SelectionDAG.cpp revision 9a14a362d0388da3b7a9b866d23f09f6fe080a29
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetSelectionDAGInfo.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetIntrinsicInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/ManagedStatic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Support/Mutex.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallSet.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64  switch (VT.getSimpleVT().SimpleTy) {
65  default: llvm_unreachable("Unknown FP format");
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76//===----------------------------------------------------------------------===//
77//                              ConstantFPSDNode Class
78//===----------------------------------------------------------------------===//
79
80/// isExactlyValue - We don't rely on operator== working on double values, as
81/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82/// As such, this method can be used to do an exact bit-for-bit comparison of
83/// two floating point values.
84bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85  return getValueAPF().bitwiseIsEqual(V);
86}
87
88bool ConstantFPSDNode::isValueValidForType(EVT VT,
89                                           const APFloat& Val) {
90  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92  // PPC long double cannot be converted to any other type.
93  if (VT == MVT::ppcf128 ||
94      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95    return false;
96
97  // convert modifies in place, so make a copy.
98  APFloat Val2 = APFloat(Val);
99  bool losesInfo;
100  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101                      &losesInfo);
102  return !losesInfo;
103}
104
105//===----------------------------------------------------------------------===//
106//                              ISD Namespace
107//===----------------------------------------------------------------------===//
108
109/// isBuildVectorAllOnes - Return true if the specified node is a
110/// BUILD_VECTOR where all of the elements are ~0 or undef.
111bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112  // Look through a bit convert.
113  if (N->getOpcode() == ISD::BITCAST)
114    N = N->getOperand(0).getNode();
115
116  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118  unsigned i = 0, e = N->getNumOperands();
119
120  // Skip over all of the undef values.
121  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122    ++i;
123
124  // Do not accept an all-undef vector.
125  if (i == e) return false;
126
127  // Do not accept build_vectors that aren't all constants or which have non-~0
128  // elements.
129  SDValue NotZero = N->getOperand(i);
130  if (isa<ConstantSDNode>(NotZero)) {
131    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132      return false;
133  } else if (isa<ConstantFPSDNode>(NotZero)) {
134    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135                bitcastToAPInt().isAllOnesValue())
136      return false;
137  } else
138    return false;
139
140  // Okay, we have at least one ~0 value, check to see if the rest match or are
141  // undefs.
142  for (++i; i != e; ++i)
143    if (N->getOperand(i) != NotZero &&
144        N->getOperand(i).getOpcode() != ISD::UNDEF)
145      return false;
146  return true;
147}
148
149
150/// isBuildVectorAllZeros - Return true if the specified node is a
151/// BUILD_VECTOR where all of the elements are 0 or undef.
152bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153  // Look through a bit convert.
154  if (N->getOpcode() == ISD::BITCAST)
155    N = N->getOperand(0).getNode();
156
157  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159  unsigned i = 0, e = N->getNumOperands();
160
161  // Skip over all of the undef values.
162  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163    ++i;
164
165  // Do not accept an all-undef vector.
166  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  if (NumElems == 1)
202    return false;
203  for (unsigned i = 1; i < NumElems; ++i) {
204    SDValue V = N->getOperand(i);
205    if (V.getOpcode() != ISD::UNDEF)
206      return false;
207  }
208  return true;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: llvm_unreachable("Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, temporalness, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
476                     bool isNonTemporal) {
477  assert((ConvType & 3) == ConvType &&
478         "ConvType may not require more than 2 bits!");
479  assert((AM & 7) == AM &&
480         "AM may not require more than 3 bits!");
481  return ConvType |
482         (AM << 2) |
483         (isVolatile << 5) |
484         (isNonTemporal << 6);
485}
486
487//===----------------------------------------------------------------------===//
488//                              SelectionDAG Class
489//===----------------------------------------------------------------------===//
490
491/// doNotCSE - Return true if CSE should not be performed for this node.
492static bool doNotCSE(SDNode *N) {
493  if (N->getValueType(0) == MVT::Glue)
494    return true; // Never CSE anything that produces a flag.
495
496  switch (N->getOpcode()) {
497  default: break;
498  case ISD::HANDLENODE:
499  case ISD::EH_LABEL:
500    return true;   // Never CSE these nodes.
501  }
502
503  // Check that remaining values produced are not flags.
504  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
505    if (N->getValueType(i) == MVT::Glue)
506      return true; // Never CSE anything that produces a flag.
507
508  return false;
509}
510
511/// RemoveDeadNodes - This method deletes all unreachable nodes in the
512/// SelectionDAG.
513void SelectionDAG::RemoveDeadNodes() {
514  // Create a dummy node (which is not added to allnodes), that adds a reference
515  // to the root node, preventing it from being deleted.
516  HandleSDNode Dummy(getRoot());
517
518  SmallVector<SDNode*, 128> DeadNodes;
519
520  // Add all obviously-dead nodes to the DeadNodes worklist.
521  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
522    if (I->use_empty())
523      DeadNodes.push_back(I);
524
525  RemoveDeadNodes(DeadNodes);
526
527  // If the root changed (e.g. it was a dead load, update the root).
528  setRoot(Dummy.getValue());
529}
530
531/// RemoveDeadNodes - This method deletes the unreachable nodes in the
532/// given list, and any nodes that become unreachable as a result.
533void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
534                                   DAGUpdateListener *UpdateListener) {
535
536  // Process the worklist, deleting the nodes and adding their uses to the
537  // worklist.
538  while (!DeadNodes.empty()) {
539    SDNode *N = DeadNodes.pop_back_val();
540
541    if (UpdateListener)
542      UpdateListener->NodeDeleted(N, 0);
543
544    // Take the node out of the appropriate CSE map.
545    RemoveNodeFromCSEMaps(N);
546
547    // Next, brutally remove the operand list.  This is safe to do, as there are
548    // no cycles in the graph.
549    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
550      SDUse &Use = *I++;
551      SDNode *Operand = Use.getNode();
552      Use.set(SDValue());
553
554      // Now that we removed this operand, see if there are no uses of it left.
555      if (Operand->use_empty())
556        DeadNodes.push_back(Operand);
557    }
558
559    DeallocateNode(N);
560  }
561}
562
563void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564  SmallVector<SDNode*, 16> DeadNodes(1, N);
565  RemoveDeadNodes(DeadNodes, UpdateListener);
566}
567
568void SelectionDAG::DeleteNode(SDNode *N) {
569  // First take this out of the appropriate CSE map.
570  RemoveNodeFromCSEMaps(N);
571
572  // Finally, remove uses due to operands of this node, remove from the
573  // AllNodes list, and delete the node.
574  DeleteNodeNotInCSEMaps(N);
575}
576
577void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579  assert(N->use_empty() && "Cannot delete a node that is not dead!");
580
581  // Drop all of the operands and decrement used node's use counts.
582  N->DropOperands();
583
584  DeallocateNode(N);
585}
586
587void SelectionDAG::DeallocateNode(SDNode *N) {
588  if (N->OperandsNeedDelete)
589    delete[] N->OperandList;
590
591  // Set the opcode to DELETED_NODE to help catch bugs when node
592  // memory is reallocated.
593  N->NodeType = ISD::DELETED_NODE;
594
595  NodeAllocator.Deallocate(AllNodes.remove(N));
596
597  // Remove the ordering of this node.
598  Ordering->remove(N);
599
600  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
601  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
602  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
603    DbgVals[i]->setIsInvalidated();
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::HANDLENODE: return false;  // noop.
614  case ISD::CONDCODE:
615    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
616           "Cond code doesn't exist!");
617    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
618    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
619    break;
620  case ISD::ExternalSymbol:
621    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
622    break;
623  case ISD::TargetExternalSymbol: {
624    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
625    Erased = TargetExternalSymbols.erase(
626               std::pair<std::string,unsigned char>(ESN->getSymbol(),
627                                                    ESN->getTargetFlags()));
628    break;
629  }
630  case ISD::VALUETYPE: {
631    EVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
636      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
643    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746#ifndef NDEBUG
747/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
748static void VerifyNodeCommon(SDNode *N) {
749  switch (N->getOpcode()) {
750  default:
751    break;
752  case ISD::BUILD_PAIR: {
753    EVT VT = N->getValueType(0);
754    assert(N->getNumValues() == 1 && "Too many results!");
755    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
756           "Wrong return type!");
757    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
758    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
759           "Mismatched operand types!");
760    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
761           "Wrong operand type!");
762    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
763           "Wrong return type size");
764    break;
765  }
766  case ISD::BUILD_VECTOR: {
767    assert(N->getNumValues() == 1 && "Too many results!");
768    assert(N->getValueType(0).isVector() && "Wrong return type!");
769    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
770           "Wrong number of operands!");
771    EVT EltVT = N->getValueType(0).getVectorElementType();
772    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
773      assert((I->getValueType() == EltVT ||
774             (EltVT.isInteger() && I->getValueType().isInteger() &&
775              EltVT.bitsLE(I->getValueType()))) &&
776            "Wrong operand type!");
777    break;
778  }
779  }
780}
781
782/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
783static void VerifySDNode(SDNode *N) {
784  // The SDNode allocators cannot be used to allocate nodes with fields that are
785  // not present in an SDNode!
786  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
787  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
788  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
789  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
790  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
791  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
792  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
793  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
794  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
795  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
796  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
797  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
798  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
799  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
800  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
801  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
802  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
803  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
804  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
805
806  VerifyNodeCommon(N);
807}
808
809/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
810/// invalid.
811static void VerifyMachineNode(SDNode *N) {
812  // The MachineNode allocators cannot be used to allocate nodes with fields
813  // that are not present in a MachineNode!
814  // Currently there are no such nodes.
815
816  VerifyNodeCommon(N);
817}
818#endif // NDEBUG
819
820/// getEVTAlignment - Compute the default alignment value for the
821/// given type.
822///
823unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
824  const Type *Ty = VT == MVT::iPTR ?
825                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
826                   VT.getTypeForEVT(*getContext());
827
828  return TLI.getTargetData()->getABITypeAlignment(Ty);
829}
830
831// EntryNode could meaningfully have debug info if we can find it...
832SelectionDAG::SelectionDAG(const TargetMachine &tm)
833  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
834    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
835    Root(getEntryNode()), Ordering(0) {
836  AllNodes.push_back(&EntryNode);
837  Ordering = new SDNodeOrdering();
838  DbgInfo = new SDDbgInfo();
839}
840
841void SelectionDAG::init(MachineFunction &mf) {
842  MF = &mf;
843  Context = &mf.getFunction()->getContext();
844}
845
846SelectionDAG::~SelectionDAG() {
847  allnodes_clear();
848  delete Ordering;
849  delete DbgInfo;
850}
851
852void SelectionDAG::allnodes_clear() {
853  assert(&*AllNodes.begin() == &EntryNode);
854  AllNodes.remove(AllNodes.begin());
855  while (!AllNodes.empty())
856    DeallocateNode(AllNodes.begin());
857}
858
859void SelectionDAG::clear() {
860  allnodes_clear();
861  OperandAllocator.Reset();
862  CSEMap.clear();
863
864  ExtendedValueTypeNodes.clear();
865  ExternalSymbols.clear();
866  TargetExternalSymbols.clear();
867  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
868            static_cast<CondCodeSDNode*>(0));
869  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
870            static_cast<SDNode*>(0));
871
872  EntryNode.UseList = 0;
873  AllNodes.push_back(&EntryNode);
874  Root = getEntryNode();
875  Ordering->clear();
876  DbgInfo->clear();
877}
878
879SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
880  return VT.bitsGT(Op.getValueType()) ?
