SelectionDAG.cpp revision 8b2794aeff151be8cdbd44786c1d0f94f8f2e427
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/Support/MathExtras.h"
22#include "llvm/Target/MRegisterInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/ADT/SetVector.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringExtras.h"
29#include <iostream>
30#include <set>
31#include <cmath>
32#include <algorithm>
33using namespace llvm;
34
35/// makeVTList - Return an instance of the SDVTList struct initialized with the
36/// specified members.
37static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
38  SDVTList Res = {VTs, NumVTs};
39  return Res;
40}
41
42// isInvertibleForFree - Return true if there is no cost to emitting the logical
43// inverse of this node.
44static bool isInvertibleForFree(SDOperand N) {
45  if (isa<ConstantSDNode>(N.Val)) return true;
46  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
47    return true;
48  return false;
49}
50
51//===----------------------------------------------------------------------===//
52//                              ConstantFPSDNode Class
53//===----------------------------------------------------------------------===//
54
55/// isExactlyValue - We don't rely on operator== working on double values, as
56/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
57/// As such, this method can be used to do an exact bit-for-bit comparison of
58/// two floating point values.
59bool ConstantFPSDNode::isExactlyValue(double V) const {
60  return DoubleToBits(V) == DoubleToBits(Value);
61}
62
63//===----------------------------------------------------------------------===//
64//                              ISD Namespace
65//===----------------------------------------------------------------------===//
66
67/// isBuildVectorAllOnes - Return true if the specified node is a
68/// BUILD_VECTOR where all of the elements are ~0 or undef.
69bool ISD::isBuildVectorAllOnes(const SDNode *N) {
70  // Look through a bit convert.
71  if (N->getOpcode() == ISD::BIT_CONVERT)
72    N = N->getOperand(0).Val;
73
74  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
75
76  unsigned i = 0, e = N->getNumOperands();
77
78  // Skip over all of the undef values.
79  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
80    ++i;
81
82  // Do not accept an all-undef vector.
83  if (i == e) return false;
84
85  // Do not accept build_vectors that aren't all constants or which have non-~0
86  // elements.
87  SDOperand NotZero = N->getOperand(i);
88  if (isa<ConstantSDNode>(NotZero)) {
89    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
90      return false;
91  } else if (isa<ConstantFPSDNode>(NotZero)) {
92    MVT::ValueType VT = NotZero.getValueType();
93    if (VT== MVT::f64) {
94      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
95          (uint64_t)-1)
96        return false;
97    } else {
98      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
99          (uint32_t)-1)
100        return false;
101    }
102  } else
103    return false;
104
105  // Okay, we have at least one ~0 value, check to see if the rest match or are
106  // undefs.
107  for (++i; i != e; ++i)
108    if (N->getOperand(i) != NotZero &&
109        N->getOperand(i).getOpcode() != ISD::UNDEF)
110      return false;
111  return true;
112}
113
114
115/// isBuildVectorAllZeros - Return true if the specified node is a
116/// BUILD_VECTOR where all of the elements are 0 or undef.
117bool ISD::isBuildVectorAllZeros(const SDNode *N) {
118  // Look through a bit convert.
119  if (N->getOpcode() == ISD::BIT_CONVERT)
120    N = N->getOperand(0).Val;
121
122  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
123
124  unsigned i = 0, e = N->getNumOperands();
125
126  // Skip over all of the undef values.
127  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
128    ++i;
129
130  // Do not accept an all-undef vector.
131  if (i == e) return false;
132
133  // Do not accept build_vectors that aren't all constants or which have non-~0
134  // elements.
135  SDOperand Zero = N->getOperand(i);
136  if (isa<ConstantSDNode>(Zero)) {
137    if (!cast<ConstantSDNode>(Zero)->isNullValue())
138      return false;
139  } else if (isa<ConstantFPSDNode>(Zero)) {
140    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
141      return false;
142  } else
143    return false;
144
145  // Okay, we have at least one ~0 value, check to see if the rest match or are
146  // undefs.
147  for (++i; i != e; ++i)
148    if (N->getOperand(i) != Zero &&
149        N->getOperand(i).getOpcode() != ISD::UNDEF)
150      return false;
151  return true;
152}
153
154/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
155/// when given the operation for (X op Y).
156ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
157  // To perform this operation, we just need to swap the L and G bits of the
158  // operation.
159  unsigned OldL = (Operation >> 2) & 1;
160  unsigned OldG = (Operation >> 1) & 1;
161  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
162                       (OldL << 1) |       // New G bit
163                       (OldG << 2));        // New L bit.
164}
165
166/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
167/// 'op' is a valid SetCC operation.
168ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
169  unsigned Operation = Op;
170  if (isInteger)
171    Operation ^= 7;   // Flip L, G, E bits, but not U.
172  else
173    Operation ^= 15;  // Flip all of the condition bits.
174  if (Operation > ISD::SETTRUE2)
175    Operation &= ~8;     // Don't let N and U bits get set.
176  return ISD::CondCode(Operation);
177}
178
179
180/// isSignedOp - For an integer comparison, return 1 if the comparison is a
181/// signed operation and 2 if the result is an unsigned comparison.  Return zero
182/// if the operation does not depend on the sign of the input (setne and seteq).
183static int isSignedOp(ISD::CondCode Opcode) {
184  switch (Opcode) {
185  default: assert(0 && "Illegal integer setcc operation!");
186  case ISD::SETEQ:
187  case ISD::SETNE: return 0;
188  case ISD::SETLT:
189  case ISD::SETLE:
190  case ISD::SETGT:
191  case ISD::SETGE: return 1;
192  case ISD::SETULT:
193  case ISD::SETULE:
194  case ISD::SETUGT:
195  case ISD::SETUGE: return 2;
196  }
197}
198
199/// getSetCCOrOperation - Return the result of a logical OR between different
200/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
201/// returns SETCC_INVALID if it is not possible to represent the resultant
202/// comparison.
203ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
204                                       bool isInteger) {
205  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
206    // Cannot fold a signed integer setcc with an unsigned integer setcc.
207    return ISD::SETCC_INVALID;
208
209  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
210
211  // If the N and U bits get set then the resultant comparison DOES suddenly
212  // care about orderedness, and is true when ordered.
213  if (Op > ISD::SETTRUE2)
214    Op &= ~16;     // Clear the U bit if the N bit is set.
215
216  // Canonicalize illegal integer setcc's.
217  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
218    Op = ISD::SETNE;
219
220  return ISD::CondCode(Op);
221}
222
223/// getSetCCAndOperation - Return the result of a logical AND between different
224/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
225/// function returns zero if it is not possible to represent the resultant
226/// comparison.
227ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
228                                        bool isInteger) {
229  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
230    // Cannot fold a signed setcc with an unsigned setcc.
231    return ISD::SETCC_INVALID;
232
233  // Combine all of the condition bits.
234  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
235
236  // Canonicalize illegal integer setcc's.
237  if (isInteger) {
238    switch (Result) {
239    default: break;
240    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
241    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
242    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
243    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
244    }
245  }
246
247  return Result;
248}
249
250const TargetMachine &SelectionDAG::getTarget() const {
251  return TLI.getTargetMachine();
252}
253
254//===----------------------------------------------------------------------===//
255//                              SelectionDAG Class
256//===----------------------------------------------------------------------===//
257
258/// RemoveDeadNodes - This method deletes all unreachable nodes in the
259/// SelectionDAG.
260void SelectionDAG::RemoveDeadNodes() {
261  // Create a dummy node (which is not added to allnodes), that adds a reference
262  // to the root node, preventing it from being deleted.
263  HandleSDNode Dummy(getRoot());
264
265  SmallVector<SDNode*, 128> DeadNodes;
266
267  // Add all obviously-dead nodes to the DeadNodes worklist.
268  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
269    if (I->use_empty())
270      DeadNodes.push_back(I);
271
272  // Process the worklist, deleting the nodes and adding their uses to the
273  // worklist.
274  while (!DeadNodes.empty()) {
275    SDNode *N = DeadNodes.back();
276    DeadNodes.pop_back();
277
278    // Take the node out of the appropriate CSE map.
279    RemoveNodeFromCSEMaps(N);
280
281    // Next, brutally remove the operand list.  This is safe to do, as there are
282    // no cycles in the graph.
283    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
284      SDNode *Operand = I->Val;
285      Operand->removeUser(N);
286
287      // Now that we removed this operand, see if there are no uses of it left.
288      if (Operand->use_empty())
289        DeadNodes.push_back(Operand);
290    }
291    delete[] N->OperandList;
292    N->OperandList = 0;
293    N->NumOperands = 0;
294
295    // Finally, remove N itself.
296    AllNodes.erase(N);
297  }
298
299  // If the root changed (e.g. it was a dead load, update the root).
300  setRoot(Dummy.getValue());
301}
302
303void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
304  SmallVector<SDNode*, 16> DeadNodes;
305  DeadNodes.push_back(N);
306
307  // Process the worklist, deleting the nodes and adding their uses to the
308  // worklist.
309  while (!DeadNodes.empty()) {
310    SDNode *N = DeadNodes.back();
311    DeadNodes.pop_back();
312
313    // Take the node out of the appropriate CSE map.
314    RemoveNodeFromCSEMaps(N);
315
316    // Next, brutally remove the operand list.  This is safe to do, as there are
317    // no cycles in the graph.
318    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
319      SDNode *Operand = I->Val;
320      Operand->removeUser(N);
321
322      // Now that we removed this operand, see if there are no uses of it left.
323      if (Operand->use_empty())
324        DeadNodes.push_back(Operand);
325    }
326    delete[] N->OperandList;
327    N->OperandList = 0;
328    N->NumOperands = 0;
329
330    // Finally, remove N itself.
331    Deleted.push_back(N);
332    AllNodes.erase(N);
333  }
334}
335
336void SelectionDAG::DeleteNode(SDNode *N) {
337  assert(N->use_empty() && "Cannot delete a node that is not dead!");
338
339  // First take this out of the appropriate CSE map.
340  RemoveNodeFromCSEMaps(N);
341
342  // Finally, remove uses due to operands of this node, remove from the
343  // AllNodes list, and delete the node.
344  DeleteNodeNotInCSEMaps(N);
345}
346
347void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
348
349  // Remove it from the AllNodes list.
350  AllNodes.remove(N);
351
352  // Drop all of the operands and decrement used nodes use counts.
353  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
354    I->Val->removeUser(N);
355  delete[] N->OperandList;
356  N->OperandList = 0;
357  N->NumOperands = 0;
358
359  delete N;
360}
361
362/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
363/// correspond to it.  This is useful when we're about to delete or repurpose
364/// the node.  We don't want future request for structurally identical nodes
365/// to return N anymore.
366void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
367  bool Erased = false;
368  switch (N->getOpcode()) {
369  case ISD::HANDLENODE: return;  // noop.
370  case ISD::STRING:
371    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
372    break;
373  case ISD::CONDCODE:
374    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
375           "Cond code doesn't exist!");
376    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
377    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
378    break;
379  case ISD::ExternalSymbol:
380    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
381    break;
382  case ISD::TargetExternalSymbol:
383    Erased =
384      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
385    break;
386  case ISD::VALUETYPE:
387    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
388    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
389    break;
390  default:
391    // Remove it from the CSE Map.
