SelectionDAG.cpp revision 98ca4f2a325f72374a477f9deba7d09e8999c29b
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/ManagedStatic.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/System/Mutex.h"
39#include "llvm/ADT/SetVector.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/SmallSet.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/StringExtras.h"
44#include <algorithm>
45#include <cmath>
46using namespace llvm;
47
48/// makeVTList - Return an instance of the SDVTList struct initialized with the
49/// specified members.
50static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
51  SDVTList Res = {VTs, NumVTs};
52  return Res;
53}
54
55static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
56  switch (VT.getSimpleVT()) {
57  default: llvm_unreachable("Unknown FP format");
58  case MVT::f32:     return &APFloat::IEEEsingle;
59  case MVT::f64:     return &APFloat::IEEEdouble;
60  case MVT::f80:     return &APFloat::x87DoubleExtended;
61  case MVT::f128:    return &APFloat::IEEEquad;
62  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
63  }
64}
65
66SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
67
68//===----------------------------------------------------------------------===//
69//                              ConstantFPSDNode Class
70//===----------------------------------------------------------------------===//
71
72/// isExactlyValue - We don't rely on operator== working on double values, as
73/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
74/// As such, this method can be used to do an exact bit-for-bit comparison of
75/// two floating point values.
76bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
77  return getValueAPF().bitwiseIsEqual(V);
78}
79
80bool ConstantFPSDNode::isValueValidForType(MVT VT,
81                                           const APFloat& Val) {
82  assert(VT.isFloatingPoint() && "Can only convert between FP types");
83
84  // PPC long double cannot be converted to any other type.
85  if (VT == MVT::ppcf128 ||
86      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
87    return false;
88
89  // convert modifies in place, so make a copy.
90  APFloat Val2 = APFloat(Val);
91  bool losesInfo;
92  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
93                      &losesInfo);
94  return !losesInfo;
95}
96
97//===----------------------------------------------------------------------===//
98//                              ISD Namespace
99//===----------------------------------------------------------------------===//
100
101/// isBuildVectorAllOnes - Return true if the specified node is a
102/// BUILD_VECTOR where all of the elements are ~0 or undef.
103bool ISD::isBuildVectorAllOnes(const SDNode *N) {
104  // Look through a bit convert.
105  if (N->getOpcode() == ISD::BIT_CONVERT)
106    N = N->getOperand(0).getNode();
107
108  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
109
110  unsigned i = 0, e = N->getNumOperands();
111
112  // Skip over all of the undef values.
113  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
114    ++i;
115
116  // Do not accept an all-undef vector.
117  if (i == e) return false;
118
119  // Do not accept build_vectors that aren't all constants or which have non-~0
120  // elements.
121  SDValue NotZero = N->getOperand(i);
122  if (isa<ConstantSDNode>(NotZero)) {
123    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
124      return false;
125  } else if (isa<ConstantFPSDNode>(NotZero)) {
126    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
127                bitcastToAPInt().isAllOnesValue())
128      return false;
129  } else
130    return false;
131
132  // Okay, we have at least one ~0 value, check to see if the rest match or are
133  // undefs.
134  for (++i; i != e; ++i)
135    if (N->getOperand(i) != NotZero &&
136        N->getOperand(i).getOpcode() != ISD::UNDEF)
137      return false;
138  return true;
139}
140
141
142/// isBuildVectorAllZeros - Return true if the specified node is a
143/// BUILD_VECTOR where all of the elements are 0 or undef.
144bool ISD::isBuildVectorAllZeros(const SDNode *N) {
145  // Look through a bit convert.
146  if (N->getOpcode() == ISD::BIT_CONVERT)
147    N = N->getOperand(0).getNode();
148
149  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
150
151  unsigned i = 0, e = N->getNumOperands();
152
153  // Skip over all of the undef values.
154  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
155    ++i;
156
157  // Do not accept an all-undef vector.
158  if (i == e) return false;
159
160  // Do not accept build_vectors that aren't all constants or which have non-0
161  // elements.
162  SDValue Zero = N->getOperand(i);
163  if (isa<ConstantSDNode>(Zero)) {
164    if (!cast<ConstantSDNode>(Zero)->isNullValue())
165      return false;
166  } else if (isa<ConstantFPSDNode>(Zero)) {
167    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
168      return false;
169  } else
170    return false;
171
172  // Okay, we have at least one 0 value, check to see if the rest match or are
173  // undefs.
174  for (++i; i != e; ++i)
175    if (N->getOperand(i) != Zero &&
176        N->getOperand(i).getOpcode() != ISD::UNDEF)
177      return false;
178  return true;
179}
180
181/// isScalarToVector - Return true if the specified node is a
182/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
183/// element is not an undef.
184bool ISD::isScalarToVector(const SDNode *N) {
185  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
186    return true;
187
188  if (N->getOpcode() != ISD::BUILD_VECTOR)
189    return false;
190  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
191    return false;
192  unsigned NumElems = N->getNumOperands();
193  for (unsigned i = 1; i < NumElems; ++i) {
194    SDValue V = N->getOperand(i);
195    if (V.getOpcode() != ISD::UNDEF)
196      return false;
197  }
198  return true;
199}
200
201
202/// isDebugLabel - Return true if the specified node represents a debug
203/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
204bool ISD::isDebugLabel(const SDNode *N) {
205  SDValue Zero;
206  if (N->getOpcode() == ISD::DBG_LABEL)
207    return true;
208  if (N->isMachineOpcode() &&
209      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
210    return true;
211  return false;
212}
213
214/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
215/// when given the operation for (X op Y).
216ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
217  // To perform this operation, we just need to swap the L and G bits of the
218  // operation.
219  unsigned OldL = (Operation >> 2) & 1;
220  unsigned OldG = (Operation >> 1) & 1;
221  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
222                       (OldL << 1) |       // New G bit
223                       (OldG << 2));       // New L bit.
224}
225
226/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
227/// 'op' is a valid SetCC operation.
228ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
229  unsigned Operation = Op;
230  if (isInteger)
231    Operation ^= 7;   // Flip L, G, E bits, but not U.
232  else
233    Operation ^= 15;  // Flip all of the condition bits.
234
235  if (Operation > ISD::SETTRUE2)
236    Operation &= ~8;  // Don't let N and U bits get set.
237
238  return ISD::CondCode(Operation);
239}
240
241
242/// isSignedOp - For an integer comparison, return 1 if the comparison is a
243/// signed operation and 2 if the result is an unsigned comparison.  Return zero
244/// if the operation does not depend on the sign of the input (setne and seteq).
245static int isSignedOp(ISD::CondCode Opcode) {
246  switch (Opcode) {
247  default: llvm_unreachable("Illegal integer setcc operation!");
248  case ISD::SETEQ:
249  case ISD::SETNE: return 0;
250  case ISD::SETLT:
251  case ISD::SETLE:
252  case ISD::SETGT:
253  case ISD::SETGE: return 1;
254  case ISD::SETULT:
255  case ISD::SETULE:
256  case ISD::SETUGT:
257  case ISD::SETUGE: return 2;
258  }
259}
260
261/// getSetCCOrOperation - Return the result of a logical OR between different
262/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
263/// returns SETCC_INVALID if it is not possible to represent the resultant
264/// comparison.
265ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
266                                       bool isInteger) {
267  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
268    // Cannot fold a signed integer setcc with an unsigned integer setcc.
269    return ISD::SETCC_INVALID;
270
271  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
272
273  // If the N and U bits get set then the resultant comparison DOES suddenly
274  // care about orderedness, and is true when ordered.
275  if (Op > ISD::SETTRUE2)
276    Op &= ~16;     // Clear the U bit if the N bit is set.
277
278  // Canonicalize illegal integer setcc's.
279  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
280    Op = ISD::SETNE;
281
282  return ISD::CondCode(Op);
283}
284
285/// getSetCCAndOperation - Return the result of a logical AND between different
286/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
287/// function returns zero if it is not possible to represent the resultant
288/// comparison.
289ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
290                                        bool isInteger) {
291  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
292    // Cannot fold a signed setcc with an unsigned setcc.
293    return ISD::SETCC_INVALID;
294
295  // Combine all of the condition bits.
296  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
297
298  // Canonicalize illegal integer setcc's.
299  if (isInteger) {
300    switch (Result) {
301    default: break;
302    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
303    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
304    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
305    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
306    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
307    }
308  }
309
310  return Result;
311}
312
313const TargetMachine &SelectionDAG::getTarget() const {
314  return MF->getTarget();
315}
316
317//===----------------------------------------------------------------------===//
318//                           SDNode Profile Support
319//===----------------------------------------------------------------------===//
320
321/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
322///
323static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
324  ID.AddInteger(OpC);
325}
326
327/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
328/// solely with their pointer.
329static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
330  ID.AddPointer(VTList.VTs);
331}
332
333/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
334///
335static void AddNodeIDOperands(FoldingSetNodeID &ID,
336                              const SDValue *Ops, unsigned NumOps) {
337  for (; NumOps; --NumOps, ++Ops) {
338    ID.AddPointer(Ops->getNode());
339    ID.AddInteger(Ops->getResNo());
340  }
341}
342
343/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
344///
345static void AddNodeIDOperands(FoldingSetNodeID &ID,
346                              const SDUse *Ops, unsigned NumOps) {
347  for (; NumOps; --NumOps, ++Ops) {
348    ID.AddPointer(Ops->getNode());
349    ID.AddInteger(Ops->getResNo());
350  }
351}
352
353static void AddNodeIDNode(FoldingSetNodeID &ID,
354                          unsigned short OpC, SDVTList VTList,
355                          const SDValue *OpList, unsigned N) {
356  AddNodeIDOpcode(ID, OpC);
357  AddNodeIDValueTypes(ID, VTList);
358  AddNodeIDOperands(ID, OpList, N);
359}
360
361/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
362/// the NodeID data.
363static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
364  switch (N->getOpcode()) {
365  case ISD::TargetExternalSymbol:
366  case ISD::ExternalSymbol:
367    llvm_unreachable("Should only be used on nodes with operands");
368  default: break;  // Normal nodes don't need extra info.
369  case ISD::TargetConstant:
370  case ISD::Constant:
371    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
372    break;
373  case ISD::TargetConstantFP:
374  case ISD::ConstantFP: {
375    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
376    break;
377  }
378  case ISD::TargetGlobalAddress:
379  case ISD::GlobalAddress:
380  case ISD::TargetGlobalTLSAddress:
381  case ISD::GlobalTLSAddress: {
382    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
383    ID.AddPointer(GA->getGlobal());
384    ID.AddInteger(GA->getOffset());
385    ID.AddInteger(GA->getTargetFlags());
386    break;
387  }
388  case ISD::BasicBlock:
389    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
390    break;
391  case ISD::Register:
392    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
393    break;
394  case ISD::DBG_STOPPOINT: {
395    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
396    ID.AddInteger(DSP->getLine());
397    ID.AddInteger(DSP->getColumn());
398    ID.AddPointer(DSP->getCompileUnit());
399    break;
400  }
401  case ISD::SRCVALUE:
402    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
403    break;
404  case ISD::MEMOPERAND: {
405    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
406    MO.Profile(ID);
407    break;
408  }
409  case ISD::FrameIndex:
410  case ISD::TargetFrameIndex:
411    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
412    break;
413  case ISD::JumpTable:
414  case ISD::TargetJumpTable:
415    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
416    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
417    break;
418  case ISD::ConstantPool:
419  case ISD::TargetConstantPool: {
420    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
421    ID.AddInteger(CP->getAlignment());
422    ID.AddInteger(CP->getOffset());
423    if (CP->isMachineConstantPoolEntry())
424      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
425    else
426      ID.AddPointer(CP->getConstVal());
427    ID.AddInteger(CP->getTargetFlags());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getMemoryVT().getRawBits());
433    ID.AddInteger(LD->getRawSubclassData());
434    break;
435  }
436  case ISD::STORE: {
437    const StoreSDNode *ST = cast<StoreSDNode>(N);
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawSubclassData());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_ADD:
445  case ISD::ATOMIC_LOAD_SUB:
446  case ISD::ATOMIC_LOAD_AND:
447  case ISD::ATOMIC_LOAD_OR:
448  case ISD::ATOMIC_LOAD_XOR:
449  case ISD::ATOMIC_LOAD_NAND:
450  case ISD::ATOMIC_LOAD_MIN:
451  case ISD::ATOMIC_LOAD_MAX:
452  case ISD::ATOMIC_LOAD_UMIN:
453  case ISD::ATOMIC_LOAD_UMAX: {
454    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455    ID.AddInteger(AT->getMemoryVT().getRawBits());
456    ID.AddInteger(AT->getRawSubclassData());
457    break;
458  }
459  case ISD::VECTOR_SHUFFLE: {
460    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
461    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
462         i != e; ++i)
463      ID.AddInteger(SVN->getMaskElt(i));
464    break;
465  }
466  } // end switch (N->getOpcode())
467}
468
469/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
470/// data.
471static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
472  AddNodeIDOpcode(ID, N->getOpcode());
473  // Add the return value info.
474  AddNodeIDValueTypes(ID, N->getVTList());
475  // Add the operand info.
476  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
477
478  // Handle SDNode leafs with special info.
479  AddNodeIDCustom(ID, N);
480}
481
482/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
483/// the CSE map that carries alignment, volatility, indexing mode, and
484/// extension/truncation information.
485///
486static inline unsigned
487encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
488                     bool isVolatile, unsigned Alignment) {
489  assert((ConvType & 3) == ConvType &&
490         "ConvType may not require more than 2 bits!");
491  assert((AM & 7) == AM &&
492         "AM may not require more than 3 bits!");
493  return ConvType |
494         (AM << 2) |
495         (isVolatile << 5) |
496         ((Log2_32(Alignment) + 1) << 6);
497}
498
499//===----------------------------------------------------------------------===//
500//                              SelectionDAG Class
501//===----------------------------------------------------------------------===//
502
503/// doNotCSE - Return true if CSE should not be performed for this node.
504static bool doNotCSE(SDNode *N) {
505  if (N->getValueType(0) == MVT::Flag)
506    return true; // Never CSE anything that produces a flag.
507
508  switch (N->getOpcode()) {
509  default: break;
510  case ISD::HANDLENODE:
511  case ISD::DBG_LABEL:
512  case ISD::DBG_STOPPOINT:
513  case ISD::EH_LABEL:
514  case ISD::DECLARE:
515    return true;   // Never CSE these nodes.
516  }
517
518  // Check that remaining values produced are not flags.
519  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
520    if (N->getValueType(i) == MVT::Flag)
521      return true; // Never CSE anything that produces a flag.
522
523  return false;
524}
525
526/// RemoveDeadNodes - This method deletes all unreachable nodes in the
527/// SelectionDAG.
528void SelectionDAG::RemoveDeadNodes() {
529  // Create a dummy node (which is not added to allnodes), that adds a reference
530  // to the root node, preventing it from being deleted.
531  HandleSDNode Dummy(getRoot());
532
533  SmallVector<SDNode*, 128> DeadNodes;
534
535  // Add all obviously-dead nodes to the DeadNodes worklist.
536  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
537    if (I->use_empty())
538      DeadNodes.push_back(I);
539
540  RemoveDeadNodes(DeadNodes);
541
542  // If the root changed (e.g. it was a dead load, update the root).
543  setRoot(Dummy.getValue());
544}
545
546/// RemoveDeadNodes - This method deletes the unreachable nodes in the
547/// given list, and any nodes that become unreachable as a result.
548void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
549                                   DAGUpdateListener *UpdateListener) {
550
551  // Process the worklist, deleting the nodes and adding their uses to the
552  // worklist.
553  while (!DeadNodes.empty()) {
554    SDNode *N = DeadNodes.pop_back_val();
555
556    if (UpdateListener)
557      UpdateListener->NodeDeleted(N, 0);
558
559    // Take the node out of the appropriate CSE map.
560    RemoveNodeFromCSEMaps(N);
561
562    // Next, brutally remove the operand list.  This is safe to do, as there are
563    // no cycles in the graph.
564    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
565      SDUse &Use = *I++;
566      SDNode *Operand = Use.getNode();
567      Use.set(SDValue());
568
569      // Now that we removed this operand, see if there are no uses of it left.
570      if (Operand->use_empty())
571        DeadNodes.push_back(Operand);
572    }
573
574    DeallocateNode(N);
575  }
576}
577
578void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
579  SmallVector<SDNode*, 16> DeadNodes(1, N);
580  RemoveDeadNodes(DeadNodes, UpdateListener);
581}
582
583void SelectionDAG::DeleteNode(SDNode *N) {
584  // First take this out of the appropriate CSE map.
585  RemoveNodeFromCSEMaps(N);
586
587  // Finally, remove uses due to operands of this node, remove from the
588  // AllNodes list, and delete the node.
589  DeleteNodeNotInCSEMaps(N);
590}
591
592void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
593  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
594  assert(N->use_empty() && "Cannot delete a node that is not dead!");
595
596  // Drop all of the operands and decrement used node's use counts.
597  N->DropOperands();
598
599  DeallocateNode(N);
600}
601
602void SelectionDAG::DeallocateNode(SDNode *N) {
603  if (N->OperandsNeedDelete)
604    delete[] N->OperandList;
605
606  // Set the opcode to DELETED_NODE to help catch bugs when node
607  // memory is reallocated.
608  N->NodeType = ISD::DELETED_NODE;
609
610  NodeAllocator.Deallocate(AllNodes.remove(N));
611}
612
613/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
614/// correspond to it.  This is useful when we're about to delete or repurpose
615/// the node.  We don't want future request for structurally identical nodes
616/// to return N anymore.
617bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
618  bool Erased = false;
619  switch (N->getOpcode()) {
620  case ISD::EntryToken:
621    llvm_unreachable("EntryToken should not be in CSEMaps!");
622    return false;
623  case ISD::HANDLENODE: return false;  // noop.
624  case ISD::CONDCODE:
625    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
626           "Cond code doesn't exist!");
627    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
628    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
629    break;
630  case ISD::ExternalSymbol:
631    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
632    break;
633  case ISD::TargetExternalSymbol: {
634    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
635    Erased = TargetExternalSymbols.erase(
636               std::pair<std::string,unsigned char>(ESN->getSymbol(),
637                                                    ESN->getTargetFlags()));
638    break;
639  }
640  case ISD::VALUETYPE: {
641    MVT VT = cast<VTSDNode>(N)->getVT();
642    if (VT.isExtended()) {
643      Erased = ExtendedValueTypeNodes.erase(VT);
644    } else {
645      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
646      ValueTypeNodes[VT.getSimpleVT()] = 0;
647    }
648    break;
649  }
650  default:
651    // Remove it from the CSE Map.
652    Erased = CSEMap.RemoveNode(N);
653    break;
654  }
655#ifndef NDEBUG
656  // Verify that the node was actually in one of the CSE maps, unless it has a
657  // flag result (which cannot be CSE'd) or is one of the special cases that are
658  // not subject to CSE.
659  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
660      !N->isMachineOpcode() && !doNotCSE(N)) {
661    N->dump(this);
662    cerr << "\n";
663    llvm_unreachable("Node is not in map!");
664  }
665#endif
666  return Erased;
667}
668
669/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
670/// maps and modified in place. Add it back to the CSE maps, unless an identical
671/// node already exists, in which case transfer all its users to the existing
672/// node. This transfer can potentially trigger recursive merging.
673///
674void
675SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
676                                       DAGUpdateListener *UpdateListener) {
677  // For node types that aren't CSE'd, just act as if no identical node
678  // already exists.
679  if (!doNotCSE(N)) {
680    SDNode *Existing = CSEMap.GetOrInsertNode(N);
681    if (Existing != N) {
682      // If there was already an existing matching node, use ReplaceAllUsesWith
683      // to replace the dead one with the existing one.  This can cause
684      // recursive merging of other unrelated nodes down the line.
685      ReplaceAllUsesWith(N, Existing, UpdateListener);
686
687      // N is now dead.  Inform the listener if it exists and delete it.
688      if (UpdateListener)
689        UpdateListener->NodeDeleted(N, Existing);
690      DeleteNodeNotInCSEMaps(N);
691      return;
692    }
693  }
694
695  // If the node doesn't already exist, we updated it.  Inform a listener if
696  // it exists.
697  if (UpdateListener)
698    UpdateListener->NodeUpdated(N);
699}
700
701/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
702/// were replaced with those specified.  If this node is never memoized,
703/// return null, otherwise return a pointer to the slot it would take.  If a
704/// node already exists with these operands, the slot will be non-null.
705SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
706                                           void *&InsertPos) {
707  if (doNotCSE(N))
708    return 0;
709
710  SDValue Ops[] = { Op };
711  FoldingSetNodeID ID;
712  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
713  AddNodeIDCustom(ID, N);
714  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
715}
716
717/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
718/// were replaced with those specified.  If this node is never memoized,
719/// return null, otherwise return a pointer to the slot it would take.  If a
720/// node already exists with these operands, the slot will be non-null.
721SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
722                                           SDValue Op1, SDValue Op2,
723                                           void *&InsertPos) {
724  if (doNotCSE(N))
725    return 0;
726
727  SDValue Ops[] = { Op1, Op2 };
728  FoldingSetNodeID ID;
729  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
730  AddNodeIDCustom(ID, N);
731  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
732}
733
734
735/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
736/// were replaced with those specified.  If this node is never memoized,
737/// return null, otherwise return a pointer to the slot it would take.  If a
738/// node already exists with these operands, the slot will be non-null.
739SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
740                                           const SDValue *Ops,unsigned NumOps,
741                                           void *&InsertPos) {
742  if (doNotCSE(N))
743    return 0;
744
745  FoldingSetNodeID ID;
746  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
747  AddNodeIDCustom(ID, N);
748  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
749}
750
751/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
752void SelectionDAG::VerifyNode(SDNode *N) {
753  switch (N->getOpcode()) {
754  default:
755    break;
756  case ISD::BUILD_PAIR: {
757    MVT VT = N->getValueType(0);
758    assert(N->getNumValues() == 1 && "Too many results!");
759    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
760           "Wrong return type!");
761    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
762    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
763           "Mismatched operand types!");
764    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
765           "Wrong operand type!");
766    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
767           "Wrong return type size");
768    break;
769  }
770  case ISD::BUILD_VECTOR: {
771    assert(N->getNumValues() == 1 && "Too many results!");
772    assert(N->getValueType(0).isVector() && "Wrong return type!");
773    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
774           "Wrong number of operands!");
775    MVT EltVT = N->getValueType(0).getVectorElementType();
776    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
777      assert((I->getValueType() == EltVT ||
778             (EltVT.isInteger() && I->getValueType().isInteger() &&
779              EltVT.bitsLE(I->getValueType()))) &&
780            "Wrong operand type!");
781    break;
782  }
783  }
784}
785
786/// getMVTAlignment - Compute the default alignment value for the
787/// given type.
