SelectionDAG.cpp revision 9468a9b6beed640eca64274c8dcc5aed3b94450b
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/SetVector.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/StringExtras.h"
39#include <algorithm>
40#include <cmath>
41using namespace llvm;
42
43/// makeVTList - Return an instance of the SDVTList struct initialized with the
44/// specified members.
45static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
46  SDVTList Res = {VTs, NumVTs};
47  return Res;
48}
49
50static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
51  switch (VT.getSimpleVT()) {
52  default: assert(0 && "Unknown FP format");
53  case MVT::f32:     return &APFloat::IEEEsingle;
54  case MVT::f64:     return &APFloat::IEEEdouble;
55  case MVT::f80:     return &APFloat::x87DoubleExtended;
56  case MVT::f128:    return &APFloat::IEEEquad;
57  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
58  }
59}
60
61SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
62
63//===----------------------------------------------------------------------===//
64//                              ConstantFPSDNode Class
65//===----------------------------------------------------------------------===//
66
67/// isExactlyValue - We don't rely on operator== working on double values, as
68/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
69/// As such, this method can be used to do an exact bit-for-bit comparison of
70/// two floating point values.
71bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
72  return getValueAPF().bitwiseIsEqual(V);
73}
74
75bool ConstantFPSDNode::isValueValidForType(MVT VT,
76                                           const APFloat& Val) {
77  assert(VT.isFloatingPoint() && "Can only convert between FP types");
78
79  // PPC long double cannot be converted to any other type.
80  if (VT == MVT::ppcf128 ||
81      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
82    return false;
83
84  // convert modifies in place, so make a copy.
85  APFloat Val2 = APFloat(Val);
86  return Val2.convert(*MVTToAPFloatSemantics(VT),
87                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
88}
89
90//===----------------------------------------------------------------------===//
91//                              ISD Namespace
92//===----------------------------------------------------------------------===//
93
94/// isBuildVectorAllOnes - Return true if the specified node is a
95/// BUILD_VECTOR where all of the elements are ~0 or undef.
96bool ISD::isBuildVectorAllOnes(const SDNode *N) {
97  // Look through a bit convert.
98  if (N->getOpcode() == ISD::BIT_CONVERT)
99    N = N->getOperand(0).getNode();
100
101  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
102
103  unsigned i = 0, e = N->getNumOperands();
104
105  // Skip over all of the undef values.
106  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
107    ++i;
108
109  // Do not accept an all-undef vector.
110  if (i == e) return false;
111
112  // Do not accept build_vectors that aren't all constants or which have non-~0
113  // elements.
114  SDValue NotZero = N->getOperand(i);
115  if (isa<ConstantSDNode>(NotZero)) {
116    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
117      return false;
118  } else if (isa<ConstantFPSDNode>(NotZero)) {
119    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
120                convertToAPInt().isAllOnesValue())
121      return false;
122  } else
123    return false;
124
125  // Okay, we have at least one ~0 value, check to see if the rest match or are
126  // undefs.
127  for (++i; i != e; ++i)
128    if (N->getOperand(i) != NotZero &&
129        N->getOperand(i).getOpcode() != ISD::UNDEF)
130      return false;
131  return true;
132}
133
134
135/// isBuildVectorAllZeros - Return true if the specified node is a
136/// BUILD_VECTOR where all of the elements are 0 or undef.
137bool ISD::isBuildVectorAllZeros(const SDNode *N) {
138  // Look through a bit convert.
139  if (N->getOpcode() == ISD::BIT_CONVERT)
140    N = N->getOperand(0).getNode();
141
142  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
143
144  unsigned i = 0, e = N->getNumOperands();
145
146  // Skip over all of the undef values.
147  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
148    ++i;
149
150  // Do not accept an all-undef vector.
151  if (i == e) return false;
152
153  // Do not accept build_vectors that aren't all constants or which have non-~0
154  // elements.
155  SDValue Zero = N->getOperand(i);
156  if (isa<ConstantSDNode>(Zero)) {
157    if (!cast<ConstantSDNode>(Zero)->isNullValue())
158      return false;
159  } else if (isa<ConstantFPSDNode>(Zero)) {
160    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
161      return false;
162  } else
163    return false;
164
165  // Okay, we have at least one ~0 value, check to see if the rest match or are
166  // undefs.
167  for (++i; i != e; ++i)
168    if (N->getOperand(i) != Zero &&
169        N->getOperand(i).getOpcode() != ISD::UNDEF)
170      return false;
171  return true;
172}
173
174/// isScalarToVector - Return true if the specified node is a
175/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
176/// element is not an undef.
177bool ISD::isScalarToVector(const SDNode *N) {
178  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
179    return true;
180
181  if (N->getOpcode() != ISD::BUILD_VECTOR)
182    return false;
183  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
184    return false;
185  unsigned NumElems = N->getNumOperands();
186  for (unsigned i = 1; i < NumElems; ++i) {
187    SDValue V = N->getOperand(i);
188    if (V.getOpcode() != ISD::UNDEF)
189      return false;
190  }
191  return true;
192}
193
194
195/// isDebugLabel - Return true if the specified node represents a debug
196/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
197bool ISD::isDebugLabel(const SDNode *N) {
198  SDValue Zero;
199  if (N->getOpcode() == ISD::DBG_LABEL)
200    return true;
201  if (N->isMachineOpcode() &&
202      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
203    return true;
204  return false;
205}
206
207/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208/// when given the operation for (X op Y).
209ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
210  // To perform this operation, we just need to swap the L and G bits of the
211  // operation.
212  unsigned OldL = (Operation >> 2) & 1;
213  unsigned OldG = (Operation >> 1) & 1;
214  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
215                       (OldL << 1) |       // New G bit
216                       (OldG << 2));        // New L bit.
217}
218
219/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220/// 'op' is a valid SetCC operation.
221ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
222  unsigned Operation = Op;
223  if (isInteger)
224    Operation ^= 7;   // Flip L, G, E bits, but not U.
225  else
226    Operation ^= 15;  // Flip all of the condition bits.
227  if (Operation > ISD::SETTRUE2)
228    Operation &= ~8;     // Don't let N and U bits get set.
229  return ISD::CondCode(Operation);
230}
231
232
233/// isSignedOp - For an integer comparison, return 1 if the comparison is a
234/// signed operation and 2 if the result is an unsigned comparison.  Return zero
235/// if the operation does not depend on the sign of the input (setne and seteq).
236static int isSignedOp(ISD::CondCode Opcode) {
237  switch (Opcode) {
238  default: assert(0 && "Illegal integer setcc operation!");
239  case ISD::SETEQ:
240  case ISD::SETNE: return 0;
241  case ISD::SETLT:
242  case ISD::SETLE:
243  case ISD::SETGT:
244  case ISD::SETGE: return 1;
245  case ISD::SETULT:
246  case ISD::SETULE:
247  case ISD::SETUGT:
248  case ISD::SETUGE: return 2;
249  }
250}
251
252/// getSetCCOrOperation - Return the result of a logical OR between different
253/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
254/// returns SETCC_INVALID if it is not possible to represent the resultant
255/// comparison.
256ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
257                                       bool isInteger) {
258  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
259    // Cannot fold a signed integer setcc with an unsigned integer setcc.
260    return ISD::SETCC_INVALID;
261
262  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
263
264  // If the N and U bits get set then the resultant comparison DOES suddenly
265  // care about orderedness, and is true when ordered.
266  if (Op > ISD::SETTRUE2)
267    Op &= ~16;     // Clear the U bit if the N bit is set.
268
269  // Canonicalize illegal integer setcc's.
270  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
271    Op = ISD::SETNE;
272
273  return ISD::CondCode(Op);
274}
275
276/// getSetCCAndOperation - Return the result of a logical AND between different
277/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
278/// function returns zero if it is not possible to represent the resultant
279/// comparison.
280ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
281                                        bool isInteger) {
282  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
283    // Cannot fold a signed setcc with an unsigned setcc.
284    return ISD::SETCC_INVALID;
285
286  // Combine all of the condition bits.
287  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
288
289  // Canonicalize illegal integer setcc's.
290  if (isInteger) {
291    switch (Result) {
292    default: break;
293    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
294    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
295    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
296    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
297    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
298    }
299  }
300
301  return Result;
302}
303
304const TargetMachine &SelectionDAG::getTarget() const {
305  return MF->getTarget();
306}
307
308//===----------------------------------------------------------------------===//
309//                           SDNode Profile Support
310//===----------------------------------------------------------------------===//
311
312/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
313///
314static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
315  ID.AddInteger(OpC);
316}
317
318/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
319/// solely with their pointer.
320static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
321  ID.AddPointer(VTList.VTs);
322}
323
324/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
325///
326static void AddNodeIDOperands(FoldingSetNodeID &ID,
327                              const SDValue *Ops, unsigned NumOps) {
328  for (; NumOps; --NumOps, ++Ops) {
329    ID.AddPointer(Ops->getNode());
330    ID.AddInteger(Ops->getResNo());
331  }
332}
333
334/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
335///
336static void AddNodeIDOperands(FoldingSetNodeID &ID,
337                              const SDUse *Ops, unsigned NumOps) {
338  for (; NumOps; --NumOps, ++Ops) {
339    ID.AddPointer(Ops->getVal());
340    ID.AddInteger(Ops->getSDValue().getResNo());
341  }
342}
343
344static void AddNodeIDNode(FoldingSetNodeID &ID,
345                          unsigned short OpC, SDVTList VTList,
346                          const SDValue *OpList, unsigned N) {
347  AddNodeIDOpcode(ID, OpC);
348  AddNodeIDValueTypes(ID, VTList);
349  AddNodeIDOperands(ID, OpList, N);
350}
351
352
353/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
354/// data.
355static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
356  AddNodeIDOpcode(ID, N->getOpcode());
357  // Add the return value info.
358  AddNodeIDValueTypes(ID, N->getVTList());
359  // Add the operand info.
360  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
361
362  // Handle SDNode leafs with special info.
363  switch (N->getOpcode()) {
364  default: break;  // Normal nodes don't need extra info.
365  case ISD::ARG_FLAGS:
366    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
367    break;
368  case ISD::TargetConstant:
369  case ISD::Constant:
370    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
371    break;
372  case ISD::TargetConstantFP:
373  case ISD::ConstantFP: {
374    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
375    break;
376  }
377  case ISD::TargetGlobalAddress:
378  case ISD::GlobalAddress:
379  case ISD::TargetGlobalTLSAddress:
380  case ISD::GlobalTLSAddress: {
381    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
382    ID.AddPointer(GA->getGlobal());
383    ID.AddInteger(GA->getOffset());
384    break;
385  }
386  case ISD::BasicBlock:
387    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
388    break;
389  case ISD::Register:
390    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
391    break;
392  case ISD::DBG_STOPPOINT: {
393    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
394    ID.AddInteger(DSP->getLine());
395    ID.AddInteger(DSP->getColumn());
396    ID.AddPointer(DSP->getCompileUnit());
397    break;
398  }
399  case ISD::SRCVALUE:
400    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
401    break;
402  case ISD::MEMOPERAND: {
403    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
404    MO.Profile(ID);
405    break;
406  }
407  case ISD::FrameIndex:
408  case ISD::TargetFrameIndex:
409    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
410    break;
411  case ISD::JumpTable:
412  case ISD::TargetJumpTable:
413    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
414    break;
415  case ISD::ConstantPool:
416  case ISD::TargetConstantPool: {
417    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
418    ID.AddInteger(CP->getAlignment());
419    ID.AddInteger(CP->getOffset());
420    if (CP->isMachineConstantPoolEntry())
421      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
422    else
423      ID.AddPointer(CP->getConstVal());
424    break;
425  }
426  case ISD::CALL: {
427    const CallSDNode *Call = cast<CallSDNode>(N);
428    ID.AddInteger(Call->getCallingConv());
429    ID.AddInteger(Call->isVarArg());
430    break;
431  }
432  case ISD::LOAD: {
433    const LoadSDNode *LD = cast<LoadSDNode>(N);
434    ID.AddInteger(LD->getAddressingMode());
435    ID.AddInteger(LD->getExtensionType());
436    ID.AddInteger(LD->getMemoryVT().getRawBits());
437    ID.AddInteger(LD->getRawFlags());
438    break;
439  }
440  case ISD::STORE: {
441    const StoreSDNode *ST = cast<StoreSDNode>(N);
442    ID.AddInteger(ST->getAddressingMode());
443    ID.AddInteger(ST->isTruncatingStore());
444    ID.AddInteger(ST->getMemoryVT().getRawBits());
445    ID.AddInteger(ST->getRawFlags());
446    break;
447  }
448  case ISD::ATOMIC_CMP_SWAP_8:
449  case ISD::ATOMIC_SWAP_8:
450  case ISD::ATOMIC_LOAD_ADD_8:
451  case ISD::ATOMIC_LOAD_SUB_8:
452  case ISD::ATOMIC_LOAD_AND_8:
453  case ISD::ATOMIC_LOAD_OR_8:
454  case ISD::ATOMIC_LOAD_XOR_8:
455  case ISD::ATOMIC_LOAD_NAND_8:
456  case ISD::ATOMIC_LOAD_MIN_8:
457  case ISD::ATOMIC_LOAD_MAX_8:
458  case ISD::ATOMIC_LOAD_UMIN_8:
459  case ISD::ATOMIC_LOAD_UMAX_8:
460  case ISD::ATOMIC_CMP_SWAP_16:
461  case ISD::ATOMIC_SWAP_16:
462  case ISD::ATOMIC_LOAD_ADD_16:
463  case ISD::ATOMIC_LOAD_SUB_16:
464  case ISD::ATOMIC_LOAD_AND_16:
465  case ISD::ATOMIC_LOAD_OR_16:
466  case ISD::ATOMIC_LOAD_XOR_16:
467  case ISD::ATOMIC_LOAD_NAND_16:
468  case ISD::ATOMIC_LOAD_MIN_16:
469  case ISD::ATOMIC_LOAD_MAX_16:
470  case ISD::ATOMIC_LOAD_UMIN_16:
471  case ISD::ATOMIC_LOAD_UMAX_16:
472  case ISD::ATOMIC_CMP_SWAP_32:
473  case ISD::ATOMIC_SWAP_32:
474  case ISD::ATOMIC_LOAD_ADD_32:
475  case ISD::ATOMIC_LOAD_SUB_32:
476  case ISD::ATOMIC_LOAD_AND_32:
477  case ISD::ATOMIC_LOAD_OR_32:
478  case ISD::ATOMIC_LOAD_XOR_32:
479  case ISD::ATOMIC_LOAD_NAND_32:
480  case ISD::ATOMIC_LOAD_MIN_32:
481  case ISD::ATOMIC_LOAD_MAX_32:
482  case ISD::ATOMIC_LOAD_UMIN_32:
483  case ISD::ATOMIC_LOAD_UMAX_32:
484  case ISD::ATOMIC_CMP_SWAP_64:
485  case ISD::ATOMIC_SWAP_64:
486  case ISD::ATOMIC_LOAD_ADD_64:
487  case ISD::ATOMIC_LOAD_SUB_64:
488  case ISD::ATOMIC_LOAD_AND_64:
489  case ISD::ATOMIC_LOAD_OR_64:
490  case ISD::ATOMIC_LOAD_XOR_64:
491  case ISD::ATOMIC_LOAD_NAND_64:
492  case ISD::ATOMIC_LOAD_MIN_64:
493  case ISD::ATOMIC_LOAD_MAX_64:
494  case ISD::ATOMIC_LOAD_UMIN_64:
495  case ISD::ATOMIC_LOAD_UMAX_64: {
496    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
497    ID.AddInteger(AT->getRawFlags());
498    break;
499  }
500  } // end switch (N->getOpcode())
501}
502
503/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
504/// the CSE map that carries both alignment and volatility information.
505///
506static unsigned encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
507  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
508}
509
510//===----------------------------------------------------------------------===//
511//                              SelectionDAG Class
512//===----------------------------------------------------------------------===//
513
514/// RemoveDeadNodes - This method deletes all unreachable nodes in the
515/// SelectionDAG.
516void SelectionDAG::RemoveDeadNodes() {
517  // Create a dummy node (which is not added to allnodes), that adds a reference
518  // to the root node, preventing it from being deleted.
519  HandleSDNode Dummy(getRoot());
520
521  SmallVector<SDNode*, 128> DeadNodes;
522
523  // Add all obviously-dead nodes to the DeadNodes worklist.
524  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
525    if (I->use_empty())
526      DeadNodes.push_back(I);
527
528  RemoveDeadNodes(DeadNodes);
529
530  // If the root changed (e.g. it was a dead load, update the root).
531  setRoot(Dummy.getValue());
532}
533
534/// RemoveDeadNodes - This method deletes the unreachable nodes in the
535/// given list, and any nodes that become unreachable as a result.
536void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
537                                   DAGUpdateListener *UpdateListener) {
538
539  // Process the worklist, deleting the nodes and adding their uses to the
540  // worklist.
541  while (!DeadNodes.empty()) {
542    SDNode *N = DeadNodes.back();
543    DeadNodes.pop_back();
544
545    if (UpdateListener)
546      UpdateListener->NodeDeleted(N, 0);
547
548    // Take the node out of the appropriate CSE map.
549    RemoveNodeFromCSEMaps(N);
550
551    // Next, brutally remove the operand list.  This is safe to do, as there are
552    // no cycles in the graph.
553    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
554      SDNode *Operand = I->getVal();
555      Operand->removeUser(std::distance(N->op_begin(), I), N);
556
557      // Now that we removed this operand, see if there are no uses of it left.
558      if (Operand->use_empty())
559        DeadNodes.push_back(Operand);
560    }
561    if (N->OperandsNeedDelete) {
562      delete[] N->OperandList;
563    }
564    N->OperandList = 0;
565    N->NumOperands = 0;
566
567    // Finally, remove N itself.
568    NodeAllocator.Deallocate(AllNodes.remove(N));
569  }
570}
571
572void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
573  SmallVector<SDNode*, 16> DeadNodes(1, N);
574  RemoveDeadNodes(DeadNodes, UpdateListener);
575}
576
577void SelectionDAG::DeleteNode(SDNode *N) {
578  assert(N->use_empty() && "Cannot delete a node that is not dead!");
579
580  // First take this out of the appropriate CSE map.
581  RemoveNodeFromCSEMaps(N);
582
583  // Finally, remove uses due to operands of this node, remove from the
584  // AllNodes list, and delete the node.
585  DeleteNodeNotInCSEMaps(N);
586}
587
588void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
589
590  // Drop all of the operands and decrement used nodes use counts.
591  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
592    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
593  if (N->OperandsNeedDelete)
594    delete[] N->OperandList;
595
596  assert(N != AllNodes.begin());
597  NodeAllocator.Deallocate(AllNodes.remove(N));
598}
599
600/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
601/// correspond to it.  This is useful when we're about to delete or repurpose
602/// the node.  We don't want future request for structurally identical nodes
603/// to return N anymore.
604bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
605  bool Erased = false;
606  switch (N->getOpcode()) {
607  case ISD::EntryToken:
608    assert(0 && "EntryToken should not be in CSEMaps!");
609    return false;
610  case ISD::HANDLENODE: return false;  // noop.
611  case ISD::CONDCODE:
612    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
613           "Cond code doesn't exist!");
614    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
615    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
616    break;
617  case ISD::Symbol:
618    Erased = Symbols.erase(cast<SymbolSDNode>(N)->getSymbol());
619    break;
620  case ISD::TargetSymbol:
621    Erased = TargetSymbols.erase(cast<SymbolSDNode>(N)->getSymbol());
622    break;
623  case ISD::VALUETYPE: {
624    MVT VT = cast<VTSDNode>(N)->getVT();
625    if (VT.isExtended()) {
626      Erased = ExtendedValueTypeNodes.erase(VT);
627    } else {
628      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
629      ValueTypeNodes[VT.getSimpleVT()] = 0;
630    }
631    break;
632  }
633  default:
634    // Remove it from the CSE Map.
635    Erased = CSEMap.RemoveNode(N);
636    break;
637  }
638#ifndef NDEBUG
639  // Verify that the node was actually in one of the CSE maps, unless it has a
640  // flag result (which cannot be CSE'd) or is one of the special cases that are
641  // not subject to CSE.
642  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
643      !N->isMachineOpcode() &&
644      N->getOpcode() != ISD::DBG_LABEL &&
645      N->getOpcode() != ISD::DBG_STOPPOINT &&
646      N->getOpcode() != ISD::EH_LABEL &&
647      N->getOpcode() != ISD::DECLARE) {
648    N->dump(this);
649    cerr << "\n";
650    assert(0 && "Node is not in map!");
651  }
652#endif
653  return Erased;
654}
655
656/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
657/// has been taken out and modified in some way.  If the specified node already
658/// exists in the CSE maps, do not modify the maps, but return the existing node
659/// instead.  If it doesn't exist, add it and return null.
660///
661SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
662  assert(N->getNumOperands() && "This is a leaf node!");
663
664  if (N->getValueType(0) == MVT::Flag)
665    return 0;   // Never CSE anything that produces a flag.
666
667  switch (N->getOpcode()) {
668  default: break;
669  case ISD::HANDLENODE:
670  case ISD::DBG_LABEL:
671  case ISD::DBG_STOPPOINT:
672  case ISD::EH_LABEL:
673  case ISD::DECLARE:
674    return 0;    // Never add these nodes.
