SelectionDAG.cpp revision 998011927000c8150499bb887ca0d68bb1ff38c2
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include <iostream>
25#include <set>
26#include <cmath>
27#include <algorithm>
28using namespace llvm;
29
30// Temporary boolean for testing the dag combiner
31namespace llvm {
32  extern bool CombinerEnabled;
33}
34
35static bool isCommutativeBinOp(unsigned Opcode) {
36  switch (Opcode) {
37  case ISD::ADD:
38  case ISD::MUL:
39  case ISD::AND:
40  case ISD::OR:
41  case ISD::XOR: return true;
42  default: return false; // FIXME: Need commutative info for user ops!
43  }
44}
45
46static bool isAssociativeBinOp(unsigned Opcode) {
47  switch (Opcode) {
48  case ISD::ADD:
49  case ISD::MUL:
50  case ISD::AND:
51  case ISD::OR:
52  case ISD::XOR: return true;
53  default: return false; // FIXME: Need associative info for user ops!
54  }
55}
56
57// isInvertibleForFree - Return true if there is no cost to emitting the logical
58// inverse of this node.
59static bool isInvertibleForFree(SDOperand N) {
60  if (isa<ConstantSDNode>(N.Val)) return true;
61  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
62    return true;
63  return false;
64}
65
66//===----------------------------------------------------------------------===//
67//                              ConstantFPSDNode Class
68//===----------------------------------------------------------------------===//
69
70/// isExactlyValue - We don't rely on operator== working on double values, as
71/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
72/// As such, this method can be used to do an exact bit-for-bit comparison of
73/// two floating point values.
74bool ConstantFPSDNode::isExactlyValue(double V) const {
75  return DoubleToBits(V) == DoubleToBits(Value);
76}
77
78//===----------------------------------------------------------------------===//
79//                              ISD Class
80//===----------------------------------------------------------------------===//
81
82/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
83/// when given the operation for (X op Y).
84ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
85  // To perform this operation, we just need to swap the L and G bits of the
86  // operation.
87  unsigned OldL = (Operation >> 2) & 1;
88  unsigned OldG = (Operation >> 1) & 1;
89  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
90                       (OldL << 1) |       // New G bit
91                       (OldG << 2));        // New L bit.
92}
93
94/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
95/// 'op' is a valid SetCC operation.
96ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
97  unsigned Operation = Op;
98  if (isInteger)
99    Operation ^= 7;   // Flip L, G, E bits, but not U.
100  else
101    Operation ^= 15;  // Flip all of the condition bits.
102  if (Operation > ISD::SETTRUE2)
103    Operation &= ~8;     // Don't let N and U bits get set.
104  return ISD::CondCode(Operation);
105}
106
107
108/// isSignedOp - For an integer comparison, return 1 if the comparison is a
109/// signed operation and 2 if the result is an unsigned comparison.  Return zero
110/// if the operation does not depend on the sign of the input (setne and seteq).
111static int isSignedOp(ISD::CondCode Opcode) {
112  switch (Opcode) {
113  default: assert(0 && "Illegal integer setcc operation!");
114  case ISD::SETEQ:
115  case ISD::SETNE: return 0;
116  case ISD::SETLT:
117  case ISD::SETLE:
118  case ISD::SETGT:
119  case ISD::SETGE: return 1;
120  case ISD::SETULT:
121  case ISD::SETULE:
122  case ISD::SETUGT:
123  case ISD::SETUGE: return 2;
124  }
125}
126
127/// getSetCCOrOperation - Return the result of a logical OR between different
128/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
129/// returns SETCC_INVALID if it is not possible to represent the resultant
130/// comparison.
131ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
132                                       bool isInteger) {
133  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
134    // Cannot fold a signed integer setcc with an unsigned integer setcc.
135    return ISD::SETCC_INVALID;
136
137  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
138
139  // If the N and U bits get set then the resultant comparison DOES suddenly
140  // care about orderedness, and is true when ordered.
141  if (Op > ISD::SETTRUE2)
142    Op &= ~16;     // Clear the N bit.
143  return ISD::CondCode(Op);
144}
145
146/// getSetCCAndOperation - Return the result of a logical AND between different
147/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
148/// function returns zero if it is not possible to represent the resultant
149/// comparison.
150ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
151                                        bool isInteger) {
152  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
153    // Cannot fold a signed setcc with an unsigned setcc.
154    return ISD::SETCC_INVALID;
155
156  // Combine all of the condition bits.
157  return ISD::CondCode(Op1 & Op2);
158}
159
160const TargetMachine &SelectionDAG::getTarget() const {
161  return TLI.getTargetMachine();
162}
163
164//===----------------------------------------------------------------------===//
165//                              SelectionDAG Class
166//===----------------------------------------------------------------------===//
167
168/// RemoveDeadNodes - This method deletes all unreachable nodes in the
169/// SelectionDAG, including nodes (like loads) that have uses of their token
170/// chain but no other uses and no side effect.  If a node is passed in as an
171/// argument, it is used as the seed for node deletion.
172void SelectionDAG::RemoveDeadNodes(SDNode *N) {
173  std::set<SDNode*> AllNodeSet(AllNodes.begin(), AllNodes.end());
174
175  // Create a dummy node (which is not added to allnodes), that adds a reference
176  // to the root node, preventing it from being deleted.
177  SDNode *DummyNode = new SDNode(ISD::EntryToken, getRoot());
178
179  // If we have a hint to start from, use it.
180  if (N) DeleteNodeIfDead(N, &AllNodeSet);
181
182 Restart:
183  unsigned NumNodes = AllNodeSet.size();
184  for (std::set<SDNode*>::iterator I = AllNodeSet.begin(), E = AllNodeSet.end();
185       I != E; ++I) {
186    // Try to delete this node.
187    DeleteNodeIfDead(*I, &AllNodeSet);
188
189    // If we actually deleted any nodes, do not use invalid iterators in
190    // AllNodeSet.
191    if (AllNodeSet.size() != NumNodes)
192      goto Restart;
193  }
194
195  // Restore AllNodes.
196  if (AllNodes.size() != NumNodes)
197    AllNodes.assign(AllNodeSet.begin(), AllNodeSet.end());
198
199  // If the root changed (e.g. it was a dead load, update the root).
200  setRoot(DummyNode->getOperand(0));
201
202  // Now that we are done with the dummy node, delete it.
203  DummyNode->getOperand(0).Val->removeUser(DummyNode);
204  delete DummyNode;
205}
206
207
208void SelectionDAG::DeleteNodeIfDead(SDNode *N, void *NodeSet) {
209  if (!N->use_empty())
210    return;
211
212  // Okay, we really are going to delete this node.  First take this out of the
213  // appropriate CSE map.
214  RemoveNodeFromCSEMaps(N);
215
216  // Next, brutally remove the operand list.  This is safe to do, as there are
217  // no cycles in the graph.
218  while (!N->Operands.empty()) {
219    SDNode *O = N->Operands.back().Val;
220    N->Operands.pop_back();
221    O->removeUser(N);
222
223    // Now that we removed this operand, see if there are no uses of it left.
224    DeleteNodeIfDead(O, NodeSet);
225  }
226
227  // Remove the node from the nodes set and delete it.
228  std::set<SDNode*> &AllNodeSet = *(std::set<SDNode*>*)NodeSet;
229  AllNodeSet.erase(N);
230
231  // Now that the node is gone, check to see if any of the operands of this node
232  // are dead now.
233  delete N;
234}
235
236void SelectionDAG::DeleteNode(SDNode *N) {
237  assert(N->use_empty() && "Cannot delete a node that is not dead!");
238
239  // First take this out of the appropriate CSE map.
240  RemoveNodeFromCSEMaps(N);
241
242  // Finally, remove uses due to operands of this node, remove from the
243  // AllNodes list, and delete the node.
244  DeleteNodeNotInCSEMaps(N);
245}
246
247void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
248
249  // Remove it from the AllNodes list.
250  for (std::vector<SDNode*>::iterator I = AllNodes.begin(); ; ++I) {
251    assert(I != AllNodes.end() && "Node not in AllNodes list??");
252    if (*I == N) {
253      // Erase from the vector, which is not ordered.
254      std::swap(*I, AllNodes.back());
255      AllNodes.pop_back();
256      break;
257    }
258  }
259
260  // Drop all of the operands and decrement used nodes use counts.
261  while (!N->Operands.empty()) {
262    SDNode *O = N->Operands.back().Val;
263    N->Operands.pop_back();
264    O->removeUser(N);
265  }
266
267  delete N;
268}
269
270/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
271/// correspond to it.  This is useful when we're about to delete or repurpose
272/// the node.  We don't want future request for structurally identical nodes
273/// to return N anymore.
274void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
275  bool Erased = false;
276  switch (N->getOpcode()) {
277  case ISD::Constant:
278    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
279                                            N->getValueType(0)));
280    break;
281  case ISD::TargetConstant:
282    Erased = TargetConstants.erase(std::make_pair(
283                                    cast<ConstantSDNode>(N)->getValue(),
284                                                  N->getValueType(0)));
285    break;
286  case ISD::ConstantFP: {
287    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
288    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
289    break;
290  }
291  case ISD::CONDCODE:
292    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
293           "Cond code doesn't exist!");
294    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
295    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
296    break;
297  case ISD::GlobalAddress:
298    Erased = GlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
299    break;
300  case ISD::TargetGlobalAddress:
301    Erased =TargetGlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
302    break;
303  case ISD::FrameIndex:
304    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
305    break;
306  case ISD::TargetFrameIndex:
307    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
308    break;
309  case ISD::ConstantPool:
310    Erased = ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
311    break;
312  case ISD::TargetConstantPool:
313    Erased =TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
314    break;
315  case ISD::BasicBlock:
316    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
317    break;
318  case ISD::ExternalSymbol:
319    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
320    break;
321  case ISD::VALUETYPE:
322    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
323    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
324    break;
325  case ISD::Register:
326    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
327                                           N->getValueType(0)));
328    break;
329  case ISD::SRCVALUE: {
330    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
331    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
332    break;
333  }
334  case ISD::LOAD:
335    Erased = Loads.erase(std::make_pair(N->getOperand(1),
336                                        std::make_pair(N->getOperand(0),
337                                                       N->getValueType(0))));
338    break;
339  default:
340    if (N->getNumValues() == 1) {
341      if (N->getNumOperands() == 0) {
342        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
343                                                 N->getValueType(0)));
344      } else if (N->getNumOperands() == 1) {
345        Erased =
346          UnaryOps.erase(std::make_pair(N->getOpcode(),
347                                        std::make_pair(N->getOperand(0),
348                                                       N->getValueType(0))));
349      } else if (N->getNumOperands() == 2) {
350        Erased =
351          BinaryOps.erase(std::make_pair(N->getOpcode(),
352                                         std::make_pair(N->getOperand(0),
353                                                        N->getOperand(1))));
354      } else {
355        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
356        Erased =
357          OneResultNodes.erase(std::make_pair(N->getOpcode(),
358                                              std::make_pair(N->getValueType(0),
359                                                             Ops)));
360      }
361    } else {
362      // Remove the node from the ArbitraryNodes map.
363      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
364      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
365      Erased =
366        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
367                                            std::make_pair(RV, Ops)));
368    }
369    break;
370  }
371#ifndef NDEBUG
372  // Verify that the node was actually in one of the CSE maps, unless it has a
373  // flag result (which cannot be CSE'd) or is one of the special cases that are
374  // not subject to CSE.