881    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
882    getNode(ISD::TRUNCATE, DL, VT, Op);
883}
884
885SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
886  return VT.bitsGT(Op.getValueType()) ?
887    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
888    getNode(ISD::TRUNCATE, DL, VT, Op);
889}
890
891SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
892  assert(!VT.isVector() &&
893         "getZeroExtendInReg should use the vector element type instead of "
894         "the vector type!");
895  if (Op.getValueType() == VT) return Op;
896  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
897  APInt Imm = APInt::getLowBitsSet(BitWidth,
898                                   VT.getSizeInBits());
899  return getNode(ISD::AND, DL, Op.getValueType(), Op,
900                 getConstant(Imm, Op.getValueType()));
901}
902
903/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
904///
905SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
906  EVT EltVT = VT.getScalarType();
907  SDValue NegOne =
908    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
909  return getNode(ISD::XOR, DL, VT, Val, NegOne);
910}
911
912SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
913  EVT EltVT = VT.getScalarType();
914  assert((EltVT.getSizeInBits() >= 64 ||
915         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
916         "getConstant with a uint64_t value that doesn't fit in the type!");
917  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
918}
919
920SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
921  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
922}
923
924SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
925  assert(VT.isInteger() && "Cannot create FP integer constant!");
926
927  EVT EltVT = VT.getScalarType();
928  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
929         "APInt size does not match type size!");
930
931  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
934  ID.AddPointer(&Val);
935  void *IP = 0;
936  SDNode *N = NULL;
937  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
938    if (!VT.isVector())
939      return SDValue(N, 0);
940
941  if (!N) {
942    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
943    CSEMap.InsertNode(N, IP);
944    AllNodes.push_back(N);
945  }
946
947  SDValue Result(N, 0);
948  if (VT.isVector()) {
949    SmallVector<SDValue, 8> Ops;
950    Ops.assign(VT.getVectorNumElements(), Result);
951    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
952  }
953  return Result;
954}
955
956SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
957  return getConstant(Val, TLI.getPointerTy(), isTarget);
958}
959
960
961SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
962  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
963}
964
965SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
966  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
967
968  EVT EltVT = VT.getScalarType();
969
970  // Do the map lookup using the actual bit pattern for the floating point
971  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
972  // we don't have issues with SNANs.
973  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
974  FoldingSetNodeID ID;
975  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
976  ID.AddPointer(&V);
977  void *IP = 0;
978  SDNode *N = NULL;
979  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
980    if (!VT.isVector())
981      return SDValue(N, 0);
982
983  if (!N) {
984    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
985    CSEMap.InsertNode(N, IP);
986    AllNodes.push_back(N);
987  }
988
989  SDValue Result(N, 0);
990  if (VT.isVector()) {
991    SmallVector<SDValue, 8> Ops;
992    Ops.assign(VT.getVectorNumElements(), Result);
993    // FIXME DebugLoc info might be appropriate here
994    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
995  }
996  return Result;
997}
998
999SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1000  EVT EltVT = VT.getScalarType();
1001  if (EltVT==MVT::f32)
1002    return getConstantFP(APFloat((float)Val), VT, isTarget);
1003  else if (EltVT==MVT::f64)
1004    return getConstantFP(APFloat(Val), VT, isTarget);
1005  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1006    bool ignored;
1007    APFloat apf = APFloat(Val);
1008    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1009                &ignored);
1010    return getConstantFP(apf, VT, isTarget);
1011  } else {
1012    assert(0 && "Unsupported type in getConstantFP");
1013    return SDValue();
1014  }
1015}
1016
1017SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1018                                       EVT VT, int64_t Offset,
1019                                       bool isTargetGA,
1020                                       unsigned char TargetFlags) {
1021  assert((TargetFlags == 0 || isTargetGA) &&
1022         "Cannot set target flags on target-independent globals");
1023
1024  // Truncate (with sign-extension) the offset value to the pointer size.
1025  EVT PTy = TLI.getPointerTy();
1026  unsigned BitWidth = PTy.getSizeInBits();
1027  if (BitWidth < 64)
1028    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1029
1030  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1031  if (!GVar) {
1032    // If GV is an alias then use the aliasee for determining thread-localness.
1033    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1034      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1035  }
1036
1037  unsigned Opc;
1038  if (GVar && GVar->isThreadLocal())
1039    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1040  else
1041    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1042
1043  FoldingSetNodeID ID;
1044  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1045  ID.AddPointer(GV);
1046  ID.AddInteger(Offset);
1047  ID.AddInteger(TargetFlags);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051
1052  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1053                                                      Offset, TargetFlags);
1054  CSEMap.InsertNode(N, IP);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1060  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1061  FoldingSetNodeID ID;
1062  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1063  ID.AddInteger(FI);
1064  void *IP = 0;
1065  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1066    return SDValue(E, 0);
1067
1068  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1069  CSEMap.InsertNode(N, IP);
1070  AllNodes.push_back(N);
1071  return SDValue(N, 0);
1072}
1073
1074SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1075                                   unsigned char TargetFlags) {
1076  assert((TargetFlags == 0 || isTarget) &&
1077         "Cannot set target flags on target-independent jump tables");
1078  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1079  FoldingSetNodeID ID;
1080  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1081  ID.AddInteger(JTI);
1082  ID.AddInteger(TargetFlags);
1083  void *IP = 0;
1084  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085    return SDValue(E, 0);
1086
1087  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1088                                                  TargetFlags);
1089  CSEMap.InsertNode(N, IP);
1090  AllNodes.push_back(N);
1091  return SDValue(N, 0);
1092}
1093
1094SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1095                                      unsigned Alignment, int Offset,
1096                                      bool isTarget,
1097                                      unsigned char TargetFlags) {
1098  assert((TargetFlags == 0 || isTarget) &&
1099         "Cannot set target flags on target-independent globals");
1100  if (Alignment == 0)
1101    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1102  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1103  FoldingSetNodeID ID;
1104  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1105  ID.AddInteger(Alignment);
1106  ID.AddInteger(Offset);
1107  ID.AddPointer(C);
1108  ID.AddInteger(TargetFlags);
1109  void *IP = 0;
1110  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1111    return SDValue(E, 0);
1112
1113  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1114                                                     Alignment, TargetFlags);
1115  CSEMap.InsertNode(N, IP);
1116  AllNodes.push_back(N);
1117  return SDValue(N, 0);
1118}
1119
1120
1121SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1122                                      unsigned Alignment, int Offset,
1123                                      bool isTarget,
1124                                      unsigned char TargetFlags) {
1125  assert((TargetFlags == 0 || isTarget) &&
1126         "Cannot set target flags on target-independent globals");
1127  if (Alignment == 0)
1128    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1129  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1130  FoldingSetNodeID ID;
1131  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1132  ID.AddInteger(Alignment);
1133  ID.AddInteger(Offset);
1134  C->AddSelectionDAGCSEId(ID);
1135  ID.AddInteger(TargetFlags);
1136  void *IP = 0;
1137  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1138    return SDValue(E, 0);
1139
1140  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1141                                                     Alignment, TargetFlags);
1142  CSEMap.InsertNode(N, IP);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1148  FoldingSetNodeID ID;
1149  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1150  ID.AddPointer(MBB);
1151  void *IP = 0;
1152  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1153    return SDValue(E, 0);
1154
1155  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1156  CSEMap.InsertNode(N, IP);
1157  AllNodes.push_back(N);
1158  return SDValue(N, 0);
1159}
1160
1161SDValue SelectionDAG::getValueType(EVT VT) {
1162  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1163      ValueTypeNodes.size())
1164    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1165
1166  SDNode *&N = VT.isExtended() ?
1167    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1168
1169  if (N) return SDValue(N, 0);
1170  N = new (NodeAllocator) VTSDNode(VT);
1171  AllNodes.push_back(N);
1172  return SDValue(N, 0);
1173}
1174
1175SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1176  SDNode *&N = ExternalSymbols[Sym];
1177  if (N) return SDValue(N, 0);
1178  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1179  AllNodes.push_back(N);
1180  return SDValue(N, 0);
1181}
1182
1183SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1184                                              unsigned char TargetFlags) {
1185  SDNode *&N =
1186    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1187                                                               TargetFlags)];
1188  if (N) return SDValue(N, 0);
1189  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1190  AllNodes.push_back(N);
1191  return SDValue(N, 0);
1192}
1193
1194SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1195  if ((unsigned)Cond >= CondCodeNodes.size())
1196    CondCodeNodes.resize(Cond+1);
1197
1198  if (CondCodeNodes[Cond] == 0) {
1199    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1200    CondCodeNodes[Cond] = N;
1201    AllNodes.push_back(N);
1202  }
1203
1204  return SDValue(CondCodeNodes[Cond], 0);
1205}
1206
1207// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1208// the shuffle mask M that point at N1 to point at N2, and indices that point
1209// N2 to point at N1.
1210static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1211  std::swap(N1, N2);
1212  int NElts = M.size();
1213  for (int i = 0; i != NElts; ++i) {
1214    if (M[i] >= NElts)
1215      M[i] -= NElts;
1216    else if (M[i] >= 0)
1217      M[i] += NElts;
1218  }
1219}
1220
1221SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1222                                       SDValue N2, const int *Mask) {
1223  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1224  assert(VT.isVector() && N1.getValueType().isVector() &&
1225         "Vector Shuffle VTs must be a vectors");
1226  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1227         && "Vector Shuffle VTs must have same element type");
1228
1229  // Canonicalize shuffle undef, undef -> undef
1230  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1231    return getUNDEF(VT);
1232
1233  // Validate that all indices in Mask are within the range of the elements
1234  // input to the shuffle.