788///
789unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
790  const Type *Ty = VT == MVT::iPTR ?
791                   PointerType::get(Type::Int8Ty, 0) :
792                   VT.getTypeForMVT();
793
794  return TLI.getTargetData()->getABITypeAlignment(Ty);
795}
796
797// EntryNode could meaningfully have debug info if we can find it...
798SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
799  : TLI(tli), FLI(fli), DW(0),
800    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
801    getVTList(MVT::Other)), Root(getEntryNode()) {
802  AllNodes.push_back(&EntryNode);
803}
804
805void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
806                        DwarfWriter *dw) {
807  MF = &mf;
808  MMI = mmi;
809  DW = dw;
810  Context = &mf.getFunction()->getContext();
811}
812
813SelectionDAG::~SelectionDAG() {
814  allnodes_clear();
815}
816
817void SelectionDAG::allnodes_clear() {
818  assert(&*AllNodes.begin() == &EntryNode);
819  AllNodes.remove(AllNodes.begin());
820  while (!AllNodes.empty())
821    DeallocateNode(AllNodes.begin());
822}
823
824void SelectionDAG::clear() {
825  allnodes_clear();
826  OperandAllocator.Reset();
827  CSEMap.clear();
828
829  ExtendedValueTypeNodes.clear();
830  ExternalSymbols.clear();
831  TargetExternalSymbols.clear();
832  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
833            static_cast<CondCodeSDNode*>(0));
834  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
835            static_cast<SDNode*>(0));
836
837  EntryNode.UseList = 0;
838  AllNodes.push_back(&EntryNode);
839  Root = getEntryNode();
840}
841
842SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
843  if (Op.getValueType() == VT) return Op;
844  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
845                                   VT.getSizeInBits());
846  return getNode(ISD::AND, DL, Op.getValueType(), Op,
847                 getConstant(Imm, Op.getValueType()));
848}
849
850/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
851///
852SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
853  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
854  SDValue NegOne =
855    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
856  return getNode(ISD::XOR, DL, VT, Val, NegOne);
857}
858
859SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
860  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
861  assert((EltVT.getSizeInBits() >= 64 ||
862         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
863         "getConstant with a uint64_t value that doesn't fit in the type!");
864  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
865}
866
867SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
868  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
869}
870
871SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
872  assert(VT.isInteger() && "Cannot create FP integer constant!");
873
874  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
875  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
876         "APInt size does not match type size!");
877
878  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
879  FoldingSetNodeID ID;
880  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
881  ID.AddPointer(&Val);
882  void *IP = 0;
883  SDNode *N = NULL;
884  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
885    if (!VT.isVector())
886      return SDValue(N, 0);
887  if (!N) {
888    N = NodeAllocator.Allocate<ConstantSDNode>();
889    new (N) ConstantSDNode(isT, &Val, EltVT);
890    CSEMap.InsertNode(N, IP);
891    AllNodes.push_back(N);
892  }
893
894  SDValue Result(N, 0);
895  if (VT.isVector()) {
896    SmallVector<SDValue, 8> Ops;
897    Ops.assign(VT.getVectorNumElements(), Result);
898    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
899                     VT, &Ops[0], Ops.size());
900  }
901  return Result;
902}
903
904SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
905  return getConstant(Val, TLI.getPointerTy(), isTarget);
906}
907
908
909SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
910  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
911}
912
913SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
914  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
915
916  MVT EltVT =
917    VT.isVector() ? VT.getVectorElementType() : VT;
918
919  // Do the map lookup using the actual bit pattern for the floating point
920  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
921  // we don't have issues with SNANs.
922  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
923  FoldingSetNodeID ID;
924  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
925  ID.AddPointer(&V);
926  void *IP = 0;
927  SDNode *N = NULL;
928  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
929    if (!VT.isVector())
930      return SDValue(N, 0);
931  if (!N) {
932    N = NodeAllocator.Allocate<ConstantFPSDNode>();
933    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
934    CSEMap.InsertNode(N, IP);
935    AllNodes.push_back(N);
936  }
937
938  SDValue Result(N, 0);
939  if (VT.isVector()) {
940    SmallVector<SDValue, 8> Ops;
941    Ops.assign(VT.getVectorNumElements(), Result);
942    // FIXME DebugLoc info might be appropriate here
943    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
944                     VT, &Ops[0], Ops.size());
945  }
946  return Result;
947}
948
949SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
950  MVT EltVT =
951    VT.isVector() ? VT.getVectorElementType() : VT;
952  if (EltVT==MVT::f32)
953    return getConstantFP(APFloat((float)Val), VT, isTarget);
954  else
955    return getConstantFP(APFloat(Val), VT, isTarget);
956}
957
958SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
959                                       MVT VT, int64_t Offset,
960                                       bool isTargetGA,
961                                       unsigned char TargetFlags) {
962  assert((TargetFlags == 0 || isTargetGA) &&
963         "Cannot set target flags on target-independent globals");
964
965  // Truncate (with sign-extension) the offset value to the pointer size.
966  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
967  if (BitWidth < 64)
968    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
969
970  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
971  if (!GVar) {
972    // If GV is an alias then use the aliasee for determining thread-localness.
973    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
974      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
975  }
976
977  unsigned Opc;
978  if (GVar && GVar->isThreadLocal())
979    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
980  else
981    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
982
983  FoldingSetNodeID ID;
984  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
985  ID.AddPointer(GV);
986  ID.AddInteger(Offset);
987  ID.AddInteger(TargetFlags);
988  void *IP = 0;
989  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
990    return SDValue(E, 0);
991  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
992  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
993  CSEMap.InsertNode(N, IP);
994  AllNodes.push_back(N);
995  return SDValue(N, 0);
996}
997
998SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
999  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1000  FoldingSetNodeID ID;
1001  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1002  ID.AddInteger(FI);
1003  void *IP = 0;
1004  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1005    return SDValue(E, 0);
1006  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1007  new (N) FrameIndexSDNode(FI, VT, isTarget);
1008  CSEMap.InsertNode(N, IP);
1009  AllNodes.push_back(N);
1010  return SDValue(N, 0);
1011}
1012
1013SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget,
1014                                   unsigned char TargetFlags) {
1015  assert((TargetFlags == 0 || isTarget) &&
1016         "Cannot set target flags on target-independent jump tables");
1017  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1018  FoldingSetNodeID ID;
1019  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1020  ID.AddInteger(JTI);
1021  ID.AddInteger(TargetFlags);
1022  void *IP = 0;
1023  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1024    return SDValue(E, 0);
1025  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1026  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1027  CSEMap.InsertNode(N, IP);
1028  AllNodes.push_back(N);
1029  return SDValue(N, 0);
1030}
1031
1032SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1033                                      unsigned Alignment, int Offset,
1034                                      bool isTarget,
1035                                      unsigned char TargetFlags) {
1036  assert((TargetFlags == 0 || isTarget) &&
1037         "Cannot set target flags on target-independent globals");
1038  if (Alignment == 0)
1039    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1040  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1041  FoldingSetNodeID ID;
1042  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1043  ID.AddInteger(Alignment);
1044  ID.AddInteger(Offset);
1045  ID.AddPointer(C);
1046  ID.AddInteger(TargetFlags);
1047  void *IP = 0;
1048  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1049    return SDValue(E, 0);
1050  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1051  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1052  CSEMap.InsertNode(N, IP);
1053  AllNodes.push_back(N);
1054  return SDValue(N, 0);
1055}
1056
1057
1058SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1059                                      unsigned Alignment, int Offset,
1060                                      bool isTarget,
1061                                      unsigned char TargetFlags) {
1062  assert((TargetFlags == 0 || isTarget) &&
1063         "Cannot set target flags on target-independent globals");
1064  if (Alignment == 0)
1065    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1066  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1067  FoldingSetNodeID ID;
1068  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1069  ID.AddInteger(Alignment);
1070  ID.AddInteger(Offset);
1071  C->AddSelectionDAGCSEId(ID);
1072  ID.AddInteger(TargetFlags);
1073  void *IP = 0;
1074  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1075    return SDValue(E, 0);
1076  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1077  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1078  CSEMap.InsertNode(N, IP);
1079  AllNodes.push_back(N);
1080  return SDValue(N, 0);
1081}
1082
1083SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1084  FoldingSetNodeID ID;
1085  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1086  ID.AddPointer(MBB);
1087  void *IP = 0;
1088  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1089    return SDValue(E, 0);
1090  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1091  new (N) BasicBlockSDNode(MBB);
1092  CSEMap.InsertNode(N, IP);
1093  AllNodes.push_back(N);
1094  return SDValue(N, 0);
1095}
1096
1097SDValue SelectionDAG::getValueType(MVT VT) {
1098  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1099    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1100
1101  SDNode *&N = VT.isExtended() ?
1102    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1103
1104  if (N) return SDValue(N, 0);
1105  N = NodeAllocator.Allocate<VTSDNode>();
1106  new (N) VTSDNode(VT);
1107  AllNodes.push_back(N);
1108  return SDValue(N, 0);
1109}
1110
1111SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1112  SDNode *&N = ExternalSymbols[Sym];
1113  if (N) return SDValue(N, 0);
1114  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1115  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1116  AllNodes.push_back(N);
1117  return SDValue(N, 0);
1118}
1119
1120SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT,
1121                                              unsigned char TargetFlags) {
1122  SDNode *&N =
1123    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1124                                                               TargetFlags)];
1125  if (N) return SDValue(N, 0);
1126  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1127  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1128  AllNodes.push_back(N);
1129  return SDValue(N, 0);
1130}
1131
1132SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1133  if ((unsigned)Cond >= CondCodeNodes.size())
1134    CondCodeNodes.resize(Cond+1);
1135
1136  if (CondCodeNodes[Cond] == 0) {
1137    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1138    new (N) CondCodeSDNode(Cond);
1139    CondCodeNodes[Cond] = N;
1140    AllNodes.push_back(N);
1141  }
1142  return SDValue(CondCodeNodes[Cond], 0);
1143}
1144
1145// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1146// the shuffle mask M that point at N1 to point at N2, and indices that point
1147// N2 to point at N1.
1148static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1149  std::swap(N1, N2);
1150  int NElts = M.size();
1151  for (int i = 0; i != NElts; ++i) {
1152    if (M[i] >= NElts)
1153      M[i] -= NElts;
1154    else if (M[i] >= 0)
1155      M[i] += NElts;
1156  }
1157}
1158
1159SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
1160                                       SDValue N2, const int *Mask) {
1161  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1162  assert(VT.isVector() && N1.getValueType().isVector() &&
1163         "Vector Shuffle VTs must be a vectors");
1164  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1165         && "Vector Shuffle VTs must have same element type");
1166
1167  // Canonicalize shuffle undef, undef -> undef
1168  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1169    return getUNDEF(VT);
1170
1171  // Validate that all indices in Mask are within the range of the elements
1172  // input to the shuffle.
1173  unsigned NElts = VT.getVectorNumElements();
1174  SmallVector<int, 8> MaskVec;
1175  for (unsigned i = 0; i != NElts; ++i) {
1176    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1177    MaskVec.push_back(Mask[i]);
1178  }
1179
1180  // Canonicalize shuffle v, v -> v, undef
1181  if (N1 == N2) {
1182    N2 = getUNDEF(VT);
1183    for (unsigned i = 0; i != NElts; ++i)
1184      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1185  }
1186
1187  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1188  if (N1.getOpcode() == ISD::UNDEF)
1189    commuteShuffle(N1, N2, MaskVec);
1190
1191  // Canonicalize all index into lhs, -> shuffle lhs, undef
1192  // Canonicalize all index into rhs, -> shuffle rhs, undef
1193  bool AllLHS = true, AllRHS = true;
1194  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1195  for (unsigned i = 0; i != NElts; ++i) {
1196    if (MaskVec[i] >= (int)NElts) {
1197      if (N2Undef)
1198        MaskVec[i] = -1;
1199      else
1200        AllLHS = false;
1201    } else if (MaskVec[i] >= 0) {
1202      AllRHS = false;
1203    }
1204  }
1205  if (AllLHS && AllRHS)
1206    return getUNDEF(VT);
1207  if (AllLHS && !N2Undef)
1208    N2 = getUNDEF(VT);
1209  if (AllRHS) {
1210    N1 = getUNDEF(VT);
1211    commuteShuffle(N1, N2, MaskVec);
1212  }
1213
1214  // If Identity shuffle, or all shuffle in to undef, return that node.
1215  bool AllUndef = true;
1216  bool Identity = true;
1217  for (unsigned i = 0; i != NElts; ++i) {
1218    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1219    if (MaskVec[i] >= 0) AllUndef = false;
1220  }
1221  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1222    return N1;
1223  if (AllUndef)
1224    return getUNDEF(VT);
1225
1226  FoldingSetNodeID ID;
1227  SDValue Ops[2] = { N1, N2 };
1228  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1229  for (unsigned i = 0; i != NElts; ++i)
1230    ID.AddInteger(MaskVec[i]);
1231
1232  void* IP = 0;
1233  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1234    return SDValue(E, 0);
1235
1236  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1237  // SDNode doesn't have access to it.  This memory will be "leaked" when
1238  // the node is deallocated, but recovered when the NodeAllocator is released.
1239  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1240  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1241
1242  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1243  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1244  CSEMap.InsertNode(N, IP);
1245  AllNodes.push_back(N);
1246  return SDValue(N, 0);
1247}
1248
1249SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1250                                       SDValue Val, SDValue DTy,
1251                                       SDValue STy, SDValue Rnd, SDValue Sat,
1252                                       ISD::CvtCode Code) {
1253  // If the src and dest types are the same and the conversion is between
1254  // integer types of the same sign or two floats, no conversion is necessary.
1255  if (DTy == STy &&
1256      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1257    return Val;
1258
1259  FoldingSetNodeID ID;
1260  void* IP = 0;
1261  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1262    return SDValue(E, 0);
1263  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1264  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1265  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1266  CSEMap.InsertNode(N, IP);
1267  AllNodes.push_back(N);
1268  return SDValue(N, 0);
1269}
1270
1271SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1272  FoldingSetNodeID ID;
1273  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1274  ID.AddInteger(RegNo);
1275  void *IP = 0;
1276  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1277    return SDValue(E, 0);
1278  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1279  new (N) RegisterSDNode(RegNo, VT);
1280  CSEMap.InsertNode(N, IP);
1281  AllNodes.push_back(N);
1282  return SDValue(N, 0);
1283}
1284
1285SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1286                                      unsigned Line, unsigned Col,
1287                                      Value *CU) {
1288  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1289  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1290  N->setDebugLoc(DL);
1291  AllNodes.push_back(N);
1292  return SDValue(N, 0);
1293}
1294
1295SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1296                               SDValue Root,
1297                               unsigned LabelID) {
1298  FoldingSetNodeID ID;
1299  SDValue Ops[] = { Root };
1300  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1301  ID.AddInteger(LabelID);
1302  void *IP = 0;
1303  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1304    return SDValue(E, 0);
1305  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1306  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1307  CSEMap.InsertNode(N, IP);
1308  AllNodes.push_back(N);
1309  return SDValue(N, 0);
1310}
1311
1312SDValue SelectionDAG::getSrcValue(const Value *V) {
1313  assert((!V || isa<PointerType>(V->getType())) &&
1314         "SrcValue is not a pointer?");
1315
1316  FoldingSetNodeID ID;
1317  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1318  ID.AddPointer(V);
1319
1320  void *IP = 0;
1321  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1322    return SDValue(E, 0);
1323
1324  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1325  new (N) SrcValueSDNode(V);
1326  CSEMap.InsertNode(N, IP);
1327  AllNodes.push_back(N);
1328  return SDValue(N, 0);
1329}
1330
1331SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1332#ifndef NDEBUG
1333  const Value *v = MO.getValue();
1334  assert((!v || isa<PointerType>(v->getType())) &&
1335         "SrcValue is not a pointer?");
1336#endif
1337
1338  FoldingSetNodeID ID;
1339  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1340  MO.Profile(ID);
1341
1342  void *IP = 0;
1343  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1344    return SDValue(E, 0);
1345
1346  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1347  new (N) MemOperandSDNode(MO);
1348  CSEMap.InsertNode(N, IP);
1349  AllNodes.push_back(N);
1350  return SDValue(N, 0);
1351}
1352
1353/// getShiftAmountOperand - Return the specified value casted to
1354/// the target's desired shift amount type.
1355SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1356  MVT OpTy = Op.getValueType();
1357  MVT ShTy = TLI.getShiftAmountTy();
1358  if (OpTy == ShTy || OpTy.isVector()) return Op;
1359
1360  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1361  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1362}
1363
1364/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1365/// specified value type.
1366SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1367  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1368  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1369  const Type *Ty = VT.getTypeForMVT();
1370  unsigned StackAlign =
1371  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1372
1373  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1374  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1375}
1376
1377/// CreateStackTemporary - Create a stack temporary suitable for holding
1378/// either of the specified value types.
1379SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1380  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1381                            VT2.getStoreSizeInBits())/8;
1382  const Type *Ty1 = VT1.getTypeForMVT();
1383  const Type *Ty2 = VT2.getTypeForMVT();
1384  const TargetData *TD = TLI.getTargetData();
1385  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1386                            TD->getPrefTypeAlignment(Ty2));
1387
1388  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1389  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1390  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1391}
1392
1393SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1394                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1395  // These setcc operations always fold.
1396  switch (Cond) {
1397  default: break;
1398  case ISD::SETFALSE:
1399  case ISD::SETFALSE2: return getConstant(0, VT);
1400  case ISD::SETTRUE:
1401  case ISD::SETTRUE2:  return getConstant(1, VT);
1402
1403  case ISD::SETOEQ:
1404  case ISD::SETOGT:
1405  case ISD::SETOGE:
1406  case ISD::SETOLT:
1407  case ISD::SETOLE:
1408  case ISD::SETONE:
1409  case ISD::SETO:
1410  case ISD::SETUO:
1411  case ISD::SETUEQ:
1412  case ISD::SETUNE:
1413    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1414    break;
1415  }
1416
1417  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1418    const APInt &C2 = N2C->getAPIntValue();
1419    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1420      const APInt &C1 = N1C->getAPIntValue();
1421
1422      switch (Cond) {
1423      default: llvm_unreachable("Unknown integer setcc!");
1424      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1425      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1426      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1427      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1428      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1429      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1430      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1431      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1432      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1433      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1434      }
1435    }
1436  }
1437  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1438    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1439      // No compile time operations on this type yet.
1440      if (N1C->getValueType(0) == MVT::ppcf128)
1441        return SDValue();
1442
1443      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1444      switch (Cond) {
1445      default: break;
1446      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1447                          return getUNDEF(VT);
1448                        // fall through
1449      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1450      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1451                          return getUNDEF(VT);
1452                        // fall through
1453      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1454                                           R==APFloat::cmpLessThan, VT);
1455      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1456                          return getUNDEF(VT);
1457                        // fall through
1458      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1459      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1460                          return getUNDEF(VT);
1461                        // fall through
1462      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1463      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1464                          return getUNDEF(VT);
1465                        // fall through
1466      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1467                                           R==APFloat::cmpEqual, VT);
1468      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1469                          return getUNDEF(VT);
1470                        // fall through
1471      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1472                                           R==APFloat::cmpEqual, VT);
1473      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1474      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1475      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1476                                           R==APFloat::cmpEqual, VT);
1477      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1478      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1479                                           R==APFloat::cmpLessThan, VT);
1480      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1481                                           R==APFloat::cmpUnordered, VT);
1482      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1483      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1484      }
1485    } else {
1486      // Ensure that the constant occurs on the RHS.
1487      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1488    }
1489  }
1490
1491  // Could not fold it.
1492  return SDValue();
1493}
1494
1495/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1496/// use this predicate to simplify operations downstream.
1497bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1498  // This predicate is not safe for vector operations.
1499  if (Op.getValueType().isVector())
1500    return false;
1501
1502  unsigned BitWidth = Op.getValueSizeInBits();
1503  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1504}
1505
1506/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1507/// this predicate to simplify operations downstream.  Mask is known to be zero
1508/// for bits that V cannot have.
1509bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1510                                     unsigned Depth) const {
1511  APInt KnownZero, KnownOne;
1512  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1513  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1514  return (KnownZero & Mask) == Mask;
1515}
1516
1517/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1518/// known to be either zero or one and return them in the KnownZero/KnownOne
1519/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1520/// processing.
1521void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1522                                     APInt &KnownZero, APInt &KnownOne,
1523                                     unsigned Depth) const {
1524  unsigned BitWidth = Mask.getBitWidth();
1525  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1526         "Mask size mismatches value type size!");
1527
1528  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1529  if (Depth == 6 || Mask == 0)
1530    return;  // Limit search depth.
1531
1532  APInt KnownZero2, KnownOne2;
1533
1534  switch (Op.getOpcode()) {
1535  case ISD::Constant:
1536    // We know all of the bits for a constant!
1537    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1538    KnownZero = ~KnownOne & Mask;
1539    return;
1540  case ISD::AND:
1541    // If either the LHS or the RHS are Zero, the result is zero.
1542    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1543    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1544                      KnownZero2, KnownOne2, Depth+1);
1545    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1546    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1547
1548    // Output known-1 bits are only known if set in both the LHS & RHS.
1549    KnownOne &= KnownOne2;
1550    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1551    KnownZero |= KnownZero2;
1552    return;
1553  case ISD::OR:
1554    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1555    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1556                      KnownZero2, KnownOne2, Depth+1);
1557    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1558    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1559
1560    // Output known-0 bits are only known if clear in both the LHS & RHS.
1561    KnownZero &= KnownZero2;
1562    // Output known-1 are known to be set if set in either the LHS | RHS.
1563    KnownOne |= KnownOne2;
1564    return;
1565  case ISD::XOR: {
1566    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1567    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1568    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1569    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1570
1571    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1572    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1573    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1574    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1575    KnownZero = KnownZeroOut;
1576    return;
1577  }
1578  case ISD::MUL: {
1579    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1580    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1581    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1582    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1583    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1584
1585    // If low bits are zero in either operand, output low known-0 bits.
1586    // Also compute a conserative estimate for high known-0 bits.
1587    // More trickiness is possible, but this is sufficient for the
1588    // interesting case of alignment computation.