675  }
676
677  // Check that remaining values produced are not flags.
678  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
679    if (N->getValueType(i) == MVT::Flag)
680      return 0;   // Never CSE anything that produces a flag.
681
682  SDNode *New = CSEMap.GetOrInsertNode(N);
683  if (New != N) return New;  // Node already existed.
684  return 0;
685}
686
687/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
688/// were replaced with those specified.  If this node is never memoized,
689/// return null, otherwise return a pointer to the slot it would take.  If a
690/// node already exists with these operands, the slot will be non-null.
691SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
692                                           void *&InsertPos) {
693  if (N->getValueType(0) == MVT::Flag)
694    return 0;   // Never CSE anything that produces a flag.
695
696  switch (N->getOpcode()) {
697  default: break;
698  case ISD::HANDLENODE:
699  case ISD::DBG_LABEL:
700  case ISD::DBG_STOPPOINT:
701  case ISD::EH_LABEL:
702    return 0;    // Never add these nodes.
703  }
704
705  // Check that remaining values produced are not flags.
706  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
707    if (N->getValueType(i) == MVT::Flag)
708      return 0;   // Never CSE anything that produces a flag.
709
710  SDValue Ops[] = { Op };
711  FoldingSetNodeID ID;
712  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
713  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
714}
715
716/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
717/// were replaced with those specified.  If this node is never memoized,
718/// return null, otherwise return a pointer to the slot it would take.  If a
719/// node already exists with these operands, the slot will be non-null.
720SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
721                                           SDValue Op1, SDValue Op2,
722                                           void *&InsertPos) {
723  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
724
725  // Check that remaining values produced are not flags.
726  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
727    if (N->getValueType(i) == MVT::Flag)
728      return 0;   // Never CSE anything that produces a flag.
729
730  SDValue Ops[] = { Op1, Op2 };
731  FoldingSetNodeID ID;
732  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
733  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
734}
735
736
737/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
738/// were replaced with those specified.  If this node is never memoized,
739/// return null, otherwise return a pointer to the slot it would take.  If a
740/// node already exists with these operands, the slot will be non-null.
741SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
742                                           const SDValue *Ops,unsigned NumOps,
743                                           void *&InsertPos) {
744  if (N->getValueType(0) == MVT::Flag)
745    return 0;   // Never CSE anything that produces a flag.
746
747  switch (N->getOpcode()) {
748  default: break;
749  case ISD::HANDLENODE:
750  case ISD::DBG_LABEL:
751  case ISD::DBG_STOPPOINT:
752  case ISD::EH_LABEL:
753  case ISD::DECLARE:
754    return 0;    // Never add these nodes.
755  }
756
757  // Check that remaining values produced are not flags.
758  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
759    if (N->getValueType(i) == MVT::Flag)
760      return 0;   // Never CSE anything that produces a flag.
761
762  FoldingSetNodeID ID;
763  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
764
765  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
766    ID.AddInteger(LD->getAddressingMode());
767    ID.AddInteger(LD->getExtensionType());
768    ID.AddInteger(LD->getMemoryVT().getRawBits());
769    ID.AddInteger(LD->getRawFlags());
770  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
771    ID.AddInteger(ST->getAddressingMode());
772    ID.AddInteger(ST->isTruncatingStore());
773    ID.AddInteger(ST->getMemoryVT().getRawBits());
774    ID.AddInteger(ST->getRawFlags());
775  }
776
777  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
778}
779
780/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
781void SelectionDAG::VerifyNode(SDNode *N) {
782  switch (N->getOpcode()) {
783  default:
784    break;
785  case ISD::BUILD_VECTOR: {
786    assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!");
787    assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!");
788    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
789           "Wrong number of BUILD_VECTOR operands!");
790    MVT EltVT = N->getValueType(0).getVectorElementType();
791    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
792      assert(I->getSDValue().getValueType() == EltVT &&
793             "Wrong BUILD_VECTOR operand type!");
794    break;
795  }
796  }
797}
798
799/// getMVTAlignment - Compute the default alignment value for the
800/// given type.
801///
802unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
803  const Type *Ty = VT == MVT::iPTR ?
804                   PointerType::get(Type::Int8Ty, 0) :
805                   VT.getTypeForMVT();
806
807  return TLI.getTargetData()->getABITypeAlignment(Ty);
808}
809
810SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
811  : TLI(tli), FLI(fli),
812    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
813    Root(getEntryNode()) {
814  AllNodes.push_back(&EntryNode);
815}
816
817void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
818  MF = &mf;
819  MMI = mmi;
820}
821
822SelectionDAG::~SelectionDAG() {
823  allnodes_clear();
824}
825
826void SelectionDAG::allnodes_clear() {
827  assert(&*AllNodes.begin() == &EntryNode);
828  AllNodes.remove(AllNodes.begin());
829  while (!AllNodes.empty()) {
830    SDNode *N = AllNodes.remove(AllNodes.begin());
831    N->SetNextInBucket(0);
832    if (N->OperandsNeedDelete)
833      delete [] N->OperandList;
834    NodeAllocator.Deallocate(N);
835  }
836}
837
838void SelectionDAG::clear() {
839  allnodes_clear();
840  OperandAllocator.Reset();
841  CSEMap.clear();
842
843  ExtendedValueTypeNodes.clear();
844  Symbols.clear();
845  TargetSymbols.clear();
846  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
847            static_cast<CondCodeSDNode*>(0));
848  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
849            static_cast<SDNode*>(0));
850
851  EntryNode.Uses = 0;
852  AllNodes.push_back(&EntryNode);
853  Root = getEntryNode();
854}
855
856SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
857  if (Op.getValueType() == VT) return Op;
858  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
859                                   VT.getSizeInBits());
860  return getNode(ISD::AND, Op.getValueType(), Op,
861                 getConstant(Imm, Op.getValueType()));
862}
863
864SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
865  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
866  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
867}
868
869SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
870  return getConstant(*ConstantInt::get(Val), VT, isT);
871}
872
873SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
874  assert(VT.isInteger() && "Cannot create FP integer constant!");
875
876  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
877  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
878         "APInt size does not match type size!");
879
880  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
881  FoldingSetNodeID ID;
882  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
883  ID.AddPointer(&Val);
884  void *IP = 0;
885  SDNode *N = NULL;
886  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
887    if (!VT.isVector())
888      return SDValue(N, 0);
889  if (!N) {
890    N = NodeAllocator.Allocate<ConstantSDNode>();
891    new (N) ConstantSDNode(isT, &Val, EltVT);
892    CSEMap.InsertNode(N, IP);
893    AllNodes.push_back(N);
894  }
895
896  SDValue Result(N, 0);
897  if (VT.isVector()) {
898    SmallVector<SDValue, 8> Ops;
899    Ops.assign(VT.getVectorNumElements(), Result);
900    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
901  }
902  return Result;
903}
904
905SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
906  return getConstant(Val, TLI.getPointerTy(), isTarget);
907}
908
909
910SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
911  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
912}
913
914SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
915  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
916
917  MVT EltVT =
918    VT.isVector() ? VT.getVectorElementType() : VT;
919
920  // Do the map lookup using the actual bit pattern for the floating point
921  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
922  // we don't have issues with SNANs.
923  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
924  FoldingSetNodeID ID;
925  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
926  ID.AddPointer(&V);
927  void *IP = 0;
928  SDNode *N = NULL;
929  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
930    if (!VT.isVector())
931      return SDValue(N, 0);
932  if (!N) {
933    N = NodeAllocator.Allocate<ConstantFPSDNode>();
934    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
935    CSEMap.InsertNode(N, IP);
936    AllNodes.push_back(N);
937  }
938
939  SDValue Result(N, 0);
940  if (VT.isVector()) {
941    SmallVector<SDValue, 8> Ops;
942    Ops.assign(VT.getVectorNumElements(), Result);
943    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
944  }
945  return Result;
946}
947
948SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
949  MVT EltVT =
950    VT.isVector() ? VT.getVectorElementType() : VT;
951  if (EltVT==MVT::f32)
952    return getConstantFP(APFloat((float)Val), VT, isTarget);
953  else
954    return getConstantFP(APFloat(Val), VT, isTarget);
955}
956
957SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
958                                       MVT VT, int Offset,
959                                       bool isTargetGA) {
960  unsigned Opc;
961
962  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
963  if (!GVar) {
964    // If GV is an alias then use the aliasee for determining thread-localness.
965    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
966      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
967  }
968
969  if (GVar && GVar->isThreadLocal())
970    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
971  else
972    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
973
974  FoldingSetNodeID ID;
975  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
976  ID.AddPointer(GV);
977  ID.AddInteger(Offset);
978  void *IP = 0;
979  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
980   return SDValue(E, 0);
981  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
982  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
983  CSEMap.InsertNode(N, IP);
984  AllNodes.push_back(N);
985  return SDValue(N, 0);
986}
987
988SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
989  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
990  FoldingSetNodeID ID;
991  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
992  ID.AddInteger(FI);
993  void *IP = 0;
994  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
995    return SDValue(E, 0);
996  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
997  new (N) FrameIndexSDNode(FI, VT, isTarget);
998  CSEMap.InsertNode(N, IP);
999  AllNodes.push_back(N);
1000  return SDValue(N, 0);
1001}
1002
1003SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1004  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1005  FoldingSetNodeID ID;
1006  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1007  ID.AddInteger(JTI);
1008  void *IP = 0;
1009  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1010    return SDValue(E, 0);
1011  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1012  new (N) JumpTableSDNode(JTI, VT, isTarget);
1013  CSEMap.InsertNode(N, IP);
1014  AllNodes.push_back(N);
1015  return SDValue(N, 0);
1016}
1017
1018SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1019                                      unsigned Alignment, int Offset,
1020                                      bool isTarget) {
1021  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1022  FoldingSetNodeID ID;
1023  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1024  ID.AddInteger(Alignment);
1025  ID.AddInteger(Offset);
1026  ID.AddPointer(C);
1027  void *IP = 0;
1028  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1029    return SDValue(E, 0);
1030  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1031  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1032  CSEMap.InsertNode(N, IP);
1033  AllNodes.push_back(N);
1034  return SDValue(N, 0);
1035}
1036
1037
1038SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1039                                      unsigned Alignment, int Offset,
1040                                      bool isTarget) {
1041  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1042  FoldingSetNodeID ID;
1043  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1044  ID.AddInteger(Alignment);
1045  ID.AddInteger(Offset);
1046  C->AddSelectionDAGCSEId(ID);
1047  void *IP = 0;
1048  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1049    return SDValue(E, 0);
1050  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1051  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1052  CSEMap.InsertNode(N, IP);
1053  AllNodes.push_back(N);
1054  return SDValue(N, 0);
1055}
1056
1057
1058SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1059  FoldingSetNodeID ID;
1060  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1061  ID.AddPointer(MBB);
1062  void *IP = 0;
1063  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1064    return SDValue(E, 0);
1065  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1066  new (N) BasicBlockSDNode(MBB);
1067  CSEMap.InsertNode(N, IP);
1068  AllNodes.push_back(N);
1069  return SDValue(N, 0);
1070}
1071
1072SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1073  FoldingSetNodeID ID;
1074  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1075  ID.AddInteger(Flags.getRawBits());
1076  void *IP = 0;
1077  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1078    return SDValue(E, 0);
1079  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1080  new (N) ARG_FLAGSSDNode(Flags);
1081  CSEMap.InsertNode(N, IP);
1082  AllNodes.push_back(N);
1083  return SDValue(N, 0);
1084}
1085
1086SDValue SelectionDAG::getValueType(MVT VT) {
1087  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1088    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1089
1090  SDNode *&N = VT.isExtended() ?
1091    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1092
1093  if (N) return SDValue(N, 0);
1094  N = NodeAllocator.Allocate<VTSDNode>();
1095  new (N) VTSDNode(VT);
1096  AllNodes.push_back(N);
1097  return SDValue(N, 0);
1098}
1099
1100SDValue SelectionDAG::getSymbol(const char *Sym, MVT VT,
1101                                GlobalValue::LinkageTypes LT) {
1102  SDNode *&N = Symbols[Sym];
1103  if (N) return SDValue(N, 0);
1104  N = NodeAllocator.Allocate<SymbolSDNode>();
1105  new (N) SymbolSDNode(false, Sym, VT, LT);
1106  AllNodes.push_back(N);
1107  return SDValue(N, 0);
1108}
1109
1110SDValue SelectionDAG::getTargetSymbol(const char *Sym, MVT VT,
1111                                      GlobalValue::LinkageTypes LT) {
1112  SDNode *&N = TargetSymbols[Sym];
1113  if (N) return SDValue(N, 0);
1114  N = NodeAllocator.Allocate<SymbolSDNode>();
1115  new (N) SymbolSDNode(true, Sym, VT, LT);
1116  AllNodes.push_back(N);
1117  return SDValue(N, 0);
1118}
1119
1120SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1121  if ((unsigned)Cond >= CondCodeNodes.size())
1122    CondCodeNodes.resize(Cond+1);
1123
1124  if (CondCodeNodes[Cond] == 0) {
1125    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1126    new (N) CondCodeSDNode(Cond);
1127    CondCodeNodes[Cond] = N;
1128    AllNodes.push_back(N);
1129  }
1130  return SDValue(CondCodeNodes[Cond], 0);
1131}
1132
1133SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1134  FoldingSetNodeID ID;
1135  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1136  ID.AddInteger(RegNo);
1137  void *IP = 0;
1138  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1139    return SDValue(E, 0);
1140  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1141  new (N) RegisterSDNode(RegNo, VT);
1142  CSEMap.InsertNode(N, IP);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1148                                        unsigned Line, unsigned Col,
1149                                        const CompileUnitDesc *CU) {
1150  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1151  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1152  AllNodes.push_back(N);
1153  return SDValue(N, 0);
1154}
1155
1156SDValue SelectionDAG::getLabel(unsigned Opcode,
1157                               SDValue Root,
1158                               unsigned LabelID) {
1159  FoldingSetNodeID ID;
1160  SDValue Ops[] = { Root };
1161  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1162  ID.AddInteger(LabelID);
1163  void *IP = 0;
1164  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1165    return SDValue(E, 0);
1166  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1167  new (N) LabelSDNode(Opcode, Root, LabelID);
1168  CSEMap.InsertNode(N, IP);
1169  AllNodes.push_back(N);
1170  return SDValue(N, 0);
1171}
1172
1173SDValue SelectionDAG::getSrcValue(const Value *V) {
1174  assert((!V || isa<PointerType>(V->getType())) &&
1175         "SrcValue is not a pointer?");
1176
1177  FoldingSetNodeID ID;
1178  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1179  ID.AddPointer(V);
1180
1181  void *IP = 0;
1182  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1183    return SDValue(E, 0);
1184
1185  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1186  new (N) SrcValueSDNode(V);
1187  CSEMap.InsertNode(N, IP);
1188  AllNodes.push_back(N);
1189  return SDValue(N, 0);
1190}
1191
1192SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1193  const Value *v = MO.getValue();
1194  assert((!v || isa<PointerType>(v->getType())) &&
1195         "SrcValue is not a pointer?");
1196
1197  FoldingSetNodeID ID;
1198  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1199  MO.Profile(ID);
1200
1201  void *IP = 0;
1202  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1203    return SDValue(E, 0);
1204
1205  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1206  new (N) MemOperandSDNode(MO);
1207  CSEMap.InsertNode(N, IP);
1208  AllNodes.push_back(N);
1209  return SDValue(N, 0);
1210}
1211
1212/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1213/// specified value type.
1214SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1215  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1216  unsigned ByteSize = VT.getSizeInBits()/8;
1217  const Type *Ty = VT.getTypeForMVT();
1218  unsigned StackAlign =
1219  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1220
1221  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1222  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1223}
1224
1225SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1226                                SDValue N2, ISD::CondCode Cond) {
1227  // These setcc operations always fold.
1228  switch (Cond) {
1229  default: break;
1230  case ISD::SETFALSE:
1231  case ISD::SETFALSE2: return getConstant(0, VT);
1232  case ISD::SETTRUE:
1233  case ISD::SETTRUE2:  return getConstant(1, VT);
1234
1235  case ISD::SETOEQ:
1236  case ISD::SETOGT:
1237  case ISD::SETOGE:
1238  case ISD::SETOLT:
1239  case ISD::SETOLE:
1240  case ISD::SETONE:
1241  case ISD::SETO:
1242  case ISD::SETUO:
1243  case ISD::SETUEQ:
1244  case ISD::SETUNE:
1245    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1246    break;
1247  }
1248
1249  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1250    const APInt &C2 = N2C->getAPIntValue();
1251    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1252      const APInt &C1 = N1C->getAPIntValue();
1253
1254      switch (Cond) {
1255      default: assert(0 && "Unknown integer setcc!");
1256      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1257      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1258      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1259      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1260      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1261      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1262      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1263      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1264      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1265      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1266      }
1267    }
1268  }
1269  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1270    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1271      // No compile time operations on this type yet.
1272      if (N1C->getValueType(0) == MVT::ppcf128)
1273        return SDValue();
1274
1275      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1276      switch (Cond) {
1277      default: break;
1278      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1279                          return getNode(ISD::UNDEF, VT);
1280                        // fall through
1281      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1282      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1283                          return getNode(ISD::UNDEF, VT);
1284                        // fall through
1285      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1286                                           R==APFloat::cmpLessThan, VT);
1287      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1288                          return getNode(ISD::UNDEF, VT);
1289                        // fall through
1290      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1291      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1292                          return getNode(ISD::UNDEF, VT);
1293                        // fall through
1294      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1295      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1296                          return getNode(ISD::UNDEF, VT);
1297                        // fall through
1298      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1299                                           R==APFloat::cmpEqual, VT);
1300      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1301                          return getNode(ISD::UNDEF, VT);
1302                        // fall through
1303      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1304                                           R==APFloat::cmpEqual, VT);
1305      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1306      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1307      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1308                                           R==APFloat::cmpEqual, VT);
1309      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1310      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1311                                           R==APFloat::cmpLessThan, VT);
1312      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1313                                           R==APFloat::cmpUnordered, VT);
1314      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1315      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1316      }
1317    } else {
1318      // Ensure that the constant occurs on the RHS.
1319      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1320    }
1321  }
1322
1323  // Could not fold it.
1324  return SDValue();
1325}
1326
1327/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1328/// use this predicate to simplify operations downstream.
1329bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1330  unsigned BitWidth = Op.getValueSizeInBits();
1331  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1332}
1333
1334/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1335/// this predicate to simplify operations downstream.  Mask is known to be zero
1336/// for bits that V cannot have.
1337bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1338                                     unsigned Depth) const {
1339  APInt KnownZero, KnownOne;
1340  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1341  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1342  return (KnownZero & Mask) == Mask;
1343}
1344
1345/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1346/// known to be either zero or one and return them in the KnownZero/KnownOne
1347/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1348/// processing.
1349void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1350                                     APInt &KnownZero, APInt &KnownOne,
1351                                     unsigned Depth) const {
1352  unsigned BitWidth = Mask.getBitWidth();
1353  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1354         "Mask size mismatches value type size!");
1355
1356  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1357  if (Depth == 6 || Mask == 0)
1358    return;  // Limit search depth.
1359
1360  APInt KnownZero2, KnownOne2;
1361
1362  switch (Op.getOpcode()) {
1363  case ISD::Constant:
1364    // We know all of the bits for a constant!
1365    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1366    KnownZero = ~KnownOne & Mask;
1367    return;
1368  case ISD::AND:
1369    // If either the LHS or the RHS are Zero, the result is zero.
1370    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1371    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1372                      KnownZero2, KnownOne2, Depth+1);
1373    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1374    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1375
1376    // Output known-1 bits are only known if set in both the LHS & RHS.
1377    KnownOne &= KnownOne2;
1378    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1379    KnownZero |= KnownZero2;
1380    return;
1381  case ISD::OR:
1382    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1383    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1384                      KnownZero2, KnownOne2, Depth+1);
1385    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1386    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1387
1388    // Output known-0 bits are only known if clear in both the LHS & RHS.
1389    KnownZero &= KnownZero2;
1390    // Output known-1 are known to be set if set in either the LHS | RHS.
1391    KnownOne |= KnownOne2;
1392    return;
1393  case ISD::XOR: {
1394    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1395    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1396    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1397    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1398
1399    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1400    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1401    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1402    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1403    KnownZero = KnownZeroOut;
1404    return;
1405  }
1406  case ISD::MUL: {
1407    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1408    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1409    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1410    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1411    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1412
1413    // If low bits are zero in either operand, output low known-0 bits.
1414    // Also compute a conserative estimate for high known-0 bits.
1415    // More trickiness is possible, but this is sufficient for the
1416    // interesting case of alignment computation.
1417    KnownOne.clear();
1418    unsigned TrailZ = KnownZero.countTrailingOnes() +
1419                      KnownZero2.countTrailingOnes();
1420    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1421                               KnownZero2.countLeadingOnes(),
1422                               BitWidth) - BitWidth;
1423
1424    TrailZ = std::min(TrailZ, BitWidth);
1425    LeadZ = std::min(LeadZ, BitWidth);
1426    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1427                APInt::getHighBitsSet(BitWidth, LeadZ);
1428    KnownZero &= Mask;
1429    return;
1430  }
1431  case ISD::UDIV: {
1432    // For the purposes of computing leading zeros we can conservatively
1433    // treat a udiv as a logical right shift by the power of 2 known to
1434    // be less than the denominator.