375  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
376      N->getOpcode() != ISD::CALL && N->getOpcode() != ISD::CALLSEQ_START &&
377      N->getOpcode() != ISD::CALLSEQ_END && !N->isTargetOpcode()) {
378
379    N->dump();
380    assert(0 && "Node is not in map!");
381  }
382#endif
383}
384
385/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
386/// has been taken out and modified in some way.  If the specified node already
387/// exists in the CSE maps, do not modify the maps, but return the existing node
388/// instead.  If it doesn't exist, add it and return null.
389///
390SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
391  assert(N->getNumOperands() && "This is a leaf node!");
392  if (N->getOpcode() == ISD::LOAD) {
393    SDNode *&L = Loads[std::make_pair(N->getOperand(1),
394                                      std::make_pair(N->getOperand(0),
395                                                     N->getValueType(0)))];
396    if (L) return L;
397    L = N;
398  } else if (N->getNumOperands() == 1) {
399    SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
400                                         std::make_pair(N->getOperand(0),
401                                                        N->getValueType(0)))];
402    if (U) return U;
403    U = N;
404  } else if (N->getNumOperands() == 2) {
405    SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
406                                          std::make_pair(N->getOperand(0),
407                                                         N->getOperand(1)))];
408    if (B) return B;
409    B = N;
410  } else if (N->getNumValues() == 1) {
411    std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
412    SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
413                                  std::make_pair(N->getValueType(0), Ops))];
414    if (ORN) return ORN;
415    ORN = N;
416  } else {
417    // Remove the node from the ArbitraryNodes map.
418    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
419    std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
420    SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
421                                                std::make_pair(RV, Ops))];
422    if (AN) return AN;
423    AN = N;
424  }
425  return 0;
426
427}
428
429
430
431SelectionDAG::~SelectionDAG() {
432  for (unsigned i = 0, e = AllNodes.size(); i != e; ++i)
433    delete AllNodes[i];
434}
435
436SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
437  if (Op.getValueType() == VT) return Op;
438  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
439  return getNode(ISD::AND, Op.getValueType(), Op,
440                 getConstant(Imm, Op.getValueType()));
441}
442
443SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
444  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
445  // Mask out any bits that are not valid for this constant.
446  if (VT != MVT::i64)
447    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
448
449  SDNode *&N = Constants[std::make_pair(Val, VT)];
450  if (N) return SDOperand(N, 0);
451  N = new ConstantSDNode(false, Val, VT);
452  AllNodes.push_back(N);
453  return SDOperand(N, 0);
454}
455
456SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
457  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
458  // Mask out any bits that are not valid for this constant.
459  if (VT != MVT::i64)
460    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
461
462  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
463  if (N) return SDOperand(N, 0);
464  N = new ConstantSDNode(true, Val, VT);
465  AllNodes.push_back(N);
466  return SDOperand(N, 0);
467}
468
469SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
470  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
471  if (VT == MVT::f32)
472    Val = (float)Val;  // Mask out extra precision.
473
474  // Do the map lookup using the actual bit pattern for the floating point
475  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
476  // we don't have issues with SNANs.
477  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
478  if (N) return SDOperand(N, 0);
479  N = new ConstantFPSDNode(Val, VT);
480  AllNodes.push_back(N);
481  return SDOperand(N, 0);
482}
483
484
485
486SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
487                                         MVT::ValueType VT) {
488  SDNode *&N = GlobalValues[GV];
489  if (N) return SDOperand(N, 0);
490  N = new GlobalAddressSDNode(false, GV, VT);
491  AllNodes.push_back(N);
492  return SDOperand(N, 0);
493}
494
495SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
496                                               MVT::ValueType VT) {
497  SDNode *&N = TargetGlobalValues[GV];
498  if (N) return SDOperand(N, 0);
499  N = new GlobalAddressSDNode(true, GV, VT);
500  AllNodes.push_back(N);
501  return SDOperand(N, 0);
502}
503
504SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
505  SDNode *&N = FrameIndices[FI];
506  if (N) return SDOperand(N, 0);
507  N = new FrameIndexSDNode(FI, VT, false);
508  AllNodes.push_back(N);
509  return SDOperand(N, 0);
510}
511
512SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
513  SDNode *&N = TargetFrameIndices[FI];
514  if (N) return SDOperand(N, 0);
515  N = new FrameIndexSDNode(FI, VT, true);
516  AllNodes.push_back(N);
517  return SDOperand(N, 0);
518}
519
520SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
521  SDNode *&N = ConstantPoolIndices[C];
522  if (N) return SDOperand(N, 0);
523  N = new ConstantPoolSDNode(C, VT, false);
524  AllNodes.push_back(N);
525  return SDOperand(N, 0);
526}
527
528SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
529  SDNode *&N = TargetConstantPoolIndices[C];
530  if (N) return SDOperand(N, 0);
531  N = new ConstantPoolSDNode(C, VT, true);
532  AllNodes.push_back(N);
533  return SDOperand(N, 0);
534}
535
536SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
537  SDNode *&N = BBNodes[MBB];
538  if (N) return SDOperand(N, 0);
539  N = new BasicBlockSDNode(MBB);
540  AllNodes.push_back(N);
541  return SDOperand(N, 0);
542}
543
544SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
545  if ((unsigned)VT >= ValueTypeNodes.size())
546    ValueTypeNodes.resize(VT+1);
547  if (ValueTypeNodes[VT] == 0) {
548    ValueTypeNodes[VT] = new VTSDNode(VT);
549    AllNodes.push_back(ValueTypeNodes[VT]);
550  }
551
552  return SDOperand(ValueTypeNodes[VT], 0);
553}
554
555SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
556  SDNode *&N = ExternalSymbols[Sym];
557  if (N) return SDOperand(N, 0);
558  N = new ExternalSymbolSDNode(Sym, VT);
559  AllNodes.push_back(N);
560  return SDOperand(N, 0);
561}
562
563SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
564  if ((unsigned)Cond >= CondCodeNodes.size())
565    CondCodeNodes.resize(Cond+1);
566
567  if (CondCodeNodes[Cond] == 0) {
568    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
569    AllNodes.push_back(CondCodeNodes[Cond]);
570  }
571  return SDOperand(CondCodeNodes[Cond], 0);
572}
573
574SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
575  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
576  if (!Reg) {
577    Reg = new RegisterSDNode(RegNo, VT);
578    AllNodes.push_back(Reg);
579  }
580  return SDOperand(Reg, 0);
581}
582
583SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
584                                      SDOperand N2, ISD::CondCode Cond) {
585  // These setcc operations always fold.
586  switch (Cond) {
587  default: break;
588  case ISD::SETFALSE:
589  case ISD::SETFALSE2: return getConstant(0, VT);
590  case ISD::SETTRUE:
591  case ISD::SETTRUE2:  return getConstant(1, VT);
592  }
593
594  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
595    uint64_t C2 = N2C->getValue();
596    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
597      uint64_t C1 = N1C->getValue();
598
599      // Sign extend the operands if required
600      if (ISD::isSignedIntSetCC(Cond)) {
601        C1 = N1C->getSignExtended();
602        C2 = N2C->getSignExtended();
603      }
604
605      switch (Cond) {
606      default: assert(0 && "Unknown integer setcc!");
607      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
608      case ISD::SETNE:  return getConstant(C1 != C2, VT);
609      case ISD::SETULT: return getConstant(C1 <  C2, VT);
610      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
611      case ISD::SETULE: return getConstant(C1 <= C2, VT);
612      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
613      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
614      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
615      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
616      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
617      }
618    } else {
619      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
620      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
621        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
622
623        // If the comparison constant has bits in the upper part, the
624        // zero-extended value could never match.
625        if (C2 & (~0ULL << InSize)) {
626          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
627          switch (Cond) {
628          case ISD::SETUGT:
629          case ISD::SETUGE:
630          case ISD::SETEQ: return getConstant(0, VT);
631          case ISD::SETULT:
632          case ISD::SETULE:
633          case ISD::SETNE: return getConstant(1, VT);
634          case ISD::SETGT:
635          case ISD::SETGE:
636            // True if the sign bit of C2 is set.
637            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
638          case ISD::SETLT:
639          case ISD::SETLE:
640            // True if the sign bit of C2 isn't set.
641            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
642          default:
643            break;
644          }
645        }
646
647        // Otherwise, we can perform the comparison with the low bits.
648        switch (Cond) {
649        case ISD::SETEQ:
650        case ISD::SETNE:
651        case ISD::SETUGT:
652        case ISD::SETUGE:
653        case ISD::SETULT:
654        case ISD::SETULE:
655          return getSetCC(VT, N1.getOperand(0),
656                          getConstant(C2, N1.getOperand(0).getValueType()),
657                          Cond);
658        default:
659          break;   // todo, be more careful with signed comparisons
660        }
661      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
662                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
663        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
664        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
665        MVT::ValueType ExtDstTy = N1.getValueType();
666        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
667
668        // If the extended part has any inconsistent bits, it cannot ever
669        // compare equal.  In other words, they have to be all ones or all
670        // zeros.
671        uint64_t ExtBits =
672          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
673        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
674          return getConstant(Cond == ISD::SETNE, VT);
675
676        // Otherwise, make this a use of a zext.
677        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
678                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
679                        Cond);
680      }
681
682      uint64_t MinVal, MaxVal;
683      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
684      if (ISD::isSignedIntSetCC(Cond)) {
685        MinVal = 1ULL << (OperandBitSize-1);
686        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
687          MaxVal = ~0ULL >> (65-OperandBitSize);
688        else
689          MaxVal = 0;
690      } else {
691        MinVal = 0;
692        MaxVal = ~0ULL >> (64-OperandBitSize);
693      }
694
695      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
696      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
697        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
698        --C2;                                          // X >= C1 --> X > (C1-1)
699        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
700                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
701      }
702
703      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
704        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
705        ++C2;                                          // X <= C1 --> X < (C1+1)
706        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
707                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
708      }
709
710      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
711        return getConstant(0, VT);      // X < MIN --> false
712
713      // Canonicalize setgt X, Min --> setne X, Min
714      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
715        return getSetCC(VT, N1, N2, ISD::SETNE);
716
717      // If we have setult X, 1, turn it into seteq X, 0
718      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
719        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
720                        ISD::SETEQ);
721      // If we have setugt X, Max-1, turn it into seteq X, Max
722      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
723        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
724                        ISD::SETEQ);
725
726      // If we have "setcc X, C1", check to see if we can shrink the immediate
727      // by changing cc.
728
729      // SETUGT X, SINTMAX  -> SETLT X, 0
730      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
731          C2 == (~0ULL >> (65-OperandBitSize)))
732        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
733
734      // FIXME: Implement the rest of these.
735
736
737      // Fold bit comparisons when we can.
738      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
739          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
740        if (ConstantSDNode *AndRHS =
741                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
742          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
743            // Perform the xform if the AND RHS is a single bit.
744            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
745              return getNode(ISD::SRL, VT, N1,
746                             getConstant(Log2_64(AndRHS->getValue()),
747                                                   TLI.getShiftAmountTy()));
748            }
749          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
750            // (X & 8) == 8  -->  (X & 8) >> 3
751            // Perform the xform if C2 is a single bit.
