitWidth);
1966
1967    // If the sign bit is known zero or one, the top bits match.
1968    if (SignBitKnownZero)
1969      KnownZero |= NewBits;
1970    else if (SignBitKnownOne)
1971      KnownOne  |= NewBits;
1972    return;
1973  }
1974  case ISD::ANY_EXTEND: {
1975    EVT InVT = Op.getOperand(0).getValueType();
1976    unsigned InBits = InVT.getScalarType().getSizeInBits();
1977    KnownZero = KnownZero.trunc(InBits);
1978    KnownOne = KnownOne.trunc(InBits);
1979    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1980    KnownZero = KnownZero.zext(BitWidth);
1981    KnownOne = KnownOne.zext(BitWidth);
1982    return;
1983  }
1984  case ISD::TRUNCATE: {
1985    EVT InVT = Op.getOperand(0).getValueType();
1986    unsigned InBits = InVT.getScalarType().getSizeInBits();
1987    KnownZero = KnownZero.zext(InBits);
1988    KnownOne = KnownOne.zext(InBits);
1989    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1990    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1991    KnownZero = KnownZero.trunc(BitWidth);
1992    KnownOne = KnownOne.trunc(BitWidth);
1993    break;
1994  }
1995  case ISD::AssertZext: {
1996    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1997    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1998    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1999    KnownZero |= (~InMask);
2000    KnownOne  &= (~KnownZero);
2001    return;
2002  }
2003  case ISD::FGETSIGN:
2004    // All bits are zero except the low bit.
2005    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2006    return;
2007
2008  case ISD::SUB: {
2009    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
2010      // We know that the top bits of C-X are clear if X contains less bits
2011      // than C (i.e. no wrap-around can happen).  For example, 20-X is
2012      // positive if we can prove that X is >= 0 and < 16.
2013      if (CLHS->getAPIntValue().isNonNegative()) {
2014        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2015        // NLZ can't be BitWidth with no sign bit
2016        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2017        ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2018
2019        // If all of the MaskV bits are known to be zero, then we know the
2020        // output top bits are zero, because we now know that the output is
2021        // from [0-C].
2022        if ((KnownZero2 & MaskV) == MaskV) {
2023          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2024          // Top bits known zero.
2025          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
2026        }
2027      }
2028    }
2029  }
2030  // fall through
2031  case ISD::ADD:
2032  case ISD::ADDE: {
2033    // Output known-0 bits are known if clear or set in both the low clear bits
2034    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2035    // low 3 bits clear.
2036    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2037    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
2038    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
2039
2040    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2041    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
2042    KnownZeroOut = std::min(KnownZeroOut,
2043                            KnownZero2.countTrailingOnes());
2044
2045    if (Op.getOpcode() == ISD::ADD) {
2046      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
2047      return;
2048    }
2049
2050    // With ADDE, a carry bit may be added in, so we can only use this
2051    // information if we know (at least) that the low two bits are clear.  We
2052    // then return to the caller that the low bit is unknown but that other bits
2053    // are known zero.
2054    if (KnownZeroOut >= 2) // ADDE
2055      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
2056    return;
2057  }
2058  case ISD::SREM:
2059    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2060      const APInt &RA = Rem->getAPIntValue().abs();
2061      if (RA.isPowerOf2()) {
2062        APInt LowBits = RA - 1;
2063        ComputeMaskedBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1);
2064
2065        // The low bits of the first operand are unchanged by the srem.
2066        KnownZero = KnownZero2 & LowBits;
2067        KnownOne = KnownOne2 & LowBits;
2068
2069        // If the first operand is non-negative or has all low bits zero, then
2070        // the upper bits are all zero.
2071        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2072          KnownZero |= ~LowBits;
2073
2074        // If the first operand is negative and not all low bits are zero, then
2075        // the upper bits are all one.
2076        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2077          KnownOne |= ~LowBits;
2078        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2079      }
2080    }
2081    return;
2082  case ISD::UREM: {
2083    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2084      const APInt &RA = Rem->getAPIntValue();
2085      if (RA.isPowerOf2()) {
2086        APInt LowBits = (RA - 1);
2087        KnownZero |= ~LowBits;
2088        ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne,Depth+1);
2089        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2090        break;
2091      }
2092    }
2093
2094    // Since the result is less than or equal to either operand, any leading
2095    // zero bits in either operand must also exist in the result.
2096    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2097    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2098
2099    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2100                                KnownZero2.countLeadingOnes());
2101    KnownOne.clearAllBits();
2102    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
2103    return;
2104  }
2105  case ISD::FrameIndex:
2106  case ISD::TargetFrameIndex:
2107    if (unsigned Align = InferPtrAlignment(Op)) {
2108      // The low bits are known zero if the pointer is aligned.
2109      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2110      return;
2111    }
2112    break;
2113
2114  default:
2115    if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2116      break;
2117    // Fallthrough
2118  case ISD::INTRINSIC_WO_CHAIN:
2119  case ISD::INTRINSIC_W_CHAIN:
2120  case ISD::INTRINSIC_VOID:
2121    // Allow the target to implement this method for its nodes.
2122    TLI->computeMaskedBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
2123    return;
2124  }
2125}
2126
2127/// ComputeNumSignBits - Return the number of times the sign bit of the
2128/// register is replicated into the other bits.  We know that at least 1 bit
2129/// is always equal to the sign bit (itself), but other cases can give us
2130/// information.  For example, immediately after an "SRA X, 2", we know that
2131/// the top 3 bits are all equal to each other, so we return 3.
2132unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2133  const TargetLowering *TLI = TM.getTargetLowering();
2134  EVT VT = Op.getValueType();
2135  assert(VT.isInteger() && "Invalid VT!");
2136  unsigned VTBits = VT.getScalarType().getSizeInBits();
2137  unsigned Tmp, Tmp2;
2138  unsigned FirstAnswer = 1;
2139
2140  if (Depth == 6)
2141    return 1;  // Limit search depth.
2142
2143  switch (Op.getOpcode()) {
2144  default: break;
2145  case ISD::AssertSext:
2146    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2147    return VTBits-Tmp+1;
2148  case ISD::AssertZext:
2149    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2150    return VTBits-Tmp;
2151
2152  case ISD::Constant: {
2153    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2154    return Val.getNumSignBits();
2155  }
2156
2157  case ISD::SIGN_EXTEND:
2158    Tmp =
2159        VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2160    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2161
2162  case ISD::SIGN_EXTEND_INREG:
2163    // Max of the input and what this extends.
2164    Tmp =
2165      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2166    Tmp = VTBits-Tmp+1;
2167
2168    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2169    return std::max(Tmp, Tmp2);
2170
2171  case ISD::SRA:
2172    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2173    // SRA X, C   -> adds C sign bits.
2174    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2175      Tmp += C->getZExtValue();
2176      if (Tmp > VTBits) Tmp = VTBits;
2177    }
2178    return Tmp;
2179  case ISD::SHL:
2180    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2181      // shl destroys sign bits.
2182      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2183      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2184          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2185      return Tmp - C->getZExtValue();
2186    }
2187    break;
2188  case ISD::AND:
2189  case ISD::OR:
2190  case ISD::XOR:    // NOT is handled here.
2191    // Logical binary ops preserve the number of sign bits at the worst.
2192    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2193    if (Tmp != 1) {
2194      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2195      FirstAnswer = std::min(Tmp, Tmp2);
2196      // We computed what we know about the sign bits as our first
2197      // answer. Now proceed to the generic code that uses
2198      // ComputeMaskedBits, and pick whichever answer is better.
2199    }
2200    break;
2201
2202  case ISD::SELECT:
2203    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2204    if (Tmp == 1) return 1;  // Early out.
2205    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2206    return std::min(Tmp, Tmp2);
2207
2208  case ISD::SADDO:
2209  case ISD::UADDO:
2210  case ISD::SSUBO:
2211  case ISD::USUBO:
2212  case ISD::SMULO:
2213  case ISD::UMULO:
2214    if (Op.getResNo() != 1)
2215      break;
2216    // The boolean result conforms to getBooleanContents.  Fall through.
2217  case ISD::SETCC:
2218    // If setcc returns 0/-1, all bits are sign bits.
2219    if (TLI->getBooleanContents(Op.getValueType().isVector()) ==
2220        TargetLowering::ZeroOrNegativeOneBooleanContent)
2221      return VTBits;
2222    break;
2223  case ISD::ROTL:
2224  case ISD::ROTR:
2225    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2226      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2227
2228      // Handle rotate right by N like a rotate left by 32-N.
2229      if (Op.getOpcode() == ISD::ROTR)
2230        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2231
2232      // If we aren't rotating out all of the known-in sign bits, return the
2233      // number that are left.  This handles rotl(sext(x), 1) for example.
2234      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2235      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2236    }
2237    break;
2238  case ISD::ADD:
2239    // Add can have at most one carry bit.  Thus we know that the output
2240    // is, at worst, one more bit than the inputs.
2241    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2242    if (Tmp == 1) return 1;  // Early out.
2243
2244    // Special case decrementing a value (ADD X, -1):
2245    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2246      if (CRHS->isAllOnesValue()) {
2247        APInt KnownZero, KnownOne;
2248        ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2249
2250        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2251        // sign bits set.
2252        if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2253          return VTBits;
2254
2255        // If we are subtracting one from a positive number, there is no carry
2256        // out of the result.
2257        if (KnownZero.isNegative())
2258          return Tmp;
2259      }
2260
2261    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2262    if (Tmp2 == 1) return 1;
2263    return std::min(Tmp, Tmp2)-1;
2264
2265  case ISD::SUB:
2266    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2267    if (Tmp2 == 1) return 1;
2268
2269    // Handle NEG.
2270    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2271      if (CLHS->isNullValue()) {
2272        APInt KnownZero, KnownOne;
2273        ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2274        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2275        // sign bits set.
2276        if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2277          return VTBits;
2278
2279        // If the input is known to be positive (the sign bit is known clear),
2280        // the output of the NEG has the same number of sign bits as the input.
2281        if (KnownZero.isNegative())
2282          return Tmp2;
2283
2284        // Otherwise, we treat this like a SUB.
2285      }
2286
2287    // Sub can have at most one carry bit.  Thus we know that the output
2288    // is, at worst, one more bit than the inputs.
2289    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2290    if (Tmp == 1) return 1;  // Early out.
2291    return std::min(Tmp, Tmp2)-1;
2292  case ISD::TRUNCATE:
2293    // FIXME: it's tricky to do anything useful for this, but it is an important
2294    // case for targets like X86.
2295    break;
2296  }
2297
2298  // If we are looking at the loaded value of the SDNode.
2299  if (Op.getResNo() == 0) {
2300    // Handle LOADX separately here. EXTLOAD case will fallthrough.
2301    if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
2302      unsigned ExtType = LD->getExtensionType();
2303      switch (ExtType) {
2304        default: break;
2305        case ISD::SEXTLOAD:    // '17' bits known
2306          Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2307          return VTBits-Tmp+1;
2308        case ISD::ZEXTLOAD:    // '16' bits known
2309          Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2310          return VTBits-Tmp;
2311      }
2312    }
2313  }
2314
2315  // Allow the target to implement this method for its nodes.
2316  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2317      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2318      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2319      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2320    unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, Depth);
2321    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2322  }
2323
2324  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2325  // use this information.
2326  APInt KnownZero, KnownOne;
2327  ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
2328
2329  APInt Mask;
2330  if (KnownZero.isNegative()) {        // sign bit is 0
2331    Mask = KnownZero;
2332  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2333    Mask = KnownOne;
2334  } else {
2335    // Nothing known.
2336    return FirstAnswer;
2337  }
2338
2339  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2340  // the number of identical bits in the top of the input value.
2341  Mask = ~Mask;
2342  Mask <<= Mask.getBitWidth()-VTBits;
2343  // Return # leading zeros.  We use 'min' here in case Val was zero before
2344  // shifting.  We don't want to return '64' as for an i32 "0".
2345  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2346}
2347
2348/// isBaseWithConstantOffset - Return true if the specified operand is an
2349/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2350/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2351/// semantics as an ADD.  This handles the equivalence:
2352///     X|Cst == X+Cst iff X&Cst = 0.
2353bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2354  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2355      !isa<ConstantSDNode>(Op.getOperand(1)))
2356    return false;
2357
2358  if (Op.getOpcode() == ISD::OR &&
2359      !MaskedValueIsZero(Op.getOperand(0),
2360                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2361    return false;
2362
2363  return true;
2364}
2365
2366
2367bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2368  // If we're told that NaNs won't happen, assume they won't.
2369  if (getTarget().Options.NoNaNsFPMath)
2370    return true;
2371
2372  // If the value is a constant, we can obviously see if it is a NaN or not.
2373  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2374    return !C->getValueAPF().isNaN();
2375
2376  // TODO: Recognize more cases here.
2377
2378  return false;
2379}
2380
2381bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2382  // If the value is a constant, we can obviously see if it is a zero or not.
2383  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2384    return !C->isZero();
2385
2386  // TODO: Recognize more cases here.
2387  switch (Op.getOpcode()) {
2388  default: break;
2389  case ISD::OR:
2390    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2391      return !C->isNullValue();
2392    break;
2393  }
2394
2395  return false;
2396}
2397
2398bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2399  // Check the obvious case.
2400  if (A == B) return true;
2401
2402  // For for negative and positive zero.
2403  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2404    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2405      if (CA->isZero() && CB->isZero()) return true;
2406
2407  // Otherwise they may not be equal.
2408  return false;
2409}
2410
2411/// getNode - Gets or creates the specified node.
2412///
2413SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT) {
2414  FoldingSetNodeID ID;
2415  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2416  void *IP = 0;
2417  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2418    return SDValue(E, 0);
2419
2420  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(),
2421                                         DL.getDebugLoc(), getVTList(VT));
2422  CSEMap.InsertNode(N, IP);
2423
2424  AllNodes.push_back(N);
2425#ifndef NDEBUG
2426  VerifySDNode(N);
2427#endif
2428  return SDValue(N, 0);
2429}
2430
2431SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL,
2432                              EVT VT, SDValue Operand) {
2433  // Constant fold unary operations with an integer constant operand.
2434  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2435    const APInt &Val = C->getAPIntValue();
2436    switch (Opcode) {
2437    default: break;
2438    case ISD::SIGN_EXTEND:
2439      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2440    case ISD::ANY_EXTEND:
2441    case ISD::ZERO_EXTEND:
2442    case ISD::TRUNCATE:
2443      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2444    case ISD::UINT_TO_FP:
2445    case ISD::SINT_TO_FP: {
2446      APFloat apf(EVTToAPFloatSemantics(VT),
2447                  APInt::getNullValue(VT.getSizeInBits()));
2448      (void)apf.convertFromAPInt(Val,
2449                                 Opcode==ISD::SINT_TO_FP,
2450                                 APFloat::rmNearestTiesToEven);
2451      return getConstantFP(apf, VT);
2452    }
2453    case ISD::BITCAST:
2454      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2455        return getConstantFP(APFloat(APFloat::IEEEsingle, Val), VT);
2456      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2457        return getConstantFP(APFloat(APFloat::IEEEdouble, Val), VT);
2458      break;
2459    case ISD::BSWAP:
2460      return getConstant(Val.byteSwap(), VT);
2461    case ISD::CTPOP:
2462      return getConstant(Val.countPopulation(), VT);
2463    case ISD::CTLZ:
2464    case ISD::CTLZ_ZERO_UNDEF:
2465      return getConstant(Val.countLeadingZeros(), VT);
2466    case ISD::CTTZ:
2467    case ISD::CTTZ_ZERO_UNDEF:
2468      return getConstant(Val.countTrailingZeros(), VT);
2469    }
2470  }
2471
2472  // Constant fold unary operations with a floating point constant operand.
2473  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2474    APFloat V = C->getValueAPF();    // make copy
2475    switch (Opcode) {
2476    case ISD::FNEG:
2477      V.changeSign();
2478      return getConstantFP(V, VT);
2479    case ISD::FABS:
2480      V.clearSign();
2481      return getConstantFP(V, VT);
2482    case ISD::FCEIL: {
2483      APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
2484      if (fs == APFloat::opOK || fs == APFloat::opInexact)
2485        return getConstantFP(V, VT);
2486      break;
2487    }
2488    case ISD::FTRUNC: {
2489      APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
2490      if (fs == APFloat::opOK || fs == APFloat::opInexact)
2491        return getConstantFP(V, VT);
2492      break;
2493    }
2494    case ISD::FFLOOR: {
2495      APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
2496      if (fs == APFloat::opOK || fs == APFloat::opInexact)
2497        return getConstantFP(V, VT);
2498      break;
2499    }
2500    case ISD::FP_EXTEND: {
2501      bool ignored;
2502      // This can return overflow, underflow, or inexact; we don't care.
2503      // FIXME need to be more flexible about rounding mode.
2504      (void)V.convert(EVTToAPFloatSemantics(VT),
2505                      APFloat::rmNearestTiesToEven, &ignored);
2506      return getConstantFP(V, VT);
2507    }
2508    case ISD::FP_TO_SINT:
2509    case ISD::FP_TO_UINT: {
2510      integerPart x[2];
2511      bool ignored;
2512      assert(integerPartWidth >= 64);
2513      // FIXME need to be more flexible about rounding mode.
2514      APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2515                            Opcode==ISD::FP_TO_SINT,
2516                            APFloat::rmTowardZero, &ignored);
2517      if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2518        break;
2519      APInt api(VT.getSizeInBits(), x);
2520      return getConstant(api, VT);
2521    }
2522    case ISD::BITCAST:
2523      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2524        return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2525      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2526        return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2527      break;
2528    }
2529  }
2530
2531  unsigned OpOpcode = Operand.getNode()->getOpcode();
2532  switch (Opcode) {
2533  case ISD::TokenFactor:
2534  case ISD::MERGE_VALUES:
2535  case ISD::CONCAT_VECTORS:
2536    return Operand;         // Factor, merge or concat of one node?  No need.
2537  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2538  case ISD::FP_EXTEND:
2539    assert(VT.isFloatingPoint() &&
2540           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2541    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2542    assert((!VT.isVector() ||
2543            VT.getVectorNumElements() ==
2544            Operand.getValueType().getVectorNumElements()) &&
2545           "Vector element count mismatch!");
2546    if (Operand.getOpcode() == ISD::UNDEF)
2547      return getUNDEF(VT);
2548    break;
2549  case ISD::SIGN_EXTEND:
2550    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2551           "Invalid SIGN_EXTEND!");
2552    if (Operand.getValueType() == VT) return Operand;   // noop extension
2553    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2554           "Invalid sext node, dst < src!");
2555    assert((!VT.isVector() ||
2556            VT.getVectorNumElements() ==
2557            Operand.getValueType().getVectorNumElements()) &&
2558           "Vector element count mismatch!");
2559    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2560      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2561    else if (OpOpcode == ISD::UNDEF)
2562      // sext(undef) = 0, because the top bits will all be the same.