1589    KnownOne.clear();
1590    unsigned TrailZ = KnownZero.countTrailingOnes() +
1591                      KnownZero2.countTrailingOnes();
1592    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1593                               KnownZero2.countLeadingOnes(),
1594                               BitWidth) - BitWidth;
1595
1596    TrailZ = std::min(TrailZ, BitWidth);
1597    LeadZ = std::min(LeadZ, BitWidth);
1598    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1599                APInt::getHighBitsSet(BitWidth, LeadZ);
1600    KnownZero &= Mask;
1601    return;
1602  }
1603  case ISD::UDIV: {
1604    // For the purposes of computing leading zeros we can conservatively
1605    // treat a udiv as a logical right shift by the power of 2 known to
1606    // be less than the denominator.
1607    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1608    ComputeMaskedBits(Op.getOperand(0),
1609                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1610    unsigned LeadZ = KnownZero2.countLeadingOnes();
1611
1612    KnownOne2.clear();
1613    KnownZero2.clear();
1614    ComputeMaskedBits(Op.getOperand(1),
1615                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1616    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1617    if (RHSUnknownLeadingOnes != BitWidth)
1618      LeadZ = std::min(BitWidth,
1619                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1620
1621    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1622    return;
1623  }
1624  case ISD::SELECT:
1625    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1626    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1627    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1628    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1629
1630    // Only known if known in both the LHS and RHS.
1631    KnownOne &= KnownOne2;
1632    KnownZero &= KnownZero2;
1633    return;
1634  case ISD::SELECT_CC:
1635    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1636    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1637    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1638    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1639
1640    // Only known if known in both the LHS and RHS.
1641    KnownOne &= KnownOne2;
1642    KnownZero &= KnownZero2;
1643    return;
1644  case ISD::SADDO:
1645  case ISD::UADDO:
1646  case ISD::SSUBO:
1647  case ISD::USUBO:
1648  case ISD::SMULO:
1649  case ISD::UMULO:
1650    if (Op.getResNo() != 1)
1651      return;
1652    // The boolean result conforms to getBooleanContents.  Fall through.
1653  case ISD::SETCC:
1654    // If we know the result of a setcc has the top bits zero, use this info.
1655    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1656        BitWidth > 1)
1657      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1658    return;
1659  case ISD::SHL:
1660    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1661    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1662      unsigned ShAmt = SA->getZExtValue();
1663
1664      // If the shift count is an invalid immediate, don't do anything.
1665      if (ShAmt >= BitWidth)
1666        return;
1667
1668      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1669                        KnownZero, KnownOne, Depth+1);
1670      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1671      KnownZero <<= ShAmt;
1672      KnownOne  <<= ShAmt;
1673      // low bits known zero.
1674      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1675    }
1676    return;
1677  case ISD::SRL:
1678    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1679    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1680      unsigned ShAmt = SA->getZExtValue();
1681
1682      // If the shift count is an invalid immediate, don't do anything.
1683      if (ShAmt >= BitWidth)
1684        return;
1685
1686      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1687                        KnownZero, KnownOne, Depth+1);
1688      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1689      KnownZero = KnownZero.lshr(ShAmt);
1690      KnownOne  = KnownOne.lshr(ShAmt);
1691
1692      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1693      KnownZero |= HighBits;  // High bits known zero.
1694    }
1695    return;
1696  case ISD::SRA:
1697    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1698      unsigned ShAmt = SA->getZExtValue();
1699
1700      // If the shift count is an invalid immediate, don't do anything.
1701      if (ShAmt >= BitWidth)
1702        return;
1703
1704      APInt InDemandedMask = (Mask << ShAmt);
1705      // If any of the demanded bits are produced by the sign extension, we also
1706      // demand the input sign bit.
1707      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1708      if (HighBits.getBoolValue())
1709        InDemandedMask |= APInt::getSignBit(BitWidth);
1710
1711      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1712                        Depth+1);
1713      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1714      KnownZero = KnownZero.lshr(ShAmt);
1715      KnownOne  = KnownOne.lshr(ShAmt);
1716
1717      // Handle the sign bits.
1718      APInt SignBit = APInt::getSignBit(BitWidth);
1719      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1720
1721      if (KnownZero.intersects(SignBit)) {
1722        KnownZero |= HighBits;  // New bits are known zero.
1723      } else if (KnownOne.intersects(SignBit)) {
1724        KnownOne  |= HighBits;  // New bits are known one.
1725      }
1726    }
1727    return;
1728  case ISD::SIGN_EXTEND_INREG: {
1729    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1730    unsigned EBits = EVT.getSizeInBits();
1731
1732    // Sign extension.  Compute the demanded bits in the result that are not
1733    // present in the input.
1734    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1735
1736    APInt InSignBit = APInt::getSignBit(EBits);
1737    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1738
1739    // If the sign extended bits are demanded, we know that the sign
1740    // bit is demanded.
1741    InSignBit.zext(BitWidth);
1742    if (NewBits.getBoolValue())
1743      InputDemandedBits |= InSignBit;
1744
1745    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1746                      KnownZero, KnownOne, Depth+1);
1747    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1748
1749    // If the sign bit of the input is known set or clear, then we know the
1750    // top bits of the result.
1751    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1752      KnownZero |= NewBits;
1753      KnownOne  &= ~NewBits;
1754    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1755      KnownOne  |= NewBits;
1756      KnownZero &= ~NewBits;
1757    } else {                              // Input sign bit unknown
1758      KnownZero &= ~NewBits;
1759      KnownOne  &= ~NewBits;
1760    }
1761    return;
1762  }
1763  case ISD::CTTZ:
1764  case ISD::CTLZ:
1765  case ISD::CTPOP: {
1766    unsigned LowBits = Log2_32(BitWidth)+1;
1767    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1768    KnownOne.clear();
1769    return;
1770  }
1771  case ISD::LOAD: {
1772    if (ISD::isZEXTLoad(Op.getNode())) {
1773      LoadSDNode *LD = cast<LoadSDNode>(Op);
1774      MVT VT = LD->getMemoryVT();
1775      unsigned MemBits = VT.getSizeInBits();
1776      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1777    }
1778    return;
1779  }
1780  case ISD::ZERO_EXTEND: {
1781    MVT InVT = Op.getOperand(0).getValueType();
1782    unsigned InBits = InVT.getSizeInBits();
1783    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1784    APInt InMask    = Mask;
1785    InMask.trunc(InBits);
1786    KnownZero.trunc(InBits);
1787    KnownOne.trunc(InBits);
1788    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1789    KnownZero.zext(BitWidth);
1790    KnownOne.zext(BitWidth);
1791    KnownZero |= NewBits;
1792    return;
1793  }
1794  case ISD::SIGN_EXTEND: {
1795    MVT InVT = Op.getOperand(0).getValueType();
1796    unsigned InBits = InVT.getSizeInBits();
1797    APInt InSignBit = APInt::getSignBit(InBits);
1798    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1799    APInt InMask = Mask;
1800    InMask.trunc(InBits);
1801
1802    // If any of the sign extended bits are demanded, we know that the sign
1803    // bit is demanded. Temporarily set this bit in the mask for our callee.
1804    if (NewBits.getBoolValue())
1805      InMask |= InSignBit;
1806
1807    KnownZero.trunc(InBits);
1808    KnownOne.trunc(InBits);
1809    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1810
1811    // Note if the sign bit is known to be zero or one.
1812    bool SignBitKnownZero = KnownZero.isNegative();
1813    bool SignBitKnownOne  = KnownOne.isNegative();
1814    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1815           "Sign bit can't be known to be both zero and one!");
1816
1817    // If the sign bit wasn't actually demanded by our caller, we don't
1818    // want it set in the KnownZero and KnownOne result values. Reset the
1819    // mask and reapply it to the result values.
1820    InMask = Mask;
1821    InMask.trunc(InBits);
1822    KnownZero &= InMask;
1823    KnownOne  &= InMask;
1824
1825    KnownZero.zext(BitWidth);
1826    KnownOne.zext(BitWidth);
1827
1828    // If the sign bit is known zero or one, the top bits match.
1829    if (SignBitKnownZero)
1830      KnownZero |= NewBits;
1831    else if (SignBitKnownOne)
1832      KnownOne  |= NewBits;
1833    return;
1834  }
1835  case ISD::ANY_EXTEND: {
1836    MVT InVT = Op.getOperand(0).getValueType();
1837    unsigned InBits = InVT.getSizeInBits();
1838    APInt InMask = Mask;
1839    InMask.trunc(InBits);
1840    KnownZero.trunc(InBits);
1841    KnownOne.trunc(InBits);
1842    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1843    KnownZero.zext(BitWidth);
1844    KnownOne.zext(BitWidth);
1845    return;
1846  }
1847  case ISD::TRUNCATE: {
1848    MVT InVT = Op.getOperand(0).getValueType();
1849    unsigned InBits = InVT.getSizeInBits();
1850    APInt InMask = Mask;
1851    InMask.zext(InBits);
1852    KnownZero.zext(InBits);
1853    KnownOne.zext(InBits);
1854    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1855    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1856    KnownZero.trunc(BitWidth);
1857    KnownOne.trunc(BitWidth);
1858    break;
1859  }
1860  case ISD::AssertZext: {
1861    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1862    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1863    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1864                      KnownOne, Depth+1);
1865    KnownZero |= (~InMask) & Mask;
1866    return;
1867  }
1868  case ISD::FGETSIGN:
1869    // All bits are zero except the low bit.
1870    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1871    return;
1872
1873  case ISD::SUB: {
1874    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1875      // We know that the top bits of C-X are clear if X contains less bits
1876      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1877      // positive if we can prove that X is >= 0 and < 16.
1878      if (CLHS->getAPIntValue().isNonNegative()) {
1879        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1880        // NLZ can't be BitWidth with no sign bit
1881        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1882        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1883                          Depth+1);
1884
1885        // If all of the MaskV bits are known to be zero, then we know the
1886        // output top bits are zero, because we now know that the output is
1887        // from [0-C].
1888        if ((KnownZero2 & MaskV) == MaskV) {
1889          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1890          // Top bits known zero.
1891          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1892        }
1893      }
1894    }
1895  }
1896  // fall through
1897  case ISD::ADD: {
1898    // Output known-0 bits are known if clear or set in both the low clear bits
1899    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1900    // low 3 bits clear.
1901    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1902    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1903    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1904    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1905
1906    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1907    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1908    KnownZeroOut = std::min(KnownZeroOut,
1909                            KnownZero2.countTrailingOnes());
1910
1911    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1912    return;
1913  }
1914  case ISD::SREM:
1915    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1916      const APInt &RA = Rem->getAPIntValue();
1917      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1918        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1919        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1920        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1921
1922        // If the sign bit of the first operand is zero, the sign bit of
1923        // the result is zero. If the first operand has no one bits below
1924        // the second operand's single 1 bit, its sign will be zero.
1925        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1926          KnownZero2 |= ~LowBits;
1927
1928        KnownZero |= KnownZero2 & Mask;
1929
1930        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1931      }
1932    }
1933    return;
1934  case ISD::UREM: {
1935    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1936      const APInt &RA = Rem->getAPIntValue();
1937      if (RA.isPowerOf2()) {
1938        APInt LowBits = (RA - 1);
1939        APInt Mask2 = LowBits & Mask;
1940        KnownZero |= ~LowBits & Mask;
1941        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1942        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1943        break;
1944      }
1945    }
1946
1947    // Since the result is less than or equal to either operand, any leading
1948    // zero bits in either operand must also exist in the result.
1949    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1950    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1951                      Depth+1);
1952    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1953                      Depth+1);
1954
1955    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1956                                KnownZero2.countLeadingOnes());
1957    KnownOne.clear();
1958    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1959    return;
1960  }
1961  default:
1962    // Allow the target to implement this method for its nodes.
1963    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1964  case ISD::INTRINSIC_WO_CHAIN:
1965  case ISD::INTRINSIC_W_CHAIN:
1966  case ISD::INTRINSIC_VOID:
1967      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1968                                         Depth);
1969    }
1970    return;
1971  }
1972}
1973
1974/// ComputeNumSignBits - Return the number of times the sign bit of the
1975/// register is replicated into the other bits.  We know that at least 1 bit
1976/// is always equal to the sign bit (itself), but other cases can give us
1977/// information.  For example, immediately after an "SRA X, 2", we know that
1978/// the top 3 bits are all equal to each other, so we return 3.
1979unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1980  MVT VT = Op.getValueType();
1981  assert(VT.isInteger() && "Invalid VT!");
1982  unsigned VTBits = VT.getSizeInBits();
1983  unsigned Tmp, Tmp2;
1984  unsigned FirstAnswer = 1;
1985
1986  if (Depth == 6)
1987    return 1;  // Limit search depth.
1988
1989  switch (Op.getOpcode()) {
1990  default: break;
1991  case ISD::AssertSext:
1992    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1993    return VTBits-Tmp+1;
1994  case ISD::AssertZext:
1995    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1996    return VTBits-Tmp;
1997
1998  case ISD::Constant: {
1999    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2000    // If negative, return # leading ones.
2001    if (Val.isNegative())
2002      return Val.countLeadingOnes();
2003
2004    // Return # leading zeros.
2005    return Val.countLeadingZeros();
2006  }
2007
2008  case ISD::SIGN_EXTEND:
2009    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
2010    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2011
2012  case ISD::SIGN_EXTEND_INREG:
2013    // Max of the input and what this extends.
2014    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2015    Tmp = VTBits-Tmp+1;
2016
2017    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2018    return std::max(Tmp, Tmp2);
2019
2020  case ISD::SRA:
2021    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2022    // SRA X, C   -> adds C sign bits.
2023    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2024      Tmp += C->getZExtValue();
2025      if (Tmp > VTBits) Tmp = VTBits;
2026    }
2027    return Tmp;
2028  case ISD::SHL:
2029    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2030      // shl destroys sign bits.
2031      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2032      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2033          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2034      return Tmp - C->getZExtValue();
2035    }
2036    break;
2037  case ISD::AND:
2038  case ISD::OR:
2039  case ISD::XOR:    // NOT is handled here.
2040    // Logical binary ops preserve the number of sign bits at the worst.
2041    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2042    if (Tmp != 1) {
2043      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2044      FirstAnswer = std::min(Tmp, Tmp2);
2045      // We computed what we know about the sign bits as our first
2046      // answer. Now proceed to the generic code that uses
2047      // ComputeMaskedBits, and pick whichever answer is better.
2048    }
2049    break;
2050
2051  case ISD::SELECT:
2052    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2053    if (Tmp == 1) return 1;  // Early out.
2054    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2055    return std::min(Tmp, Tmp2);
2056
2057  case ISD::SADDO:
2058  case ISD::UADDO:
2059  case ISD::SSUBO:
2060  case ISD::USUBO:
2061  case ISD::SMULO:
2062  case ISD::UMULO:
2063    if (Op.getResNo() != 1)
2064      break;
2065    // The boolean result conforms to getBooleanContents.  Fall through.
2066  case ISD::SETCC:
2067    // If setcc returns 0/-1, all bits are sign bits.
2068    if (TLI.getBooleanContents() ==
2069        TargetLowering::ZeroOrNegativeOneBooleanContent)
2070      return VTBits;
2071    break;
2072  case ISD::ROTL:
2073  case ISD::ROTR:
2074    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2075      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2076
2077      // Handle rotate right by N like a rotate left by 32-N.
2078      if (Op.getOpcode() == ISD::ROTR)
2079        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2080
2081      // If we aren't rotating out all of the known-in sign bits, return the
2082      // number that are left.  This handles rotl(sext(x), 1) for example.
2083      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2084      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2085    }
2086    break;
2087  case ISD::ADD:
2088    // Add can have at most one carry bit.  Thus we know that the output
2089    // is, at worst, one more bit than the inputs.
2090    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2091    if (Tmp == 1) return 1;  // Early out.
2092
2093    // Special case decrementing a value (ADD X, -1):
2094    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2095      if (CRHS->isAllOnesValue()) {
2096        APInt KnownZero, KnownOne;
2097        APInt Mask = APInt::getAllOnesValue(VTBits);
2098        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2099
2100        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2101        // sign bits set.
2102        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2103          return VTBits;
2104
2105        // If we are subtracting one from a positive number, there is no carry
2106        // out of the result.
2107        if (KnownZero.isNegative())
2108          return Tmp;
2109      }
2110
2111    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2112    if (Tmp2 == 1) return 1;
2113      return std::min(Tmp, Tmp2)-1;
2114    break;
2115
2116  case ISD::SUB:
2117    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2118    if (Tmp2 == 1) return 1;
2119
2120    // Handle NEG.
2121    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2122      if (CLHS->isNullValue()) {
2123        APInt KnownZero, KnownOne;
2124        APInt Mask = APInt::getAllOnesValue(VTBits);
2125        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2126        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2127        // sign bits set.
2128        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2129          return VTBits;
2130
2131        // If the input is known to be positive (the sign bit is known clear),
2132        // the output of the NEG has the same number of sign bits as the input.
2133        if (KnownZero.isNegative())
2134          return Tmp2;
2135
2136        // Otherwise, we treat this like a SUB.
2137      }
2138
2139    // Sub can have at most one carry bit.  Thus we know that the output
2140    // is, at worst, one more bit than the inputs.
2141    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2142    if (Tmp == 1) return 1;  // Early out.
2143      return std::min(Tmp, Tmp2)-1;
2144    break;
2145  case ISD::TRUNCATE:
2146    // FIXME: it's tricky to do anything useful for this, but it is an important
2147    // case for targets like X86.
2148    break;
2149  }
2150
2151  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2152  if (Op.getOpcode() == ISD::LOAD) {
2153    LoadSDNode *LD = cast<LoadSDNode>(Op);
2154    unsigned ExtType = LD->getExtensionType();
2155    switch (ExtType) {
2156    default: break;
2157    case ISD::SEXTLOAD:    // '17' bits known
2158      Tmp = LD->getMemoryVT().getSizeInBits();
2159      return VTBits-Tmp+1;
2160    case ISD::ZEXTLOAD:    // '16' bits known
2161      Tmp = LD->getMemoryVT().getSizeInBits();
2162      return VTBits-Tmp;
2163    }
2164  }
2165
2166  // Allow the target to implement this method for its nodes.
2167  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2168      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2169      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2170      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2171    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2172    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2173  }
2174
2175  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2176  // use this information.
2177  APInt KnownZero, KnownOne;
2178  APInt Mask = APInt::getAllOnesValue(VTBits);
2179  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2180
2181  if (KnownZero.isNegative()) {        // sign bit is 0
2182    Mask = KnownZero;
2183  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2184    Mask = KnownOne;
2185  } else {
2186    // Nothing known.
2187    return FirstAnswer;
2188  }
2189
2190  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2191  // the number of identical bits in the top of the input value.
2192  Mask = ~Mask;
2193  Mask <<= Mask.getBitWidth()-VTBits;
2194  // Return # leading zeros.  We use 'min' here in case Val was zero before
2195  // shifting.  We don't want to return '64' as for an i32 "0".
2196  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2197}
2198
2199
2200bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2201  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2202  if (!GA) return false;
2203  if (GA->getOffset() != 0) return false;
2204  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2205  if (!GV) return false;
2206  MachineModuleInfo *MMI = getMachineModuleInfo();
2207  return MMI && MMI->hasDebugInfo();
2208}
2209
2210
2211/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2212/// element of the result of the vector shuffle.
2213SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2214                                          unsigned i) {
2215  MVT VT = N->getValueType(0);
2216  DebugLoc dl = N->getDebugLoc();
2217  if (N->getMaskElt(i) < 0)
2218    return getUNDEF(VT.getVectorElementType());
2219  unsigned Index = N->getMaskElt(i);
2220  unsigned NumElems = VT.getVectorNumElements();
2221  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2222  Index %= NumElems;
2223
2224  if (V.getOpcode() == ISD::BIT_CONVERT) {
2225    V = V.getOperand(0);
2226    MVT VVT = V.getValueType();
2227    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2228      return SDValue();
2229  }
2230  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2231    return (Index == 0) ? V.getOperand(0)
2232                      : getUNDEF(VT.getVectorElementType());
2233  if (V.getOpcode() == ISD::BUILD_VECTOR)
2234    return V.getOperand(Index);
2235  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2236    return getShuffleScalarElt(SVN, Index);
2237  return SDValue();
2238}
2239
2240
2241/// getNode - Gets or creates the specified node.
2242///
2243SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2244  FoldingSetNodeID ID;
2245  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2246  void *IP = 0;
2247  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2248    return SDValue(E, 0);
2249  SDNode *N = NodeAllocator.Allocate<SDNode>();
2250  new (N) SDNode(Opcode, DL, getVTList(VT));
2251  CSEMap.InsertNode(N, IP);
2252
2253  AllNodes.push_back(N);
2254#ifndef NDEBUG
2255  VerifyNode(N);
2256#endif
2257  return SDValue(N, 0);
2258}
2259
2260SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2261                              MVT VT, SDValue Operand) {
2262  // Constant fold unary operations with an integer constant operand.
2263  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2264    const APInt &Val = C->getAPIntValue();
2265    unsigned BitWidth = VT.getSizeInBits();
2266    switch (Opcode) {
2267    default: break;
2268    case ISD::SIGN_EXTEND:
2269      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2270    case ISD::ANY_EXTEND:
2271    case ISD::ZERO_EXTEND:
2272    case ISD::TRUNCATE:
2273      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2274    case ISD::UINT_TO_FP:
2275    case ISD::SINT_TO_FP: {
2276      const uint64_t zero[] = {0, 0};
2277      // No compile time operations on this type.
2278      if (VT==MVT::ppcf128)
2279        break;
2280      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2281      (void)apf.convertFromAPInt(Val,
2282                                 Opcode==ISD::SINT_TO_FP,
2283                                 APFloat::rmNearestTiesToEven);
2284      return getConstantFP(apf, VT);
2285    }
2286    case ISD::BIT_CONVERT:
2287      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2288        return getConstantFP(Val.bitsToFloat(), VT);
2289      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2290        return getConstantFP(Val.bitsToDouble(), VT);
2291      break;
2292    case ISD::BSWAP:
2293      return getConstant(Val.byteSwap(), VT);
2294    case ISD::CTPOP:
2295      return getConstant(Val.countPopulation(), VT);
2296    case ISD::CTLZ:
2297      return getConstant(Val.countLeadingZeros(), VT);
2298    case ISD::CTTZ:
2299      return getConstant(Val.countTrailingZeros(), VT);
2300    }
2301  }
2302
2303  // Constant fold unary operations with a floating point constant operand.
2304  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2305    APFloat V = C->getValueAPF();    // make copy
2306    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2307      switch (Opcode) {
2308      case ISD::FNEG:
2309        V.changeSign();
2310        return getConstantFP(V, VT);
2311      case ISD::FABS:
2312        V.clearSign();
2313        return getConstantFP(V, VT);
2314      case ISD::FP_ROUND:
2315      case ISD::FP_EXTEND: {
2316        bool ignored;
2317        // This can return overflow, underflow, or inexact; we don't care.