752            if ((C2 & (C2-1)) == 0) {
753              return getNode(ISD::SRL, VT, N1,
754                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
755            }
756          }
757        }
758    }
759  } else if (isa<ConstantSDNode>(N1.Val)) {
760      // Ensure that the constant occurs on the RHS.
761    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
762  }
763
764  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
765    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
766      double C1 = N1C->getValue(), C2 = N2C->getValue();
767
768      switch (Cond) {
769      default: break; // FIXME: Implement the rest of these!
770      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
771      case ISD::SETNE:  return getConstant(C1 != C2, VT);
772      case ISD::SETLT:  return getConstant(C1 < C2, VT);
773      case ISD::SETGT:  return getConstant(C1 > C2, VT);
774      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
775      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
776      }
777    } else {
778      // Ensure that the constant occurs on the RHS.
779      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
780    }
781
782  if (N1 == N2) {
783    // We can always fold X == Y for integer setcc's.
784    if (MVT::isInteger(N1.getValueType()))
785      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
786    unsigned UOF = ISD::getUnorderedFlavor(Cond);
787    if (UOF == 2)   // FP operators that are undefined on NaNs.
788      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
789    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
790      return getConstant(UOF, VT);
791    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
792    // if it is not already.
793    ISD::CondCode NewCond = UOF == 0 ? ISD::SETUO : ISD::SETO;
794    if (NewCond != Cond)
795      return getSetCC(VT, N1, N2, NewCond);
796  }
797
798  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
799      MVT::isInteger(N1.getValueType())) {
800    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
801        N1.getOpcode() == ISD::XOR) {
802      // Simplify (X+Y) == (X+Z) -->  Y == Z
803      if (N1.getOpcode() == N2.getOpcode()) {
804        if (N1.getOperand(0) == N2.getOperand(0))
805          return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
806        if (N1.getOperand(1) == N2.getOperand(1))
807          return getSetCC(VT, N1.getOperand(0), N2.getOperand(0), Cond);
808        if (isCommutativeBinOp(N1.getOpcode())) {
809          // If X op Y == Y op X, try other combinations.
810          if (N1.getOperand(0) == N2.getOperand(1))
811            return getSetCC(VT, N1.getOperand(1), N2.getOperand(0), Cond);
812          if (N1.getOperand(1) == N2.getOperand(0))
813            return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
814        }
815      }
816
817      // FIXME: move this stuff to the DAG Combiner when it exists!
818
819      // Simplify (X+Z) == X -->  Z == 0
820      if (N1.getOperand(0) == N2)
821        return getSetCC(VT, N1.getOperand(1),
822                        getConstant(0, N1.getValueType()), Cond);
823      if (N1.getOperand(1) == N2) {
824        if (isCommutativeBinOp(N1.getOpcode()))
825          return getSetCC(VT, N1.getOperand(0),
826                          getConstant(0, N1.getValueType()), Cond);
827        else {
828          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
829          // (Z-X) == X  --> Z == X<<1
830          return getSetCC(VT, N1.getOperand(0),
831                          getNode(ISD::SHL, N2.getValueType(),
832                                  N2, getConstant(1, TLI.getShiftAmountTy())),
833                          Cond);
834        }
835      }
836    }
837
838    if (N2.getOpcode() == ISD::ADD || N2.getOpcode() == ISD::SUB ||
839        N2.getOpcode() == ISD::XOR) {
840      // Simplify  X == (X+Z) -->  Z == 0
841      if (N2.getOperand(0) == N1) {
842        return getSetCC(VT, N2.getOperand(1),
843                        getConstant(0, N2.getValueType()), Cond);
844      } else if (N2.getOperand(1) == N1) {
845        if (isCommutativeBinOp(N2.getOpcode())) {
846          return getSetCC(VT, N2.getOperand(0),
847                          getConstant(0, N2.getValueType()), Cond);
848        } else {
849          assert(N2.getOpcode() == ISD::SUB && "Unexpected operation!");
850          // X == (Z-X)  --> X<<1 == Z
851          return getSetCC(VT, getNode(ISD::SHL, N2.getValueType(), N1,
852                                      getConstant(1, TLI.getShiftAmountTy())),
853                          N2.getOperand(0), Cond);
854        }
855      }
856    }
857  }
858
859  // Fold away ALL boolean setcc's.
860  if (N1.getValueType() == MVT::i1) {
861    switch (Cond) {
862    default: assert(0 && "Unknown integer setcc!");
863    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
864      N1 = getNode(ISD::XOR, MVT::i1,
865                   getNode(ISD::XOR, MVT::i1, N1, N2),
866                   getConstant(1, MVT::i1));
867      break;
868    case ISD::SETNE:  // X != Y   -->  (X^Y)
869      N1 = getNode(ISD::XOR, MVT::i1, N1, N2);
870      break;
871    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
872    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
873      N1 = getNode(ISD::AND, MVT::i1, N2,
874                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
875      break;
876    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
877    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
878      N1 = getNode(ISD::AND, MVT::i1, N1,
879                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
880      break;
881    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
882    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
883      N1 = getNode(ISD::OR, MVT::i1, N2,
884                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
885      break;
886    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
887    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
888      N1 = getNode(ISD::OR, MVT::i1, N1,
889                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
890      break;
891    }
892    if (VT != MVT::i1)
893      N1 = getNode(ISD::ZERO_EXTEND, VT, N1);
894    return N1;
895  }
896
897  // Could not fold it.
898  return SDOperand();
899}
900
901SDOperand SelectionDAG::SimplifySelectCC(SDOperand N1, SDOperand N2,
902                                         SDOperand N3, SDOperand N4,
903                                         ISD::CondCode CC) {
904  MVT::ValueType VT = N3.getValueType();
905  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
906  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
907  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
908  ConstantSDNode *N4C = dyn_cast<ConstantSDNode>(N4.Val);
909
910  // Check to see if we can simplify the select into an fabs node
911  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2)) {
912    // Allow either -0.0 or 0.0
913    if (CFP->getValue() == 0.0) {
914      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
915      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
916          N1 == N3 && N4.getOpcode() == ISD::FNEG &&
917          N1 == N4.getOperand(0))
918        return getNode(ISD::FABS, VT, N1);
919
920      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
921      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
922          N1 == N4 && N3.getOpcode() == ISD::FNEG &&
923          N3.getOperand(0) == N4)
924        return getNode(ISD::FABS, VT, N4);
925    }
926  }
927
928  // check to see if we're select_cc'ing a select_cc.
929  // this allows us to turn:
930  // select_cc set[eq,ne] (select_cc cc, lhs, rhs, 1, 0), 0, true, false ->
931  // select_cc cc, lhs, rhs, true, false
932  if ((N1C && N1C->isNullValue() && N2.getOpcode() == ISD::SELECT_CC) ||
933      (N2C && N2C->isNullValue() && N1.getOpcode() == ISD::SELECT_CC) &&
934      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
935    SDOperand SCC = N1C ? N2 : N1;
936    ConstantSDNode *SCCT = dyn_cast<ConstantSDNode>(SCC.getOperand(2));
937    ConstantSDNode *SCCF = dyn_cast<ConstantSDNode>(SCC.getOperand(3));
938    if (SCCT && SCCF && SCCF->isNullValue() && SCCT->getValue() == 1ULL) {
939      if (CC == ISD::SETEQ) std::swap(N3, N4);
940      return getNode(ISD::SELECT_CC, N3.getValueType(), SCC.getOperand(0),
941                     SCC.getOperand(1), N3, N4, SCC.getOperand(4));
942    }
943  }
944
945  // Check to see if we can perform the "gzip trick", transforming
946  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
947  if (N2C && N2C->isNullValue() && N4C && N4C->isNullValue() &&
948      MVT::isInteger(N1.getValueType()) &&
949      MVT::isInteger(N3.getValueType()) && CC == ISD::SETLT) {
950    MVT::ValueType XType = N1.getValueType();
951    MVT::ValueType AType = N3.getValueType();
952    if (XType >= AType) {
953      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
954      // single-bit constant.  FIXME: remove once the dag combiner
955      // exists.
956      if (N3C && ((N3C->getValue() & (N3C->getValue()-1)) == 0)) {
957        unsigned ShCtV = Log2_64(N3C->getValue());
958        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
959        SDOperand ShCt = getConstant(ShCtV, TLI.getShiftAmountTy());
960        SDOperand Shift = getNode(ISD::SRL, XType, N1, ShCt);
961        if (XType > AType)
962          Shift = getNode(ISD::TRUNCATE, AType, Shift);
963        return getNode(ISD::AND, AType, Shift, N3);
964      }
965      SDOperand Shift = getNode(ISD::SRA, XType, N1,
966                                getConstant(MVT::getSizeInBits(XType)-1,
967                                            TLI.getShiftAmountTy()));
968      if (XType > AType)
969        Shift = getNode(ISD::TRUNCATE, AType, Shift);
970      return getNode(ISD::AND, AType, Shift, N3);
971    }
972  }
973
974  // Check to see if this is the equivalent of setcc
975  if (N4C && N4C->isNullValue() && N3C && (N3C->getValue() == 1ULL)) {
976    MVT::ValueType XType = N1.getValueType();
977    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy()))
978      return getSetCC(TLI.getSetCCResultTy(), N1, N2, CC);
979
980    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
981    if (N2C && N2C->isNullValue() && CC == ISD::SETEQ &&
982        TLI.isOperationLegal(ISD::CTLZ, XType)) {
983      SDOperand Ctlz = getNode(ISD::CTLZ, XType, N1);
984      return getNode(ISD::SRL, XType, Ctlz,
985                     getConstant(Log2_32(MVT::getSizeInBits(XType)),
986                                 TLI.getShiftAmountTy()));
987    }
988    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
989    if (N2C && N2C->isNullValue() && CC == ISD::SETGT) {
990      SDOperand NegN1 = getNode(ISD::SUB, XType, getConstant(0, XType), N1);
991      SDOperand NotN1 = getNode(ISD::XOR, XType, N1, getConstant(~0ULL, XType));
992      return getNode(ISD::SRL, XType, getNode(ISD::AND, XType, NegN1, NotN1),
993                     getConstant(MVT::getSizeInBits(XType)-1,
994                                 TLI.getShiftAmountTy()));
995    }
996    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
997    if (N2C && N2C->isAllOnesValue() && CC == ISD::SETGT) {
998      SDOperand Sign = getNode(ISD::SRL, XType, N1,
999                               getConstant(MVT::getSizeInBits(XType)-1,
1000                                           TLI.getShiftAmountTy()));
1001      return getNode(ISD::XOR, XType, Sign, getConstant(1, XType));
1002    }
1003  }
1004
1005  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
1006  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
1007  if (N2C && N2C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
1008      N1 == N4 && N3.getOpcode() == ISD::SUB && N1 == N3.getOperand(1)) {
1009    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
1010      MVT::ValueType XType = N1.getValueType();
1011      if (SubC->isNullValue() && MVT::isInteger(XType)) {
1012        SDOperand Shift = getNode(ISD::SRA, XType, N1,
1013                                  getConstant(MVT::getSizeInBits(XType)-1,
1014                                              TLI.getShiftAmountTy()));
1015        return getNode(ISD::XOR, XType, getNode(ISD::ADD, XType, N1, Shift),
1016                       Shift);
1017      }
1018    }
1019  }
1020
1021  // Could not fold it.