2563      return getConstant(0, VT);
2564    break;
2565  case ISD::ZERO_EXTEND:
2566    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2567           "Invalid ZERO_EXTEND!");
2568    if (Operand.getValueType() == VT) return Operand;   // noop extension
2569    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2570           "Invalid zext node, dst < src!");
2571    assert((!VT.isVector() ||
2572            VT.getVectorNumElements() ==
2573            Operand.getValueType().getVectorNumElements()) &&
2574           "Vector element count mismatch!");
2575    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2576      return getNode(ISD::ZERO_EXTEND, DL, VT,
2577                     Operand.getNode()->getOperand(0));
2578    else if (OpOpcode == ISD::UNDEF)
2579      // zext(undef) = 0, because the top bits will be zero.
2580      return getConstant(0, VT);
2581    break;
2582  case ISD::ANY_EXTEND:
2583    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2584           "Invalid ANY_EXTEND!");
2585    if (Operand.getValueType() == VT) return Operand;   // noop extension
2586    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2587           "Invalid anyext node, dst < src!");
2588    assert((!VT.isVector() ||
2589            VT.getVectorNumElements() ==
2590            Operand.getValueType().getVectorNumElements()) &&
2591           "Vector element count mismatch!");
2592
2593    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2594        OpOpcode == ISD::ANY_EXTEND)
2595      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2596      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2597    else if (OpOpcode == ISD::UNDEF)
2598      return getUNDEF(VT);
2599
2600    // (ext (trunx x)) -> x
2601    if (OpOpcode == ISD::TRUNCATE) {
2602      SDValue OpOp = Operand.getNode()->getOperand(0);
2603      if (OpOp.getValueType() == VT)
2604        return OpOp;
2605    }
2606    break;
2607  case ISD::TRUNCATE:
2608    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2609           "Invalid TRUNCATE!");
2610    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2611    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2612           "Invalid truncate node, src < dst!");
2613    assert((!VT.isVector() ||
2614            VT.getVectorNumElements() ==
2615            Operand.getValueType().getVectorNumElements()) &&
2616           "Vector element count mismatch!");
2617    if (OpOpcode == ISD::TRUNCATE)
2618      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2619    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2620        OpOpcode == ISD::ANY_EXTEND) {
2621      // If the source is smaller than the dest, we still need an extend.
2622      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2623            .bitsLT(VT.getScalarType()))
2624        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2625      if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2626        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2627      return Operand.getNode()->getOperand(0);
2628    }
2629    if (OpOpcode == ISD::UNDEF)
2630      return getUNDEF(VT);
2631    break;
2632  case ISD::BITCAST:
2633    // Basic sanity checking.
2634    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2635           && "Cannot BITCAST between types of different sizes!");
2636    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2637    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2638      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2639    if (OpOpcode == ISD::UNDEF)
2640      return getUNDEF(VT);
2641    break;
2642  case ISD::SCALAR_TO_VECTOR:
2643    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2644           (VT.getVectorElementType() == Operand.getValueType() ||
2645            (VT.getVectorElementType().isInteger() &&
2646             Operand.getValueType().isInteger() &&
2647             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2648           "Illegal SCALAR_TO_VECTOR node!");
2649    if (OpOpcode == ISD::UNDEF)
2650      return getUNDEF(VT);
2651    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2652    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2653        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2654        Operand.getConstantOperandVal(1) == 0 &&
2655        Operand.getOperand(0).getValueType() == VT)
2656      return Operand.getOperand(0);
2657    break;
2658  case ISD::FNEG:
2659    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2660    if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
2661      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2662                     Operand.getNode()->getOperand(0));
2663    if (OpOpcode == ISD::FNEG)  // --X -> X
2664      return Operand.getNode()->getOperand(0);
2665    break;
2666  case ISD::FABS:
2667    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2668      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2669    break;
2670  }
2671
2672  SDNode *N;
2673  SDVTList VTs = getVTList(VT);
2674  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2675    FoldingSetNodeID ID;
2676    SDValue Ops[1] = { Operand };
2677    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2678    void *IP = 0;
2679    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2680      return SDValue(E, 0);
2681
2682    N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
2683                                        DL.getDebugLoc(), VTs, Operand);
2684    CSEMap.InsertNode(N, IP);
2685  } else {
2686    N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
2687                                        DL.getDebugLoc(), VTs, Operand);
2688  }
2689
2690  AllNodes.push_back(N);
2691#ifndef NDEBUG
2692  VerifySDNode(N);
2693#endif
2694  return SDValue(N, 0);
2695}
2696
2697SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, EVT VT,
2698                                             SDNode *Cst1, SDNode *Cst2) {
2699  SmallVector<std::pair<ConstantSDNode *, ConstantSDNode *>, 4> Inputs;
2700  SmallVector<SDValue, 4> Outputs;
2701  EVT SVT = VT.getScalarType();
2702
2703  ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1);
2704  ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2);
2705  if (Scalar1 && Scalar2) {
2706    // Scalar instruction.
2707    Inputs.push_back(std::make_pair(Scalar1, Scalar2));
2708  } else {
2709    // For vectors extract each constant element into Inputs so we can constant
2710    // fold them individually.
2711    BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
2712    BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
2713    if (!BV1 || !BV2)
2714      return SDValue();
2715
2716    assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
2717
2718    for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
2719      ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I));
2720      ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I));
2721      if (!V1 || !V2) // Not a constant, bail.
2722        return SDValue();
2723
2724      // Avoid BUILD_VECTOR nodes that perform implicit truncation.
2725      // FIXME: This is valid and could be handled by truncating the APInts.
2726      if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
2727        return SDValue();
2728
2729      Inputs.push_back(std::make_pair(V1, V2));
2730    }
2731  }
2732
2733  // We have a number of constant values, constant fold them element by element.
2734  for (unsigned I = 0, E = Inputs.size(); I != E; ++I) {
2735    const APInt &C1 = Inputs[I].first->getAPIntValue();
2736    const APInt &C2 = Inputs[I].second->getAPIntValue();
2737
2738    switch (Opcode) {
2739    case ISD::ADD:
2740      Outputs.push_back(getConstant(C1 + C2, SVT));
2741      break;
2742    case ISD::SUB:
2743      Outputs.push_back(getConstant(C1 - C2, SVT));
2744      break;
2745    case ISD::MUL:
2746      Outputs.push_back(getConstant(C1 * C2, SVT));
2747      break;
2748    case ISD::UDIV:
2749      if (!C2.getBoolValue())
2750        return SDValue();
2751      Outputs.push_back(getConstant(C1.udiv(C2), SVT));
2752      break;
2753    case ISD::UREM:
2754      if (!C2.getBoolValue())
2755        return SDValue();
2756      Outputs.push_back(getConstant(C1.urem(C2), SVT));
2757      break;
2758    case ISD::SDIV:
2759      if (!C2.getBoolValue())
2760        return SDValue();
2761      Outputs.push_back(getConstant(C1.sdiv(C2), SVT));
2762      break;
2763    case ISD::SREM:
2764      if (!C2.getBoolValue())
2765        return SDValue();
2766      Outputs.push_back(getConstant(C1.srem(C2), SVT));
2767      break;
2768    case ISD::AND:
2769      Outputs.push_back(getConstant(C1 & C2, SVT));
2770      break;
2771    case ISD::OR:
2772      Outputs.push_back(getConstant(C1 | C2, SVT));
2773      break;
2774    case ISD::XOR:
2775      Outputs.push_back(getConstant(C1 ^ C2, SVT));
2776      break;
2777    case ISD::SHL:
2778      Outputs.push_back(getConstant(C1 << C2, SVT));
2779      break;
2780    case ISD::SRL:
2781      Outputs.push_back(getConstant(C1.lshr(C2), SVT));
2782      break;
2783    case ISD::SRA:
2784      Outputs.push_back(getConstant(C1.ashr(C2), SVT));
2785      break;
2786    case ISD::ROTL:
2787      Outputs.push_back(getConstant(C1.rotl(C2), SVT));
2788      break;
2789    case ISD::ROTR:
2790      Outputs.push_back(getConstant(C1.rotr(C2), SVT));
2791      break;
2792    default:
2793      return SDValue();
2794    }
2795  }
2796
2797  // Handle the scalar case first.
2798  if (Scalar1 && Scalar2)
2799    return Outputs.back();
2800
2801  // Otherwise build a big vector out of the scalar elements we generated.
2802  return getNode(ISD::BUILD_VECTOR, SDLoc(), VT, Outputs.data(),
2803                 Outputs.size());
2804}
2805
2806SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1,
2807                              SDValue N2) {
2808  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2809  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2810  switch (Opcode) {
2811  default: break;
2812  case ISD::TokenFactor:
2813    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2814           N2.getValueType() == MVT::Other && "Invalid token factor!");
2815    // Fold trivial token factors.
2816    if (N1.getOpcode() == ISD::EntryToken) return N2;
2817    if (N2.getOpcode() == ISD::EntryToken) return N1;
2818    if (N1 == N2) return N1;
2819    break;
2820  case ISD::CONCAT_VECTORS:
2821    // Concat of UNDEFs is UNDEF.
2822    if (N1.getOpcode() == ISD::UNDEF &&
2823        N2.getOpcode() == ISD::UNDEF)
2824      return getUNDEF(VT);
2825
2826    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2827    // one big BUILD_VECTOR.
2828    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2829        N2.getOpcode() == ISD::BUILD_VECTOR) {
2830      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2831                                    N1.getNode()->op_end());
2832      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2833      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2834    }
2835    break;
2836  case ISD::AND:
2837    assert(VT.isInteger() && "This operator does not apply to FP types!");
2838    assert(N1.getValueType() == N2.getValueType() &&
2839           N1.getValueType() == VT && "Binary operator types must match!");
2840    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2841    // worth handling here.
2842    if (N2C && N2C->isNullValue())
2843      return N2;
2844    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2845      return N1;
2846    break;
2847  case ISD::OR:
2848  case ISD::XOR:
2849  case ISD::ADD:
2850  case ISD::SUB:
2851    assert(VT.isInteger() && "This operator does not apply to FP types!");
2852    assert(N1.getValueType() == N2.getValueType() &&
2853           N1.getValueType() == VT && "Binary operator types must match!");
2854    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2855    // it's worth handling here.
2856    if (N2C && N2C->isNullValue())
2857      return N1;
2858    break;
2859  case ISD::UDIV:
2860  case ISD::UREM:
2861  case ISD::MULHU:
2862  case ISD::MULHS:
2863  case ISD::MUL:
2864  case ISD::SDIV:
2865  case ISD::SREM:
2866    assert(VT.isInteger() && "This operator does not apply to FP types!");
2867    assert(N1.getValueType() == N2.getValueType() &&
2868           N1.getValueType() == VT && "Binary operator types must match!");
2869    break;
2870  case ISD::FADD:
2871  case ISD::FSUB:
2872  case ISD::FMUL:
2873  case ISD::FDIV:
2874  case ISD::FREM:
2875    if (getTarget().Options.UnsafeFPMath) {
2876      if (Opcode == ISD::FADD) {
2877        // 0+x --> x
2878        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2879          if (CFP->getValueAPF().isZero())
2880            return N2;
2881        // x+0 --> x
2882        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2883          if (CFP->getValueAPF().isZero())
2884            return N1;
2885      } else if (Opcode == ISD::FSUB) {
2886        // x-0 --> x
2887        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2888          if (CFP->getValueAPF().isZero())
2889            return N1;
2890      } else if (Opcode == ISD::FMUL) {
2891        ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1);
2892        SDValue V = N2;
2893
2894        // If the first operand isn't the constant, try the second
2895        if (!CFP) {
2896          CFP = dyn_cast<ConstantFPSDNode>(N2);
2897          V = N1;
2898        }
2899
2900        if (CFP) {
2901          // 0*x --> 0
2902          if (CFP->isZero())
2903            return SDValue(CFP,0);
2904          // 1*x --> x
2905          if (CFP->isExactlyValue(1.0))
2906            return V;
2907        }
2908      }
2909    }
2910    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2911    assert(N1.getValueType() == N2.getValueType() &&
2912           N1.getValueType() == VT && "Binary operator types must match!");
2913    break;
2914  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2915    assert(N1.getValueType() == VT &&
2916           N1.getValueType().isFloatingPoint() &&
2917           N2.getValueType().isFloatingPoint() &&
2918           "Invalid FCOPYSIGN!");
2919    break;
2920  case ISD::SHL:
2921  case ISD::SRA:
2922  case ISD::SRL:
2923  case ISD::ROTL:
2924  case ISD::ROTR:
2925    assert(VT == N1.getValueType() &&
2926           "Shift operators return type must be the same as their first arg");
2927    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2928           "Shifts only work on integers");
2929    assert((!VT.isVector() || VT == N2.getValueType()) &&
2930           "Vector shift amounts must be in the same as their first arg");
2931    // Verify that the shift amount VT is bit enough to hold valid shift
2932    // amounts.  This catches things like trying to shift an i1024 value by an
2933    // i8, which is easy to fall into in generic code that uses
2934    // TLI.getShiftAmount().
2935    assert(N2.getValueType().getSizeInBits() >=
2936                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2937           "Invalid use of small shift amount with oversized value!");
2938
2939    // Always fold shifts of i1 values so the code generator doesn't need to
2940    // handle them.  Since we know the size of the shift has to be less than the
2941    // size of the value, the shift/rotate count is guaranteed to be zero.
2942    if (VT == MVT::i1)
2943      return N1;
2944    if (N2C && N2C->isNullValue())
2945      return N1;
2946    break;
2947  case ISD::FP_ROUND_INREG: {
2948    EVT EVT = cast<VTSDNode>(N2)->getVT();
2949    assert(VT == N1.getValueType() && "Not an inreg round!");
2950    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2951           "Cannot FP_ROUND_INREG integer types");
2952    assert(EVT.isVector() == VT.isVector() &&
2953           "FP_ROUND_INREG type should be vector iff the operand "
2954           "type is vector!");
2955    assert((!EVT.isVector() ||
2956            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2957           "Vector element counts must match in FP_ROUND_INREG");
2958    assert(EVT.bitsLE(VT) && "Not rounding down!");
2959    (void)EVT;
2960    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2961    break;
2962  }
2963  case ISD::FP_ROUND:
2964    assert(VT.isFloatingPoint() &&
2965           N1.getValueType().isFloatingPoint() &&
2966           VT.bitsLE(N1.getValueType()) &&
2967           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2968    if (N1.getValueType() == VT) return N1;  // noop conversion.
2969    break;
2970  case ISD::AssertSext:
2971  case ISD::AssertZext: {
2972    EVT EVT = cast<VTSDNode>(N2)->getVT();
2973    assert(VT == N1.getValueType() && "Not an inreg extend!");
2974    assert(VT.isInteger() && EVT.isInteger() &&
2975           "Cannot *_EXTEND_INREG FP types");
2976    assert(!EVT.isVector() &&
2977           "AssertSExt/AssertZExt type should be the vector element type "
2978           "rather than the vector type!");
2979    assert(EVT.bitsLE(VT) && "Not extending!");
2980    if (VT == EVT) return N1; // noop assertion.
2981    break;
2982  }
2983  case ISD::SIGN_EXTEND_INREG: {
2984    EVT EVT = cast<VTSDNode>(N2)->getVT();
2985    assert(VT == N1.getValueType() && "Not an inreg extend!");
2986    assert(VT.isInteger() && EVT.isInteger() &&
2987           "Cannot *_EXTEND_INREG FP types");
2988    assert(EVT.isVector() == VT.isVector() &&
2989           "SIGN_EXTEND_INREG type should be vector iff the operand "
2990           "type is vector!");
2991    assert((!EVT.isVector() ||
2992            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2993           "Vector element counts must match in SIGN_EXTEND_INREG");
2994    assert(EVT.bitsLE(VT) && "Not extending!");
2995    if (EVT == VT) return N1;  // Not actually extending
2996
2997    if (N1C) {
2998      APInt Val = N1C->getAPIntValue();
2999      unsigned FromBits = EVT.getScalarType().getSizeInBits();
3000      Val <<= Val.getBitWidth()-FromBits;
3001      Val = Val.ashr(Val.getBitWidth()-FromBits);
3002      return getConstant(Val, VT);
3003    }
3004    break;
3005  }
3006  case ISD::EXTRACT_VECTOR_ELT:
3007    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
3008    if (N1.getOpcode() == ISD::UNDEF)
3009      return getUNDEF(VT);
3010
3011    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
3012    // expanding copies of large vectors from registers.
3013    if (N2C &&
3014        N1.getOpcode() == ISD::CONCAT_VECTORS &&
3015        N1.getNumOperands() > 0) {
3016      unsigned Factor =
3017        N1.getOperand(0).getValueType().getVectorNumElements();
3018      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
3019                     N1.getOperand(N2C->getZExtValue() / Factor),
3020                     getConstant(N2C->getZExtValue() % Factor,
3021                                 N2.getValueType()));
3022    }
3023
3024    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
3025    // expanding large vector constants.
3026    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
3027      SDValue Elt = N1.getOperand(N2C->getZExtValue());
3028
3029      if (VT != Elt.getValueType())
3030        // If the vector element type is not legal, the BUILD_VECTOR operands
3031        // are promoted and implicitly truncated, and the result implicitly
3032        // extended. Make that explicit here.
3033        Elt = getAnyExtOrTrunc(Elt, DL, VT);
3034
3035      return Elt;
3036    }
3037
3038    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
3039    // operations are lowered to scalars.
3040    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
3041      // If the indices are the same, return the inserted element else
3042      // if the indices are known different, extract the element from
3043      // the original vector.
3044      SDValue N1Op2 = N1.getOperand(2);
3045      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
3046
3047      if (N1Op2C && N2C) {
3048        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
3049          if (VT == N1.getOperand(1).getValueType())
3050            return N1.getOperand(1);
3051          else
3052            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
3053        }
3054
3055        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
3056      }
3057    }
3058    break;
3059  case ISD::EXTRACT_ELEMENT:
3060    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
3061    assert(!N1.getValueType().isVector() && !VT.isVector() &&
3062           (N1.getValueType().isInteger() == VT.isInteger()) &&
3063           N1.getValueType() != VT &&
3064           "Wrong types for EXTRACT_ELEMENT!");
3065
3066    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
3067    // 64-bit integers into 32-bit parts.  Instead of building the extract of
3068    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
3069    if (N1.getOpcode() == ISD::BUILD_PAIR)
3070      return N1.getOperand(N2C->getZExtValue());
3071
3072    // EXTRACT_ELEMENT of a constant int is also very common.
3073    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
3074      unsigned ElementSize = VT.getSizeInBits();
3075      unsigned Shift = ElementSize * N2C->getZExtValue();
3076      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
3077      return getConstant(ShiftedVal.trunc(ElementSize), VT);
3078    }
3079    break;
3080  case ISD::EXTRACT_SUBVECTOR: {
3081    SDValue Index = N2;
3082    if (VT.isSimple() && N1.getValueType().isSimple()) {
3083      assert(VT.isVector() && N1.getValueType().isVector() &&
3084             "Extract subvector VTs must be a vectors!");
3085      assert(VT.getVectorElementType() ==
3086             N1.getValueType().getVectorElementType() &&
3087             "Extract subvector VTs must have the same element type!");
3088      assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
3089             "Extract subvector must be from larger vector to smaller vector!");
3090
3091      if (isa<ConstantSDNode>(Index.getNode())) {
3092        assert((VT.getVectorNumElements() +
3093                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3094                <= N1.getValueType().getVectorNumElements())
3095               && "Extract subvector overflow!");
3096      }
3097
3098      // Trivial extraction.