392    Erased = CSEMap.RemoveNode(N);
393    break;
394  }
395#ifndef NDEBUG
396  // Verify that the node was actually in one of the CSE maps, unless it has a
397  // flag result (which cannot be CSE'd) or is one of the special cases that are
398  // not subject to CSE.
399  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
400      !N->isTargetOpcode()) {
401    N->dump();
402    std::cerr << "\n";
403    assert(0 && "Node is not in map!");
404  }
405#endif
406}
407
408/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
409/// has been taken out and modified in some way.  If the specified node already
410/// exists in the CSE maps, do not modify the maps, but return the existing node
411/// instead.  If it doesn't exist, add it and return null.
412///
413SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
414  assert(N->getNumOperands() && "This is a leaf node!");
415  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
416    return 0;    // Never add these nodes.
417
418  // Check that remaining values produced are not flags.
419  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
420    if (N->getValueType(i) == MVT::Flag)
421      return 0;   // Never CSE anything that produces a flag.
422
423  SDNode *New = CSEMap.GetOrInsertNode(N);
424  if (New != N) return New;  // Node already existed.
425  return 0;
426}
427
428/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
429/// were replaced with those specified.  If this node is never memoized,
430/// return null, otherwise return a pointer to the slot it would take.  If a
431/// node already exists with these operands, the slot will be non-null.
432SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
433                                           void *&InsertPos) {
434  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
435    return 0;    // Never add these nodes.
436
437  // Check that remaining values produced are not flags.
438  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
439    if (N->getValueType(i) == MVT::Flag)
440      return 0;   // Never CSE anything that produces a flag.
441
442  SelectionDAGCSEMap::NodeID ID;
443  ID.SetOpcode(N->getOpcode());
444  ID.SetValueTypes(N->getVTList());
445  ID.SetOperands(Op);
446  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
447}
448
449/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
450/// were replaced with those specified.  If this node is never memoized,
451/// return null, otherwise return a pointer to the slot it would take.  If a
452/// node already exists with these operands, the slot will be non-null.
453SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
454                                           SDOperand Op1, SDOperand Op2,
455                                           void *&InsertPos) {
456  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
457    return 0;    // Never add these nodes.
458
459  // Check that remaining values produced are not flags.
460  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
461    if (N->getValueType(i) == MVT::Flag)
462      return 0;   // Never CSE anything that produces a flag.
463
464  SelectionDAGCSEMap::NodeID ID;
465  ID.SetOpcode(N->getOpcode());
466  ID.SetValueTypes(N->getVTList());
467  ID.SetOperands(Op1, Op2);
468  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
469}
470
471
472/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
473/// were replaced with those specified.  If this node is never memoized,
474/// return null, otherwise return a pointer to the slot it would take.  If a
475/// node already exists with these operands, the slot will be non-null.
476SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
477                                           const SDOperand *Ops,unsigned NumOps,
478                                           void *&InsertPos) {
479  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
480    return 0;    // Never add these nodes.
481
482  // Check that remaining values produced are not flags.
483  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
484    if (N->getValueType(i) == MVT::Flag)
485      return 0;   // Never CSE anything that produces a flag.
486
487  SelectionDAGCSEMap::NodeID ID;
488  ID.SetOpcode(N->getOpcode());
489  ID.SetValueTypes(N->getVTList());
490  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
491    ID.AddInteger(LD->getAddressingMode());
492    ID.AddInteger(LD->getExtensionType());
493    ID.AddInteger(LD->getLoadedVT());
494    ID.AddPointer(LD->getSrcValue());
495    ID.AddInteger(LD->getSrcValueOffset());
496    ID.AddInteger(LD->getAlignment());
497    ID.AddInteger(LD->isVolatile());
498  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
499    ID.AddInteger(ST->getAddressingMode());
500    ID.AddInteger(ST->isTruncatingStore());
501    ID.AddInteger(ST->getStoredVT());
502    ID.AddPointer(ST->getSrcValue());
503    ID.AddInteger(ST->getSrcValueOffset());
504    ID.AddInteger(ST->getAlignment());
505    ID.AddInteger(ST->isVolatile());
506  }
507  ID.SetOperands(Ops, NumOps);
508  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
509}
510
511
512SelectionDAG::~SelectionDAG() {
513  while (!AllNodes.empty()) {
514    SDNode *N = AllNodes.begin();
515    N->SetNextInBucket(0);
516    delete [] N->OperandList;
517    N->OperandList = 0;
518    N->NumOperands = 0;
519    AllNodes.pop_front();
520  }
521}
522
523SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
524  if (Op.getValueType() == VT) return Op;
525  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
526  return getNode(ISD::AND, Op.getValueType(), Op,
527                 getConstant(Imm, Op.getValueType()));
528}
529
530SDOperand SelectionDAG::getString(const std::string &Val) {
531  StringSDNode *&N = StringNodes[Val];
532  if (!N) {
533    N = new StringSDNode(Val);
534    AllNodes.push_back(N);
535  }
536  return SDOperand(N, 0);
537}
538
539SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
540  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
541  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
542
543  // Mask out any bits that are not valid for this constant.
544  Val &= MVT::getIntVTBitMask(VT);
545
546  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
547  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
548  ID.AddInteger(Val);
549  void *IP = 0;
550  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
551    return SDOperand(E, 0);
552  SDNode *N = new ConstantSDNode(isT, Val, VT);
553  CSEMap.InsertNode(N, IP);
554  AllNodes.push_back(N);
555  return SDOperand(N, 0);
556}
557
558
559SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
560                                      bool isTarget) {
561  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
562  if (VT == MVT::f32)
563    Val = (float)Val;  // Mask out extra precision.
564
565  // Do the map lookup using the actual bit pattern for the floating point
566  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
567  // we don't have issues with SNANs.
568  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
569  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
570  ID.AddInteger(DoubleToBits(Val));
571  void *IP = 0;
572  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
573    return SDOperand(E, 0);
574  SDNode *N = new ConstantFPSDNode(isTarget, Val, VT);
575  CSEMap.InsertNode(N, IP);
576  AllNodes.push_back(N);
577  return SDOperand(N, 0);
578}
579
580SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
581                                         MVT::ValueType VT, int Offset,
582                                         bool isTargetGA) {
583  unsigned Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
584  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
585  ID.AddPointer(GV);
586  ID.AddInteger(Offset);
587  void *IP = 0;
588  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
589   return SDOperand(E, 0);
590  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
591  CSEMap.InsertNode(N, IP);
592  AllNodes.push_back(N);
593  return SDOperand(N, 0);
594}
595
596SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
597                                      bool isTarget) {
598  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
599  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
600  ID.AddInteger(FI);
601  void *IP = 0;
602  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
603    return SDOperand(E, 0);
604  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
605  CSEMap.InsertNode(N, IP);
606  AllNodes.push_back(N);
607  return SDOperand(N, 0);
608}
609
610SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
611  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
612  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
613  ID.AddInteger(JTI);
614  void *IP = 0;
615  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
616    return SDOperand(E, 0);
617  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
618  CSEMap.InsertNode(N, IP);
619  AllNodes.push_back(N);
620  return SDOperand(N, 0);
621}
622
623SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
624                                        unsigned Alignment, int Offset,
625                                        bool isTarget) {
626  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
627  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
628  ID.AddInteger(Alignment);
629  ID.AddInteger(Offset);
630  ID.AddPointer(C);
631  void *IP = 0;
632  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
633    return SDOperand(E, 0);
634  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
635  CSEMap.InsertNode(N, IP);
636  AllNodes.push_back(N);
637  return SDOperand(N, 0);
638}
639
640
641SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
642                                        MVT::ValueType VT,
643                                        unsigned Alignment, int Offset,
644                                        bool isTarget) {
645  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
646  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
647  ID.AddInteger(Alignment);
648  ID.AddInteger(Offset);
649  C->AddSelectionDAGCSEId(&ID);
650  void *IP = 0;
651  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
652    return SDOperand(E, 0);
653  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
654  CSEMap.InsertNode(N, IP);
655  AllNodes.push_back(N);
656  return SDOperand(N, 0);
657}
658
659
660SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
661  SelectionDAGCSEMap::NodeID ID(ISD::BasicBlock, getVTList(MVT::Other));
662  ID.AddPointer(MBB);
663  void *IP = 0;
664  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
665    return SDOperand(E, 0);
666  SDNode *N = new BasicBlockSDNode(MBB);
667  CSEMap.InsertNode(N, IP);
668  AllNodes.push_back(N);
669  return SDOperand(N, 0);
670}
671
672SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
673  if ((unsigned)VT >= ValueTypeNodes.size())
674    ValueTypeNodes.resize(VT+1);
675  if (ValueTypeNodes[VT] == 0) {
676    ValueTypeNodes[VT] = new VTSDNode(VT);
677    AllNodes.push_back(ValueTypeNodes[VT]);
678  }
679
680  return SDOperand(ValueTypeNodes[VT], 0);
681}
682
683SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
684  SDNode *&N = ExternalSymbols[Sym];
685  if (N) return SDOperand(N, 0);
686  N = new ExternalSymbolSDNode(false, Sym, VT);
687  AllNodes.push_back(N);
688  return SDOperand(N, 0);
689}
690
691SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
692                                                MVT::ValueType VT) {
693  SDNode *&N = TargetExternalSymbols[Sym];
694  if (N) return SDOperand(N, 0);
695  N = new ExternalSymbolSDNode(true, Sym, VT);
696  AllNodes.push_back(N);
697  return SDOperand(N, 0);
698}
699
700SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
701  if ((unsigned)Cond >= CondCodeNodes.size())
702    CondCodeNodes.resize(Cond+1);
703
704  if (CondCodeNodes[Cond] == 0) {
705    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
706    AllNodes.push_back(CondCodeNodes[Cond]);
707  }
708  return SDOperand(CondCodeNodes[Cond], 0);
709}
710
711SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
712  SelectionDAGCSEMap::NodeID ID(ISD::Register, getVTList(VT));
713  ID.AddInteger(RegNo);
714  void *IP = 0;
715  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
716    return SDOperand(E, 0);
717  SDNode *N = new RegisterSDNode(RegNo, VT);
718  CSEMap.InsertNode(N, IP);
719  AllNodes.push_back(N);
720  return SDOperand(N, 0);
721}
722
723SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
724  assert((!V || isa<PointerType>(V->getType())) &&
725         "SrcValue is not a pointer?");
726
727  SelectionDAGCSEMap::NodeID ID(ISD::SRCVALUE, getVTList(MVT::Other));
728  ID.AddPointer(V);
729  ID.AddInteger(Offset);
730  void *IP = 0;
731  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
732    return SDOperand(E, 0);
733  SDNode *N = new SrcValueSDNode(V, Offset);
734  CSEMap.InsertNode(N, IP);
735  AllNodes.push_back(N);
736  return SDOperand(N, 0);
737}
738
739SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
740                                      SDOperand N2, ISD::CondCode Cond) {
741  // These setcc operations always fold.