1022  return SDOperand();
1023}
1024
1025/// getNode - Gets or creates the specified node.
1026///
1027SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1028  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
1029  if (!N) {
1030    N = new SDNode(Opcode, VT);
1031    AllNodes.push_back(N);
1032  }
1033  return SDOperand(N, 0);
1034}
1035
1036SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1037                                SDOperand Operand) {
1038  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1039    uint64_t Val = C->getValue();
1040    switch (Opcode) {
1041    default: break;
1042    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1043    case ISD::ANY_EXTEND:
1044    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1045    case ISD::TRUNCATE:    return getConstant(Val, VT);
1046    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1047    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1048    }
1049  }
1050
1051  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1052    switch (Opcode) {
1053    case ISD::FNEG:
1054      return getConstantFP(-C->getValue(), VT);
1055    case ISD::FP_ROUND:
1056    case ISD::FP_EXTEND:
1057      return getConstantFP(C->getValue(), VT);
1058    case ISD::FP_TO_SINT:
1059      return getConstant((int64_t)C->getValue(), VT);
1060    case ISD::FP_TO_UINT:
1061      return getConstant((uint64_t)C->getValue(), VT);
1062    }
1063
1064  unsigned OpOpcode = Operand.Val->getOpcode();
1065  switch (Opcode) {
1066  case ISD::TokenFactor:
1067    return Operand;         // Factor of one node?  No factor.
1068  case ISD::SIGN_EXTEND:
1069    if (Operand.getValueType() == VT) return Operand;   // noop extension
1070    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1071      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1072    break;
1073  case ISD::ZERO_EXTEND:
1074    if (Operand.getValueType() == VT) return Operand;   // noop extension
1075    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1076      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1077    break;
1078  case ISD::ANY_EXTEND:
1079    if (Operand.getValueType() == VT) return Operand;   // noop extension
1080    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1081      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1082      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1083    break;
1084  case ISD::TRUNCATE:
1085    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1086    if (OpOpcode == ISD::TRUNCATE)
1087      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1088    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1089             OpOpcode == ISD::ANY_EXTEND) {
1090      // If the source is smaller than the dest, we still need an extend.
1091      if (Operand.Val->getOperand(0).getValueType() < VT)
1092        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1093      else if (Operand.Val->getOperand(0).getValueType() > VT)
1094        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1095      else
1096        return Operand.Val->getOperand(0);
1097    }
1098    break;
1099  case ISD::FNEG:
1100    if (OpOpcode == ISD::SUB)   // -(X-Y) -> (Y-X)
1101      return getNode(ISD::SUB, VT, Operand.Val->getOperand(1),
1102                     Operand.Val->getOperand(0));
1103    if (OpOpcode == ISD::FNEG)  // --X -> X
1104      return Operand.Val->getOperand(0);
1105    break;
1106  case ISD::FABS:
1107    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1108      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1109    break;
1110  }
1111
1112  SDNode *N;
1113  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1114    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1115    if (E) return SDOperand(E, 0);
1116    E = N = new SDNode(Opcode, Operand);
1117  } else {
1118    N = new SDNode(Opcode, Operand);
1119  }
1120  N->setValueTypes(VT);
1121  AllNodes.push_back(N);
1122  return SDOperand(N, 0);
1123}
1124
1125/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1126/// this predicate to simplify operations downstream.  V and Mask are known to
1127/// be the same type.
1128static bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask,
1129                              const TargetLowering &TLI) {
1130  unsigned SrcBits;
1131  if (Mask == 0) return true;
1132
1133  // If we know the result of a setcc has the top bits zero, use this info.
1134  switch (Op.getOpcode()) {
1135  case ISD::Constant:
1136    return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0;
1137
1138  case ISD::SETCC:
1139    return ((Mask & 1) == 0) &&
1140           TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult;
1141
1142  case ISD::ZEXTLOAD:
1143    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
1144    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
1145  case ISD::ZERO_EXTEND:
1146    SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
1147    return MaskedValueIsZero(Op.getOperand(0),Mask & ((1ULL << SrcBits)-1),TLI);
1148  case ISD::AssertZext:
1149    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1150    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
1151  case ISD::AND:
1152    // (X & C1) & C2 == 0   iff   C1 & C2 == 0.
1153    if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1154      return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask, TLI);
1155
1156    // FALL THROUGH
1157  case ISD::OR:
1158  case ISD::XOR:
1159    return MaskedValueIsZero(Op.getOperand(0), Mask, TLI) &&
1160           MaskedValueIsZero(Op.getOperand(1), Mask, TLI);
1161  case ISD::SELECT:
1162    return MaskedValueIsZero(Op.getOperand(1), Mask, TLI) &&
1163           MaskedValueIsZero(Op.getOperand(2), Mask, TLI);
1164  case ISD::SELECT_CC:
1165    return MaskedValueIsZero(Op.getOperand(2), Mask, TLI) &&
1166           MaskedValueIsZero(Op.getOperand(3), Mask, TLI);
1167  case ISD::SRL:
1168    // (ushr X, C1) & C2 == 0   iff  X & (C2 << C1) == 0
1169    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1170      uint64_t NewVal = Mask << ShAmt->getValue();
1171      SrcBits = MVT::getSizeInBits(Op.getValueType());
1172      if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1;
1173      return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
1174    }
1175    return false;
1176  case ISD::SHL:
1177    // (ushl X, C1) & C2 == 0   iff  X & (C2 >> C1) == 0
1178    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1179      uint64_t NewVal = Mask >> ShAmt->getValue();
1180      return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
1181    }
1182    return false;
1183  case ISD::CTTZ:
1184  case ISD::CTLZ:
1185  case ISD::CTPOP:
1186    // Bit counting instructions can not set the high bits of the result
1187    // register.  The max number of bits sets depends on the input.
1188    return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0;
1189
1190    // TODO we could handle some SRA cases here.
1191  default: break;
1192  }
1193
1194  return false;
1195}
1196
1197
1198
1199SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1200                                SDOperand N1, SDOperand N2) {
1201#ifndef NDEBUG
1202  switch (Opcode) {
1203  case ISD::TokenFactor:
1204    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1205           N2.getValueType() == MVT::Other && "Invalid token factor!");
1206    break;
1207  case ISD::AND:
1208  case ISD::OR:
1209  case ISD::XOR:
1210  case ISD::UDIV:
1211  case ISD::UREM:
1212  case ISD::MULHU:
1213  case ISD::MULHS:
1214    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1215    // fall through
1216  case ISD::ADD:
1217  case ISD::SUB:
1218  case ISD::MUL:
1219  case ISD::SDIV:
1220  case ISD::SREM:
1221    assert(N1.getValueType() == N2.getValueType() &&
1222           N1.getValueType() == VT && "Binary operator types must match!");
1223    break;
1224
1225  case ISD::SHL:
1226  case ISD::SRA:
1227  case ISD::SRL:
1228    assert(VT == N1.getValueType() &&
1229           "Shift operators return type must be the same as their first arg");
1230    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1231           VT != MVT::i1 && "Shifts only work on integers");
1232    break;
1233  case ISD::FP_ROUND_INREG: {
1234    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1235    assert(VT == N1.getValueType() && "Not an inreg round!");
1236    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1237           "Cannot FP_ROUND_INREG integer types");
1238    assert(EVT <= VT && "Not rounding down!");
1239    break;
1240  }
1241  case ISD::AssertSext:
1242  case ISD::AssertZext:
1243  case ISD::SIGN_EXTEND_INREG: {
1244    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1245    assert(VT == N1.getValueType() && "Not an inreg extend!");
1246    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1247           "Cannot *_EXTEND_INREG FP types");
1248    assert(EVT <= VT && "Not extending!");
1249  }
1250
1251  default: break;
1252  }
1253#endif
1254
1255  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1256  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1257  if (N1C) {
1258    if (N2C) {
1259      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1260      switch (Opcode) {
1261      case ISD::ADD: return getConstant(C1 + C2, VT);
1262      case ISD::SUB: return getConstant(C1 - C2, VT);
1263      case ISD::MUL: return getConstant(C1 * C2, VT);
1264      case ISD::UDIV:
1265        if (C2) return getConstant(C1 / C2, VT);
1266        break;
1267      case ISD::UREM :
1268        if (C2) return getConstant(C1 % C2, VT);
1269        break;
1270      case ISD::SDIV :
1271        if (C2) return getConstant(N1C->getSignExtended() /
1272                                   N2C->getSignExtended(), VT);
1273        break;
1274      case ISD::SREM :
1275        if (C2) return getConstant(N1C->getSignExtended() %
1276                                   N2C->getSignExtended(), VT);
1277        break;
1278      case ISD::AND  : return getConstant(C1 & C2, VT);
1279      case ISD::OR   : return getConstant(C1 | C2, VT);
1280      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1281      case ISD::SHL  : return getConstant(C1 << C2, VT);
1282      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1283      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1284      default: break;
1285      }
1286    } else {      // Cannonicalize constant to RHS if commutative
1287      if (isCommutativeBinOp(Opcode)) {
1288        std::swap(N1C, N2C);
1289        std::swap(N1, N2);
1290      }
1291    }
1292
1293    if (!CombinerEnabled) {
1294    switch (Opcode) {
1295    default: break;
1296    case ISD::SHL:    // shl  0, X -> 0
1297      if (N1C->isNullValue()) return N1;
1298      break;
1299    case ISD::SRL:    // srl  0, X -> 0
1300      if (N1C->isNullValue()) return N1;
1301      break;
1302    case ISD::SRA:    // sra -1, X -> -1
1303      if (N1C->isAllOnesValue()) return N1;
1304      break;
1305    case ISD::SIGN_EXTEND_INREG:  // SIGN_EXTEND_INREG N1C, EVT
1306      // Extending a constant?  Just return the extended constant.
1307      SDOperand Tmp = getNode(ISD::TRUNCATE, cast<VTSDNode>(N2)->getVT(), N1);
1308      return getNode(ISD::SIGN_EXTEND, VT, Tmp);
1309    }
1310    }
1311  }
1312
1313  if (N2C) {
1314    uint64_t C2 = N2C->getValue();
1315
1316    if (!CombinerEnabled) {
1317    switch (Opcode) {
1318    case ISD::ADD:
1319      if (!C2) return N1;         // add X, 0 -> X
1320      break;
1321    case ISD::SUB:
1322      if (!C2) return N1;         // sub X, 0 -> X
1323      return getNode(ISD::ADD, VT, N1, getConstant(-C2, VT));
1324    case ISD::MUL:
1325      if (!C2) return N2;         // mul X, 0 -> 0
1326      if (N2C->isAllOnesValue()) // mul X, -1 -> 0-X
1327        return getNode(ISD::SUB, VT, getConstant(0, VT), N1);
1328
1329      // FIXME: Move this to the DAG combiner when it exists.
1330      if ((C2 & C2-1) == 0) {
1331        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1332        return getNode(ISD::SHL, VT, N1, ShAmt);
1333      }
1334      break;
1335
1336    case ISD::MULHU:
1337    case ISD::MULHS:
1338      if (!C2) return N2;         // mul X, 0 -> 0
1339
1340      if (C2 == 1)                // 0X*01 -> 0X  hi(0X) == 0
1341        return getConstant(0, VT);
1342
1343      // Many others could be handled here, including -1, powers of 2, etc.