2318        // FIXME need to be more flexible about rounding mode.
2319        (void)V.convert(*MVTToAPFloatSemantics(VT),
2320                        APFloat::rmNearestTiesToEven, &ignored);
2321        return getConstantFP(V, VT);
2322      }
2323      case ISD::FP_TO_SINT:
2324      case ISD::FP_TO_UINT: {
2325        integerPart x[2];
2326        bool ignored;
2327        assert(integerPartWidth >= 64);
2328        // FIXME need to be more flexible about rounding mode.
2329        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2330                              Opcode==ISD::FP_TO_SINT,
2331                              APFloat::rmTowardZero, &ignored);
2332        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2333          break;
2334        APInt api(VT.getSizeInBits(), 2, x);
2335        return getConstant(api, VT);
2336      }
2337      case ISD::BIT_CONVERT:
2338        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2339          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2340        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2341          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2342        break;
2343      }
2344    }
2345  }
2346
2347  unsigned OpOpcode = Operand.getNode()->getOpcode();
2348  switch (Opcode) {
2349  case ISD::TokenFactor:
2350  case ISD::MERGE_VALUES:
2351  case ISD::CONCAT_VECTORS:
2352    return Operand;         // Factor, merge or concat of one node?  No need.
2353  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2354  case ISD::FP_EXTEND:
2355    assert(VT.isFloatingPoint() &&
2356           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2357    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2358    if (Operand.getOpcode() == ISD::UNDEF)
2359      return getUNDEF(VT);
2360    break;
2361  case ISD::SIGN_EXTEND:
2362    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2363           "Invalid SIGN_EXTEND!");
2364    if (Operand.getValueType() == VT) return Operand;   // noop extension
2365    assert(Operand.getValueType().bitsLT(VT)
2366           && "Invalid sext node, dst < src!");
2367    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2368      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2369    break;
2370  case ISD::ZERO_EXTEND:
2371    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2372           "Invalid ZERO_EXTEND!");
2373    if (Operand.getValueType() == VT) return Operand;   // noop extension
2374    assert(Operand.getValueType().bitsLT(VT)
2375           && "Invalid zext node, dst < src!");
2376    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2377      return getNode(ISD::ZERO_EXTEND, DL, VT,
2378                     Operand.getNode()->getOperand(0));
2379    break;
2380  case ISD::ANY_EXTEND:
2381    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2382           "Invalid ANY_EXTEND!");
2383    if (Operand.getValueType() == VT) return Operand;   // noop extension
2384    assert(Operand.getValueType().bitsLT(VT)
2385           && "Invalid anyext node, dst < src!");
2386    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2387      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2388      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2389    break;
2390  case ISD::TRUNCATE:
2391    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2392           "Invalid TRUNCATE!");
2393    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2394    assert(Operand.getValueType().bitsGT(VT)
2395           && "Invalid truncate node, src < dst!");
2396    if (OpOpcode == ISD::TRUNCATE)
2397      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2398    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2399             OpOpcode == ISD::ANY_EXTEND) {
2400      // If the source is smaller than the dest, we still need an extend.
2401      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2402        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2403      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2404        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2405      else
2406        return Operand.getNode()->getOperand(0);
2407    }
2408    break;
2409  case ISD::BIT_CONVERT:
2410    // Basic sanity checking.
2411    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2412           && "Cannot BIT_CONVERT between types of different sizes!");
2413    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2414    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2415      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2416    if (OpOpcode == ISD::UNDEF)
2417      return getUNDEF(VT);
2418    break;
2419  case ISD::SCALAR_TO_VECTOR:
2420    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2421           (VT.getVectorElementType() == Operand.getValueType() ||
2422            (VT.getVectorElementType().isInteger() &&
2423             Operand.getValueType().isInteger() &&
2424             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2425           "Illegal SCALAR_TO_VECTOR node!");
2426    if (OpOpcode == ISD::UNDEF)
2427      return getUNDEF(VT);
2428    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2429    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2430        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2431        Operand.getConstantOperandVal(1) == 0 &&
2432        Operand.getOperand(0).getValueType() == VT)
2433      return Operand.getOperand(0);
2434    break;
2435  case ISD::FNEG:
2436    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2437    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2438      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2439                     Operand.getNode()->getOperand(0));
2440    if (OpOpcode == ISD::FNEG)  // --X -> X
2441      return Operand.getNode()->getOperand(0);
2442    break;
2443  case ISD::FABS:
2444    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2445      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2446    break;
2447  }
2448
2449  SDNode *N;
2450  SDVTList VTs = getVTList(VT);
2451  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2452    FoldingSetNodeID ID;
2453    SDValue Ops[1] = { Operand };
2454    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2455    void *IP = 0;
2456    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2457      return SDValue(E, 0);
2458    N = NodeAllocator.Allocate<UnarySDNode>();
2459    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2460    CSEMap.InsertNode(N, IP);
2461  } else {
2462    N = NodeAllocator.Allocate<UnarySDNode>();
2463    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2464  }
2465
2466  AllNodes.push_back(N);
2467#ifndef NDEBUG
2468  VerifyNode(N);
2469#endif
2470  return SDValue(N, 0);
2471}
2472
2473SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2474                                             MVT VT,
2475                                             ConstantSDNode *Cst1,
2476                                             ConstantSDNode *Cst2) {
2477  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2478
2479  switch (Opcode) {
2480  case ISD::ADD:  return getConstant(C1 + C2, VT);
2481  case ISD::SUB:  return getConstant(C1 - C2, VT);
2482  case ISD::MUL:  return getConstant(C1 * C2, VT);
2483  case ISD::UDIV:
2484    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2485    break;
2486  case ISD::UREM:
2487    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2488    break;
2489  case ISD::SDIV:
2490    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2491    break;
2492  case ISD::SREM:
2493    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2494    break;
2495  case ISD::AND:  return getConstant(C1 & C2, VT);
2496  case ISD::OR:   return getConstant(C1 | C2, VT);
2497  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2498  case ISD::SHL:  return getConstant(C1 << C2, VT);
2499  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2500  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2501  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2502  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2503  default: break;
2504  }
2505
2506  return SDValue();
2507}
2508
2509SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2510                              SDValue N1, SDValue N2) {
2511  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2512  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2513  switch (Opcode) {
2514  default: break;
2515  case ISD::TokenFactor:
2516    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2517           N2.getValueType() == MVT::Other && "Invalid token factor!");
2518    // Fold trivial token factors.
2519    if (N1.getOpcode() == ISD::EntryToken) return N2;
2520    if (N2.getOpcode() == ISD::EntryToken) return N1;
2521    if (N1 == N2) return N1;
2522    break;
2523  case ISD::CONCAT_VECTORS:
2524    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2525    // one big BUILD_VECTOR.
2526    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2527        N2.getOpcode() == ISD::BUILD_VECTOR) {
2528      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2529      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2530      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2531    }
2532    break;
2533  case ISD::AND:
2534    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2535           N1.getValueType() == VT && "Binary operator types must match!");
2536    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2537    // worth handling here.
2538    if (N2C && N2C->isNullValue())
2539      return N2;
2540    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2541      return N1;
2542    break;
2543  case ISD::OR:
2544  case ISD::XOR:
2545  case ISD::ADD:
2546  case ISD::SUB:
2547    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2548           N1.getValueType() == VT && "Binary operator types must match!");
2549    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2550    // it's worth handling here.
2551    if (N2C && N2C->isNullValue())
2552      return N1;
2553    break;
2554  case ISD::UDIV:
2555  case ISD::UREM:
2556  case ISD::MULHU:
2557  case ISD::MULHS:
2558  case ISD::MUL:
2559  case ISD::SDIV:
2560  case ISD::SREM:
2561    assert(VT.isInteger() && "This operator does not apply to FP types!");
2562    // fall through
2563  case ISD::FADD:
2564  case ISD::FSUB:
2565  case ISD::FMUL:
2566  case ISD::FDIV:
2567  case ISD::FREM:
2568    if (UnsafeFPMath) {
2569      if (Opcode == ISD::FADD) {
2570        // 0+x --> x
2571        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2572          if (CFP->getValueAPF().isZero())
2573            return N2;
2574        // x+0 --> x
2575        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2576          if (CFP->getValueAPF().isZero())
2577            return N1;
2578      } else if (Opcode == ISD::FSUB) {
2579        // x-0 --> x
2580        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2581          if (CFP->getValueAPF().isZero())
2582            return N1;
2583      }
2584    }
2585    assert(N1.getValueType() == N2.getValueType() &&
2586           N1.getValueType() == VT && "Binary operator types must match!");
2587    break;
2588  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2589    assert(N1.getValueType() == VT &&
2590           N1.getValueType().isFloatingPoint() &&
2591           N2.getValueType().isFloatingPoint() &&
2592           "Invalid FCOPYSIGN!");
2593    break;
2594  case ISD::SHL:
2595  case ISD::SRA:
2596  case ISD::SRL:
2597  case ISD::ROTL:
2598  case ISD::ROTR:
2599    assert(VT == N1.getValueType() &&
2600           "Shift operators return type must be the same as their first arg");
2601    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2602           "Shifts only work on integers");
2603
2604    // Always fold shifts of i1 values so the code generator doesn't need to
2605    // handle them.  Since we know the size of the shift has to be less than the
2606    // size of the value, the shift/rotate count is guaranteed to be zero.
2607    if (VT == MVT::i1)
2608      return N1;
2609    break;
2610  case ISD::FP_ROUND_INREG: {
2611    MVT EVT = cast<VTSDNode>(N2)->getVT();
2612    assert(VT == N1.getValueType() && "Not an inreg round!");
2613    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2614           "Cannot FP_ROUND_INREG integer types");
2615    assert(EVT.bitsLE(VT) && "Not rounding down!");
2616    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2617    break;
2618  }
2619  case ISD::FP_ROUND:
2620    assert(VT.isFloatingPoint() &&
2621           N1.getValueType().isFloatingPoint() &&
2622           VT.bitsLE(N1.getValueType()) &&
2623           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2624    if (N1.getValueType() == VT) return N1;  // noop conversion.
2625    break;
2626  case ISD::AssertSext:
2627  case ISD::AssertZext: {
2628    MVT EVT = cast<VTSDNode>(N2)->getVT();
2629    assert(VT == N1.getValueType() && "Not an inreg extend!");
2630    assert(VT.isInteger() && EVT.isInteger() &&
2631           "Cannot *_EXTEND_INREG FP types");
2632    assert(EVT.bitsLE(VT) && "Not extending!");
2633    if (VT == EVT) return N1; // noop assertion.
2634    break;
2635  }
2636  case ISD::SIGN_EXTEND_INREG: {
2637    MVT EVT = cast<VTSDNode>(N2)->getVT();
2638    assert(VT == N1.getValueType() && "Not an inreg extend!");
2639    assert(VT.isInteger() && EVT.isInteger() &&
2640           "Cannot *_EXTEND_INREG FP types");
2641    assert(EVT.bitsLE(VT) && "Not extending!");
2642    if (EVT == VT) return N1;  // Not actually extending
2643
2644    if (N1C) {
2645      APInt Val = N1C->getAPIntValue();
2646      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2647      Val <<= Val.getBitWidth()-FromBits;
2648      Val = Val.ashr(Val.getBitWidth()-FromBits);
2649      return getConstant(Val, VT);
2650    }
2651    break;
2652  }
2653  case ISD::EXTRACT_VECTOR_ELT:
2654    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2655    if (N1.getOpcode() == ISD::UNDEF)
2656      return getUNDEF(VT);
2657
2658    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2659    // expanding copies of large vectors from registers.
2660    if (N2C &&
2661        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2662        N1.getNumOperands() > 0) {
2663      unsigned Factor =
2664        N1.getOperand(0).getValueType().getVectorNumElements();
2665      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2666                     N1.getOperand(N2C->getZExtValue() / Factor),
2667                     getConstant(N2C->getZExtValue() % Factor,
2668                                 N2.getValueType()));
2669    }
2670
2671    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2672    // expanding large vector constants.
2673    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2674      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2675      MVT VEltTy = N1.getValueType().getVectorElementType();
2676      if (Elt.getValueType() != VEltTy) {
2677        // If the vector element type is not legal, the BUILD_VECTOR operands
2678        // are promoted and implicitly truncated.  Make that explicit here.
2679        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2680      }
2681      if (VT != VEltTy) {
2682        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2683        // result is implicitly extended.
2684        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2685      }
2686      return Elt;
2687    }
2688
2689    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2690    // operations are lowered to scalars.
2691    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2692      // If the indices are the same, return the inserted element.
2693      if (N1.getOperand(2) == N2)
2694        return N1.getOperand(1);
2695      // If the indices are known different, extract the element from
2696      // the original vector.
2697      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2698               isa<ConstantSDNode>(N2))
2699        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2700    }
2701    break;
2702  case ISD::EXTRACT_ELEMENT:
2703    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2704    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2705           (N1.getValueType().isInteger() == VT.isInteger()) &&
2706           "Wrong types for EXTRACT_ELEMENT!");
2707
2708    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2709    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2710    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2711    if (N1.getOpcode() == ISD::BUILD_PAIR)
2712      return N1.getOperand(N2C->getZExtValue());
2713
2714    // EXTRACT_ELEMENT of a constant int is also very common.
2715    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2716      unsigned ElementSize = VT.getSizeInBits();
2717      unsigned Shift = ElementSize * N2C->getZExtValue();
2718      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2719      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2720    }
2721    break;
2722  case ISD::EXTRACT_SUBVECTOR:
2723    if (N1.getValueType() == VT) // Trivial extraction.
2724      return N1;
2725    break;
2726  }
2727
2728  if (N1C) {
2729    if (N2C) {
2730      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2731      if (SV.getNode()) return SV;
2732    } else {      // Cannonicalize constant to RHS if commutative
2733      if (isCommutativeBinOp(Opcode)) {
2734        std::swap(N1C, N2C);
2735        std::swap(N1, N2);
2736      }
2737    }
2738  }
2739
2740  // Constant fold FP operations.
2741  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2742  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2743  if (N1CFP) {
2744    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2745      // Cannonicalize constant to RHS if commutative
2746      std::swap(N1CFP, N2CFP);
2747      std::swap(N1, N2);
2748    } else if (N2CFP && VT != MVT::ppcf128) {
2749      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2750      APFloat::opStatus s;
2751      switch (Opcode) {
2752      case ISD::FADD:
2753        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2754        if (s != APFloat::opInvalidOp)
2755          return getConstantFP(V1, VT);
2756        break;
2757      case ISD::FSUB:
2758        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2759        if (s!=APFloat::opInvalidOp)
2760          return getConstantFP(V1, VT);
2761        break;
2762      case ISD::FMUL:
2763        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2764        if (s!=APFloat::opInvalidOp)
2765          return getConstantFP(V1, VT);
2766        break;
2767      case ISD::FDIV:
2768        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2769        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2770          return getConstantFP(V1, VT);
2771        break;
2772      case ISD::FREM :
2773        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2774        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2775          return getConstantFP(V1, VT);
2776        break;
2777      case ISD::FCOPYSIGN:
2778        V1.copySign(V2);
2779        return getConstantFP(V1, VT);
2780      default: break;
2781      }
2782    }
2783  }
2784
2785  // Canonicalize an UNDEF to the RHS, even over a constant.
2786  if (N1.getOpcode() == ISD::UNDEF) {
2787    if (isCommutativeBinOp(Opcode)) {
2788      std::swap(N1, N2);
2789    } else {
2790      switch (Opcode) {
2791      case ISD::FP_ROUND_INREG:
2792      case ISD::SIGN_EXTEND_INREG:
2793      case ISD::SUB:
2794      case ISD::FSUB:
2795      case ISD::FDIV:
2796      case ISD::FREM:
2797      case ISD::SRA:
2798        return N1;     // fold op(undef, arg2) -> undef
2799      case ISD::UDIV:
2800      case ISD::SDIV:
2801      case ISD::UREM:
2802      case ISD::SREM:
2803      case ISD::SRL:
2804      case ISD::SHL:
2805        if (!VT.isVector())
2806          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2807        // For vectors, we can't easily build an all zero vector, just return
2808        // the LHS.
2809        return N2;
2810      }
2811    }
2812  }
2813
2814  // Fold a bunch of operators when the RHS is undef.
2815  if (N2.getOpcode() == ISD::UNDEF) {
2816    switch (Opcode) {
2817    case ISD::XOR:
2818      if (N1.getOpcode() == ISD::UNDEF)
2819        // Handle undef ^ undef -> 0 special case. This is a common
2820        // idiom (misuse).
2821        return getConstant(0, VT);
2822      // fallthrough
2823    case ISD::ADD:
2824    case ISD::ADDC:
2825    case ISD::ADDE:
2826    case ISD::SUB:
2827    case ISD::UDIV:
2828    case ISD::SDIV:
2829    case ISD::UREM:
2830    case ISD::SREM:
2831      return N2;       // fold op(arg1, undef) -> undef
2832    case ISD::FADD:
2833    case ISD::FSUB:
2834    case ISD::FMUL:
2835    case ISD::FDIV:
2836    case ISD::FREM:
2837      if (UnsafeFPMath)
2838        return N2;
2839      break;
2840    case ISD::MUL:
2841    case ISD::AND:
2842    case ISD::SRL:
2843    case ISD::SHL:
2844      if (!VT.isVector())
2845        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2846      // For vectors, we can't easily build an all zero vector, just return
2847      // the LHS.
2848      return N1;
2849    case ISD::OR:
2850      if (!VT.isVector())
2851        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2852      // For vectors, we can't easily build an all one vector, just return
2853      // the LHS.
2854      return N1;
2855    case ISD::SRA:
2856      return N1;
2857    }
2858  }
2859
2860  // Memoize this node if possible.
2861  SDNode *N;
2862  SDVTList VTs = getVTList(VT);
2863  if (VT != MVT::Flag) {
2864    SDValue Ops[] = { N1, N2 };
2865    FoldingSetNodeID ID;
2866    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2867    void *IP = 0;
2868    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2869      return SDValue(E, 0);
2870    N = NodeAllocator.Allocate<BinarySDNode>();
2871    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2872    CSEMap.InsertNode(N, IP);
2873  } else {
2874    N = NodeAllocator.Allocate<BinarySDNode>();
2875    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2876  }
2877
2878  AllNodes.push_back(N);
2879#ifndef NDEBUG
2880  VerifyNode(N);
2881#endif
2882  return SDValue(N, 0);
2883}
2884
2885SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2886                              SDValue N1, SDValue N2, SDValue N3) {
2887  // Perform various simplifications.
2888  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2889  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2890  switch (Opcode) {
2891  case ISD::CONCAT_VECTORS:
2892    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2893    // one big BUILD_VECTOR.
2894    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2895        N2.getOpcode() == ISD::BUILD_VECTOR &&
2896        N3.getOpcode() == ISD::BUILD_VECTOR) {
2897      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2898      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2899      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2900      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2901    }
2902    break;
2903  case ISD::SETCC: {
2904    // Use FoldSetCC to simplify SETCC's.
2905    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2906    if (Simp.getNode()) return Simp;
2907    break;
2908  }
2909  case ISD::SELECT:
2910    if (N1C) {
2911     if (N1C->getZExtValue())
2912        return N2;             // select true, X, Y -> X
2913      else
2914        return N3;             // select false, X, Y -> Y
2915    }
2916
2917    if (N2 == N3) return N2;   // select C, X, X -> X
2918    break;
2919  case ISD::BRCOND:
2920    if (N2C) {
2921      if (N2C->getZExtValue()) // Unconditional branch
2922        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2923      else
2924        return N1;         // Never-taken branch
2925    }
2926    break;
2927  case ISD::VECTOR_SHUFFLE:
2928    llvm_unreachable("should use getVectorShuffle constructor!");
2929    break;
2930  case ISD::BIT_CONVERT:
2931    // Fold bit_convert nodes from a type to themselves.
2932    if (N1.getValueType() == VT)
2933      return N1;
2934    break;
2935  }
2936
2937  // Memoize node if it doesn't produce a flag.
2938  SDNode *N;
2939  SDVTList VTs = getVTList(VT);
2940  if (VT != MVT::Flag) {
2941    SDValue Ops[] = { N1, N2, N3 };
2942    FoldingSetNodeID ID;
2943    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2944    void *IP = 0;
2945    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2946      return SDValue(E, 0);
2947    N = NodeAllocator.Allocate<TernarySDNode>();
2948    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2949    CSEMap.InsertNode(N, IP);
2950  } else {
2951    N = NodeAllocator.Allocate<TernarySDNode>();
2952    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2953  }
2954  AllNodes.push_back(N);
2955#ifndef NDEBUG
2956  VerifyNode(N);
2957#endif
2958  return SDValue(N, 0);
2959}
2960
2961SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2962                              SDValue N1, SDValue N2, SDValue N3,
2963                              SDValue N4) {
2964  SDValue Ops[] = { N1, N2, N3, N4 };
2965  return getNode(Opcode, DL, VT, Ops, 4);
2966}
2967
2968SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2969                              SDValue N1, SDValue N2, SDValue N3,
2970                              SDValue N4, SDValue N5) {
2971  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2972  return getNode(Opcode, DL, VT, Ops, 5);
2973}
2974
2975/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
2976/// the incoming stack arguments to be loaded from the stack.
2977SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
2978  SmallVector<SDValue, 8> ArgChains;
2979
2980  // Include the original chain at the beginning of the list. When this is
2981  // used by target LowerCall hooks, this helps legalize find the
2982  // CALLSEQ_BEGIN node.
2983  ArgChains.push_back(Chain);
2984
2985  // Add a chain value for each stack argument.
2986  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
2987       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
2988    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2989      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2990        if (FI->getIndex() < 0)
2991          ArgChains.push_back(SDValue(L, 1));
2992
2993  // Build a tokenfactor for all the chains.
2994  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
2995                 &ArgChains[0], ArgChains.size());
2996}
2997
2998/// getMemsetValue - Vectorized representation of the memset value
2999/// operand.
3000static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
3001                              DebugLoc dl) {
3002  unsigned NumBits = VT.isVector() ?
3003    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3004  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3005    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3006    unsigned Shift = 8;
3007    for (unsigned i = NumBits; i > 8; i >>= 1) {
3008      Val = (Val << Shift) | Val;
3009      Shift <<= 1;
3010    }
3011    if (VT.isInteger())
3012      return DAG.getConstant(Val, VT);
3013    return DAG.getConstantFP(APFloat(Val), VT);
3014  }
3015
3016  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3017  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3018  unsigned Shift = 8;
3019  for (unsigned i = NumBits; i > 8; i >>= 1) {
3020    Value = DAG.getNode(ISD::OR, dl, VT,
3021                        DAG.getNode(ISD::SHL, dl, VT, Value,
3022                                    DAG.getConstant(Shift,
3023                                                    TLI.getShiftAmountTy())),
3024                        Value);
3025    Shift <<= 1;
3026  }
3027
3028  return Value;
3029}
3030
3031/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3032/// used when a memcpy is turned into a memset when the source is a constant
3033/// string ptr.