742  switch (Cond) {
743  default: break;
744  case ISD::SETFALSE:
745  case ISD::SETFALSE2: return getConstant(0, VT);
746  case ISD::SETTRUE:
747  case ISD::SETTRUE2:  return getConstant(1, VT);
748
749  case ISD::SETOEQ:
750  case ISD::SETOGT:
751  case ISD::SETOGE:
752  case ISD::SETOLT:
753  case ISD::SETOLE:
754  case ISD::SETONE:
755  case ISD::SETO:
756  case ISD::SETUO:
757  case ISD::SETUEQ:
758  case ISD::SETUNE:
759    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
760    break;
761  }
762
763  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
764    uint64_t C2 = N2C->getValue();
765    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
766      uint64_t C1 = N1C->getValue();
767
768      // Sign extend the operands if required
769      if (ISD::isSignedIntSetCC(Cond)) {
770        C1 = N1C->getSignExtended();
771        C2 = N2C->getSignExtended();
772      }
773
774      switch (Cond) {
775      default: assert(0 && "Unknown integer setcc!");
776      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
777      case ISD::SETNE:  return getConstant(C1 != C2, VT);
778      case ISD::SETULT: return getConstant(C1 <  C2, VT);
779      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
780      case ISD::SETULE: return getConstant(C1 <= C2, VT);
781      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
782      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
783      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
784      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
785      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
786      }
787    } else {
788      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
789      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
790        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
791
792        // If the comparison constant has bits in the upper part, the
793        // zero-extended value could never match.
794        if (C2 & (~0ULL << InSize)) {
795          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
796          switch (Cond) {
797          case ISD::SETUGT:
798          case ISD::SETUGE:
799          case ISD::SETEQ: return getConstant(0, VT);
800          case ISD::SETULT:
801          case ISD::SETULE:
802          case ISD::SETNE: return getConstant(1, VT);
803          case ISD::SETGT:
804          case ISD::SETGE:
805            // True if the sign bit of C2 is set.
806            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
807          case ISD::SETLT:
808          case ISD::SETLE:
809            // True if the sign bit of C2 isn't set.
810            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
811          default:
812            break;
813          }
814        }
815
816        // Otherwise, we can perform the comparison with the low bits.
817        switch (Cond) {
818        case ISD::SETEQ:
819        case ISD::SETNE:
820        case ISD::SETUGT:
821        case ISD::SETUGE:
822        case ISD::SETULT:
823        case ISD::SETULE:
824          return getSetCC(VT, N1.getOperand(0),
825                          getConstant(C2, N1.getOperand(0).getValueType()),
826                          Cond);
827        default:
828          break;   // todo, be more careful with signed comparisons
829        }
830      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
831                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
832        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
833        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
834        MVT::ValueType ExtDstTy = N1.getValueType();
835        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
836
837        // If the extended part has any inconsistent bits, it cannot ever
838        // compare equal.  In other words, they have to be all ones or all
839        // zeros.
840        uint64_t ExtBits =
841          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
842        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
843          return getConstant(Cond == ISD::SETNE, VT);
844
845        // Otherwise, make this a use of a zext.
846        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
847                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
848                        Cond);
849      }
850
851      uint64_t MinVal, MaxVal;
852      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
853      if (ISD::isSignedIntSetCC(Cond)) {
854        MinVal = 1ULL << (OperandBitSize-1);
855        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
856          MaxVal = ~0ULL >> (65-OperandBitSize);
857        else
858          MaxVal = 0;
859      } else {
860        MinVal = 0;
861        MaxVal = ~0ULL >> (64-OperandBitSize);
862      }
863
864      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
865      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
866        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
867        --C2;                                          // X >= C1 --> X > (C1-1)
868        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
869                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
870      }
871
872      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
873        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
874        ++C2;                                          // X <= C1 --> X < (C1+1)
875        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
876                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
877      }
878
879      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
880        return getConstant(0, VT);      // X < MIN --> false
881
882      // Canonicalize setgt X, Min --> setne X, Min
883      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
884        return getSetCC(VT, N1, N2, ISD::SETNE);
885
886      // If we have setult X, 1, turn it into seteq X, 0
887      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
888        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
889                        ISD::SETEQ);
890      // If we have setugt X, Max-1, turn it into seteq X, Max
891      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
892        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
893                        ISD::SETEQ);
894
895      // If we have "setcc X, C1", check to see if we can shrink the immediate
896      // by changing cc.
897
898      // SETUGT X, SINTMAX  -> SETLT X, 0
899      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
900          C2 == (~0ULL >> (65-OperandBitSize)))
901        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
902
903      // FIXME: Implement the rest of these.
904
905
906      // Fold bit comparisons when we can.
907      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
908          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
909        if (ConstantSDNode *AndRHS =
910                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
911          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
912            // Perform the xform if the AND RHS is a single bit.
913            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
914              return getNode(ISD::SRL, VT, N1,
915                             getConstant(Log2_64(AndRHS->getValue()),
916                                                   TLI.getShiftAmountTy()));
917            }
918          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
919            // (X & 8) == 8  -->  (X & 8) >> 3
920            // Perform the xform if C2 is a single bit.
921            if ((C2 & (C2-1)) == 0) {
922              return getNode(ISD::SRL, VT, N1,
923                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
924            }
925          }
926        }
927    }
928  } else if (isa<ConstantSDNode>(N1.Val)) {
929      // Ensure that the constant occurs on the RHS.
930    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
931  }
932
933  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
934    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
935      double C1 = N1C->getValue(), C2 = N2C->getValue();
936
937      switch (Cond) {
938      default: break; // FIXME: Implement the rest of these!
939      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
940      case ISD::SETNE:  return getConstant(C1 != C2, VT);
941      case ISD::SETLT:  return getConstant(C1 < C2, VT);
942      case ISD::SETGT:  return getConstant(C1 > C2, VT);
943      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
944      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
945      }
946    } else {
947      // Ensure that the constant occurs on the RHS.
948      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
949    }
950
951  // Could not fold it.
952  return SDOperand();
953}
954
955/// getNode - Gets or creates the specified node.
956///
957SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
958  SelectionDAGCSEMap::NodeID ID(Opcode, getVTList(VT));
959  void *IP = 0;
960  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
961    return SDOperand(E, 0);
962  SDNode *N = new SDNode(Opcode, VT);
963  CSEMap.InsertNode(N, IP);
964
965  AllNodes.push_back(N);
966  return SDOperand(N, 0);
967}
968
969SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
970                                SDOperand Operand) {
971  unsigned Tmp1;
972  // Constant fold unary operations with an integer constant operand.
973  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
974    uint64_t Val = C->getValue();
975    switch (Opcode) {
976    default: break;
977    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
978    case ISD::ANY_EXTEND:
979    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
980    case ISD::TRUNCATE:    return getConstant(Val, VT);
981    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
982    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
983    case ISD::BIT_CONVERT:
984      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
985        return getConstantFP(BitsToFloat(Val), VT);
986      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
987        return getConstantFP(BitsToDouble(Val), VT);
988      break;
989    case ISD::BSWAP:
990      switch(VT) {
991      default: assert(0 && "Invalid bswap!"); break;
992      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
993      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
994      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
995      }
996      break;
997    case ISD::CTPOP:
998      switch(VT) {
999      default: assert(0 && "Invalid ctpop!"); break;
1000      case MVT::i1: return getConstant(Val != 0, VT);
1001      case MVT::i8:
1002        Tmp1 = (unsigned)Val & 0xFF;
1003        return getConstant(CountPopulation_32(Tmp1), VT);
1004      case MVT::i16:
1005        Tmp1 = (unsigned)Val & 0xFFFF;
1006        return getConstant(CountPopulation_32(Tmp1), VT);
1007      case MVT::i32:
1008        return getConstant(CountPopulation_32((unsigned)Val), VT);
1009      case MVT::i64:
1010        return getConstant(CountPopulation_64(Val), VT);
1011      }
1012    case ISD::CTLZ:
1013      switch(VT) {
1014      default: assert(0 && "Invalid ctlz!"); break;
1015      case MVT::i1: return getConstant(Val == 0, VT);
1016      case MVT::i8:
1017        Tmp1 = (unsigned)Val & 0xFF;
1018        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1019      case MVT::i16:
1020        Tmp1 = (unsigned)Val & 0xFFFF;
1021        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1022      case MVT::i32:
1023        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1024      case MVT::i64:
1025        return getConstant(CountLeadingZeros_64(Val), VT);
1026      }
1027    case ISD::CTTZ:
1028      switch(VT) {
1029      default: assert(0 && "Invalid cttz!"); break;
1030      case MVT::i1: return getConstant(Val == 0, VT);
1031      case MVT::i8:
1032        Tmp1 = (unsigned)Val | 0x100;
1033        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1034      case MVT::i16:
1035        Tmp1 = (unsigned)Val | 0x10000;
1036        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1037      case MVT::i32:
1038        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1039      case MVT::i64:
1040        return getConstant(CountTrailingZeros_64(Val), VT);
1041      }
1042    }
1043  }
1044
1045  // Constant fold unary operations with an floating point constant operand.
1046  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1047    switch (Opcode) {
1048    case ISD::FNEG:
1049      return getConstantFP(-C->getValue(), VT);
1050    case ISD::FABS:
1051      return getConstantFP(fabs(C->getValue()), VT);
1052    case ISD::FP_ROUND:
1053    case ISD::FP_EXTEND:
1054      return getConstantFP(C->getValue(), VT);
1055    case ISD::FP_TO_SINT:
1056      return getConstant((int64_t)C->getValue(), VT);
1057    case ISD::FP_TO_UINT:
1058      return getConstant((uint64_t)C->getValue(), VT);
1059    case ISD::BIT_CONVERT:
1060      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1061        return getConstant(FloatToBits(C->getValue()), VT);
1062      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1063        return getConstant(DoubleToBits(C->getValue()), VT);
1064      break;
1065    }
1066
1067  unsigned OpOpcode = Operand.Val->getOpcode();
1068  switch (Opcode) {
1069  case ISD::TokenFactor:
1070    return Operand;         // Factor of one node?  No factor.
1071  case ISD::SIGN_EXTEND:
1072    if (Operand.getValueType() == VT) return Operand;   // noop extension
1073    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1074    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1075      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1076    break;
1077  case ISD::ZERO_EXTEND:
1078    if (Operand.getValueType() == VT) return Operand;   // noop extension
1079    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1080    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1081      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1082    break;
1083  case ISD::ANY_EXTEND:
1084    if (Operand.getValueType() == VT) return Operand;   // noop extension
1085    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1086    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1087      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1088      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1089    break;
1090  case ISD::TRUNCATE:
1091    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1092    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1093    if (OpOpcode == ISD::TRUNCATE)
1094      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1095    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1096             OpOpcode == ISD::ANY_EXTEND) {
1097      // If the source is smaller than the dest, we still need an extend.
1098      if (Operand.Val->getOperand(0).getValueType() < VT)
1099        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1100      else if (Operand.Val->getOperand(0).getValueType() > VT)
1101        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1102      else
1103        return Operand.Val->getOperand(0);
1104    }
1105    break;
1106  case ISD::BIT_CONVERT:
1107    // Basic sanity checking.