1435    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1436    ComputeMaskedBits(Op.getOperand(0),
1437                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1438    unsigned LeadZ = KnownZero2.countLeadingOnes();
1439
1440    KnownOne2.clear();
1441    KnownZero2.clear();
1442    ComputeMaskedBits(Op.getOperand(1),
1443                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1444    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1445    if (RHSUnknownLeadingOnes != BitWidth)
1446      LeadZ = std::min(BitWidth,
1447                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1448
1449    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1450    return;
1451  }
1452  case ISD::SELECT:
1453    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1454    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1455    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1456    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1457
1458    // Only known if known in both the LHS and RHS.
1459    KnownOne &= KnownOne2;
1460    KnownZero &= KnownZero2;
1461    return;
1462  case ISD::SELECT_CC:
1463    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1464    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1465    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1466    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1467
1468    // Only known if known in both the LHS and RHS.
1469    KnownOne &= KnownOne2;
1470    KnownZero &= KnownZero2;
1471    return;
1472  case ISD::SETCC:
1473    // If we know the result of a setcc has the top bits zero, use this info.
1474    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1475        BitWidth > 1)
1476      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1477    return;
1478  case ISD::SHL:
1479    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1480    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1481      unsigned ShAmt = SA->getZExtValue();
1482
1483      // If the shift count is an invalid immediate, don't do anything.
1484      if (ShAmt >= BitWidth)
1485        return;
1486
1487      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1488                        KnownZero, KnownOne, Depth+1);
1489      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1490      KnownZero <<= ShAmt;
1491      KnownOne  <<= ShAmt;
1492      // low bits known zero.
1493      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1494    }
1495    return;
1496  case ISD::SRL:
1497    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1498    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1499      unsigned ShAmt = SA->getZExtValue();
1500
1501      // If the shift count is an invalid immediate, don't do anything.
1502      if (ShAmt >= BitWidth)
1503        return;
1504
1505      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1506                        KnownZero, KnownOne, Depth+1);
1507      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1508      KnownZero = KnownZero.lshr(ShAmt);
1509      KnownOne  = KnownOne.lshr(ShAmt);
1510
1511      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1512      KnownZero |= HighBits;  // High bits known zero.
1513    }
1514    return;
1515  case ISD::SRA:
1516    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1517      unsigned ShAmt = SA->getZExtValue();
1518
1519      // If the shift count is an invalid immediate, don't do anything.
1520      if (ShAmt >= BitWidth)
1521        return;
1522
1523      APInt InDemandedMask = (Mask << ShAmt);
1524      // If any of the demanded bits are produced by the sign extension, we also
1525      // demand the input sign bit.
1526      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1527      if (HighBits.getBoolValue())
1528        InDemandedMask |= APInt::getSignBit(BitWidth);
1529
1530      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1531                        Depth+1);
1532      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1533      KnownZero = KnownZero.lshr(ShAmt);
1534      KnownOne  = KnownOne.lshr(ShAmt);
1535
1536      // Handle the sign bits.
1537      APInt SignBit = APInt::getSignBit(BitWidth);
1538      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1539
1540      if (KnownZero.intersects(SignBit)) {
1541        KnownZero |= HighBits;  // New bits are known zero.
1542      } else if (KnownOne.intersects(SignBit)) {
1543        KnownOne  |= HighBits;  // New bits are known one.
1544      }
1545    }
1546    return;
1547  case ISD::SIGN_EXTEND_INREG: {
1548    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1549    unsigned EBits = EVT.getSizeInBits();
1550
1551    // Sign extension.  Compute the demanded bits in the result that are not
1552    // present in the input.
1553    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1554
1555    APInt InSignBit = APInt::getSignBit(EBits);
1556    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1557
1558    // If the sign extended bits are demanded, we know that the sign
1559    // bit is demanded.
1560    InSignBit.zext(BitWidth);
1561    if (NewBits.getBoolValue())
1562      InputDemandedBits |= InSignBit;
1563
1564    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1565                      KnownZero, KnownOne, Depth+1);
1566    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1567
1568    // If the sign bit of the input is known set or clear, then we know the
1569    // top bits of the result.
1570    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1571      KnownZero |= NewBits;
1572      KnownOne  &= ~NewBits;
1573    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1574      KnownOne  |= NewBits;
1575      KnownZero &= ~NewBits;
1576    } else {                              // Input sign bit unknown
1577      KnownZero &= ~NewBits;
1578      KnownOne  &= ~NewBits;
1579    }
1580    return;
1581  }
1582  case ISD::CTTZ:
1583  case ISD::CTLZ:
1584  case ISD::CTPOP: {
1585    unsigned LowBits = Log2_32(BitWidth)+1;
1586    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1587    KnownOne.clear();
1588    return;
1589  }
1590  case ISD::LOAD: {
1591    if (ISD::isZEXTLoad(Op.getNode())) {
1592      LoadSDNode *LD = cast<LoadSDNode>(Op);
1593      MVT VT = LD->getMemoryVT();
1594      unsigned MemBits = VT.getSizeInBits();
1595      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1596    }
1597    return;
1598  }
1599  case ISD::ZERO_EXTEND: {
1600    MVT InVT = Op.getOperand(0).getValueType();
1601    unsigned InBits = InVT.getSizeInBits();
1602    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1603    APInt InMask    = Mask;
1604    InMask.trunc(InBits);
1605    KnownZero.trunc(InBits);
1606    KnownOne.trunc(InBits);
1607    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1608    KnownZero.zext(BitWidth);
1609    KnownOne.zext(BitWidth);
1610    KnownZero |= NewBits;
1611    return;
1612  }
1613  case ISD::SIGN_EXTEND: {
1614    MVT InVT = Op.getOperand(0).getValueType();
1615    unsigned InBits = InVT.getSizeInBits();
1616    APInt InSignBit = APInt::getSignBit(InBits);
1617    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1618    APInt InMask = Mask;
1619    InMask.trunc(InBits);
1620
1621    // If any of the sign extended bits are demanded, we know that the sign
1622    // bit is demanded. Temporarily set this bit in the mask for our callee.
1623    if (NewBits.getBoolValue())
1624      InMask |= InSignBit;
1625
1626    KnownZero.trunc(InBits);
1627    KnownOne.trunc(InBits);
1628    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1629
1630    // Note if the sign bit is known to be zero or one.
1631    bool SignBitKnownZero = KnownZero.isNegative();
1632    bool SignBitKnownOne  = KnownOne.isNegative();
1633    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1634           "Sign bit can't be known to be both zero and one!");
1635
1636    // If the sign bit wasn't actually demanded by our caller, we don't
1637    // want it set in the KnownZero and KnownOne result values. Reset the
1638    // mask and reapply it to the result values.
1639    InMask = Mask;
1640    InMask.trunc(InBits);
1641    KnownZero &= InMask;
1642    KnownOne  &= InMask;
1643
1644    KnownZero.zext(BitWidth);
1645    KnownOne.zext(BitWidth);
1646
1647    // If the sign bit is known zero or one, the top bits match.
1648    if (SignBitKnownZero)
1649      KnownZero |= NewBits;
1650    else if (SignBitKnownOne)
1651      KnownOne  |= NewBits;
1652    return;
1653  }
1654  case ISD::ANY_EXTEND: {
1655    MVT InVT = Op.getOperand(0).getValueType();
1656    unsigned InBits = InVT.getSizeInBits();
1657    APInt InMask = Mask;
1658    InMask.trunc(InBits);
1659    KnownZero.trunc(InBits);
1660    KnownOne.trunc(InBits);
1661    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1662    KnownZero.zext(BitWidth);
1663    KnownOne.zext(BitWidth);
1664    return;
1665  }
1666  case ISD::TRUNCATE: {
1667    MVT InVT = Op.getOperand(0).getValueType();
1668    unsigned InBits = InVT.getSizeInBits();
1669    APInt InMask = Mask;
1670    InMask.zext(InBits);
1671    KnownZero.zext(InBits);
1672    KnownOne.zext(InBits);
1673    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1674    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1675    KnownZero.trunc(BitWidth);
1676    KnownOne.trunc(BitWidth);
1677    break;
1678  }
1679  case ISD::AssertZext: {
1680    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1681    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1682    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1683                      KnownOne, Depth+1);
1684    KnownZero |= (~InMask) & Mask;
1685    return;
1686  }
1687  case ISD::FGETSIGN:
1688    // All bits are zero except the low bit.
1689    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1690    return;
1691
1692  case ISD::SUB: {
1693    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1694      // We know that the top bits of C-X are clear if X contains less bits
1695      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1696      // positive if we can prove that X is >= 0 and < 16.
1697      if (CLHS->getAPIntValue().isNonNegative()) {
1698        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1699        // NLZ can't be BitWidth with no sign bit
1700        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1701        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1702                          Depth+1);
1703
1704        // If all of the MaskV bits are known to be zero, then we know the
1705        // output top bits are zero, because we now know that the output is
1706        // from [0-C].
1707        if ((KnownZero2 & MaskV) == MaskV) {
1708          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1709          // Top bits known zero.
1710          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1711        }
1712      }
1713    }
1714  }
1715  // fall through
1716  case ISD::ADD: {
1717    // Output known-0 bits are known if clear or set in both the low clear bits
1718    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1719    // low 3 bits clear.
1720    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1721    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1722    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1723    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1724
1725    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1726    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1727    KnownZeroOut = std::min(KnownZeroOut,
1728                            KnownZero2.countTrailingOnes());
1729
1730    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1731    return;
1732  }
1733  case ISD::SREM:
1734    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1735      const APInt &RA = Rem->getAPIntValue();
1736      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1737        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1738        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1739        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1740
1741        // If the sign bit of the first operand is zero, the sign bit of
1742        // the result is zero. If the first operand has no one bits below
1743        // the second operand's single 1 bit, its sign will be zero.
1744        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1745          KnownZero2 |= ~LowBits;
1746
1747        KnownZero |= KnownZero2 & Mask;
1748
1749        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1750      }
1751    }
1752    return;
1753  case ISD::UREM: {
1754    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1755      const APInt &RA = Rem->getAPIntValue();
1756      if (RA.isPowerOf2()) {
1757        APInt LowBits = (RA - 1);
1758        APInt Mask2 = LowBits & Mask;
1759        KnownZero |= ~LowBits & Mask;
1760        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1761        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1762        break;
1763      }
1764    }
1765
1766    // Since the result is less than or equal to either operand, any leading
1767    // zero bits in either operand must also exist in the result.
1768    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1769    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1770                      Depth+1);
1771    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1772                      Depth+1);
1773
1774    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1775                                KnownZero2.countLeadingOnes());
1776    KnownOne.clear();
1777    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1778    return;
1779  }
1780  default:
1781    // Allow the target to implement this method for its nodes.
1782    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1783  case ISD::INTRINSIC_WO_CHAIN:
1784  case ISD::INTRINSIC_W_CHAIN:
1785  case ISD::INTRINSIC_VOID:
1786      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1787    }
1788    return;
1789  }
1790}
1791
1792/// ComputeNumSignBits - Return the number of times the sign bit of the
1793/// register is replicated into the other bits.  We know that at least 1 bit
1794/// is always equal to the sign bit (itself), but other cases can give us
1795/// information.  For example, immediately after an "SRA X, 2", we know that
1796/// the top 3 bits are all equal to each other, so we return 3.
1797unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1798  MVT VT = Op.getValueType();
1799  assert(VT.isInteger() && "Invalid VT!");
1800  unsigned VTBits = VT.getSizeInBits();
1801  unsigned Tmp, Tmp2;
1802  unsigned FirstAnswer = 1;
1803
1804  if (Depth == 6)
1805    return 1;  // Limit search depth.
1806
1807  switch (Op.getOpcode()) {
1808  default: break;
1809  case ISD::AssertSext:
1810    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1811    return VTBits-Tmp+1;
1812  case ISD::AssertZext:
1813    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1814    return VTBits-Tmp;
1815
1816  case ISD::Constant: {
1817    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1818    // If negative, return # leading ones.
1819    if (Val.isNegative())
1820      return Val.countLeadingOnes();
1821
1822    // Return # leading zeros.
1823    return Val.countLeadingZeros();
1824  }
1825
1826  case ISD::SIGN_EXTEND:
1827    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1828    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1829
1830  case ISD::SIGN_EXTEND_INREG:
1831    // Max of the input and what this extends.
1832    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1833    Tmp = VTBits-Tmp+1;
1834
1835    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1836    return std::max(Tmp, Tmp2);
1837
1838  case ISD::SRA:
1839    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1840    // SRA X, C   -> adds C sign bits.
1841    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1842      Tmp += C->getZExtValue();
1843      if (Tmp > VTBits) Tmp = VTBits;
1844    }
1845    return Tmp;
1846  case ISD::SHL:
1847    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1848      // shl destroys sign bits.
1849      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1850      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1851          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1852      return Tmp - C->getZExtValue();
1853    }
1854    break;
1855  case ISD::AND:
1856  case ISD::OR:
1857  case ISD::XOR:    // NOT is handled here.
1858    // Logical binary ops preserve the number of sign bits at the worst.
1859    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1860    if (Tmp != 1) {
1861      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1862      FirstAnswer = std::min(Tmp, Tmp2);
1863      // We computed what we know about the sign bits as our first
1864      // answer. Now proceed to the generic code that uses
1865      // ComputeMaskedBits, and pick whichever answer is better.
1866    }
1867    break;
1868
1869  case ISD::SELECT:
1870    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1871    if (Tmp == 1) return 1;  // Early out.
1872    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1873    return std::min(Tmp, Tmp2);
1874
1875  case ISD::SETCC:
1876    // If setcc returns 0/-1, all bits are sign bits.
1877    if (TLI.getSetCCResultContents() ==
1878        TargetLowering::ZeroOrNegativeOneSetCCResult)
1879      return VTBits;
1880    break;
1881  case ISD::ROTL:
1882  case ISD::ROTR:
1883    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1884      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1885
1886      // Handle rotate right by N like a rotate left by 32-N.
1887      if (Op.getOpcode() == ISD::ROTR)
1888        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1889
1890      // If we aren't rotating out all of the known-in sign bits, return the
1891      // number that are left.  This handles rotl(sext(x), 1) for example.
1892      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1893      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1894    }
1895    break;
1896  case ISD::ADD:
1897    // Add can have at most one carry bit.  Thus we know that the output
1898    // is, at worst, one more bit than the inputs.
1899    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1900    if (Tmp == 1) return 1;  // Early out.
1901
1902    // Special case decrementing a value (ADD X, -1):
1903    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1904      if (CRHS->isAllOnesValue()) {
1905        APInt KnownZero, KnownOne;
1906        APInt Mask = APInt::getAllOnesValue(VTBits);
1907        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1908
1909        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1910        // sign bits set.
1911        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1912          return VTBits;
1913
1914        // If we are subtracting one from a positive number, there is no carry
1915        // out of the result.
1916        if (KnownZero.isNegative())
1917          return Tmp;
1918      }
1919
1920    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1921    if (Tmp2 == 1) return 1;
1922      return std::min(Tmp, Tmp2)-1;
1923    break;
1924
1925  case ISD::SUB:
1926    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1927    if (Tmp2 == 1) return 1;
1928
1929    // Handle NEG.
1930    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1931      if (CLHS->isNullValue()) {
1932        APInt KnownZero, KnownOne;
1933        APInt Mask = APInt::getAllOnesValue(VTBits);
1934        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1935        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1936        // sign bits set.
1937        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1938          return VTBits;
1939
1940        // If the input is known to be positive (the sign bit is known clear),
1941        // the output of the NEG has the same number of sign bits as the input.
1942        if (KnownZero.isNegative())
1943          return Tmp2;
1944
1945        // Otherwise, we treat this like a SUB.
1946      }
1947
1948    // Sub can have at most one carry bit.  Thus we know that the output
1949    // is, at worst, one more bit than the inputs.
1950    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1951    if (Tmp == 1) return 1;  // Early out.
1952      return std::min(Tmp, Tmp2)-1;
1953    break;
1954  case ISD::TRUNCATE:
1955    // FIXME: it's tricky to do anything useful for this, but it is an important
1956    // case for targets like X86.
1957    break;
1958  }
1959
1960  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1961  if (Op.getOpcode() == ISD::LOAD) {
1962    LoadSDNode *LD = cast<LoadSDNode>(Op);
1963    unsigned ExtType = LD->getExtensionType();
1964    switch (ExtType) {
1965    default: break;
1966    case ISD::SEXTLOAD:    // '17' bits known
1967      Tmp = LD->getMemoryVT().getSizeInBits();
1968      return VTBits-Tmp+1;
1969    case ISD::ZEXTLOAD:    // '16' bits known
1970      Tmp = LD->getMemoryVT().getSizeInBits();
1971      return VTBits-Tmp;
1972    }
1973  }
1974
1975  // Allow the target to implement this method for its nodes.
1976  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1977      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1978      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1979      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1980    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1981    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1982  }
1983
1984  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1985  // use this information.
1986  APInt KnownZero, KnownOne;
1987  APInt Mask = APInt::getAllOnesValue(VTBits);
1988  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1989
1990  if (KnownZero.isNegative()) {        // sign bit is 0
1991    Mask = KnownZero;
1992  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1993    Mask = KnownOne;
1994  } else {
1995    // Nothing known.
1996    return FirstAnswer;
1997  }
1998
1999  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2000  // the number of identical bits in the top of the input value.
2001  Mask = ~Mask;
2002  Mask <<= Mask.getBitWidth()-VTBits;
2003  // Return # leading zeros.  We use 'min' here in case Val was zero before
2004  // shifting.  We don't want to return '64' as for an i32 "0".
2005  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2006}
2007
2008
2009bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2010  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2011  if (!GA) return false;
2012  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2013  if (!GV) return false;
2014  MachineModuleInfo *MMI = getMachineModuleInfo();
2015  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2016}
2017
2018
2019/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2020/// element of the result of the vector shuffle.
2021SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2022  MVT VT = N->getValueType(0);
2023  SDValue PermMask = N->getOperand(2);
2024  SDValue Idx = PermMask.getOperand(i);
2025  if (Idx.getOpcode() == ISD::UNDEF)
2026    return getNode(ISD::UNDEF, VT.getVectorElementType());
2027  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2028  unsigned NumElems = PermMask.getNumOperands();
2029  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2030  Index %= NumElems;
2031
2032  if (V.getOpcode() == ISD::BIT_CONVERT) {
2033    V = V.getOperand(0);
2034    if (V.getValueType().getVectorNumElements() != NumElems)
2035      return SDValue();
2036  }
2037  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2038    return (Index == 0) ? V.getOperand(0)
2039                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2040  if (V.getOpcode() == ISD::BUILD_VECTOR)
2041    return V.getOperand(Index);
2042  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2043    return getShuffleScalarElt(V.getNode(), Index);
2044  return SDValue();
2045}
2046
2047
2048/// getNode - Gets or creates the specified node.
2049///
2050SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2051  FoldingSetNodeID ID;
2052  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2053  void *IP = 0;
2054  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2055    return SDValue(E, 0);
2056  SDNode *N = NodeAllocator.Allocate<SDNode>();
2057  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2058  CSEMap.InsertNode(N, IP);
2059
2060  AllNodes.push_back(N);
2061#ifndef NDEBUG
2062  VerifyNode(N);
2063#endif
2064  return SDValue(N, 0);
2065}
2066
2067SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2068  // Constant fold unary operations with an integer constant operand.
2069  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2070    const APInt &Val = C->getAPIntValue();
2071    unsigned BitWidth = VT.getSizeInBits();
2072    switch (Opcode) {
2073    default: break;
2074    case ISD::SIGN_EXTEND:
2075      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2076    case ISD::ANY_EXTEND:
2077    case ISD::ZERO_EXTEND:
2078    case ISD::TRUNCATE:
2079      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2080    case ISD::UINT_TO_FP:
2081    case ISD::SINT_TO_FP: {
2082      const uint64_t zero[] = {0, 0};
2083      // No compile time operations on this type.
2084      if (VT==MVT::ppcf128)
2085        break;
2086      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2087      (void)apf.convertFromAPInt(Val,
2088                                 Opcode==ISD::SINT_TO_FP,
2089                                 APFloat::rmNearestTiesToEven);
2090      return getConstantFP(apf, VT);
2091    }
2092    case ISD::BIT_CONVERT:
2093      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2094        return getConstantFP(Val.bitsToFloat(), VT);
2095      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2096        return getConstantFP(Val.bitsToDouble(), VT);
2097      break;
2098    case ISD::BSWAP:
2099      return getConstant(Val.byteSwap(), VT);
2100    case ISD::CTPOP:
2101      return getConstant(Val.countPopulation(), VT);
2102    case ISD::CTLZ:
2103      return getConstant(Val.countLeadingZeros(), VT);
2104    case ISD::CTTZ:
2105      return getConstant(Val.countTrailingZeros(), VT);
2106    }
2107  }
2108
2109  // Constant fold unary operations with a floating point constant operand.