1344      break;
1345
1346    case ISD::UDIV:
1347      // FIXME: Move this to the DAG combiner when it exists.
1348      if ((C2 & C2-1) == 0 && C2) {
1349        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1350        return getNode(ISD::SRL, VT, N1, ShAmt);
1351      }
1352      break;
1353
1354    case ISD::SHL:
1355    case ISD::SRL:
1356    case ISD::SRA:
1357      // If the shift amount is bigger than the size of the data, then all the
1358      // bits are shifted out.  Simplify to undef.
1359      if (C2 >= MVT::getSizeInBits(N1.getValueType())) {
1360        return getNode(ISD::UNDEF, N1.getValueType());
1361      }
1362      if (C2 == 0) return N1;
1363
1364      if (Opcode == ISD::SRA) {
1365        // If the sign bit is known to be zero, switch this to a SRL.
1366        if (MaskedValueIsZero(N1,
1367                              1ULL << (MVT::getSizeInBits(N1.getValueType())-1),
1368                              TLI))
1369          return getNode(ISD::SRL, N1.getValueType(), N1, N2);
1370      } else {
1371        // If the part left over is known to be zero, the whole thing is zero.
1372        uint64_t TypeMask = ~0ULL >> (64-MVT::getSizeInBits(N1.getValueType()));
1373        if (Opcode == ISD::SRL) {
1374          if (MaskedValueIsZero(N1, TypeMask << C2, TLI))
1375            return getConstant(0, N1.getValueType());
1376        } else if (Opcode == ISD::SHL) {
1377          if (MaskedValueIsZero(N1, TypeMask >> C2, TLI))
1378            return getConstant(0, N1.getValueType());
1379        }
1380      }
1381
1382      if (Opcode == ISD::SHL && N1.getNumOperands() == 2)
1383        if (ConstantSDNode *OpSA = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1384          unsigned OpSAC = OpSA->getValue();
1385          if (N1.getOpcode() == ISD::SHL) {
1386            if (C2+OpSAC >= MVT::getSizeInBits(N1.getValueType()))
1387              return getConstant(0, N1.getValueType());
1388            return getNode(ISD::SHL, N1.getValueType(), N1.getOperand(0),
1389                           getConstant(C2+OpSAC, N2.getValueType()));
1390          } else if (N1.getOpcode() == ISD::SRL) {
1391            // (X >> C1) << C2:  if C2 > C1, ((X & ~0<<C1) << C2-C1)
1392            SDOperand Mask = getNode(ISD::AND, VT, N1.getOperand(0),
1393                                     getConstant(~0ULL << OpSAC, VT));
1394            if (C2 > OpSAC) {
1395              return getNode(ISD::SHL, VT, Mask,
1396                             getConstant(C2-OpSAC, N2.getValueType()));
1397            } else {
1398              // (X >> C1) << C2:  if C2 <= C1, ((X & ~0<<C1) >> C1-C2)
1399              return getNode(ISD::SRL, VT, Mask,
1400                             getConstant(OpSAC-C2, N2.getValueType()));
1401            }
1402          } else if (N1.getOpcode() == ISD::SRA) {
1403            // if C1 == C2, just mask out low bits.
1404            if (C2 == OpSAC)
1405              return getNode(ISD::AND, VT, N1.getOperand(0),
1406                             getConstant(~0ULL << C2, VT));
1407          }
1408        }
1409      break;
1410
1411    case ISD::AND:
1412      if (!C2) return N2;         // X and 0 -> 0
1413      if (N2C->isAllOnesValue())
1414        return N1;                // X and -1 -> X
1415
1416      if (MaskedValueIsZero(N1, C2, TLI))  // X and 0 -> 0
1417        return getConstant(0, VT);
1418
1419      {
1420        uint64_t NotC2 = ~C2;
1421        if (VT != MVT::i64)
1422          NotC2 &= (1ULL << MVT::getSizeInBits(VT))-1;
1423
1424        if (MaskedValueIsZero(N1, NotC2, TLI))
1425          return N1;                // if (X & ~C2) -> 0, the and is redundant
1426      }
1427
1428      // FIXME: Should add a corresponding version of this for
1429      // ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which
1430      // we don't have yet.
1431      // FIXME: NOW WE DO, add this.
1432
1433      // and (sign_extend_inreg x:16:32), 1 -> and x, 1
1434      if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1435        // If we are masking out the part of our input that was extended, just
1436        // mask the input to the extension directly.
1437        unsigned ExtendBits =
1438          MVT::getSizeInBits(cast<VTSDNode>(N1.getOperand(1))->getVT());
1439        if ((C2 & (~0ULL << ExtendBits)) == 0)
1440          return getNode(ISD::AND, VT, N1.getOperand(0), N2);
1441      } else if (N1.getOpcode() == ISD::OR) {
1442        if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
1443          if ((ORI->getValue() & C2) == C2) {
1444            // If the 'or' is setting all of the bits that we are masking for,
1445            // we know the result of the AND will be the AND mask itself.
1446            return N2;
1447          }
1448      }
1449      break;
1450    case ISD::OR:
1451      if (!C2)return N1;          // X or 0 -> X
1452      if (N2C->isAllOnesValue())
1453        return N2;                // X or -1 -> -1
1454      break;
1455    case ISD::XOR:
1456      if (!C2) return N1;        // X xor 0 -> X
1457      if (N2C->getValue() == 1 && N1.Val->getOpcode() == ISD::SETCC) {
1458          SDNode *SetCC = N1.Val;
1459          // !(X op Y) -> (X !op Y)
1460          bool isInteger = MVT::isInteger(SetCC->getOperand(0).getValueType());
1461          ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
1462          return getSetCC(SetCC->getValueType(0),
1463                          SetCC->getOperand(0), SetCC->getOperand(1),
1464                          ISD::getSetCCInverse(CC, isInteger));
1465      } else if (N2C->isAllOnesValue()) {
1466        if (N1.getOpcode() == ISD::AND || N1.getOpcode() == ISD::OR) {
1467          SDNode *Op = N1.Val;
1468          // !(X or Y) -> (!X and !Y) iff X or Y are freely invertible
1469          // !(X and Y) -> (!X or !Y) iff X or Y are freely invertible
1470          SDOperand LHS = Op->getOperand(0), RHS = Op->getOperand(1);
1471          if (isInvertibleForFree(RHS) || isInvertibleForFree(LHS)) {
1472            LHS = getNode(ISD::XOR, VT, LHS, N2);  // RHS = ~LHS
1473            RHS = getNode(ISD::XOR, VT, RHS, N2);  // RHS = ~RHS
1474            if (Op->getOpcode() == ISD::AND)
1475              return getNode(ISD::OR, VT, LHS, RHS);
1476            return getNode(ISD::AND, VT, LHS, RHS);
1477          }
1478        }
1479        // X xor -1 -> not(x)  ?
1480      }
1481      break;
1482    }
1483    }
1484
1485    // Reassociate ((X op C1) op C2) if possible.
1486    if (N1.getOpcode() == Opcode && isAssociativeBinOp(Opcode))
1487      if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N1.Val->getOperand(1)))
1488        return getNode(Opcode, VT, N1.Val->getOperand(0),
1489                       getNode(Opcode, VT, N2, N1.Val->getOperand(1)));
1490  }
1491
1492  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1493  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1494  if (N1CFP) {
1495    if (N2CFP) {
1496      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1497      switch (Opcode) {
1498      case ISD::ADD: return getConstantFP(C1 + C2, VT);
1499      case ISD::SUB: return getConstantFP(C1 - C2, VT);
1500      case ISD::MUL: return getConstantFP(C1 * C2, VT);
1501      case ISD::SDIV:
1502        if (C2) return getConstantFP(C1 / C2, VT);
1503        break;
1504      case ISD::SREM :
1505        if (C2) return getConstantFP(fmod(C1, C2), VT);
1506        break;
1507      default: break;
1508      }
1509    } else {      // Cannonicalize constant to RHS if commutative
1510      if (isCommutativeBinOp(Opcode)) {
1511        std::swap(N1CFP, N2CFP);
1512        std::swap(N1, N2);
1513      }
1514    }
1515
1516    if (!CombinerEnabled) {
1517    if (Opcode == ISD::FP_ROUND_INREG)
1518      return getNode(ISD::FP_EXTEND, VT,
1519                     getNode(ISD::FP_ROUND, cast<VTSDNode>(N2)->getVT(), N1));
1520    }
1521  }
1522
1523  // Finally, fold operations that do not require constants.