1108    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1109           && "Cannot BIT_CONVERT between two different types!");
1110    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1111    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1112      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1113    if (OpOpcode == ISD::UNDEF)
1114      return getNode(ISD::UNDEF, VT);
1115    break;
1116  case ISD::SCALAR_TO_VECTOR:
1117    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1118           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1119           "Illegal SCALAR_TO_VECTOR node!");
1120    break;
1121  case ISD::FNEG:
1122    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1123      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1124                     Operand.Val->getOperand(0));
1125    if (OpOpcode == ISD::FNEG)  // --X -> X
1126      return Operand.Val->getOperand(0);
1127    break;
1128  case ISD::FABS:
1129    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1130      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1131    break;
1132  }
1133
1134  SDNode *N;
1135  SDVTList VTs = getVTList(VT);
1136  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1137    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Operand);
1138    void *IP = 0;
1139    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1140      return SDOperand(E, 0);
1141    N = new SDNode(Opcode, Operand);
1142    N->setValueTypes(VTs);
1143    CSEMap.InsertNode(N, IP);
1144  } else {
1145    N = new SDNode(Opcode, Operand);
1146    N->setValueTypes(VTs);
1147  }
1148  AllNodes.push_back(N);
1149  return SDOperand(N, 0);
1150}
1151
1152
1153
1154SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1155                                SDOperand N1, SDOperand N2) {
1156#ifndef NDEBUG
1157  switch (Opcode) {
1158  case ISD::TokenFactor:
1159    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1160           N2.getValueType() == MVT::Other && "Invalid token factor!");
1161    break;
1162  case ISD::AND:
1163  case ISD::OR:
1164  case ISD::XOR:
1165  case ISD::UDIV:
1166  case ISD::UREM:
1167  case ISD::MULHU:
1168  case ISD::MULHS:
1169    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1170    // fall through
1171  case ISD::ADD:
1172  case ISD::SUB:
1173  case ISD::MUL:
1174  case ISD::SDIV:
1175  case ISD::SREM:
1176    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1177    // fall through.
1178  case ISD::FADD:
1179  case ISD::FSUB:
1180  case ISD::FMUL:
1181  case ISD::FDIV:
1182  case ISD::FREM:
1183    assert(N1.getValueType() == N2.getValueType() &&
1184           N1.getValueType() == VT && "Binary operator types must match!");
1185    break;
1186  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1187    assert(N1.getValueType() == VT &&
1188           MVT::isFloatingPoint(N1.getValueType()) &&
1189           MVT::isFloatingPoint(N2.getValueType()) &&
1190           "Invalid FCOPYSIGN!");
1191    break;
1192  case ISD::SHL:
1193  case ISD::SRA:
1194  case ISD::SRL:
1195  case ISD::ROTL:
1196  case ISD::ROTR:
1197    assert(VT == N1.getValueType() &&
1198           "Shift operators return type must be the same as their first arg");
1199    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1200           VT != MVT::i1 && "Shifts only work on integers");
1201    break;
1202  case ISD::FP_ROUND_INREG: {
1203    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1204    assert(VT == N1.getValueType() && "Not an inreg round!");
1205    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1206           "Cannot FP_ROUND_INREG integer types");
1207    assert(EVT <= VT && "Not rounding down!");
1208    break;
1209  }
1210  case ISD::AssertSext:
1211  case ISD::AssertZext:
1212  case ISD::SIGN_EXTEND_INREG: {
1213    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1214    assert(VT == N1.getValueType() && "Not an inreg extend!");
1215    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1216           "Cannot *_EXTEND_INREG FP types");
1217    assert(EVT <= VT && "Not extending!");
1218  }
1219
1220  default: break;
1221  }
1222#endif
1223
1224  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1225  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1226  if (N1C) {
1227    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1228      int64_t Val = N1C->getValue();
1229      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1230      Val <<= 64-FromBits;
1231      Val >>= 64-FromBits;
1232      return getConstant(Val, VT);
1233    }
1234
1235    if (N2C) {
1236      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1237      switch (Opcode) {
1238      case ISD::ADD: return getConstant(C1 + C2, VT);
1239      case ISD::SUB: return getConstant(C1 - C2, VT);
1240      case ISD::MUL: return getConstant(C1 * C2, VT);
1241      case ISD::UDIV:
1242        if (C2) return getConstant(C1 / C2, VT);
1243        break;
1244      case ISD::UREM :
1245        if (C2) return getConstant(C1 % C2, VT);
1246        break;
1247      case ISD::SDIV :
1248        if (C2) return getConstant(N1C->getSignExtended() /
1249                                   N2C->getSignExtended(), VT);
1250        break;
1251      case ISD::SREM :
1252        if (C2) return getConstant(N1C->getSignExtended() %
1253                                   N2C->getSignExtended(), VT);
1254        break;
1255      case ISD::AND  : return getConstant(C1 & C2, VT);
1256      case ISD::OR   : return getConstant(C1 | C2, VT);
1257      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1258      case ISD::SHL  : return getConstant(C1 << C2, VT);
1259      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1260      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1261      case ISD::ROTL :
1262        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1263                           VT);
1264      case ISD::ROTR :
1265        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1266                           VT);
1267      default: break;
1268      }
1269    } else {      // Cannonicalize constant to RHS if commutative
1270      if (isCommutativeBinOp(Opcode)) {
1271        std::swap(N1C, N2C);
1272        std::swap(N1, N2);
1273      }
1274    }
1275  }
1276
1277  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1278  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1279  if (N1CFP) {
1280    if (N2CFP) {
1281      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1282      switch (Opcode) {
1283      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1284      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1285      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1286      case ISD::FDIV:
1287        if (C2) return getConstantFP(C1 / C2, VT);
1288        break;
1289      case ISD::FREM :
1290        if (C2) return getConstantFP(fmod(C1, C2), VT);
1291        break;
1292      case ISD::FCOPYSIGN: {
1293        union {
1294          double   F;
1295          uint64_t I;
1296        } u1;
1297        union {
1298          double  F;
1299          int64_t I;
1300        } u2;
1301        u1.F = C1;
1302        u2.F = C2;
1303        if (u2.I < 0)  // Sign bit of RHS set?
1304          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1305        else
1306          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1307        return getConstantFP(u1.F, VT);
1308      }
1309      default: break;
1310      }
1311    } else {      // Cannonicalize constant to RHS if commutative
1312      if (isCommutativeBinOp(Opcode)) {
1313        std::swap(N1CFP, N2CFP);
1314        std::swap(N1, N2);
1315      }
1316    }
1317  }
1318
1319  // Canonicalize an UNDEF to the RHS, even over a constant.
1320  if (N1.getOpcode() == ISD::UNDEF) {
1321    if (isCommutativeBinOp(Opcode)) {
1322      std::swap(N1, N2);
1323    } else {
1324      switch (Opcode) {
1325      case ISD::FP_ROUND_INREG:
1326      case ISD::SIGN_EXTEND_INREG:
1327      case ISD::SUB:
1328      case ISD::FSUB:
1329      case ISD::FDIV:
1330      case ISD::FREM:
1331      case ISD::SRA:
1332        return N1;     // fold op(undef, arg2) -> undef
1333      case ISD::UDIV:
1334      case ISD::SDIV:
1335      case ISD::UREM:
1336      case ISD::SREM:
1337      case ISD::SRL:
1338      case ISD::SHL:
1339        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1340      }
1341    }
1342  }
1343
1344  // Fold a bunch of operators when the RHS is undef.
1345  if (N2.getOpcode() == ISD::UNDEF) {
1346    switch (Opcode) {
1347    case ISD::ADD:
1348    case ISD::SUB:
1349    case ISD::FADD:
1350    case ISD::FSUB:
1351    case ISD::FMUL:
1352    case ISD::FDIV:
1353    case ISD::FREM:
1354    case ISD::UDIV:
1355    case ISD::SDIV:
1356    case ISD::UREM:
1357    case ISD::SREM:
1358    case ISD::XOR:
1359      return N2;       // fold op(arg1, undef) -> undef
1360    case ISD::MUL:
1361    case ISD::AND:
1362    case ISD::SRL:
1363    case ISD::SHL:
1364      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1365    case ISD::OR:
1366      return getConstant(MVT::getIntVTBitMask(VT), VT);
1367    case ISD::SRA:
1368      return N1;
1369    }
1370  }
1371
1372  // Finally, fold operations that do not require constants.
1373  switch (Opcode) {
1374  case ISD::FP_ROUND_INREG:
1375    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1376    break;
1377  case ISD::SIGN_EXTEND_INREG: {
1378    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1379    if (EVT == VT) return N1;  // Not actually extending
1380    break;
1381  }
1382  case ISD::EXTRACT_ELEMENT:
1383    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1384
1385    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
1386    // 64-bit integers into 32-bit parts.  Instead of building the extract of
1387    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
1388    if (N1.getOpcode() == ISD::BUILD_PAIR)
1389      return N1.getOperand(N2C->getValue());
1390
1391    // EXTRACT_ELEMENT of a constant int is also very common.
1392    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
1393      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
1394      return getConstant(C->getValue() >> Shift, VT);
1395    }
1396    break;
1397
1398  // FIXME: figure out how to safely handle things like
1399  // int foo(int x) { return 1 << (x & 255); }
1400  // int bar() { return foo(256); }
1401#if 0
1402  case ISD::SHL:
1403  case ISD::SRL:
1404  case ISD::SRA:
1405    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1406        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1407      return getNode(Opcode, VT, N1, N2.getOperand(0));
1408    else if (N2.getOpcode() == ISD::AND)
1409      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1410        // If the and is only masking out bits that cannot effect the shift,
1411        // eliminate the and.
1412        unsigned NumBits = MVT::getSizeInBits(VT);
1413        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1414          return getNode(Opcode, VT, N1, N2.getOperand(0));
1415      }
1416    break;
1417#endif
1418  }
1419
1420  // Memoize this node if possible.
1421  SDNode *N;
1422  SDVTList VTs = getVTList(VT);
1423  if (VT != MVT::Flag) {
1424    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2);
1425    void *IP = 0;
1426    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1427      return SDOperand(E, 0);
1428    N = new SDNode(Opcode, N1, N2);
1429    N->setValueTypes(VTs);
1430    CSEMap.InsertNode(N, IP);
1431  } else {
1432    N = new SDNode(Opcode, N1, N2);
1433    N->setValueTypes(VTs);
1434  }
1435
1436  AllNodes.push_back(N);
1437  return SDOperand(N, 0);
1438}
1439
1440SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1441                                SDOperand N1, SDOperand N2, SDOperand N3) {
1442  // Perform various simplifications.
1443  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1444  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1445  //ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1446  switch (Opcode) {
1447  case ISD::SETCC: {
1448    // Use SimplifySetCC  to simplify SETCC's.
1449    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1450    if (Simp.Val) return Simp;
1451    break;
1452  }
1453  case ISD::SELECT:
1454    if (N1C)
1455      if (N1C->getValue())
1456        return N2;             // select true, X, Y -> X
1457      else
1458        return N3;             // select false, X, Y -> Y
1459
1460    if (N2 == N3) return N2;   // select C, X, X -> X
1461    break;
1462  case ISD::BRCOND:
1463    if (N2C)
1464      if (N2C->getValue()) // Unconditional branch
1465        return getNode(ISD::BR, MVT::Other, N1, N3);
1466      else
1467        return N1;         // Never-taken branch
1468    break;
1469  case ISD::VECTOR_SHUFFLE:
1470    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1471           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1472           N3.getOpcode() == ISD::BUILD_VECTOR &&
1473           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1474           "Illegal VECTOR_SHUFFLE node!");
1475    break;
1476  }
1477
1478  // Memoize node if it doesn't produce a flag.