1235  unsigned NElts = VT.getVectorNumElements();
1236  SmallVector<int, 8> MaskVec;
1237  for (unsigned i = 0; i != NElts; ++i) {
1238    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1239    MaskVec.push_back(Mask[i]);
1240  }
1241
1242  // Canonicalize shuffle v, v -> v, undef
1243  if (N1 == N2) {
1244    N2 = getUNDEF(VT);
1245    for (unsigned i = 0; i != NElts; ++i)
1246      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1247  }
1248
1249  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1250  if (N1.getOpcode() == ISD::UNDEF)
1251    commuteShuffle(N1, N2, MaskVec);
1252
1253  // Canonicalize all index into lhs, -> shuffle lhs, undef
1254  // Canonicalize all index into rhs, -> shuffle rhs, undef
1255  bool AllLHS = true, AllRHS = true;
1256  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1257  for (unsigned i = 0; i != NElts; ++i) {
1258    if (MaskVec[i] >= (int)NElts) {
1259      if (N2Undef)
1260        MaskVec[i] = -1;
1261      else
1262        AllLHS = false;
1263    } else if (MaskVec[i] >= 0) {
1264      AllRHS = false;
1265    }
1266  }
1267  if (AllLHS && AllRHS)
1268    return getUNDEF(VT);
1269  if (AllLHS && !N2Undef)
1270    N2 = getUNDEF(VT);
1271  if (AllRHS) {
1272    N1 = getUNDEF(VT);
1273    commuteShuffle(N1, N2, MaskVec);
1274  }
1275
1276  // If Identity shuffle, or all shuffle in to undef, return that node.
1277  bool AllUndef = true;
1278  bool Identity = true;
1279  for (unsigned i = 0; i != NElts; ++i) {
1280    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1281    if (MaskVec[i] >= 0) AllUndef = false;
1282  }
1283  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1284    return N1;
1285  if (AllUndef)
1286    return getUNDEF(VT);
1287
1288  FoldingSetNodeID ID;
1289  SDValue Ops[2] = { N1, N2 };
1290  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1291  for (unsigned i = 0; i != NElts; ++i)
1292    ID.AddInteger(MaskVec[i]);
1293
1294  void* IP = 0;
1295  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1296    return SDValue(E, 0);
1297
1298  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1299  // SDNode doesn't have access to it.  This memory will be "leaked" when
1300  // the node is deallocated, but recovered when the NodeAllocator is released.
1301  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1302  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1303
1304  ShuffleVectorSDNode *N =
1305    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1306  CSEMap.InsertNode(N, IP);
1307  AllNodes.push_back(N);
1308  return SDValue(N, 0);
1309}
1310
1311SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1312                                       SDValue Val, SDValue DTy,
1313                                       SDValue STy, SDValue Rnd, SDValue Sat,
1314                                       ISD::CvtCode Code) {
1315  // If the src and dest types are the same and the conversion is between
1316  // integer types of the same sign or two floats, no conversion is necessary.
1317  if (DTy == STy &&
1318      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1319    return Val;
1320
1321  FoldingSetNodeID ID;
1322  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1323  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1324  void* IP = 0;
1325  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1326    return SDValue(E, 0);
1327
1328  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1329                                                           Code);
1330  CSEMap.InsertNode(N, IP);
1331  AllNodes.push_back(N);
1332  return SDValue(N, 0);
1333}
1334
1335SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1336  FoldingSetNodeID ID;
1337  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1338  ID.AddInteger(RegNo);
1339  void *IP = 0;
1340  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1341    return SDValue(E, 0);
1342
1343  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1344  CSEMap.InsertNode(N, IP);
1345  AllNodes.push_back(N);
1346  return SDValue(N, 0);
1347}
1348
1349SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1350  FoldingSetNodeID ID;
1351  SDValue Ops[] = { Root };
1352  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1353  ID.AddPointer(Label);
1354  void *IP = 0;
1355  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356    return SDValue(E, 0);
1357
1358  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1359  CSEMap.InsertNode(N, IP);
1360  AllNodes.push_back(N);
1361  return SDValue(N, 0);
1362}
1363
1364
1365SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1366                                      bool isTarget,
1367                                      unsigned char TargetFlags) {
1368  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1369
1370  FoldingSetNodeID ID;
1371  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1372  ID.AddPointer(BA);
1373  ID.AddInteger(TargetFlags);
1374  void *IP = 0;
1375  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1376    return SDValue(E, 0);
1377
1378  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1379  CSEMap.InsertNode(N, IP);
1380  AllNodes.push_back(N);
1381  return SDValue(N, 0);
1382}
1383
1384SDValue SelectionDAG::getSrcValue(const Value *V) {
1385  assert((!V || V->getType()->isPointerTy()) &&
1386         "SrcValue is not a pointer?");
1387
1388  FoldingSetNodeID ID;
1389  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1390  ID.AddPointer(V);
1391
1392  void *IP = 0;
1393  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1394    return SDValue(E, 0);
1395
1396  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1397  CSEMap.InsertNode(N, IP);
1398  AllNodes.push_back(N);
1399  return SDValue(N, 0);
1400}
1401
1402/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1403SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1404  FoldingSetNodeID ID;
1405  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1406  ID.AddPointer(MD);
1407
1408  void *IP = 0;
1409  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1410    return SDValue(E, 0);
1411
1412  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1413  CSEMap.InsertNode(N, IP);
1414  AllNodes.push_back(N);
1415  return SDValue(N, 0);
1416}
1417
1418
1419/// getShiftAmountOperand - Return the specified value casted to
1420/// the target's desired shift amount type.
1421SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1422  EVT OpTy = Op.getValueType();
1423  MVT ShTy = TLI.getShiftAmountTy();
1424  if (OpTy == ShTy || OpTy.isVector()) return Op;
1425
1426  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1427  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1428}
1429
1430/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1431/// specified value type.
1432SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1433  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1434  unsigned ByteSize = VT.getStoreSize();
1435  const Type *Ty = VT.getTypeForEVT(*getContext());
1436  unsigned StackAlign =
1437  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1438
1439  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1440  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1441}
1442
1443/// CreateStackTemporary - Create a stack temporary suitable for holding
1444/// either of the specified value types.
1445SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1446  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1447                            VT2.getStoreSizeInBits())/8;
1448  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1449  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1450  const TargetData *TD = TLI.getTargetData();
1451  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1452                            TD->getPrefTypeAlignment(Ty2));
1453
1454  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1455  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1456  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1457}
1458
1459SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1460                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1461  // These setcc operations always fold.
1462  switch (Cond) {
1463  default: break;
1464  case ISD::SETFALSE:
1465  case ISD::SETFALSE2: return getConstant(0, VT);
1466  case ISD::SETTRUE:
1467  case ISD::SETTRUE2:  return getConstant(1, VT);
1468
1469  case ISD::SETOEQ:
1470  case ISD::SETOGT:
1471  case ISD::SETOGE:
1472  case ISD::SETOLT:
1473  case ISD::SETOLE:
1474  case ISD::SETONE:
1475  case ISD::SETO:
1476  case ISD::SETUO:
1477  case ISD::SETUEQ:
1478  case ISD::SETUNE:
1479    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1480    break;
1481  }
1482
1483  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1484    const APInt &C2 = N2C->getAPIntValue();
1485    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1486      const APInt &C1 = N1C->getAPIntValue();
1487
1488      switch (Cond) {
1489      default: llvm_unreachable("Unknown integer setcc!");
1490      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1491      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1492      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1493      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1494      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1495      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1496      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1497      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1498      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1499      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1500      }
1501    }
1502  }
1503  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1504    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1505      // No compile time operations on this type yet.
1506      if (N1C->getValueType(0) == MVT::ppcf128)
1507        return SDValue();
1508
1509      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1510      switch (Cond) {
1511      default: break;
1512      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1513                          return getUNDEF(VT);
1514                        // fall through
1515      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1516      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1517                          return getUNDEF(VT);
1518                        // fall through
1519      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1520                                           R==APFloat::cmpLessThan, VT);
1521      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1522                          return getUNDEF(VT);
1523                        // fall through
1524      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1525      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1526                          return getUNDEF(VT);
1527                        // fall through
1528      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1529      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1530                          return getUNDEF(VT);
1531                        // fall through
1532      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1533                                           R==APFloat::cmpEqual, VT);
1534      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1535                          return getUNDEF(VT);
1536                        // fall through
1537      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1538                                           R==APFloat::cmpEqual, VT);
1539      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1540      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1541      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1542                                           R==APFloat::cmpEqual, VT);
1543      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1544      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1545                                           R==APFloat::cmpLessThan, VT);
1546      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1547                                           R==APFloat::cmpUnordered, VT);
1548      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1549      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1550      }
1551    } else {
1552      // Ensure that the constant occurs on the RHS.
1553      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1554    }
1555  }
1556
1557  // Could not fold it.
1558  return SDValue();
1559}
1560
1561/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1562/// use this predicate to simplify operations downstream.
1563bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1564  // This predicate is not safe for vector operations.
1565  if (Op.getValueType().isVector())
1566    return false;
1567
1568  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1569  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1570}
1571
1572/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1573/// this predicate to simplify operations downstream.  Mask is known to be zero
1574/// for bits that V cannot have.
1575bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1576                                     unsigned Depth) const {
1577  APInt KnownZero, KnownOne;
1578  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1579  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1580  return (KnownZero & Mask) == Mask;
1581}
1582
1583/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1584/// known to be either zero or one and return them in the KnownZero/KnownOne
1585/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1586/// processing.
1587void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1588                                     APInt &KnownZero, APInt &KnownOne,
1589                                     unsigned Depth) const {
1590  unsigned BitWidth = Mask.getBitWidth();
1591  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1592         "Mask size mismatches value type size!");
1593
1594  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1595  if (Depth == 6 || Mask == 0)
1596    return;  // Limit search depth.
1597
1598  APInt KnownZero2, KnownOne2;
1599
1600  switch (Op.getOpcode()) {
1601  case ISD::Constant:
1602    // We know all of the bits for a constant!
1603    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1604    KnownZero = ~KnownOne & Mask;
1605    return;
1606  case ISD::AND:
1607    // If either the LHS or the RHS are Zero, the result is zero.
1608    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1609    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1610                      KnownZero2, KnownOne2, Depth+1);
1611    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1612    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1613
1614    // Output known-1 bits are only known if set in both the LHS & RHS.
1615    KnownOne &= KnownOne2;
1616    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1617    KnownZero |= KnownZero2;
1618    return;
1619  case ISD::OR:
1620    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1621    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1622                      KnownZero2, KnownOne2, Depth+1);
1623    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1625
1626    // Output known-0 bits are only known if clear in both the LHS & RHS.
1627    KnownZero &= KnownZero2;
1628    // Output known-1 are known to be set if set in either the LHS | RHS.
1629    KnownOne |= KnownOne2;
1630    return;
1631  case ISD::XOR: {
1632    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1633    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1634    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1636
1637    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1638    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1639    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1640    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1641    KnownZero = KnownZeroOut;
1642    return;
1643  }
1644  case ISD::MUL: {
1645    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1646    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1647    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1648    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1649    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1650
1651    // If low bits are zero in either operand, output low known-0 bits.
1652    // Also compute a conserative estimate for high known-0 bits.
1653    // More trickiness is possible, but this is sufficient for the
1654    // interesting case of alignment computation.