1524  switch (Opcode) {
1525  case ISD::TokenFactor:
1526    if (!CombinerEnabled) {
1527    if (N1.getOpcode() == ISD::EntryToken)
1528      return N2;
1529    if (N2.getOpcode() == ISD::EntryToken)
1530      return N1;
1531    }
1532    break;
1533
1534  case ISD::AND:
1535  case ISD::OR:
1536    if (N1.Val->getOpcode() == ISD::SETCC && N2.Val->getOpcode() == ISD::SETCC){
1537      SDNode *LHS = N1.Val, *RHS = N2.Val;
1538      SDOperand LL = LHS->getOperand(0), RL = RHS->getOperand(0);
1539      SDOperand LR = LHS->getOperand(1), RR = RHS->getOperand(1);
1540      ISD::CondCode Op1 = cast<CondCodeSDNode>(LHS->getOperand(2))->get();
1541      ISD::CondCode Op2 = cast<CondCodeSDNode>(RHS->getOperand(2))->get();
1542
1543      if (LR == RR && isa<ConstantSDNode>(LR) &&
1544          Op2 == Op1 && MVT::isInteger(LL.getValueType())) {
1545        // (X != 0) | (Y != 0) -> (X|Y != 0)
1546        // (X == 0) & (Y == 0) -> (X|Y == 0)
1547        // (X <  0) | (Y <  0) -> (X|Y < 0)
1548        if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1549            ((Op2 == ISD::SETEQ && Opcode == ISD::AND) ||
1550             (Op2 == ISD::SETNE && Opcode == ISD::OR) ||
1551             (Op2 == ISD::SETLT && Opcode == ISD::OR)))
1552          return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL), LR,
1553                          Op2);
1554
1555        if (cast<ConstantSDNode>(LR)->isAllOnesValue()) {
1556          // (X == -1) & (Y == -1) -> (X&Y == -1)
1557          // (X != -1) | (Y != -1) -> (X&Y != -1)
1558          // (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1559          if ((Opcode == ISD::AND && Op2 == ISD::SETEQ) ||
1560              (Opcode == ISD::OR  && Op2 == ISD::SETNE) ||
1561              (Opcode == ISD::OR  && Op2 == ISD::SETGT))
1562            return getSetCC(VT, getNode(ISD::AND, LR.getValueType(), LL, RL),
1563                            LR, Op2);
1564          // (X >  -1) & (Y >  -1) -> (X|Y > -1)
1565          if (Opcode == ISD::AND && Op2 == ISD::SETGT)
1566            return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL),
1567                            LR, Op2);
1568        }
1569      }
1570
1571      // (X op1 Y) | (Y op2 X) -> (X op1 Y) | (X swapop2 Y)
1572      if (LL == RR && LR == RL) {
1573        Op2 = ISD::getSetCCSwappedOperands(Op2);
1574        goto MatchedBackwards;
1575      }
1576
1577      if (LL == RL && LR == RR) {
1578      MatchedBackwards:
1579        ISD::CondCode Result;
1580        bool isInteger = MVT::isInteger(LL.getValueType());
1581        if (Opcode == ISD::OR)
1582          Result = ISD::getSetCCOrOperation(Op1, Op2, isInteger);
1583        else
1584          Result = ISD::getSetCCAndOperation(Op1, Op2, isInteger);
1585
1586        if (Result != ISD::SETCC_INVALID)
1587          return getSetCC(LHS->getValueType(0), LL, LR, Result);
1588      }
1589    }
1590
1591    // and/or zext(a), zext(b) -> zext(and/or a, b)
1592    if (N1.getOpcode() == ISD::ZERO_EXTEND &&
1593        N2.getOpcode() == ISD::ZERO_EXTEND &&
1594        N1.getOperand(0).getValueType() == N2.getOperand(0).getValueType())
1595      return getNode(ISD::ZERO_EXTEND, VT,
1596                     getNode(Opcode, N1.getOperand(0).getValueType(),
1597                             N1.getOperand(0), N2.getOperand(0)));
1598    break;
1599  case ISD::XOR:
1600    if (N1 == N2) return getConstant(0, VT);  // xor X, Y -> 0
1601    break;
1602  case ISD::ADD:
1603    if (N2.getOpcode() == ISD::FNEG)          // (A+ (-B) -> A-B
1604      return getNode(ISD::SUB, VT, N1, N2.getOperand(0));
1605    if (N1.getOpcode() == ISD::FNEG)          // ((-A)+B) -> B-A
1606      return getNode(ISD::SUB, VT, N2, N1.getOperand(0));
1607    if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1608        cast<ConstantSDNode>(N1.getOperand(0))->getValue() == 0)
1609      return getNode(ISD::SUB, VT, N2, N1.getOperand(1)); // (0-A)+B -> B-A
1610    if (N2.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N2.getOperand(0)) &&
1611        cast<ConstantSDNode>(N2.getOperand(0))->getValue() == 0)
1612      return getNode(ISD::SUB, VT, N1, N2.getOperand(1)); // A+(0-B) -> A-B
1613    if (N2.getOpcode() == ISD::SUB && N1 == N2.Val->getOperand(1) &&
1614        !MVT::isFloatingPoint(N2.getValueType()))
1615      return N2.Val->getOperand(0); // A+(B-A) -> B
1616    break;
1617  case ISD::SUB:
1618    if (N1.getOpcode() == ISD::ADD) {
1619      if (N1.Val->getOperand(0) == N2 &&
1620          !MVT::isFloatingPoint(N2.getValueType()))
1621        return N1.Val->getOperand(1);         // (A+B)-A == B
1622      if (N1.Val->getOperand(1) == N2 &&
1623          !MVT::isFloatingPoint(N2.getValueType()))
1624        return N1.Val->getOperand(0);         // (A+B)-B == A
1625    }
1626    if (N2.getOpcode() == ISD::FNEG)          // (A- (-B) -> A+B
1627      return getNode(ISD::ADD, VT, N1, N2.getOperand(0));
1628    break;
1629  case ISD::FP_ROUND_INREG:
1630    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1631    break;
1632  case ISD::SIGN_EXTEND_INREG: {
1633    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1634    if (EVT == VT) return N1;  // Not actually extending
1635
1636    // If we are sign extending an extension, use the original source.
1637    if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG ||
1638        N1.getOpcode() == ISD::AssertSext)
1639      if (cast<VTSDNode>(N1.getOperand(1))->getVT() <= EVT)
1640        return N1;
1641
1642    // If we are sign extending a sextload, return just the load.
1643    if (N1.getOpcode() == ISD::SEXTLOAD)
1644      if (cast<VTSDNode>(N1.getOperand(3))->getVT() <= EVT)
1645        return N1;
1646
1647    // If we are extending the result of a setcc, and we already know the
1648    // contents of the top bits, eliminate the extension.
1649    if (N1.getOpcode() == ISD::SETCC &&
1650        TLI.getSetCCResultContents() ==
1651                        TargetLowering::ZeroOrNegativeOneSetCCResult)
1652      return N1;
1653
1654    // If we are sign extending the result of an (and X, C) operation, and we
1655    // know the extended bits are zeros already, don't do the extend.
1656    if (N1.getOpcode() == ISD::AND)
1657      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1658        uint64_t Mask = N1C->getValue();
1659        unsigned NumBits = MVT::getSizeInBits(EVT);
1660        if ((Mask & (~0ULL << (NumBits-1))) == 0)
1661          return N1;
1662      }
1663    break;
1664  }
1665
1666  // FIXME: figure out how to safely handle things like
1667  // int foo(int x) { return 1 << (x & 255); }
1668  // int bar() { return foo(256); }
1669#if 0
1670  case ISD::SHL:
1671  case ISD::SRL:
1672  case ISD::SRA:
1673    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1674        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1675      return getNode(Opcode, VT, N1, N2.getOperand(0));
1676    else if (N2.getOpcode() == ISD::AND)
1677      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1678        // If the and is only masking out bits that cannot effect the shift,
1679        // eliminate the and.
1680        unsigned NumBits = MVT::getSizeInBits(VT);
1681        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1682          return getNode(Opcode, VT, N1, N2.getOperand(0));
1683      }
1684    break;
1685#endif
1686  }
1687
1688  // Memoize this node if possible.
1689  SDNode *N;
1690  if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
1691      VT != MVT::Flag) {
1692    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1693    if (BON) return SDOperand(BON, 0);
1694
1695    BON = N = new SDNode(Opcode, N1, N2);
1696  } else {
1697    N = new SDNode(Opcode, N1, N2);
1698  }
1699
1700  N->setValueTypes(VT);
1701  AllNodes.push_back(N);
1702  return SDOperand(N, 0);
1703}
1704
1705// setAdjCallChain - This method changes the token chain of an
1706// CALLSEQ_START/END node to be the specified operand.
1707void SDNode::setAdjCallChain(SDOperand N) {
1708  assert(N.getValueType() == MVT::Other);
1709  assert((getOpcode() == ISD::CALLSEQ_START ||
1710          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1711
1712  Operands[0].Val->removeUser(this);
1713  Operands[0] = N;
1714  N.Val->Uses.push_back(this);
1715}
1716
1717
1718
1719SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1720                                SDOperand Chain, SDOperand Ptr,
1721                                SDOperand SV) {
1722  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1723  if (N) return SDOperand(N, 0);
1724  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1725
1726  // Loads have a token chain.
1727  N->setValueTypes(VT, MVT::Other);
1728  AllNodes.push_back(N);
1729  return SDOperand(N, 0);
1730}
1731
1732
1733SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1734                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1735                                   MVT::ValueType EVT) {
1736  std::vector<SDOperand> Ops;
1737  Ops.reserve(4);
1738  Ops.push_back(Chain);
1739  Ops.push_back(Ptr);
1740  Ops.push_back(SV);
1741  Ops.push_back(getValueType(EVT));
1742  std::vector<MVT::ValueType> VTs;
1743  VTs.reserve(2);
1744  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1745  return getNode(Opcode, VTs, Ops);
1746}
1747
1748SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1749                                SDOperand N1, SDOperand N2, SDOperand N3) {
1750  // Perform various simplifications.
1751  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1752  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1753  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1754  switch (Opcode) {
1755  case ISD::SETCC: {
1756    // Use SimplifySetCC  to simplify SETCC's.
1757    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1758    if (Simp.Val) return Simp;
1759    break;
1760  }
1761  case ISD::SELECT:
1762    if (N1C)
1763      if (N1C->getValue())
1764        return N2;             // select true, X, Y -> X
1765      else
1766        return N3;             // select false, X, Y -> Y
1767
1768    if (N2 == N3) return N2;   // select C, X, X -> X
1769
1770    if (VT == MVT::i1) {  // Boolean SELECT
1771      if (N2C) {
1772        if (N2C->getValue())   // select C, 1, X -> C | X
1773          return getNode(ISD::OR, VT, N1, N3);
1774        else                   // select C, 0, X -> ~C & X
1775          return getNode(ISD::AND, VT,
1776                         getNode(ISD::XOR, N1.getValueType(), N1,
1777                                 getConstant(1, N1.getValueType())), N3);
1778      } else if (N3C) {
1779        if (N3C->getValue())   // select C, X, 1 -> ~C | X
1780          return getNode(ISD::OR, VT,
1781                         getNode(ISD::XOR, N1.getValueType(), N1,
1782                                 getConstant(1, N1.getValueType())), N2);
1783        else                   // select C, X, 0 -> C & X
1784          return getNode(ISD::AND, VT, N1, N2);
1785      }
1786
1787      if (N1 == N2)   // X ? X : Y --> X ? 1 : Y --> X | Y
1788        return getNode(ISD::OR, VT, N1, N3);
1789      if (N1 == N3)   // X ? Y : X --> X ? Y : 0 --> X & Y
1790        return getNode(ISD::AND, VT, N1, N2);
1791    }
1792    if (N1.getOpcode() == ISD::SETCC) {
1793      SDOperand Simp = SimplifySelectCC(N1.getOperand(0), N1.getOperand(1), N2,
1794                             N3, cast<CondCodeSDNode>(N1.getOperand(2))->get());
1795      if (Simp.Val) return Simp;
1796    }
1797    break;
1798  case ISD::BRCOND:
1799    if (N2C)
1800      if (N2C->getValue()) // Unconditional branch
1801        return getNode(ISD::BR, MVT::Other, N1, N3);
1802      else
1803        return N1;         // Never-taken branch
1804    break;
1805  }
1806
1807  std::vector<SDOperand> Ops;
1808  Ops.reserve(3);
1809  Ops.push_back(N1);
1810  Ops.push_back(N2);
1811  Ops.push_back(N3);
1812
1813  // Memoize node if it doesn't produce a flag.
1814  SDNode *N;
1815  if (VT != MVT::Flag) {
1816    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1817    if (E) return SDOperand(E, 0);
1818    E = N = new SDNode(Opcode, N1, N2, N3);
1819  } else {
1820    N = new SDNode(Opcode, N1, N2, N3);
1821  }
1822  N->setValueTypes(VT);
1823  AllNodes.push_back(N);
1824  return SDOperand(N, 0);
1825}
1826
1827SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1828                                SDOperand N1, SDOperand N2, SDOperand N3,
1829                                SDOperand N4) {
1830  std::vector<SDOperand> Ops;
1831  Ops.reserve(4);
1832  Ops.push_back(N1);
1833  Ops.push_back(N2);
1834  Ops.push_back(N3);
1835  Ops.push_back(N4);
1836  return getNode(Opcode, VT, Ops);
1837}
1838
1839SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1840                                SDOperand N1, SDOperand N2, SDOperand N3,
1841                                SDOperand N4, SDOperand N5) {
1842  std::vector<SDOperand> Ops;
1843  Ops.reserve(5);
1844  Ops.push_back(N1);
1845  Ops.push_back(N2);
1846  Ops.push_back(N3);
1847  Ops.push_back(N4);
1848  Ops.push_back(N5);
1849  return getNode(Opcode, VT, Ops);
1850}
1851
1852
1853SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1854  assert((!V || isa<PointerType>(V->getType())) &&
1855         "SrcValue is not a pointer?");
1856  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1857  if (N) return SDOperand(N, 0);
1858
1859  N = new SrcValueSDNode(V, Offset);
1860  AllNodes.push_back(N);
1861  return SDOperand(N, 0);
1862}
1863
1864SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1865                                std::vector<SDOperand> &Ops) {
1866  switch (Ops.size()) {
1867  case 0: return getNode(Opcode, VT);
1868  case 1: return getNode(Opcode, VT, Ops[0]);
1869  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1870  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1871  default: break;
1872  }
1873
1874  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1875  switch (Opcode) {
1876  default: break;
1877  case ISD::BRCONDTWOWAY:
1878    if (N1C)
1879      if (N1C->getValue()) // Unconditional branch to true dest.