1479  SDNode *N;
1480  SDVTList VTs = getVTList(VT);
1481  if (VT != MVT::Flag) {
1482    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2, N3);
1483    void *IP = 0;
1484    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1485      return SDOperand(E, 0);
1486    N = new SDNode(Opcode, N1, N2, N3);
1487    N->setValueTypes(VTs);
1488    CSEMap.InsertNode(N, IP);
1489  } else {
1490    N = new SDNode(Opcode, N1, N2, N3);
1491    N->setValueTypes(VTs);
1492  }
1493  AllNodes.push_back(N);
1494  return SDOperand(N, 0);
1495}
1496
1497SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1498                                SDOperand N1, SDOperand N2, SDOperand N3,
1499                                SDOperand N4) {
1500  SDOperand Ops[] = { N1, N2, N3, N4 };
1501  return getNode(Opcode, VT, Ops, 4);
1502}
1503
1504SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1505                                SDOperand N1, SDOperand N2, SDOperand N3,
1506                                SDOperand N4, SDOperand N5) {
1507  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1508  return getNode(Opcode, VT, Ops, 5);
1509}
1510
1511SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1512                                SDOperand Chain, SDOperand Ptr,
1513                                const Value *SV, int SVOffset,
1514                                bool isVolatile) {
1515  // FIXME: Alignment == 1 for now.
1516  unsigned Alignment = 1;
1517  SDVTList VTs = getVTList(VT, MVT::Other);
1518  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1519  SelectionDAGCSEMap::NodeID ID(ISD::LOAD, VTs, Chain, Ptr, Undef);
1520  ID.AddInteger(ISD::UNINDEXED);
1521  ID.AddInteger(ISD::NON_EXTLOAD);
1522  ID.AddInteger(VT);
1523  ID.AddPointer(SV);
1524  ID.AddInteger(SVOffset);
1525  ID.AddInteger(Alignment);
1526  ID.AddInteger(isVolatile);
1527  void *IP = 0;
1528  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1529    return SDOperand(E, 0);
1530  SDNode *N = new LoadSDNode(Chain, Ptr, Undef, ISD::UNINDEXED,
1531                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
1532                             isVolatile);
1533  N->setValueTypes(VTs);
1534  CSEMap.InsertNode(N, IP);
1535  AllNodes.push_back(N);
1536  return SDOperand(N, 0);
1537}
1538
1539SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
1540                                   SDOperand Chain, SDOperand Ptr, const Value *SV,
1541                                   int SVOffset, MVT::ValueType EVT,
1542                                   bool isVolatile) {
1543  // If they are asking for an extending load from/to the same thing, return a
1544  // normal load.
1545  if (VT == EVT)
1546    ExtType = ISD::NON_EXTLOAD;
1547
1548  if (MVT::isVector(VT))
1549    assert(EVT == MVT::getVectorBaseType(VT) && "Invalid vector extload!");
1550  else
1551    assert(EVT < VT && "Should only be an extending load, not truncating!");
1552  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
1553         "Cannot sign/zero extend a FP/Vector load!");
1554  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
1555         "Cannot convert from FP to Int or Int -> FP!");
1556
1557  // FIXME: Alignment == 1 for now.
1558  unsigned Alignment = 1;
1559  SDVTList VTs = getVTList(VT, MVT::Other);
1560  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1561  SelectionDAGCSEMap::NodeID ID(ISD::LOAD, VTs, Chain, Ptr, Undef);
1562  ID.AddInteger(ISD::UNINDEXED);
1563  ID.AddInteger(ExtType);
1564  ID.AddInteger(EVT);
1565  ID.AddPointer(SV);
1566  ID.AddInteger(SVOffset);
1567  ID.AddInteger(Alignment);
1568  ID.AddInteger(isVolatile);
1569  void *IP = 0;
1570  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1571    return SDOperand(E, 0);
1572  SDNode *N = new LoadSDNode(Chain, Ptr, Undef, ISD::UNINDEXED, ExtType, EVT,
1573                             SV, SVOffset, Alignment, isVolatile);
1574  N->setValueTypes(VTs);
1575  CSEMap.InsertNode(N, IP);
1576  AllNodes.push_back(N);
1577  return SDOperand(N, 0);
1578}
1579
1580SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1581                                   SDOperand Chain, SDOperand Ptr,
1582                                   SDOperand SV) {
1583  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1584                      getValueType(EVT) };
1585  return getNode(ISD::VLOAD, getVTList(MVT::Vector, MVT::Other), Ops, 5);
1586}
1587
1588SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Value,
1589                                 SDOperand Ptr, const Value *SV, int SVOffset,
1590                                 bool isVolatile) {
1591  MVT::ValueType VT = Value.getValueType();
1592
1593  // FIXME: Alignment == 1 for now.
1594  unsigned Alignment = 1;
1595  SDVTList VTs = getVTList(MVT::Other);
1596  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1597  SDOperand Ops[] = { Chain, Value, Ptr, Undef };
1598  SelectionDAGCSEMap::NodeID ID(ISD::STORE, VTs, Ops, 4);
1599  ID.AddInteger(ISD::UNINDEXED);
1600  ID.AddInteger(false);
1601  ID.AddInteger(VT);
1602  ID.AddPointer(SV);
1603  ID.AddInteger(SVOffset);
1604  ID.AddInteger(Alignment);
1605  ID.AddInteger(isVolatile);
1606  void *IP = 0;
1607  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1608    return SDOperand(E, 0);
1609  SDNode *N = new StoreSDNode(Chain, Value, Ptr, Undef, ISD::UNINDEXED, false,
1610                              VT, SV, SVOffset, Alignment, isVolatile);
1611  N->setValueTypes(VTs);
1612  CSEMap.InsertNode(N, IP);
1613  AllNodes.push_back(N);
1614  return SDOperand(N, 0);
1615}
1616
1617SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Value,
1618                                      SDOperand Ptr, const Value *SV,
1619                                      int SVOffset, MVT::ValueType SVT,
1620                                      bool isVolatile) {
1621  MVT::ValueType VT = Value.getValueType();
1622  bool isTrunc = VT != SVT;
1623
1624  assert(VT > SVT && "Not a truncation?");
1625  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
1626         "Can't do FP-INT conversion!");
1627
1628  // FIXME: Alignment == 1 for now.
1629  unsigned Alignment = 1;
1630  SDVTList VTs = getVTList(MVT::Other);
1631  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1632  SDOperand Ops[] = { Chain, Value, Ptr, Undef };
1633  SelectionDAGCSEMap::NodeID ID(ISD::STORE, VTs, Ops, 4);
1634  ID.AddInteger(ISD::UNINDEXED);
1635  ID.AddInteger(isTrunc);
1636  ID.AddInteger(SVT);
1637  ID.AddPointer(SV);
1638  ID.AddInteger(SVOffset);
1639  ID.AddInteger(Alignment);
1640  ID.AddInteger(isVolatile);
1641  void *IP = 0;
1642  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1643    return SDOperand(E, 0);
1644  SDNode *N = new StoreSDNode(Chain, Value, Ptr, Undef, ISD::UNINDEXED, isTrunc,
1645                              SVT, SV, SVOffset, Alignment, isVolatile);
1646  N->setValueTypes(VTs);
1647  CSEMap.InsertNode(N, IP);
1648  AllNodes.push_back(N);
1649  return SDOperand(N, 0);
1650}
1651
1652SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1653                                 SDOperand Chain, SDOperand Ptr,
1654                                 SDOperand SV) {
1655  SDOperand Ops[] = { Chain, Ptr, SV };
1656  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
1657}
1658
1659SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1660                                const SDOperand *Ops, unsigned NumOps) {
1661  switch (NumOps) {
1662  case 0: return getNode(Opcode, VT);
1663  case 1: return getNode(Opcode, VT, Ops[0]);
1664  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1665  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1666  default: break;
1667  }
1668
1669  switch (Opcode) {
1670  default: break;
1671  case ISD::SELECT_CC: {
1672    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1673    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1674           "LHS and RHS of condition must have same type!");
1675    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1676           "True and False arms of SelectCC must have same type!");
1677    assert(Ops[2].getValueType() == VT &&
1678           "select_cc node must be of same type as true and false value!");
1679    break;
1680  }
1681  case ISD::BR_CC: {
1682    assert(NumOps == 5 && "BR_CC takes 5 operands!");
1683    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1684           "LHS/RHS of comparison should match types!");
1685    break;
1686  }
1687  }
1688
1689  // Memoize nodes.
1690  SDNode *N;
1691  SDVTList VTs = getVTList(VT);
1692  if (VT != MVT::Flag) {
1693    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Ops, NumOps);
1694    void *IP = 0;
1695    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1696      return SDOperand(E, 0);
1697    N = new SDNode(Opcode, Ops, NumOps);
1698    N->setValueTypes(VTs);
1699    CSEMap.InsertNode(N, IP);
1700  } else {
1701    N = new SDNode(Opcode, Ops, NumOps);
1702    N->setValueTypes(VTs);
1703  }
1704  AllNodes.push_back(N);
1705  return SDOperand(N, 0);
1706}
1707
1708SDOperand SelectionDAG::getNode(unsigned Opcode,
1709                                std::vector<MVT::ValueType> &ResultTys,
1710                                const SDOperand *Ops, unsigned NumOps) {
1711  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
1712                 Ops, NumOps);
1713}
1714
1715SDOperand SelectionDAG::getNode(unsigned Opcode,
1716                                const MVT::ValueType *VTs, unsigned NumVTs,
1717                                const SDOperand *Ops, unsigned NumOps) {
1718  if (NumVTs == 1)
1719    return getNode(Opcode, VTs[0], Ops, NumOps);
1720  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
1721}
1722
1723SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
1724                                const SDOperand *Ops, unsigned NumOps) {
1725  if (VTList.NumVTs == 1)
1726    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
1727
1728  switch (Opcode) {
1729  // FIXME: figure out how to safely handle things like
1730  // int foo(int x) { return 1 << (x & 255); }
1731  // int bar() { return foo(256); }
1732#if 0
1733  case ISD::SRA_PARTS:
1734  case ISD::SRL_PARTS:
1735  case ISD::SHL_PARTS:
1736    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1737        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1738      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1739    else if (N3.getOpcode() == ISD::AND)
1740      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1741        // If the and is only masking out bits that cannot effect the shift,
1742        // eliminate the and.
1743        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1744        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1745          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1746      }
1747    break;
1748#endif
1749  }
1750
1751  // Memoize the node unless it returns a flag.