2110  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2111    APFloat V = C->getValueAPF();    // make copy
2112    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2113      switch (Opcode) {
2114      case ISD::FNEG:
2115        V.changeSign();
2116        return getConstantFP(V, VT);
2117      case ISD::FABS:
2118        V.clearSign();
2119        return getConstantFP(V, VT);
2120      case ISD::FP_ROUND:
2121      case ISD::FP_EXTEND:
2122        // This can return overflow, underflow, or inexact; we don't care.
2123        // FIXME need to be more flexible about rounding mode.
2124        (void)V.convert(*MVTToAPFloatSemantics(VT),
2125                        APFloat::rmNearestTiesToEven);
2126        return getConstantFP(V, VT);
2127      case ISD::FP_TO_SINT:
2128      case ISD::FP_TO_UINT: {
2129        integerPart x;
2130        assert(integerPartWidth >= 64);
2131        // FIXME need to be more flexible about rounding mode.
2132        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2133                              Opcode==ISD::FP_TO_SINT,
2134                              APFloat::rmTowardZero);
2135        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2136          break;
2137        return getConstant(x, VT);
2138      }
2139      case ISD::BIT_CONVERT:
2140        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2141          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
2142        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2143          return getConstant(V.convertToAPInt().getZExtValue(), VT);
2144        break;
2145      }
2146    }
2147  }
2148
2149  unsigned OpOpcode = Operand.getNode()->getOpcode();
2150  switch (Opcode) {
2151  case ISD::TokenFactor:
2152  case ISD::CONCAT_VECTORS:
2153    return Operand;         // Factor or concat of one node?  No need.
2154  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2155  case ISD::FP_EXTEND:
2156    assert(VT.isFloatingPoint() &&
2157           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2158    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2159    if (Operand.getOpcode() == ISD::UNDEF)
2160      return getNode(ISD::UNDEF, VT);
2161    break;
2162  case ISD::SIGN_EXTEND:
2163    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2164           "Invalid SIGN_EXTEND!");
2165    if (Operand.getValueType() == VT) return Operand;   // noop extension
2166    assert(Operand.getValueType().bitsLT(VT)
2167           && "Invalid sext node, dst < src!");
2168    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2169      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2170    break;
2171  case ISD::ZERO_EXTEND:
2172    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2173           "Invalid ZERO_EXTEND!");
2174    if (Operand.getValueType() == VT) return Operand;   // noop extension
2175    assert(Operand.getValueType().bitsLT(VT)
2176           && "Invalid zext node, dst < src!");
2177    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2178      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2179    break;
2180  case ISD::ANY_EXTEND:
2181    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2182           "Invalid ANY_EXTEND!");
2183    if (Operand.getValueType() == VT) return Operand;   // noop extension
2184    assert(Operand.getValueType().bitsLT(VT)
2185           && "Invalid anyext node, dst < src!");
2186    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2187      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2188      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2189    break;
2190  case ISD::TRUNCATE:
2191    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2192           "Invalid TRUNCATE!");
2193    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2194    assert(Operand.getValueType().bitsGT(VT)
2195           && "Invalid truncate node, src < dst!");
2196    if (OpOpcode == ISD::TRUNCATE)
2197      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2198    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2199             OpOpcode == ISD::ANY_EXTEND) {
2200      // If the source is smaller than the dest, we still need an extend.
2201      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2202        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2203      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2204        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2205      else
2206        return Operand.getNode()->getOperand(0);
2207    }
2208    break;
2209  case ISD::BIT_CONVERT:
2210    // Basic sanity checking.
2211    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2212           && "Cannot BIT_CONVERT between types of different sizes!");
2213    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2214    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2215      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2216    if (OpOpcode == ISD::UNDEF)
2217      return getNode(ISD::UNDEF, VT);
2218    break;
2219  case ISD::SCALAR_TO_VECTOR:
2220    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2221           VT.getVectorElementType() == Operand.getValueType() &&
2222           "Illegal SCALAR_TO_VECTOR node!");
2223    if (OpOpcode == ISD::UNDEF)
2224      return getNode(ISD::UNDEF, VT);
2225    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2226    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2227        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2228        Operand.getConstantOperandVal(1) == 0 &&
2229        Operand.getOperand(0).getValueType() == VT)
2230      return Operand.getOperand(0);
2231    break;
2232  case ISD::FNEG:
2233    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2234      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2235                     Operand.getNode()->getOperand(0));
2236    if (OpOpcode == ISD::FNEG)  // --X -> X
2237      return Operand.getNode()->getOperand(0);
2238    break;
2239  case ISD::FABS:
2240    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2241      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2242    break;
2243  }
2244
2245  SDNode *N;
2246  SDVTList VTs = getVTList(VT);
2247  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2248    FoldingSetNodeID ID;
2249    SDValue Ops[1] = { Operand };
2250    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2251    void *IP = 0;
2252    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2253      return SDValue(E, 0);
2254    N = NodeAllocator.Allocate<UnarySDNode>();
2255    new (N) UnarySDNode(Opcode, VTs, Operand);
2256    CSEMap.InsertNode(N, IP);
2257  } else {
2258    N = NodeAllocator.Allocate<UnarySDNode>();
2259    new (N) UnarySDNode(Opcode, VTs, Operand);
2260  }
2261
2262  AllNodes.push_back(N);
2263#ifndef NDEBUG
2264  VerifyNode(N);
2265#endif
2266  return SDValue(N, 0);
2267}
2268
2269SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2270                              SDValue N1, SDValue N2) {
2271  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2272  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2273  switch (Opcode) {
2274  default: break;
2275  case ISD::TokenFactor:
2276    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2277           N2.getValueType() == MVT::Other && "Invalid token factor!");
2278    // Fold trivial token factors.
2279    if (N1.getOpcode() == ISD::EntryToken) return N2;
2280    if (N2.getOpcode() == ISD::EntryToken) return N1;
2281    break;
2282  case ISD::CONCAT_VECTORS:
2283    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2284    // one big BUILD_VECTOR.
2285    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2286        N2.getOpcode() == ISD::BUILD_VECTOR) {
2287      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2288      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2289      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2290    }
2291    break;
2292  case ISD::AND:
2293    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2294           N1.getValueType() == VT && "Binary operator types must match!");
2295    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2296    // worth handling here.
2297    if (N2C && N2C->isNullValue())
2298      return N2;
2299    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2300      return N1;
2301    break;
2302  case ISD::OR:
2303  case ISD::XOR:
2304  case ISD::ADD:
2305  case ISD::SUB:
2306    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2307           N1.getValueType() == VT && "Binary operator types must match!");
2308    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2309    // it's worth handling here.
2310    if (N2C && N2C->isNullValue())
2311      return N1;
2312    break;
2313  case ISD::UDIV:
2314  case ISD::UREM:
2315  case ISD::MULHU:
2316  case ISD::MULHS:
2317    assert(VT.isInteger() && "This operator does not apply to FP types!");
2318    // fall through
2319  case ISD::MUL:
2320  case ISD::SDIV:
2321  case ISD::SREM:
2322  case ISD::FADD:
2323  case ISD::FSUB:
2324  case ISD::FMUL:
2325  case ISD::FDIV:
2326  case ISD::FREM:
2327    assert(N1.getValueType() == N2.getValueType() &&
2328           N1.getValueType() == VT && "Binary operator types must match!");
2329    break;
2330  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2331    assert(N1.getValueType() == VT &&
2332           N1.getValueType().isFloatingPoint() &&
2333           N2.getValueType().isFloatingPoint() &&
2334           "Invalid FCOPYSIGN!");
2335    break;
2336  case ISD::SHL:
2337  case ISD::SRA:
2338  case ISD::SRL:
2339  case ISD::ROTL:
2340  case ISD::ROTR:
2341    assert(VT == N1.getValueType() &&
2342           "Shift operators return type must be the same as their first arg");
2343    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2344           "Shifts only work on integers");
2345
2346    // Always fold shifts of i1 values so the code generator doesn't need to
2347    // handle them.  Since we know the size of the shift has to be less than the
2348    // size of the value, the shift/rotate count is guaranteed to be zero.
2349    if (VT == MVT::i1)
2350      return N1;
2351    break;
2352  case ISD::FP_ROUND_INREG: {
2353    MVT EVT = cast<VTSDNode>(N2)->getVT();
2354    assert(VT == N1.getValueType() && "Not an inreg round!");
2355    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2356           "Cannot FP_ROUND_INREG integer types");
2357    assert(EVT.bitsLE(VT) && "Not rounding down!");
2358    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2359    break;
2360  }
2361  case ISD::FP_ROUND:
2362    assert(VT.isFloatingPoint() &&
2363           N1.getValueType().isFloatingPoint() &&
2364           VT.bitsLE(N1.getValueType()) &&
2365           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2366    if (N1.getValueType() == VT) return N1;  // noop conversion.
2367    break;
2368  case ISD::AssertSext:
2369  case ISD::AssertZext: {
2370    MVT EVT = cast<VTSDNode>(N2)->getVT();
2371    assert(VT == N1.getValueType() && "Not an inreg extend!");
2372    assert(VT.isInteger() && EVT.isInteger() &&
2373           "Cannot *_EXTEND_INREG FP types");
2374    assert(EVT.bitsLE(VT) && "Not extending!");
2375    if (VT == EVT) return N1; // noop assertion.
2376    break;
2377  }
2378  case ISD::SIGN_EXTEND_INREG: {
2379    MVT EVT = cast<VTSDNode>(N2)->getVT();
2380    assert(VT == N1.getValueType() && "Not an inreg extend!");
2381    assert(VT.isInteger() && EVT.isInteger() &&
2382           "Cannot *_EXTEND_INREG FP types");
2383    assert(EVT.bitsLE(VT) && "Not extending!");
2384    if (EVT == VT) return N1;  // Not actually extending
2385
2386    if (N1C) {
2387      APInt Val = N1C->getAPIntValue();
2388      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2389      Val <<= Val.getBitWidth()-FromBits;
2390      Val = Val.ashr(Val.getBitWidth()-FromBits);
2391      return getConstant(Val, VT);
2392    }
2393    break;
2394  }
2395  case ISD::EXTRACT_VECTOR_ELT:
2396    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2397    if (N1.getOpcode() == ISD::UNDEF)
2398      return getNode(ISD::UNDEF, VT);
2399
2400    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2401    // expanding copies of large vectors from registers.
2402    if (N2C &&
2403        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2404        N1.getNumOperands() > 0) {
2405      unsigned Factor =
2406        N1.getOperand(0).getValueType().getVectorNumElements();
2407      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2408                     N1.getOperand(N2C->getZExtValue() / Factor),
2409                     getConstant(N2C->getZExtValue() % Factor,
2410                                 N2.getValueType()));
2411    }
2412
2413    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2414    // expanding large vector constants.
2415    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2416      return N1.getOperand(N2C->getZExtValue());
2417
2418    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2419    // operations are lowered to scalars.
2420    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2421      if (N1.getOperand(2) == N2)
2422        return N1.getOperand(1);
2423      else
2424        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2425    }
2426    break;
2427  case ISD::EXTRACT_ELEMENT:
2428    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2429    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2430           (N1.getValueType().isInteger() == VT.isInteger()) &&
2431           "Wrong types for EXTRACT_ELEMENT!");
2432
2433    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2434    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2435    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2436    if (N1.getOpcode() == ISD::BUILD_PAIR)
2437      return N1.getOperand(N2C->getZExtValue());
2438
2439    // EXTRACT_ELEMENT of a constant int is also very common.
2440    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2441      unsigned ElementSize = VT.getSizeInBits();
2442      unsigned Shift = ElementSize * N2C->getZExtValue();
2443      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2444      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2445    }
2446    break;
2447  case ISD::EXTRACT_SUBVECTOR:
2448    if (N1.getValueType() == VT) // Trivial extraction.
2449      return N1;
2450    break;
2451  }
2452
2453  if (N1C) {
2454    if (N2C) {
2455      const APInt &C1 = N1C->getAPIntValue(), &C2 = N2C->getAPIntValue();
2456      switch (Opcode) {
2457      case ISD::ADD: return getConstant(C1 + C2, VT);
2458      case ISD::SUB: return getConstant(C1 - C2, VT);
2459      case ISD::MUL: return getConstant(C1 * C2, VT);
2460      case ISD::UDIV:
2461        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2462        break;
2463      case ISD::UREM :
2464        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2465        break;
2466      case ISD::SDIV :
2467        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2468        break;
2469      case ISD::SREM :
2470        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2471        break;
2472      case ISD::AND  : return getConstant(C1 & C2, VT);
2473      case ISD::OR   : return getConstant(C1 | C2, VT);
2474      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2475      case ISD::SHL  : return getConstant(C1 << C2, VT);
2476      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2477      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2478      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2479      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2480      default: break;
2481      }
2482    } else {      // Cannonicalize constant to RHS if commutative
2483      if (isCommutativeBinOp(Opcode)) {
2484        std::swap(N1C, N2C);
2485        std::swap(N1, N2);
2486      }
2487    }
2488  }
2489
2490  // Constant fold FP operations.
2491  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2492  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2493  if (N1CFP) {
2494    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2495      // Cannonicalize constant to RHS if commutative
2496      std::swap(N1CFP, N2CFP);
2497      std::swap(N1, N2);
2498    } else if (N2CFP && VT != MVT::ppcf128) {
2499      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2500      APFloat::opStatus s;
2501      switch (Opcode) {
2502      case ISD::FADD:
2503        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2504        if (s != APFloat::opInvalidOp)
2505          return getConstantFP(V1, VT);
2506        break;
2507      case ISD::FSUB:
2508        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2509        if (s!=APFloat::opInvalidOp)
2510          return getConstantFP(V1, VT);
2511        break;
2512      case ISD::FMUL:
2513        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2514        if (s!=APFloat::opInvalidOp)
2515          return getConstantFP(V1, VT);
2516        break;
2517      case ISD::FDIV:
2518        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2519        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2520          return getConstantFP(V1, VT);
2521        break;
2522      case ISD::FREM :
2523        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2524        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2525          return getConstantFP(V1, VT);
2526        break;
2527      case ISD::FCOPYSIGN:
2528        V1.copySign(V2);
2529        return getConstantFP(V1, VT);
2530      default: break;
2531      }
2532    }
2533  }
2534
2535  // Canonicalize an UNDEF to the RHS, even over a constant.
2536  if (N1.getOpcode() == ISD::UNDEF) {
2537    if (isCommutativeBinOp(Opcode)) {
2538      std::swap(N1, N2);
2539    } else {
2540      switch (Opcode) {
2541      case ISD::FP_ROUND_INREG:
2542      case ISD::SIGN_EXTEND_INREG:
2543      case ISD::SUB:
2544      case ISD::FSUB:
2545      case ISD::FDIV:
2546      case ISD::FREM:
2547      case ISD::SRA:
2548        return N1;     // fold op(undef, arg2) -> undef
2549      case ISD::UDIV:
2550      case ISD::SDIV:
2551      case ISD::UREM:
2552      case ISD::SREM:
2553      case ISD::SRL:
2554      case ISD::SHL:
2555        if (!VT.isVector())
2556          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2557        // For vectors, we can't easily build an all zero vector, just return
2558        // the LHS.
2559        return N2;
2560      }
2561    }
2562  }
2563
2564  // Fold a bunch of operators when the RHS is undef.
2565  if (N2.getOpcode() == ISD::UNDEF) {
2566    switch (Opcode) {
2567    case ISD::XOR:
2568      if (N1.getOpcode() == ISD::UNDEF)
2569        // Handle undef ^ undef -> 0 special case. This is a common
2570        // idiom (misuse).
2571        return getConstant(0, VT);
2572      // fallthrough
2573    case ISD::ADD:
2574    case ISD::ADDC:
2575    case ISD::ADDE:
2576    case ISD::SUB:
2577    case ISD::FADD:
2578    case ISD::FSUB:
2579    case ISD::FMUL:
2580    case ISD::FDIV:
2581    case ISD::FREM:
2582    case ISD::UDIV:
2583    case ISD::SDIV:
2584    case ISD::UREM:
2585    case ISD::SREM:
2586      return N2;       // fold op(arg1, undef) -> undef
2587    case ISD::MUL:
2588    case ISD::AND:
2589    case ISD::SRL:
2590    case ISD::SHL:
2591      if (!VT.isVector())
2592        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2593      // For vectors, we can't easily build an all zero vector, just return
2594      // the LHS.
2595      return N1;
2596    case ISD::OR:
2597      if (!VT.isVector())
2598        return getConstant(VT.getIntegerVTBitMask(), VT);
2599      // For vectors, we can't easily build an all one vector, just return
2600      // the LHS.
2601      return N1;
2602    case ISD::SRA:
2603      return N1;
2604    }
2605  }
2606
2607  // Memoize this node if possible.
2608  SDNode *N;
2609  SDVTList VTs = getVTList(VT);
2610  if (VT != MVT::Flag) {
2611    SDValue Ops[] = { N1, N2 };
2612    FoldingSetNodeID ID;
2613    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2614    void *IP = 0;
2615    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2616      return SDValue(E, 0);
2617    N = NodeAllocator.Allocate<BinarySDNode>();
2618    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2619    CSEMap.InsertNode(N, IP);
2620  } else {
2621    N = NodeAllocator.Allocate<BinarySDNode>();
2622    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2623  }
2624
2625  AllNodes.push_back(N);
2626#ifndef NDEBUG
2627  VerifyNode(N);
2628#endif
2629  return SDValue(N, 0);
2630}
2631
2632SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2633                              SDValue N1, SDValue N2, SDValue N3) {
2634  // Perform various simplifications.
2635  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2636  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2637  switch (Opcode) {
2638  case ISD::CONCAT_VECTORS:
2639    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2640    // one big BUILD_VECTOR.
2641    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2642        N2.getOpcode() == ISD::BUILD_VECTOR &&
2643        N3.getOpcode() == ISD::BUILD_VECTOR) {
2644      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2645      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2646      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2647      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2648    }
2649    break;
2650  case ISD::SETCC: {
2651    // Use FoldSetCC to simplify SETCC's.
2652    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2653    if (Simp.getNode()) return Simp;
2654    break;
2655  }
2656  case ISD::SELECT:
2657    if (N1C) {
2658     if (N1C->getZExtValue())
2659        return N2;             // select true, X, Y -> X
2660      else
2661        return N3;             // select false, X, Y -> Y
2662    }
2663
2664    if (N2 == N3) return N2;   // select C, X, X -> X
2665    break;
2666  case ISD::BRCOND:
2667    if (N2C) {
2668      if (N2C->getZExtValue()) // Unconditional branch
2669        return getNode(ISD::BR, MVT::Other, N1, N3);
2670      else
2671        return N1;         // Never-taken branch
2672    }
2673    break;
2674  case ISD::VECTOR_SHUFFLE:
2675    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2676           VT.isVector() && N3.getValueType().isVector() &&
2677           N3.getOpcode() == ISD::BUILD_VECTOR &&
2678           VT.getVectorNumElements() == N3.getNumOperands() &&
2679           "Illegal VECTOR_SHUFFLE node!");
2680    break;
2681  case ISD::BIT_CONVERT:
2682    // Fold bit_convert nodes from a type to themselves.
2683    if (N1.getValueType() == VT)
2684      return N1;
2685    break;
2686  }
2687
2688  // Memoize node if it doesn't produce a flag.
2689  SDNode *N;
2690  SDVTList VTs = getVTList(VT);
2691  if (VT != MVT::Flag) {
2692    SDValue Ops[] = { N1, N2, N3 };
2693    FoldingSetNodeID ID;
2694    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2695    void *IP = 0;
2696    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2697      return SDValue(E, 0);
2698    N = NodeAllocator.Allocate<TernarySDNode>();
2699    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2700    CSEMap.InsertNode(N, IP);
2701  } else {
2702    N = NodeAllocator.Allocate<TernarySDNode>();
2703    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2704  }
2705  AllNodes.push_back(N);
2706#ifndef NDEBUG
2707  VerifyNode(N);
2708#endif
2709  return SDValue(N, 0);
2710}
2711
2712SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2713                              SDValue N1, SDValue N2, SDValue N3,
2714                              SDValue N4) {
2715  SDValue Ops[] = { N1, N2, N3, N4 };
2716  return getNode(Opcode, VT, Ops, 4);
2717}
2718
2719SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2720                              SDValue N1, SDValue N2, SDValue N3,
2721                              SDValue N4, SDValue N5) {
2722  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2723  return getNode(Opcode, VT, Ops, 5);
2724}
2725
2726/// getMemsetValue - Vectorized representation of the memset value
2727/// operand.
2728static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2729  unsigned NumBits = VT.isVector() ?
2730    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2731  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2732    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2733    unsigned Shift = 8;
2734    for (unsigned i = NumBits; i > 8; i >>= 1) {
2735      Val = (Val << Shift) | Val;
2736      Shift <<= 1;
2737    }
2738    if (VT.isInteger())
2739      return DAG.getConstant(Val, VT);
2740    return DAG.getConstantFP(APFloat(Val), VT);
2741  }
2742
2743  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2744  unsigned Shift = 8;
2745  for (unsigned i = NumBits; i > 8; i >>= 1) {
2746    Value = DAG.getNode(ISD::OR, VT,
2747                        DAG.getNode(ISD::SHL, VT, Value,
2748                                    DAG.getConstant(Shift, MVT::i8)), Value);
2749    Shift <<= 1;
2750  }
2751
2752  return Value;
2753}
2754
2755/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2756/// used when a memcpy is turned into a memset when the source is a constant
2757/// string ptr.