3099      if (VT.getSimpleVT() == N1.getSimpleValueType())
3100        return N1;
3101    }
3102    break;
3103  }
3104  }
3105
3106  // Perform trivial constant folding.
3107  SDValue SV = FoldConstantArithmetic(Opcode, VT, N1.getNode(), N2.getNode());
3108  if (SV.getNode()) return SV;
3109
3110  // Canonicalize constant to RHS if commutative.
3111  if (N1C && !N2C && isCommutativeBinOp(Opcode)) {
3112    std::swap(N1C, N2C);
3113    std::swap(N1, N2);
3114  }
3115
3116  // Constant fold FP operations.
3117  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
3118  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
3119  if (N1CFP) {
3120    if (!N2CFP && isCommutativeBinOp(Opcode)) {
3121      // Canonicalize constant to RHS if commutative.
3122      std::swap(N1CFP, N2CFP);
3123      std::swap(N1, N2);
3124    } else if (N2CFP) {
3125      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
3126      APFloat::opStatus s;
3127      switch (Opcode) {
3128      case ISD::FADD:
3129        s = V1.add(V2, APFloat::rmNearestTiesToEven);
3130        if (s != APFloat::opInvalidOp)
3131          return getConstantFP(V1, VT);
3132        break;
3133      case ISD::FSUB:
3134        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
3135        if (s!=APFloat::opInvalidOp)
3136          return getConstantFP(V1, VT);
3137        break;
3138      case ISD::FMUL:
3139        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
3140        if (s!=APFloat::opInvalidOp)
3141          return getConstantFP(V1, VT);
3142        break;
3143      case ISD::FDIV:
3144        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
3145        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
3146          return getConstantFP(V1, VT);
3147        break;
3148      case ISD::FREM :
3149        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
3150        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
3151          return getConstantFP(V1, VT);
3152        break;
3153      case ISD::FCOPYSIGN:
3154        V1.copySign(V2);
3155        return getConstantFP(V1, VT);
3156      default: break;
3157      }
3158    }
3159
3160    if (Opcode == ISD::FP_ROUND) {
3161      APFloat V = N1CFP->getValueAPF();    // make copy
3162      bool ignored;
3163      // This can return overflow, underflow, or inexact; we don't care.
3164      // FIXME need to be more flexible about rounding mode.
3165      (void)V.convert(EVTToAPFloatSemantics(VT),
3166                      APFloat::rmNearestTiesToEven, &ignored);
3167      return getConstantFP(V, VT);
3168    }
3169  }
3170
3171  // Canonicalize an UNDEF to the RHS, even over a constant.
3172  if (N1.getOpcode() == ISD::UNDEF) {
3173    if (isCommutativeBinOp(Opcode)) {
3174      std::swap(N1, N2);
3175    } else {
3176      switch (Opcode) {
3177      case ISD::FP_ROUND_INREG:
3178      case ISD::SIGN_EXTEND_INREG:
3179      case ISD::SUB:
3180      case ISD::FSUB:
3181      case ISD::FDIV:
3182      case ISD::FREM:
3183      case ISD::SRA:
3184        return N1;     // fold op(undef, arg2) -> undef
3185      case ISD::UDIV:
3186      case ISD::SDIV:
3187      case ISD::UREM:
3188      case ISD::SREM:
3189      case ISD::SRL:
3190      case ISD::SHL:
3191        if (!VT.isVector())
3192          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3193        // For vectors, we can't easily build an all zero vector, just return
3194        // the LHS.
3195        return N2;
3196      }
3197    }
3198  }
3199
3200  // Fold a bunch of operators when the RHS is undef.
3201  if (N2.getOpcode() == ISD::UNDEF) {
3202    switch (Opcode) {
3203    case ISD::XOR:
3204      if (N1.getOpcode() == ISD::UNDEF)
3205        // Handle undef ^ undef -> 0 special case. This is a common
3206        // idiom (misuse).
3207        return getConstant(0, VT);
3208      // fallthrough
3209    case ISD::ADD:
3210    case ISD::ADDC:
3211    case ISD::ADDE:
3212    case ISD::SUB:
3213    case ISD::UDIV:
3214    case ISD::SDIV:
3215    case ISD::UREM:
3216    case ISD::SREM:
3217      return N2;       // fold op(arg1, undef) -> undef
3218    case ISD::FADD:
3219    case ISD::FSUB:
3220    case ISD::FMUL:
3221    case ISD::FDIV:
3222    case ISD::FREM:
3223      if (getTarget().Options.UnsafeFPMath)
3224        return N2;
3225      break;
3226    case ISD::MUL:
3227    case ISD::AND:
3228    case ISD::SRL:
3229    case ISD::SHL:
3230      if (!VT.isVector())
3231        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3232      // For vectors, we can't easily build an all zero vector, just return
3233      // the LHS.
3234      return N1;
3235    case ISD::OR:
3236      if (!VT.isVector())
3237        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3238      // For vectors, we can't easily build an all one vector, just return
3239      // the LHS.
3240      return N1;
3241    case ISD::SRA:
3242      return N1;
3243    }
3244  }
3245
3246  // Memoize this node if possible.
3247  SDNode *N;
3248  SDVTList VTs = getVTList(VT);
3249  if (VT != MVT::Glue) {
3250    SDValue Ops[] = { N1, N2 };
3251    FoldingSetNodeID ID;
3252    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3253    void *IP = 0;
3254    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3255      return SDValue(E, 0);
3256
3257    N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(),
3258                                         DL.getDebugLoc(), VTs, N1, N2);
3259    CSEMap.InsertNode(N, IP);
3260  } else {
3261    N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(),
3262                                         DL.getDebugLoc(), VTs, N1, N2);
3263  }
3264
3265  AllNodes.push_back(N);
3266#ifndef NDEBUG
3267  VerifySDNode(N);
3268#endif
3269  return SDValue(N, 0);
3270}
3271
3272SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
3273                              SDValue N1, SDValue N2, SDValue N3) {
3274  // Perform various simplifications.
3275  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3276  switch (Opcode) {
3277  case ISD::FMA: {
3278    ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3279    ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
3280    ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
3281    if (N1CFP && N2CFP && N3CFP) {
3282      APFloat  V1 = N1CFP->getValueAPF();
3283      const APFloat &V2 = N2CFP->getValueAPF();
3284      const APFloat &V3 = N3CFP->getValueAPF();
3285      APFloat::opStatus s =
3286        V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
3287      if (s != APFloat::opInvalidOp)
3288        return getConstantFP(V1, VT);
3289    }
3290    break;
3291  }
3292  case ISD::CONCAT_VECTORS:
3293    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3294    // one big BUILD_VECTOR.
3295    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3296        N2.getOpcode() == ISD::BUILD_VECTOR &&
3297        N3.getOpcode() == ISD::BUILD_VECTOR) {
3298      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3299                                    N1.getNode()->op_end());
3300      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3301      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3302      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3303    }
3304    break;
3305  case ISD::SETCC: {
3306    // Use FoldSetCC to simplify SETCC's.
3307    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3308    if (Simp.getNode()) return Simp;
3309    break;
3310  }
3311  case ISD::SELECT:
3312    if (N1C) {
3313     if (N1C->getZExtValue())
3314       return N2;             // select true, X, Y -> X
3315     return N3;             // select false, X, Y -> Y
3316    }
3317
3318    if (N2 == N3) return N2;   // select C, X, X -> X
3319    break;
3320  case ISD::VECTOR_SHUFFLE:
3321    llvm_unreachable("should use getVectorShuffle constructor!");
3322  case ISD::INSERT_SUBVECTOR: {
3323    SDValue Index = N3;
3324    if (VT.isSimple() && N1.getValueType().isSimple()
3325        && N2.getValueType().isSimple()) {
3326      assert(VT.isVector() && N1.getValueType().isVector() &&
3327             N2.getValueType().isVector() &&
3328             "Insert subvector VTs must be a vectors");
3329      assert(VT == N1.getValueType() &&
3330             "Dest and insert subvector source types must match!");
3331      assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
3332             "Insert subvector must be from smaller vector to larger vector!");
3333      if (isa<ConstantSDNode>(Index.getNode())) {
3334        assert((N2.getValueType().getVectorNumElements() +
3335                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3336                <= VT.getVectorNumElements())
3337               && "Insert subvector overflow!");
3338      }
3339
3340      // Trivial insertion.
3341      if (VT.getSimpleVT() == N2.getSimpleValueType())
3342        return N2;
3343    }
3344    break;
3345  }
3346  case ISD::BITCAST:
3347    // Fold bit_convert nodes from a type to themselves.
3348    if (N1.getValueType() == VT)
3349      return N1;
3350    break;
3351  }
3352
3353  // Memoize node if it doesn't produce a flag.
3354  SDNode *N;
3355  SDVTList VTs = getVTList(VT);
3356  if (VT != MVT::Glue) {
3357    SDValue Ops[] = { N1, N2, N3 };
3358    FoldingSetNodeID ID;
3359    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3360    void *IP = 0;
3361    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3362      return SDValue(E, 0);
3363
3364    N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
3365                                          DL.getDebugLoc(), VTs, N1, N2, N3);
3366    CSEMap.InsertNode(N, IP);
3367  } else {
3368    N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
3369                                          DL.getDebugLoc(), VTs, N1, N2, N3);
3370  }
3371
3372  AllNodes.push_back(N);
3373#ifndef NDEBUG
3374  VerifySDNode(N);
3375#endif
3376  return SDValue(N, 0);
3377}
3378
3379SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
3380                              SDValue N1, SDValue N2, SDValue N3,
3381                              SDValue N4) {
3382  SDValue Ops[] = { N1, N2, N3, N4 };
3383  return getNode(Opcode, DL, VT, Ops, 4);
3384}
3385
3386SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
3387                              SDValue N1, SDValue N2, SDValue N3,
3388                              SDValue N4, SDValue N5) {
3389  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3390  return getNode(Opcode, DL, VT, Ops, 5);
3391}
3392
3393/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3394/// the incoming stack arguments to be loaded from the stack.
3395SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3396  SmallVector<SDValue, 8> ArgChains;
3397
3398  // Include the original chain at the beginning of the list. When this is
3399  // used by target LowerCall hooks, this helps legalize find the
3400  // CALLSEQ_BEGIN node.
3401  ArgChains.push_back(Chain);
3402
3403  // Add a chain value for each stack argument.
3404  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3405       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3406    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3407      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3408        if (FI->getIndex() < 0)
3409          ArgChains.push_back(SDValue(L, 1));
3410
3411  // Build a tokenfactor for all the chains.
3412  return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other,
3413                 &ArgChains[0], ArgChains.size());
3414}
3415
3416/// getMemsetValue - Vectorized representation of the memset value
3417/// operand.
3418static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3419                              SDLoc dl) {
3420  assert(Value.getOpcode() != ISD::UNDEF);
3421
3422  unsigned NumBits = VT.getScalarType().getSizeInBits();
3423  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3424    assert(C->getAPIntValue().getBitWidth() == 8);
3425    APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
3426    if (VT.isInteger())
3427      return DAG.getConstant(Val, VT);
3428    return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), VT);
3429  }
3430
3431  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3432  if (NumBits > 8) {
3433    // Use a multiplication with 0x010101... to extend the input to the
3434    // required length.
3435    APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
3436    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3437  }
3438
3439  return Value;
3440}
3441
3442/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3443/// used when a memcpy is turned into a memset when the source is a constant
3444/// string ptr.
3445static SDValue getMemsetStringVal(EVT VT, SDLoc dl, SelectionDAG &DAG,
3446                                  const TargetLowering &TLI, StringRef Str) {
3447  // Handle vector with all elements zero.
3448  if (Str.empty()) {
3449    if (VT.isInteger())
3450      return DAG.getConstant(0, VT);
3451    else if (VT == MVT::f32 || VT == MVT::f64)
3452      return DAG.getConstantFP(0.0, VT);
3453    else if (VT.isVector()) {
3454      unsigned NumElts = VT.getVectorNumElements();
3455      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3456      return DAG.getNode(ISD::BITCAST, dl, VT,
3457                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3458                                                             EltVT, NumElts)));
3459    } else
3460      llvm_unreachable("Expected type!");
3461  }
3462
3463  assert(!VT.isVector() && "Can't handle vector type here!");
3464  unsigned NumVTBits = VT.getSizeInBits();
3465  unsigned NumVTBytes = NumVTBits / 8;
3466  unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
3467
3468  APInt Val(NumVTBits, 0);
3469  if (TLI.isLittleEndian()) {
3470    for (unsigned i = 0; i != NumBytes; ++i)
3471      Val |= (uint64_t)(unsigned char)Str[i] << i*8;
3472  } else {
3473    for (unsigned i = 0; i != NumBytes; ++i)
3474      Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
3475  }
3476
3477  // If the "cost" of materializing the integer immediate is 1 or free, then
3478  // it is cost effective to turn the load into the immediate.
3479  const TargetTransformInfo *TTI = DAG.getTargetTransformInfo();
3480  if (TTI->getIntImmCost(Val, VT.getTypeForEVT(*DAG.getContext())) < 2)
3481    return DAG.getConstant(Val, VT);
3482  return SDValue(0, 0);
3483}
3484
3485/// getMemBasePlusOffset - Returns base and offset node for the
3486///
3487static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, SDLoc dl,
3488                                      SelectionDAG &DAG) {
3489  EVT VT = Base.getValueType();
3490  return DAG.getNode(ISD::ADD, dl,
3491                     VT, Base, DAG.getConstant(Offset, VT));
3492}
3493
3494/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3495///
3496static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
3497  unsigned SrcDelta = 0;
3498  GlobalAddressSDNode *G = NULL;
3499  if (Src.getOpcode() == ISD::GlobalAddress)
3500    G = cast<GlobalAddressSDNode>(Src);
3501  else if (Src.getOpcode() == ISD::ADD &&
3502           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3503           Src.getOperand(1).getOpcode() == ISD::Constant) {
3504    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3505    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3506  }
3507  if (!G)
3508    return false;
3509
3510  return getConstantStringInfo(G->getGlobal(), Str, SrcDelta, false);
3511}
3512
3513/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3514/// to replace the memset / memcpy. Return true if the number of memory ops
3515/// is below the threshold. It returns the types of the sequence of
3516/// memory ops to perform memset / memcpy by reference.
3517static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3518                                     unsigned Limit, uint64_t Size,
3519                                     unsigned DstAlign, unsigned SrcAlign,
3520                                     bool IsMemset,
3521                                     bool ZeroMemset,
3522                                     bool MemcpyStrSrc,
3523                                     bool AllowOverlap,
3524                                     SelectionDAG &DAG,
3525                                     const TargetLowering &TLI) {
3526  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3527         "Expecting memcpy / memset source to meet alignment requirement!");
3528  // If 'SrcAlign' is zero, that means the memory operation does not need to
3529  // load the value, i.e. memset or memcpy from constant string. Otherwise,
3530  // it's the inferred alignment of the source. 'DstAlign', on the other hand,
3531  // is the specified alignment of the memory operation. If it is zero, that
3532  // means it's possible to change the alignment of the destination.
3533  // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
3534  // not need to be loaded.
3535  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3536                                   IsMemset, ZeroMemset, MemcpyStrSrc,
3537                                   DAG.getMachineFunction());
3538
3539  if (VT == MVT::Other) {
3540    if (DstAlign >= TLI.getDataLayout()->getPointerPrefAlignment() ||
3541        TLI.allowsUnalignedMemoryAccesses(VT)) {
3542      VT = TLI.getPointerTy();
3543    } else {
3544      switch (DstAlign & 7) {
3545      case 0:  VT = MVT::i64; break;
3546      case 4:  VT = MVT::i32; break;
3547      case 2:  VT = MVT::i16; break;
3548      default: VT = MVT::i8;  break;
3549      }
3550    }
3551
3552    MVT LVT = MVT::i64;
3553    while (!TLI.isTypeLegal(LVT))
3554      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3555    assert(LVT.isInteger());
3556
3557    if (VT.bitsGT(LVT))
3558      VT = LVT;
3559  }
3560
3561  unsigned NumMemOps = 0;
3562  while (Size != 0) {
3563    unsigned VTSize = VT.getSizeInBits() / 8;
3564    while (VTSize > Size) {
3565      // For now, only use non-vector load / store's for the left-over pieces.
3566      EVT NewVT = VT;
3567      unsigned NewVTSize;
3568
3569      bool Found = false;
3570      if (VT.isVector() || VT.isFloatingPoint()) {
3571        NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
3572        if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
3573            TLI.isSafeMemOpType(NewVT.getSimpleVT()))
3574          Found = true;
3575        else if (NewVT == MVT::i64 &&
3576                 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
3577                 TLI.isSafeMemOpType(MVT::f64)) {
3578          // i64 is usually not legal on 32-bit targets, but f64 may be.
3579          NewVT = MVT::f64;
3580          Found = true;
3581        }
3582      }
3583
3584      if (!Found) {
3585        do {
3586          NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
3587          if (NewVT == MVT::i8)
3588            break;
3589        } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
3590      }
3591      NewVTSize = NewVT.getSizeInBits() / 8;
3592
3593      // If the new VT cannot cover all of the remaining bits, then consider
3594      // issuing a (or a pair of) unaligned and overlapping load / store.
3595      // FIXME: Only does this for 64-bit or more since we don't have proper
3596      // cost model for unaligned load / store.
3597      bool Fast;
3598      if (NumMemOps && AllowOverlap &&
3599          VTSize >= 8 && NewVTSize < Size &&
3600          TLI.allowsUnalignedMemoryAccesses(VT, &Fast) && Fast)
3601        VTSize = Size;
3602      else {
3603        VT = NewVT;
3604        VTSize = NewVTSize;
3605      }
3606    }
3607
3608    if (++NumMemOps > Limit)
3609      return false;
3610
3611    MemOps.push_back(VT);
3612    Size -= VTSize;
3613  }
3614
3615  return true;
3616}
3617
3618static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, SDLoc dl,
3619                                       SDValue Chain, SDValue Dst,
3620                                       SDValue Src, uint64_t Size,
3621                                       unsigned Align, bool isVol,
3622                                       bool AlwaysInline,
3623                                       MachinePointerInfo DstPtrInfo,
3624                                       MachinePointerInfo SrcPtrInfo) {
3625  // Turn a memcpy of undef to nop.
3626  if (Src.getOpcode() == ISD::UNDEF)
3627    return Chain;
3628
3629  // Expand memcpy to a series of load and store ops if the size operand falls
3630  // below a certain threshold.
3631  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3632  // rather than maybe a humongous number of loads and stores.
3633  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3634  std::vector<EVT> MemOps;
3635  bool DstAlignCanChange = false;
3636  MachineFunction &MF = DAG.getMachineFunction();
3637  MachineFrameInfo *MFI = MF.getFrameInfo();
3638  bool OptSize =
3639    MF.getFunction()->getAttributes().
3640      hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
3641  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3642  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3643    DstAlignCanChange = true;
3644  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3645  if (Align > SrcAlign)
3646    SrcAlign = Align;
3647  StringRef Str;
3648  bool CopyFromStr = isMemSrcFromString(Src, Str);
3649  bool isZeroStr = CopyFromStr && Str.empty();
3650  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3651
3652  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3653                                (DstAlignCanChange ? 0 : Align),
3654                                (isZeroStr ? 0 : SrcAlign),
3655                                false, false, CopyFromStr, true, DAG, TLI))
3656    return SDValue();
3657
3658  if (DstAlignCanChange) {
3659    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3660    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
3661
3662    // Don't promote to an alignment that would require dynamic stack
3663    // realignment.