3034static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
3035                                    const TargetLowering &TLI,
3036                                    std::string &Str, unsigned Offset) {
3037  // Handle vector with all elements zero.
3038  if (Str.empty()) {
3039    if (VT.isInteger())
3040      return DAG.getConstant(0, VT);
3041    unsigned NumElts = VT.getVectorNumElements();
3042    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3043    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3044                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
3045  }
3046
3047  assert(!VT.isVector() && "Can't handle vector type here!");
3048  unsigned NumBits = VT.getSizeInBits();
3049  unsigned MSB = NumBits / 8;
3050  uint64_t Val = 0;
3051  if (TLI.isLittleEndian())
3052    Offset = Offset + MSB - 1;
3053  for (unsigned i = 0; i != MSB; ++i) {
3054    Val = (Val << 8) | (unsigned char)Str[Offset];
3055    Offset += TLI.isLittleEndian() ? -1 : 1;
3056  }
3057  return DAG.getConstant(Val, VT);
3058}
3059
3060/// getMemBasePlusOffset - Returns base and offset node for the
3061///
3062static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3063                                      SelectionDAG &DAG) {
3064  MVT VT = Base.getValueType();
3065  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3066                     VT, Base, DAG.getConstant(Offset, VT));
3067}
3068
3069/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3070///
3071static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3072  unsigned SrcDelta = 0;
3073  GlobalAddressSDNode *G = NULL;
3074  if (Src.getOpcode() == ISD::GlobalAddress)
3075    G = cast<GlobalAddressSDNode>(Src);
3076  else if (Src.getOpcode() == ISD::ADD &&
3077           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3078           Src.getOperand(1).getOpcode() == ISD::Constant) {
3079    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3080    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3081  }
3082  if (!G)
3083    return false;
3084
3085  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3086  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3087    return true;
3088
3089  return false;
3090}
3091
3092/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3093/// to replace the memset / memcpy is below the threshold. It also returns the
3094/// types of the sequence of memory ops to perform memset / memcpy.
3095static
3096bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
3097                              SDValue Dst, SDValue Src,
3098                              unsigned Limit, uint64_t Size, unsigned &Align,
3099                              std::string &Str, bool &isSrcStr,
3100                              SelectionDAG &DAG,
3101                              const TargetLowering &TLI) {
3102  isSrcStr = isMemSrcFromString(Src, Str);
3103  bool isSrcConst = isa<ConstantSDNode>(Src);
3104  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3105  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3106  if (VT != MVT::iAny) {
3107    unsigned NewAlign = (unsigned)
3108      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3109    // If source is a string constant, this will require an unaligned load.
3110    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3111      if (Dst.getOpcode() != ISD::FrameIndex) {
3112        // Can't change destination alignment. It requires a unaligned store.
3113        if (AllowUnalign)
3114          VT = MVT::iAny;
3115      } else {
3116        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3117        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3118        if (MFI->isFixedObjectIndex(FI)) {
3119          // Can't change destination alignment. It requires a unaligned store.
3120          if (AllowUnalign)
3121            VT = MVT::iAny;
3122        } else {
3123          // Give the stack frame object a larger alignment if needed.
3124          if (MFI->getObjectAlignment(FI) < NewAlign)
3125            MFI->setObjectAlignment(FI, NewAlign);
3126          Align = NewAlign;
3127        }
3128      }
3129    }
3130  }
3131
3132  if (VT == MVT::iAny) {
3133    if (AllowUnalign) {
3134      VT = MVT::i64;
3135    } else {
3136      switch (Align & 7) {
3137      case 0:  VT = MVT::i64; break;
3138      case 4:  VT = MVT::i32; break;
3139      case 2:  VT = MVT::i16; break;
3140      default: VT = MVT::i8;  break;
3141      }
3142    }
3143
3144    MVT LVT = MVT::i64;
3145    while (!TLI.isTypeLegal(LVT))
3146      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3147    assert(LVT.isInteger());
3148
3149    if (VT.bitsGT(LVT))
3150      VT = LVT;
3151  }
3152
3153  unsigned NumMemOps = 0;
3154  while (Size != 0) {
3155    unsigned VTSize = VT.getSizeInBits() / 8;
3156    while (VTSize > Size) {
3157      // For now, only use non-vector load / store's for the left-over pieces.
3158      if (VT.isVector()) {
3159        VT = MVT::i64;
3160        while (!TLI.isTypeLegal(VT))
3161          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3162        VTSize = VT.getSizeInBits() / 8;
3163      } else {
3164        // This can result in a type that is not legal on the target, e.g.
3165        // 1 or 2 bytes on PPC.
3166        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3167        VTSize >>= 1;
3168      }
3169    }
3170
3171    if (++NumMemOps > Limit)
3172      return false;
3173    MemOps.push_back(VT);
3174    Size -= VTSize;
3175  }
3176
3177  return true;
3178}
3179
3180static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3181                                         SDValue Chain, SDValue Dst,
3182                                         SDValue Src, uint64_t Size,
3183                                         unsigned Align, bool AlwaysInline,
3184                                         const Value *DstSV, uint64_t DstSVOff,
3185                                         const Value *SrcSV, uint64_t SrcSVOff){
3186  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3187
3188  // Expand memcpy to a series of load and store ops if the size operand falls
3189  // below a certain threshold.
3190  std::vector<MVT> MemOps;
3191  uint64_t Limit = -1ULL;
3192  if (!AlwaysInline)
3193    Limit = TLI.getMaxStoresPerMemcpy();
3194  unsigned DstAlign = Align;  // Destination alignment can change.
3195  std::string Str;
3196  bool CopyFromStr;
3197  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3198                                Str, CopyFromStr, DAG, TLI))
3199    return SDValue();
3200
3201
3202  bool isZeroStr = CopyFromStr && Str.empty();
3203  SmallVector<SDValue, 8> OutChains;
3204  unsigned NumMemOps = MemOps.size();
3205  uint64_t SrcOff = 0, DstOff = 0;
3206  for (unsigned i = 0; i < NumMemOps; i++) {
3207    MVT VT = MemOps[i];
3208    unsigned VTSize = VT.getSizeInBits() / 8;
3209    SDValue Value, Store;
3210
3211    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3212      // It's unlikely a store of a vector immediate can be done in a single
3213      // instruction. It would require a load from a constantpool first.
3214      // We also handle store a vector with all zero's.
3215      // FIXME: Handle other cases where store of vector immediate is done in
3216      // a single instruction.
3217      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3218      Store = DAG.getStore(Chain, dl, Value,
3219                           getMemBasePlusOffset(Dst, DstOff, DAG),
3220                           DstSV, DstSVOff + DstOff, false, DstAlign);
3221    } else {
3222      // The type might not be legal for the target.  This should only happen
3223      // if the type is smaller than a legal type, as on PPC, so the right
3224      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3225      // to Load/Store if NVT==VT.
3226      // FIXME does the case above also need this?
3227      MVT NVT = TLI.getTypeToTransformTo(VT);
3228      assert(NVT.bitsGE(VT));
3229      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3230                             getMemBasePlusOffset(Src, SrcOff, DAG),
3231                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3232      Store = DAG.getTruncStore(Chain, dl, Value,
3233                             getMemBasePlusOffset(Dst, DstOff, DAG),
3234                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3235    }
3236    OutChains.push_back(Store);
3237    SrcOff += VTSize;
3238    DstOff += VTSize;
3239  }
3240
3241  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3242                     &OutChains[0], OutChains.size());
3243}
3244
3245static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3246                                          SDValue Chain, SDValue Dst,
3247                                          SDValue Src, uint64_t Size,
3248                                          unsigned Align, bool AlwaysInline,
3249                                          const Value *DstSV, uint64_t DstSVOff,
3250                                          const Value *SrcSV, uint64_t SrcSVOff){
3251  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3252
3253  // Expand memmove to a series of load and store ops if the size operand falls
3254  // below a certain threshold.
3255  std::vector<MVT> MemOps;
3256  uint64_t Limit = -1ULL;
3257  if (!AlwaysInline)
3258    Limit = TLI.getMaxStoresPerMemmove();
3259  unsigned DstAlign = Align;  // Destination alignment can change.
3260  std::string Str;
3261  bool CopyFromStr;
3262  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3263                                Str, CopyFromStr, DAG, TLI))
3264    return SDValue();
3265
3266  uint64_t SrcOff = 0, DstOff = 0;
3267
3268  SmallVector<SDValue, 8> LoadValues;
3269  SmallVector<SDValue, 8> LoadChains;
3270  SmallVector<SDValue, 8> OutChains;
3271  unsigned NumMemOps = MemOps.size();
3272  for (unsigned i = 0; i < NumMemOps; i++) {
3273    MVT VT = MemOps[i];
3274    unsigned VTSize = VT.getSizeInBits() / 8;
3275    SDValue Value, Store;
3276
3277    Value = DAG.getLoad(VT, dl, Chain,
3278                        getMemBasePlusOffset(Src, SrcOff, DAG),
3279                        SrcSV, SrcSVOff + SrcOff, false, Align);
3280    LoadValues.push_back(Value);
3281    LoadChains.push_back(Value.getValue(1));
3282    SrcOff += VTSize;
3283  }
3284  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3285                      &LoadChains[0], LoadChains.size());
3286  OutChains.clear();
3287  for (unsigned i = 0; i < NumMemOps; i++) {
3288    MVT VT = MemOps[i];
3289    unsigned VTSize = VT.getSizeInBits() / 8;
3290    SDValue Value, Store;
3291
3292    Store = DAG.getStore(Chain, dl, LoadValues[i],
3293                         getMemBasePlusOffset(Dst, DstOff, DAG),
3294                         DstSV, DstSVOff + DstOff, false, DstAlign);
3295    OutChains.push_back(Store);
3296    DstOff += VTSize;
3297  }
3298
3299  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3300                     &OutChains[0], OutChains.size());
3301}
3302
3303static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3304                                 SDValue Chain, SDValue Dst,
3305                                 SDValue Src, uint64_t Size,
3306                                 unsigned Align,
3307                                 const Value *DstSV, uint64_t DstSVOff) {
3308  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3309
3310  // Expand memset to a series of load/store ops if the size operand
3311  // falls below a certain threshold.
3312  std::vector<MVT> MemOps;
3313  std::string Str;
3314  bool CopyFromStr;
3315  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3316                                Size, Align, Str, CopyFromStr, DAG, TLI))
3317    return SDValue();
3318
3319  SmallVector<SDValue, 8> OutChains;
3320  uint64_t DstOff = 0;
3321
3322  unsigned NumMemOps = MemOps.size();
3323  for (unsigned i = 0; i < NumMemOps; i++) {
3324    MVT VT = MemOps[i];
3325    unsigned VTSize = VT.getSizeInBits() / 8;
3326    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3327    SDValue Store = DAG.getStore(Chain, dl, Value,
3328                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3329                                 DstSV, DstSVOff + DstOff);
3330    OutChains.push_back(Store);
3331    DstOff += VTSize;
3332  }
3333
3334  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3335                     &OutChains[0], OutChains.size());
3336}
3337
3338SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3339                                SDValue Src, SDValue Size,
3340                                unsigned Align, bool AlwaysInline,
3341                                const Value *DstSV, uint64_t DstSVOff,
3342                                const Value *SrcSV, uint64_t SrcSVOff) {
3343
3344  // Check to see if we should lower the memcpy to loads and stores first.
3345  // For cases within the target-specified limits, this is the best choice.
3346  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3347  if (ConstantSize) {
3348    // Memcpy with size zero? Just return the original chain.
3349    if (ConstantSize->isNullValue())
3350      return Chain;
3351
3352    SDValue Result =
3353      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3354                              ConstantSize->getZExtValue(),
3355                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3356    if (Result.getNode())
3357      return Result;
3358  }
3359
3360  // Then check to see if we should lower the memcpy with target-specific
3361  // code. If the target chooses to do this, this is the next best.
3362  SDValue Result =
3363    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3364                                AlwaysInline,
3365                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3366  if (Result.getNode())
3367    return Result;
3368
3369  // If we really need inline code and the target declined to provide it,
3370  // use a (potentially long) sequence of loads and stores.
3371  if (AlwaysInline) {
3372    assert(ConstantSize && "AlwaysInline requires a constant size!");
3373    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3374                                   ConstantSize->getZExtValue(), Align, true,
3375                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3376  }
3377
3378  // Emit a library call.
3379  TargetLowering::ArgListTy Args;
3380  TargetLowering::ArgListEntry Entry;
3381  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3382  Entry.Node = Dst; Args.push_back(Entry);
3383  Entry.Node = Src; Args.push_back(Entry);
3384  Entry.Node = Size; Args.push_back(Entry);
3385  // FIXME: pass in DebugLoc
3386  std::pair<SDValue,SDValue> CallResult =
3387    TLI.LowerCallTo(Chain, Type::VoidTy,
3388                    false, false, false, false, 0, CallingConv::C, false,
3389                    /*isReturnValueUsed=*/false,
3390                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3391                                      TLI.getPointerTy()),
3392                    Args, *this, dl);
3393  return CallResult.second;
3394}
3395
3396SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3397                                 SDValue Src, SDValue Size,
3398                                 unsigned Align,
3399                                 const Value *DstSV, uint64_t DstSVOff,
3400                                 const Value *SrcSV, uint64_t SrcSVOff) {
3401
3402  // Check to see if we should lower the memmove to loads and stores first.
3403  // For cases within the target-specified limits, this is the best choice.
3404  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3405  if (ConstantSize) {
3406    // Memmove with size zero? Just return the original chain.
3407    if (ConstantSize->isNullValue())
3408      return Chain;
3409
3410    SDValue Result =
3411      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3412                               ConstantSize->getZExtValue(),
3413                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3414    if (Result.getNode())
3415      return Result;
3416  }
3417
3418  // Then check to see if we should lower the memmove with target-specific
3419  // code. If the target chooses to do this, this is the next best.
3420  SDValue Result =
3421    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3422                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3423  if (Result.getNode())
3424    return Result;
3425
3426  // Emit a library call.
3427  TargetLowering::ArgListTy Args;
3428  TargetLowering::ArgListEntry Entry;
3429  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3430  Entry.Node = Dst; Args.push_back(Entry);
3431  Entry.Node = Src; Args.push_back(Entry);
3432  Entry.Node = Size; Args.push_back(Entry);
3433  // FIXME:  pass in DebugLoc
3434  std::pair<SDValue,SDValue> CallResult =
3435    TLI.LowerCallTo(Chain, Type::VoidTy,
3436                    false, false, false, false, 0, CallingConv::C, false,
3437                    /*isReturnValueUsed=*/false,
3438                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3439                                      TLI.getPointerTy()),
3440                    Args, *this, dl);
3441  return CallResult.second;
3442}
3443
3444SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3445                                SDValue Src, SDValue Size,
3446                                unsigned Align,
3447                                const Value *DstSV, uint64_t DstSVOff) {
3448
3449  // Check to see if we should lower the memset to stores first.
3450  // For cases within the target-specified limits, this is the best choice.
3451  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3452  if (ConstantSize) {
3453    // Memset with size zero? Just return the original chain.
3454    if (ConstantSize->isNullValue())
3455      return Chain;
3456
3457    SDValue Result =
3458      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3459                      Align, DstSV, DstSVOff);
3460    if (Result.getNode())
3461      return Result;
3462  }
3463
3464  // Then check to see if we should lower the memset with target-specific
3465  // code. If the target chooses to do this, this is the next best.
3466  SDValue Result =
3467    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3468                                DstSV, DstSVOff);
3469  if (Result.getNode())
3470    return Result;
3471
3472  // Emit a library call.
3473  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3474  TargetLowering::ArgListTy Args;
3475  TargetLowering::ArgListEntry Entry;
3476  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3477  Args.push_back(Entry);
3478  // Extend or truncate the argument to be an i32 value for the call.
3479  if (Src.getValueType().bitsGT(MVT::i32))
3480    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3481  else
3482    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3483  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3484  Args.push_back(Entry);
3485  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3486  Args.push_back(Entry);
3487  // FIXME: pass in DebugLoc
3488  std::pair<SDValue,SDValue> CallResult =
3489    TLI.LowerCallTo(Chain, Type::VoidTy,
3490                    false, false, false, false, 0, CallingConv::C, false,
3491                    /*isReturnValueUsed=*/false,
3492                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3493                                      TLI.getPointerTy()),
3494                    Args, *this, dl);
3495  return CallResult.second;
3496}
3497
3498SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3499                                SDValue Chain,
3500                                SDValue Ptr, SDValue Cmp,
3501                                SDValue Swp, const Value* PtrVal,
3502                                unsigned Alignment) {
3503  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3504  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3505
3506  MVT VT = Cmp.getValueType();
3507
3508  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3509    Alignment = getMVTAlignment(MemVT);
3510
3511  SDVTList VTs = getVTList(VT, MVT::Other);
3512  FoldingSetNodeID ID;
3513  ID.AddInteger(MemVT.getRawBits());
3514  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3515  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3516  void* IP = 0;
3517  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3518    return SDValue(E, 0);
3519  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3520  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3521                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3522  CSEMap.InsertNode(N, IP);
3523  AllNodes.push_back(N);
3524  return SDValue(N, 0);
3525}
3526
3527SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3528                                SDValue Chain,
3529                                SDValue Ptr, SDValue Val,
3530                                const Value* PtrVal,
3531                                unsigned Alignment) {
3532  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3533          Opcode == ISD::ATOMIC_LOAD_SUB ||
3534          Opcode == ISD::ATOMIC_LOAD_AND ||
3535          Opcode == ISD::ATOMIC_LOAD_OR ||
3536          Opcode == ISD::ATOMIC_LOAD_XOR ||
3537          Opcode == ISD::ATOMIC_LOAD_NAND ||
3538          Opcode == ISD::ATOMIC_LOAD_MIN ||
3539          Opcode == ISD::ATOMIC_LOAD_MAX ||
3540          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3541          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3542          Opcode == ISD::ATOMIC_SWAP) &&
3543         "Invalid Atomic Op");
3544
3545  MVT VT = Val.getValueType();
3546
3547  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3548    Alignment = getMVTAlignment(MemVT);
3549
3550  SDVTList VTs = getVTList(VT, MVT::Other);
3551  FoldingSetNodeID ID;
3552  ID.AddInteger(MemVT.getRawBits());
3553  SDValue Ops[] = {Chain, Ptr, Val};
3554  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3555  void* IP = 0;
3556  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3557    return SDValue(E, 0);
3558  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3559  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3560                       Chain, Ptr, Val, PtrVal, Alignment);
3561  CSEMap.InsertNode(N, IP);
3562  AllNodes.push_back(N);
3563  return SDValue(N, 0);
3564}
3565
3566/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3567/// Allowed to return something different (and simpler) if Simplify is true.
3568SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3569                                     DebugLoc dl) {
3570  if (NumOps == 1)
3571    return Ops[0];
3572
3573  SmallVector<MVT, 4> VTs;
3574  VTs.reserve(NumOps);
3575  for (unsigned i = 0; i < NumOps; ++i)
3576    VTs.push_back(Ops[i].getValueType());
3577  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3578                 Ops, NumOps);
3579}
3580
3581SDValue
3582SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3583                                  const MVT *VTs, unsigned NumVTs,
3584                                  const SDValue *Ops, unsigned NumOps,
3585                                  MVT MemVT, const Value *srcValue, int SVOff,
3586                                  unsigned Align, bool Vol,
3587                                  bool ReadMem, bool WriteMem) {
3588  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3589                             MemVT, srcValue, SVOff, Align, Vol,
3590                             ReadMem, WriteMem);
3591}
3592
3593SDValue
3594SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3595                                  const SDValue *Ops, unsigned NumOps,
3596                                  MVT MemVT, const Value *srcValue, int SVOff,
3597                                  unsigned Align, bool Vol,
3598                                  bool ReadMem, bool WriteMem) {
3599  // Memoize the node unless it returns a flag.
3600  MemIntrinsicSDNode *N;
3601  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3602    FoldingSetNodeID ID;
3603    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3604    void *IP = 0;
3605    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3606      return SDValue(E, 0);
3607
3608    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3609    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3610                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3611    CSEMap.InsertNode(N, IP);
3612  } else {
3613    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3614    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3615                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3616  }
3617  AllNodes.push_back(N);
3618  return SDValue(N, 0);
3619}
3620
3621SDValue
3622SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3623                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3624                      SDValue Ptr, SDValue Offset,
3625                      const Value *SV, int SVOffset, MVT EVT,
3626                      bool isVolatile, unsigned Alignment) {
3627  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3628    Alignment = getMVTAlignment(VT);
3629
3630  if (VT == EVT) {
3631    ExtType = ISD::NON_EXTLOAD;
3632  } else if (ExtType == ISD::NON_EXTLOAD) {
3633    assert(VT == EVT && "Non-extending load from different memory type!");
3634  } else {
3635    // Extending load.