1752  SDNode *N;
1753  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
1754    SelectionDAGCSEMap::NodeID ID;
1755    ID.SetOpcode(Opcode);
1756    ID.SetValueTypes(VTList);
1757    ID.SetOperands(&Ops[0], NumOps);
1758    void *IP = 0;
1759    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1760      return SDOperand(E, 0);
1761    N = new SDNode(Opcode, Ops, NumOps);
1762    N->setValueTypes(VTList);
1763    CSEMap.InsertNode(N, IP);
1764  } else {
1765    N = new SDNode(Opcode, Ops, NumOps);
1766    N->setValueTypes(VTList);
1767  }
1768  AllNodes.push_back(N);
1769  return SDOperand(N, 0);
1770}
1771
1772SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
1773  return makeVTList(SDNode::getValueTypeList(VT), 1);
1774}
1775
1776SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
1777  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1778       E = VTList.end(); I != E; ++I) {
1779    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1780      return makeVTList(&(*I)[0], 2);
1781  }
1782  std::vector<MVT::ValueType> V;
1783  V.push_back(VT1);
1784  V.push_back(VT2);
1785  VTList.push_front(V);
1786  return makeVTList(&(*VTList.begin())[0], 2);
1787}
1788SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
1789                                 MVT::ValueType VT3) {
1790  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1791       E = VTList.end(); I != E; ++I) {
1792    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
1793        (*I)[2] == VT3)
1794      return makeVTList(&(*I)[0], 3);
1795  }
1796  std::vector<MVT::ValueType> V;
1797  V.push_back(VT1);
1798  V.push_back(VT2);
1799  V.push_back(VT3);
1800  VTList.push_front(V);
1801  return makeVTList(&(*VTList.begin())[0], 3);
1802}
1803
1804SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
1805  switch (NumVTs) {
1806    case 0: assert(0 && "Cannot have nodes without results!");
1807    case 1: return makeVTList(SDNode::getValueTypeList(VTs[0]), 1);
1808    case 2: return getVTList(VTs[0], VTs[1]);
1809    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
1810    default: break;
1811  }
1812
1813  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1814       E = VTList.end(); I != E; ++I) {
1815    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
1816
1817    bool NoMatch = false;
1818    for (unsigned i = 2; i != NumVTs; ++i)
1819      if (VTs[i] != (*I)[i]) {
1820        NoMatch = true;
1821        break;
1822      }
1823    if (!NoMatch)
1824      return makeVTList(&*I->begin(), NumVTs);
1825  }
1826
1827  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
1828  return makeVTList(&*VTList.begin()->begin(), NumVTs);
1829}
1830
1831
1832/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1833/// specified operands.  If the resultant node already exists in the DAG,
1834/// this does not modify the specified node, instead it returns the node that
1835/// already exists.  If the resultant node does not exist in the DAG, the
1836/// input node is returned.  As a degenerate case, if you specify the same
1837/// input operands as the node already has, the input node is returned.
1838SDOperand SelectionDAG::
1839UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1840  SDNode *N = InN.Val;
1841  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1842
1843  // Check to see if there is no change.
1844  if (Op == N->getOperand(0)) return InN;
1845
1846  // See if the modified node already exists.
1847  void *InsertPos = 0;
1848  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1849    return SDOperand(Existing, InN.ResNo);
1850
1851  // Nope it doesn't.  Remove the node from it's current place in the maps.
1852  if (InsertPos)
1853    RemoveNodeFromCSEMaps(N);
1854
1855  // Now we update the operands.
1856  N->OperandList[0].Val->removeUser(N);
1857  Op.Val->addUser(N);
1858  N->OperandList[0] = Op;
1859
1860  // If this gets put into a CSE map, add it.
1861  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1862  return InN;
1863}
1864
1865SDOperand SelectionDAG::
1866UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1867  SDNode *N = InN.Val;
1868  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1869
1870  // Check to see if there is no change.
1871  bool AnyChange = false;
1872  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1873    return InN;   // No operands changed, just return the input node.
1874
1875  // See if the modified node already exists.
1876  void *InsertPos = 0;
1877  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
1878    return SDOperand(Existing, InN.ResNo);
1879
1880  // Nope it doesn't.  Remove the node from it's current place in the maps.
1881  if (InsertPos)
1882    RemoveNodeFromCSEMaps(N);
1883
1884  // Now we update the operands.
1885  if (N->OperandList[0] != Op1) {
1886    N->OperandList[0].Val->removeUser(N);
1887    Op1.Val->addUser(N);
1888    N->OperandList[0] = Op1;
1889  }
1890  if (N->OperandList[1] != Op2) {
1891    N->OperandList[1].Val->removeUser(N);
1892    Op2.Val->addUser(N);
1893    N->OperandList[1] = Op2;
1894  }
1895
1896  // If this gets put into a CSE map, add it.
1897  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1898  return InN;
1899}
1900
1901SDOperand SelectionDAG::
1902UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1903  SDOperand Ops[] = { Op1, Op2, Op3 };
1904  return UpdateNodeOperands(N, Ops, 3);
1905}
1906
1907SDOperand SelectionDAG::
1908UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1909                   SDOperand Op3, SDOperand Op4) {
1910  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
1911  return UpdateNodeOperands(N, Ops, 4);
1912}
1913
1914SDOperand SelectionDAG::
1915UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1916                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1917  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
1918  return UpdateNodeOperands(N, Ops, 5);
1919}
1920
1921
1922SDOperand SelectionDAG::
1923UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
1924  SDNode *N = InN.Val;
1925  assert(N->getNumOperands() == NumOps &&
1926         "Update with wrong number of operands");
1927
1928  // Check to see if there is no change.
1929  bool AnyChange = false;
1930  for (unsigned i = 0; i != NumOps; ++i) {
1931    if (Ops[i] != N->getOperand(i)) {
1932      AnyChange = true;
1933      break;
1934    }
1935  }
1936
1937  // No operands changed, just return the input node.
1938  if (!AnyChange) return InN;
1939
1940  // See if the modified node already exists.
1941  void *InsertPos = 0;
1942  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
1943    return SDOperand(Existing, InN.ResNo);
1944
1945  // Nope it doesn't.  Remove the node from it's current place in the maps.
1946  if (InsertPos)
1947    RemoveNodeFromCSEMaps(N);
1948
1949  // Now we update the operands.
1950  for (unsigned i = 0; i != NumOps; ++i) {
1951    if (N->OperandList[i] != Ops[i]) {
1952      N->OperandList[i].Val->removeUser(N);
1953      Ops[i].Val->addUser(N);
1954      N->OperandList[i] = Ops[i];
1955    }
1956  }
1957
1958  // If this gets put into a CSE map, add it.
1959  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1960  return InN;
1961}
1962
1963
1964
1965
1966/// SelectNodeTo - These are used for target selectors to *mutate* the
1967/// specified node to have the specified return type, Target opcode, and
1968/// operands.  Note that target opcodes are stored as
1969/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1970///
1971/// Note that SelectNodeTo returns the resultant node.  If there is already a
1972/// node of the specified opcode and operands, it returns that node instead of
1973/// the current one.
1974SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1975                                   MVT::ValueType VT) {
1976  SDVTList VTs = getVTList(VT);
1977  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1978  void *IP = 0;
1979  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1980    return ON;
1981
1982  RemoveNodeFromCSEMaps(N);
1983
1984  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1985  N->setValueTypes(VTs);
1986
1987  CSEMap.InsertNode(N, IP);
1988  return N;
1989}
1990
1991SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1992                                   MVT::ValueType VT, SDOperand Op1) {
1993  // If an identical node already exists, use it.
1994  SDVTList VTs = getVTList(VT);
1995  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1);
1996  void *IP = 0;
1997  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1998    return ON;
1999
2000  RemoveNodeFromCSEMaps(N);
2001  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2002  N->setValueTypes(VTs);
2003  N->setOperands(Op1);
2004  CSEMap.InsertNode(N, IP);
2005  return N;
2006}
2007
2008SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2009                                   MVT::ValueType VT, SDOperand Op1,
2010                                   SDOperand Op2) {
2011  // If an identical node already exists, use it.
2012  SDVTList VTs = getVTList(VT);
2013  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
2014  void *IP = 0;
2015  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2016    return ON;
2017
2018  RemoveNodeFromCSEMaps(N);
2019  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2020  N->setValueTypes(VTs);
2021  N->setOperands(Op1, Op2);
2022
2023  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2024  return N;
2025}
2026
2027SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2028                                   MVT::ValueType VT, SDOperand Op1,
2029                                   SDOperand Op2, SDOperand Op3) {
2030  // If an identical node already exists, use it.
2031  SDVTList VTs = getVTList(VT);
2032  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs,
2033                                Op1, Op2, Op3);
2034  void *IP = 0;
2035  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2036    return ON;
2037
2038  RemoveNodeFromCSEMaps(N);
2039  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2040  N->setValueTypes(VTs);
2041  N->setOperands(Op1, Op2, Op3);
2042
2043  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2044  return N;
2045}
2046
2047SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2048                                   MVT::ValueType VT, const SDOperand *Ops,
2049                                   unsigned NumOps) {
2050  // If an identical node already exists, use it.
2051  SDVTList VTs = getVTList(VT);
2052  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2053  for (unsigned i = 0; i != NumOps; ++i)
2054    ID.AddOperand(Ops[i]);
2055  void *IP = 0;
2056  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2057    return ON;
2058
2059  RemoveNodeFromCSEMaps(N);
2060  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2061  N->setValueTypes(VTs);
2062  N->setOperands(Ops, NumOps);
2063
2064  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2065  return N;
2066}
2067
2068SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2069                                   MVT::ValueType VT1, MVT::ValueType VT2,
2070                                   SDOperand Op1, SDOperand Op2) {
2071  SDVTList VTs = getVTList(VT1, VT2);
2072  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
2073  void *IP = 0;
2074  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2075    return ON;
2076
2077  RemoveNodeFromCSEMaps(N);
2078  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2079  N->setValueTypes(VTs);
2080  N->setOperands(Op1, Op2);
2081
2082  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2083  return N;
2084}
2085
2086SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2087                                   MVT::ValueType VT1, MVT::ValueType VT2,
2088                                   SDOperand Op1, SDOperand Op2,
2089                                   SDOperand Op3) {
2090  // If an identical node already exists, use it.
2091  SDVTList VTs = getVTList(VT1, VT2);
2092  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs,
2093                                Op1, Op2, Op3);
2094  void *IP = 0;
2095  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2096    return ON;
2097
2098  RemoveNodeFromCSEMaps(N);
2099  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2100  N->setValueTypes(VTs);
2101  N->setOperands(Op1, Op2, Op3);
2102
2103  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2104  return N;
2105}
2106
2107
2108/// getTargetNode - These are used for target selectors to create a new node
2109/// with specified return type(s), target opcode, and operands.
2110///
2111/// Note that getTargetNode returns the resultant node.  If there is already a
2112/// node of the specified opcode and operands, it returns that node instead of
2113/// the current one.
2114SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2115  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2116}
2117SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2118                                    SDOperand Op1) {
2119  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2120}
2121SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2122                                    SDOperand Op1, SDOperand Op2) {
2123  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2124}
2125SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2126                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2127  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2128}
2129SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2130                                    const SDOperand *Ops, unsigned NumOps) {
2131  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2132}
2133SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2134                                    MVT::ValueType VT2, SDOperand Op1) {
2135  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2136  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2137}
2138SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2139                                    MVT::ValueType VT2, SDOperand Op1,
2140                                    SDOperand Op2) {
2141  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2142  SDOperand Ops[] = { Op1, Op2 };
2143  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2144}
2145SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2146                                    MVT::ValueType VT2, SDOperand Op1,
2147                                    SDOperand Op2, SDOperand Op3) {
2148  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2149  SDOperand Ops[] = { Op1, Op2, Op3 };
2150  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2151}
2152SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2153                                    MVT::ValueType VT2,
2154                                    const SDOperand *Ops, unsigned NumOps) {
2155  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2156  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2157}
2158SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2159                                    MVT::ValueType VT2, MVT::ValueType VT3,
2160                                    SDOperand Op1, SDOperand Op2) {
2161  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2162  SDOperand Ops[] = { Op1, Op2 };
2163  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2164}
2165SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2166                                    MVT::ValueType VT2, MVT::ValueType VT3,
2167                                    const SDOperand *Ops, unsigned NumOps) {
2168  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2169  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2170}
2171
2172/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2173/// This can cause recursive merging of nodes in the DAG.
2174///
2175/// This version assumes From/To have a single result value.