2758static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2759                                    const TargetLowering &TLI,
2760                                    std::string &Str, unsigned Offset) {
2761  // Handle vector with all elements zero.
2762  if (Str.empty()) {
2763    if (VT.isInteger())
2764      return DAG.getConstant(0, VT);
2765    unsigned NumElts = VT.getVectorNumElements();
2766    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2767    return DAG.getNode(ISD::BIT_CONVERT, VT,
2768                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2769  }
2770
2771  assert(!VT.isVector() && "Can't handle vector type here!");
2772  unsigned NumBits = VT.getSizeInBits();
2773  unsigned MSB = NumBits / 8;
2774  uint64_t Val = 0;
2775  if (TLI.isLittleEndian())
2776    Offset = Offset + MSB - 1;
2777  for (unsigned i = 0; i != MSB; ++i) {
2778    Val = (Val << 8) | (unsigned char)Str[Offset];
2779    Offset += TLI.isLittleEndian() ? -1 : 1;
2780  }
2781  return DAG.getConstant(Val, VT);
2782}
2783
2784/// getMemBasePlusOffset - Returns base and offset node for the
2785///
2786static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2787                                      SelectionDAG &DAG) {
2788  MVT VT = Base.getValueType();
2789  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2790}
2791
2792/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2793///
2794static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2795  unsigned SrcDelta = 0;
2796  GlobalAddressSDNode *G = NULL;
2797  if (Src.getOpcode() == ISD::GlobalAddress)
2798    G = cast<GlobalAddressSDNode>(Src);
2799  else if (Src.getOpcode() == ISD::ADD &&
2800           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2801           Src.getOperand(1).getOpcode() == ISD::Constant) {
2802    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2803    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2804  }
2805  if (!G)
2806    return false;
2807
2808  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2809  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2810    return true;
2811
2812  return false;
2813}
2814
2815/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2816/// to replace the memset / memcpy is below the threshold. It also returns the
2817/// types of the sequence of memory ops to perform memset / memcpy.
2818static
2819bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2820                              SDValue Dst, SDValue Src,
2821                              unsigned Limit, uint64_t Size, unsigned &Align,
2822                              std::string &Str, bool &isSrcStr,
2823                              SelectionDAG &DAG,
2824                              const TargetLowering &TLI) {
2825  isSrcStr = isMemSrcFromString(Src, Str);
2826  bool isSrcConst = isa<ConstantSDNode>(Src);
2827  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2828  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2829  if (VT != MVT::iAny) {
2830    unsigned NewAlign = (unsigned)
2831      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2832    // If source is a string constant, this will require an unaligned load.
2833    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2834      if (Dst.getOpcode() != ISD::FrameIndex) {
2835        // Can't change destination alignment. It requires a unaligned store.
2836        if (AllowUnalign)
2837          VT = MVT::iAny;
2838      } else {
2839        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2840        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2841        if (MFI->isFixedObjectIndex(FI)) {
2842          // Can't change destination alignment. It requires a unaligned store.
2843          if (AllowUnalign)
2844            VT = MVT::iAny;
2845        } else {
2846          // Give the stack frame object a larger alignment if needed.
2847          if (MFI->getObjectAlignment(FI) < NewAlign)
2848            MFI->setObjectAlignment(FI, NewAlign);
2849          Align = NewAlign;
2850        }
2851      }
2852    }
2853  }
2854
2855  if (VT == MVT::iAny) {
2856    if (AllowUnalign) {
2857      VT = MVT::i64;
2858    } else {
2859      switch (Align & 7) {
2860      case 0:  VT = MVT::i64; break;
2861      case 4:  VT = MVT::i32; break;
2862      case 2:  VT = MVT::i16; break;
2863      default: VT = MVT::i8;  break;
2864      }
2865    }
2866
2867    MVT LVT = MVT::i64;
2868    while (!TLI.isTypeLegal(LVT))
2869      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2870    assert(LVT.isInteger());
2871
2872    if (VT.bitsGT(LVT))
2873      VT = LVT;
2874  }
2875
2876  unsigned NumMemOps = 0;
2877  while (Size != 0) {
2878    unsigned VTSize = VT.getSizeInBits() / 8;
2879    while (VTSize > Size) {
2880      // For now, only use non-vector load / store's for the left-over pieces.
2881      if (VT.isVector()) {
2882        VT = MVT::i64;
2883        while (!TLI.isTypeLegal(VT))
2884          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2885        VTSize = VT.getSizeInBits() / 8;
2886      } else {
2887        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2888        VTSize >>= 1;
2889      }
2890    }
2891
2892    if (++NumMemOps > Limit)
2893      return false;
2894    MemOps.push_back(VT);
2895    Size -= VTSize;
2896  }
2897
2898  return true;
2899}
2900
2901static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2902                                         SDValue Chain, SDValue Dst,
2903                                         SDValue Src, uint64_t Size,
2904                                         unsigned Align, bool AlwaysInline,
2905                                         const Value *DstSV, uint64_t DstSVOff,
2906                                         const Value *SrcSV, uint64_t SrcSVOff){
2907  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2908
2909  // Expand memcpy to a series of load and store ops if the size operand falls
2910  // below a certain threshold.
2911  std::vector<MVT> MemOps;
2912  uint64_t Limit = -1;
2913  if (!AlwaysInline)
2914    Limit = TLI.getMaxStoresPerMemcpy();
2915  unsigned DstAlign = Align;  // Destination alignment can change.
2916  std::string Str;
2917  bool CopyFromStr;
2918  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2919                                Str, CopyFromStr, DAG, TLI))
2920    return SDValue();
2921
2922
2923  bool isZeroStr = CopyFromStr && Str.empty();
2924  SmallVector<SDValue, 8> OutChains;
2925  unsigned NumMemOps = MemOps.size();
2926  uint64_t SrcOff = 0, DstOff = 0;
2927  for (unsigned i = 0; i < NumMemOps; i++) {
2928    MVT VT = MemOps[i];
2929    unsigned VTSize = VT.getSizeInBits() / 8;
2930    SDValue Value, Store;
2931
2932    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2933      // It's unlikely a store of a vector immediate can be done in a single
2934      // instruction. It would require a load from a constantpool first.
2935      // We also handle store a vector with all zero's.
2936      // FIXME: Handle other cases where store of vector immediate is done in
2937      // a single instruction.
2938      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2939      Store = DAG.getStore(Chain, Value,
2940                           getMemBasePlusOffset(Dst, DstOff, DAG),
2941                           DstSV, DstSVOff + DstOff, false, DstAlign);
2942    } else {
2943      Value = DAG.getLoad(VT, Chain,
2944                          getMemBasePlusOffset(Src, SrcOff, DAG),
2945                          SrcSV, SrcSVOff + SrcOff, false, Align);
2946      Store = DAG.getStore(Chain, Value,
2947                           getMemBasePlusOffset(Dst, DstOff, DAG),
2948                           DstSV, DstSVOff + DstOff, false, DstAlign);
2949    }
2950    OutChains.push_back(Store);
2951    SrcOff += VTSize;
2952    DstOff += VTSize;
2953  }
2954
2955  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2956                     &OutChains[0], OutChains.size());
2957}
2958
2959static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
2960                                          SDValue Chain, SDValue Dst,
2961                                          SDValue Src, uint64_t Size,
2962                                          unsigned Align, bool AlwaysInline,
2963                                          const Value *DstSV, uint64_t DstSVOff,
2964                                          const Value *SrcSV, uint64_t SrcSVOff){
2965  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2966
2967  // Expand memmove to a series of load and store ops if the size operand falls
2968  // below a certain threshold.
2969  std::vector<MVT> MemOps;
2970  uint64_t Limit = -1;
2971  if (!AlwaysInline)
2972    Limit = TLI.getMaxStoresPerMemmove();
2973  unsigned DstAlign = Align;  // Destination alignment can change.
2974  std::string Str;
2975  bool CopyFromStr;
2976  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2977                                Str, CopyFromStr, DAG, TLI))
2978    return SDValue();
2979
2980  uint64_t SrcOff = 0, DstOff = 0;
2981
2982  SmallVector<SDValue, 8> LoadValues;
2983  SmallVector<SDValue, 8> LoadChains;
2984  SmallVector<SDValue, 8> OutChains;
2985  unsigned NumMemOps = MemOps.size();
2986  for (unsigned i = 0; i < NumMemOps; i++) {
2987    MVT VT = MemOps[i];
2988    unsigned VTSize = VT.getSizeInBits() / 8;
2989    SDValue Value, Store;
2990
2991    Value = DAG.getLoad(VT, Chain,
2992                        getMemBasePlusOffset(Src, SrcOff, DAG),
2993                        SrcSV, SrcSVOff + SrcOff, false, Align);
2994    LoadValues.push_back(Value);
2995    LoadChains.push_back(Value.getValue(1));
2996    SrcOff += VTSize;
2997  }
2998  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2999                      &LoadChains[0], LoadChains.size());
3000  OutChains.clear();
3001  for (unsigned i = 0; i < NumMemOps; i++) {
3002    MVT VT = MemOps[i];
3003    unsigned VTSize = VT.getSizeInBits() / 8;
3004    SDValue Value, Store;
3005
3006    Store = DAG.getStore(Chain, LoadValues[i],
3007                         getMemBasePlusOffset(Dst, DstOff, DAG),
3008                         DstSV, DstSVOff + DstOff, false, DstAlign);
3009    OutChains.push_back(Store);
3010    DstOff += VTSize;
3011  }
3012
3013  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3014                     &OutChains[0], OutChains.size());
3015}
3016
3017static SDValue getMemsetStores(SelectionDAG &DAG,
3018                                 SDValue Chain, SDValue Dst,
3019                                 SDValue Src, uint64_t Size,
3020                                 unsigned Align,
3021                                 const Value *DstSV, uint64_t DstSVOff) {
3022  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3023
3024  // Expand memset to a series of load/store ops if the size operand
3025  // falls below a certain threshold.
3026  std::vector<MVT> MemOps;
3027  std::string Str;
3028  bool CopyFromStr;
3029  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3030                                Size, Align, Str, CopyFromStr, DAG, TLI))
3031    return SDValue();
3032
3033  SmallVector<SDValue, 8> OutChains;
3034  uint64_t DstOff = 0;
3035
3036  unsigned NumMemOps = MemOps.size();
3037  for (unsigned i = 0; i < NumMemOps; i++) {
3038    MVT VT = MemOps[i];
3039    unsigned VTSize = VT.getSizeInBits() / 8;
3040    SDValue Value = getMemsetValue(Src, VT, DAG);
3041    SDValue Store = DAG.getStore(Chain, Value,
3042                                   getMemBasePlusOffset(Dst, DstOff, DAG),
3043                                   DstSV, DstSVOff + DstOff);
3044    OutChains.push_back(Store);
3045    DstOff += VTSize;
3046  }
3047
3048  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3049                     &OutChains[0], OutChains.size());
3050}
3051
3052SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3053                                SDValue Src, SDValue Size,
3054                                unsigned Align, bool AlwaysInline,
3055                                const Value *DstSV, uint64_t DstSVOff,
3056                                const Value *SrcSV, uint64_t SrcSVOff) {
3057
3058  // Check to see if we should lower the memcpy to loads and stores first.
3059  // For cases within the target-specified limits, this is the best choice.
3060  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3061  if (ConstantSize) {
3062    // Memcpy with size zero? Just return the original chain.
3063    if (ConstantSize->isNullValue())
3064      return Chain;
3065
3066    SDValue Result =
3067      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3068                              ConstantSize->getZExtValue(),
3069                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3070    if (Result.getNode())
3071      return Result;
3072  }
3073
3074  // Then check to see if we should lower the memcpy with target-specific
3075  // code. If the target chooses to do this, this is the next best.
3076  SDValue Result =
3077    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3078                                AlwaysInline,
3079                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3080  if (Result.getNode())
3081    return Result;
3082
3083  // If we really need inline code and the target declined to provide it,
3084  // use a (potentially long) sequence of loads and stores.
3085  if (AlwaysInline) {
3086    assert(ConstantSize && "AlwaysInline requires a constant size!");
3087    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3088                                   ConstantSize->getZExtValue(), Align, true,
3089                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3090  }
3091
3092  // Emit a library call.
3093  TargetLowering::ArgListTy Args;
3094  TargetLowering::ArgListEntry Entry;
3095  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3096  Entry.Node = Dst; Args.push_back(Entry);
3097  Entry.Node = Src; Args.push_back(Entry);
3098  Entry.Node = Size; Args.push_back(Entry);
3099  std::pair<SDValue,SDValue> CallResult =
3100    TLI.LowerCallTo(Chain, Type::VoidTy,
3101                    false, false, false, CallingConv::C, false,
3102                    getSymbol("memcpy", TLI.getPointerTy()),
3103                    Args, *this);
3104  return CallResult.second;
3105}
3106
3107SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3108                                 SDValue Src, SDValue Size,
3109                                 unsigned Align,
3110                                 const Value *DstSV, uint64_t DstSVOff,
3111                                 const Value *SrcSV, uint64_t SrcSVOff) {
3112
3113  // Check to see if we should lower the memmove to loads and stores first.
3114  // For cases within the target-specified limits, this is the best choice.
3115  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3116  if (ConstantSize) {
3117    // Memmove with size zero? Just return the original chain.
3118    if (ConstantSize->isNullValue())
3119      return Chain;
3120
3121    SDValue Result =
3122      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3123                               ConstantSize->getZExtValue(),
3124                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3125    if (Result.getNode())
3126      return Result;
3127  }
3128
3129  // Then check to see if we should lower the memmove with target-specific
3130  // code. If the target chooses to do this, this is the next best.
3131  SDValue Result =
3132    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3133                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3134  if (Result.getNode())
3135    return Result;
3136
3137  // Emit a library call.
3138  TargetLowering::ArgListTy Args;
3139  TargetLowering::ArgListEntry Entry;
3140  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3141  Entry.Node = Dst; Args.push_back(Entry);
3142  Entry.Node = Src; Args.push_back(Entry);
3143  Entry.Node = Size; Args.push_back(Entry);
3144  std::pair<SDValue,SDValue> CallResult =
3145    TLI.LowerCallTo(Chain, Type::VoidTy,
3146                    false, false, false, CallingConv::C, false,
3147                    getSymbol("memmove", TLI.getPointerTy()),
3148                    Args, *this);
3149  return CallResult.second;
3150}
3151
3152SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3153                                SDValue Src, SDValue Size,
3154                                unsigned Align,
3155                                const Value *DstSV, uint64_t DstSVOff) {
3156
3157  // Check to see if we should lower the memset to stores first.
3158  // For cases within the target-specified limits, this is the best choice.
3159  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3160  if (ConstantSize) {
3161    // Memset with size zero? Just return the original chain.
3162    if (ConstantSize->isNullValue())
3163      return Chain;
3164
3165    SDValue Result =
3166      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3167                      Align, DstSV, DstSVOff);
3168    if (Result.getNode())
3169      return Result;
3170  }
3171
3172  // Then check to see if we should lower the memset with target-specific
3173  // code. If the target chooses to do this, this is the next best.
3174  SDValue Result =
3175    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3176                                DstSV, DstSVOff);
3177  if (Result.getNode())
3178    return Result;
3179
3180  // Emit a library call.
3181  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3182  TargetLowering::ArgListTy Args;
3183  TargetLowering::ArgListEntry Entry;
3184  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3185  Args.push_back(Entry);
3186  // Extend or truncate the argument to be an i32 value for the call.
3187  if (Src.getValueType().bitsGT(MVT::i32))
3188    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3189  else
3190    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3191  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3192  Args.push_back(Entry);
3193  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3194  Args.push_back(Entry);
3195  std::pair<SDValue,SDValue> CallResult =
3196    TLI.LowerCallTo(Chain, Type::VoidTy,
3197                    false, false, false, CallingConv::C, false,
3198                    getSymbol("memset", TLI.getPointerTy()),
3199                    Args, *this);
3200  return CallResult.second;
3201}
3202
3203SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3204                                SDValue Ptr, SDValue Cmp,
3205                                SDValue Swp, const Value* PtrVal,
3206                                unsigned Alignment) {
3207  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3208          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3209          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3210          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3211  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3212
3213  MVT VT = Cmp.getValueType();
3214
3215  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3216    Alignment = getMVTAlignment(VT);
3217
3218  SDVTList VTs = getVTList(VT, MVT::Other);
3219  FoldingSetNodeID ID;
3220  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3221  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3222  void* IP = 0;
3223  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3224    return SDValue(E, 0);
3225  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3226  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3227  CSEMap.InsertNode(N, IP);
3228  AllNodes.push_back(N);
3229  return SDValue(N, 0);
3230}
3231
3232SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3233                                SDValue Ptr, SDValue Val,
3234                                const Value* PtrVal,
3235                                unsigned Alignment) {
3236  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3237          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3238          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3239          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3240          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3241          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3242          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3243          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3244          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3245          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3246          Opcode == ISD::ATOMIC_SWAP_8 ||
3247          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3248          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3249          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3250          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3251          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3252          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3253          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3254          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3255          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3256          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3257          Opcode == ISD::ATOMIC_SWAP_16 ||
3258          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3259          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3260          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3261          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3262          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3263          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3264          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3265          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3266          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3267          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3268          Opcode == ISD::ATOMIC_SWAP_32 ||
3269          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3270          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3271          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3272          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3273          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3274          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3275          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3276          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3277          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3278          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3279          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3280
3281  MVT VT = Val.getValueType();
3282
3283  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3284    Alignment = getMVTAlignment(VT);
3285
3286  SDVTList VTs = getVTList(VT, MVT::Other);
3287  FoldingSetNodeID ID;
3288  SDValue Ops[] = {Chain, Ptr, Val};
3289  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3290  void* IP = 0;
3291  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3292    return SDValue(E, 0);
3293  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3294  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3295  CSEMap.InsertNode(N, IP);
3296  AllNodes.push_back(N);
3297  return SDValue(N, 0);
3298}
3299
3300/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3301/// Allowed to return something different (and simpler) if Simplify is true.
3302SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3303                                     bool Simplify) {
3304  if (Simplify && NumOps == 1)
3305    return Ops[0];
3306
3307  SmallVector<MVT, 4> VTs;
3308  VTs.reserve(NumOps);
3309  for (unsigned i = 0; i < NumOps; ++i)
3310    VTs.push_back(Ops[i].getValueType());
3311  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3312}
3313
3314SDValue
3315SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3316                      SDVTList VTs,
3317                      const SDValue *Operands, unsigned NumOperands) {
3318  // Do not include isTailCall in the folding set profile.
3319  FoldingSetNodeID ID;
3320  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3321  ID.AddInteger(CallingConv);
3322  ID.AddInteger(IsVarArgs);
3323  void *IP = 0;
3324  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3325    // Instead of including isTailCall in the folding set, we just
3326    // set the flag of the existing node.
3327    if (!IsTailCall)
3328      cast<CallSDNode>(E)->setNotTailCall();
3329    return SDValue(E, 0);
3330  }
3331  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3332  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall,
3333                     VTs, Operands, NumOperands);
3334  CSEMap.InsertNode(N, IP);
3335  AllNodes.push_back(N);
3336  return SDValue(N, 0);
3337}
3338
3339SDValue
3340SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3341                      MVT VT, SDValue Chain,
3342                      SDValue Ptr, SDValue Offset,
3343                      const Value *SV, int SVOffset, MVT EVT,
3344                      bool isVolatile, unsigned Alignment) {
3345  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3346    Alignment = getMVTAlignment(VT);
3347
3348  if (VT == EVT) {
3349    ExtType = ISD::NON_EXTLOAD;
3350  } else if (ExtType == ISD::NON_EXTLOAD) {
3351    assert(VT == EVT && "Non-extending load from different memory type!");
3352  } else {
3353    // Extending load.