1880        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1881      else                 // Unconditional branch to false dest.
1882        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1883    break;
1884  case ISD::BRTWOWAY_CC:
1885    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1886    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1887           "LHS and RHS of comparison must have same type!");
1888    break;
1889  case ISD::TRUNCSTORE: {
1890    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1891    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1892#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1893    // If this is a truncating store of a constant, convert to the desired type
1894    // and store it instead.
1895    if (isa<Constant>(Ops[0])) {
1896      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1897      if (isa<Constant>(Op))
1898        N1 = Op;
1899    }
1900    // Also for ConstantFP?
1901#endif
1902    if (Ops[0].getValueType() == EVT)       // Normal store?
1903      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1904    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1905    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1906           "Can't do FP-INT conversion!");
1907    break;
1908  }
1909  case ISD::SELECT_CC: {
1910    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1911    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1912           "LHS and RHS of condition must have same type!");
1913    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1914           "True and False arms of SelectCC must have same type!");
1915    assert(Ops[2].getValueType() == VT &&
1916           "select_cc node must be of same type as true and false value!");
1917    SDOperand Simp = SimplifySelectCC(Ops[0], Ops[1], Ops[2], Ops[3],
1918                                      cast<CondCodeSDNode>(Ops[4])->get());
1919    if (Simp.Val) return Simp;
1920    break;
1921  }
1922  case ISD::BR_CC: {
1923    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1924    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1925           "LHS/RHS of comparison should match types!");
1926    // Use SimplifySetCC  to simplify SETCC's.
1927    SDOperand Simp = SimplifySetCC(MVT::i1, Ops[2], Ops[3],
1928                                   cast<CondCodeSDNode>(Ops[1])->get());
1929    if (Simp.Val) {
1930      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Simp)) {
1931        if (C->getValue() & 1) // Unconditional branch
1932          return getNode(ISD::BR, MVT::Other, Ops[0], Ops[4]);
1933        else
1934          return Ops[0];          // Unconditional Fall through
1935      } else if (Simp.Val->getOpcode() == ISD::SETCC) {
1936        Ops[2] = Simp.getOperand(0);
1937        Ops[3] = Simp.getOperand(1);
1938        Ops[1] = Simp.getOperand(2);
1939      }
1940    }
1941    break;
1942  }
1943  }
1944
1945  // Memoize nodes.
1946  SDNode *N;
1947  if (VT != MVT::Flag) {
1948    SDNode *&E =
1949      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1950    if (E) return SDOperand(E, 0);
1951    E = N = new SDNode(Opcode, Ops);
1952  } else {
1953    N = new SDNode(Opcode, Ops);
1954  }
1955  N->setValueTypes(VT);
1956  AllNodes.push_back(N);
1957  return SDOperand(N, 0);
1958}
1959
1960SDOperand SelectionDAG::getNode(unsigned Opcode,
1961                                std::vector<MVT::ValueType> &ResultTys,
1962                                std::vector<SDOperand> &Ops) {
1963  if (ResultTys.size() == 1)
1964    return getNode(Opcode, ResultTys[0], Ops);
1965
1966  switch (Opcode) {
1967  case ISD::EXTLOAD:
1968  case ISD::SEXTLOAD:
1969  case ISD::ZEXTLOAD: {
1970    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1971    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1972    // If they are asking for an extending load from/to the same thing, return a
1973    // normal load.
1974    if (ResultTys[0] == EVT)
1975      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1976    assert(EVT < ResultTys[0] &&
1977           "Should only be an extending load, not truncating!");
1978    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1979           "Cannot sign/zero extend a FP load!");
1980    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1981           "Cannot convert from FP to Int or Int -> FP!");
1982    break;
1983  }
1984
1985  // FIXME: figure out how to safely handle things like
1986  // int foo(int x) { return 1 << (x & 255); }
1987  // int bar() { return foo(256); }
1988#if 0
1989  case ISD::SRA_PARTS:
1990  case ISD::SRL_PARTS:
1991  case ISD::SHL_PARTS:
1992    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1993        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1994      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1995    else if (N3.getOpcode() == ISD::AND)
1996      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1997        // If the and is only masking out bits that cannot effect the shift,
1998        // eliminate the and.
1999        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2000        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2001          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2002      }
2003    break;
2004#endif
2005  }
2006
2007  // Memoize the node unless it returns a flag.
2008  SDNode *N;
2009  if (ResultTys.back() != MVT::Flag) {
2010    SDNode *&E =
2011      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
2012    if (E) return SDOperand(E, 0);
2013    E = N = new SDNode(Opcode, Ops);
2014  } else {
2015    N = new SDNode(Opcode, Ops);
2016  }
2017  N->setValueTypes(ResultTys);
2018  AllNodes.push_back(N);
2019  return SDOperand(N, 0);
2020}
2021
2022
2023/// SelectNodeTo - These are used for target selectors to *mutate* the
2024/// specified node to have the specified return type, Target opcode, and
2025/// operands.  Note that target opcodes are stored as
2026/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2027void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2028                                MVT::ValueType VT) {
2029  RemoveNodeFromCSEMaps(N);
2030  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2031  N->setValueTypes(VT);
2032}
2033void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2034                                MVT::ValueType VT, SDOperand Op1) {
2035  RemoveNodeFromCSEMaps(N);
2036  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2037  N->setValueTypes(VT);
2038  N->setOperands(Op1);
2039}
2040void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2041                                MVT::ValueType VT, SDOperand Op1,
2042                                SDOperand Op2) {
2043  RemoveNodeFromCSEMaps(N);
2044  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2045  N->setValueTypes(VT);
2046  N->setOperands(Op1, Op2);
2047}
2048void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2049                                MVT::ValueType VT1, MVT::ValueType VT2,
2050                                SDOperand Op1, SDOperand Op2) {
2051  RemoveNodeFromCSEMaps(N);
2052  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2053  N->setValueTypes(VT1, VT2);
2054  N->setOperands(Op1, Op2);
2055}
2056void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2057                                MVT::ValueType VT, SDOperand Op1,
2058                                SDOperand Op2, SDOperand Op3) {
2059  RemoveNodeFromCSEMaps(N);
2060  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2061  N->setValueTypes(VT);
2062  N->setOperands(Op1, Op2, Op3);
2063}
2064void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2065                                MVT::ValueType VT1, MVT::ValueType VT2,
2066                                SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2067  RemoveNodeFromCSEMaps(N);
2068  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2069  N->setValueTypes(VT1, VT2);
2070  N->setOperands(Op1, Op2, Op3);
2071}
2072
2073void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2074                                MVT::ValueType VT, SDOperand Op1,
2075                                SDOperand Op2, SDOperand Op3, SDOperand Op4) {
2076  RemoveNodeFromCSEMaps(N);
2077  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2078  N->setValueTypes(VT);
2079  N->setOperands(Op1, Op2, Op3, Op4);
2080}
2081void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2082                                MVT::ValueType VT, SDOperand Op1,
2083                                SDOperand Op2, SDOperand Op3, SDOperand Op4,
2084                                SDOperand Op5) {
2085  RemoveNodeFromCSEMaps(N);
2086  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2087  N->setValueTypes(VT);
2088  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2089}
2090
2091/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2092/// This can cause recursive merging of nodes in the DAG.
2093///
2094/// This version assumes From/To have a single result value.
2095///
2096void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2097                                      std::vector<SDNode*> *Deleted) {
2098  SDNode *From = FromN.Val, *To = ToN.Val;
2099  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2100         "Cannot replace with this method!");
2101  assert(From != To && "Cannot replace uses of with self");
2102
2103  while (!From->use_empty()) {
2104    // Process users until they are all gone.
2105    SDNode *U = *From->use_begin();
2106
2107    // This node is about to morph, remove its old self from the CSE maps.
2108    RemoveNodeFromCSEMaps(U);
2109
2110    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2111      if (U->getOperand(i).Val == From) {
2112        From->removeUser(U);
2113        U->Operands[i].Val = To;
2114        To->addUser(U);
2115      }
2116
2117    // Now that we have modified U, add it back to the CSE maps.  If it already
2118    // exists there, recursively merge the results together.
2119    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2120      ReplaceAllUsesWith(U, Existing, Deleted);
2121      // U is now dead.
2122      if (Deleted) Deleted->push_back(U);
2123      DeleteNodeNotInCSEMaps(U);
2124    }
2125  }
2126}
2127
2128/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2129/// This can cause recursive merging of nodes in the DAG.
2130///
2131/// This version assumes From/To have matching types and numbers of result
2132/// values.
2133///
2134void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2135                                      std::vector<SDNode*> *Deleted) {
2136  assert(From != To && "Cannot replace uses of with self");
2137  assert(From->getNumValues() == To->getNumValues() &&
2138         "Cannot use this version of ReplaceAllUsesWith!");
2139  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2140    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2141    return;
2142  }
2143
2144  while (!From->use_empty()) {
2145    // Process users until they are all gone.
2146    SDNode *U = *From->use_begin();
2147
2148    // This node is about to morph, remove its old self from the CSE maps.
2149    RemoveNodeFromCSEMaps(U);
2150
2151    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2152      if (U->getOperand(i).Val == From) {
2153        From->removeUser(U);
2154        U->Operands[i].Val = To;
2155        To->addUser(U);
2156      }
2157
2158    // Now that we have modified U, add it back to the CSE maps.  If it already
2159    // exists there, recursively merge the results together.
2160    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2161      ReplaceAllUsesWith(U, Existing, Deleted);
2162      // U is now dead.
2163      if (Deleted) Deleted->push_back(U);
2164      DeleteNodeNotInCSEMaps(U);
2165    }
2166  }
2167}
2168
2169/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2170/// This can cause recursive merging of nodes in the DAG.
2171///
2172/// This version can replace From with any result values.  To must match the
2173/// number and types of values returned by From.
2174void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2175                                      const std::vector<SDOperand> &To,
2176                                      std::vector<SDNode*> *Deleted) {
2177  assert(From->getNumValues() == To.size() &&
2178         "Incorrect number of values to replace with!");
2179  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2180    // Degenerate case handled above.
2181    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2182    return;
2183  }
2184
2185  while (!From->use_empty()) {
2186    // Process users until they are all gone.
2187    SDNode *U = *From->use_begin();
2188
2189    // This node is about to morph, remove its old self from the CSE maps.