3664    const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
3665    if (!TRI->needsStackRealignment(MF))
3666       while (NewAlign > Align &&
3667             TLI.getDataLayout()->exceedsNaturalStackAlignment(NewAlign))
3668          NewAlign /= 2;
3669
3670    if (NewAlign > Align) {
3671      // Give the stack frame object a larger alignment if needed.
3672      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3673        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3674      Align = NewAlign;
3675    }
3676  }
3677
3678  SmallVector<SDValue, 8> OutChains;
3679  unsigned NumMemOps = MemOps.size();
3680  uint64_t SrcOff = 0, DstOff = 0;
3681  for (unsigned i = 0; i != NumMemOps; ++i) {
3682    EVT VT = MemOps[i];
3683    unsigned VTSize = VT.getSizeInBits() / 8;
3684    SDValue Value, Store;
3685
3686    if (VTSize > Size) {
3687      // Issuing an unaligned load / store pair  that overlaps with the previous
3688      // pair. Adjust the offset accordingly.
3689      assert(i == NumMemOps-1 && i != 0);
3690      SrcOff -= VTSize - Size;
3691      DstOff -= VTSize - Size;
3692    }
3693
3694    if (CopyFromStr &&
3695        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3696      // It's unlikely a store of a vector immediate can be done in a single
3697      // instruction. It would require a load from a constantpool first.
3698      // We only handle zero vectors here.
3699      // FIXME: Handle other cases where store of vector immediate is done in
3700      // a single instruction.
3701      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
3702      if (Value.getNode())
3703        Store = DAG.getStore(Chain, dl, Value,
3704                             getMemBasePlusOffset(Dst, DstOff, dl, DAG),
3705                             DstPtrInfo.getWithOffset(DstOff), isVol,
3706                             false, Align);
3707    }
3708
3709    if (!Store.getNode()) {
3710      // The type might not be legal for the target.  This should only happen
3711      // if the type is smaller than a legal type, as on PPC, so the right
3712      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3713      // to Load/Store if NVT==VT.
3714      // FIXME does the case above also need this?
3715      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3716      assert(NVT.bitsGE(VT));
3717      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3718                             getMemBasePlusOffset(Src, SrcOff, dl, DAG),
3719                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3720                             MinAlign(SrcAlign, SrcOff));
3721      Store = DAG.getTruncStore(Chain, dl, Value,
3722                                getMemBasePlusOffset(Dst, DstOff, dl, DAG),
3723                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3724                                false, Align);
3725    }
3726    OutChains.push_back(Store);
3727    SrcOff += VTSize;
3728    DstOff += VTSize;
3729    Size -= VTSize;
3730  }
3731
3732  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3733                     &OutChains[0], OutChains.size());
3734}
3735
3736static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, SDLoc dl,
3737                                        SDValue Chain, SDValue Dst,
3738                                        SDValue Src, uint64_t Size,
3739                                        unsigned Align,  bool isVol,
3740                                        bool AlwaysInline,
3741                                        MachinePointerInfo DstPtrInfo,
3742                                        MachinePointerInfo SrcPtrInfo) {
3743  // Turn a memmove of undef to nop.
3744  if (Src.getOpcode() == ISD::UNDEF)
3745    return Chain;
3746
3747  // Expand memmove to a series of load and store ops if the size operand falls
3748  // below a certain threshold.
3749  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3750  std::vector<EVT> MemOps;
3751  bool DstAlignCanChange = false;
3752  MachineFunction &MF = DAG.getMachineFunction();
3753  MachineFrameInfo *MFI = MF.getFrameInfo();
3754  bool OptSize = MF.getFunction()->getAttributes().
3755    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
3756  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3757  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3758    DstAlignCanChange = true;
3759  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3760  if (Align > SrcAlign)
3761    SrcAlign = Align;
3762  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3763
3764  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3765                                (DstAlignCanChange ? 0 : Align), SrcAlign,
3766                                false, false, false, false, DAG, TLI))
3767    return SDValue();
3768
3769  if (DstAlignCanChange) {
3770    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3771    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
3772    if (NewAlign > Align) {
3773      // Give the stack frame object a larger alignment if needed.
3774      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3775        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3776      Align = NewAlign;
3777    }
3778  }
3779
3780  uint64_t SrcOff = 0, DstOff = 0;
3781  SmallVector<SDValue, 8> LoadValues;
3782  SmallVector<SDValue, 8> LoadChains;
3783  SmallVector<SDValue, 8> OutChains;
3784  unsigned NumMemOps = MemOps.size();
3785  for (unsigned i = 0; i < NumMemOps; i++) {
3786    EVT VT = MemOps[i];
3787    unsigned VTSize = VT.getSizeInBits() / 8;
3788    SDValue Value;
3789
3790    Value = DAG.getLoad(VT, dl, Chain,
3791                        getMemBasePlusOffset(Src, SrcOff, dl, DAG),
3792                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3793                        false, false, SrcAlign);
3794    LoadValues.push_back(Value);
3795    LoadChains.push_back(Value.getValue(1));
3796    SrcOff += VTSize;
3797  }
3798  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3799                      &LoadChains[0], LoadChains.size());
3800  OutChains.clear();
3801  for (unsigned i = 0; i < NumMemOps; i++) {
3802    EVT VT = MemOps[i];
3803    unsigned VTSize = VT.getSizeInBits() / 8;
3804    SDValue Store;
3805
3806    Store = DAG.getStore(Chain, dl, LoadValues[i],
3807                         getMemBasePlusOffset(Dst, DstOff, dl, DAG),
3808                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3809    OutChains.push_back(Store);
3810    DstOff += VTSize;
3811  }
3812
3813  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3814                     &OutChains[0], OutChains.size());
3815}
3816
3817/// \brief Lower the call to 'memset' intrinsic function into a series of store
3818/// operations.
3819///
3820/// \param DAG Selection DAG where lowered code is placed.
3821/// \param dl Link to corresponding IR location.
3822/// \param Chain Control flow dependency.
3823/// \param Dst Pointer to destination memory location.
3824/// \param Src Value of byte to write into the memory.
3825/// \param Size Number of bytes to write.
3826/// \param Align Alignment of the destination in bytes.
3827/// \param isVol True if destination is volatile.
3828/// \param DstPtrInfo IR information on the memory pointer.
3829/// \returns New head in the control flow, if lowering was successful, empty
3830/// SDValue otherwise.
3831///
3832/// The function tries to replace 'llvm.memset' intrinsic with several store
3833/// operations and value calculation code. This is usually profitable for small
3834/// memory size.
3835static SDValue getMemsetStores(SelectionDAG &DAG, SDLoc dl,
3836                               SDValue Chain, SDValue Dst,
3837                               SDValue Src, uint64_t Size,
3838                               unsigned Align, bool isVol,
3839                               MachinePointerInfo DstPtrInfo) {
3840  // Turn a memset of undef to nop.
3841  if (Src.getOpcode() == ISD::UNDEF)
3842    return Chain;
3843
3844  // Expand memset to a series of load/store ops if the size operand
3845  // falls below a certain threshold.
3846  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3847  std::vector<EVT> MemOps;
3848  bool DstAlignCanChange = false;
3849  MachineFunction &MF = DAG.getMachineFunction();
3850  MachineFrameInfo *MFI = MF.getFrameInfo();
3851  bool OptSize = MF.getFunction()->getAttributes().
3852    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
3853  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3854  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3855    DstAlignCanChange = true;
3856  bool IsZeroVal =
3857    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3858  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3859                                Size, (DstAlignCanChange ? 0 : Align), 0,
3860                                true, IsZeroVal, false, true, DAG, TLI))
3861    return SDValue();
3862
3863  if (DstAlignCanChange) {
3864    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3865    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
3866    if (NewAlign > Align) {
3867      // Give the stack frame object a larger alignment if needed.
3868      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3869        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3870      Align = NewAlign;
3871    }
3872  }
3873
3874  SmallVector<SDValue, 8> OutChains;
3875  uint64_t DstOff = 0;
3876  unsigned NumMemOps = MemOps.size();
3877
3878  // Find the largest store and generate the bit pattern for it.
3879  EVT LargestVT = MemOps[0];
3880  for (unsigned i = 1; i < NumMemOps; i++)
3881    if (MemOps[i].bitsGT(LargestVT))
3882      LargestVT = MemOps[i];
3883  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3884
3885  for (unsigned i = 0; i < NumMemOps; i++) {
3886    EVT VT = MemOps[i];
3887    unsigned VTSize = VT.getSizeInBits() / 8;
3888    if (VTSize > Size) {
3889      // Issuing an unaligned load / store pair  that overlaps with the previous
3890      // pair. Adjust the offset accordingly.
3891      assert(i == NumMemOps-1 && i != 0);
3892      DstOff -= VTSize - Size;
3893    }
3894
3895    // If this store is smaller than the largest store see whether we can get
3896    // the smaller value for free with a truncate.
3897    SDValue Value = MemSetValue;
3898    if (VT.bitsLT(LargestVT)) {
3899      if (!LargestVT.isVector() && !VT.isVector() &&
3900          TLI.isTruncateFree(LargestVT, VT))
3901        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3902      else
3903        Value = getMemsetValue(Src, VT, DAG, dl);
3904    }
3905    assert(Value.getValueType() == VT && "Value with wrong type.");
3906    SDValue Store = DAG.getStore(Chain, dl, Value,
3907                                 getMemBasePlusOffset(Dst, DstOff, dl, DAG),
3908                                 DstPtrInfo.getWithOffset(DstOff),
3909                                 isVol, false, Align);
3910    OutChains.push_back(Store);
3911    DstOff += VT.getSizeInBits() / 8;
3912    Size -= VTSize;
3913  }
3914
3915  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3916                     &OutChains[0], OutChains.size());
3917}
3918
3919SDValue SelectionDAG::getMemcpy(SDValue Chain, SDLoc dl, SDValue Dst,
3920                                SDValue Src, SDValue Size,
3921                                unsigned Align, bool isVol, bool AlwaysInline,
3922                                MachinePointerInfo DstPtrInfo,
3923                                MachinePointerInfo SrcPtrInfo) {
3924  assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
3925
3926  // Check to see if we should lower the memcpy to loads and stores first.
3927  // For cases within the target-specified limits, this is the best choice.
3928  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3929  if (ConstantSize) {
3930    // Memcpy with size zero? Just return the original chain.
3931    if (ConstantSize->isNullValue())
3932      return Chain;
3933
3934    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3935                                             ConstantSize->getZExtValue(),Align,
3936                                isVol, false, DstPtrInfo, SrcPtrInfo);
3937    if (Result.getNode())
3938      return Result;
3939  }
3940
3941  // Then check to see if we should lower the memcpy with target-specific
3942  // code. If the target chooses to do this, this is the next best.
3943  SDValue Result =
3944    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3945                                isVol, AlwaysInline,
3946                                DstPtrInfo, SrcPtrInfo);
3947  if (Result.getNode())
3948    return Result;
3949
3950  // If we really need inline code and the target declined to provide it,
3951  // use a (potentially long) sequence of loads and stores.
3952  if (AlwaysInline) {
3953    assert(ConstantSize && "AlwaysInline requires a constant size!");
3954    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3955                                   ConstantSize->getZExtValue(), Align, isVol,
3956                                   true, DstPtrInfo, SrcPtrInfo);
3957  }
3958
3959  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3960  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3961  // respect volatile, so they may do things like read or write memory
3962  // beyond the given memory regions. But fixing this isn't easy, and most
3963  // people don't care.
3964
3965  const TargetLowering *TLI = TM.getTargetLowering();
3966
3967  // Emit a library call.
3968  TargetLowering::ArgListTy Args;
3969  TargetLowering::ArgListEntry Entry;
3970  Entry.Ty = TLI->getDataLayout()->getIntPtrType(*getContext());
3971  Entry.Node = Dst; Args.push_back(Entry);
3972  Entry.Node = Src; Args.push_back(Entry);
3973  Entry.Node = Size; Args.push_back(Entry);
3974  // FIXME: pass in SDLoc
3975  TargetLowering::
3976  CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
3977                    false, false, false, false, 0,
3978                    TLI->getLibcallCallingConv(RTLIB::MEMCPY),
3979                    /*isTailCall=*/false,
3980                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/false,
3981                    getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
3982                                      TLI->getPointerTy()),
3983                    Args, *this, dl);
3984  std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
3985
3986  return CallResult.second;
3987}
3988
3989SDValue SelectionDAG::getMemmove(SDValue Chain, SDLoc dl, SDValue Dst,
3990                                 SDValue Src, SDValue Size,
3991                                 unsigned Align, bool isVol,
3992                                 MachinePointerInfo DstPtrInfo,
3993                                 MachinePointerInfo SrcPtrInfo) {
3994  assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
3995
3996  // Check to see if we should lower the memmove to loads and stores first.
3997  // For cases within the target-specified limits, this is the best choice.
3998  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3999  if (ConstantSize) {
4000    // Memmove with size zero? Just return the original chain.
4001    if (ConstantSize->isNullValue())
4002      return Chain;
4003
4004    SDValue Result =
4005      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
4006                               ConstantSize->getZExtValue(), Align, isVol,
4007                               false, DstPtrInfo, SrcPtrInfo);
4008    if (Result.getNode())
4009      return Result;
4010  }
4011
4012  // Then check to see if we should lower the memmove with target-specific
4013  // code. If the target chooses to do this, this is the next best.
4014  SDValue Result =
4015    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
4016                                 DstPtrInfo, SrcPtrInfo);
4017  if (Result.getNode())
4018    return Result;
4019
4020  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
4021  // not be safe.  See memcpy above for more details.
4022
4023  const TargetLowering *TLI = TM.getTargetLowering();
4024
4025  // Emit a library call.
4026  TargetLowering::ArgListTy Args;
4027  TargetLowering::ArgListEntry Entry;
4028  Entry.Ty = TLI->getDataLayout()->getIntPtrType(*getContext());
4029  Entry.Node = Dst; Args.push_back(Entry);
4030  Entry.Node = Src; Args.push_back(Entry);
4031  Entry.Node = Size; Args.push_back(Entry);
4032  // FIXME:  pass in SDLoc
4033  TargetLowering::
4034  CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
4035                    false, false, false, false, 0,
4036                    TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
4037                    /*isTailCall=*/false,
4038                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/false,
4039                    getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
4040                                      TLI->getPointerTy()),
4041                    Args, *this, dl);
4042  std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
4043
4044  return CallResult.second;
4045}
4046
4047SDValue SelectionDAG::getMemset(SDValue Chain, SDLoc dl, SDValue Dst,
4048                                SDValue Src, SDValue Size,
4049                                unsigned Align, bool isVol,
4050                                MachinePointerInfo DstPtrInfo) {
4051  assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
4052
4053  // Check to see if we should lower the memset to stores first.
4054  // For cases within the target-specified limits, this is the best choice.
4055  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4056  if (ConstantSize) {
4057    // Memset with size zero? Just return the original chain.
4058    if (ConstantSize->isNullValue())
4059      return Chain;
4060
4061    SDValue Result =
4062      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
4063                      Align, isVol, DstPtrInfo);
4064
4065    if (Result.getNode())
4066      return Result;
4067  }
4068
4069  // Then check to see if we should lower the memset with target-specific
4070  // code. If the target chooses to do this, this is the next best.
4071  SDValue Result =
4072    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
4073                                DstPtrInfo);
4074  if (Result.getNode())
4075    return Result;
4076
4077  // Emit a library call.
4078  const TargetLowering *TLI = TM.getTargetLowering();
4079  Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(*getContext());
4080  TargetLowering::ArgListTy Args;
4081  TargetLowering::ArgListEntry Entry;
4082  Entry.Node = Dst; Entry.Ty = IntPtrTy;
4083  Args.push_back(Entry);
4084  // Extend or truncate the argument to be an i32 value for the call.
4085  if (Src.getValueType().bitsGT(MVT::i32))
4086    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
4087  else
4088    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
4089  Entry.Node = Src;
4090  Entry.Ty = Type::getInt32Ty(*getContext());
4091  Entry.isSExt = true;
4092  Args.push_back(Entry);
4093  Entry.Node = Size;
4094  Entry.Ty = IntPtrTy;
4095  Entry.isSExt = false;
4096  Args.push_back(Entry);
4097  // FIXME: pass in SDLoc
4098  TargetLowering::
4099  CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
4100                    false, false, false, false, 0,
4101                    TLI->getLibcallCallingConv(RTLIB::MEMSET),
4102                    /*isTailCall=*/false,
4103                    /*doesNotReturn*/false, /*isReturnValueUsed=*/false,
4104                    getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
4105                                      TLI->getPointerTy()),
4106                    Args, *this, dl);
4107  std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
4108
4109  return CallResult.second;
4110}
4111
4112SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
4113                                SDVTList VTList, SDValue* Ops, unsigned NumOps,
4114                                MachineMemOperand *MMO,
4115                                AtomicOrdering Ordering,
4116                                SynchronizationScope SynchScope) {
4117  FoldingSetNodeID ID;
4118  ID.AddInteger(MemVT.getRawBits());
4119  AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4120  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4121  void* IP = 0;
4122  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4123    cast<AtomicSDNode>(E)->refineAlignment(MMO);
4124    return SDValue(E, 0);
4125  }
4126
4127  // Allocate the operands array for the node out of the BumpPtrAllocator, since
4128  // SDNode doesn't have access to it.  This memory will be "leaked" when
4129  // the node is deallocated, but recovered when the allocator is released.
4130  // If the number of operands is less than 5 we use AtomicSDNode's internal
4131  // storage.
4132  SDUse *DynOps = NumOps > 4 ? OperandAllocator.Allocate<SDUse>(NumOps) : 0;
4133
4134  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl.getIROrder(),
4135                                               dl.getDebugLoc(), VTList, MemVT,
4136                                               Ops, DynOps, NumOps, MMO,
4137                                               Ordering, SynchScope);
4138  CSEMap.InsertNode(N, IP);
4139  AllNodes.push_back(N);
4140  return SDValue(N, 0);
4141}
4142
4143SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
4144                                SDValue Chain, SDValue Ptr, SDValue Cmp,
4145                                SDValue Swp, MachinePointerInfo PtrInfo,
4146                                unsigned Alignment,
4147                                AtomicOrdering Ordering,
4148                                SynchronizationScope SynchScope) {
4149  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4150    Alignment = getEVTAlignment(MemVT);
4151
4152  MachineFunction &MF = getMachineFunction();
4153
4154  // All atomics are load and store, except for ATMOIC_LOAD and ATOMIC_STORE.
4155  // For now, atomics are considered to be volatile always.
4156  // FIXME: Volatile isn't really correct; we should keep track of atomic
4157  // orderings in the memoperand.