3636    if (VT.isVector())
3637      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3638             "Invalid vector extload!");
3639    else
3640      assert(EVT.bitsLT(VT) &&
3641             "Should only be an extending load, not truncating!");
3642    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3643           "Cannot sign/zero extend a FP/Vector load!");
3644    assert(VT.isInteger() == EVT.isInteger() &&
3645           "Cannot convert from FP to Int or Int -> FP!");
3646  }
3647
3648  bool Indexed = AM != ISD::UNINDEXED;
3649  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3650         "Unindexed load with an offset!");
3651
3652  SDVTList VTs = Indexed ?
3653    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3654  SDValue Ops[] = { Chain, Ptr, Offset };
3655  FoldingSetNodeID ID;
3656  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3657  ID.AddInteger(EVT.getRawBits());
3658  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3659  void *IP = 0;
3660  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3661    return SDValue(E, 0);
3662  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3663  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3664                     Alignment, isVolatile);
3665  CSEMap.InsertNode(N, IP);
3666  AllNodes.push_back(N);
3667  return SDValue(N, 0);
3668}
3669
3670SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3671                              SDValue Chain, SDValue Ptr,
3672                              const Value *SV, int SVOffset,
3673                              bool isVolatile, unsigned Alignment) {
3674  SDValue Undef = getUNDEF(Ptr.getValueType());
3675  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3676                 SV, SVOffset, VT, isVolatile, Alignment);
3677}
3678
3679SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3680                                 SDValue Chain, SDValue Ptr,
3681                                 const Value *SV,
3682                                 int SVOffset, MVT EVT,
3683                                 bool isVolatile, unsigned Alignment) {
3684  SDValue Undef = getUNDEF(Ptr.getValueType());
3685  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3686                 SV, SVOffset, EVT, isVolatile, Alignment);
3687}
3688
3689SDValue
3690SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3691                             SDValue Offset, ISD::MemIndexedMode AM) {
3692  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3693  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3694         "Load is already a indexed load!");
3695  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3696                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3697                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3698                 LD->isVolatile(), LD->getAlignment());
3699}
3700
3701SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3702                               SDValue Ptr, const Value *SV, int SVOffset,
3703                               bool isVolatile, unsigned Alignment) {
3704  MVT VT = Val.getValueType();
3705
3706  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3707    Alignment = getMVTAlignment(VT);
3708
3709  SDVTList VTs = getVTList(MVT::Other);
3710  SDValue Undef = getUNDEF(Ptr.getValueType());
3711  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3712  FoldingSetNodeID ID;
3713  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3714  ID.AddInteger(VT.getRawBits());
3715  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3716                                     isVolatile, Alignment));
3717  void *IP = 0;
3718  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3719    return SDValue(E, 0);
3720  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3721  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3722                      VT, SV, SVOffset, Alignment, isVolatile);
3723  CSEMap.InsertNode(N, IP);
3724  AllNodes.push_back(N);
3725  return SDValue(N, 0);
3726}
3727
3728SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3729                                    SDValue Ptr, const Value *SV,
3730                                    int SVOffset, MVT SVT,
3731                                    bool isVolatile, unsigned Alignment) {
3732  MVT VT = Val.getValueType();
3733
3734  if (VT == SVT)
3735    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3736
3737  assert(VT.bitsGT(SVT) && "Not a truncation?");
3738  assert(VT.isInteger() == SVT.isInteger() &&
3739         "Can't do FP-INT conversion!");
3740
3741  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3742    Alignment = getMVTAlignment(VT);
3743
3744  SDVTList VTs = getVTList(MVT::Other);
3745  SDValue Undef = getUNDEF(Ptr.getValueType());
3746  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3747  FoldingSetNodeID ID;
3748  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3749  ID.AddInteger(SVT.getRawBits());
3750  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3751                                     isVolatile, Alignment));
3752  void *IP = 0;
3753  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3754    return SDValue(E, 0);
3755  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3756  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3757                      SVT, SV, SVOffset, Alignment, isVolatile);
3758  CSEMap.InsertNode(N, IP);
3759  AllNodes.push_back(N);
3760  return SDValue(N, 0);
3761}
3762
3763SDValue
3764SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3765                              SDValue Offset, ISD::MemIndexedMode AM) {
3766  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3767  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3768         "Store is already a indexed store!");
3769  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3770  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3771  FoldingSetNodeID ID;
3772  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3773  ID.AddInteger(ST->getMemoryVT().getRawBits());
3774  ID.AddInteger(ST->getRawSubclassData());
3775  void *IP = 0;
3776  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3777    return SDValue(E, 0);
3778  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3779  new (N) StoreSDNode(Ops, dl, VTs, AM,
3780                      ST->isTruncatingStore(), ST->getMemoryVT(),
3781                      ST->getSrcValue(), ST->getSrcValueOffset(),
3782                      ST->getAlignment(), ST->isVolatile());
3783  CSEMap.InsertNode(N, IP);
3784  AllNodes.push_back(N);
3785  return SDValue(N, 0);
3786}
3787
3788SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3789                               SDValue Chain, SDValue Ptr,
3790                               SDValue SV) {
3791  SDValue Ops[] = { Chain, Ptr, SV };
3792  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3793}
3794
3795SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3796                              const SDUse *Ops, unsigned NumOps) {
3797  switch (NumOps) {
3798  case 0: return getNode(Opcode, DL, VT);
3799  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3800  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3801  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3802  default: break;
3803  }
3804
3805  // Copy from an SDUse array into an SDValue array for use with
3806  // the regular getNode logic.
3807  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3808  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3809}
3810
3811SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3812                              const SDValue *Ops, unsigned NumOps) {
3813  switch (NumOps) {
3814  case 0: return getNode(Opcode, DL, VT);
3815  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3816  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3817  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3818  default: break;
3819  }
3820
3821  switch (Opcode) {
3822  default: break;
3823  case ISD::SELECT_CC: {
3824    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3825    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3826           "LHS and RHS of condition must have same type!");
3827    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3828           "True and False arms of SelectCC must have same type!");
3829    assert(Ops[2].getValueType() == VT &&
3830           "select_cc node must be of same type as true and false value!");
3831    break;
3832  }
3833  case ISD::BR_CC: {
3834    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3835    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3836           "LHS/RHS of comparison should match types!");
3837    break;
3838  }
3839  }
3840
3841  // Memoize nodes.
3842  SDNode *N;
3843  SDVTList VTs = getVTList(VT);
3844
3845  if (VT != MVT::Flag) {
3846    FoldingSetNodeID ID;
3847    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3848    void *IP = 0;
3849
3850    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3851      return SDValue(E, 0);
3852
3853    N = NodeAllocator.Allocate<SDNode>();
3854    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3855    CSEMap.InsertNode(N, IP);
3856  } else {
3857    N = NodeAllocator.Allocate<SDNode>();
3858    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3859  }
3860
3861  AllNodes.push_back(N);
3862#ifndef NDEBUG
3863  VerifyNode(N);
3864#endif
3865  return SDValue(N, 0);
3866}
3867
3868SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3869                              const std::vector<MVT> &ResultTys,
3870                              const SDValue *Ops, unsigned NumOps) {
3871  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3872                 Ops, NumOps);
3873}
3874
3875SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3876                              const MVT *VTs, unsigned NumVTs,
3877                              const SDValue *Ops, unsigned NumOps) {
3878  if (NumVTs == 1)
3879    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3880  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3881}
3882
3883SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3884                              const SDValue *Ops, unsigned NumOps) {
3885  if (VTList.NumVTs == 1)
3886    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3887
3888#if 0
3889  switch (Opcode) {
3890  // FIXME: figure out how to safely handle things like
3891  // int foo(int x) { return 1 << (x & 255); }
3892  // int bar() { return foo(256); }
3893  case ISD::SRA_PARTS:
3894  case ISD::SRL_PARTS:
3895  case ISD::SHL_PARTS:
3896    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3897        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3898      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3899    else if (N3.getOpcode() == ISD::AND)
3900      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3901        // If the and is only masking out bits that cannot effect the shift,
3902        // eliminate the and.
3903        unsigned NumBits = VT.getSizeInBits()*2;
3904        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3905          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3906      }
3907    break;
3908  }
3909#endif
3910
3911  // Memoize the node unless it returns a flag.
3912  SDNode *N;
3913  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3914    FoldingSetNodeID ID;
3915    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3916    void *IP = 0;
3917    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3918      return SDValue(E, 0);
3919    if (NumOps == 1) {
3920      N = NodeAllocator.Allocate<UnarySDNode>();
3921      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3922    } else if (NumOps == 2) {
3923      N = NodeAllocator.Allocate<BinarySDNode>();
3924      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3925    } else if (NumOps == 3) {
3926      N = NodeAllocator.Allocate<TernarySDNode>();
3927      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3928    } else {
3929      N = NodeAllocator.Allocate<SDNode>();
3930      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3931    }
3932    CSEMap.InsertNode(N, IP);
3933  } else {
3934    if (NumOps == 1) {
3935      N = NodeAllocator.Allocate<UnarySDNode>();
3936      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3937    } else if (NumOps == 2) {
3938      N = NodeAllocator.Allocate<BinarySDNode>();
3939      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3940    } else if (NumOps == 3) {
3941      N = NodeAllocator.Allocate<TernarySDNode>();
3942      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3943    } else {
3944      N = NodeAllocator.Allocate<SDNode>();
3945      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3946    }
3947  }
3948  AllNodes.push_back(N);
3949#ifndef NDEBUG
3950  VerifyNode(N);
3951#endif
3952  return SDValue(N, 0);
3953}
3954
3955SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3956  return getNode(Opcode, DL, VTList, 0, 0);
3957}
3958
3959SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3960                              SDValue N1) {
3961  SDValue Ops[] = { N1 };
3962  return getNode(Opcode, DL, VTList, Ops, 1);
3963}
3964
3965SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3966                              SDValue N1, SDValue N2) {
3967  SDValue Ops[] = { N1, N2 };
3968  return getNode(Opcode, DL, VTList, Ops, 2);
3969}
3970
3971SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3972                              SDValue N1, SDValue N2, SDValue N3) {
3973  SDValue Ops[] = { N1, N2, N3 };
3974  return getNode(Opcode, DL, VTList, Ops, 3);
3975}
3976
3977SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3978                              SDValue N1, SDValue N2, SDValue N3,
3979                              SDValue N4) {
3980  SDValue Ops[] = { N1, N2, N3, N4 };
3981  return getNode(Opcode, DL, VTList, Ops, 4);
3982}
3983
3984SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3985                              SDValue N1, SDValue N2, SDValue N3,
3986                              SDValue N4, SDValue N5) {
3987  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3988  return getNode(Opcode, DL, VTList, Ops, 5);
3989}
3990
3991SDVTList SelectionDAG::getVTList(MVT VT) {
3992  return makeVTList(SDNode::getValueTypeList(VT), 1);
3993}
3994
3995SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3996  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3997       E = VTList.rend(); I != E; ++I)
3998    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3999      return *I;
4000
4001  MVT *Array = Allocator.Allocate<MVT>(2);
4002  Array[0] = VT1;
4003  Array[1] = VT2;
4004  SDVTList Result = makeVTList(Array, 2);
4005  VTList.push_back(Result);
4006  return Result;
4007}
4008
4009SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
4010  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4011       E = VTList.rend(); I != E; ++I)
4012    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4013                          I->VTs[2] == VT3)
4014      return *I;
4015
4016  MVT *Array = Allocator.Allocate<MVT>(3);
4017  Array[0] = VT1;
4018  Array[1] = VT2;
4019  Array[2] = VT3;
4020  SDVTList Result = makeVTList(Array, 3);
4021  VTList.push_back(Result);
4022  return Result;
4023}
4024
4025SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
4026  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4027       E = VTList.rend(); I != E; ++I)
4028    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4029                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4030      return *I;
4031
4032  MVT *Array = Allocator.Allocate<MVT>(3);
4033  Array[0] = VT1;
4034  Array[1] = VT2;
4035  Array[2] = VT3;
4036  Array[3] = VT4;
4037  SDVTList Result = makeVTList(Array, 4);
4038  VTList.push_back(Result);
4039  return Result;
4040}
4041
4042SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4043  switch (NumVTs) {
4044    case 0: llvm_unreachable("Cannot have nodes without results!");
4045    case 1: return getVTList(VTs[0]);
4046    case 2: return getVTList(VTs[0], VTs[1]);
4047    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4048    default: break;
4049  }
4050
4051  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4052       E = VTList.rend(); I != E; ++I) {
4053    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4054      continue;
4055
4056    bool NoMatch = false;
4057    for (unsigned i = 2; i != NumVTs; ++i)
4058      if (VTs[i] != I->VTs[i]) {
4059        NoMatch = true;
4060        break;
4061      }
4062    if (!NoMatch)
4063      return *I;
4064  }
4065
4066  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4067  std::copy(VTs, VTs+NumVTs, Array);
4068  SDVTList Result = makeVTList(Array, NumVTs);
4069  VTList.push_back(Result);
4070  return Result;
4071}
4072
4073
4074/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4075/// specified operands.  If the resultant node already exists in the DAG,
4076/// this does not modify the specified node, instead it returns the node that
4077/// already exists.  If the resultant node does not exist in the DAG, the
4078/// input node is returned.  As a degenerate case, if you specify the same
4079/// input operands as the node already has, the input node is returned.
4080SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4081  SDNode *N = InN.getNode();
4082  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4083
4084  // Check to see if there is no change.
4085  if (Op == N->getOperand(0)) return InN;
4086
4087  // See if the modified node already exists.
4088  void *InsertPos = 0;
4089  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4090    return SDValue(Existing, InN.getResNo());
4091
4092  // Nope it doesn't.  Remove the node from its current place in the maps.
4093  if (InsertPos)
4094    if (!RemoveNodeFromCSEMaps(N))
4095      InsertPos = 0;
4096
4097  // Now we update the operands.
4098  N->OperandList[0].set(Op);
4099
4100  // If this gets put into a CSE map, add it.
4101  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4102  return InN;
4103}
4104
4105SDValue SelectionDAG::
4106UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4107  SDNode *N = InN.getNode();
4108  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4109
4110  // Check to see if there is no change.
4111  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4112    return InN;   // No operands changed, just return the input node.
4113
4114  // See if the modified node already exists.
4115  void *InsertPos = 0;
4116  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4117    return SDValue(Existing, InN.getResNo());
4118
4119  // Nope it doesn't.  Remove the node from its current place in the maps.
4120  if (InsertPos)
4121    if (!RemoveNodeFromCSEMaps(N))
4122      InsertPos = 0;
4123
4124  // Now we update the operands.
4125  if (N->OperandList[0] != Op1)
4126    N->OperandList[0].set(Op1);
4127  if (N->OperandList[1] != Op2)
4128    N->OperandList[1].set(Op2);
4129
4130  // If this gets put into a CSE map, add it.
4131  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4132  return InN;
4133}
4134
4135SDValue SelectionDAG::
4136UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4137  SDValue Ops[] = { Op1, Op2, Op3 };
4138  return UpdateNodeOperands(N, Ops, 3);
4139}
4140
4141SDValue SelectionDAG::
4142UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4143                   SDValue Op3, SDValue Op4) {
4144  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4145  return UpdateNodeOperands(N, Ops, 4);
4146}
4147
4148SDValue SelectionDAG::
4149UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4150                   SDValue Op3, SDValue Op4, SDValue Op5) {
4151  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4152  return UpdateNodeOperands(N, Ops, 5);
4153}
4154
4155SDValue SelectionDAG::
4156UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4157  SDNode *N = InN.getNode();
4158  assert(N->getNumOperands() == NumOps &&
4159         "Update with wrong number of operands");
4160
4161  // Check to see if there is no change.
4162  bool AnyChange = false;
4163  for (unsigned i = 0; i != NumOps; ++i) {
4164    if (Ops[i] != N->getOperand(i)) {
4165      AnyChange = true;
4166      break;
4167    }
4168  }
4169
4170  // No operands changed, just return the input node.
4171  if (!AnyChange) return InN;
4172
4173  // See if the modified node already exists.
4174  void *InsertPos = 0;
4175  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4176    return SDValue(Existing, InN.getResNo());
4177
4178  // Nope it doesn't.  Remove the node from its current place in the maps.
4179  if (InsertPos)
4180    if (!RemoveNodeFromCSEMaps(N))
4181      InsertPos = 0;
4182
4183  // Now we update the operands.
4184  for (unsigned i = 0; i != NumOps; ++i)
4185    if (N->OperandList[i] != Ops[i])
4186      N->OperandList[i].set(Ops[i]);
4187
4188  // If this gets put into a CSE map, add it.
4189  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4190  return InN;
4191}
4192
4193/// DropOperands - Release the operands and set this node to have
4194/// zero operands.
4195void SDNode::DropOperands() {
4196  // Unlike the code in MorphNodeTo that does this, we don't need to
4197  // watch for dead nodes here.
4198  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4199    SDUse &Use = *I++;
4200    Use.set(SDValue());
4201  }
4202}
4203
4204/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4205/// machine opcode.
4206///
4207SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4208                                   MVT VT) {
4209  SDVTList VTs = getVTList(VT);
4210  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4211}
4212
4213SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4214                                   MVT VT, SDValue Op1) {
4215  SDVTList VTs = getVTList(VT);
4216  SDValue Ops[] = { Op1 };
4217  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4218}
4219
4220SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4221                                   MVT VT, SDValue Op1,
4222                                   SDValue Op2) {
4223  SDVTList VTs = getVTList(VT);
4224  SDValue Ops[] = { Op1, Op2 };
4225  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4226}
4227
4228SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4229                                   MVT VT, SDValue Op1,
4230                                   SDValue Op2, SDValue Op3) {
4231  SDVTList VTs = getVTList(VT);
4232  SDValue Ops[] = { Op1, Op2, Op3 };
4233  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4234}
4235
4236SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4237                                   MVT VT, const SDValue *Ops,
4238                                   unsigned NumOps) {
4239  SDVTList VTs = getVTList(VT);
4240  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4241}
4242
4243SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4244                                   MVT VT1, MVT VT2, const SDValue *Ops,
4245                                   unsigned NumOps) {
4246  SDVTList VTs = getVTList(VT1, VT2);
4247  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4248}
4249
4250SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4251                                   MVT VT1, MVT VT2) {
4252  SDVTList VTs = getVTList(VT1, VT2);
4253  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4254}
4255
4256SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4257                                   MVT VT1, MVT VT2, MVT VT3,
4258                                   const SDValue *Ops, unsigned NumOps) {
4259  SDVTList VTs = getVTList(VT1, VT2, VT3);
4260  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4261}
4262
4263SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4264                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4265                                   const SDValue *Ops, unsigned NumOps) {
4266  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4267  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4268}
4269
4270SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4271                                   MVT VT1, MVT VT2,
4272                                   SDValue Op1) {
4273  SDVTList VTs = getVTList(VT1, VT2);
4274  SDValue Ops[] = { Op1 };
4275  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4276}
4277
4278SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4279                                   MVT VT1, MVT VT2,
4280                                   SDValue Op1, SDValue Op2) {
4281  SDVTList VTs = getVTList(VT1, VT2);
4282  SDValue Ops[] = { Op1, Op2 };
4283  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4284}
4285
4286SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4287                                   MVT VT1, MVT VT2,
4288                                   SDValue Op1, SDValue Op2,
4289                                   SDValue Op3) {
4290  SDVTList VTs = getVTList(VT1, VT2);
4291  SDValue Ops[] = { Op1, Op2, Op3 };
4292  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4293}
4294
4295SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4296                                   MVT VT1, MVT VT2, MVT VT3,
4297                                   SDValue Op1, SDValue Op2,
4298                                   SDValue Op3) {
4299  SDVTList VTs = getVTList(VT1, VT2, VT3);
4300  SDValue Ops[] = { Op1, Op2, Op3 };
4301  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4302}
4303
4304SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4305                                   SDVTList VTs, const SDValue *Ops,
4306                                   unsigned NumOps) {
4307  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4308}
4309
4310SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4311                                  MVT VT) {
4312  SDVTList VTs = getVTList(VT);
4313  return MorphNodeTo(N, Opc, VTs, 0, 0);
4314}
4315
4316SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4317                                  MVT VT, SDValue Op1) {
4318  SDVTList VTs = getVTList(VT);
4319  SDValue Ops[] = { Op1 };
4320  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4321}
4322
4323SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4324                                  MVT VT, SDValue Op1,
4325                                  SDValue Op2) {
4326  SDVTList VTs = getVTList(VT);
4327  SDValue Ops[] = { Op1, Op2 };
4328  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4329}
4330
4331SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4332                                  MVT VT, SDValue Op1,
4333                                  SDValue Op2, SDValue Op3) {
4334  SDVTList VTs = getVTList(VT);
4335  SDValue Ops[] = { Op1, Op2, Op3 };
4336  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4337}
4338
4339SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4340                                  MVT VT, const SDValue *Ops,
4341                                  unsigned NumOps) {
4342  SDVTList VTs = getVTList(VT);
4343  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4344}
4345
4346SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4347                                  MVT VT1, MVT VT2, const SDValue *Ops,
4348                                  unsigned NumOps) {
4349  SDVTList VTs = getVTList(VT1, VT2);
4350  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4351}
4352
4353SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4354                                  MVT VT1, MVT VT2) {
4355  SDVTList VTs = getVTList(VT1, VT2);
4356  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4357}
4358
4359SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4360                                  MVT VT1, MVT VT2, MVT VT3,
4361                                  const SDValue *Ops, unsigned NumOps) {
4362  SDVTList VTs = getVTList(VT1, VT2, VT3);
4363  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4364}
4365
4366SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4367                                  MVT VT1, MVT VT2,
4368                                  SDValue Op1) {
4369  SDVTList VTs = getVTList(VT1, VT2);
4370  SDValue Ops[] = { Op1 };
4371  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4372}
4373
4374SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4375                                  MVT VT1, MVT VT2,
4376                                  SDValue Op1, SDValue Op2) {
4377  SDVTList VTs = getVTList(VT1, VT2);
4378  SDValue Ops[] = { Op1, Op2 };
4379  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4380}
4381
4382SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4383                                  MVT VT1, MVT VT2,
4384                                  SDValue Op1, SDValue Op2,
4385                                  SDValue Op3) {
4386  SDVTList VTs = getVTList(VT1, VT2);
4387  SDValue Ops[] = { Op1, Op2, Op3 };
4388  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4389}
4390
4391/// MorphNodeTo - These *mutate* the specified node to have the specified
4392/// return type, opcode, and operands.
4393///
4394/// Note that MorphNodeTo returns the resultant node.  If there is already a
4395/// node of the specified opcode and operands, it returns that node instead of
4396/// the current one.  Note that the DebugLoc need not be the same.
4397///
4398/// Using MorphNodeTo is faster than creating a new node and swapping it in
4399/// with ReplaceAllUsesWith both because it often avoids allocating a new
4400/// node, and because it doesn't require CSE recalculation for any of
4401/// the node's users.
4402///
4403SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4404                                  SDVTList VTs, const SDValue *Ops,
4405                                  unsigned NumOps) {
4406  // If an identical node already exists, use it.
4407  void *IP = 0;
4408  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4409    FoldingSetNodeID ID;
4410    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4411    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4412      return ON;
4413  }
4414
4415  if (!RemoveNodeFromCSEMaps(N))
4416    IP = 0;
4417
4418  // Start the morphing.
4419  N->NodeType = Opc;
4420  N->ValueList = VTs.VTs;
4421  N->NumValues = VTs.NumVTs;
4422
4423  // Clear the operands list, updating used nodes to remove this from their
4424  // use list.  Keep track of any operands that become dead as a result.
4425  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4426  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4427    SDUse &Use = *I++;
4428    SDNode *Used = Use.getNode();
4429    Use.set(SDValue());
4430    if (Used->use_empty())
4431      DeadNodeSet.insert(Used);
4432  }
4433
4434  // If NumOps is larger than the # of operands we currently have, reallocate
4435  // the operand list.