1655    KnownOne.clearAllBits();
1656    unsigned TrailZ = KnownZero.countTrailingOnes() +
1657                      KnownZero2.countTrailingOnes();
1658    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1659                               KnownZero2.countLeadingOnes(),
1660                               BitWidth) - BitWidth;
1661
1662    TrailZ = std::min(TrailZ, BitWidth);
1663    LeadZ = std::min(LeadZ, BitWidth);
1664    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1665                APInt::getHighBitsSet(BitWidth, LeadZ);
1666    KnownZero &= Mask;
1667    return;
1668  }
1669  case ISD::UDIV: {
1670    // For the purposes of computing leading zeros we can conservatively
1671    // treat a udiv as a logical right shift by the power of 2 known to
1672    // be less than the denominator.
1673    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1674    ComputeMaskedBits(Op.getOperand(0),
1675                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1676    unsigned LeadZ = KnownZero2.countLeadingOnes();
1677
1678    KnownOne2.clearAllBits();
1679    KnownZero2.clearAllBits();
1680    ComputeMaskedBits(Op.getOperand(1),
1681                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1682    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1683    if (RHSUnknownLeadingOnes != BitWidth)
1684      LeadZ = std::min(BitWidth,
1685                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1686
1687    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1688    return;
1689  }
1690  case ISD::SELECT:
1691    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1692    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1693    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1695
1696    // Only known if known in both the LHS and RHS.
1697    KnownOne &= KnownOne2;
1698    KnownZero &= KnownZero2;
1699    return;
1700  case ISD::SELECT_CC:
1701    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1702    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1703    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1705
1706    // Only known if known in both the LHS and RHS.
1707    KnownOne &= KnownOne2;
1708    KnownZero &= KnownZero2;
1709    return;
1710  case ISD::SADDO:
1711  case ISD::UADDO:
1712  case ISD::SSUBO:
1713  case ISD::USUBO:
1714  case ISD::SMULO:
1715  case ISD::UMULO:
1716    if (Op.getResNo() != 1)
1717      return;
1718    // The boolean result conforms to getBooleanContents.  Fall through.
1719  case ISD::SETCC:
1720    // If we know the result of a setcc has the top bits zero, use this info.
1721    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1722        BitWidth > 1)
1723      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1724    return;
1725  case ISD::SHL:
1726    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1727    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1728      unsigned ShAmt = SA->getZExtValue();
1729
1730      // If the shift count is an invalid immediate, don't do anything.
1731      if (ShAmt >= BitWidth)
1732        return;
1733
1734      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1735                        KnownZero, KnownOne, Depth+1);
1736      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737      KnownZero <<= ShAmt;
1738      KnownOne  <<= ShAmt;
1739      // low bits known zero.
1740      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1741    }
1742    return;
1743  case ISD::SRL:
1744    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1745    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1746      unsigned ShAmt = SA->getZExtValue();
1747
1748      // If the shift count is an invalid immediate, don't do anything.
1749      if (ShAmt >= BitWidth)
1750        return;
1751
1752      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1753                        KnownZero, KnownOne, Depth+1);
1754      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1755      KnownZero = KnownZero.lshr(ShAmt);
1756      KnownOne  = KnownOne.lshr(ShAmt);
1757
1758      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1759      KnownZero |= HighBits;  // High bits known zero.
1760    }
1761    return;
1762  case ISD::SRA:
1763    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1764      unsigned ShAmt = SA->getZExtValue();
1765
1766      // If the shift count is an invalid immediate, don't do anything.
1767      if (ShAmt >= BitWidth)
1768        return;
1769
1770      APInt InDemandedMask = (Mask << ShAmt);
1771      // If any of the demanded bits are produced by the sign extension, we also
1772      // demand the input sign bit.
1773      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1774      if (HighBits.getBoolValue())
1775        InDemandedMask |= APInt::getSignBit(BitWidth);
1776
1777      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1778                        Depth+1);
1779      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1780      KnownZero = KnownZero.lshr(ShAmt);
1781      KnownOne  = KnownOne.lshr(ShAmt);
1782
1783      // Handle the sign bits.
1784      APInt SignBit = APInt::getSignBit(BitWidth);
1785      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1786
1787      if (KnownZero.intersects(SignBit)) {
1788        KnownZero |= HighBits;  // New bits are known zero.
1789      } else if (KnownOne.intersects(SignBit)) {
1790        KnownOne  |= HighBits;  // New bits are known one.
1791      }
1792    }
1793    return;
1794  case ISD::SIGN_EXTEND_INREG: {
1795    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1796    unsigned EBits = EVT.getScalarType().getSizeInBits();
1797
1798    // Sign extension.  Compute the demanded bits in the result that are not
1799    // present in the input.
1800    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1801
1802    APInt InSignBit = APInt::getSignBit(EBits);
1803    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1804
1805    // If the sign extended bits are demanded, we know that the sign
1806    // bit is demanded.
1807    InSignBit = InSignBit.zext(BitWidth);
1808    if (NewBits.getBoolValue())
1809      InputDemandedBits |= InSignBit;
1810
1811    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1812                      KnownZero, KnownOne, Depth+1);
1813    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1814
1815    // If the sign bit of the input is known set or clear, then we know the
1816    // top bits of the result.
1817    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1818      KnownZero |= NewBits;
1819      KnownOne  &= ~NewBits;
1820    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1821      KnownOne  |= NewBits;
1822      KnownZero &= ~NewBits;
1823    } else {                              // Input sign bit unknown
1824      KnownZero &= ~NewBits;
1825      KnownOne  &= ~NewBits;
1826    }
1827    return;
1828  }
1829  case ISD::CTTZ:
1830  case ISD::CTLZ:
1831  case ISD::CTPOP: {
1832    unsigned LowBits = Log2_32(BitWidth)+1;
1833    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1834    KnownOne.clearAllBits();
1835    return;
1836  }
1837  case ISD::LOAD: {
1838    if (ISD::isZEXTLoad(Op.getNode())) {
1839      LoadSDNode *LD = cast<LoadSDNode>(Op);
1840      EVT VT = LD->getMemoryVT();
1841      unsigned MemBits = VT.getScalarType().getSizeInBits();
1842      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1843    }
1844    return;
1845  }
1846  case ISD::ZERO_EXTEND: {
1847    EVT InVT = Op.getOperand(0).getValueType();
1848    unsigned InBits = InVT.getScalarType().getSizeInBits();
1849    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1850    APInt InMask    = Mask.trunc(InBits);
1851    KnownZero = KnownZero.trunc(InBits);
1852    KnownOne = KnownOne.trunc(InBits);
1853    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1854    KnownZero = KnownZero.zext(BitWidth);
1855    KnownOne = KnownOne.zext(BitWidth);
1856    KnownZero |= NewBits;
1857    return;
1858  }
1859  case ISD::SIGN_EXTEND: {
1860    EVT InVT = Op.getOperand(0).getValueType();
1861    unsigned InBits = InVT.getScalarType().getSizeInBits();
1862    APInt InSignBit = APInt::getSignBit(InBits);
1863    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1864    APInt InMask = Mask.trunc(InBits);
1865
1866    // If any of the sign extended bits are demanded, we know that the sign
1867    // bit is demanded. Temporarily set this bit in the mask for our callee.
1868    if (NewBits.getBoolValue())
1869      InMask |= InSignBit;
1870
1871    KnownZero = KnownZero.trunc(InBits);
1872    KnownOne = KnownOne.trunc(InBits);
1873    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874
1875    // Note if the sign bit is known to be zero or one.
1876    bool SignBitKnownZero = KnownZero.isNegative();
1877    bool SignBitKnownOne  = KnownOne.isNegative();
1878    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1879           "Sign bit can't be known to be both zero and one!");
1880
1881    // If the sign bit wasn't actually demanded by our caller, we don't
1882    // want it set in the KnownZero and KnownOne result values. Reset the
1883    // mask and reapply it to the result values.
1884    InMask = Mask.trunc(InBits);
1885    KnownZero &= InMask;
1886    KnownOne  &= InMask;
1887
1888    KnownZero = KnownZero.zext(BitWidth);
1889    KnownOne = KnownOne.zext(BitWidth);
1890
1891    // If the sign bit is known zero or one, the top bits match.
1892    if (SignBitKnownZero)
1893      KnownZero |= NewBits;
1894    else if (SignBitKnownOne)
1895      KnownOne  |= NewBits;
1896    return;
1897  }
1898  case ISD::ANY_EXTEND: {
1899    EVT InVT = Op.getOperand(0).getValueType();
1900    unsigned InBits = InVT.getScalarType().getSizeInBits();
1901    APInt InMask = Mask.trunc(InBits);
1902    KnownZero = KnownZero.trunc(InBits);
1903    KnownOne = KnownOne.trunc(InBits);
1904    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1905    KnownZero = KnownZero.zext(BitWidth);
1906    KnownOne = KnownOne.zext(BitWidth);
1907    return;
1908  }
1909  case ISD::TRUNCATE: {
1910    EVT InVT = Op.getOperand(0).getValueType();
1911    unsigned InBits = InVT.getScalarType().getSizeInBits();
1912    APInt InMask = Mask.zext(InBits);
1913    KnownZero = KnownZero.zext(InBits);
1914    KnownOne = KnownOne.zext(InBits);
1915    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1916    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1917    KnownZero = KnownZero.trunc(BitWidth);
1918    KnownOne = KnownOne.trunc(BitWidth);
1919    break;
1920  }
1921  case ISD::AssertZext: {
1922    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1923    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1924    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1925                      KnownOne, Depth+1);
1926    KnownZero |= (~InMask) & Mask;
1927    return;
1928  }
1929  case ISD::FGETSIGN:
1930    // All bits are zero except the low bit.
1931    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1932    return;
1933
1934  case ISD::SUB: {
1935    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1936      // We know that the top bits of C-X are clear if X contains less bits
1937      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1938      // positive if we can prove that X is >= 0 and < 16.
1939      if (CLHS->getAPIntValue().isNonNegative()) {
1940        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1941        // NLZ can't be BitWidth with no sign bit
1942        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1943        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1944                          Depth+1);
1945
1946        // If all of the MaskV bits are known to be zero, then we know the
1947        // output top bits are zero, because we now know that the output is
1948        // from [0-C].
1949        if ((KnownZero2 & MaskV) == MaskV) {
1950          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1951          // Top bits known zero.
1952          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1953        }
1954      }
1955    }
1956  }
1957  // fall through
1958  case ISD::ADD:
1959  case ISD::ADDE: {
1960    // Output known-0 bits are known if clear or set in both the low clear bits
1961    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1962    // low 3 bits clear.
1963    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1964                                       BitWidth - Mask.countLeadingZeros());
1965    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1966    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1967    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1968
1969    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1970    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1971    KnownZeroOut = std::min(KnownZeroOut,
1972                            KnownZero2.countTrailingOnes());
1973
1974    if (Op.getOpcode() == ISD::ADD) {
1975      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1976      return;
1977    }
1978
1979    // With ADDE, a carry bit may be added in, so we can only use this
1980    // information if we know (at least) that the low two bits are clear.  We
1981    // then return to the caller that the low bit is unknown but that other bits
1982    // are known zero.