2176///
2177void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2178                                      std::vector<SDNode*> *Deleted) {
2179  SDNode *From = FromN.Val, *To = ToN.Val;
2180  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2181         "Cannot replace with this method!");
2182  assert(From != To && "Cannot replace uses of with self");
2183
2184  while (!From->use_empty()) {
2185    // Process users until they are all gone.
2186    SDNode *U = *From->use_begin();
2187
2188    // This node is about to morph, remove its old self from the CSE maps.
2189    RemoveNodeFromCSEMaps(U);
2190
2191    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2192         I != E; ++I)
2193      if (I->Val == From) {
2194        From->removeUser(U);
2195        I->Val = To;
2196        To->addUser(U);
2197      }
2198
2199    // Now that we have modified U, add it back to the CSE maps.  If it already
2200    // exists there, recursively merge the results together.
2201    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2202      ReplaceAllUsesWith(U, Existing, Deleted);
2203      // U is now dead.
2204      if (Deleted) Deleted->push_back(U);
2205      DeleteNodeNotInCSEMaps(U);
2206    }
2207  }
2208}
2209
2210/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2211/// This can cause recursive merging of nodes in the DAG.
2212///
2213/// This version assumes From/To have matching types and numbers of result
2214/// values.
2215///
2216void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2217                                      std::vector<SDNode*> *Deleted) {
2218  assert(From != To && "Cannot replace uses of with self");
2219  assert(From->getNumValues() == To->getNumValues() &&
2220         "Cannot use this version of ReplaceAllUsesWith!");
2221  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2222    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2223    return;
2224  }
2225
2226  while (!From->use_empty()) {
2227    // Process users until they are all gone.
2228    SDNode *U = *From->use_begin();
2229
2230    // This node is about to morph, remove its old self from the CSE maps.
2231    RemoveNodeFromCSEMaps(U);
2232
2233    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2234         I != E; ++I)
2235      if (I->Val == From) {
2236        From->removeUser(U);
2237        I->Val = To;
2238        To->addUser(U);
2239      }
2240
2241    // Now that we have modified U, add it back to the CSE maps.  If it already
2242    // exists there, recursively merge the results together.
2243    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2244      ReplaceAllUsesWith(U, Existing, Deleted);
2245      // U is now dead.
2246      if (Deleted) Deleted->push_back(U);
2247      DeleteNodeNotInCSEMaps(U);
2248    }
2249  }
2250}
2251
2252/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2253/// This can cause recursive merging of nodes in the DAG.
2254///
2255/// This version can replace From with any result values.  To must match the
2256/// number and types of values returned by From.
2257void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2258                                      const SDOperand *To,
2259                                      std::vector<SDNode*> *Deleted) {
2260  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
2261    // Degenerate case handled above.
2262    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2263    return;
2264  }
2265
2266  while (!From->use_empty()) {
2267    // Process users until they are all gone.
2268    SDNode *U = *From->use_begin();
2269
2270    // This node is about to morph, remove its old self from the CSE maps.
2271    RemoveNodeFromCSEMaps(U);
2272
2273    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2274         I != E; ++I)
2275      if (I->Val == From) {
2276        const SDOperand &ToOp = To[I->ResNo];
2277        From->removeUser(U);
2278        *I = ToOp;
2279        ToOp.Val->addUser(U);
2280      }
2281
2282    // Now that we have modified U, add it back to the CSE maps.  If it already
2283    // exists there, recursively merge the results together.
2284    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2285      ReplaceAllUsesWith(U, Existing, Deleted);
2286      // U is now dead.
2287      if (Deleted) Deleted->push_back(U);
2288      DeleteNodeNotInCSEMaps(U);
2289    }
2290  }
2291}
2292
2293/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2294/// uses of other values produced by From.Val alone.  The Deleted vector is
2295/// handled the same was as for ReplaceAllUsesWith.
2296void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2297                                             std::vector<SDNode*> &Deleted) {
2298  assert(From != To && "Cannot replace a value with itself");
2299  // Handle the simple, trivial, case efficiently.
2300  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2301    ReplaceAllUsesWith(From, To, &Deleted);
2302    return;
2303  }
2304
2305  // Get all of the users in a nice, deterministically ordered, uniqued set.
2306  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2307
2308  while (!Users.empty()) {
2309    // We know that this user uses some value of From.  If it is the right
2310    // value, update it.
2311    SDNode *User = Users.back();
2312    Users.pop_back();
2313
2314    for (SDOperand *Op = User->OperandList,
2315         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2316      if (*Op == From) {
2317        // Okay, we know this user needs to be updated.  Remove its old self
2318        // from the CSE maps.
2319        RemoveNodeFromCSEMaps(User);
2320
2321        // Update all operands that match "From".
2322        for (; Op != E; ++Op) {
2323          if (*Op == From) {
2324            From.Val->removeUser(User);
2325            *Op = To;
2326            To.Val->addUser(User);
2327          }
2328        }
2329
2330        // Now that we have modified User, add it back to the CSE maps.  If it
2331        // already exists there, recursively merge the results together.
2332        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2333          unsigned NumDeleted = Deleted.size();
2334          ReplaceAllUsesWith(User, Existing, &Deleted);
2335
2336          // User is now dead.
2337          Deleted.push_back(User);
2338          DeleteNodeNotInCSEMaps(User);
2339
2340          // We have to be careful here, because ReplaceAllUsesWith could have
2341          // deleted a user of From, which means there may be dangling pointers
2342          // in the "Users" setvector.  Scan over the deleted node pointers and
2343          // remove them from the setvector.
2344          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2345            Users.remove(Deleted[i]);
2346        }
2347        break;   // Exit the operand scanning loop.
2348      }
2349    }
2350  }
2351}
2352
2353
2354/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2355/// their allnodes order. It returns the maximum id.
2356unsigned SelectionDAG::AssignNodeIds() {
2357  unsigned Id = 0;
2358  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2359    SDNode *N = I;
2360    N->setNodeId(Id++);
2361  }
2362  return Id;
2363}
2364
2365/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2366/// based on their topological order. It returns the maximum id and a vector
2367/// of the SDNodes* in assigned order by reference.
2368unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2369  unsigned DAGSize = AllNodes.size();
2370  std::vector<unsigned> InDegree(DAGSize);
2371  std::vector<SDNode*> Sources;
2372
2373  // Use a two pass approach to avoid using a std::map which is slow.
2374  unsigned Id = 0;
2375  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2376    SDNode *N = I;
2377    N->setNodeId(Id++);
2378    unsigned Degree = N->use_size();
2379    InDegree[N->getNodeId()] = Degree;
2380    if (Degree == 0)
2381      Sources.push_back(N);
2382  }
2383
2384  TopOrder.clear();
2385  while (!Sources.empty()) {
2386    SDNode *N = Sources.back();
2387    Sources.pop_back();
2388    TopOrder.push_back(N);
2389    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2390      SDNode *P = I->Val;
2391      unsigned Degree = --InDegree[P->getNodeId()];
2392      if (Degree == 0)
2393        Sources.push_back(P);
2394    }
2395  }
2396
2397  // Second pass, assign the actual topological order as node ids.
2398  Id = 0;
2399  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2400       TI != TE; ++TI)
2401    (*TI)->setNodeId(Id++);
2402
2403  return Id;
2404}
2405
2406
2407
2408//===----------------------------------------------------------------------===//
2409//                              SDNode Class
2410//===----------------------------------------------------------------------===//
2411
2412// Out-of-line virtual method to give class a home.
2413void SDNode::ANCHOR() {
2414}
2415
2416/// getValueTypeList - Return a pointer to the specified value type.
2417///
2418MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2419  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2420  VTs[VT] = VT;
2421  return &VTs[VT];
2422}
2423
2424/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2425/// indicated value.  This method ignores uses of other values defined by this
2426/// operation.
2427bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2428  assert(Value < getNumValues() && "Bad value!");
2429
2430  // If there is only one value, this is easy.
2431  if (getNumValues() == 1)
2432    return use_size() == NUses;
2433  if (Uses.size() < NUses) return false;
2434
2435  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2436
2437  std::set<SDNode*> UsersHandled;
2438
2439  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
2440    SDNode *User = *UI;
2441    if (User->getNumOperands() == 1 ||
2442        UsersHandled.insert(User).second)     // First time we've seen this?
2443      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2444        if (User->getOperand(i) == TheValue) {
2445          if (NUses == 0)
2446            return false;   // too many uses
2447          --NUses;
2448        }
2449  }
2450
2451  // Found exactly the right number of uses?
2452  return NUses == 0;
2453}
2454
2455
2456// isOnlyUse - Return true if this node is the only use of N.
2457bool SDNode::isOnlyUse(SDNode *N) const {
2458  bool Seen = false;
2459  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2460    SDNode *User = *I;
2461    if (User == this)
2462      Seen = true;
2463    else
2464      return false;
2465  }
2466
2467  return Seen;
2468}
2469
2470// isOperand - Return true if this node is an operand of N.