4158  unsigned Flags = MachineMemOperand::MOVolatile;
4159  if (Opcode != ISD::ATOMIC_STORE)
4160    Flags |= MachineMemOperand::MOLoad;
4161  if (Opcode != ISD::ATOMIC_LOAD)
4162    Flags |= MachineMemOperand::MOStore;
4163
4164  MachineMemOperand *MMO =
4165    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
4166
4167  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
4168                   Ordering, SynchScope);
4169}
4170
4171SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
4172                                SDValue Chain,
4173                                SDValue Ptr, SDValue Cmp,
4174                                SDValue Swp, MachineMemOperand *MMO,
4175                                AtomicOrdering Ordering,
4176                                SynchronizationScope SynchScope) {
4177  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
4178  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
4179
4180  EVT VT = Cmp.getValueType();
4181
4182  SDVTList VTs = getVTList(VT, MVT::Other);
4183  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
4184  return getAtomic(Opcode, dl, MemVT, VTs, Ops, 4, MMO, Ordering, SynchScope);
4185}
4186
4187SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
4188                                SDValue Chain,
4189                                SDValue Ptr, SDValue Val,
4190                                const Value* PtrVal,
4191                                unsigned Alignment,
4192                                AtomicOrdering Ordering,
4193                                SynchronizationScope SynchScope) {
4194  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4195    Alignment = getEVTAlignment(MemVT);
4196
4197  MachineFunction &MF = getMachineFunction();
4198  // An atomic store does not load. An atomic load does not store.
4199  // (An atomicrmw obviously both loads and stores.)
4200  // For now, atomics are considered to be volatile always, and they are
4201  // chained as such.
4202  // FIXME: Volatile isn't really correct; we should keep track of atomic
4203  // orderings in the memoperand.
4204  unsigned Flags = MachineMemOperand::MOVolatile;
4205  if (Opcode != ISD::ATOMIC_STORE)
4206    Flags |= MachineMemOperand::MOLoad;
4207  if (Opcode != ISD::ATOMIC_LOAD)
4208    Flags |= MachineMemOperand::MOStore;
4209
4210  MachineMemOperand *MMO =
4211    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
4212                            MemVT.getStoreSize(), Alignment);
4213
4214  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
4215                   Ordering, SynchScope);
4216}
4217
4218SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
4219                                SDValue Chain,
4220                                SDValue Ptr, SDValue Val,
4221                                MachineMemOperand *MMO,
4222                                AtomicOrdering Ordering,
4223                                SynchronizationScope SynchScope) {
4224  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
4225          Opcode == ISD::ATOMIC_LOAD_SUB ||
4226          Opcode == ISD::ATOMIC_LOAD_AND ||
4227          Opcode == ISD::ATOMIC_LOAD_OR ||
4228          Opcode == ISD::ATOMIC_LOAD_XOR ||
4229          Opcode == ISD::ATOMIC_LOAD_NAND ||
4230          Opcode == ISD::ATOMIC_LOAD_MIN ||
4231          Opcode == ISD::ATOMIC_LOAD_MAX ||
4232          Opcode == ISD::ATOMIC_LOAD_UMIN ||
4233          Opcode == ISD::ATOMIC_LOAD_UMAX ||
4234          Opcode == ISD::ATOMIC_SWAP ||
4235          Opcode == ISD::ATOMIC_STORE) &&
4236         "Invalid Atomic Op");
4237
4238  EVT VT = Val.getValueType();
4239
4240  SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
4241                                               getVTList(VT, MVT::Other);
4242  SDValue Ops[] = {Chain, Ptr, Val};
4243  return getAtomic(Opcode, dl, MemVT, VTs, Ops, 3, MMO, Ordering, SynchScope);
4244}
4245
4246SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
4247                                EVT VT, SDValue Chain,
4248                                SDValue Ptr,
4249                                const Value* PtrVal,
4250                                unsigned Alignment,
4251                                AtomicOrdering Ordering,
4252                                SynchronizationScope SynchScope) {
4253  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4254    Alignment = getEVTAlignment(MemVT);
4255
4256  MachineFunction &MF = getMachineFunction();
4257  // An atomic store does not load. An atomic load does not store.
4258  // (An atomicrmw obviously both loads and stores.)
4259  // For now, atomics are considered to be volatile always, and they are
4260  // chained as such.
4261  // FIXME: Volatile isn't really correct; we should keep track of atomic
4262  // orderings in the memoperand.
4263  unsigned Flags = MachineMemOperand::MOVolatile;
4264  if (Opcode != ISD::ATOMIC_STORE)
4265    Flags |= MachineMemOperand::MOLoad;
4266  if (Opcode != ISD::ATOMIC_LOAD)
4267    Flags |= MachineMemOperand::MOStore;
4268
4269  MachineMemOperand *MMO =
4270    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
4271                            MemVT.getStoreSize(), Alignment);
4272
4273  return getAtomic(Opcode, dl, MemVT, VT, Chain, Ptr, MMO,
4274                   Ordering, SynchScope);
4275}
4276
4277SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
4278                                EVT VT, SDValue Chain,
4279                                SDValue Ptr,
4280                                MachineMemOperand *MMO,
4281                                AtomicOrdering Ordering,
4282                                SynchronizationScope SynchScope) {
4283  assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
4284
4285  SDVTList VTs = getVTList(VT, MVT::Other);
4286  SDValue Ops[] = {Chain, Ptr};
4287  return getAtomic(Opcode, dl, MemVT, VTs, Ops, 2, MMO, Ordering, SynchScope);
4288}
4289
4290/// getMergeValues - Create a MERGE_VALUES node from the given operands.
4291SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
4292                                     SDLoc dl) {
4293  if (NumOps == 1)
4294    return Ops[0];
4295
4296  SmallVector<EVT, 4> VTs;
4297  VTs.reserve(NumOps);
4298  for (unsigned i = 0; i < NumOps; ++i)
4299    VTs.push_back(Ops[i].getValueType());
4300  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
4301                 Ops, NumOps);
4302}
4303
4304SDValue
4305SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDLoc dl,
4306                                  const EVT *VTs, unsigned NumVTs,
4307                                  const SDValue *Ops, unsigned NumOps,
4308                                  EVT MemVT, MachinePointerInfo PtrInfo,
4309                                  unsigned Align, bool Vol,
4310                                  bool ReadMem, bool WriteMem) {
4311  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
4312                             MemVT, PtrInfo, Align, Vol,
4313                             ReadMem, WriteMem);
4314}
4315
4316SDValue
4317SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList,
4318                                  const SDValue *Ops, unsigned NumOps,
4319                                  EVT MemVT, MachinePointerInfo PtrInfo,
4320                                  unsigned Align, bool Vol,
4321                                  bool ReadMem, bool WriteMem) {
4322  if (Align == 0)  // Ensure that codegen never sees alignment 0
4323    Align = getEVTAlignment(MemVT);
4324
4325  MachineFunction &MF = getMachineFunction();
4326  unsigned Flags = 0;
4327  if (WriteMem)
4328    Flags |= MachineMemOperand::MOStore;
4329  if (ReadMem)
4330    Flags |= MachineMemOperand::MOLoad;
4331  if (Vol)
4332    Flags |= MachineMemOperand::MOVolatile;
4333  MachineMemOperand *MMO =
4334    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
4335
4336  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
4337}
4338
4339SDValue
4340SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList,
4341                                  const SDValue *Ops, unsigned NumOps,
4342                                  EVT MemVT, MachineMemOperand *MMO) {
4343  assert((Opcode == ISD::INTRINSIC_VOID ||
4344          Opcode == ISD::INTRINSIC_W_CHAIN ||
4345          Opcode == ISD::PREFETCH ||
4346          Opcode == ISD::LIFETIME_START ||
4347          Opcode == ISD::LIFETIME_END ||
4348          (Opcode <= INT_MAX &&
4349           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
4350         "Opcode is not a memory-accessing opcode!");
4351
4352  // Memoize the node unless it returns a flag.
4353  MemIntrinsicSDNode *N;
4354  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4355    FoldingSetNodeID ID;
4356    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4357    ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4358    void *IP = 0;
4359    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4360      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
4361      return SDValue(E, 0);
4362    }
4363
4364    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl.getIROrder(),
4365                                               dl.getDebugLoc(), VTList, Ops,
4366                                               NumOps, MemVT, MMO);
4367    CSEMap.InsertNode(N, IP);
4368  } else {
4369    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl.getIROrder(),
4370                                               dl.getDebugLoc(), VTList, Ops,
4371                                               NumOps, MemVT, MMO);
4372  }
4373  AllNodes.push_back(N);
4374  return SDValue(N, 0);
4375}
4376
4377/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4378/// MachinePointerInfo record from it.  This is particularly useful because the
4379/// code generator has many cases where it doesn't bother passing in a
4380/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4381static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4382  // If this is FI+Offset, we can model it.
4383  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4384    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4385
4386  // If this is (FI+Offset1)+Offset2, we can model it.
4387  if (Ptr.getOpcode() != ISD::ADD ||
4388      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4389      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4390    return MachinePointerInfo();
4391
4392  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4393  return MachinePointerInfo::getFixedStack(FI, Offset+
4394                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4395}
4396
4397/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4398/// MachinePointerInfo record from it.  This is particularly useful because the
4399/// code generator has many cases where it doesn't bother passing in a
4400/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4401static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4402  // If the 'Offset' value isn't a constant, we can't handle this.
4403  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4404    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4405  if (OffsetOp.getOpcode() == ISD::UNDEF)
4406    return InferPointerInfo(Ptr);
4407  return MachinePointerInfo();
4408}
4409
4410
4411SDValue
4412SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4413                      EVT VT, SDLoc dl, SDValue Chain,
4414                      SDValue Ptr, SDValue Offset,
4415                      MachinePointerInfo PtrInfo, EVT MemVT,
4416                      bool isVolatile, bool isNonTemporal, bool isInvariant,
4417                      unsigned Alignment, const MDNode *TBAAInfo,
4418                      const MDNode *Ranges) {
4419  assert(Chain.getValueType() == MVT::Other &&
4420        "Invalid chain type");
4421  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4422    Alignment = getEVTAlignment(VT);
4423
4424  unsigned Flags = MachineMemOperand::MOLoad;
4425  if (isVolatile)
4426    Flags |= MachineMemOperand::MOVolatile;
4427  if (isNonTemporal)
4428    Flags |= MachineMemOperand::MONonTemporal;
4429  if (isInvariant)
4430    Flags |= MachineMemOperand::MOInvariant;
4431
4432  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4433  // clients.
4434  if (PtrInfo.V == 0)
4435    PtrInfo = InferPointerInfo(Ptr, Offset);
4436
4437  MachineFunction &MF = getMachineFunction();
4438  MachineMemOperand *MMO =
4439    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4440                            TBAAInfo, Ranges);
4441  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4442}
4443
4444SDValue
4445SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4446                      EVT VT, SDLoc dl, SDValue Chain,
4447                      SDValue Ptr, SDValue Offset, EVT MemVT,
4448                      MachineMemOperand *MMO) {
4449  if (VT == MemVT) {
4450    ExtType = ISD::NON_EXTLOAD;
4451  } else if (ExtType == ISD::NON_EXTLOAD) {
4452    assert(VT == MemVT && "Non-extending load from different memory type!");
4453  } else {
4454    // Extending load.
4455    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4456           "Should only be an extending load, not truncating!");
4457    assert(VT.isInteger() == MemVT.isInteger() &&
4458           "Cannot convert from FP to Int or Int -> FP!");
4459    assert(VT.isVector() == MemVT.isVector() &&
4460           "Cannot use trunc store to convert to or from a vector!");
4461    assert((!VT.isVector() ||
4462            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4463           "Cannot use trunc store to change the number of vector elements!");
4464  }
4465
4466  bool Indexed = AM != ISD::UNINDEXED;
4467  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4468         "Unindexed load with an offset!");
4469
4470  SDVTList VTs = Indexed ?
4471    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4472  SDValue Ops[] = { Chain, Ptr, Offset };
4473  FoldingSetNodeID ID;
4474  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4475  ID.AddInteger(MemVT.getRawBits());
4476  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4477                                     MMO->isNonTemporal(),
4478                                     MMO->isInvariant()));
4479  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4480  void *IP = 0;
4481  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4482    cast<LoadSDNode>(E)->refineAlignment(MMO);
4483    return SDValue(E, 0);
4484  }
4485  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl.getIROrder(),
4486                                             dl.getDebugLoc(), VTs, AM, ExtType,
4487                                             MemVT, MMO);
4488  CSEMap.InsertNode(N, IP);
4489  AllNodes.push_back(N);
4490  return SDValue(N, 0);
4491}
4492
4493SDValue SelectionDAG::getLoad(EVT VT, SDLoc dl,
4494                              SDValue Chain, SDValue Ptr,
4495                              MachinePointerInfo PtrInfo,
4496                              bool isVolatile, bool isNonTemporal,
4497                              bool isInvariant, unsigned Alignment,
4498                              const MDNode *TBAAInfo,
4499                              const MDNode *Ranges) {
4500  SDValue Undef = getUNDEF(Ptr.getValueType());
4501  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4502                 PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment,
4503                 TBAAInfo, Ranges);
4504}
4505
4506SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT,
4507                                 SDValue Chain, SDValue Ptr,
4508                                 MachinePointerInfo PtrInfo, EVT MemVT,
4509                                 bool isVolatile, bool isNonTemporal,
4510                                 unsigned Alignment, const MDNode *TBAAInfo) {
4511  SDValue Undef = getUNDEF(Ptr.getValueType());
4512  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4513                 PtrInfo, MemVT, isVolatile, isNonTemporal, false, Alignment,
4514                 TBAAInfo);
4515}
4516
4517
4518SDValue
4519SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDLoc dl, SDValue Base,
4520                             SDValue Offset, ISD::MemIndexedMode AM) {
4521  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4522  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4523         "Load is already a indexed load!");
4524  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4525                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4526                 LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(),
4527                 false, LD->getAlignment());
4528}
4529
4530SDValue SelectionDAG::getStore(SDValue Chain, SDLoc dl, SDValue Val,
4531                               SDValue Ptr, MachinePointerInfo PtrInfo,
4532                               bool isVolatile, bool isNonTemporal,
4533                               unsigned Alignment, const MDNode *TBAAInfo) {
4534  assert(Chain.getValueType() == MVT::Other &&
4535        "Invalid chain type");
4536  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4537    Alignment = getEVTAlignment(Val.getValueType());
4538
4539  unsigned Flags = MachineMemOperand::MOStore;
4540  if (isVolatile)
4541    Flags |= MachineMemOperand::MOVolatile;
4542  if (isNonTemporal)
4543    Flags |= MachineMemOperand::MONonTemporal;
4544
4545  if (PtrInfo.V == 0)
4546    PtrInfo = InferPointerInfo(Ptr);
4547
4548  MachineFunction &MF = getMachineFunction();
4549  MachineMemOperand *MMO =
4550    MF.getMachineMemOperand(PtrInfo, Flags,
4551                            Val.getValueType().getStoreSize(), Alignment,
4552                            TBAAInfo);
4553
4554  return getStore(Chain, dl, Val, Ptr, MMO);
4555}
4556
4557SDValue SelectionDAG::getStore(SDValue Chain, SDLoc dl, SDValue Val,
4558                               SDValue Ptr, MachineMemOperand *MMO) {
4559  assert(Chain.getValueType() == MVT::Other &&
4560        "Invalid chain type");
4561  EVT VT = Val.getValueType();
4562  SDVTList VTs = getVTList(MVT::Other);
4563  SDValue Undef = getUNDEF(Ptr.getValueType());
4564  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4565  FoldingSetNodeID ID;
4566  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4567  ID.AddInteger(VT.getRawBits());
4568  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4569                                     MMO->isNonTemporal(), MMO->isInvariant()));
4570  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4571  void *IP = 0;
4572  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4573    cast<StoreSDNode>(E)->refineAlignment(MMO);
4574    return SDValue(E, 0);
4575  }
4576  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(),
4577                                              dl.getDebugLoc(), VTs,
4578                                              ISD::UNINDEXED, false, VT, MMO);
4579  CSEMap.InsertNode(N, IP);
4580  AllNodes.push_back(N);
4581  return SDValue(N, 0);
4582}
4583
4584SDValue SelectionDAG::getTruncStore(SDValue Chain, SDLoc dl, SDValue Val,
4585                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4586                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4587                                    unsigned Alignment,
4588                                    const MDNode *TBAAInfo) {
4589  assert(Chain.getValueType() == MVT::Other &&
4590        "Invalid chain type");
4591  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4592    Alignment = getEVTAlignment(SVT);
4593
4594  unsigned Flags = MachineMemOperand::MOStore;
4595  if (isVolatile)
4596    Flags |= MachineMemOperand::MOVolatile;
4597  if (isNonTemporal)
4598    Flags |= MachineMemOperand::MONonTemporal;
4599
4600  if (PtrInfo.V == 0)
4601    PtrInfo = InferPointerInfo(Ptr);
4602
4603  MachineFunction &MF = getMachineFunction();
4604  MachineMemOperand *MMO =
4605    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4606                            TBAAInfo);
4607
4608  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4609}
4610
4611SDValue SelectionDAG::getTruncStore(SDValue Chain, SDLoc dl, SDValue Val,
4612                                    SDValue Ptr, EVT SVT,
4613                                    MachineMemOperand *MMO) {
4614  EVT VT = Val.getValueType();
4615
4616  assert(Chain.getValueType() == MVT::Other &&
4617        "Invalid chain type");
4618  if (VT == SVT)
4619    return getStore(Chain, dl, Val, Ptr, MMO);
4620
4621  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4622         "Should only be a truncating store, not extending!");
4623  assert(VT.isInteger() == SVT.isInteger() &&
4624         "Can't do FP-INT conversion!");
4625  assert(VT.isVector() == SVT.isVector() &&
4626         "Cannot use trunc store to convert to or from a vector!");
4627  assert((!VT.isVector() ||
4628          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4629         "Cannot use trunc store to change the number of vector elements!");
4630
4631  SDVTList VTs = getVTList(MVT::Other);
4632  SDValue Undef = getUNDEF(Ptr.getValueType());
4633  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4634  FoldingSetNodeID ID;
4635  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4636  ID.AddInteger(SVT.getRawBits());
4637  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4638                                     MMO->isNonTemporal(), MMO->isInvariant()));
4639  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4640  void *IP = 0;
4641  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4642    cast<StoreSDNode>(E)->refineAlignment(MMO);
4643    return SDValue(E, 0);
4644  }
4645  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(),
4646                                              dl.getDebugLoc(), VTs,
4647                                              ISD::UNINDEXED, true, SVT, MMO);
4648  CSEMap.InsertNode(N, IP);
4649  AllNodes.push_back(N);
4650  return SDValue(N, 0);
4651}
4652
4653SDValue
4654SelectionDAG::getIndexedStore(SDValue OrigStore, SDLoc dl, SDValue Base,
4655                              SDValue Offset, ISD::MemIndexedMode AM) {
4656  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4657  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4658         "Store is already a indexed store!");
4659  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4660  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4661  FoldingSetNodeID ID;
4662  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4663  ID.AddInteger(ST->getMemoryVT().getRawBits());
4664  ID.AddInteger(ST->getRawSubclassData());
4665  ID.AddInteger(ST->getPointerInfo().getAddrSpace());
4666  void *IP = 0;
4667  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4668    return SDValue(E, 0);
4669
4670  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(),
4671                                              dl.getDebugLoc(), VTs, AM,
4672                                              ST->isTruncatingStore(),
4673                                              ST->getMemoryVT(),
4674                                              ST->getMemOperand());
4675  CSEMap.InsertNode(N, IP);
4676  AllNodes.push_back(N);
4677  return SDValue(N, 0);
4678}
4679
4680SDValue SelectionDAG::getVAArg(EVT VT, SDLoc dl,
4681                               SDValue Chain, SDValue Ptr,
4682                               SDValue SV,
4683                               unsigned Align) {
4684  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4685  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4686}
4687
4688SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
4689                              const SDUse *Ops, unsigned NumOps) {
4690  switch (NumOps) {
4691  case 0: return getNode(Opcode, DL, VT);
4692  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4693  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4694  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4695  default: break;
4696  }
4697
4698  // Copy from an SDUse array into an SDValue array for use with
4699  // the regular getNode logic.