1983    if (KnownZeroOut >= 2) // ADDE
1984      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
1985    return;
1986  }
1987  case ISD::SREM:
1988    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1989      const APInt &RA = Rem->getAPIntValue().abs();
1990      if (RA.isPowerOf2()) {
1991        APInt LowBits = RA - 1;
1992        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1993        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1994
1995        // The low bits of the first operand are unchanged by the srem.
1996        KnownZero = KnownZero2 & LowBits;
1997        KnownOne = KnownOne2 & LowBits;
1998
1999        // If the first operand is non-negative or has all low bits zero, then
2000        // the upper bits are all zero.
2001        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2002          KnownZero |= ~LowBits;
2003
2004        // If the first operand is negative and not all low bits are zero, then
2005        // the upper bits are all one.
2006        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2007          KnownOne |= ~LowBits;
2008
2009        KnownZero &= Mask;
2010        KnownOne &= Mask;
2011
2012        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2013      }
2014    }
2015    return;
2016  case ISD::UREM: {
2017    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2018      const APInt &RA = Rem->getAPIntValue();
2019      if (RA.isPowerOf2()) {
2020        APInt LowBits = (RA - 1);
2021        APInt Mask2 = LowBits & Mask;
2022        KnownZero |= ~LowBits & Mask;
2023        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2024        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2025        break;
2026      }
2027    }
2028
2029    // Since the result is less than or equal to either operand, any leading
2030    // zero bits in either operand must also exist in the result.
2031    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2032    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2033                      Depth+1);
2034    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2035                      Depth+1);
2036
2037    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2038                                KnownZero2.countLeadingOnes());
2039    KnownOne.clearAllBits();
2040    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2041    return;
2042  }
2043  default:
2044    // Allow the target to implement this method for its nodes.
2045    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2046  case ISD::INTRINSIC_WO_CHAIN:
2047  case ISD::INTRINSIC_W_CHAIN:
2048  case ISD::INTRINSIC_VOID:
2049      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2050                                         Depth);
2051    }
2052    return;
2053  }
2054}
2055
2056/// ComputeNumSignBits - Return the number of times the sign bit of the
2057/// register is replicated into the other bits.  We know that at least 1 bit
2058/// is always equal to the sign bit (itself), but other cases can give us
2059/// information.  For example, immediately after an "SRA X, 2", we know that
2060/// the top 3 bits are all equal to each other, so we return 3.
2061unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2062  EVT VT = Op.getValueType();
2063  assert(VT.isInteger() && "Invalid VT!");
2064  unsigned VTBits = VT.getScalarType().getSizeInBits();
2065  unsigned Tmp, Tmp2;
2066  unsigned FirstAnswer = 1;
2067
2068  if (Depth == 6)
2069    return 1;  // Limit search depth.
2070
2071  switch (Op.getOpcode()) {
2072  default: break;
2073  case ISD::AssertSext:
2074    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2075    return VTBits-Tmp+1;
2076  case ISD::AssertZext:
2077    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2078    return VTBits-Tmp;
2079
2080  case ISD::Constant: {
2081    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2082    // If negative, return # leading ones.
2083    if (Val.isNegative())
2084      return Val.countLeadingOnes();
2085
2086    // Return # leading zeros.
2087    return Val.countLeadingZeros();
2088  }
2089
2090  case ISD::SIGN_EXTEND:
2091    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2092    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2093
2094  case ISD::SIGN_EXTEND_INREG:
2095    // Max of the input and what this extends.
2096    Tmp =
2097      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2098    Tmp = VTBits-Tmp+1;
2099
2100    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2101    return std::max(Tmp, Tmp2);
2102
2103  case ISD::SRA:
2104    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2105    // SRA X, C   -> adds C sign bits.
2106    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2107      Tmp += C->getZExtValue();
2108      if (Tmp > VTBits) Tmp = VTBits;
2109    }
2110    return Tmp;
2111  case ISD::SHL:
2112    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2113      // shl destroys sign bits.
2114      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2115      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2116          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2117      return Tmp - C->getZExtValue();
2118    }
2119    break;
2120  case ISD::AND:
2121  case ISD::OR:
2122  case ISD::XOR:    // NOT is handled here.
2123    // Logical binary ops preserve the number of sign bits at the worst.
2124    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2125    if (Tmp != 1) {
2126      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2127      FirstAnswer = std::min(Tmp, Tmp2);
2128      // We computed what we know about the sign bits as our first
2129      // answer. Now proceed to the generic code that uses
2130      // ComputeMaskedBits, and pick whichever answer is better.
2131    }
2132    break;
2133
2134  case ISD::SELECT:
2135    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2136    if (Tmp == 1) return 1;  // Early out.
2137    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2138    return std::min(Tmp, Tmp2);
2139
2140  case ISD::SADDO:
2141  case ISD::UADDO:
2142  case ISD::SSUBO:
2143  case ISD::USUBO:
2144  case ISD::SMULO:
2145  case ISD::UMULO:
2146    if (Op.getResNo() != 1)
2147      break;
2148    // The boolean result conforms to getBooleanContents.  Fall through.
2149  case ISD::SETCC:
2150    // If setcc returns 0/-1, all bits are sign bits.
2151    if (TLI.getBooleanContents() ==
2152        TargetLowering::ZeroOrNegativeOneBooleanContent)
2153      return VTBits;
2154    break;
2155  case ISD::ROTL:
2156  case ISD::ROTR:
2157    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2158      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2159
2160      // Handle rotate right by N like a rotate left by 32-N.
2161      if (Op.getOpcode() == ISD::ROTR)
2162        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2163
2164      // If we aren't rotating out all of the known-in sign bits, return the
2165      // number that are left.  This handles rotl(sext(x), 1) for example.
2166      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2167      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2168    }
2169    break;
2170  case ISD::ADD:
2171    // Add can have at most one carry bit.  Thus we know that the output
2172    // is, at worst, one more bit than the inputs.
2173    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2174    if (Tmp == 1) return 1;  // Early out.
2175
2176    // Special case decrementing a value (ADD X, -1):
2177    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2178      if (CRHS->isAllOnesValue()) {
2179        APInt KnownZero, KnownOne;
2180        APInt Mask = APInt::getAllOnesValue(VTBits);
2181        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2182
2183        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2184        // sign bits set.
2185        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2186          return VTBits;
2187
2188        // If we are subtracting one from a positive number, there is no carry
2189        // out of the result.
2190        if (KnownZero.isNegative())
2191          return Tmp;
2192      }
2193
2194    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2195    if (Tmp2 == 1) return 1;
2196      return std::min(Tmp, Tmp2)-1;
2197    break;
2198
2199  case ISD::SUB:
2200    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2201    if (Tmp2 == 1) return 1;
2202
2203    // Handle NEG.
2204    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2205      if (CLHS->isNullValue()) {
2206        APInt KnownZero, KnownOne;
2207        APInt Mask = APInt::getAllOnesValue(VTBits);
2208        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2209        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2210        // sign bits set.
2211        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2212          return VTBits;
2213
2214        // If the input is known to be positive (the sign bit is known clear),
2215        // the output of the NEG has the same number of sign bits as the input.
2216        if (KnownZero.isNegative())
2217          return Tmp2;
2218
2219        // Otherwise, we treat this like a SUB.
2220      }
2221
2222    // Sub can have at most one carry bit.  Thus we know that the output
2223    // is, at worst, one more bit than the inputs.
2224    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2225    if (Tmp == 1) return 1;  // Early out.
2226      return std::min(Tmp, Tmp2)-1;
2227    break;
2228  case ISD::TRUNCATE:
2229    // FIXME: it's tricky to do anything useful for this, but it is an important
2230    // case for targets like X86.
2231    break;
2232  }
2233
2234  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2235  if (Op.getOpcode() == ISD::LOAD) {
2236    LoadSDNode *LD = cast<LoadSDNode>(Op);
2237    unsigned ExtType = LD->getExtensionType();
2238    switch (ExtType) {
2239    default: break;
2240    case ISD::SEXTLOAD:    // '17' bits known
2241      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2242      return VTBits-Tmp+1;
2243    case ISD::ZEXTLOAD:    // '16' bits known
2244      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2245      return VTBits-Tmp;
2246    }
2247  }
2248
2249  // Allow the target to implement this method for its nodes.
2250  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2251      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2252      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2253      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2254    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2255    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2256  }
2257
2258  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2259  // use this information.
2260  APInt KnownZero, KnownOne;
2261  APInt Mask = APInt::getAllOnesValue(VTBits);
2262  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2263
2264  if (KnownZero.isNegative()) {        // sign bit is 0
2265    Mask = KnownZero;
2266  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2267    Mask = KnownOne;
2268  } else {
2269    // Nothing known.
2270    return FirstAnswer;
2271  }
2272
2273  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2274  // the number of identical bits in the top of the input value.
2275  Mask = ~Mask;
2276  Mask <<= Mask.getBitWidth()-VTBits;
2277  // Return # leading zeros.  We use 'min' here in case Val was zero before
2278  // shifting.  We don't want to return '64' as for an i32 "0".
2279  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2280}
2281
2282bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2283  // If we're told that NaNs won't happen, assume they won't.
2284  if (NoNaNsFPMath)
2285    return true;
2286
2287  // If the value is a constant, we can obviously see if it is a NaN or not.
2288  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2289    return !C->getValueAPF().isNaN();
2290
2291  // TODO: Recognize more cases here.
2292
2293  return false;
2294}
2295
2296bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2297  // If the value is a constant, we can obviously see if it is a zero or not.
2298  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2299    return !C->isZero();
2300
2301  // TODO: Recognize more cases here.
2302
2303  return false;
2304}
2305
2306bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2307  // Check the obvious case.
2308  if (A == B) return true;
2309
2310  // For for negative and positive zero.
2311  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2312    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2313      if (CA->isZero() && CB->isZero()) return true;
2314
2315  // Otherwise they may not be equal.
2316  return false;
2317}
2318
2319bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2320  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2321  if (!GA) return false;
2322  if (GA->getOffset() != 0) return false;
2323  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2324  if (!GV) return false;
2325  return MF->getMMI().hasDebugInfo();
2326}
2327
2328
2329/// getNode - Gets or creates the specified node.
2330///
2331SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2332  FoldingSetNodeID ID;
2333  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2334  void *IP = 0;
2335  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2336    return SDValue(E, 0);
2337
2338  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2339  CSEMap.InsertNode(N, IP);
2340
2341  AllNodes.push_back(N);
2342#ifndef NDEBUG
2343  VerifySDNode(N);
2344#endif
2345  return SDValue(N, 0);
2346}
2347
2348SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2349                              EVT VT, SDValue Operand) {
2350  // Constant fold unary operations with an integer constant operand.