2190    RemoveNodeFromCSEMaps(U);
2191
2192    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2193      if (U->getOperand(i).Val == From) {
2194        const SDOperand &ToOp = To[U->getOperand(i).ResNo];
2195        From->removeUser(U);
2196        U->Operands[i] = ToOp;
2197        ToOp.Val->addUser(U);
2198      }
2199
2200    // Now that we have modified U, add it back to the CSE maps.  If it already
2201    // exists there, recursively merge the results together.
2202    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2203      ReplaceAllUsesWith(U, Existing, Deleted);
2204      // U is now dead.
2205      if (Deleted) Deleted->push_back(U);
2206      DeleteNodeNotInCSEMaps(U);
2207    }
2208  }
2209}
2210
2211
2212//===----------------------------------------------------------------------===//
2213//                              SDNode Class
2214//===----------------------------------------------------------------------===//
2215
2216/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2217/// indicated value.  This method ignores uses of other values defined by this
2218/// operation.
2219bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
2220  assert(Value < getNumValues() && "Bad value!");
2221
2222  // If there is only one value, this is easy.
2223  if (getNumValues() == 1)
2224    return use_size() == NUses;
2225  if (Uses.size() < NUses) return false;
2226
2227  SDOperand TheValue(this, Value);
2228
2229  std::set<SDNode*> UsersHandled;
2230
2231  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
2232       UI != E; ++UI) {
2233    SDNode *User = *UI;
2234    if (User->getNumOperands() == 1 ||
2235        UsersHandled.insert(User).second)     // First time we've seen this?
2236      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2237        if (User->getOperand(i) == TheValue) {
2238          if (NUses == 0)
2239            return false;   // too many uses
2240          --NUses;
2241        }
2242  }
2243
2244  // Found exactly the right number of uses?
2245  return NUses == 0;
2246}
2247
2248
2249const char *SDNode::getOperationName(const SelectionDAG *G) const {
2250  switch (getOpcode()) {
2251  default:
2252    if (getOpcode() < ISD::BUILTIN_OP_END)
2253      return "<<Unknown DAG Node>>";
2254    else {
2255      if (G)
2256        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2257          return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2258      return "<<Unknown Target Node>>";
2259    }
2260
2261  case ISD::PCMARKER:      return "PCMarker";
2262  case ISD::SRCVALUE:      return "SrcValue";
2263  case ISD::VALUETYPE:     return "ValueType";
2264  case ISD::EntryToken:    return "EntryToken";
2265  case ISD::TokenFactor:   return "TokenFactor";
2266  case ISD::AssertSext:    return "AssertSext";
2267  case ISD::AssertZext:    return "AssertZext";
2268  case ISD::Constant:      return "Constant";
2269  case ISD::TargetConstant: return "TargetConstant";
2270  case ISD::ConstantFP:    return "ConstantFP";
2271  case ISD::GlobalAddress: return "GlobalAddress";
2272  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2273  case ISD::FrameIndex:    return "FrameIndex";
2274  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2275  case ISD::BasicBlock:    return "BasicBlock";
2276  case ISD::Register:      return "Register";
2277  case ISD::ExternalSymbol: return "ExternalSymbol";
2278  case ISD::ConstantPool:  return "ConstantPool";
2279  case ISD::TargetConstantPool:  return "TargetConstantPool";
2280  case ISD::CopyToReg:     return "CopyToReg";
2281  case ISD::CopyFromReg:   return "CopyFromReg";
2282  case ISD::ImplicitDef:   return "ImplicitDef";
2283  case ISD::UNDEF:         return "undef";
2284
2285  // Unary operators
2286  case ISD::FABS:   return "fabs";
2287  case ISD::FNEG:   return "fneg";
2288  case ISD::FSQRT:  return "fsqrt";
2289  case ISD::FSIN:   return "fsin";
2290  case ISD::FCOS:   return "fcos";
2291
2292  // Binary operators
2293  case ISD::ADD:    return "add";
2294  case ISD::SUB:    return "sub";
2295  case ISD::MUL:    return "mul";
2296  case ISD::MULHU:  return "mulhu";
2297  case ISD::MULHS:  return "mulhs";
2298  case ISD::SDIV:   return "sdiv";
2299  case ISD::UDIV:   return "udiv";
2300  case ISD::SREM:   return "srem";
2301  case ISD::UREM:   return "urem";
2302  case ISD::AND:    return "and";
2303  case ISD::OR:     return "or";
2304  case ISD::XOR:    return "xor";
2305  case ISD::SHL:    return "shl";
2306  case ISD::SRA:    return "sra";
2307  case ISD::SRL:    return "srl";
2308
2309  case ISD::SETCC:       return "setcc";
2310  case ISD::SELECT:      return "select";
2311  case ISD::SELECT_CC:   return "select_cc";
2312  case ISD::ADD_PARTS:   return "add_parts";
2313  case ISD::SUB_PARTS:   return "sub_parts";
2314  case ISD::SHL_PARTS:   return "shl_parts";
2315  case ISD::SRA_PARTS:   return "sra_parts";
2316  case ISD::SRL_PARTS:   return "srl_parts";
2317
2318  // Conversion operators.
2319  case ISD::SIGN_EXTEND: return "sign_extend";
2320  case ISD::ZERO_EXTEND: return "zero_extend";
2321  case ISD::ANY_EXTEND:  return "any_extend";
2322  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2323  case ISD::TRUNCATE:    return "truncate";
2324  case ISD::FP_ROUND:    return "fp_round";
2325  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2326  case ISD::FP_EXTEND:   return "fp_extend";
2327
2328  case ISD::SINT_TO_FP:  return "sint_to_fp";
2329  case ISD::UINT_TO_FP:  return "uint_to_fp";
2330  case ISD::FP_TO_SINT:  return "fp_to_sint";
2331  case ISD::FP_TO_UINT:  return "fp_to_uint";
2332
2333    // Control flow instructions
2334  case ISD::BR:      return "br";
2335  case ISD::BRCOND:  return "brcond";
2336  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
2337  case ISD::BR_CC:  return "br_cc";
2338  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
2339  case ISD::RET:     return "ret";
2340  case ISD::CALL:    return "call";
2341  case ISD::TAILCALL:return "tailcall";
2342  case ISD::CALLSEQ_START:  return "callseq_start";
2343  case ISD::CALLSEQ_END:    return "callseq_end";
2344
2345    // Other operators
2346  case ISD::LOAD:    return "load";
2347  case ISD::STORE:   return "store";
2348  case ISD::EXTLOAD:    return "extload";
2349  case ISD::SEXTLOAD:   return "sextload";
2350  case ISD::ZEXTLOAD:   return "zextload";
2351  case ISD::TRUNCSTORE: return "truncstore";
2352
2353  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2354  case ISD::EXTRACT_ELEMENT: return "extract_element";
2355  case ISD::BUILD_PAIR: return "build_pair";
2356  case ISD::MEMSET:  return "memset";
2357  case ISD::MEMCPY:  return "memcpy";
2358  case ISD::MEMMOVE: return "memmove";
2359
2360  // Bit counting
2361  case ISD::CTPOP:   return "ctpop";
2362  case ISD::CTTZ:    return "cttz";
2363  case ISD::CTLZ:    return "ctlz";
2364
2365  // IO Intrinsics
2366  case ISD::READPORT: return "readport";
2367  case ISD::WRITEPORT: return "writeport";
2368  case ISD::READIO: return "readio";
2369  case ISD::WRITEIO: return "writeio";
2370
2371  case ISD::CONDCODE:
2372    switch (cast<CondCodeSDNode>(this)->get()) {
2373    default: assert(0 && "Unknown setcc condition!");
2374    case ISD::SETOEQ:  return "setoeq";
2375    case ISD::SETOGT:  return "setogt";
2376    case ISD::SETOGE:  return "setoge";
2377    case ISD::SETOLT:  return "setolt";
2378    case ISD::SETOLE:  return "setole";
2379    case ISD::SETONE:  return "setone";
2380
2381    case ISD::SETO:    return "seto";
2382    case ISD::SETUO:   return "setuo";
2383    case ISD::SETUEQ:  return "setue";
2384    case ISD::SETUGT:  return "setugt";
2385    case ISD::SETUGE:  return "setuge";
2386    case ISD::SETULT:  return "setult";
2387    case ISD::SETULE:  return "setule";
2388    case ISD::SETUNE:  return "setune";
2389
2390    case ISD::SETEQ:   return "seteq";
2391    case ISD::SETGT:   return "setgt";
2392    case ISD::SETGE:   return "setge";
2393    case ISD::SETLT:   return "setlt";
2394    case ISD::SETLE:   return "setle";
2395    case ISD::SETNE:   return "setne";
2396    }
2397  }
2398}
2399
2400void SDNode::dump() const { dump(0); }
2401void SDNode::dump(const SelectionDAG *G) const {
2402  std::cerr << (void*)this << ": ";
2403
2404  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2405    if (i) std::cerr << ",";
2406    if (getValueType(i) == MVT::Other)
2407      std::cerr << "ch";
2408    else
2409      std::cerr << MVT::getValueTypeString(getValueType(i));
2410  }
2411  std::cerr << " = " << getOperationName(G);
2412
2413  std::cerr << " ";
2414  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2415    if (i) std::cerr << ", ";
2416    std::cerr << (void*)getOperand(i).Val;
2417    if (unsigned RN = getOperand(i).ResNo)
2418      std::cerr << ":" << RN;
2419  }
2420
2421  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2422    std::cerr << "<" << CSDN->getValue() << ">";
2423  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2424    std::cerr << "<" << CSDN->getValue() << ">";
2425  } else if (const GlobalAddressSDNode *GADN =
2426             dyn_cast<GlobalAddressSDNode>(this)) {
2427    std::cerr << "<";
2428    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2429  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2430    std::cerr << "<" << FIDN->getIndex() << ">";
2431  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2432    std::cerr << "<" << *CP->get() << ">";
2433  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2434    std::cerr << "<";
2435    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2436    if (LBB)
2437      std::cerr << LBB->getName() << " ";
2438    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2439  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2440    if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2441      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2442    } else {
2443      std::cerr << " #" << R->getReg();
2444    }
2445  } else if (const ExternalSymbolSDNode *ES =
2446             dyn_cast<ExternalSymbolSDNode>(this)) {
2447    std::cerr << "'" << ES->getSymbol() << "'";
2448  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2449    if (M->getValue())
2450      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2451    else
2452      std::cerr << "<null:" << M->getOffset() << ">";
2453  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2454    std::cerr << ":" << getValueTypeString(N->getVT());
2455  }
2456}
2457
2458static void DumpNodes(SDNode *N, unsigned indent, const SelectionDAG *G) {
2459  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2460    if (N->getOperand(i).Val->hasOneUse())
2461      DumpNodes(N->getOperand(i).Val, indent+2, G);
2462    else
2463      std::cerr << "\n" << std::string(indent+2, ' ')
2464                << (void*)N->getOperand(i).Val << ": <multiple use>";
2465
2466
2467  std::cerr << "\n" << std::string(indent, ' ');
2468  N->dump(G);
2469}
2470
2471void SelectionDAG::dump() const {
2472  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2473  std::vector<SDNode*> Nodes(AllNodes);
2474  std::sort(Nodes.begin(), Nodes.end());
2475
2476  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2477    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2478      DumpNodes(Nodes[i], 2, this);
2479  }
2480
2481  DumpNodes(getRoot().Val, 2, this);
2482
2483  std::cerr << "\n\n";
2484}
2485
2486