4700  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4701  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4702}
4703
4704SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
4705                              const SDValue *Ops, unsigned NumOps) {
4706  switch (NumOps) {
4707  case 0: return getNode(Opcode, DL, VT);
4708  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4709  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4710  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4711  default: break;
4712  }
4713
4714  switch (Opcode) {
4715  default: break;
4716  case ISD::SELECT_CC: {
4717    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4718    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4719           "LHS and RHS of condition must have same type!");
4720    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4721           "True and False arms of SelectCC must have same type!");
4722    assert(Ops[2].getValueType() == VT &&
4723           "select_cc node must be of same type as true and false value!");
4724    break;
4725  }
4726  case ISD::BR_CC: {
4727    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4728    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4729           "LHS/RHS of comparison should match types!");
4730    break;
4731  }
4732  }
4733
4734  // Memoize nodes.
4735  SDNode *N;
4736  SDVTList VTs = getVTList(VT);
4737
4738  if (VT != MVT::Glue) {
4739    FoldingSetNodeID ID;
4740    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4741    void *IP = 0;
4742
4743    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4744      return SDValue(E, 0);
4745
4746    N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4747                                   VTs, Ops, NumOps);
4748    CSEMap.InsertNode(N, IP);
4749  } else {
4750    N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4751                                   VTs, Ops, NumOps);
4752  }
4753
4754  AllNodes.push_back(N);
4755#ifndef NDEBUG
4756  VerifySDNode(N);
4757#endif
4758  return SDValue(N, 0);
4759}
4760
4761SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL,
4762                              ArrayRef<EVT> ResultTys,
4763                              const SDValue *Ops, unsigned NumOps) {
4764  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4765                 Ops, NumOps);
4766}
4767
4768SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL,
4769                              const EVT *VTs, unsigned NumVTs,
4770                              const SDValue *Ops, unsigned NumOps) {
4771  if (NumVTs == 1)
4772    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4773  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4774}
4775
4776SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
4777                              const SDValue *Ops, unsigned NumOps) {
4778  if (VTList.NumVTs == 1)
4779    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4780
4781#if 0
4782  switch (Opcode) {
4783  // FIXME: figure out how to safely handle things like
4784  // int foo(int x) { return 1 << (x & 255); }
4785  // int bar() { return foo(256); }
4786  case ISD::SRA_PARTS:
4787  case ISD::SRL_PARTS:
4788  case ISD::SHL_PARTS:
4789    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4790        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4791      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4792    else if (N3.getOpcode() == ISD::AND)
4793      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4794        // If the and is only masking out bits that cannot effect the shift,
4795        // eliminate the and.
4796        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4797        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4798          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4799      }
4800    break;
4801  }
4802#endif
4803
4804  // Memoize the node unless it returns a flag.
4805  SDNode *N;
4806  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4807    FoldingSetNodeID ID;
4808    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4809    void *IP = 0;
4810    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4811      return SDValue(E, 0);
4812
4813    if (NumOps == 1) {
4814      N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
4815                                          DL.getDebugLoc(), VTList, Ops[0]);
4816    } else if (NumOps == 2) {
4817      N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(),
4818                                           DL.getDebugLoc(), VTList, Ops[0],
4819                                           Ops[1]);
4820    } else if (NumOps == 3) {
4821      N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
4822                                            DL.getDebugLoc(), VTList, Ops[0],
4823                                            Ops[1], Ops[2]);
4824    } else {
4825      N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4826                                     VTList, Ops, NumOps);
4827    }
4828    CSEMap.InsertNode(N, IP);
4829  } else {
4830    if (NumOps == 1) {
4831      N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
4832                                          DL.getDebugLoc(), VTList, Ops[0]);
4833    } else if (NumOps == 2) {
4834      N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(),
4835                                           DL.getDebugLoc(), VTList, Ops[0],
4836                                           Ops[1]);
4837    } else if (NumOps == 3) {
4838      N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
4839                                            DL.getDebugLoc(), VTList, Ops[0],
4840                                            Ops[1], Ops[2]);
4841    } else {
4842      N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4843                                     VTList, Ops, NumOps);
4844    }
4845  }
4846  AllNodes.push_back(N);
4847#ifndef NDEBUG
4848  VerifySDNode(N);
4849#endif
4850  return SDValue(N, 0);
4851}
4852
4853SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList) {
4854  return getNode(Opcode, DL, VTList, 0, 0);
4855}
4856
4857SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
4858                              SDValue N1) {
4859  SDValue Ops[] = { N1 };
4860  return getNode(Opcode, DL, VTList, Ops, 1);
4861}
4862
4863SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
4864                              SDValue N1, SDValue N2) {
4865  SDValue Ops[] = { N1, N2 };
4866  return getNode(Opcode, DL, VTList, Ops, 2);
4867}
4868
4869SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
4870                              SDValue N1, SDValue N2, SDValue N3) {
4871  SDValue Ops[] = { N1, N2, N3 };
4872  return getNode(Opcode, DL, VTList, Ops, 3);
4873}
4874
4875SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
4876                              SDValue N1, SDValue N2, SDValue N3,
4877                              SDValue N4) {
4878  SDValue Ops[] = { N1, N2, N3, N4 };
4879  return getNode(Opcode, DL, VTList, Ops, 4);
4880}
4881
4882SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
4883                              SDValue N1, SDValue N2, SDValue N3,
4884                              SDValue N4, SDValue N5) {
4885  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4886  return getNode(Opcode, DL, VTList, Ops, 5);
4887}
4888
4889SDVTList SelectionDAG::getVTList(EVT VT) {
4890  return makeVTList(SDNode::getValueTypeList(VT), 1);
4891}
4892
4893SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4894  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4895       E = VTList.rend(); I != E; ++I)
4896    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4897      return *I;
4898
4899  EVT *Array = Allocator.Allocate<EVT>(2);
4900  Array[0] = VT1;
4901  Array[1] = VT2;
4902  SDVTList Result = makeVTList(Array, 2);
4903  VTList.push_back(Result);
4904  return Result;
4905}
4906
4907SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4908  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4909       E = VTList.rend(); I != E; ++I)
4910    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4911                          I->VTs[2] == VT3)
4912      return *I;
4913
4914  EVT *Array = Allocator.Allocate<EVT>(3);
4915  Array[0] = VT1;
4916  Array[1] = VT2;
4917  Array[2] = VT3;
4918  SDVTList Result = makeVTList(Array, 3);
4919  VTList.push_back(Result);
4920  return Result;
4921}
4922
4923SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4924  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4925       E = VTList.rend(); I != E; ++I)
4926    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4927                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4928      return *I;
4929
4930  EVT *Array = Allocator.Allocate<EVT>(4);
4931  Array[0] = VT1;
4932  Array[1] = VT2;
4933  Array[2] = VT3;
4934  Array[3] = VT4;
4935  SDVTList Result = makeVTList(Array, 4);
4936  VTList.push_back(Result);
4937  return Result;
4938}
4939
4940SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4941  switch (NumVTs) {
4942    case 0: llvm_unreachable("Cannot have nodes without results!");
4943    case 1: return getVTList(VTs[0]);
4944    case 2: return getVTList(VTs[0], VTs[1]);
4945    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4946    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4947    default: break;
4948  }
4949
4950  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4951       E = VTList.rend(); I != E; ++I) {
4952    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4953      continue;
4954
4955    if (std::equal(&VTs[2], &VTs[NumVTs], &I->VTs[2]))
4956      return *I;
4957  }
4958
4959  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4960  std::copy(VTs, VTs+NumVTs, Array);
4961  SDVTList Result = makeVTList(Array, NumVTs);
4962  VTList.push_back(Result);
4963  return Result;
4964}
4965
4966
4967/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4968/// specified operands.  If the resultant node already exists in the DAG,
4969/// this does not modify the specified node, instead it returns the node that
4970/// already exists.  If the resultant node does not exist in the DAG, the
4971/// input node is returned.  As a degenerate case, if you specify the same
4972/// input operands as the node already has, the input node is returned.
4973SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4974  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4975
4976  // Check to see if there is no change.
4977  if (Op == N->getOperand(0)) return N;
4978
4979  // See if the modified node already exists.
4980  void *InsertPos = 0;
4981  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4982    return Existing;
4983
4984  // Nope it doesn't.  Remove the node from its current place in the maps.
4985  if (InsertPos)
4986    if (!RemoveNodeFromCSEMaps(N))
4987      InsertPos = 0;
4988
4989  // Now we update the operands.
4990  N->OperandList[0].set(Op);
4991
4992  // If this gets put into a CSE map, add it.
4993  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4994  return N;
4995}
4996
4997SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4998  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4999
5000  // Check to see if there is no change.
5001  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
5002    return N;   // No operands changed, just return the input node.
5003
5004  // See if the modified node already exists.
5005  void *InsertPos = 0;
5006  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
5007    return Existing;
5008
5009  // Nope it doesn't.  Remove the node from its current place in the maps.
5010  if (InsertPos)
5011    if (!RemoveNodeFromCSEMaps(N))
5012      InsertPos = 0;
5013
5014  // Now we update the operands.
5015  if (N->OperandList[0] != Op1)
5016    N->OperandList[0].set(Op1);
5017  if (N->OperandList[1] != Op2)
5018    N->OperandList[1].set(Op2);
5019
5020  // If this gets put into a CSE map, add it.
5021  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
5022  return N;
5023}
5024
5025SDNode *SelectionDAG::
5026UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
5027  SDValue Ops[] = { Op1, Op2, Op3 };
5028  return UpdateNodeOperands(N, Ops, 3);
5029}
5030
5031SDNode *SelectionDAG::
5032UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
5033                   SDValue Op3, SDValue Op4) {
5034  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
5035  return UpdateNodeOperands(N, Ops, 4);
5036}
5037
5038SDNode *SelectionDAG::
5039UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
5040                   SDValue Op3, SDValue Op4, SDValue Op5) {
5041  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
5042  return UpdateNodeOperands(N, Ops, 5);
5043}
5044
5045SDNode *SelectionDAG::
5046UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
5047  assert(N->getNumOperands() == NumOps &&
5048         "Update with wrong number of operands");
5049
5050  // Check to see if there is no change.
5051  bool AnyChange = false;
5052  for (unsigned i = 0; i != NumOps; ++i) {
5053    if (Ops[i] != N->getOperand(i)) {
5054      AnyChange = true;
5055      break;
5056    }
5057  }
5058
5059  // No operands changed, just return the input node.
5060  if (!AnyChange) return N;
5061
5062  // See if the modified node already exists.
5063  void *InsertPos = 0;
5064  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
5065    return Existing;
5066
5067  // Nope it doesn't.  Remove the node from its current place in the maps.
5068  if (InsertPos)
5069    if (!RemoveNodeFromCSEMaps(N))
5070      InsertPos = 0;
5071
5072  // Now we update the operands.
5073  for (unsigned i = 0; i != NumOps; ++i)
5074    if (N->OperandList[i] != Ops[i])
5075      N->OperandList[i].set(Ops[i]);
5076
5077  // If this gets put into a CSE map, add it.
5078  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
5079  return N;
5080}
5081
5082/// DropOperands - Release the operands and set this node to have
5083/// zero operands.
5084void SDNode::DropOperands() {
5085  // Unlike the code in MorphNodeTo that does this, we don't need to
5086  // watch for dead nodes here.
5087  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
5088    SDUse &Use = *I++;
5089    Use.set(SDValue());
5090  }
5091}
5092
5093/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
5094/// machine opcode.
5095///
5096SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5097                                   EVT VT) {
5098  SDVTList VTs = getVTList(VT);
5099  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
5100}
5101
5102SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5103                                   EVT VT, SDValue Op1) {
5104  SDVTList VTs = getVTList(VT);
5105  SDValue Ops[] = { Op1 };
5106  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
5107}
5108
5109SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5110                                   EVT VT, SDValue Op1,
5111                                   SDValue Op2) {
5112  SDVTList VTs = getVTList(VT);
5113  SDValue Ops[] = { Op1, Op2 };
5114  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
5115}
5116
5117SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5118                                   EVT VT, SDValue Op1,
5119                                   SDValue Op2, SDValue Op3) {
5120  SDVTList VTs = getVTList(VT);
5121  SDValue Ops[] = { Op1, Op2, Op3 };
5122  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
5123}
5124
5125SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5126                                   EVT VT, const SDValue *Ops,
5127                                   unsigned NumOps) {
5128  SDVTList VTs = getVTList(VT);
5129  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
5130}
5131
5132SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5133                                   EVT VT1, EVT VT2, const SDValue *Ops,
5134                                   unsigned NumOps) {
5135  SDVTList VTs = getVTList(VT1, VT2);
5136  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
5137}
5138
5139SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5140                                   EVT VT1, EVT VT2) {
5141  SDVTList VTs = getVTList(VT1, VT2);
5142  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
5143}
5144
5145SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5146                                   EVT VT1, EVT VT2, EVT VT3,
5147                                   const SDValue *Ops, unsigned NumOps) {
5148  SDVTList VTs = getVTList(VT1, VT2, VT3);
5149  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
5150}
5151
5152SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5153                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
5154                                   const SDValue *Ops, unsigned NumOps) {
5155  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5156  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
5157}
5158
5159SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5160                                   EVT VT1, EVT VT2,
5161                                   SDValue Op1) {
5162  SDVTList VTs = getVTList(VT1, VT2);
5163  SDValue Ops[] = { Op1 };
5164  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
5165}
5166
5167SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5168                                   EVT VT1, EVT VT2,
5169                                   SDValue Op1, SDValue Op2) {
5170  SDVTList VTs = getVTList(VT1, VT2);
5171  SDValue Ops[] = { Op1, Op2 };
5172  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
5173}
5174
5175SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5176                                   EVT VT1, EVT VT2,
5177                                   SDValue Op1, SDValue Op2,
5178                                   SDValue Op3) {
5179  SDVTList VTs = getVTList(VT1, VT2);
5180  SDValue Ops[] = { Op1, Op2, Op3 };
5181  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
5182}
5183
5184SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5185                                   EVT VT1, EVT VT2, EVT VT3,
5186                                   SDValue Op1, SDValue Op2,
5187                                   SDValue Op3) {
5188  SDVTList VTs = getVTList(VT1, VT2, VT3);
5189  SDValue Ops[] = { Op1, Op2, Op3 };
5190  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
5191}
5192
5193SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5194                                   SDVTList VTs, const SDValue *Ops,
5195                                   unsigned NumOps) {
5196  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
5197  // Reset the NodeID to -1.
5198  N->setNodeId(-1);
5199  return N;
5200}
5201
5202/// UpdadeSDLocOnMergedSDNode - If the opt level is -O0 then it throws away
5203/// the line number information on the merged node since it is not possible to
5204/// preserve the information that operation is associated with multiple lines.
5205/// This will make the debugger working better at -O0, were there is a higher
5206/// probability having other instructions associated with that line.
5207///
5208/// For IROrder, we keep the smaller of the two
5209SDNode *SelectionDAG::UpdadeSDLocOnMergedSDNode(SDNode *N, SDLoc OLoc) {
5210  DebugLoc NLoc = N->getDebugLoc();
5211  if (!(NLoc.isUnknown()) && (OptLevel == CodeGenOpt::None) &&
5212    (OLoc.getDebugLoc() != NLoc)) {
5213    N->setDebugLoc(DebugLoc());
5214  }
5215  unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
5216  N->setIROrder(Order);
5217  return N;
5218}
5219
5220/// MorphNodeTo - This *mutates* the specified node to have the specified
5221/// return type, opcode, and operands.
5222///
5223/// Note that MorphNodeTo returns the resultant node.  If there is already a
5224/// node of the specified opcode and operands, it returns that node instead of
5225/// the current one.  Note that the SDLoc need not be the same.
5226///
5227/// Using MorphNodeTo is faster than creating a new node and swapping it in
5228/// with ReplaceAllUsesWith both because it often avoids allocating a new
5229/// node, and because it doesn't require CSE recalculation for any of
5230/// the node's users.
5231///
5232SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
5233                                  SDVTList VTs, const SDValue *Ops,
5234                                  unsigned NumOps) {
5235  // If an identical node already exists, use it.
5236  void *IP = 0;
5237  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
5238    FoldingSetNodeID ID;
5239    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
5240    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
5241      return UpdadeSDLocOnMergedSDNode(ON, SDLoc(N));
5242  }
5243
5244  if (!RemoveNodeFromCSEMaps(N))
5245    IP = 0;
5246
5247  // Start the morphing.
5248  N->NodeType = Opc;
5249  N->ValueList = VTs.VTs;
5250  N->NumValues = VTs.NumVTs;
5251
5252  // Clear the operands list, updating used nodes to remove this from their
5253  // use list.  Keep track of any operands that become dead as a result.
5254  SmallPtrSet<SDNode*, 16> DeadNodeSet;
5255  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
5256    SDUse &Use = *I++;
5257    SDNode *Used = Use.getNode();
5258    Use.set(SDValue());
5259    if (Used->use_empty())
5260      DeadNodeSet.insert(Used);
5261  }
5262
5263  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
5264    // Initialize the memory references information.
5265    MN->setMemRefs(0, 0);
5266    // If NumOps is larger than the # of operands we can have in a
5267    // MachineSDNode, reallocate the operand list.
5268    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
5269      if (MN->OperandsNeedDelete)
5270        delete[] MN->OperandList;
5271      if (NumOps > array_lengthof(MN->LocalOperands))
5272        // We're creating a final node that will live unmorphed for the
5273        // remainder of the current SelectionDAG iteration, so we can allocate
5274        // the operands directly out of a pool with no recycling metadata.
5275        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5276                         Ops, NumOps);
5277      else
5278        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
5279      MN->OperandsNeedDelete = false;
5280    } else
5281      MN->InitOperands(MN->OperandList, Ops, NumOps);
5282  } else {
5283    // If NumOps is larger than the # of operands we currently have, reallocate
5284    // the operand list.
5285    if (NumOps > N->NumOperands) {
5286      if (N->OperandsNeedDelete)
5287        delete[] N->OperandList;
5288      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
5289      N->OperandsNeedDelete = true;
5290    } else
5291      N->InitOperands(N->OperandList, Ops, NumOps);
5292  }
5293
5294  // Delete any nodes that are still dead after adding the uses for the
5295  // new operands.