2351  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2352    const APInt &Val = C->getAPIntValue();
2353    switch (Opcode) {
2354    default: break;
2355    case ISD::SIGN_EXTEND:
2356      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2357    case ISD::ANY_EXTEND:
2358    case ISD::ZERO_EXTEND:
2359    case ISD::TRUNCATE:
2360      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2361    case ISD::UINT_TO_FP:
2362    case ISD::SINT_TO_FP: {
2363      // No compile time operations on ppcf128.
2364      if (VT == MVT::ppcf128) break;
2365      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2366      (void)apf.convertFromAPInt(Val,
2367                                 Opcode==ISD::SINT_TO_FP,
2368                                 APFloat::rmNearestTiesToEven);
2369      return getConstantFP(apf, VT);
2370    }
2371    case ISD::BITCAST:
2372      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2373        return getConstantFP(Val.bitsToFloat(), VT);
2374      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2375        return getConstantFP(Val.bitsToDouble(), VT);
2376      break;
2377    case ISD::BSWAP:
2378      return getConstant(Val.byteSwap(), VT);
2379    case ISD::CTPOP:
2380      return getConstant(Val.countPopulation(), VT);
2381    case ISD::CTLZ:
2382      return getConstant(Val.countLeadingZeros(), VT);
2383    case ISD::CTTZ:
2384      return getConstant(Val.countTrailingZeros(), VT);
2385    }
2386  }
2387
2388  // Constant fold unary operations with a floating point constant operand.
2389  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2390    APFloat V = C->getValueAPF();    // make copy
2391    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2392      switch (Opcode) {
2393      case ISD::FNEG:
2394        V.changeSign();
2395        return getConstantFP(V, VT);
2396      case ISD::FABS:
2397        V.clearSign();
2398        return getConstantFP(V, VT);
2399      case ISD::FP_ROUND:
2400      case ISD::FP_EXTEND: {
2401        bool ignored;
2402        // This can return overflow, underflow, or inexact; we don't care.
2403        // FIXME need to be more flexible about rounding mode.
2404        (void)V.convert(*EVTToAPFloatSemantics(VT),
2405                        APFloat::rmNearestTiesToEven, &ignored);
2406        return getConstantFP(V, VT);
2407      }
2408      case ISD::FP_TO_SINT:
2409      case ISD::FP_TO_UINT: {
2410        integerPart x[2];
2411        bool ignored;
2412        assert(integerPartWidth >= 64);
2413        // FIXME need to be more flexible about rounding mode.
2414        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2415                              Opcode==ISD::FP_TO_SINT,
2416                              APFloat::rmTowardZero, &ignored);
2417        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2418          break;
2419        APInt api(VT.getSizeInBits(), 2, x);
2420        return getConstant(api, VT);
2421      }
2422      case ISD::BITCAST:
2423        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2424          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2425        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2426          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2427        break;
2428      }
2429    }
2430  }
2431
2432  unsigned OpOpcode = Operand.getNode()->getOpcode();
2433  switch (Opcode) {
2434  case ISD::TokenFactor:
2435  case ISD::MERGE_VALUES:
2436  case ISD::CONCAT_VECTORS:
2437    return Operand;         // Factor, merge or concat of one node?  No need.
2438  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2439  case ISD::FP_EXTEND:
2440    assert(VT.isFloatingPoint() &&
2441           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2442    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2443    assert((!VT.isVector() ||
2444            VT.getVectorNumElements() ==
2445            Operand.getValueType().getVectorNumElements()) &&
2446           "Vector element count mismatch!");
2447    if (Operand.getOpcode() == ISD::UNDEF)
2448      return getUNDEF(VT);
2449    break;
2450  case ISD::SIGN_EXTEND:
2451    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2452           "Invalid SIGN_EXTEND!");
2453    if (Operand.getValueType() == VT) return Operand;   // noop extension
2454    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2455           "Invalid sext node, dst < src!");
2456    assert((!VT.isVector() ||
2457            VT.getVectorNumElements() ==
2458            Operand.getValueType().getVectorNumElements()) &&
2459           "Vector element count mismatch!");
2460    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2461      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2462    break;
2463  case ISD::ZERO_EXTEND:
2464    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2465           "Invalid ZERO_EXTEND!");
2466    if (Operand.getValueType() == VT) return Operand;   // noop extension
2467    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2468           "Invalid zext node, dst < src!");
2469    assert((!VT.isVector() ||
2470            VT.getVectorNumElements() ==
2471            Operand.getValueType().getVectorNumElements()) &&
2472           "Vector element count mismatch!");
2473    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2474      return getNode(ISD::ZERO_EXTEND, DL, VT,
2475                     Operand.getNode()->getOperand(0));
2476    break;
2477  case ISD::ANY_EXTEND:
2478    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2479           "Invalid ANY_EXTEND!");
2480    if (Operand.getValueType() == VT) return Operand;   // noop extension
2481    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2482           "Invalid anyext node, dst < src!");
2483    assert((!VT.isVector() ||
2484            VT.getVectorNumElements() ==
2485            Operand.getValueType().getVectorNumElements()) &&
2486           "Vector element count mismatch!");
2487
2488    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2489        OpOpcode == ISD::ANY_EXTEND)
2490      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2491      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2492
2493    // (ext (trunx x)) -> x
2494    if (OpOpcode == ISD::TRUNCATE) {
2495      SDValue OpOp = Operand.getNode()->getOperand(0);
2496      if (OpOp.getValueType() == VT)
2497        return OpOp;
2498    }
2499    break;
2500  case ISD::TRUNCATE:
2501    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2502           "Invalid TRUNCATE!");
2503    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2504    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2505           "Invalid truncate node, src < dst!");
2506    assert((!VT.isVector() ||
2507            VT.getVectorNumElements() ==
2508            Operand.getValueType().getVectorNumElements()) &&
2509           "Vector element count mismatch!");
2510    if (OpOpcode == ISD::TRUNCATE)
2511      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2512    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2513             OpOpcode == ISD::ANY_EXTEND) {
2514      // If the source is smaller than the dest, we still need an extend.
2515      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2516            .bitsLT(VT.getScalarType()))
2517        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2518      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2519        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2520      else
2521        return Operand.getNode()->getOperand(0);
2522    }
2523    break;
2524  case ISD::BITCAST:
2525    // Basic sanity checking.
2526    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2527           && "Cannot BITCAST between types of different sizes!");
2528    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2529    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2530      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2531    if (OpOpcode == ISD::UNDEF)
2532      return getUNDEF(VT);
2533    break;
2534  case ISD::SCALAR_TO_VECTOR:
2535    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2536           (VT.getVectorElementType() == Operand.getValueType() ||
2537            (VT.getVectorElementType().isInteger() &&
2538             Operand.getValueType().isInteger() &&
2539             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2540           "Illegal SCALAR_TO_VECTOR node!");
2541    if (OpOpcode == ISD::UNDEF)
2542      return getUNDEF(VT);
2543    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2544    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2545        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2546        Operand.getConstantOperandVal(1) == 0 &&
2547        Operand.getOperand(0).getValueType() == VT)
2548      return Operand.getOperand(0);
2549    break;
2550  case ISD::FNEG:
2551    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2552    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2553      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2554                     Operand.getNode()->getOperand(0));
2555    if (OpOpcode == ISD::FNEG)  // --X -> X
2556      return Operand.getNode()->getOperand(0);
2557    break;
2558  case ISD::FABS:
2559    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2560      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2561    break;
2562  }
2563
2564  SDNode *N;
2565  SDVTList VTs = getVTList(VT);
2566  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2567    FoldingSetNodeID ID;
2568    SDValue Ops[1] = { Operand };
2569    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2570    void *IP = 0;
2571    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2572      return SDValue(E, 0);
2573
2574    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2575    CSEMap.InsertNode(N, IP);
2576  } else {
2577    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2578  }
2579
2580  AllNodes.push_back(N);
2581#ifndef NDEBUG
2582  VerifySDNode(N);
2583#endif
2584  return SDValue(N, 0);
2585}
2586
2587SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2588                                             EVT VT,
2589                                             ConstantSDNode *Cst1,
2590                                             ConstantSDNode *Cst2) {
2591  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2592
2593  switch (Opcode) {
2594  case ISD::ADD:  return getConstant(C1 + C2, VT);
2595  case ISD::SUB:  return getConstant(C1 - C2, VT);
2596  case ISD::MUL:  return getConstant(C1 * C2, VT);
2597  case ISD::UDIV:
2598    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2599    break;
2600  case ISD::UREM:
2601    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2602    break;
2603  case ISD::SDIV:
2604    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2605    break;
2606  case ISD::SREM:
2607    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2608    break;
2609  case ISD::AND:  return getConstant(C1 & C2, VT);
2610  case ISD::OR:   return getConstant(C1 | C2, VT);
2611  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2612  case ISD::SHL:  return getConstant(C1 << C2, VT);
2613  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2614  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2615  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2616  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2617  default: break;
2618  }
2619
2620  return SDValue();
2621}
2622
2623SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2624                              SDValue N1, SDValue N2) {
2625  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2626  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2627  switch (Opcode) {
2628  default: break;
2629  case ISD::TokenFactor:
2630    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2631           N2.getValueType() == MVT::Other && "Invalid token factor!");
2632    // Fold trivial token factors.
2633    if (N1.getOpcode() == ISD::EntryToken) return N2;
2634    if (N2.getOpcode() == ISD::EntryToken) return N1;
2635    if (N1 == N2) return N1;
2636    break;
2637  case ISD::CONCAT_VECTORS:
2638    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2639    // one big BUILD_VECTOR.
2640    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2641        N2.getOpcode() == ISD::BUILD_VECTOR) {
2642      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2643                                    N1.getNode()->op_end());
2644      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2645      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2646    }
2647    break;
2648  case ISD::AND:
2649    assert(VT.isInteger() && "This operator does not apply to FP types!");
2650    assert(N1.getValueType() == N2.getValueType() &&
2651           N1.getValueType() == VT && "Binary operator types must match!");
2652    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2653    // worth handling here.
2654    if (N2C && N2C->isNullValue())
2655      return N2;
2656    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2657      return N1;
2658    break;
2659  case ISD::OR:
2660  case ISD::XOR:
2661  case ISD::ADD:
2662  case ISD::SUB:
2663    assert(VT.isInteger() && "This operator does not apply to FP types!");
2664    assert(N1.getValueType() == N2.getValueType() &&
2665           N1.getValueType() == VT && "Binary operator types must match!");
2666    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2667    // it's worth handling here.