3354    if (VT.isVector())
3355      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3356             "Invalid vector extload!");
3357    else
3358      assert(EVT.bitsLT(VT) &&
3359             "Should only be an extending load, not truncating!");
3360    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3361           "Cannot sign/zero extend a FP/Vector load!");
3362    assert(VT.isInteger() == EVT.isInteger() &&
3363           "Cannot convert from FP to Int or Int -> FP!");
3364  }
3365
3366  bool Indexed = AM != ISD::UNINDEXED;
3367  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3368         "Unindexed load with an offset!");
3369
3370  SDVTList VTs = Indexed ?
3371    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3372  SDValue Ops[] = { Chain, Ptr, Offset };
3373  FoldingSetNodeID ID;
3374  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3375  ID.AddInteger(AM);
3376  ID.AddInteger(ExtType);
3377  ID.AddInteger(EVT.getRawBits());
3378  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3379  void *IP = 0;
3380  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3381    return SDValue(E, 0);
3382  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3383  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3384                     Alignment, isVolatile);
3385  CSEMap.InsertNode(N, IP);
3386  AllNodes.push_back(N);
3387  return SDValue(N, 0);
3388}
3389
3390SDValue SelectionDAG::getLoad(MVT VT,
3391                              SDValue Chain, SDValue Ptr,
3392                              const Value *SV, int SVOffset,
3393                              bool isVolatile, unsigned Alignment) {
3394  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3395  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3396                 SV, SVOffset, VT, isVolatile, Alignment);
3397}
3398
3399SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3400                                 SDValue Chain, SDValue Ptr,
3401                                 const Value *SV,
3402                                 int SVOffset, MVT EVT,
3403                                 bool isVolatile, unsigned Alignment) {
3404  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3405  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3406                 SV, SVOffset, EVT, isVolatile, Alignment);
3407}
3408
3409SDValue
3410SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3411                             SDValue Offset, ISD::MemIndexedMode AM) {
3412  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3413  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3414         "Load is already a indexed load!");
3415  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3416                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3417                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3418                 LD->isVolatile(), LD->getAlignment());
3419}
3420
3421SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3422                               SDValue Ptr, const Value *SV, int SVOffset,
3423                               bool isVolatile, unsigned Alignment) {
3424  MVT VT = Val.getValueType();
3425
3426  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3427    Alignment = getMVTAlignment(VT);
3428
3429  SDVTList VTs = getVTList(MVT::Other);
3430  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3431  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3432  FoldingSetNodeID ID;
3433  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3434  ID.AddInteger(ISD::UNINDEXED);
3435  ID.AddInteger(false);
3436  ID.AddInteger(VT.getRawBits());
3437  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3438  void *IP = 0;
3439  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3440    return SDValue(E, 0);
3441  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3442  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3443                      VT, SV, SVOffset, Alignment, isVolatile);
3444  CSEMap.InsertNode(N, IP);
3445  AllNodes.push_back(N);
3446  return SDValue(N, 0);
3447}
3448
3449SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3450                                    SDValue Ptr, const Value *SV,
3451                                    int SVOffset, MVT SVT,
3452                                    bool isVolatile, unsigned Alignment) {
3453  MVT VT = Val.getValueType();
3454
3455  if (VT == SVT)
3456    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3457
3458  assert(VT.bitsGT(SVT) && "Not a truncation?");
3459  assert(VT.isInteger() == SVT.isInteger() &&
3460         "Can't do FP-INT conversion!");
3461
3462  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3463    Alignment = getMVTAlignment(VT);
3464
3465  SDVTList VTs = getVTList(MVT::Other);
3466  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3467  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3468  FoldingSetNodeID ID;
3469  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3470  ID.AddInteger(ISD::UNINDEXED);
3471  ID.AddInteger(1);
3472  ID.AddInteger(SVT.getRawBits());
3473  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3474  void *IP = 0;
3475  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3476    return SDValue(E, 0);
3477  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3478  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3479                      SVT, SV, SVOffset, Alignment, isVolatile);
3480  CSEMap.InsertNode(N, IP);
3481  AllNodes.push_back(N);
3482  return SDValue(N, 0);
3483}
3484
3485SDValue
3486SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3487                              SDValue Offset, ISD::MemIndexedMode AM) {
3488  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3489  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3490         "Store is already a indexed store!");
3491  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3492  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3493  FoldingSetNodeID ID;
3494  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3495  ID.AddInteger(AM);
3496  ID.AddInteger(ST->isTruncatingStore());
3497  ID.AddInteger(ST->getMemoryVT().getRawBits());
3498  ID.AddInteger(ST->getRawFlags());
3499  void *IP = 0;
3500  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3501    return SDValue(E, 0);
3502  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3503  new (N) StoreSDNode(Ops, VTs, AM,
3504                      ST->isTruncatingStore(), ST->getMemoryVT(),
3505                      ST->getSrcValue(), ST->getSrcValueOffset(),
3506                      ST->getAlignment(), ST->isVolatile());
3507  CSEMap.InsertNode(N, IP);
3508  AllNodes.push_back(N);
3509  return SDValue(N, 0);
3510}
3511
3512SDValue SelectionDAG::getVAArg(MVT VT,
3513                               SDValue Chain, SDValue Ptr,
3514                               SDValue SV) {
3515  SDValue Ops[] = { Chain, Ptr, SV };
3516  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3517}
3518
3519SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3520                              const SDUse *Ops, unsigned NumOps) {
3521  switch (NumOps) {
3522  case 0: return getNode(Opcode, VT);
3523  case 1: return getNode(Opcode, VT, Ops[0]);
3524  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3525  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3526  default: break;
3527  }
3528
3529  // Copy from an SDUse array into an SDValue array for use with
3530  // the regular getNode logic.
3531  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3532  return getNode(Opcode, VT, &NewOps[0], NumOps);
3533}
3534
3535SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3536                              const SDValue *Ops, unsigned NumOps) {
3537  switch (NumOps) {
3538  case 0: return getNode(Opcode, VT);
3539  case 1: return getNode(Opcode, VT, Ops[0]);
3540  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3541  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3542  default: break;
3543  }
3544
3545  switch (Opcode) {
3546  default: break;
3547  case ISD::SELECT_CC: {
3548    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3549    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3550           "LHS and RHS of condition must have same type!");
3551    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3552           "True and False arms of SelectCC must have same type!");
3553    assert(Ops[2].getValueType() == VT &&
3554           "select_cc node must be of same type as true and false value!");
3555    break;
3556  }
3557  case ISD::BR_CC: {
3558    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3559    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3560           "LHS/RHS of comparison should match types!");
3561    break;
3562  }
3563  }
3564
3565  // Memoize nodes.
3566  SDNode *N;
3567  SDVTList VTs = getVTList(VT);
3568  if (VT != MVT::Flag) {
3569    FoldingSetNodeID ID;
3570    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3571    void *IP = 0;
3572    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3573      return SDValue(E, 0);
3574    N = NodeAllocator.Allocate<SDNode>();
3575    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3576    CSEMap.InsertNode(N, IP);
3577  } else {
3578    N = NodeAllocator.Allocate<SDNode>();
3579    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3580  }
3581  AllNodes.push_back(N);
3582#ifndef NDEBUG
3583  VerifyNode(N);
3584#endif
3585  return SDValue(N, 0);
3586}
3587
3588SDValue SelectionDAG::getNode(unsigned Opcode,
3589                              const std::vector<MVT> &ResultTys,
3590                              const SDValue *Ops, unsigned NumOps) {
3591  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3592                 Ops, NumOps);
3593}
3594
3595SDValue SelectionDAG::getNode(unsigned Opcode,
3596                              const MVT *VTs, unsigned NumVTs,
3597                              const SDValue *Ops, unsigned NumOps) {
3598  if (NumVTs == 1)
3599    return getNode(Opcode, VTs[0], Ops, NumOps);
3600  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3601}
3602
3603SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3604                              const SDValue *Ops, unsigned NumOps) {
3605  if (VTList.NumVTs == 1)
3606    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3607
3608  switch (Opcode) {
3609  // FIXME: figure out how to safely handle things like
3610  // int foo(int x) { return 1 << (x & 255); }
3611  // int bar() { return foo(256); }
3612#if 0
3613  case ISD::SRA_PARTS:
3614  case ISD::SRL_PARTS:
3615  case ISD::SHL_PARTS:
3616    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3617        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3618      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3619    else if (N3.getOpcode() == ISD::AND)
3620      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3621        // If the and is only masking out bits that cannot effect the shift,
3622        // eliminate the and.
3623        unsigned NumBits = VT.getSizeInBits()*2;
3624        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3625          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3626      }
3627    break;
3628#endif
3629  }
3630
3631  // Memoize the node unless it returns a flag.
3632  SDNode *N;
3633  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3634    FoldingSetNodeID ID;
3635    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3636    void *IP = 0;
3637    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3638      return SDValue(E, 0);
3639    if (NumOps == 1) {
3640      N = NodeAllocator.Allocate<UnarySDNode>();
3641      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3642    } else if (NumOps == 2) {
3643      N = NodeAllocator.Allocate<BinarySDNode>();
3644      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3645    } else if (NumOps == 3) {
3646      N = NodeAllocator.Allocate<TernarySDNode>();
3647      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3648    } else {
3649      N = NodeAllocator.Allocate<SDNode>();
3650      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3651    }
3652    CSEMap.InsertNode(N, IP);
3653  } else {
3654    if (NumOps == 1) {
3655      N = NodeAllocator.Allocate<UnarySDNode>();
3656      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3657    } else if (NumOps == 2) {
3658      N = NodeAllocator.Allocate<BinarySDNode>();
3659      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3660    } else if (NumOps == 3) {
3661      N = NodeAllocator.Allocate<TernarySDNode>();
3662      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3663    } else {
3664      N = NodeAllocator.Allocate<SDNode>();
3665      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3666    }
3667  }
3668  AllNodes.push_back(N);
3669#ifndef NDEBUG
3670  VerifyNode(N);
3671#endif
3672  return SDValue(N, 0);
3673}
3674
3675SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3676  return getNode(Opcode, VTList, 0, 0);
3677}
3678
3679SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3680                                SDValue N1) {
3681  SDValue Ops[] = { N1 };
3682  return getNode(Opcode, VTList, Ops, 1);
3683}
3684
3685SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3686                              SDValue N1, SDValue N2) {
3687  SDValue Ops[] = { N1, N2 };
3688  return getNode(Opcode, VTList, Ops, 2);
3689}
3690
3691SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3692                              SDValue N1, SDValue N2, SDValue N3) {
3693  SDValue Ops[] = { N1, N2, N3 };
3694  return getNode(Opcode, VTList, Ops, 3);
3695}
3696
3697SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3698                              SDValue N1, SDValue N2, SDValue N3,
3699                              SDValue N4) {
3700  SDValue Ops[] = { N1, N2, N3, N4 };
3701  return getNode(Opcode, VTList, Ops, 4);
3702}
3703
3704SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3705                              SDValue N1, SDValue N2, SDValue N3,
3706                              SDValue N4, SDValue N5) {
3707  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3708  return getNode(Opcode, VTList, Ops, 5);
3709}
3710
3711SDVTList SelectionDAG::getVTList(MVT VT) {
3712  return makeVTList(SDNode::getValueTypeList(VT), 1);
3713}
3714
3715SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3716  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3717       E = VTList.rend(); I != E; ++I)
3718    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3719      return *I;
3720
3721  MVT *Array = Allocator.Allocate<MVT>(2);
3722  Array[0] = VT1;
3723  Array[1] = VT2;
3724  SDVTList Result = makeVTList(Array, 2);
3725  VTList.push_back(Result);
3726  return Result;
3727}
3728
3729SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3730  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3731       E = VTList.rend(); I != E; ++I)
3732    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3733                          I->VTs[2] == VT3)
3734      return *I;
3735
3736  MVT *Array = Allocator.Allocate<MVT>(3);
3737  Array[0] = VT1;
3738  Array[1] = VT2;
3739  Array[2] = VT3;
3740  SDVTList Result = makeVTList(Array, 3);
3741  VTList.push_back(Result);
3742  return Result;
3743}
3744
3745SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3746  switch (NumVTs) {
3747    case 0: assert(0 && "Cannot have nodes without results!");
3748    case 1: return getVTList(VTs[0]);
3749    case 2: return getVTList(VTs[0], VTs[1]);
3750    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3751    default: break;
3752  }
3753
3754  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3755       E = VTList.rend(); I != E; ++I) {
3756    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3757      continue;
3758
3759    bool NoMatch = false;
3760    for (unsigned i = 2; i != NumVTs; ++i)
3761      if (VTs[i] != I->VTs[i]) {
3762        NoMatch = true;
3763        break;
3764      }
3765    if (!NoMatch)
3766      return *I;
3767  }
3768
3769  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3770  std::copy(VTs, VTs+NumVTs, Array);
3771  SDVTList Result = makeVTList(Array, NumVTs);
3772  VTList.push_back(Result);
3773  return Result;
3774}
3775
3776
3777/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3778/// specified operands.  If the resultant node already exists in the DAG,
3779/// this does not modify the specified node, instead it returns the node that
3780/// already exists.  If the resultant node does not exist in the DAG, the
3781/// input node is returned.  As a degenerate case, if you specify the same
3782/// input operands as the node already has, the input node is returned.
3783SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3784  SDNode *N = InN.getNode();
3785  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3786
3787  // Check to see if there is no change.
3788  if (Op == N->getOperand(0)) return InN;
3789
3790  // See if the modified node already exists.
3791  void *InsertPos = 0;
3792  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3793    return SDValue(Existing, InN.getResNo());
3794
3795  // Nope it doesn't.  Remove the node from its current place in the maps.
3796  if (InsertPos)
3797    if (!RemoveNodeFromCSEMaps(N))
3798      InsertPos = 0;
3799
3800  // Now we update the operands.
3801  N->OperandList[0].getVal()->removeUser(0, N);
3802  N->OperandList[0] = Op;
3803  N->OperandList[0].setUser(N);
3804  Op.getNode()->addUser(0, N);
3805
3806  // If this gets put into a CSE map, add it.
3807  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3808  return InN;
3809}
3810
3811SDValue SelectionDAG::
3812UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3813  SDNode *N = InN.getNode();
3814  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3815
3816  // Check to see if there is no change.
3817  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3818    return InN;   // No operands changed, just return the input node.
3819
3820  // See if the modified node already exists.
3821  void *InsertPos = 0;
3822  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3823    return SDValue(Existing, InN.getResNo());
3824
3825  // Nope it doesn't.  Remove the node from its current place in the maps.
3826  if (InsertPos)
3827    if (!RemoveNodeFromCSEMaps(N))
3828      InsertPos = 0;
3829
3830  // Now we update the operands.
3831  if (N->OperandList[0] != Op1) {
3832    N->OperandList[0].getVal()->removeUser(0, N);
3833    N->OperandList[0] = Op1;
3834    N->OperandList[0].setUser(N);
3835    Op1.getNode()->addUser(0, N);
3836  }
3837  if (N->OperandList[1] != Op2) {
3838    N->OperandList[1].getVal()->removeUser(1, N);
3839    N->OperandList[1] = Op2;
3840    N->OperandList[1].setUser(N);
3841    Op2.getNode()->addUser(1, N);
3842  }
3843
3844  // If this gets put into a CSE map, add it.
3845  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3846  return InN;
3847}
3848
3849SDValue SelectionDAG::
3850UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3851  SDValue Ops[] = { Op1, Op2, Op3 };
3852  return UpdateNodeOperands(N, Ops, 3);
3853}
3854
3855SDValue SelectionDAG::
3856UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3857                   SDValue Op3, SDValue Op4) {
3858  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3859  return UpdateNodeOperands(N, Ops, 4);
3860}
3861
3862SDValue SelectionDAG::
3863UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3864                   SDValue Op3, SDValue Op4, SDValue Op5) {
3865  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3866  return UpdateNodeOperands(N, Ops, 5);
3867}
3868
3869SDValue SelectionDAG::
3870UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3871  SDNode *N = InN.getNode();
3872  assert(N->getNumOperands() == NumOps &&
3873         "Update with wrong number of operands");
3874
3875  // Check to see if there is no change.
3876  bool AnyChange = false;
3877  for (unsigned i = 0; i != NumOps; ++i) {
3878    if (Ops[i] != N->getOperand(i)) {
3879      AnyChange = true;
3880      break;
3881    }
3882  }
3883
3884  // No operands changed, just return the input node.
3885  if (!AnyChange) return InN;
3886
3887  // See if the modified node already exists.
3888  void *InsertPos = 0;
3889  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3890    return SDValue(Existing, InN.getResNo());
3891
3892  // Nope it doesn't.  Remove the node from its current place in the maps.
3893  if (InsertPos)
3894    if (!RemoveNodeFromCSEMaps(N))
3895      InsertPos = 0;
3896
3897  // Now we update the operands.
3898  for (unsigned i = 0; i != NumOps; ++i) {
3899    if (N->OperandList[i] != Ops[i]) {
3900      N->OperandList[i].getVal()->removeUser(i, N);
3901      N->OperandList[i] = Ops[i];
3902      N->OperandList[i].setUser(N);
3903      Ops[i].getNode()->addUser(i, N);
3904    }
3905  }
3906
3907  // If this gets put into a CSE map, add it.
3908  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3909  return InN;
3910}
3911
3912/// DropOperands - Release the operands and set this node to have
3913/// zero operands.
3914void SDNode::DropOperands() {
3915  // Unlike the code in MorphNodeTo that does this, we don't need to
3916  // watch for dead nodes here.
3917  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3918    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3919
3920  NumOperands = 0;
3921}
3922
3923/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
3924/// machine opcode.
3925///
3926SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3927                                   MVT VT) {
3928  SDVTList VTs = getVTList(VT);
3929  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
3930}
3931
3932SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3933                                   MVT VT, SDValue Op1) {
3934  SDVTList VTs = getVTList(VT);
3935  SDValue Ops[] = { Op1 };
3936  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3937}
3938
3939SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3940                                   MVT VT, SDValue Op1,
3941                                   SDValue Op2) {
3942  SDVTList VTs = getVTList(VT);
3943  SDValue Ops[] = { Op1, Op2 };
3944  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
3945}
3946
3947SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3948                                   MVT VT, SDValue Op1,
3949                                   SDValue Op2, SDValue Op3) {
3950  SDVTList VTs = getVTList(VT);
3951  SDValue Ops[] = { Op1, Op2, Op3 };
3952  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
3953}
3954
3955SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3956                                   MVT VT, const SDValue *Ops,
3957                                   unsigned NumOps) {
3958  SDVTList VTs = getVTList(VT);
3959  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3960}
3961
3962SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3963                                   MVT VT1, MVT VT2, const SDValue *Ops,
3964                                   unsigned NumOps) {
3965  SDVTList VTs = getVTList(VT1, VT2);
3966  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3967}
3968
3969SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3970                                   MVT VT1, MVT VT2) {
3971  SDVTList VTs = getVTList(VT1, VT2);
3972  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
3973}
3974
3975SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3976                                   MVT VT1, MVT VT2, MVT VT3,
3977                                   const SDValue *Ops, unsigned NumOps) {
3978  SDVTList VTs = getVTList(VT1, VT2, VT3);
3979  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3980}
3981
3982SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3983                                   MVT VT1, MVT VT2,
3984                                   SDValue Op1) {
3985  SDVTList VTs = getVTList(VT1, VT2);
3986  SDValue Ops[] = { Op1 };
3987  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3988}
3989
3990SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3991                                   MVT VT1, MVT VT2,
3992                                   SDValue Op1, SDValue Op2) {
3993  SDVTList VTs = getVTList(VT1, VT2);
3994  SDValue Ops[] = { Op1, Op2 };
3995  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
3996}
3997
3998SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3999                                   MVT VT1, MVT VT2,
4000                                   SDValue Op1, SDValue Op2,
4001                                   SDValue Op3) {
4002  SDVTList VTs = getVTList(VT1, VT2);
4003  SDValue Ops[] = { Op1, Op2, Op3 };
4004  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4005}
4006
4007SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4008                                   SDVTList VTs, const SDValue *Ops,
4009                                   unsigned NumOps) {
4010  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4011}
4012
4013SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4014                                  MVT VT) {
4015  SDVTList VTs = getVTList(VT);
4016  return MorphNodeTo(N, Opc, VTs, 0, 0);
4017}
4018
4019SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4020                                  MVT VT, SDValue Op1) {
4021  SDVTList VTs = getVTList(VT);
4022  SDValue Ops[] = { Op1 };
4023  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4024}
4025
4026SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4027                                  MVT VT, SDValue Op1,
4028                                  SDValue Op2) {
4029  SDVTList VTs = getVTList(VT);
4030  SDValue Ops[] = { Op1, Op2 };
4031  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4032}
4033
4034SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4035                                  MVT VT, SDValue Op1,
4036                                  SDValue Op2, SDValue Op3) {
4037  SDVTList VTs = getVTList(VT);
4038  SDValue Ops[] = { Op1, Op2, Op3 };
4039  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4040}
4041
4042SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4043                                  MVT VT, const SDValue *Ops,
4044                                  unsigned NumOps) {
4045  SDVTList VTs = getVTList(VT);
4046  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4047}
4048
4049SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4050                                  MVT VT1, MVT VT2, const SDValue *Ops,
4051                                  unsigned NumOps) {
4052  SDVTList VTs = getVTList(VT1, VT2);
4053  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4054}
4055
4056SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4057                                  MVT VT1, MVT VT2) {
4058  SDVTList VTs = getVTList(VT1, VT2);
4059  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4060}
4061
4062SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4063                                  MVT VT1, MVT VT2, MVT VT3,
4064                                  const SDValue *Ops, unsigned NumOps) {
4065  SDVTList VTs = getVTList(VT1, VT2, VT3);
4066  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4067}
4068
4069SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4070                                  MVT VT1, MVT VT2,
4071                                  SDValue Op1) {
4072  SDVTList VTs = getVTList(VT1, VT2);
4073  SDValue Ops[] = { Op1 };
4074  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4075}
4076
4077SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4078                                  MVT VT1, MVT VT2,
4079                                  SDValue Op1, SDValue Op2) {
4080  SDVTList VTs = getVTList(VT1, VT2);
4081  SDValue Ops[] = { Op1, Op2 };
4082  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4083}
4084
4085SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4086                                  MVT VT1, MVT VT2,
4087                                  SDValue Op1, SDValue Op2,
4088                                  SDValue Op3) {
4089  SDVTList VTs = getVTList(VT1, VT2);
4090  SDValue Ops[] = { Op1, Op2, Op3 };
4091  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4092}
4093
4094/// MorphNodeTo - These *mutate* the specified node to have the specified
4095/// return type, opcode, and operands.