5296  if (!DeadNodeSet.empty()) {
5297    SmallVector<SDNode *, 16> DeadNodes;
5298    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
5299         E = DeadNodeSet.end(); I != E; ++I)
5300      if ((*I)->use_empty())
5301        DeadNodes.push_back(*I);
5302    RemoveDeadNodes(DeadNodes);
5303  }
5304
5305  if (IP)
5306    CSEMap.InsertNode(N, IP);   // Memoize the new node.
5307  return N;
5308}
5309
5310
5311/// getMachineNode - These are used for target selectors to create a new node
5312/// with specified return type(s), MachineInstr opcode, and operands.
5313///
5314/// Note that getMachineNode returns the resultant node.  If there is already a
5315/// node of the specified opcode and operands, it returns that node instead of
5316/// the current one.
5317MachineSDNode *
5318SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT) {
5319  SDVTList VTs = getVTList(VT);
5320  return getMachineNode(Opcode, dl, VTs, None);
5321}
5322
5323MachineSDNode *
5324SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT, SDValue Op1) {
5325  SDVTList VTs = getVTList(VT);
5326  SDValue Ops[] = { Op1 };
5327  return getMachineNode(Opcode, dl, VTs, Ops);
5328}
5329
5330MachineSDNode *
5331SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT,
5332                             SDValue Op1, SDValue Op2) {
5333  SDVTList VTs = getVTList(VT);
5334  SDValue Ops[] = { Op1, Op2 };
5335  return getMachineNode(Opcode, dl, VTs, Ops);
5336}
5337
5338MachineSDNode *
5339SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT,
5340                             SDValue Op1, SDValue Op2, SDValue Op3) {
5341  SDVTList VTs = getVTList(VT);
5342  SDValue Ops[] = { Op1, Op2, Op3 };
5343  return getMachineNode(Opcode, dl, VTs, Ops);
5344}
5345
5346MachineSDNode *
5347SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT,
5348                             ArrayRef<SDValue> Ops) {
5349  SDVTList VTs = getVTList(VT);
5350  return getMachineNode(Opcode, dl, VTs, Ops);
5351}
5352
5353MachineSDNode *
5354SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1, EVT VT2) {
5355  SDVTList VTs = getVTList(VT1, VT2);
5356  return getMachineNode(Opcode, dl, VTs, None);
5357}
5358
5359MachineSDNode *
5360SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
5361                             EVT VT1, EVT VT2, SDValue Op1) {
5362  SDVTList VTs = getVTList(VT1, VT2);
5363  SDValue Ops[] = { Op1 };
5364  return getMachineNode(Opcode, dl, VTs, Ops);
5365}
5366
5367MachineSDNode *
5368SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
5369                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
5370  SDVTList VTs = getVTList(VT1, VT2);
5371  SDValue Ops[] = { Op1, Op2 };
5372  return getMachineNode(Opcode, dl, VTs, Ops);
5373}
5374
5375MachineSDNode *
5376SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
5377                             EVT VT1, EVT VT2, SDValue Op1,
5378                             SDValue Op2, SDValue Op3) {
5379  SDVTList VTs = getVTList(VT1, VT2);
5380  SDValue Ops[] = { Op1, Op2, Op3 };
5381  return getMachineNode(Opcode, dl, VTs, Ops);
5382}
5383
5384MachineSDNode *
5385SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
5386                             EVT VT1, EVT VT2,
5387                             ArrayRef<SDValue> Ops) {
5388  SDVTList VTs = getVTList(VT1, VT2);
5389  return getMachineNode(Opcode, dl, VTs, Ops);
5390}
5391
5392MachineSDNode *
5393SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
5394                             EVT VT1, EVT VT2, EVT VT3,
5395                             SDValue Op1, SDValue Op2) {
5396  SDVTList VTs = getVTList(VT1, VT2, VT3);
5397  SDValue Ops[] = { Op1, Op2 };
5398  return getMachineNode(Opcode, dl, VTs, Ops);
5399}
5400
5401MachineSDNode *
5402SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
5403                             EVT VT1, EVT VT2, EVT VT3,
5404                             SDValue Op1, SDValue Op2, SDValue Op3) {
5405  SDVTList VTs = getVTList(VT1, VT2, VT3);
5406  SDValue Ops[] = { Op1, Op2, Op3 };
5407  return getMachineNode(Opcode, dl, VTs, Ops);
5408}
5409
5410MachineSDNode *
5411SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
5412                             EVT VT1, EVT VT2, EVT VT3,
5413                             ArrayRef<SDValue> Ops) {
5414  SDVTList VTs = getVTList(VT1, VT2, VT3);
5415  return getMachineNode(Opcode, dl, VTs, Ops);
5416}
5417
5418MachineSDNode *
5419SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1,
5420                             EVT VT2, EVT VT3, EVT VT4,
5421                             ArrayRef<SDValue> Ops) {
5422  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5423  return getMachineNode(Opcode, dl, VTs, Ops);
5424}
5425
5426MachineSDNode *
5427SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
5428                             ArrayRef<EVT> ResultTys,
5429                             ArrayRef<SDValue> Ops) {
5430  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5431  return getMachineNode(Opcode, dl, VTs, Ops);
5432}
5433
5434MachineSDNode *
5435SelectionDAG::getMachineNode(unsigned Opcode, SDLoc DL, SDVTList VTs,
5436                             ArrayRef<SDValue> OpsArray) {
5437  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5438  MachineSDNode *N;
5439  void *IP = 0;
5440  const SDValue *Ops = OpsArray.data();
5441  unsigned NumOps = OpsArray.size();
5442
5443  if (DoCSE) {
5444    FoldingSetNodeID ID;
5445    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5446    IP = 0;
5447    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
5448      return cast<MachineSDNode>(UpdadeSDLocOnMergedSDNode(E, DL));
5449    }
5450  }
5451
5452  // Allocate a new MachineSDNode.
5453  N = new (NodeAllocator) MachineSDNode(~Opcode, DL.getIROrder(),
5454                                        DL.getDebugLoc(), VTs);
5455
5456  // Initialize the operands list.
5457  if (NumOps > array_lengthof(N->LocalOperands))
5458    // We're creating a final node that will live unmorphed for the
5459    // remainder of the current SelectionDAG iteration, so we can allocate
5460    // the operands directly out of a pool with no recycling metadata.
5461    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5462                    Ops, NumOps);
5463  else
5464    N->InitOperands(N->LocalOperands, Ops, NumOps);
5465  N->OperandsNeedDelete = false;
5466
5467  if (DoCSE)
5468    CSEMap.InsertNode(N, IP);
5469
5470  AllNodes.push_back(N);
5471#ifndef NDEBUG
5472  VerifyMachineNode(N);
5473#endif
5474  return N;
5475}
5476
5477/// getTargetExtractSubreg - A convenience function for creating
5478/// TargetOpcode::EXTRACT_SUBREG nodes.
5479SDValue
5480SelectionDAG::getTargetExtractSubreg(int SRIdx, SDLoc DL, EVT VT,
5481                                     SDValue Operand) {
5482  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5483  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5484                                  VT, Operand, SRIdxVal);
5485  return SDValue(Subreg, 0);
5486}
5487
5488/// getTargetInsertSubreg - A convenience function for creating
5489/// TargetOpcode::INSERT_SUBREG nodes.
5490SDValue
5491SelectionDAG::getTargetInsertSubreg(int SRIdx, SDLoc DL, EVT VT,
5492                                    SDValue Operand, SDValue Subreg) {
5493  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5494  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5495                                  VT, Operand, Subreg, SRIdxVal);
5496  return SDValue(Result, 0);
5497}
5498
5499/// getNodeIfExists - Get the specified node if it's already available, or
5500/// else return NULL.
5501SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5502                                      const SDValue *Ops, unsigned NumOps) {
5503  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5504    FoldingSetNodeID ID;
5505    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5506    void *IP = 0;
5507    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5508      return E;
5509  }
5510  return NULL;
5511}
5512
5513/// getDbgValue - Creates a SDDbgValue node.
5514///
5515SDDbgValue *
5516SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5517                          DebugLoc DL, unsigned O) {
5518  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5519}
5520
5521SDDbgValue *
5522SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5523                          DebugLoc DL, unsigned O) {
5524  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5525}
5526
5527SDDbgValue *
5528SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5529                          DebugLoc DL, unsigned O) {
5530  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5531}
5532
5533namespace {
5534
5535/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5536/// pointed to by a use iterator is deleted, increment the use iterator
5537/// so that it doesn't dangle.
5538///
5539class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5540  SDNode::use_iterator &UI;
5541  SDNode::use_iterator &UE;
5542
5543  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5544    // Increment the iterator as needed.
5545    while (UI != UE && N == *UI)
5546      ++UI;
5547  }
5548
5549public:
5550  RAUWUpdateListener(SelectionDAG &d,
5551                     SDNode::use_iterator &ui,
5552                     SDNode::use_iterator &ue)
5553    : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
5554};
5555
5556}
5557
5558/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5559/// This can cause recursive merging of nodes in the DAG.
5560///
5561/// This version assumes From has a single result value.
5562///
5563void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
5564  SDNode *From = FromN.getNode();
5565  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5566         "Cannot replace with this method!");
5567  assert(From != To.getNode() && "Cannot replace uses of with self");
5568
5569  // Iterate over all the existing uses of From. New uses will be added
5570  // to the beginning of the use list, which we avoid visiting.
5571  // This specifically avoids visiting uses of From that arise while the
5572  // replacement is happening, because any such uses would be the result
5573  // of CSE: If an existing node looks like From after one of its operands
5574  // is replaced by To, we don't want to replace of all its users with To
5575  // too. See PR3018 for more info.
5576  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5577  RAUWUpdateListener Listener(*this, UI, UE);
5578  while (UI != UE) {
5579    SDNode *User = *UI;
5580
5581    // This node is about to morph, remove its old self from the CSE maps.
5582    RemoveNodeFromCSEMaps(User);
5583
5584    // A user can appear in a use list multiple times, and when this
5585    // happens the uses are usually next to each other in the list.
5586    // To help reduce the number of CSE recomputations, process all
5587    // the uses of this user that we can find this way.
5588    do {
5589      SDUse &Use = UI.getUse();
5590      ++UI;
5591      Use.set(To);
5592    } while (UI != UE && *UI == User);
5593
5594    // Now that we have modified User, add it back to the CSE maps.  If it
5595    // already exists there, recursively merge the results together.
5596    AddModifiedNodeToCSEMaps(User);
5597  }
5598
5599  // If we just RAUW'd the root, take note.
5600  if (FromN == getRoot())
5601    setRoot(To);
5602}
5603
5604/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5605/// This can cause recursive merging of nodes in the DAG.
5606///
5607/// This version assumes that for each value of From, there is a
5608/// corresponding value in To in the same position with the same type.
5609///
5610void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
5611#ifndef NDEBUG
5612  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5613    assert((!From->hasAnyUseOfValue(i) ||
5614            From->getValueType(i) == To->getValueType(i)) &&
5615           "Cannot use this version of ReplaceAllUsesWith!");
5616#endif
5617
5618  // Handle the trivial case.
5619  if (From == To)
5620    return;
5621
5622  // Iterate over just the existing users of From. See the comments in
5623  // the ReplaceAllUsesWith above.
5624  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5625  RAUWUpdateListener Listener(*this, UI, UE);
5626  while (UI != UE) {
5627    SDNode *User = *UI;
5628
5629    // This node is about to morph, remove its old self from the CSE maps.
5630    RemoveNodeFromCSEMaps(User);
5631
5632    // A user can appear in a use list multiple times, and when this
5633    // happens the uses are usually next to each other in the list.
5634    // To help reduce the number of CSE recomputations, process all
5635    // the uses of this user that we can find this way.
5636    do {
5637      SDUse &Use = UI.getUse();
5638      ++UI;
5639      Use.setNode(To);
5640    } while (UI != UE && *UI == User);
5641
5642    // Now that we have modified User, add it back to the CSE maps.  If it
5643    // already exists there, recursively merge the results together.
5644    AddModifiedNodeToCSEMaps(User);
5645  }
5646
5647  // If we just RAUW'd the root, take note.
5648  if (From == getRoot().getNode())
5649    setRoot(SDValue(To, getRoot().getResNo()));
5650}
5651
5652/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5653/// This can cause recursive merging of nodes in the DAG.
5654///
5655/// This version can replace From with any result values.  To must match the
5656/// number and types of values returned by From.
5657void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
5658  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5659    return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
5660
5661  // Iterate over just the existing users of From. See the comments in
5662  // the ReplaceAllUsesWith above.
5663  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5664  RAUWUpdateListener Listener(*this, UI, UE);
5665  while (UI != UE) {
5666    SDNode *User = *UI;
5667
5668    // This node is about to morph, remove its old self from the CSE maps.
5669    RemoveNodeFromCSEMaps(User);
5670
5671    // A user can appear in a use list multiple times, and when this
5672    // happens the uses are usually next to each other in the list.
5673    // To help reduce the number of CSE recomputations, process all
5674    // the uses of this user that we can find this way.
5675    do {
5676      SDUse &Use = UI.getUse();
5677      const SDValue &ToOp = To[Use.getResNo()];
5678      ++UI;
5679      Use.set(ToOp);
5680    } while (UI != UE && *UI == User);
5681
5682    // Now that we have modified User, add it back to the CSE maps.  If it
5683    // already exists there, recursively merge the results together.
5684    AddModifiedNodeToCSEMaps(User);
5685  }
5686
5687  // If we just RAUW'd the root, take note.
5688  if (From == getRoot().getNode())
5689    setRoot(SDValue(To[getRoot().getResNo()]));
5690}
5691
5692/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5693/// uses of other values produced by From.getNode() alone.  The Deleted
5694/// vector is handled the same way as for ReplaceAllUsesWith.
5695void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
5696  // Handle the really simple, really trivial case efficiently.
5697  if (From == To) return;
5698
5699  // Handle the simple, trivial, case efficiently.
5700  if (From.getNode()->getNumValues() == 1) {
5701    ReplaceAllUsesWith(From, To);
5702    return;
5703  }
5704
5705  // Iterate over just the existing users of From. See the comments in
5706  // the ReplaceAllUsesWith above.
5707  SDNode::use_iterator UI = From.getNode()->use_begin(),
5708                       UE = From.getNode()->use_end();
5709  RAUWUpdateListener Listener(*this, UI, UE);
5710  while (UI != UE) {
5711    SDNode *User = *UI;
5712    bool UserRemovedFromCSEMaps = false;
5713
5714    // A user can appear in a use list multiple times, and when this
5715    // happens the uses are usually next to each other in the list.
5716    // To help reduce the number of CSE recomputations, process all
5717    // the uses of this user that we can find this way.
5718    do {
5719      SDUse &Use = UI.getUse();
5720
5721      // Skip uses of different values from the same node.
5722      if (Use.getResNo() != From.getResNo()) {
5723        ++UI;
5724        continue;
5725      }
5726
5727      // If this node hasn't been modified yet, it's still in the CSE maps,
5728      // so remove its old self from the CSE maps.
5729      if (!UserRemovedFromCSEMaps) {
5730        RemoveNodeFromCSEMaps(User);
5731        UserRemovedFromCSEMaps = true;
5732      }
5733
5734      ++UI;
5735      Use.set(To);
5736    } while (UI != UE && *UI == User);
5737
5738    // We are iterating over all uses of the From node, so if a use
5739    // doesn't use the specific value, no changes are made.
5740    if (!UserRemovedFromCSEMaps)
5741      continue;
5742
5743    // Now that we have modified User, add it back to the CSE maps.  If it
5744    // already exists there, recursively merge the results together.
5745    AddModifiedNodeToCSEMaps(User);
5746  }
5747
5748  // If we just RAUW'd the root, take note.
5749  if (From == getRoot())
5750    setRoot(To);
5751}
5752
5753namespace {
5754  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5755  /// to record information about a use.
5756  struct UseMemo {
5757    SDNode *User;
5758    unsigned Index;
5759    SDUse *Use;
5760  };
5761
5762  /// operator< - Sort Memos by User.
5763  bool operator<(const UseMemo &L, const UseMemo &R) {
5764    return (intptr_t)L.User < (intptr_t)R.User;
5765  }
5766}
5767
5768/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5769/// uses of other values produced by From.getNode() alone.  The same value
5770/// may appear in both the From and To list.  The Deleted vector is
5771/// handled the same way as for ReplaceAllUsesWith.
5772void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5773                                              const SDValue *To,
5774                                              unsigned Num){
5775  // Handle the simple, trivial case efficiently.
5776  if (Num == 1)
5777    return ReplaceAllUsesOfValueWith(*From, *To);
5778
5779  // Read up all the uses and make records of them. This helps
5780  // processing new uses that are introduced during the
5781  // replacement process.
5782  SmallVector<UseMemo, 4> Uses;
5783  for (unsigned i = 0; i != Num; ++i) {
5784    unsigned FromResNo = From[i].getResNo();
5785    SDNode *FromNode = From[i].getNode();
5786    for (SDNode::use_iterator UI = FromNode->use_begin(),
5787         E = FromNode->use_end(); UI != E; ++UI) {
5788      SDUse &Use = UI.getUse();
5789      if (Use.getResNo() == FromResNo) {
5790        UseMemo Memo = { *UI, i, &Use };
5791        Uses.push_back(Memo);
5792      }
5793    }
5794  }
5795
5796  // Sort the uses, so that all the uses from a given User are together.
5797  std::sort(Uses.begin(), Uses.end());
5798
5799  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5800       UseIndex != UseIndexEnd; ) {
5801    // We know that this user uses some value of From.  If it is the right
5802    // value, update it.
5803    SDNode *User = Uses[UseIndex].User;
5804
5805    // This node is about to morph, remove its old self from the CSE maps.
5806    RemoveNodeFromCSEMaps(User);
5807
5808    // The Uses array is sorted, so all the uses for a given User
5809    // are next to each other in the list.
5810    // To help reduce the number of CSE recomputations, process all
5811    // the uses of this user that we can find this way.
5812    do {
5813      unsigned i = Uses[UseIndex].Index;
5814      SDUse &Use = *Uses[UseIndex].Use;
5815      ++UseIndex;
5816
5817      Use.set(To[i]);
5818    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5819
5820    // Now that we have modified User, add it back to the CSE maps.  If it
5821    // already exists there, recursively merge the results together.
5822    AddModifiedNodeToCSEMaps(User);
5823  }
5824}
5825
5826/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5827/// based on their topological order. It returns the maximum id and a vector
5828/// of the SDNodes* in assigned order by reference.
5829unsigned SelectionDAG::AssignTopologicalOrder() {
5830
5831  unsigned DAGSize = 0;
5832
5833  // SortedPos tracks the progress of the algorithm. Nodes before it are
5834  // sorted, nodes after it are unsorted. When the algorithm completes
5835  // it is at the end of the list.