2668    if (N2C && N2C->isNullValue())
2669      return N1;
2670    break;
2671  case ISD::UDIV:
2672  case ISD::UREM:
2673  case ISD::MULHU:
2674  case ISD::MULHS:
2675  case ISD::MUL:
2676  case ISD::SDIV:
2677  case ISD::SREM:
2678    assert(VT.isInteger() && "This operator does not apply to FP types!");
2679    assert(N1.getValueType() == N2.getValueType() &&
2680           N1.getValueType() == VT && "Binary operator types must match!");
2681    break;
2682  case ISD::FADD:
2683  case ISD::FSUB:
2684  case ISD::FMUL:
2685  case ISD::FDIV:
2686  case ISD::FREM:
2687    if (UnsafeFPMath) {
2688      if (Opcode == ISD::FADD) {
2689        // 0+x --> x
2690        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2691          if (CFP->getValueAPF().isZero())
2692            return N2;
2693        // x+0 --> x
2694        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2695          if (CFP->getValueAPF().isZero())
2696            return N1;
2697      } else if (Opcode == ISD::FSUB) {
2698        // x-0 --> x
2699        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2700          if (CFP->getValueAPF().isZero())
2701            return N1;
2702      }
2703    }
2704    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2705    assert(N1.getValueType() == N2.getValueType() &&
2706           N1.getValueType() == VT && "Binary operator types must match!");
2707    break;
2708  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2709    assert(N1.getValueType() == VT &&
2710           N1.getValueType().isFloatingPoint() &&
2711           N2.getValueType().isFloatingPoint() &&
2712           "Invalid FCOPYSIGN!");
2713    break;
2714  case ISD::SHL:
2715  case ISD::SRA:
2716  case ISD::SRL:
2717  case ISD::ROTL:
2718  case ISD::ROTR:
2719    assert(VT == N1.getValueType() &&
2720           "Shift operators return type must be the same as their first arg");
2721    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2722           "Shifts only work on integers");
2723
2724    // Always fold shifts of i1 values so the code generator doesn't need to
2725    // handle them.  Since we know the size of the shift has to be less than the
2726    // size of the value, the shift/rotate count is guaranteed to be zero.
2727    if (VT == MVT::i1)
2728      return N1;
2729    if (N2C && N2C->isNullValue())
2730      return N1;
2731    break;
2732  case ISD::FP_ROUND_INREG: {
2733    EVT EVT = cast<VTSDNode>(N2)->getVT();
2734    assert(VT == N1.getValueType() && "Not an inreg round!");
2735    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2736           "Cannot FP_ROUND_INREG integer types");
2737    assert(EVT.isVector() == VT.isVector() &&
2738           "FP_ROUND_INREG type should be vector iff the operand "
2739           "type is vector!");
2740    assert((!EVT.isVector() ||
2741            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2742           "Vector element counts must match in FP_ROUND_INREG");
2743    assert(EVT.bitsLE(VT) && "Not rounding down!");
2744    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2745    break;
2746  }
2747  case ISD::FP_ROUND:
2748    assert(VT.isFloatingPoint() &&
2749           N1.getValueType().isFloatingPoint() &&
2750           VT.bitsLE(N1.getValueType()) &&
2751           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2752    if (N1.getValueType() == VT) return N1;  // noop conversion.
2753    break;
2754  case ISD::AssertSext:
2755  case ISD::AssertZext: {
2756    EVT EVT = cast<VTSDNode>(N2)->getVT();
2757    assert(VT == N1.getValueType() && "Not an inreg extend!");
2758    assert(VT.isInteger() && EVT.isInteger() &&
2759           "Cannot *_EXTEND_INREG FP types");
2760    assert(!EVT.isVector() &&
2761           "AssertSExt/AssertZExt type should be the vector element type "
2762           "rather than the vector type!");
2763    assert(EVT.bitsLE(VT) && "Not extending!");
2764    if (VT == EVT) return N1; // noop assertion.
2765    break;
2766  }
2767  case ISD::SIGN_EXTEND_INREG: {
2768    EVT EVT = cast<VTSDNode>(N2)->getVT();
2769    assert(VT == N1.getValueType() && "Not an inreg extend!");
2770    assert(VT.isInteger() && EVT.isInteger() &&
2771           "Cannot *_EXTEND_INREG FP types");
2772    assert(EVT.isVector() == VT.isVector() &&
2773           "SIGN_EXTEND_INREG type should be vector iff the operand "
2774           "type is vector!");
2775    assert((!EVT.isVector() ||
2776            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2777           "Vector element counts must match in SIGN_EXTEND_INREG");
2778    assert(EVT.bitsLE(VT) && "Not extending!");
2779    if (EVT == VT) return N1;  // Not actually extending
2780
2781    if (N1C) {
2782      APInt Val = N1C->getAPIntValue();
2783      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2784      Val <<= Val.getBitWidth()-FromBits;
2785      Val = Val.ashr(Val.getBitWidth()-FromBits);
2786      return getConstant(Val, VT);
2787    }
2788    break;
2789  }
2790  case ISD::EXTRACT_VECTOR_ELT:
2791    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2792    if (N1.getOpcode() == ISD::UNDEF)
2793      return getUNDEF(VT);
2794
2795    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2796    // expanding copies of large vectors from registers.
2797    if (N2C &&
2798        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2799        N1.getNumOperands() > 0) {
2800      unsigned Factor =
2801        N1.getOperand(0).getValueType().getVectorNumElements();
2802      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2803                     N1.getOperand(N2C->getZExtValue() / Factor),
2804                     getConstant(N2C->getZExtValue() % Factor,
2805                                 N2.getValueType()));
2806    }
2807
2808    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2809    // expanding large vector constants.
2810    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2811      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2812      EVT VEltTy = N1.getValueType().getVectorElementType();
2813      if (Elt.getValueType() != VEltTy) {
2814        // If the vector element type is not legal, the BUILD_VECTOR operands
2815        // are promoted and implicitly truncated.  Make that explicit here.
2816        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2817      }
2818      if (VT != VEltTy) {
2819        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2820        // result is implicitly extended.
2821        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2822      }
2823      return Elt;
2824    }
2825
2826    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2827    // operations are lowered to scalars.
2828    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2829      // If the indices are the same, return the inserted element else
2830      // if the indices are known different, extract the element from
2831      // the original vector.
2832      SDValue N1Op2 = N1.getOperand(2);
2833      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2834
2835      if (N1Op2C && N2C) {
2836        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2837          if (VT == N1.getOperand(1).getValueType())
2838            return N1.getOperand(1);
2839          else
2840            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2841        }
2842
2843        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2844      }
2845    }
2846    break;
2847  case ISD::EXTRACT_ELEMENT:
2848    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2849    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2850           (N1.getValueType().isInteger() == VT.isInteger()) &&
2851           "Wrong types for EXTRACT_ELEMENT!");
2852
2853    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2854    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2855    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2856    if (N1.getOpcode() == ISD::BUILD_PAIR)
2857      return N1.getOperand(N2C->getZExtValue());
2858
2859    // EXTRACT_ELEMENT of a constant int is also very common.
2860    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2861      unsigned ElementSize = VT.getSizeInBits();
2862      unsigned Shift = ElementSize * N2C->getZExtValue();
2863      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2864      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2865    }
2866    break;
2867  case ISD::EXTRACT_SUBVECTOR: {
2868    SDValue Index = N2;
2869    if (VT.isSimple() && N1.getValueType().isSimple()) {
2870      assert(VT.isVector() && N1.getValueType().isVector() &&
2871             "Extract subvector VTs must be a vectors!");
2872      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2873             "Extract subvector VTs must have the same element type!");
2874      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2875             "Extract subvector must be from larger vector to smaller vector!");
2876
2877      if (isa<ConstantSDNode>(Index.getNode())) {
2878        assert((VT.getVectorNumElements() +
2879                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2880                <= N1.getValueType().getVectorNumElements())
2881               && "Extract subvector overflow!");
2882      }
2883
2884      // Trivial extraction.
2885      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2886        return N1;
2887    }
2888    break;
2889  }
2890  }
2891
2892  if (N1C) {
2893    if (N2C) {
2894      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2895      if (SV.getNode()) return SV;
2896    } else {      // Cannonicalize constant to RHS if commutative
2897      if (isCommutativeBinOp(Opcode)) {
2898        std::swap(N1C, N2C);
2899        std::swap(N1, N2);
2900      }
2901    }
2902  }
2903
2904  // Constant fold FP operations.
2905  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2906  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2907  if (N1CFP) {
2908    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2909      // Cannonicalize constant to RHS if commutative
2910      std::swap(N1CFP, N2CFP);
2911      std::swap(N1, N2);
2912    } else if (N2CFP && VT != MVT::ppcf128) {
2913      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2914      APFloat::opStatus s;
2915      switch (Opcode) {
2916      case ISD::FADD:
2917        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2918        if (s != APFloat::opInvalidOp)
2919          return getConstantFP(V1, VT);
2920        break;
2921      case ISD::FSUB:
2922        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2923        if (s!=APFloat::opInvalidOp)
2924          return getConstantFP(V1, VT);
2925        break;
2926      case ISD::FMUL:
2927        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2928        if (s!=APFloat::opInvalidOp)
2929          return getConstantFP(V1, VT);
2930        break;
2931      case ISD::FDIV:
2932        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2933        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2934          return getConstantFP(V1, VT);
2935        break;
2936      case ISD::FREM :
2937        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2938        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2939          return getConstantFP(V1, VT);
2940        break;
2941      case ISD::FCOPYSIGN:
2942        V1.copySign(V2);
2943        return getConstantFP(V1, VT);
2944      default: break;
2945      }
2946    }
2947  }
2948
2949  // Canonicalize an UNDEF to the RHS, even over a constant.
2950  if (N1.getOpcode() == ISD::UNDEF) {
2951    if (isCommutativeBinOp(Opcode)) {
2952      std::swap(N1, N2);
2953    } else {
2954      switch (Opcode) {
2955      case ISD::FP_ROUND_INREG:
2956      case ISD::SIGN_EXTEND_INREG:
2957      case ISD::SUB:
2958      case ISD::FSUB:
2959      case ISD::FDIV:
2960      case ISD::FREM:
2961      case ISD::SRA:
2962        return N1;     // fold op(undef, arg2) -> undef
2963      case ISD::UDIV:
2964      case ISD::SDIV:
2965      case ISD::UREM:
2966      case ISD::SREM:
2967      case ISD::SRL:
2968      case ISD::SHL:
2969        if (!VT.isVector())
2970          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2971        // For vectors, we can't easily build an all zero vector, just return
2972        // the LHS.
2973        return N2;
2974      }
2975    }
2976  }
2977
2978  // Fold a bunch of operators when the RHS is undef.
2979  if (N2.getOpcode() == ISD::UNDEF) {
2980    switch (Opcode) {
2981    case ISD::XOR:
2982      if (N1.getOpcode() == ISD::UNDEF)
2983        // Handle undef ^ undef -> 0 special case. This is a common
2984        // idiom (misuse).