4096///
4097/// Note that MorphNodeTo returns the resultant node.  If there is already a
4098/// node of the specified opcode and operands, it returns that node instead of
4099/// the current one.
4100///
4101/// Using MorphNodeTo is faster than creating a new node and swapping it in
4102/// with ReplaceAllUsesWith both because it often avoids allocating a new
4103/// node, and because it doesn't require CSE recalculation for any of
4104/// the node's users.
4105///
4106SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4107                                  SDVTList VTs, const SDValue *Ops,
4108                                  unsigned NumOps) {
4109  // If an identical node already exists, use it.
4110  void *IP = 0;
4111  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4112    FoldingSetNodeID ID;
4113    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4114    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4115      return ON;
4116  }
4117
4118  if (!RemoveNodeFromCSEMaps(N))
4119    IP = 0;
4120
4121  // Start the morphing.
4122  N->NodeType = Opc;
4123  N->ValueList = VTs.VTs;
4124  N->NumValues = VTs.NumVTs;
4125
4126  // Clear the operands list, updating used nodes to remove this from their
4127  // use list.  Keep track of any operands that become dead as a result.
4128  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4129  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4130       I != E; ++I) {
4131    SDNode *Used = I->getVal();
4132    Used->removeUser(std::distance(B, I), N);
4133    if (Used->use_empty())
4134      DeadNodeSet.insert(Used);
4135  }
4136
4137  // If NumOps is larger than the # of operands we currently have, reallocate
4138  // the operand list.
4139  if (NumOps > N->NumOperands) {
4140    if (N->OperandsNeedDelete)
4141      delete[] N->OperandList;
4142    if (N->isMachineOpcode()) {
4143      // We're creating a final node that will live unmorphed for the
4144      // remainder of the current SelectionDAG iteration, so we can allocate
4145      // the operands directly out of a pool with no recycling metadata.
4146      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4147      N->OperandsNeedDelete = false;
4148    } else {
4149      N->OperandList = new SDUse[NumOps];
4150      N->OperandsNeedDelete = true;
4151    }
4152  }
4153
4154  // Assign the new operands.
4155  N->NumOperands = NumOps;
4156  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4157    N->OperandList[i] = Ops[i];
4158    N->OperandList[i].setUser(N);
4159    SDNode *ToUse = N->OperandList[i].getVal();
4160    ToUse->addUser(i, N);
4161  }
4162
4163  // Delete any nodes that are still dead after adding the uses for the
4164  // new operands.
4165  SmallVector<SDNode *, 16> DeadNodes;
4166  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4167       E = DeadNodeSet.end(); I != E; ++I)
4168    if ((*I)->use_empty())
4169      DeadNodes.push_back(*I);
4170  RemoveDeadNodes(DeadNodes);
4171
4172  if (IP)
4173    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4174  return N;
4175}
4176
4177
4178/// getTargetNode - These are used for target selectors to create a new node
4179/// with specified return type(s), target opcode, and operands.
4180///
4181/// Note that getTargetNode returns the resultant node.  If there is already a
4182/// node of the specified opcode and operands, it returns that node instead of
4183/// the current one.
4184SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4185  return getNode(~Opcode, VT).getNode();
4186}
4187SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4188  return getNode(~Opcode, VT, Op1).getNode();
4189}
4190SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4191                                    SDValue Op1, SDValue Op2) {
4192  return getNode(~Opcode, VT, Op1, Op2).getNode();
4193}
4194SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4195                                    SDValue Op1, SDValue Op2,
4196                                    SDValue Op3) {
4197  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4198}
4199SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4200                                    const SDValue *Ops, unsigned NumOps) {
4201  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4202}
4203SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4204  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4205  SDValue Op;
4206  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4207}
4208SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4209                                    MVT VT2, SDValue Op1) {
4210  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4211  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4212}
4213SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4214                                    MVT VT2, SDValue Op1,
4215                                    SDValue Op2) {
4216  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4217  SDValue Ops[] = { Op1, Op2 };
4218  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4219}
4220SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4221                                    MVT VT2, SDValue Op1,
4222                                    SDValue Op2, SDValue Op3) {
4223  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4224  SDValue Ops[] = { Op1, Op2, Op3 };
4225  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4226}
4227SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4228                                    const SDValue *Ops, unsigned NumOps) {
4229  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4230  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4231}
4232SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4233                                    SDValue Op1, SDValue Op2) {
4234  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4235  SDValue Ops[] = { Op1, Op2 };
4236  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4237}
4238SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4239                                    SDValue Op1, SDValue Op2,
4240                                    SDValue Op3) {
4241  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4242  SDValue Ops[] = { Op1, Op2, Op3 };
4243  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4244}
4245SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4246                                    const SDValue *Ops, unsigned NumOps) {
4247  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4248  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4249}
4250SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4251                                    MVT VT2, MVT VT3, MVT VT4,
4252                                    const SDValue *Ops, unsigned NumOps) {
4253  std::vector<MVT> VTList;
4254  VTList.push_back(VT1);
4255  VTList.push_back(VT2);
4256  VTList.push_back(VT3);
4257  VTList.push_back(VT4);
4258  const MVT *VTs = getNodeValueTypes(VTList);
4259  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4260}
4261SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4262                                    const std::vector<MVT> &ResultTys,
4263                                    const SDValue *Ops, unsigned NumOps) {
4264  const MVT *VTs = getNodeValueTypes(ResultTys);
4265  return getNode(~Opcode, VTs, ResultTys.size(),
4266                 Ops, NumOps).getNode();
4267}
4268
4269/// getNodeIfExists - Get the specified node if it's already available, or
4270/// else return NULL.
4271SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4272                                      const SDValue *Ops, unsigned NumOps) {
4273  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4274    FoldingSetNodeID ID;
4275    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4276    void *IP = 0;
4277    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4278      return E;
4279  }
4280  return NULL;
4281}
4282
4283
4284/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4285/// This can cause recursive merging of nodes in the DAG.
4286///
4287/// This version assumes From has a single result value.
4288///
4289void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4290                                      DAGUpdateListener *UpdateListener) {
4291  SDNode *From = FromN.getNode();
4292  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4293         "Cannot replace with this method!");
4294  assert(From != To.getNode() && "Cannot replace uses of with self");
4295
4296  while (!From->use_empty()) {
4297    SDNode::use_iterator UI = From->use_begin();
4298    SDNode *U = *UI;
4299
4300    // This node is about to morph, remove its old self from the CSE maps.
4301    RemoveNodeFromCSEMaps(U);
4302    int operandNum = 0;
4303    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4304         I != E; ++I, ++operandNum)
4305      if (I->getVal() == From) {
4306        From->removeUser(operandNum, U);
4307        *I = To;
4308        I->setUser(U);
4309        To.getNode()->addUser(operandNum, U);
4310      }
4311
4312    // Now that we have modified U, add it back to the CSE maps.  If it already
4313    // exists there, recursively merge the results together.
4314    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4315      ReplaceAllUsesWith(U, Existing, UpdateListener);
4316      // U is now dead.  Inform the listener if it exists and delete it.
4317      if (UpdateListener)
4318        UpdateListener->NodeDeleted(U, Existing);
4319      DeleteNodeNotInCSEMaps(U);
4320    } else {
4321      // If the node doesn't already exist, we updated it.  Inform a listener if
4322      // it exists.
4323      if (UpdateListener)
4324        UpdateListener->NodeUpdated(U);
4325    }
4326  }
4327}
4328
4329/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4330/// This can cause recursive merging of nodes in the DAG.
4331///
4332/// This version assumes From/To have matching types and numbers of result
4333/// values.
4334///
4335void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4336                                      DAGUpdateListener *UpdateListener) {
4337  assert(From->getVTList().VTs == To->getVTList().VTs &&
4338         From->getNumValues() == To->getNumValues() &&
4339         "Cannot use this version of ReplaceAllUsesWith!");
4340
4341  // Handle the trivial case.
4342  if (From == To)
4343    return;
4344
4345  while (!From->use_empty()) {
4346    SDNode::use_iterator UI = From->use_begin();
4347    SDNode *U = *UI;
4348
4349    // This node is about to morph, remove its old self from the CSE maps.
4350    RemoveNodeFromCSEMaps(U);
4351    int operandNum = 0;
4352    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4353         I != E; ++I, ++operandNum)
4354      if (I->getVal() == From) {
4355        From->removeUser(operandNum, U);
4356        I->getSDValue().setNode(To);
4357        To->addUser(operandNum, U);
4358      }
4359
4360    // Now that we have modified U, add it back to the CSE maps.  If it already
4361    // exists there, recursively merge the results together.
4362    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4363      ReplaceAllUsesWith(U, Existing, UpdateListener);
4364      // U is now dead.  Inform the listener if it exists and delete it.
4365      if (UpdateListener)
4366        UpdateListener->NodeDeleted(U, Existing);
4367      DeleteNodeNotInCSEMaps(U);
4368    } else {
4369      // If the node doesn't already exist, we updated it.  Inform a listener if
4370      // it exists.
4371      if (UpdateListener)
4372        UpdateListener->NodeUpdated(U);
4373    }
4374  }
4375}
4376
4377/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4378/// This can cause recursive merging of nodes in the DAG.
4379///
4380/// This version can replace From with any result values.  To must match the
4381/// number and types of values returned by From.
4382void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4383                                      const SDValue *To,
4384                                      DAGUpdateListener *UpdateListener) {
4385  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4386    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4387
4388  while (!From->use_empty()) {
4389    SDNode::use_iterator UI = From->use_begin();
4390    SDNode *U = *UI;
4391
4392    // This node is about to morph, remove its old self from the CSE maps.
4393    RemoveNodeFromCSEMaps(U);
4394    int operandNum = 0;
4395    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4396         I != E; ++I, ++operandNum)
4397      if (I->getVal() == From) {
4398        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4399        From->removeUser(operandNum, U);
4400        *I = ToOp;
4401        I->setUser(U);
4402        ToOp.getNode()->addUser(operandNum, U);
4403      }
4404
4405    // Now that we have modified U, add it back to the CSE maps.  If it already
4406    // exists there, recursively merge the results together.
4407    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4408      ReplaceAllUsesWith(U, Existing, UpdateListener);
4409      // U is now dead.  Inform the listener if it exists and delete it.
4410      if (UpdateListener)
4411        UpdateListener->NodeDeleted(U, Existing);
4412      DeleteNodeNotInCSEMaps(U);
4413    } else {
4414      // If the node doesn't already exist, we updated it.  Inform a listener if
4415      // it exists.
4416      if (UpdateListener)
4417        UpdateListener->NodeUpdated(U);
4418    }
4419  }
4420}
4421
4422/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4423/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4424/// handled the same way as for ReplaceAllUsesWith.
4425void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4426                                             DAGUpdateListener *UpdateListener){
4427  // Handle the really simple, really trivial case efficiently.
4428  if (From == To) return;
4429
4430  // Handle the simple, trivial, case efficiently.
4431  if (From.getNode()->getNumValues() == 1) {
4432    ReplaceAllUsesWith(From, To, UpdateListener);
4433    return;
4434  }
4435
4436  // Get all of the users of From.getNode().  We want these in a nice,
4437  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4438  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4439
4440  while (!Users.empty()) {
4441    // We know that this user uses some value of From.  If it is the right
4442    // value, update it.
4443    SDNode *User = Users.back();
4444    Users.pop_back();
4445
4446    // Scan for an operand that matches From.
4447    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4448    for (; Op != E; ++Op)
4449      if (*Op == From) break;
4450
4451    // If there are no matches, the user must use some other result of From.
4452    if (Op == E) continue;
4453
4454    // Okay, we know this user needs to be updated.  Remove its old self
4455    // from the CSE maps.
4456    RemoveNodeFromCSEMaps(User);
4457
4458    // Update all operands that match "From" in case there are multiple uses.
4459    for (; Op != E; ++Op) {
4460      if (*Op == From) {
4461        From.getNode()->removeUser(Op-User->op_begin(), User);
4462        *Op = To;
4463        Op->setUser(User);
4464        To.getNode()->addUser(Op-User->op_begin(), User);
4465      }
4466    }
4467
4468    // Now that we have modified User, add it back to the CSE maps.  If it
4469    // already exists there, recursively merge the results together.
4470    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4471    if (!Existing) {
4472      if (UpdateListener) UpdateListener->NodeUpdated(User);
4473      continue;  // Continue on to next user.
4474    }
4475
4476    // If there was already an existing matching node, use ReplaceAllUsesWith
4477    // to replace the dead one with the existing one.  This can cause
4478    // recursive merging of other unrelated nodes down the line.
4479    ReplaceAllUsesWith(User, Existing, UpdateListener);
4480
4481    // User is now dead.  Notify a listener if present.
4482    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4483    DeleteNodeNotInCSEMaps(User);
4484  }
4485}
4486
4487/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4488/// uses of other values produced by From.getVal() alone.  The same value may
4489/// appear in both the From and To list.  The Deleted vector is
4490/// handled the same way as for ReplaceAllUsesWith.
4491void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4492                                              const SDValue *To,
4493                                              unsigned Num,
4494                                              DAGUpdateListener *UpdateListener){
4495  // Handle the simple, trivial case efficiently.
4496  if (Num == 1)
4497    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4498
4499  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4500  for (unsigned i = 0; i != Num; ++i)
4501    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4502         E = From[i].getNode()->use_end(); UI != E; ++UI)
4503      Users.push_back(std::make_pair(*UI, i));
4504
4505  while (!Users.empty()) {
4506    // We know that this user uses some value of From.  If it is the right
4507    // value, update it.
4508    SDNode *User = Users.back().first;
4509    unsigned i = Users.back().second;
4510    Users.pop_back();
4511
4512    // Scan for an operand that matches From.
4513    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4514    for (; Op != E; ++Op)
4515      if (*Op == From[i]) break;
4516
4517    // If there are no matches, the user must use some other result of From.
4518    if (Op == E) continue;
4519
4520    // Okay, we know this user needs to be updated.  Remove its old self
4521    // from the CSE maps.
4522    RemoveNodeFromCSEMaps(User);
4523
4524    // Update all operands that match "From" in case there are multiple uses.
4525    for (; Op != E; ++Op) {
4526      if (*Op == From[i]) {
4527        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4528        *Op = To[i];
4529        Op->setUser(User);
4530        To[i].getNode()->addUser(Op-User->op_begin(), User);
4531      }
4532    }
4533
4534    // Now that we have modified User, add it back to the CSE maps.  If it
4535    // already exists there, recursively merge the results together.
4536    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4537    if (!Existing) {
4538      if (UpdateListener) UpdateListener->NodeUpdated(User);
4539      continue;  // Continue on to next user.
4540    }
4541
4542    // If there was already an existing matching node, use ReplaceAllUsesWith
4543    // to replace the dead one with the existing one.  This can cause
4544    // recursive merging of other unrelated nodes down the line.
4545    ReplaceAllUsesWith(User, Existing, UpdateListener);
4546
4547    // User is now dead.  Notify a listener if present.
4548    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4549    DeleteNodeNotInCSEMaps(User);
4550  }
4551}
4552
4553/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4554/// based on their topological order. It returns the maximum id and a vector
4555/// of the SDNodes* in assigned order by reference.
4556unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4557  unsigned DAGSize = AllNodes.size();
4558  std::vector<SDNode*> Sources;
4559
4560  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4561    SDNode *N = I;
4562    unsigned Degree = N->use_size();
4563    // Temporarily use the Node Id as scratch space for the degree count.
4564    N->setNodeId(Degree);
4565    if (Degree == 0)
4566      Sources.push_back(N);
4567  }
4568
4569  TopOrder.clear();
4570  TopOrder.reserve(DAGSize);
4571  int Id = 0;
4572  while (!Sources.empty()) {
4573    SDNode *N = Sources.back();
4574    Sources.pop_back();
4575    TopOrder.push_back(N);
4576    N->setNodeId(Id++);
4577    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4578      SDNode *P = I->getVal();
4579      unsigned Degree = P->getNodeId();
4580      --Degree;
4581      P->setNodeId(Degree);
4582      if (Degree == 0)
4583        Sources.push_back(P);
4584    }
4585  }
4586
4587  return Id;
4588}
4589
4590
4591
4592//===----------------------------------------------------------------------===//
4593//                              SDNode Class
4594//===----------------------------------------------------------------------===//
4595
4596// Out-of-line virtual method to give class a home.
4597void SDNode::ANCHOR() {}
4598void UnarySDNode::ANCHOR() {}
4599void BinarySDNode::ANCHOR() {}
4600void TernarySDNode::ANCHOR() {}
4601void HandleSDNode::ANCHOR() {}
4602void ConstantSDNode::ANCHOR() {}
4603void ConstantFPSDNode::ANCHOR() {}
4604void GlobalAddressSDNode::ANCHOR() {}
4605void FrameIndexSDNode::ANCHOR() {}
4606void JumpTableSDNode::ANCHOR() {}
4607void ConstantPoolSDNode::ANCHOR() {}
4608void BasicBlockSDNode::ANCHOR() {}
4609void SrcValueSDNode::ANCHOR() {}
4610void MemOperandSDNode::ANCHOR() {}
4611void RegisterSDNode::ANCHOR() {}
4612void DbgStopPointSDNode::ANCHOR() {}
4613void LabelSDNode::ANCHOR() {}
4614void SymbolSDNode::ANCHOR() {}
4615void CondCodeSDNode::ANCHOR() {}
4616void ARG_FLAGSSDNode::ANCHOR() {}
4617void VTSDNode::ANCHOR() {}
4618void MemSDNode::ANCHOR() {}
4619void LoadSDNode::ANCHOR() {}
4620void StoreSDNode::ANCHOR() {}
4621void AtomicSDNode::ANCHOR() {}
4622void CallSDNode::ANCHOR() {}
4623
4624HandleSDNode::~HandleSDNode() {
4625  DropOperands();
4626}
4627
4628GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4629                                         MVT VT, int o)
4630  : SDNode(isa<GlobalVariable>(GA) &&
4631           cast<GlobalVariable>(GA)->isThreadLocal() ?
4632           // Thread Local
4633           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4634           // Non Thread Local
4635           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4636           getSDVTList(VT)), Offset(o) {
4637  TheGlobal = const_cast<GlobalValue*>(GA);
4638}
4639
4640MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4641                     const Value *srcValue, int SVO,
4642                     unsigned alignment, bool vol)
4643 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4644   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4645
4646  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4647  assert(getAlignment() == alignment && "Alignment representation error!");
4648  assert(isVolatile() == vol && "Volatile representation error!");
4649}
4650
4651/// getMemOperand - Return a MachineMemOperand object describing the memory
4652/// reference performed by this memory reference.
4653MachineMemOperand MemSDNode::getMemOperand() const {
4654  int Flags;
4655  if (isa<LoadSDNode>(this))
4656    Flags = MachineMemOperand::MOLoad;
4657  else if (isa<StoreSDNode>(this))
4658    Flags = MachineMemOperand::MOStore;
4659  else {
4660    assert(isa<AtomicSDNode>(this) && "Unknown MemSDNode opcode!");
4661    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4662  }
4663
4664  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4665  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4666
4667  // Check if the memory reference references a frame index
4668  const FrameIndexSDNode *FI =
4669  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4670  if (!getSrcValue() && FI)
4671    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4672                             Flags, 0, Size, getAlignment());
4673  else
4674    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4675                             Size, getAlignment());
4676}
4677
4678/// Profile - Gather unique data for the node.
4679///
4680void SDNode::Profile(FoldingSetNodeID &ID) const {
4681  AddNodeIDNode(ID, this);
4682}
4683
4684/// getValueTypeList - Return a pointer to the specified value type.
4685///
4686const MVT *SDNode::getValueTypeList(MVT VT) {
4687  if (VT.isExtended()) {
4688    static std::set<MVT, MVT::compareRawBits> EVTs;
4689    return &(*EVTs.insert(VT).first);
4690  } else {
4691    static MVT VTs[MVT::LAST_VALUETYPE];
4692    VTs[VT.getSimpleVT()] = VT;
4693    return &VTs[VT.getSimpleVT()];
4694  }
4695}
4696
4697/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4698/// indicated value.  This method ignores uses of other values defined by this
4699/// operation.
4700bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4701  assert(Value < getNumValues() && "Bad value!");
4702
4703  // TODO: Only iterate over uses of a given value of the node
4704  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4705    if (UI.getUse().getSDValue().getResNo() == Value) {
4706      if (NUses == 0)
4707        return false;
4708      --NUses;
4709    }
4710  }
4711
4712  // Found exactly the right number of uses?
4713  return NUses == 0;
4714}
4715
4716
4717/// hasAnyUseOfValue - Return true if there are any use of the indicated
4718/// value. This method ignores uses of other values defined by this operation.
4719bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4720  assert(Value < getNumValues() && "Bad value!");
4721
4722  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4723    if (UI.getUse().getSDValue().getResNo() == Value)
4724      return true;
4725
4726  return false;
4727}
4728
4729
4730/// isOnlyUserOf - Return true if this node is the only use of N.
4731///
4732bool SDNode::isOnlyUserOf(SDNode *N) const {
4733  bool Seen = false;
4734  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4735    SDNode *User = *I;
4736    if (User == this)
4737      Seen = true;
4738    else
4739      return false;
4740  }
4741
4742  return Seen;
4743}
4744
4745/// isOperand - Return true if this node is an operand of N.