2471bool SDOperand::isOperand(SDNode *N) const {
2472  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2473    if (*this == N->getOperand(i))
2474      return true;
2475  return false;
2476}
2477
2478bool SDNode::isOperand(SDNode *N) const {
2479  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2480    if (this == N->OperandList[i].Val)
2481      return true;
2482  return false;
2483}
2484
2485uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
2486  assert(Num < NumOperands && "Invalid child # of SDNode!");
2487  return cast<ConstantSDNode>(OperandList[Num])->getValue();
2488}
2489
2490const char *SDNode::getOperationName(const SelectionDAG *G) const {
2491  switch (getOpcode()) {
2492  default:
2493    if (getOpcode() < ISD::BUILTIN_OP_END)
2494      return "<<Unknown DAG Node>>";
2495    else {
2496      if (G) {
2497        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2498          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2499            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2500
2501        TargetLowering &TLI = G->getTargetLoweringInfo();
2502        const char *Name =
2503          TLI.getTargetNodeName(getOpcode());
2504        if (Name) return Name;
2505      }
2506
2507      return "<<Unknown Target Node>>";
2508    }
2509
2510  case ISD::PCMARKER:      return "PCMarker";
2511  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2512  case ISD::SRCVALUE:      return "SrcValue";
2513  case ISD::EntryToken:    return "EntryToken";
2514  case ISD::TokenFactor:   return "TokenFactor";
2515  case ISD::AssertSext:    return "AssertSext";
2516  case ISD::AssertZext:    return "AssertZext";
2517
2518  case ISD::STRING:        return "String";
2519  case ISD::BasicBlock:    return "BasicBlock";
2520  case ISD::VALUETYPE:     return "ValueType";
2521  case ISD::Register:      return "Register";
2522
2523  case ISD::Constant:      return "Constant";
2524  case ISD::ConstantFP:    return "ConstantFP";
2525  case ISD::GlobalAddress: return "GlobalAddress";
2526  case ISD::FrameIndex:    return "FrameIndex";
2527  case ISD::JumpTable:     return "JumpTable";
2528  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
2529  case ISD::ConstantPool:  return "ConstantPool";
2530  case ISD::ExternalSymbol: return "ExternalSymbol";
2531  case ISD::INTRINSIC_WO_CHAIN: {
2532    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2533    return Intrinsic::getName((Intrinsic::ID)IID);
2534  }
2535  case ISD::INTRINSIC_VOID:
2536  case ISD::INTRINSIC_W_CHAIN: {
2537    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2538    return Intrinsic::getName((Intrinsic::ID)IID);
2539  }
2540
2541  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2542  case ISD::TargetConstant: return "TargetConstant";
2543  case ISD::TargetConstantFP:return "TargetConstantFP";
2544  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2545  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2546  case ISD::TargetJumpTable:  return "TargetJumpTable";
2547  case ISD::TargetConstantPool:  return "TargetConstantPool";
2548  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2549
2550  case ISD::CopyToReg:     return "CopyToReg";
2551  case ISD::CopyFromReg:   return "CopyFromReg";
2552  case ISD::UNDEF:         return "undef";
2553  case ISD::MERGE_VALUES:  return "mergevalues";
2554  case ISD::INLINEASM:     return "inlineasm";
2555  case ISD::HANDLENODE:    return "handlenode";
2556  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2557  case ISD::CALL:          return "call";
2558
2559  // Unary operators
2560  case ISD::FABS:   return "fabs";
2561  case ISD::FNEG:   return "fneg";
2562  case ISD::FSQRT:  return "fsqrt";
2563  case ISD::FSIN:   return "fsin";
2564  case ISD::FCOS:   return "fcos";
2565  case ISD::FPOWI:  return "fpowi";
2566
2567  // Binary operators
2568  case ISD::ADD:    return "add";
2569  case ISD::SUB:    return "sub";
2570  case ISD::MUL:    return "mul";
2571  case ISD::MULHU:  return "mulhu";
2572  case ISD::MULHS:  return "mulhs";
2573  case ISD::SDIV:   return "sdiv";
2574  case ISD::UDIV:   return "udiv";
2575  case ISD::SREM:   return "srem";
2576  case ISD::UREM:   return "urem";
2577  case ISD::AND:    return "and";
2578  case ISD::OR:     return "or";
2579  case ISD::XOR:    return "xor";
2580  case ISD::SHL:    return "shl";
2581  case ISD::SRA:    return "sra";
2582  case ISD::SRL:    return "srl";
2583  case ISD::ROTL:   return "rotl";
2584  case ISD::ROTR:   return "rotr";
2585  case ISD::FADD:   return "fadd";
2586  case ISD::FSUB:   return "fsub";
2587  case ISD::FMUL:   return "fmul";
2588  case ISD::FDIV:   return "fdiv";
2589  case ISD::FREM:   return "frem";
2590  case ISD::FCOPYSIGN: return "fcopysign";
2591  case ISD::VADD:   return "vadd";
2592  case ISD::VSUB:   return "vsub";
2593  case ISD::VMUL:   return "vmul";
2594  case ISD::VSDIV:  return "vsdiv";
2595  case ISD::VUDIV:  return "vudiv";
2596  case ISD::VAND:   return "vand";
2597  case ISD::VOR:    return "vor";
2598  case ISD::VXOR:   return "vxor";
2599
2600  case ISD::SETCC:       return "setcc";
2601  case ISD::SELECT:      return "select";
2602  case ISD::SELECT_CC:   return "select_cc";
2603  case ISD::VSELECT:     return "vselect";
2604  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2605  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2606  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2607  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2608  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2609  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2610  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2611  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2612  case ISD::VBIT_CONVERT:        return "vbit_convert";
2613  case ISD::ADDC:        return "addc";
2614  case ISD::ADDE:        return "adde";
2615  case ISD::SUBC:        return "subc";
2616  case ISD::SUBE:        return "sube";
2617  case ISD::SHL_PARTS:   return "shl_parts";
2618  case ISD::SRA_PARTS:   return "sra_parts";
2619  case ISD::SRL_PARTS:   return "srl_parts";
2620
2621  // Conversion operators.
2622  case ISD::SIGN_EXTEND: return "sign_extend";
2623  case ISD::ZERO_EXTEND: return "zero_extend";
2624  case ISD::ANY_EXTEND:  return "any_extend";
2625  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2626  case ISD::TRUNCATE:    return "truncate";
2627  case ISD::FP_ROUND:    return "fp_round";
2628  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2629  case ISD::FP_EXTEND:   return "fp_extend";
2630
2631  case ISD::SINT_TO_FP:  return "sint_to_fp";
2632  case ISD::UINT_TO_FP:  return "uint_to_fp";
2633  case ISD::FP_TO_SINT:  return "fp_to_sint";
2634  case ISD::FP_TO_UINT:  return "fp_to_uint";
2635  case ISD::BIT_CONVERT: return "bit_convert";
2636
2637    // Control flow instructions
2638  case ISD::BR:      return "br";
2639  case ISD::BRIND:   return "brind";
2640  case ISD::BRCOND:  return "brcond";
2641  case ISD::BR_CC:   return "br_cc";
2642  case ISD::RET:     return "ret";
2643  case ISD::CALLSEQ_START:  return "callseq_start";
2644  case ISD::CALLSEQ_END:    return "callseq_end";
2645
2646    // Other operators
2647  case ISD::LOAD:               return "load";
2648  case ISD::STORE:              return "store";
2649  case ISD::VLOAD:              return "vload";
2650  case ISD::VAARG:              return "vaarg";
2651  case ISD::VACOPY:             return "vacopy";
2652  case ISD::VAEND:              return "vaend";
2653  case ISD::VASTART:            return "vastart";
2654  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2655  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2656  case ISD::BUILD_PAIR:         return "build_pair";
2657  case ISD::STACKSAVE:          return "stacksave";
2658  case ISD::STACKRESTORE:       return "stackrestore";
2659
2660  // Block memory operations.
2661  case ISD::MEMSET:  return "memset";
2662  case ISD::MEMCPY:  return "memcpy";
2663  case ISD::MEMMOVE: return "memmove";
2664
2665  // Bit manipulation
2666  case ISD::BSWAP:   return "bswap";
2667  case ISD::CTPOP:   return "ctpop";
2668  case ISD::CTTZ:    return "cttz";
2669  case ISD::CTLZ:    return "ctlz";
2670
2671  // Debug info
2672  case ISD::LOCATION: return "location";
2673  case ISD::DEBUG_LOC: return "debug_loc";
2674  case ISD::DEBUG_LABEL: return "debug_label";
2675
2676  case ISD::CONDCODE:
2677    switch (cast<CondCodeSDNode>(this)->get()) {
2678    default: assert(0 && "Unknown setcc condition!");
2679    case ISD::SETOEQ:  return "setoeq";
2680    case ISD::SETOGT:  return "setogt";
2681    case ISD::SETOGE:  return "setoge";
2682    case ISD::SETOLT:  return "setolt";
2683    case ISD::SETOLE:  return "setole";
2684    case ISD::SETONE:  return "setone";
2685
2686    case ISD::SETO:    return "seto";
2687    case ISD::SETUO:   return "setuo";
2688    case ISD::SETUEQ:  return "setue";
2689    case ISD::SETUGT:  return "setugt";
2690    case ISD::SETUGE:  return "setuge";
2691    case ISD::SETULT:  return "setult";
2692    case ISD::SETULE:  return "setule";
2693    case ISD::SETUNE:  return "setune";
2694
2695    case ISD::SETEQ:   return "seteq";
2696    case ISD::SETGT:   return "setgt";
2697    case ISD::SETGE:   return "setge";
2698    case ISD::SETLT:   return "setlt";
2699    case ISD::SETLE:   return "setle";
2700    case ISD::SETNE:   return "setne";
2701    }
2702  }
2703}
2704
2705void SDNode::dump() const { dump(0); }
2706void SDNode::dump(const SelectionDAG *G) const {
2707  std::cerr << (void*)this << ": ";
2708
2709  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2710    if (i) std::cerr << ",";
2711    if (getValueType(i) == MVT::Other)
2712      std::cerr << "ch";
2713    else
2714      std::cerr << MVT::getValueTypeString(getValueType(i));
2715  }
2716  std::cerr << " = " << getOperationName(G);
2717
2718  std::cerr << " ";
2719  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2720    if (i) std::cerr << ", ";
2721    std::cerr << (void*)getOperand(i).Val;
2722    if (unsigned RN = getOperand(i).ResNo)
2723      std::cerr << ":" << RN;
2724  }
2725
2726  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2727    std::cerr << "<" << CSDN->getValue() << ">";
2728  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2729    std::cerr << "<" << CSDN->getValue() << ">";
2730  } else if (const GlobalAddressSDNode *GADN =
2731             dyn_cast<GlobalAddressSDNode>(this)) {
2732    int offset = GADN->getOffset();
2733    std::cerr << "<";
2734    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2735    if (offset > 0)
2736      std::cerr << " + " << offset;
2737    else
2738      std::cerr << " " << offset;
2739  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2740    std::cerr << "<" << FIDN->getIndex() << ">";
2741  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2742    int offset = CP->getOffset();
2743    if (CP->isMachineConstantPoolEntry())
2744      std::cerr << "<" << *CP->getMachineCPVal() << ">";
2745    else
2746      std::cerr << "<" << *CP->getConstVal() << ">";
2747    if (offset > 0)
2748      std::cerr << " + " << offset;
2749    else
2750      std::cerr << " " << offset;
2751  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2752    std::cerr << "<";
2753    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2754    if (LBB)
2755      std::cerr << LBB->getName() << " ";
2756    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2757  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2758    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2759      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2760    } else {
2761      std::cerr << " #" << R->getReg();
2762    }
2763  } else if (const ExternalSymbolSDNode *ES =
2764             dyn_cast<ExternalSymbolSDNode>(this)) {
2765    std::cerr << "'" << ES->getSymbol() << "'";
2766  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2767    if (M->getValue())
2768      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2769    else
2770      std::cerr << "<null:" << M->getOffset() << ">";
2771  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2772    std::cerr << ":" << getValueTypeString(N->getVT());
2773  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
2774    bool doExt = true;
2775    switch (LD->getExtensionType()) {
2776    default: doExt = false; break;
2777    case ISD::EXTLOAD:
2778      std::cerr << " <anyext ";
2779      break;
2780    case ISD::SEXTLOAD:
2781      std::cerr << " <sext ";
2782      break;
2783    case ISD::ZEXTLOAD:
2784      std::cerr << " <zext ";
2785      break;
2786    }
2787    if (doExt)
2788      std::cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
2789
2790    if (LD->getAddressingMode() == ISD::PRE_INDEXED)
2791      std::cerr << " <pre>";
2792    else if (LD->getAddressingMode() == ISD::POST_INDEXED)
2793      std::cerr << " <post>";
2794  }
2795}
2796
2797static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2798  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2799    if (N->getOperand(i).Val->hasOneUse())
2800      DumpNodes(N->getOperand(i).Val, indent+2, G);
2801    else
2802      std::cerr << "\n" << std::string(indent+2, ' ')
2803                << (void*)N->getOperand(i).Val << ": <multiple use>";
2804
2805
2806  std::cerr << "\n" << std::string(indent, ' ');
2807  N->dump(G);
2808}
2809
2810void SelectionDAG::dump() const {
2811  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2812  std::vector<const SDNode*> Nodes;
2813  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2814       I != E; ++I)
2815    Nodes.push_back(I);
2816
2817  std::sort(Nodes.begin(), Nodes.end());
2818
2819  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2820    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2821      DumpNodes(Nodes[i], 2, this);
2822  }
2823
2824  DumpNodes(getRoot().Val, 2, this);
2825
2826  std::cerr << "\n\n";
2827}
2828
2829const Type *ConstantPoolSDNode::getType() const {
2830  if (isMachineConstantPoolEntry())
2831    return Val.MachineCPVal->getType();
2832  return Val.ConstVal->getType();
2833}
2834