5836  allnodes_iterator SortedPos = allnodes_begin();
5837
5838  // Visit all the nodes. Move nodes with no operands to the front of
5839  // the list immediately. Annotate nodes that do have operands with their
5840  // operand count. Before we do this, the Node Id fields of the nodes
5841  // may contain arbitrary values. After, the Node Id fields for nodes
5842  // before SortedPos will contain the topological sort index, and the
5843  // Node Id fields for nodes At SortedPos and after will contain the
5844  // count of outstanding operands.
5845  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5846    SDNode *N = I++;
5847    checkForCycles(N);
5848    unsigned Degree = N->getNumOperands();
5849    if (Degree == 0) {
5850      // A node with no uses, add it to the result array immediately.
5851      N->setNodeId(DAGSize++);
5852      allnodes_iterator Q = N;
5853      if (Q != SortedPos)
5854        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5855      assert(SortedPos != AllNodes.end() && "Overran node list");
5856      ++SortedPos;
5857    } else {
5858      // Temporarily use the Node Id as scratch space for the degree count.
5859      N->setNodeId(Degree);
5860    }
5861  }
5862
5863  // Visit all the nodes. As we iterate, move nodes into sorted order,
5864  // such that by the time the end is reached all nodes will be sorted.
5865  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5866    SDNode *N = I;
5867    checkForCycles(N);
5868    // N is in sorted position, so all its uses have one less operand
5869    // that needs to be sorted.
5870    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5871         UI != UE; ++UI) {
5872      SDNode *P = *UI;
5873      unsigned Degree = P->getNodeId();
5874      assert(Degree != 0 && "Invalid node degree");
5875      --Degree;
5876      if (Degree == 0) {
5877        // All of P's operands are sorted, so P may sorted now.
5878        P->setNodeId(DAGSize++);
5879        if (P != SortedPos)
5880          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5881        assert(SortedPos != AllNodes.end() && "Overran node list");
5882        ++SortedPos;
5883      } else {
5884        // Update P's outstanding operand count.
5885        P->setNodeId(Degree);
5886      }
5887    }
5888    if (I == SortedPos) {
5889#ifndef NDEBUG
5890      SDNode *S = ++I;
5891      dbgs() << "Overran sorted position:\n";
5892      S->dumprFull();
5893#endif
5894      llvm_unreachable(0);
5895    }
5896  }
5897
5898  assert(SortedPos == AllNodes.end() &&
5899         "Topological sort incomplete!");
5900  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5901         "First node in topological sort is not the entry token!");
5902  assert(AllNodes.front().getNodeId() == 0 &&
5903         "First node in topological sort has non-zero id!");
5904  assert(AllNodes.front().getNumOperands() == 0 &&
5905         "First node in topological sort has operands!");
5906  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5907         "Last node in topologic sort has unexpected id!");
5908  assert(AllNodes.back().use_empty() &&
5909         "Last node in topologic sort has users!");
5910  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5911  return DAGSize;
5912}
5913
5914/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5915/// value is produced by SD.
5916void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5917  DbgInfo->add(DB, SD, isParameter);
5918  if (SD)
5919    SD->setHasDebugValue(true);
5920}
5921
5922/// TransferDbgValues - Transfer SDDbgValues.
5923void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5924  if (From == To || !From.getNode()->getHasDebugValue())
5925    return;
5926  SDNode *FromNode = From.getNode();
5927  SDNode *ToNode = To.getNode();
5928  ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
5929  SmallVector<SDDbgValue *, 2> ClonedDVs;
5930  for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
5931       I != E; ++I) {
5932    SDDbgValue *Dbg = *I;
5933    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5934      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5935                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5936                                      Dbg->getOrder());
5937      ClonedDVs.push_back(Clone);
5938    }
5939  }
5940  for (SmallVectorImpl<SDDbgValue *>::iterator I = ClonedDVs.begin(),
5941         E = ClonedDVs.end(); I != E; ++I)
5942    AddDbgValue(*I, ToNode, false);
5943}
5944
5945//===----------------------------------------------------------------------===//
5946//                              SDNode Class
5947//===----------------------------------------------------------------------===//
5948
5949HandleSDNode::~HandleSDNode() {
5950  DropOperands();
5951}
5952
5953GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
5954                                         DebugLoc DL, const GlobalValue *GA,
5955                                         EVT VT, int64_t o, unsigned char TF)
5956  : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5957  TheGlobal = GA;
5958}
5959
5960MemSDNode::MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
5961                     EVT memvt, MachineMemOperand *mmo)
5962 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5963  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5964                                      MMO->isNonTemporal(), MMO->isInvariant());
5965  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5966  assert(isNonTemporal() == MMO->isNonTemporal() &&
5967         "Non-temporal encoding error!");
5968  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5969}
5970
5971MemSDNode::MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
5972                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5973                     MachineMemOperand *mmo)
5974   : SDNode(Opc, Order, dl, VTs, Ops, NumOps),
5975     MemoryVT(memvt), MMO(mmo) {
5976  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5977                                      MMO->isNonTemporal(), MMO->isInvariant());
5978  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5979  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5980}
5981
5982/// Profile - Gather unique data for the node.
5983///
5984void SDNode::Profile(FoldingSetNodeID &ID) const {
5985  AddNodeIDNode(ID, this);
5986}
5987
5988namespace {
5989  struct EVTArray {
5990    std::vector<EVT> VTs;
5991
5992    EVTArray() {
5993      VTs.reserve(MVT::LAST_VALUETYPE);
5994      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5995        VTs.push_back(MVT((MVT::SimpleValueType)i));
5996    }
5997  };
5998}
5999
6000static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
6001static ManagedStatic<EVTArray> SimpleVTArray;
6002static ManagedStatic<sys::SmartMutex<true> > VTMutex;
6003
6004/// getValueTypeList - Return a pointer to the specified value type.
6005///
6006const EVT *SDNode::getValueTypeList(EVT VT) {
6007  if (VT.isExtended()) {
6008    sys::SmartScopedLock<true> Lock(*VTMutex);
6009    return &(*EVTs->insert(VT).first);
6010  } else {
6011    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
6012           "Value type out of range!");
6013    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
6014  }
6015}
6016
6017/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
6018/// indicated value.  This method ignores uses of other values defined by this
6019/// operation.
6020bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
6021  assert(Value < getNumValues() && "Bad value!");
6022
6023  // TODO: Only iterate over uses of a given value of the node
6024  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
6025    if (UI.getUse().getResNo() == Value) {
6026      if (NUses == 0)
6027        return false;
6028      --NUses;
6029    }
6030  }
6031
6032  // Found exactly the right number of uses?
6033  return NUses == 0;
6034}
6035
6036
6037/// hasAnyUseOfValue - Return true if there are any use of the indicated
6038/// value. This method ignores uses of other values defined by this operation.
6039bool SDNode::hasAnyUseOfValue(unsigned Value) const {
6040  assert(Value < getNumValues() && "Bad value!");
6041
6042  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
6043    if (UI.getUse().getResNo() == Value)
6044      return true;
6045
6046  return false;
6047}
6048
6049
6050/// isOnlyUserOf - Return true if this node is the only use of N.
6051///
6052bool SDNode::isOnlyUserOf(SDNode *N) const {
6053  bool Seen = false;
6054  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
6055    SDNode *User = *I;
6056    if (User == this)
6057      Seen = true;
6058    else
6059      return false;
6060  }
6061
6062  return Seen;
6063}
6064
6065/// isOperand - Return true if this node is an operand of N.
6066///
6067bool SDValue::isOperandOf(SDNode *N) const {
6068  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6069    if (*this == N->getOperand(i))
6070      return true;
6071  return false;
6072}
6073
6074bool SDNode::isOperandOf(SDNode *N) const {
6075  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
6076    if (this == N->OperandList[i].getNode())
6077      return true;
6078  return false;
6079}
6080
6081/// reachesChainWithoutSideEffects - Return true if this operand (which must
6082/// be a chain) reaches the specified operand without crossing any
6083/// side-effecting instructions on any chain path.  In practice, this looks
6084/// through token factors and non-volatile loads.  In order to remain efficient,
6085/// this only looks a couple of nodes in, it does not do an exhaustive search.
6086bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
6087                                               unsigned Depth) const {
6088  if (*this == Dest) return true;
6089
6090  // Don't search too deeply, we just want to be able to see through
6091  // TokenFactor's etc.
6092  if (Depth == 0) return false;
6093
6094  // If this is a token factor, all inputs to the TF happen in parallel.  If any
6095  // of the operands of the TF does not reach dest, then we cannot do the xform.
6096  if (getOpcode() == ISD::TokenFactor) {
6097    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6098      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
6099        return false;
6100    return true;
6101  }
6102
6103  // Loads don't have side effects, look through them.
6104  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
6105    if (!Ld->isVolatile())
6106      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
6107  }
6108  return false;
6109}
6110
6111/// hasPredecessor - Return true if N is a predecessor of this node.
6112/// N is either an operand of this node, or can be reached by recursively
6113/// traversing up the operands.
6114/// NOTE: This is an expensive method. Use it carefully.
6115bool SDNode::hasPredecessor(const SDNode *N) const {
6116  SmallPtrSet<const SDNode *, 32> Visited;
6117  SmallVector<const SDNode *, 16> Worklist;
6118  return hasPredecessorHelper(N, Visited, Worklist);
6119}
6120
6121bool
6122SDNode::hasPredecessorHelper(const SDNode *N,
6123                             SmallPtrSet<const SDNode *, 32> &Visited,
6124                             SmallVectorImpl<const SDNode *> &Worklist) const {
6125  if (Visited.empty()) {
6126    Worklist.push_back(this);
6127  } else {
6128    // Take a look in the visited set. If we've already encountered this node
6129    // we needn't search further.
6130    if (Visited.count(N))
6131      return true;
6132  }
6133
6134  // Haven't visited N yet. Continue the search.
6135  while (!Worklist.empty()) {
6136    const SDNode *M = Worklist.pop_back_val();
6137    for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
6138      SDNode *Op = M->getOperand(i).getNode();
6139      if (Visited.insert(Op))
6140        Worklist.push_back(Op);
6141      if (Op == N)
6142        return true;
6143    }
6144  }
6145
6146  return false;
6147}
6148
6149uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
6150  assert(Num < NumOperands && "Invalid child # of SDNode!");
6151  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
6152}
6153
6154SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6155  assert(N->getNumValues() == 1 &&
6156         "Can't unroll a vector with multiple results!");
6157
6158  EVT VT = N->getValueType(0);
6159  unsigned NE = VT.getVectorNumElements();
6160  EVT EltVT = VT.getVectorElementType();
6161  SDLoc dl(N);
6162
6163  SmallVector<SDValue, 8> Scalars;
6164  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6165
6166  // If ResNE is 0, fully unroll the vector op.
6167  if (ResNE == 0)
6168    ResNE = NE;
6169  else if (NE > ResNE)
6170    NE = ResNE;
6171
6172  unsigned i;
6173  for (i= 0; i != NE; ++i) {
6174    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6175      SDValue Operand = N->getOperand(j);
6176      EVT OperandVT = Operand.getValueType();
6177      if (OperandVT.isVector()) {
6178        // A vector operand; extract a single element.
6179        const TargetLowering *TLI = TM.getTargetLowering();
6180        EVT OperandEltVT = OperandVT.getVectorElementType();
6181        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6182                              OperandEltVT,
6183                              Operand,
6184                              getConstant(i, TLI->getVectorIdxTy()));
6185      } else {
6186        // A scalar operand; just use it as is.
6187        Operands[j] = Operand;
6188      }
6189    }
6190
6191    switch (N->getOpcode()) {
6192    default:
6193      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6194                                &Operands[0], Operands.size()));
6195      break;
6196    case ISD::VSELECT:
6197      Scalars.push_back(getNode(ISD::SELECT, dl, EltVT,
6198                                &Operands[0], Operands.size()));
6199      break;
6200    case ISD::SHL:
6201    case ISD::SRA:
6202    case ISD::SRL:
6203    case ISD::ROTL:
6204    case ISD::ROTR:
6205      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6206                               getShiftAmountOperand(Operands[0].getValueType(),
6207                                                     Operands[1])));
6208      break;
6209    case ISD::SIGN_EXTEND_INREG:
6210    case ISD::FP_ROUND_INREG: {
6211      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6212      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6213                                Operands[0],
6214                                getValueType(ExtVT)));
6215    }
6216    }
6217  }
6218
6219  for (; i < ResNE; ++i)
6220    Scalars.push_back(getUNDEF(EltVT));
6221
6222  return getNode(ISD::BUILD_VECTOR, dl,
6223                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6224                 &Scalars[0], Scalars.size());
6225}
6226
6227
6228/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6229/// location that is 'Dist' units away from the location that the 'Base' load
6230/// is loading from.
6231bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6232                                     unsigned Bytes, int Dist) const {
6233  if (LD->getChain() != Base->getChain())
6234    return false;
6235  EVT VT = LD->getValueType(0);
6236  if (VT.getSizeInBits() / 8 != Bytes)
6237    return false;
6238
6239  SDValue Loc = LD->getOperand(1);
6240  SDValue BaseLoc = Base->getOperand(1);
6241  if (Loc.getOpcode() == ISD::FrameIndex) {
6242    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6243      return false;
6244    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6245    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6246    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6247    int FS  = MFI->getObjectSize(FI);
6248    int BFS = MFI->getObjectSize(BFI);
6249    if (FS != BFS || FS != (int)Bytes) return false;
6250    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6251  }
6252
6253  // Handle X+C
6254  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6255      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6256    return true;
6257
6258  const GlobalValue *GV1 = NULL;
6259  const GlobalValue *GV2 = NULL;
6260  int64_t Offset1 = 0;
6261  int64_t Offset2 = 0;
6262  const TargetLowering *TLI = TM.getTargetLowering();
6263  bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6264  bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6265  if (isGA1 && isGA2 && GV1 == GV2)
6266    return Offset1 == (Offset2 + Dist*Bytes);
6267  return false;
6268}
6269
6270
6271/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6272/// it cannot be inferred.
6273unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6274  // If this is a GlobalAddress + cst, return the alignment.
6275  const GlobalValue *GV;
6276  int64_t GVOffset = 0;
6277  const TargetLowering *TLI = TM.getTargetLowering();
6278  if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6279    unsigned PtrWidth = TLI->getPointerTy().getSizeInBits();
6280    APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
6281    llvm::ComputeMaskedBits(const_cast<GlobalValue*>(GV), KnownZero, KnownOne,
6282                            TLI->getDataLayout());
6283    unsigned AlignBits = KnownZero.countTrailingOnes();
6284    unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
6285    if (Align)
6286      return MinAlign(Align, GVOffset);
6287  }
6288
6289  // If this is a direct reference to a stack slot, use information about the
6290  // stack slot's alignment.
6291  int FrameIdx = 1 << 31;
6292  int64_t FrameOffset = 0;
6293  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6294    FrameIdx = FI->getIndex();
6295  } else if (isBaseWithConstantOffset(Ptr) &&
6296             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6297    // Handle FI+Cst
6298    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6299    FrameOffset = Ptr.getConstantOperandVal(1);
6300  }
6301
6302  if (FrameIdx != (1 << 31)) {
6303    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6304    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6305                                    FrameOffset);
6306    return FIInfoAlign;
6307  }
6308
6309  return 0;
6310}
6311
6312// getAddressSpace - Return the address space this GlobalAddress belongs to.
6313unsigned GlobalAddressSDNode::getAddressSpace() const {
6314  return getGlobal()->getType()->getAddressSpace();
6315}
6316
6317
6318Type *ConstantPoolSDNode::getType() const {
6319  if (isMachineConstantPoolEntry())
6320    return Val.MachineCPVal->getType();
6321  return Val.ConstVal->getType();
6322}
6323
6324bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6325                                        APInt &SplatUndef,
6326                                        unsigned &SplatBitSize,
6327                                        bool &HasAnyUndefs,
6328                                        unsigned MinSplatBits,
6329                                        bool isBigEndian) {
6330  EVT VT = getValueType(0);
6331  assert(VT.isVector() && "Expected a vector type");
6332  unsigned sz = VT.getSizeInBits();
6333  if (MinSplatBits > sz)
6334    return false;
6335
6336  SplatValue = APInt(sz, 0);
6337  SplatUndef = APInt(sz, 0);
6338
6339  // Get the bits.  Bits with undefined values (when the corresponding element
6340  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6341  // in SplatValue.  If any of the values are not constant, give up and return
6342  // false.
6343  unsigned int nOps = getNumOperands();
6344  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6345  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6346
6347  for (unsigned j = 0; j < nOps; ++j) {
6348    unsigned i = isBigEndian ? nOps-1-j : j;
6349    SDValue OpVal = getOperand(i);
6350    unsigned BitPos = j * EltBitSize;
6351
6352    if (OpVal.getOpcode() == ISD::UNDEF)
6353      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6354    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6355      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6356                    zextOrTrunc(sz) << BitPos;
6357    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6358      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6359     else
6360      return false;
6361  }
6362
6363  // The build_vector is all constants or undefs.  Find the smallest element
6364  // size that splats the vector.
6365
6366  HasAnyUndefs = (SplatUndef != 0);
6367  while (sz > 8) {
6368
6369    unsigned HalfSize = sz / 2;
6370    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6371    APInt LowValue = SplatValue.trunc(HalfSize);
6372    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6373    APInt LowUndef = SplatUndef.trunc(HalfSize);
6374
6375    // If the two halves do not match (ignoring undef bits), stop here.
6376    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6377        MinSplatBits > HalfSize)
6378      break;
6379
6380    SplatValue = HighValue | LowValue;
6381    SplatUndef = HighUndef & LowUndef;
6382
6383    sz = HalfSize;
6384  }
6385
6386  SplatBitSize = sz;
6387  return true;
6388}
6389
6390bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6391  // Find the first non-undef value in the shuffle mask.
6392  unsigned i, e;
6393  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6394    /* search */;
6395
6396  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6397
6398  // Make sure all remaining elements are either undef or the same as the first
6399  // non-undef value.
6400  for (int Idx = Mask[i]; i != e; ++i)
6401    if (Mask[i] >= 0 && Mask[i] != Idx)
6402      return false;
6403  return true;
6404}
6405
6406#ifdef XDEBUG
6407static void checkForCyclesHelper(const SDNode *N,
6408                                 SmallPtrSet<const SDNode*, 32> &Visited,
6409                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6410  // If this node has already been checked, don't check it again.
6411  if (Checked.count(N))
6412    return;
6413
6414  // If a node has already been visited on this depth-first walk, reject it as
6415  // a cycle.
6416  if (!Visited.insert(N)) {
6417    dbgs() << "Offending node:\n";
6418    N->dumprFull();
6419    errs() << "Detected cycle in SelectionDAG\n";
6420    abort();
6421  }
6422
6423  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6424    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6425
6426  Checked.insert(N);
6427  Visited.erase(N);
6428}
6429#endif
6430
6431void llvm::checkForCycles(const llvm::SDNode *N) {
6432#ifdef XDEBUG
6433  assert(N && "Checking nonexistant SDNode");
6434  SmallPtrSet<const SDNode*, 32> visited;
6435  SmallPtrSet<const SDNode*, 32> checked;
6436  checkForCyclesHelper(N, visited, checked);
6437#endif
6438}
6439
6440void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6441  checkForCycles(DAG->getRoot().getNode());
6442}
6443