4746///
4747bool SDValue::isOperandOf(SDNode *N) const {
4748  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4749    if (*this == N->getOperand(i))
4750      return true;
4751  return false;
4752}
4753
4754bool SDNode::isOperandOf(SDNode *N) const {
4755  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4756    if (this == N->OperandList[i].getVal())
4757      return true;
4758  return false;
4759}
4760
4761/// reachesChainWithoutSideEffects - Return true if this operand (which must
4762/// be a chain) reaches the specified operand without crossing any
4763/// side-effecting instructions.  In practice, this looks through token
4764/// factors and non-volatile loads.  In order to remain efficient, this only
4765/// looks a couple of nodes in, it does not do an exhaustive search.
4766bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4767                                               unsigned Depth) const {
4768  if (*this == Dest) return true;
4769
4770  // Don't search too deeply, we just want to be able to see through
4771  // TokenFactor's etc.
4772  if (Depth == 0) return false;
4773
4774  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4775  // of the operands of the TF reach dest, then we can do the xform.
4776  if (getOpcode() == ISD::TokenFactor) {
4777    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4778      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4779        return true;
4780    return false;
4781  }
4782
4783  // Loads don't have side effects, look through them.
4784  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4785    if (!Ld->isVolatile())
4786      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4787  }
4788  return false;
4789}
4790
4791
4792static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4793                            SmallPtrSet<SDNode *, 32> &Visited) {
4794  if (found || !Visited.insert(N))
4795    return;
4796
4797  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4798    SDNode *Op = N->getOperand(i).getNode();
4799    if (Op == P) {
4800      found = true;
4801      return;
4802    }
4803    findPredecessor(Op, P, found, Visited);
4804  }
4805}
4806
4807/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4808/// is either an operand of N or it can be reached by recursively traversing
4809/// up the operands.
4810/// NOTE: this is an expensive method. Use it carefully.
4811bool SDNode::isPredecessorOf(SDNode *N) const {
4812  SmallPtrSet<SDNode *, 32> Visited;
4813  bool found = false;
4814  findPredecessor(N, this, found, Visited);
4815  return found;
4816}
4817
4818uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4819  assert(Num < NumOperands && "Invalid child # of SDNode!");
4820  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4821}
4822
4823std::string SDNode::getOperationName(const SelectionDAG *G) const {
4824  switch (getOpcode()) {
4825  default:
4826    if (getOpcode() < ISD::BUILTIN_OP_END)
4827      return "<<Unknown DAG Node>>";
4828    if (isMachineOpcode()) {
4829      if (G)
4830        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4831          if (getMachineOpcode() < TII->getNumOpcodes())
4832            return TII->get(getMachineOpcode()).getName();
4833      return "<<Unknown Machine Node>>";
4834    }
4835    if (G) {
4836      TargetLowering &TLI = G->getTargetLoweringInfo();
4837      const char *Name = TLI.getTargetNodeName(getOpcode());
4838      if (Name) return Name;
4839      return "<<Unknown Target Node>>";
4840    }
4841    return "<<Unknown Node>>";
4842
4843#ifndef NDEBUG
4844  case ISD::DELETED_NODE:
4845    return "<<Deleted Node!>>";
4846#endif
4847  case ISD::PREFETCH:      return "Prefetch";
4848  case ISD::MEMBARRIER:    return "MemBarrier";
4849  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
4850  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
4851  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
4852  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
4853  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
4854  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
4855  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
4856  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
4857  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
4858  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
4859  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
4860  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
4861  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
4862  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
4863  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
4864  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
4865  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
4866  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
4867  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
4868  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
4869  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
4870  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
4871  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
4872  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
4873  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
4874  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
4875  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
4876  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
4877  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
4878  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
4879  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
4880  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
4881  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
4882  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
4883  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
4884  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
4885  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
4886  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
4887  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
4888  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
4889  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
4890  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
4891  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
4892  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
4893  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
4894  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
4895  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
4896  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
4897  case ISD::PCMARKER:      return "PCMarker";
4898  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4899  case ISD::SRCVALUE:      return "SrcValue";
4900  case ISD::MEMOPERAND:    return "MemOperand";
4901  case ISD::EntryToken:    return "EntryToken";
4902  case ISD::TokenFactor:   return "TokenFactor";
4903  case ISD::AssertSext:    return "AssertSext";
4904  case ISD::AssertZext:    return "AssertZext";
4905
4906  case ISD::BasicBlock:    return "BasicBlock";
4907  case ISD::ARG_FLAGS:     return "ArgFlags";
4908  case ISD::VALUETYPE:     return "ValueType";
4909  case ISD::Register:      return "Register";
4910
4911  case ISD::Constant:      return "Constant";
4912  case ISD::ConstantFP:    return "ConstantFP";
4913  case ISD::GlobalAddress: return "GlobalAddress";
4914  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4915  case ISD::FrameIndex:    return "FrameIndex";
4916  case ISD::JumpTable:     return "JumpTable";
4917  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4918  case ISD::RETURNADDR:    return "RETURNADDR";
4919  case ISD::FRAMEADDR:     return "FRAMEADDR";
4920  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4921  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4922  case ISD::EHSELECTION:   return "EHSELECTION";
4923  case ISD::EH_RETURN:     return "EH_RETURN";
4924  case ISD::ConstantPool:  return "ConstantPool";
4925  case ISD::Symbol:        return "Symbol";
4926  case ISD::INTRINSIC_WO_CHAIN: {
4927    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
4928    return Intrinsic::getName((Intrinsic::ID)IID);
4929  }
4930  case ISD::INTRINSIC_VOID:
4931  case ISD::INTRINSIC_W_CHAIN: {
4932    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
4933    return Intrinsic::getName((Intrinsic::ID)IID);
4934  }
4935
4936  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4937  case ISD::TargetConstant: return "TargetConstant";
4938  case ISD::TargetConstantFP:return "TargetConstantFP";
4939  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4940  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4941  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4942  case ISD::TargetJumpTable:  return "TargetJumpTable";
4943  case ISD::TargetConstantPool:  return "TargetConstantPool";
4944  case ISD::TargetSymbol:  return "TargetSymbol";
4945
4946  case ISD::CopyToReg:     return "CopyToReg";
4947  case ISD::CopyFromReg:   return "CopyFromReg";
4948  case ISD::UNDEF:         return "undef";
4949  case ISD::MERGE_VALUES:  return "merge_values";
4950  case ISD::INLINEASM:     return "inlineasm";
4951  case ISD::DBG_LABEL:     return "dbg_label";
4952  case ISD::EH_LABEL:      return "eh_label";
4953  case ISD::DECLARE:       return "declare";
4954  case ISD::HANDLENODE:    return "handlenode";
4955  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4956  case ISD::CALL:          return "call";
4957
4958  // Unary operators
4959  case ISD::FABS:   return "fabs";
4960  case ISD::FNEG:   return "fneg";
4961  case ISD::FSQRT:  return "fsqrt";
4962  case ISD::FSIN:   return "fsin";
4963  case ISD::FCOS:   return "fcos";
4964  case ISD::FPOWI:  return "fpowi";
4965  case ISD::FPOW:   return "fpow";
4966  case ISD::FTRUNC: return "ftrunc";
4967  case ISD::FFLOOR: return "ffloor";
4968  case ISD::FCEIL:  return "fceil";
4969  case ISD::FRINT:  return "frint";
4970  case ISD::FNEARBYINT: return "fnearbyint";
4971
4972  // Binary operators
4973  case ISD::ADD:    return "add";
4974  case ISD::SUB:    return "sub";
4975  case ISD::MUL:    return "mul";
4976  case ISD::MULHU:  return "mulhu";
4977  case ISD::MULHS:  return "mulhs";
4978  case ISD::SDIV:   return "sdiv";
4979  case ISD::UDIV:   return "udiv";
4980  case ISD::SREM:   return "srem";
4981  case ISD::UREM:   return "urem";
4982  case ISD::SMUL_LOHI:  return "smul_lohi";
4983  case ISD::UMUL_LOHI:  return "umul_lohi";
4984  case ISD::SDIVREM:    return "sdivrem";
4985  case ISD::UDIVREM:    return "udivrem";
4986  case ISD::AND:    return "and";
4987  case ISD::OR:     return "or";
4988  case ISD::XOR:    return "xor";
4989  case ISD::SHL:    return "shl";
4990  case ISD::SRA:    return "sra";
4991  case ISD::SRL:    return "srl";
4992  case ISD::ROTL:   return "rotl";
4993  case ISD::ROTR:   return "rotr";
4994  case ISD::FADD:   return "fadd";
4995  case ISD::FSUB:   return "fsub";
4996  case ISD::FMUL:   return "fmul";
4997  case ISD::FDIV:   return "fdiv";
4998  case ISD::FREM:   return "frem";
4999  case ISD::FCOPYSIGN: return "fcopysign";
5000  case ISD::FGETSIGN:  return "fgetsign";
5001
5002  case ISD::SETCC:       return "setcc";
5003  case ISD::VSETCC:      return "vsetcc";
5004  case ISD::SELECT:      return "select";
5005  case ISD::SELECT_CC:   return "select_cc";
5006  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5007  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5008  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5009  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5010  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5011  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5012  case ISD::CARRY_FALSE:         return "carry_false";
5013  case ISD::ADDC:        return "addc";
5014  case ISD::ADDE:        return "adde";
5015  case ISD::SUBC:        return "subc";
5016  case ISD::SUBE:        return "sube";
5017  case ISD::SHL_PARTS:   return "shl_parts";
5018  case ISD::SRA_PARTS:   return "sra_parts";
5019  case ISD::SRL_PARTS:   return "srl_parts";
5020
5021  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5022  case ISD::INSERT_SUBREG:      return "insert_subreg";
5023
5024  // Conversion operators.
5025  case ISD::SIGN_EXTEND: return "sign_extend";
5026  case ISD::ZERO_EXTEND: return "zero_extend";
5027  case ISD::ANY_EXTEND:  return "any_extend";
5028  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5029  case ISD::TRUNCATE:    return "truncate";
5030  case ISD::FP_ROUND:    return "fp_round";
5031  case ISD::FLT_ROUNDS_: return "flt_rounds";
5032  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5033  case ISD::FP_EXTEND:   return "fp_extend";
5034
5035  case ISD::SINT_TO_FP:  return "sint_to_fp";
5036  case ISD::UINT_TO_FP:  return "uint_to_fp";
5037  case ISD::FP_TO_SINT:  return "fp_to_sint";
5038  case ISD::FP_TO_UINT:  return "fp_to_uint";
5039  case ISD::BIT_CONVERT: return "bit_convert";
5040
5041    // Control flow instructions
5042  case ISD::BR:      return "br";
5043  case ISD::BRIND:   return "brind";
5044  case ISD::BR_JT:   return "br_jt";
5045  case ISD::BRCOND:  return "brcond";
5046  case ISD::BR_CC:   return "br_cc";
5047  case ISD::RET:     return "ret";
5048  case ISD::CALLSEQ_START:  return "callseq_start";
5049  case ISD::CALLSEQ_END:    return "callseq_end";
5050
5051    // Other operators
5052  case ISD::LOAD:               return "load";
5053  case ISD::STORE:              return "store";
5054  case ISD::VAARG:              return "vaarg";
5055  case ISD::VACOPY:             return "vacopy";
5056  case ISD::VAEND:              return "vaend";
5057  case ISD::VASTART:            return "vastart";
5058  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5059  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5060  case ISD::BUILD_PAIR:         return "build_pair";
5061  case ISD::STACKSAVE:          return "stacksave";
5062  case ISD::STACKRESTORE:       return "stackrestore";
5063  case ISD::TRAP:               return "trap";
5064
5065  // Bit manipulation
5066  case ISD::BSWAP:   return "bswap";
5067  case ISD::CTPOP:   return "ctpop";
5068  case ISD::CTTZ:    return "cttz";
5069  case ISD::CTLZ:    return "ctlz";
5070
5071  // Debug info
5072  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5073  case ISD::DEBUG_LOC: return "debug_loc";
5074
5075  // Trampolines
5076  case ISD::TRAMPOLINE: return "trampoline";
5077
5078  case ISD::CONDCODE:
5079    switch (cast<CondCodeSDNode>(this)->get()) {
5080    default: assert(0 && "Unknown setcc condition!");
5081    case ISD::SETOEQ:  return "setoeq";
5082    case ISD::SETOGT:  return "setogt";
5083    case ISD::SETOGE:  return "setoge";
5084    case ISD::SETOLT:  return "setolt";
5085    case ISD::SETOLE:  return "setole";
5086    case ISD::SETONE:  return "setone";
5087
5088    case ISD::SETO:    return "seto";
5089    case ISD::SETUO:   return "setuo";
5090    case ISD::SETUEQ:  return "setue";
5091    case ISD::SETUGT:  return "setugt";
5092    case ISD::SETUGE:  return "setuge";
5093    case ISD::SETULT:  return "setult";
5094    case ISD::SETULE:  return "setule";
5095    case ISD::SETUNE:  return "setune";
5096
5097    case ISD::SETEQ:   return "seteq";
5098    case ISD::SETGT:   return "setgt";
5099    case ISD::SETGE:   return "setge";
5100    case ISD::SETLT:   return "setlt";
5101    case ISD::SETLE:   return "setle";
5102    case ISD::SETNE:   return "setne";
5103    }
5104  }
5105}
5106
5107const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5108  switch (AM) {
5109  default:
5110    return "";
5111  case ISD::PRE_INC:
5112    return "<pre-inc>";
5113  case ISD::PRE_DEC:
5114    return "<pre-dec>";
5115  case ISD::POST_INC:
5116    return "<post-inc>";
5117  case ISD::POST_DEC:
5118    return "<post-dec>";
5119  }
5120}
5121
5122std::string ISD::ArgFlagsTy::getArgFlagsString() {
5123  std::string S = "< ";
5124
5125  if (isZExt())
5126    S += "zext ";
5127  if (isSExt())
5128    S += "sext ";
5129  if (isInReg())
5130    S += "inreg ";
5131  if (isSRet())
5132    S += "sret ";
5133  if (isByVal())
5134    S += "byval ";
5135  if (isNest())
5136    S += "nest ";
5137  if (getByValAlign())
5138    S += "byval-align:" + utostr(getByValAlign()) + " ";
5139  if (getOrigAlign())
5140    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5141  if (getByValSize())
5142    S += "byval-size:" + utostr(getByValSize()) + " ";
5143  return S + ">";
5144}
5145
5146void SDNode::dump() const { dump(0); }
5147void SDNode::dump(const SelectionDAG *G) const {
5148  print(errs(), G);
5149  errs().flush();
5150}
5151
5152void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5153  OS << (void*)this << ": ";
5154
5155  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5156    if (i) OS << ",";
5157    if (getValueType(i) == MVT::Other)
5158      OS << "ch";
5159    else
5160      OS << getValueType(i).getMVTString();
5161  }
5162  OS << " = " << getOperationName(G);
5163
5164  OS << " ";
5165  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5166    if (i) OS << ", ";
5167    OS << (void*)getOperand(i).getNode();
5168    if (unsigned RN = getOperand(i).getResNo())
5169      OS << ":" << RN;
5170  }
5171
5172  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5173    SDNode *Mask = getOperand(2).getNode();
5174    OS << "<";
5175    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5176      if (i) OS << ",";
5177      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5178        OS << "u";
5179      else
5180        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5181    }
5182    OS << ">";
5183  }
5184
5185  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5186    OS << '<' << CSDN->getAPIntValue() << '>';
5187  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5188    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5189      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5190    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5191      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5192    else {
5193      OS << "<APFloat(";
5194      CSDN->getValueAPF().convertToAPInt().dump();
5195      OS << ")>";
5196    }
5197  } else if (const GlobalAddressSDNode *GADN =
5198             dyn_cast<GlobalAddressSDNode>(this)) {
5199    int offset = GADN->getOffset();
5200    OS << '<';
5201    WriteAsOperand(OS, GADN->getGlobal());
5202    OS << '>';
5203    if (offset > 0)
5204      OS << " + " << offset;
5205    else
5206      OS << " " << offset;
5207  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5208    OS << "<" << FIDN->getIndex() << ">";
5209  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5210    OS << "<" << JTDN->getIndex() << ">";
5211  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5212    int offset = CP->getOffset();
5213    if (CP->isMachineConstantPoolEntry())
5214      OS << "<" << *CP->getMachineCPVal() << ">";
5215    else
5216      OS << "<" << *CP->getConstVal() << ">";
5217    if (offset > 0)
5218      OS << " + " << offset;
5219    else
5220      OS << " " << offset;
5221  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5222    OS << "<";
5223    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5224    if (LBB)
5225      OS << LBB->getName() << " ";
5226    OS << (const void*)BBDN->getBasicBlock() << ">";
5227  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5228    if (G && R->getReg() &&
5229        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5230      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5231    } else {
5232      OS << " #" << R->getReg();
5233    }
5234  } else if (const SymbolSDNode *S =
5235             dyn_cast<SymbolSDNode>(this)) {
5236    OS << "'" << S->getSymbol() << "' ";
5237
5238    switch (S->getLinkage()) {
5239    default: assert(0 && "Invalid linkage type!"); break;
5240    case GlobalValue::ExternalLinkage:       OS << "[external]"; break;
5241    case GlobalValue::LinkOnceLinkage:       OS << "[once]"; break;
5242    case GlobalValue::WeakLinkage:           OS << "[weak]"; break;
5243    case GlobalValue::AppendingLinkage:      OS << "[appending]"; break;
5244    case GlobalValue::InternalLinkage:       OS << "[internal]"; break;
5245    case GlobalValue::DLLImportLinkage:      OS << "[dllimport]"; break;
5246    case GlobalValue::DLLExportLinkage:      OS << "[dllexport]"; break;
5247    case GlobalValue::ExternalWeakLinkage:   OS << "[externweak]"; break;
5248    case GlobalValue::GhostLinkage:          OS << "[ghost]"; break;
5249    case GlobalValue::CommonLinkage:         OS << "[common]"; break;
5250    }
5251  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5252    if (M->getValue())
5253      OS << "<" << M->getValue() << ">";
5254    else
5255      OS << "<null>";
5256  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5257    if (M->MO.getValue())
5258      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5259    else
5260      OS << "<null:" << M->MO.getOffset() << ">";
5261  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5262    OS << N->getArgFlags().getArgFlagsString();
5263  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5264    OS << ":" << N->getVT().getMVTString();
5265  }
5266  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5267    const Value *SrcValue = LD->getSrcValue();
5268    int SrcOffset = LD->getSrcValueOffset();
5269    OS << " <";
5270    if (SrcValue)
5271      OS << SrcValue;
5272    else
5273      OS << "null";
5274    OS << ":" << SrcOffset << ">";
5275
5276    bool doExt = true;
5277    switch (LD->getExtensionType()) {
5278    default: doExt = false; break;
5279    case ISD::EXTLOAD: OS << " <anyext "; break;
5280    case ISD::SEXTLOAD: OS << " <sext "; break;
5281    case ISD::ZEXTLOAD: OS << " <zext "; break;
5282    }
5283    if (doExt)
5284      OS << LD->getMemoryVT().getMVTString() << ">";
5285
5286    const char *AM = getIndexedModeName(LD->getAddressingMode());
5287    if (*AM)
5288      OS << " " << AM;
5289    if (LD->isVolatile())
5290      OS << " <volatile>";
5291    OS << " alignment=" << LD->getAlignment();
5292  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5293    const Value *SrcValue = ST->getSrcValue();
5294    int SrcOffset = ST->getSrcValueOffset();
5295    OS << " <";
5296    if (SrcValue)
5297      OS << SrcValue;
5298    else
5299      OS << "null";
5300    OS << ":" << SrcOffset << ">";
5301
5302    if (ST->isTruncatingStore())
5303      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5304
5305    const char *AM = getIndexedModeName(ST->getAddressingMode());
5306    if (*AM)
5307      OS << " " << AM;
5308    if (ST->isVolatile())
5309      OS << " <volatile>";
5310    OS << " alignment=" << ST->getAlignment();
5311  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5312    const Value *SrcValue = AT->getSrcValue();
5313    int SrcOffset = AT->getSrcValueOffset();
5314    OS << " <";
5315    if (SrcValue)
5316      OS << SrcValue;
5317    else
5318      OS << "null";
5319    OS << ":" << SrcOffset << ">";
5320    if (AT->isVolatile())
5321      OS << " <volatile>";
5322    OS << " alignment=" << AT->getAlignment();
5323  }
5324}
5325
5326static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5327  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5328    if (N->getOperand(i).getNode()->hasOneUse())
5329      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5330    else
5331      cerr << "\n" << std::string(indent+2, ' ')
5332           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5333
5334
5335  cerr << "\n" << std::string(indent, ' ');
5336  N->dump(G);
5337}
5338
5339void SelectionDAG::dump() const {
5340  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5341
5342  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5343       I != E; ++I) {
5344    const SDNode *N = I;
5345    if (!N->hasOneUse() && N != getRoot().getNode())
5346      DumpNodes(N, 2, this);
5347  }
5348
5349  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5350
5351  cerr << "\n\n";
5352}
5353
5354const Type *ConstantPoolSDNode::getType() const {
5355  if (isMachineConstantPoolEntry())
5356    return Val.MachineCPVal->getType();
5357  return Val.ConstVal->getType();
5358}
5359