4436  if (NumOps > N->NumOperands) {
4437    if (N->OperandsNeedDelete)
4438      delete[] N->OperandList;
4439
4440    if (N->isMachineOpcode()) {
4441      // We're creating a final node that will live unmorphed for the
4442      // remainder of the current SelectionDAG iteration, so we can allocate
4443      // the operands directly out of a pool with no recycling metadata.
4444      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4445      N->OperandsNeedDelete = false;
4446    } else {
4447      N->OperandList = new SDUse[NumOps];
4448      N->OperandsNeedDelete = true;
4449    }
4450  }
4451
4452  // Assign the new operands.
4453  N->NumOperands = NumOps;
4454  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4455    N->OperandList[i].setUser(N);
4456    N->OperandList[i].setInitial(Ops[i]);
4457  }
4458
4459  // Delete any nodes that are still dead after adding the uses for the
4460  // new operands.
4461  SmallVector<SDNode *, 16> DeadNodes;
4462  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4463       E = DeadNodeSet.end(); I != E; ++I)
4464    if ((*I)->use_empty())
4465      DeadNodes.push_back(*I);
4466  RemoveDeadNodes(DeadNodes);
4467
4468  if (IP)
4469    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4470  return N;
4471}
4472
4473
4474/// getTargetNode - These are used for target selectors to create a new node
4475/// with specified return type(s), target opcode, and operands.
4476///
4477/// Note that getTargetNode returns the resultant node.  If there is already a
4478/// node of the specified opcode and operands, it returns that node instead of
4479/// the current one.
4480SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4481  return getNode(~Opcode, dl, VT).getNode();
4482}
4483
4484SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4485                                    SDValue Op1) {
4486  return getNode(~Opcode, dl, VT, Op1).getNode();
4487}
4488
4489SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4490                                    SDValue Op1, SDValue Op2) {
4491  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4492}
4493
4494SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4495                                    SDValue Op1, SDValue Op2,
4496                                    SDValue Op3) {
4497  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4498}
4499
4500SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4501                                    const SDValue *Ops, unsigned NumOps) {
4502  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4503}
4504
4505SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4506                                    MVT VT1, MVT VT2) {
4507  SDVTList VTs = getVTList(VT1, VT2);
4508  SDValue Op;
4509  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4510}
4511
4512SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4513                                    MVT VT2, SDValue Op1) {
4514  SDVTList VTs = getVTList(VT1, VT2);
4515  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4516}
4517
4518SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4519                                    MVT VT2, SDValue Op1,
4520                                    SDValue Op2) {
4521  SDVTList VTs = getVTList(VT1, VT2);
4522  SDValue Ops[] = { Op1, Op2 };
4523  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4524}
4525
4526SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4527                                    MVT VT2, SDValue Op1,
4528                                    SDValue Op2, SDValue Op3) {
4529  SDVTList VTs = getVTList(VT1, VT2);
4530  SDValue Ops[] = { Op1, Op2, Op3 };
4531  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4532}
4533
4534SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4535                                    MVT VT1, MVT VT2,
4536                                    const SDValue *Ops, unsigned NumOps) {
4537  SDVTList VTs = getVTList(VT1, VT2);
4538  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4539}
4540
4541SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4542                                    MVT VT1, MVT VT2, MVT VT3,
4543                                    SDValue Op1, SDValue Op2) {
4544  SDVTList VTs = getVTList(VT1, VT2, VT3);
4545  SDValue Ops[] = { Op1, Op2 };
4546  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4547}
4548
4549SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4550                                    MVT VT1, MVT VT2, MVT VT3,
4551                                    SDValue Op1, SDValue Op2,
4552                                    SDValue Op3) {
4553  SDVTList VTs = getVTList(VT1, VT2, VT3);
4554  SDValue Ops[] = { Op1, Op2, Op3 };
4555  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4556}
4557
4558SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4559                                    MVT VT1, MVT VT2, MVT VT3,
4560                                    const SDValue *Ops, unsigned NumOps) {
4561  SDVTList VTs = getVTList(VT1, VT2, VT3);
4562  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4563}
4564
4565SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4566                                    MVT VT2, MVT VT3, MVT VT4,
4567                                    const SDValue *Ops, unsigned NumOps) {
4568  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4569  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4570}
4571
4572SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4573                                    const std::vector<MVT> &ResultTys,
4574                                    const SDValue *Ops, unsigned NumOps) {
4575  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4576}
4577
4578/// getNodeIfExists - Get the specified node if it's already available, or
4579/// else return NULL.
4580SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4581                                      const SDValue *Ops, unsigned NumOps) {
4582  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4583    FoldingSetNodeID ID;
4584    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4585    void *IP = 0;
4586    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4587      return E;
4588  }
4589  return NULL;
4590}
4591
4592/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4593/// This can cause recursive merging of nodes in the DAG.
4594///
4595/// This version assumes From has a single result value.
4596///
4597void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4598                                      DAGUpdateListener *UpdateListener) {
4599  SDNode *From = FromN.getNode();
4600  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4601         "Cannot replace with this method!");
4602  assert(From != To.getNode() && "Cannot replace uses of with self");
4603
4604  // Iterate over all the existing uses of From. New uses will be added
4605  // to the beginning of the use list, which we avoid visiting.
4606  // This specifically avoids visiting uses of From that arise while the
4607  // replacement is happening, because any such uses would be the result
4608  // of CSE: If an existing node looks like From after one of its operands
4609  // is replaced by To, we don't want to replace of all its users with To
4610  // too. See PR3018 for more info.
4611  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4612  while (UI != UE) {
4613    SDNode *User = *UI;
4614
4615    // This node is about to morph, remove its old self from the CSE maps.
4616    RemoveNodeFromCSEMaps(User);
4617
4618    // A user can appear in a use list multiple times, and when this
4619    // happens the uses are usually next to each other in the list.
4620    // To help reduce the number of CSE recomputations, process all
4621    // the uses of this user that we can find this way.
4622    do {
4623      SDUse &Use = UI.getUse();
4624      ++UI;
4625      Use.set(To);
4626    } while (UI != UE && *UI == User);
4627
4628    // Now that we have modified User, add it back to the CSE maps.  If it
4629    // already exists there, recursively merge the results together.
4630    AddModifiedNodeToCSEMaps(User, UpdateListener);
4631  }
4632}
4633
4634/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4635/// This can cause recursive merging of nodes in the DAG.
4636///
4637/// This version assumes that for each value of From, there is a
4638/// corresponding value in To in the same position with the same type.
4639///
4640void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4641                                      DAGUpdateListener *UpdateListener) {
4642#ifndef NDEBUG
4643  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4644    assert((!From->hasAnyUseOfValue(i) ||
4645            From->getValueType(i) == To->getValueType(i)) &&
4646           "Cannot use this version of ReplaceAllUsesWith!");
4647#endif
4648
4649  // Handle the trivial case.
4650  if (From == To)
4651    return;
4652
4653  // Iterate over just the existing users of From. See the comments in
4654  // the ReplaceAllUsesWith above.
4655  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4656  while (UI != UE) {
4657    SDNode *User = *UI;
4658
4659    // This node is about to morph, remove its old self from the CSE maps.
4660    RemoveNodeFromCSEMaps(User);
4661
4662    // A user can appear in a use list multiple times, and when this
4663    // happens the uses are usually next to each other in the list.
4664    // To help reduce the number of CSE recomputations, process all
4665    // the uses of this user that we can find this way.
4666    do {
4667      SDUse &Use = UI.getUse();
4668      ++UI;
4669      Use.setNode(To);
4670    } while (UI != UE && *UI == User);
4671
4672    // Now that we have modified User, add it back to the CSE maps.  If it
4673    // already exists there, recursively merge the results together.
4674    AddModifiedNodeToCSEMaps(User, UpdateListener);
4675  }
4676}
4677
4678/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4679/// This can cause recursive merging of nodes in the DAG.
4680///
4681/// This version can replace From with any result values.  To must match the
4682/// number and types of values returned by From.
4683void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4684                                      const SDValue *To,
4685                                      DAGUpdateListener *UpdateListener) {
4686  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4687    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4688
4689  // Iterate over just the existing users of From. See the comments in
4690  // the ReplaceAllUsesWith above.
4691  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4692  while (UI != UE) {
4693    SDNode *User = *UI;
4694
4695    // This node is about to morph, remove its old self from the CSE maps.
4696    RemoveNodeFromCSEMaps(User);
4697
4698    // A user can appear in a use list multiple times, and when this
4699    // happens the uses are usually next to each other in the list.
4700    // To help reduce the number of CSE recomputations, process all
4701    // the uses of this user that we can find this way.
4702    do {
4703      SDUse &Use = UI.getUse();
4704      const SDValue &ToOp = To[Use.getResNo()];
4705      ++UI;
4706      Use.set(ToOp);
4707    } while (UI != UE && *UI == User);
4708
4709    // Now that we have modified User, add it back to the CSE maps.  If it
4710    // already exists there, recursively merge the results together.
4711    AddModifiedNodeToCSEMaps(User, UpdateListener);
4712  }
4713}
4714
4715/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4716/// uses of other values produced by From.getNode() alone.  The Deleted
4717/// vector is handled the same way as for ReplaceAllUsesWith.
4718void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4719                                             DAGUpdateListener *UpdateListener){
4720  // Handle the really simple, really trivial case efficiently.
4721  if (From == To) return;
4722
4723  // Handle the simple, trivial, case efficiently.
4724  if (From.getNode()->getNumValues() == 1) {
4725    ReplaceAllUsesWith(From, To, UpdateListener);
4726    return;
4727  }
4728
4729  // Iterate over just the existing users of From. See the comments in
4730  // the ReplaceAllUsesWith above.
4731  SDNode::use_iterator UI = From.getNode()->use_begin(),
4732                       UE = From.getNode()->use_end();
4733  while (UI != UE) {
4734    SDNode *User = *UI;
4735    bool UserRemovedFromCSEMaps = false;
4736
4737    // A user can appear in a use list multiple times, and when this
4738    // happens the uses are usually next to each other in the list.
4739    // To help reduce the number of CSE recomputations, process all
4740    // the uses of this user that we can find this way.
4741    do {
4742      SDUse &Use = UI.getUse();
4743
4744      // Skip uses of different values from the same node.
4745      if (Use.getResNo() != From.getResNo()) {
4746        ++UI;
4747        continue;
4748      }
4749
4750      // If this node hasn't been modified yet, it's still in the CSE maps,
4751      // so remove its old self from the CSE maps.
4752      if (!UserRemovedFromCSEMaps) {
4753        RemoveNodeFromCSEMaps(User);
4754        UserRemovedFromCSEMaps = true;
4755      }
4756
4757      ++UI;
4758      Use.set(To);
4759    } while (UI != UE && *UI == User);
4760
4761    // We are iterating over all uses of the From node, so if a use
4762    // doesn't use the specific value, no changes are made.
4763    if (!UserRemovedFromCSEMaps)
4764      continue;
4765
4766    // Now that we have modified User, add it back to the CSE maps.  If it
4767    // already exists there, recursively merge the results together.
4768    AddModifiedNodeToCSEMaps(User, UpdateListener);
4769  }
4770}
4771
4772namespace {
4773  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4774  /// to record information about a use.
4775  struct UseMemo {
4776    SDNode *User;
4777    unsigned Index;
4778    SDUse *Use;
4779  };
4780
4781  /// operator< - Sort Memos by User.
4782  bool operator<(const UseMemo &L, const UseMemo &R) {
4783    return (intptr_t)L.User < (intptr_t)R.User;
4784  }
4785}
4786
4787/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4788/// uses of other values produced by From.getNode() alone.  The same value
4789/// may appear in both the From and To list.  The Deleted vector is
4790/// handled the same way as for ReplaceAllUsesWith.
4791void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4792                                              const SDValue *To,
4793                                              unsigned Num,
4794                                              DAGUpdateListener *UpdateListener){
4795  // Handle the simple, trivial case efficiently.
4796  if (Num == 1)
4797    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4798
4799  // Read up all the uses and make records of them. This helps
4800  // processing new uses that are introduced during the
4801  // replacement process.
4802  SmallVector<UseMemo, 4> Uses;
4803  for (unsigned i = 0; i != Num; ++i) {
4804    unsigned FromResNo = From[i].getResNo();
4805    SDNode *FromNode = From[i].getNode();
4806    for (SDNode::use_iterator UI = FromNode->use_begin(),
4807         E = FromNode->use_end(); UI != E; ++UI) {
4808      SDUse &Use = UI.getUse();
4809      if (Use.getResNo() == FromResNo) {
4810        UseMemo Memo = { *UI, i, &Use };
4811        Uses.push_back(Memo);
4812      }
4813    }
4814  }
4815
4816  // Sort the uses, so that all the uses from a given User are together.
4817  std::sort(Uses.begin(), Uses.end());
4818
4819  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4820       UseIndex != UseIndexEnd; ) {
4821    // We know that this user uses some value of From.  If it is the right
4822    // value, update it.
4823    SDNode *User = Uses[UseIndex].User;
4824
4825    // This node is about to morph, remove its old self from the CSE maps.
4826    RemoveNodeFromCSEMaps(User);
4827
4828    // The Uses array is sorted, so all the uses for a given User
4829    // are next to each other in the list.
4830    // To help reduce the number of CSE recomputations, process all
4831    // the uses of this user that we can find this way.
4832    do {
4833      unsigned i = Uses[UseIndex].Index;
4834      SDUse &Use = *Uses[UseIndex].Use;
4835      ++UseIndex;
4836
4837      Use.set(To[i]);
4838    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4839
4840    // Now that we have modified User, add it back to the CSE maps.  If it
4841    // already exists there, recursively merge the results together.
4842    AddModifiedNodeToCSEMaps(User, UpdateListener);
4843  }
4844}
4845
4846/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4847/// based on their topological order. It returns the maximum id and a vector
4848/// of the SDNodes* in assigned order by reference.
4849unsigned SelectionDAG::AssignTopologicalOrder() {
4850
4851  unsigned DAGSize = 0;
4852
4853  // SortedPos tracks the progress of the algorithm. Nodes before it are
4854  // sorted, nodes after it are unsorted. When the algorithm completes
4855  // it is at the end of the list.
4856  allnodes_iterator SortedPos = allnodes_begin();
4857
4858  // Visit all the nodes. Move nodes with no operands to the front of
4859  // the list immediately. Annotate nodes that do have operands with their
4860  // operand count. Before we do this, the Node Id fields of the nodes
4861  // may contain arbitrary values. After, the Node Id fields for nodes
4862  // before SortedPos will contain the topological sort index, and the
4863  // Node Id fields for nodes At SortedPos and after will contain the
4864  // count of outstanding operands.
4865  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4866    SDNode *N = I++;
4867    unsigned Degree = N->getNumOperands();
4868    if (Degree == 0) {
4869      // A node with no uses, add it to the result array immediately.
4870      N->setNodeId(DAGSize++);
4871      allnodes_iterator Q = N;
4872      if (Q != SortedPos)
4873        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4874      ++SortedPos;
4875    } else {
4876      // Temporarily use the Node Id as scratch space for the degree count.
4877      N->setNodeId(Degree);
4878    }
4879  }
4880
4881  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4882  // such that by the time the end is reached all nodes will be sorted.
4883  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4884    SDNode *N = I;
4885    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4886         UI != UE; ++UI) {
4887      SDNode *P = *UI;
4888      unsigned Degree = P->getNodeId();
4889      --Degree;
4890      if (Degree == 0) {
4891        // All of P's operands are sorted, so P may sorted now.
4892        P->setNodeId(DAGSize++);
4893        if (P != SortedPos)
4894          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4895        ++SortedPos;
4896      } else {
4897        // Update P's outstanding operand count.
4898        P->setNodeId(Degree);
4899      }
4900    }
4901  }
4902
4903  assert(SortedPos == AllNodes.end() &&
4904         "Topological sort incomplete!");
4905  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4906         "First node in topological sort is not the entry token!");
4907  assert(AllNodes.front().getNodeId() == 0 &&
4908         "First node in topological sort has non-zero id!");
4909  assert(AllNodes.front().getNumOperands() == 0 &&
4910         "First node in topological sort has operands!");
4911  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4912         "Last node in topologic sort has unexpected id!");
4913  assert(AllNodes.back().use_empty() &&
4914         "Last node in topologic sort has users!");
4915  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4916  return DAGSize;
4917}
4918
4919
4920
4921//===----------------------------------------------------------------------===//
4922//                              SDNode Class
4923//===----------------------------------------------------------------------===//
4924
4925HandleSDNode::~HandleSDNode() {
4926  DropOperands();
4927}
4928
4929GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
4930                                         MVT VT, int64_t o, unsigned char TF)
4931  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
4932    Offset(o), TargetFlags(TF) {
4933  TheGlobal = const_cast<GlobalValue*>(GA);
4934}
4935
4936MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4937                     const Value *srcValue, int SVO,
4938                     unsigned alignment, bool vol)
4939 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4940  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4941  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4942  assert(getAlignment() == alignment && "Alignment representation error!");
4943  assert(isVolatile() == vol && "Volatile representation error!");
4944}
4945
4946MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4947                     const SDValue *Ops,
4948                     unsigned NumOps, MVT memvt, const Value *srcValue,
4949                     int SVO, unsigned alignment, bool vol)
4950   : SDNode(Opc, dl, VTs, Ops, NumOps),
4951     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4952  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4953  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4954  assert(getAlignment() == alignment && "Alignment representation error!");
4955  assert(isVolatile() == vol && "Volatile representation error!");
4956}
4957
4958/// getMemOperand - Return a MachineMemOperand object describing the memory
4959/// reference performed by this memory reference.
4960MachineMemOperand MemSDNode::getMemOperand() const {
4961  int Flags = 0;
4962  if (isa<LoadSDNode>(this))
4963    Flags = MachineMemOperand::MOLoad;
4964  else if (isa<StoreSDNode>(this))
4965    Flags = MachineMemOperand::MOStore;
4966  else if (isa<AtomicSDNode>(this)) {
4967    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4968  }
4969  else {
4970    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4971    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4972    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4973    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4974  }
4975
4976  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4977  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4978
4979  // Check if the memory reference references a frame index
4980  const FrameIndexSDNode *FI =
4981  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4982  if (!getSrcValue() && FI)
4983    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4984                             Flags, 0, Size, getAlignment());
4985  else
4986    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4987                             Size, getAlignment());
4988}
4989
4990/// Profile - Gather unique data for the node.
4991///
4992void SDNode::Profile(FoldingSetNodeID &ID) const {
4993  AddNodeIDNode(ID, this);
4994}
4995
4996static ManagedStatic<std::set<MVT, MVT::compareRawBits> > EVTs;
4997static MVT VTs[MVT::LAST_VALUETYPE];
4998static ManagedStatic<sys::SmartMutex<true> > VTMutex;
4999
5000/// getValueTypeList - Return a pointer to the specified value type.
5001///
5002const MVT *SDNode::getValueTypeList(MVT VT) {
5003  sys::SmartScopedLock<true> Lock(*VTMutex);
5004  if (VT.isExtended()) {
5005    return &(*EVTs->insert(VT).first);
5006  } else {
5007    VTs[VT.getSimpleVT()] = VT;
5008    return &VTs[VT.getSimpleVT()];
5009  }
5010}
5011
5012/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5013/// indicated value.  This method ignores uses of other values defined by this
5014/// operation.
5015bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5016  assert(Value < getNumValues() && "Bad value!");
5017
5018  // TODO: Only iterate over uses of a given value of the node
5019  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5020    if (UI.getUse().getResNo() == Value) {
5021      if (NUses == 0)
5022        return false;
5023      --NUses;
5024    }
5025  }
5026
5027  // Found exactly the right number of uses?
5028  return NUses == 0;
5029}
5030
5031
5032/// hasAnyUseOfValue - Return true if there are any use of the indicated
5033/// value. This method ignores uses of other values defined by this operation.
5034bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5035  assert(Value < getNumValues() && "Bad value!");
5036
5037  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5038    if (UI.getUse().getResNo() == Value)
5039      return true;
5040
5041  return false;
5042}
5043
5044
5045/// isOnlyUserOf - Return true if this node is the only use of N.
5046///
5047bool SDNode::isOnlyUserOf(SDNode *N) const {
5048  bool Seen = false;
5049  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5050    SDNode *User = *I;
5051    if (User == this)
5052      Seen = true;
5053    else
5054      return false;
5055  }
5056
5057  return Seen;
5058}
5059
5060/// isOperand - Return true if this node is an operand of N.
5061///
5062bool SDValue::isOperandOf(SDNode *N) const {
5063  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5064    if (*this == N->getOperand(i))
5065      return true;
5066  return false;
5067}
5068
5069bool SDNode::isOperandOf(SDNode *N) const {
5070  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5071    if (this == N->OperandList[i].getNode())
5072      return true;
5073  return false;
5074}
5075
5076/// reachesChainWithoutSideEffects - Return true if this operand (which must
5077/// be a chain) reaches the specified operand without crossing any
5078/// side-effecting instructions.  In practice, this looks through token
5079/// factors and non-volatile loads.  In order to remain efficient, this only
5080/// looks a couple of nodes in, it does not do an exhaustive search.
5081bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5082                                               unsigned Depth) const {
5083  if (*this == Dest) return true;
5084
5085  // Don't search too deeply, we just want to be able to see through
5086  // TokenFactor's etc.
5087  if (Depth == 0) return false;
5088
5089  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5090  // of the operands of the TF reach dest, then we can do the xform.
5091  if (getOpcode() == ISD::TokenFactor) {
5092    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5093      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5094        return true;
5095    return false;
5096  }
5097
5098  // Loads don't have side effects, look through them.
5099  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5100    if (!Ld->isVolatile())
5101      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5102  }
5103  return false;
5104}
5105
5106
5107static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5108                            SmallPtrSet<SDNode *, 32> &Visited) {
5109  if (found || !Visited.insert(N))
5110    return;
5111
5112  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5113    SDNode *Op = N->getOperand(i).getNode();
5114    if (Op == P) {
5115      found = true;
5116      return;
5117    }
5118    findPredecessor(Op, P, found, Visited);
5119  }
5120}
5121
5122/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5123/// is either an operand of N or it can be reached by recursively traversing
5124/// up the operands.
5125/// NOTE: this is an expensive method. Use it carefully.
5126bool SDNode::isPredecessorOf(SDNode *N) const {
5127  SmallPtrSet<SDNode *, 32> Visited;
5128  bool found = false;
5129  findPredecessor(N, this, found, Visited);
5130  return found;
5131}
5132
5133uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5134  assert(Num < NumOperands && "Invalid child # of SDNode!");
5135  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5136}
5137
5138std::string SDNode::getOperationName(const SelectionDAG *G) const {
5139  switch (getOpcode()) {
5140  default:
5141    if (getOpcode() < ISD::BUILTIN_OP_END)
5142      return "<<Unknown DAG Node>>";
5143    if (isMachineOpcode()) {
5144      if (G)
5145        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5146          if (getMachineOpcode() < TII->getNumOpcodes())
5147            return TII->get(getMachineOpcode()).getName();
5148      return "<<Unknown Machine Node>>";
5149    }
5150    if (G) {
5151      const TargetLowering &TLI = G->getTargetLoweringInfo();
5152      const char *Name = TLI.getTargetNodeName(getOpcode());
5153      if (Name) return Name;
5154      return "<<Unknown Target Node>>";
5155    }
5156    return "<<Unknown Node>>";
5157
5158#ifndef NDEBUG
5159  case ISD::DELETED_NODE:
5160    return "<<Deleted Node!>>";
5161#endif
5162  case ISD::PREFETCH:      return "Prefetch";
5163  case ISD::MEMBARRIER:    return "MemBarrier";
5164  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5165  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5166  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5167  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5168  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5169  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5170  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5171  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5172  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5173  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5174  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5175  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5176  case ISD::PCMARKER:      return "PCMarker";
5177  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5178  case ISD::SRCVALUE:      return "SrcValue";
5179  case ISD::MEMOPERAND:    return "MemOperand";
5180  case ISD::EntryToken:    return "EntryToken";
5181  case ISD::TokenFactor:   return "TokenFactor";
5182  case ISD::AssertSext:    return "AssertSext";
5183  case ISD::AssertZext:    return "AssertZext";
5184
5185  case ISD::BasicBlock:    return "BasicBlock";
5186  case ISD::VALUETYPE:     return "ValueType";
5187  case ISD::Register:      return "Register";
5188
5189  case ISD::Constant:      return "Constant";
5190  case ISD::ConstantFP:    return "ConstantFP";
5191  case ISD::GlobalAddress: return "GlobalAddress";
5192  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5193  case ISD::FrameIndex:    return "FrameIndex";
5194  case ISD::JumpTable:     return "JumpTable";
5195  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5196  case ISD::RETURNADDR: return "RETURNADDR";
5197  case ISD::FRAMEADDR: return "FRAMEADDR";
5198  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5199  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5200  case ISD::EHSELECTION: return "EHSELECTION";
5201  case ISD::EH_RETURN: return "EH_RETURN";
5202  case ISD::ConstantPool:  return "ConstantPool";
5203  case ISD::ExternalSymbol: return "ExternalSymbol";
5204  case ISD::INTRINSIC_WO_CHAIN: {
5205    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5206    return Intrinsic::getName((Intrinsic::ID)IID);
5207  }
5208  case ISD::INTRINSIC_VOID:
5209  case ISD::INTRINSIC_W_CHAIN: {
5210    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5211    return Intrinsic::getName((Intrinsic::ID)IID);
5212  }
5213
5214  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5215  case ISD::TargetConstant: return "TargetConstant";
5216  case ISD::TargetConstantFP:return "TargetConstantFP";
5217  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5218  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5219  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5220  case ISD::TargetJumpTable:  return "TargetJumpTable";
5221  case ISD::TargetConstantPool:  return "TargetConstantPool";
5222  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5223
5224  case ISD::CopyToReg:     return "CopyToReg";
5225  case ISD::CopyFromReg:   return "CopyFromReg";
5226  case ISD::UNDEF:         return "undef";
5227  case ISD::MERGE_VALUES:  return "merge_values";
5228  case ISD::INLINEASM:     return "inlineasm";
5229  case ISD::DBG_LABEL:     return "dbg_label";
5230  case ISD::EH_LABEL:      return "eh_label";
5231  case ISD::DECLARE:       return "declare";
5232  case ISD::HANDLENODE:    return "handlenode";
5233
5234  // Unary operators
5235  case ISD::FABS:   return "fabs";
5236  case ISD::FNEG:   return "fneg";
5237  case ISD::FSQRT:  return "fsqrt";
5238  case ISD::FSIN:   return "fsin";
5239  case ISD::FCOS:   return "fcos";
5240  case ISD::FPOWI:  return "fpowi";
5241  case ISD::FPOW:   return "fpow";
5242  case ISD::FTRUNC: return "ftrunc";
5243  case ISD::FFLOOR: return "ffloor";
5244  case ISD::FCEIL:  return "fceil";
5245  case ISD::FRINT:  return "frint";
5246  case ISD::FNEARBYINT: return "fnearbyint";
5247
5248  // Binary operators
5249  case ISD::ADD:    return "add";
5250  case ISD::SUB:    return "sub";
5251  case ISD::MUL:    return "mul";
5252  case ISD::MULHU:  return "mulhu";
5253  case ISD::MULHS:  return "mulhs";
5254  case ISD::SDIV:   return "sdiv";
5255  case ISD::UDIV:   return "udiv";
5256  case ISD::SREM:   return "srem";
5257  case ISD::UREM:   return "urem";
5258  case ISD::SMUL_LOHI:  return "smul_lohi";
5259  case ISD::UMUL_LOHI:  return "umul_lohi";
5260  case ISD::SDIVREM:    return "sdivrem";
5261  case ISD::UDIVREM:    return "udivrem";
5262  case ISD::AND:    return "and";
5263  case ISD::OR:     return "or";
5264  case ISD::XOR:    return "xor";
5265  case ISD::SHL:    return "shl";
5266  case ISD::SRA:    return "sra";
5267  case ISD::SRL:    return "srl";
5268  case ISD::ROTL:   return "rotl";
5269  case ISD::ROTR:   return "rotr";
5270  case ISD::FADD:   return "fadd";
5271  case ISD::FSUB:   return "fsub";
5272  case ISD::FMUL:   return "fmul";
5273  case ISD::FDIV:   return "fdiv";
5274  case ISD::FREM:   return "frem";
5275  case ISD::FCOPYSIGN: return "fcopysign";
5276  case ISD::FGETSIGN:  return "fgetsign";
5277
5278  case ISD::SETCC:       return "setcc";
5279  case ISD::VSETCC:      return "vsetcc";
5280  case ISD::SELECT:      return "select";
5281  case ISD::SELECT_CC:   return "select_cc";
5282  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5283  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5284  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5285  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5286  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5287  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5288  case ISD::CARRY_FALSE:         return "carry_false";
5289  case ISD::ADDC:        return "addc";
5290  case ISD::ADDE:        return "adde";
5291  case ISD::SADDO:       return "saddo";
5292  case ISD::UADDO:       return "uaddo";
5293  case ISD::SSUBO:       return "ssubo";
5294  case ISD::USUBO:       return "usubo";
5295  case ISD::SMULO:       return "smulo";
5296  case ISD::UMULO:       return "umulo";
5297  case ISD::SUBC:        return "subc";
5298  case ISD::SUBE:        return "sube";
5299  case ISD::SHL_PARTS:   return "shl_parts";
5300  case ISD::SRA_PARTS:   return "sra_parts";
5301  case ISD::SRL_PARTS:   return "srl_parts";
5302
5303  // Conversion operators.
5304  case ISD::SIGN_EXTEND: return "sign_extend";
5305  case ISD::ZERO_EXTEND: return "zero_extend";
5306  case ISD::ANY_EXTEND:  return "any_extend";
5307  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5308  case ISD::TRUNCATE:    return "truncate";
5309  case ISD::FP_ROUND:    return "fp_round";
5310  case ISD::FLT_ROUNDS_: return "flt_rounds";
5311  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5312  case ISD::FP_EXTEND:   return "fp_extend";
5313
5314  case ISD::SINT_TO_FP:  return "sint_to_fp";
5315  case ISD::UINT_TO_FP:  return "uint_to_fp";
5316  case ISD::FP_TO_SINT:  return "fp_to_sint";
5317  case ISD::FP_TO_UINT:  return "fp_to_uint";
5318  case ISD::BIT_CONVERT: return "bit_convert";
5319
5320  case ISD::CONVERT_RNDSAT: {
5321    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5322    default: llvm_unreachable("Unknown cvt code!");
5323    case ISD::CVT_FF:  return "cvt_ff";
5324    case ISD::CVT_FS:  return "cvt_fs";
5325    case ISD::CVT_FU:  return "cvt_fu";
5326    case ISD::CVT_SF:  return "cvt_sf";
5327    case ISD::CVT_UF:  return "cvt_uf";
5328    case ISD::CVT_SS:  return "cvt_ss";
5329    case ISD::CVT_SU:  return "cvt_su";
5330    case ISD::CVT_US:  return "cvt_us";
5331    case ISD::CVT_UU:  return "cvt_uu";
5332    }
5333  }
5334
5335    // Control flow instructions
5336  case ISD::BR:      return "br";
5337  case ISD::BRIND:   return "brind";
5338  case ISD::BR_JT:   return "br_jt";
5339  case ISD::BRCOND:  return "brcond";
5340  case ISD::BR_CC:   return "br_cc";
5341  case ISD::CALLSEQ_START:  return "callseq_start";
5342  case ISD::CALLSEQ_END:    return "callseq_end";
5343
5344    // Other operators
5345  case ISD::LOAD:               return "load";
5346  case ISD::STORE:              return "store";
5347  case ISD::VAARG:              return "vaarg";
5348  case ISD::VACOPY:             return "vacopy";
5349  case ISD::VAEND:              return "vaend";
5350  case ISD::VASTART:            return "vastart";
5351  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5352  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5353  case ISD::BUILD_PAIR:         return "build_pair";
5354  case ISD::STACKSAVE:          return "stacksave";
5355  case ISD::STACKRESTORE:       return "stackrestore";
5356  case ISD::TRAP:               return "trap";
5357
5358  // Bit manipulation
5359  case ISD::BSWAP:   return "bswap";
5360  case ISD::CTPOP:   return "ctpop";
5361  case ISD::CTTZ:    return "cttz";
5362  case ISD::CTLZ:    return "ctlz";
5363
5364  // Debug info
5365  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5366  case ISD::DEBUG_LOC: return "debug_loc";
5367
5368  // Trampolines
5369  case ISD::TRAMPOLINE: return "trampoline";
5370
5371  case ISD::CONDCODE:
5372    switch (cast<CondCodeSDNode>(this)->get()) {
5373    default: llvm_unreachable("Unknown setcc condition!");
5374    case ISD::SETOEQ:  return "setoeq";
5375    case ISD::SETOGT:  return "setogt";
5376    case ISD::SETOGE:  return "setoge";
5377    case ISD::SETOLT:  return "setolt";
5378    case ISD::SETOLE:  return "setole";
5379    case ISD::SETONE:  return "setone";
5380
5381    case ISD::SETO:    return "seto";
5382    case ISD::SETUO:   return "setuo";
5383    case ISD::SETUEQ:  return "setue";
5384    case ISD::SETUGT:  return "setugt";
5385    case ISD::SETUGE:  return "setuge";
5386    case ISD::SETULT:  return "setult";
5387    case ISD::SETULE:  return "setule";
5388    case ISD::SETUNE:  return "setune";
5389
5390    case ISD::SETEQ:   return "seteq";
5391    case ISD::SETGT:   return "setgt";
5392    case ISD::SETGE:   return "setge";
5393    case ISD::SETLT:   return "setlt";
5394    case ISD::SETLE:   return "setle";
5395    case ISD::SETNE:   return "setne";
5396    }
5397  }
5398}
5399
5400const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5401  switch (AM) {
5402  default:
5403    return "";
5404  case ISD::PRE_INC:
5405    return "<pre-inc>";
5406  case ISD::PRE_DEC:
5407    return "<pre-dec>";
5408  case ISD::POST_INC:
5409    return "<post-inc>";
5410  case ISD::POST_DEC:
5411    return "<post-dec>";
5412  }
5413}
5414
5415std::string ISD::ArgFlagsTy::getArgFlagsString() {
5416  std::string S = "< ";
5417
5418  if (isZExt())
5419    S += "zext ";
5420  if (isSExt())
5421    S += "sext ";
5422  if (isInReg())
5423    S += "inreg ";
5424  if (isSRet())
5425    S += "sret ";
5426  if (isByVal())
5427    S += "byval ";
5428  if (isNest())
5429    S += "nest ";
5430  if (getByValAlign())
5431    S += "byval-align:" + utostr(getByValAlign()) + " ";
5432  if (getOrigAlign())
5433    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5434  if (getByValSize())
5435    S += "byval-size:" + utostr(getByValSize()) + " ";
5436  return S + ">";
5437}
5438
5439void SDNode::dump() const { dump(0); }
5440void SDNode::dump(const SelectionDAG *G) const {
5441  print(errs(), G);
5442}
5443
5444void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5445  OS << (void*)this << ": ";
5446
5447  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5448    if (i) OS << ",";
5449    if (getValueType(i) == MVT::Other)
5450      OS << "ch";
5451    else
5452      OS << getValueType(i).getMVTString();
5453  }
5454  OS << " = " << getOperationName(G);
5455}
5456
5457void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5458  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5459    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(this);
5460    OS << "<";
5461    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5462      int Idx = SVN->getMaskElt(i);
5463      if (i) OS << ",";
5464      if (Idx < 0)
5465        OS << "u";
5466      else
5467        OS << Idx;
5468    }
5469    OS << ">";
5470  }
5471
5472  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5473    OS << '<' << CSDN->getAPIntValue() << '>';
5474  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5475    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5476      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5477    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5478      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5479    else {
5480      OS << "<APFloat(";
5481      CSDN->getValueAPF().bitcastToAPInt().dump();
5482      OS << ")>";
5483    }
5484  } else if (const GlobalAddressSDNode *GADN =
5485             dyn_cast<GlobalAddressSDNode>(this)) {
5486    int64_t offset = GADN->getOffset();
5487    OS << '<';
5488    WriteAsOperand(OS, GADN->getGlobal());
5489    OS << '>';
5490    if (offset > 0)
5491      OS << " + " << offset;
5492    else
5493      OS << " " << offset;
5494    if (unsigned int TF = GADN->getTargetFlags())
5495      OS << " [TF=" << TF << ']';
5496  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5497    OS << "<" << FIDN->getIndex() << ">";
5498  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5499    OS << "<" << JTDN->getIndex() << ">";
5500    if (unsigned int TF = JTDN->getTargetFlags())
5501      OS << " [TF=" << TF << ']';
5502  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5503    int offset = CP->getOffset();
5504    if (CP->isMachineConstantPoolEntry())
5505      OS << "<" << *CP->getMachineCPVal() << ">";
5506    else
5507      OS << "<" << *CP->getConstVal() << ">";
5508    if (offset > 0)
5509      OS << " + " << offset;
5510    else
5511      OS << " " << offset;
5512    if (unsigned int TF = CP->getTargetFlags())
5513      OS << " [TF=" << TF << ']';
5514  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5515    OS << "<";
5516    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5517    if (LBB)
5518      OS << LBB->getName() << " ";
5519    OS << (const void*)BBDN->getBasicBlock() << ">";
5520  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5521    if (G && R->getReg() &&
5522        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5523      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5524    } else {
5525      OS << " #" << R->getReg();
5526    }
5527  } else if (const ExternalSymbolSDNode *ES =
5528             dyn_cast<ExternalSymbolSDNode>(this)) {
5529    OS << "'" << ES->getSymbol() << "'";
5530    if (unsigned int TF = ES->getTargetFlags())
5531      OS << " [TF=" << TF << ']';
5532  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5533    if (M->getValue())
5534      OS << "<" << M->getValue() << ">";
5535    else
5536      OS << "<null>";
5537  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5538    if (M->MO.getValue())
5539      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5540    else
5541      OS << "<null:" << M->MO.getOffset() << ">";
5542  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5543    OS << ":" << N->getVT().getMVTString();
5544  }
5545  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5546    const Value *SrcValue = LD->getSrcValue();
5547    int SrcOffset = LD->getSrcValueOffset();
5548    OS << " <";
5549    if (SrcValue)
5550      OS << SrcValue;
5551    else
5552      OS << "null";
5553    OS << ":" << SrcOffset << ">";
5554
5555    bool doExt = true;
5556    switch (LD->getExtensionType()) {
5557    default: doExt = false; break;
5558    case ISD::EXTLOAD: OS << " <anyext "; break;
5559    case ISD::SEXTLOAD: OS << " <sext "; break;
5560    case ISD::ZEXTLOAD: OS << " <zext "; break;
5561    }
5562    if (doExt)
5563      OS << LD->getMemoryVT().getMVTString() << ">";
5564
5565    const char *AM = getIndexedModeName(LD->getAddressingMode());
5566    if (*AM)
5567      OS << " " << AM;
5568    if (LD->isVolatile())
5569      OS << " <volatile>";
5570    OS << " alignment=" << LD->getAlignment();
5571  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5572    const Value *SrcValue = ST->getSrcValue();
5573    int SrcOffset = ST->getSrcValueOffset();
5574    OS << " <";
5575    if (SrcValue)
5576      OS << SrcValue;
5577    else
5578      OS << "null";
5579    OS << ":" << SrcOffset << ">";
5580
5581    if (ST->isTruncatingStore())
5582      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5583
5584    const char *AM = getIndexedModeName(ST->getAddressingMode());
5585    if (*AM)
5586      OS << " " << AM;
5587    if (ST->isVolatile())
5588      OS << " <volatile>";
5589    OS << " alignment=" << ST->getAlignment();
5590  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5591    const Value *SrcValue = AT->getSrcValue();
5592    int SrcOffset = AT->getSrcValueOffset();
5593    OS << " <";
5594    if (SrcValue)
5595      OS << SrcValue;
5596    else
5597      OS << "null";
5598    OS << ":" << SrcOffset << ">";
5599    if (AT->isVolatile())
5600      OS << " <volatile>";
5601    OS << " alignment=" << AT->getAlignment();
5602  }
5603}
5604
5605void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5606  print_types(OS, G);
5607  OS << " ";
5608  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5609    if (i) OS << ", ";
5610    OS << (void*)getOperand(i).getNode();
5611    if (unsigned RN = getOperand(i).getResNo())
5612      OS << ":" << RN;
5613  }
5614  print_details(OS, G);
5615}
5616
5617static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5618  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5619    if (N->getOperand(i).getNode()->hasOneUse())
5620      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5621    else
5622      cerr << "\n" << std::string(indent+2, ' ')
5623           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5624
5625
5626  cerr << "\n" << std::string(indent, ' ');
5627  N->dump(G);
5628}
5629
5630void SelectionDAG::dump() const {
5631  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5632
5633  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5634       I != E; ++I) {
5635    const SDNode *N = I;
5636    if (!N->hasOneUse() && N != getRoot().getNode())
5637      DumpNodes(N, 2, this);
5638  }
5639
5640  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5641
5642  cerr << "\n\n";
5643}
5644
5645void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5646  print_types(OS, G);
5647  print_details(OS, G);
5648}
5649
5650typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5651static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5652                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5653  if (!once.insert(N))          // If we've been here before, return now.
5654    return;
5655  // Dump the current SDNode, but don't end the line yet.
5656  OS << std::string(indent, ' ');
5657  N->printr(OS, G);
5658  // Having printed this SDNode, walk the children:
5659  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5660    const SDNode *child = N->getOperand(i).getNode();
5661    if (i) OS << ",";
5662    OS << " ";
5663    if (child->getNumOperands() == 0) {
5664      // This child has no grandchildren; print it inline right here.
5665      child->printr(OS, G);
5666      once.insert(child);
5667    } else {          // Just the address.  FIXME: also print the child's opcode
5668      OS << (void*)child;
5669      if (unsigned RN = N->getOperand(i).getResNo())
5670        OS << ":" << RN;
5671    }
5672  }
5673  OS << "\n";
5674  // Dump children that have grandchildren on their own line(s).
5675  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5676    const SDNode *child = N->getOperand(i).getNode();
5677    DumpNodesr(OS, child, indent+2, G, once);
5678  }
5679}
5680
5681void SDNode::dumpr() const {
5682  VisitedSDNodeSet once;
5683  DumpNodesr(errs(), this, 0, 0, once);
5684}
5685
5686
5687// getAddressSpace - Return the address space this GlobalAddress belongs to.
5688unsigned GlobalAddressSDNode::getAddressSpace() const {
5689  return getGlobal()->getType()->getAddressSpace();
5690}
5691
5692
5693const Type *ConstantPoolSDNode::getType() const {
5694  if (isMachineConstantPoolEntry())
5695    return Val.MachineCPVal->getType();
5696  return Val.ConstVal->getType();
5697}
5698
5699bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5700                                        APInt &SplatUndef,
5701                                        unsigned &SplatBitSize,
5702                                        bool &HasAnyUndefs,
5703                                        unsigned MinSplatBits) {
5704  MVT VT = getValueType(0);
5705  assert(VT.isVector() && "Expected a vector type");
5706  unsigned sz = VT.getSizeInBits();
5707  if (MinSplatBits > sz)
5708    return false;
5709
5710  SplatValue = APInt(sz, 0);
5711  SplatUndef = APInt(sz, 0);
5712
5713  // Get the bits.  Bits with undefined values (when the corresponding element
5714  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5715  // in SplatValue.  If any of the values are not constant, give up and return
5716  // false.
5717  unsigned int nOps = getNumOperands();
5718  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5719  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5720  for (unsigned i = 0; i < nOps; ++i) {
5721    SDValue OpVal = getOperand(i);
5722    unsigned BitPos = i * EltBitSize;
5723
5724    if (OpVal.getOpcode() == ISD::UNDEF)
5725      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5726    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5727      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5728                     zextOrTrunc(sz) << BitPos);
5729    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5730      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5731     else
5732      return false;
5733  }
5734
5735  // The build_vector is all constants or undefs.  Find the smallest element
5736  // size that splats the vector.
5737
5738  HasAnyUndefs = (SplatUndef != 0);
5739  while (sz > 8) {
5740
5741    unsigned HalfSize = sz / 2;
5742    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5743    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5744    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5745    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5746
5747    // If the two halves do not match (ignoring undef bits), stop here.
5748    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5749        MinSplatBits > HalfSize)
5750      break;
5751
5752    SplatValue = HighValue | LowValue;
5753    SplatUndef = HighUndef & LowUndef;
5754
5755    sz = HalfSize;
5756  }
5757
5758  SplatBitSize = sz;
5759  return true;
5760}
5761
5762bool ShuffleVectorSDNode::isSplatMask(const int *Mask, MVT VT) {
5763  // Find the first non-undef value in the shuffle mask.
5764  unsigned i, e;
5765  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5766    /* search */;
5767
5768  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5769
5770  // Make sure all remaining elements are either undef or the same as the first
5771  // non-undef value.
5772  for (int Idx = Mask[i]; i != e; ++i)
5773    if (Mask[i] >= 0 && Mask[i] != Idx)
5774      return false;
5775  return true;
5776}
5777