2985        return getConstant(0, VT);
2986      // fallthrough
2987    case ISD::ADD:
2988    case ISD::ADDC:
2989    case ISD::ADDE:
2990    case ISD::SUB:
2991    case ISD::UDIV:
2992    case ISD::SDIV:
2993    case ISD::UREM:
2994    case ISD::SREM:
2995      return N2;       // fold op(arg1, undef) -> undef
2996    case ISD::FADD:
2997    case ISD::FSUB:
2998    case ISD::FMUL:
2999    case ISD::FDIV:
3000    case ISD::FREM:
3001      if (UnsafeFPMath)
3002        return N2;
3003      break;
3004    case ISD::MUL:
3005    case ISD::AND:
3006    case ISD::SRL:
3007    case ISD::SHL:
3008      if (!VT.isVector())
3009        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3010      // For vectors, we can't easily build an all zero vector, just return
3011      // the LHS.
3012      return N1;
3013    case ISD::OR:
3014      if (!VT.isVector())
3015        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3016      // For vectors, we can't easily build an all one vector, just return
3017      // the LHS.
3018      return N1;
3019    case ISD::SRA:
3020      return N1;
3021    }
3022  }
3023
3024  // Memoize this node if possible.
3025  SDNode *N;
3026  SDVTList VTs = getVTList(VT);
3027  if (VT != MVT::Glue) {
3028    SDValue Ops[] = { N1, N2 };
3029    FoldingSetNodeID ID;
3030    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3031    void *IP = 0;
3032    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3033      return SDValue(E, 0);
3034
3035    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3036    CSEMap.InsertNode(N, IP);
3037  } else {
3038    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3039  }
3040
3041  AllNodes.push_back(N);
3042#ifndef NDEBUG
3043  VerifySDNode(N);
3044#endif
3045  return SDValue(N, 0);
3046}
3047
3048SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3049                              SDValue N1, SDValue N2, SDValue N3) {
3050  // Perform various simplifications.
3051  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3052  switch (Opcode) {
3053  case ISD::CONCAT_VECTORS:
3054    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3055    // one big BUILD_VECTOR.
3056    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3057        N2.getOpcode() == ISD::BUILD_VECTOR &&
3058        N3.getOpcode() == ISD::BUILD_VECTOR) {
3059      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3060                                    N1.getNode()->op_end());
3061      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3062      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3063      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3064    }
3065    break;
3066  case ISD::SETCC: {
3067    // Use FoldSetCC to simplify SETCC's.
3068    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3069    if (Simp.getNode()) return Simp;
3070    break;
3071  }
3072  case ISD::SELECT:
3073    if (N1C) {
3074     if (N1C->getZExtValue())
3075        return N2;             // select true, X, Y -> X
3076      else
3077        return N3;             // select false, X, Y -> Y
3078    }
3079
3080    if (N2 == N3) return N2;   // select C, X, X -> X
3081    break;
3082  case ISD::VECTOR_SHUFFLE:
3083    llvm_unreachable("should use getVectorShuffle constructor!");
3084    break;
3085  case ISD::INSERT_SUBVECTOR: {
3086    SDValue Index = N3;
3087    if (VT.isSimple() && N1.getValueType().isSimple()
3088        && N2.getValueType().isSimple()) {
3089      assert(VT.isVector() && N1.getValueType().isVector() &&
3090             N2.getValueType().isVector() &&
3091             "Insert subvector VTs must be a vectors");
3092      assert(VT == N1.getValueType() &&
3093             "Dest and insert subvector source types must match!");
3094      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3095             "Insert subvector must be from smaller vector to larger vector!");
3096      if (isa<ConstantSDNode>(Index.getNode())) {
3097        assert((N2.getValueType().getVectorNumElements() +
3098                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3099                <= VT.getVectorNumElements())
3100               && "Insert subvector overflow!");
3101      }
3102
3103      // Trivial insertion.
3104      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3105        return N2;
3106    }
3107    break;
3108  }
3109  case ISD::BITCAST:
3110    // Fold bit_convert nodes from a type to themselves.
3111    if (N1.getValueType() == VT)
3112      return N1;
3113    break;
3114  }
3115
3116  // Memoize node if it doesn't produce a flag.
3117  SDNode *N;
3118  SDVTList VTs = getVTList(VT);
3119  if (VT != MVT::Glue) {
3120    SDValue Ops[] = { N1, N2, N3 };
3121    FoldingSetNodeID ID;
3122    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3123    void *IP = 0;
3124    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3125      return SDValue(E, 0);
3126
3127    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3128    CSEMap.InsertNode(N, IP);
3129  } else {
3130    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3131  }
3132
3133  AllNodes.push_back(N);
3134#ifndef NDEBUG
3135  VerifySDNode(N);
3136#endif
3137  return SDValue(N, 0);
3138}
3139
3140SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3141                              SDValue N1, SDValue N2, SDValue N3,
3142                              SDValue N4) {
3143  SDValue Ops[] = { N1, N2, N3, N4 };
3144  return getNode(Opcode, DL, VT, Ops, 4);
3145}
3146
3147SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3148                              SDValue N1, SDValue N2, SDValue N3,
3149                              SDValue N4, SDValue N5) {
3150  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3151  return getNode(Opcode, DL, VT, Ops, 5);
3152}
3153
3154/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3155/// the incoming stack arguments to be loaded from the stack.
3156SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3157  SmallVector<SDValue, 8> ArgChains;
3158
3159  // Include the original chain at the beginning of the list. When this is
3160  // used by target LowerCall hooks, this helps legalize find the
3161  // CALLSEQ_BEGIN node.
3162  ArgChains.push_back(Chain);
3163
3164  // Add a chain value for each stack argument.
3165  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3166       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3167    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3168      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3169        if (FI->getIndex() < 0)
3170          ArgChains.push_back(SDValue(L, 1));
3171
3172  // Build a tokenfactor for all the chains.
3173  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3174                 &ArgChains[0], ArgChains.size());
3175}
3176
3177/// SplatByte - Distribute ByteVal over NumBits bits.
3178static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3179  APInt Val = APInt(NumBits, ByteVal);
3180  unsigned Shift = 8;
3181  for (unsigned i = NumBits; i > 8; i >>= 1) {
3182    Val = (Val << Shift) | Val;
3183    Shift <<= 1;
3184  }
3185  return Val;
3186}
3187
3188/// getMemsetValue - Vectorized representation of the memset value
3189/// operand.
3190static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3191                              DebugLoc dl) {
3192  assert(Value.getOpcode() != ISD::UNDEF);
3193
3194  unsigned NumBits = VT.getScalarType().getSizeInBits();
3195  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3196    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3197    if (VT.isInteger())
3198      return DAG.getConstant(Val, VT);
3199    return DAG.getConstantFP(APFloat(Val), VT);
3200  }
3201
3202  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3203  if (NumBits > 8) {
3204    // Use a multiplication with 0x010101... to extend the input to the
3205    // required length.
3206    APInt Magic = SplatByte(NumBits, 0x01);
3207    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3208  }
3209
3210  return Value;
3211}
3212
3213/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3214/// used when a memcpy is turned into a memset when the source is a constant
3215/// string ptr.
3216static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3217                                  const TargetLowering &TLI,
3218                                  std::string &Str, unsigned Offset) {
3219  // Handle vector with all elements zero.
3220  if (Str.empty()) {
3221    if (VT.isInteger())
3222      return DAG.getConstant(0, VT);
3223    else if (VT == MVT::f32 || VT == MVT::f64)
3224      return DAG.getConstantFP(0.0, VT);
3225    else if (VT.isVector()) {
3226      unsigned NumElts = VT.getVectorNumElements();
3227      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3228      return DAG.getNode(ISD::BITCAST, dl, VT,
3229                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3230                                                             EltVT, NumElts)));
3231    } else
3232      llvm_unreachable("Expected type!");
3233  }
3234
3235  assert(!VT.isVector() && "Can't handle vector type here!");
3236  unsigned NumBits = VT.getSizeInBits();
3237  unsigned MSB = NumBits / 8;
3238  uint64_t Val = 0;
3239  if (TLI.isLittleEndian())
3240    Offset = Offset + MSB - 1;
3241  for (unsigned i = 0; i != MSB; ++i) {
3242    Val = (Val << 8) | (unsigned char)Str[Offset];
3243    Offset += TLI.isLittleEndian() ? -1 : 1;
3244  }
3245  return DAG.getConstant(Val, VT);
3246}
3247
3248/// getMemBasePlusOffset - Returns base and offset node for the
3249///
3250static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3251                                      SelectionDAG &DAG) {
3252  EVT VT = Base.getValueType();
3253  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3254                     VT, Base, DAG.getConstant(Offset, VT));
3255}
3256
3257/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3258///
3259static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3260  unsigned SrcDelta = 0;
3261  GlobalAddressSDNode *G = NULL;
3262  if (Src.getOpcode() == ISD::GlobalAddress)
3263    G = cast<GlobalAddressSDNode>(Src);
3264  else if (Src.getOpcode() == ISD::ADD &&
3265           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3266           Src.getOperand(1).getOpcode() == ISD::Constant) {
3267    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3268    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3269  }
3270  if (!G)
3271    return false;
3272
3273  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3274  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3275    return true;
3276
3277  return false;
3278}
3279
3280/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3281/// to replace the memset / memcpy. Return true if the number of memory ops
3282/// is below the threshold. It returns the types of the sequence of
3283/// memory ops to perform memset / memcpy by reference.
3284static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3285                                     unsigned Limit, uint64_t Size,
3286                                     unsigned DstAlign, unsigned SrcAlign,
3287                                     bool NonScalarIntSafe,
3288                                     bool MemcpyStrSrc,
3289                                     SelectionDAG &DAG,
3290                                     const TargetLowering &TLI) {
3291  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3292         "Expecting memcpy / memset source to meet alignment requirement!");
3293  // If 'SrcAlign' is zero, that means the memory operation does not need load
3294  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3295  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3296  // specified alignment of the memory operation. If it is zero, that means
3297  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3298  // indicates whether the memcpy source is constant so it does not need to be
3299  // loaded.
3300  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3301                                   NonScalarIntSafe, MemcpyStrSrc,
3302                                   DAG.getMachineFunction());
3303
3304  if (VT == MVT::Other) {
3305    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3306        TLI.allowsUnalignedMemoryAccesses(VT)) {
3307      VT = TLI.getPointerTy();
3308    } else {
3309      switch (DstAlign & 7) {
3310      case 0:  VT = MVT::i64; break;
3311      case 4:  VT = MVT::i32; break;
3312      case 2:  VT = MVT::i16; break;
3313      default: VT = MVT::i8;  break;
3314      }
3315    }
3316
3317    MVT LVT = MVT::i64;
3318    while (!TLI.isTypeLegal(LVT))
3319      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3320    assert(LVT.isInteger());
3321
3322    if (VT.bitsGT(LVT))
3323      VT = LVT;
3324  }
3325
3326  unsigned NumMemOps = 0;
3327  while (Size != 0) {
3328    unsigned VTSize = VT.getSizeInBits() / 8;
3329    while (VTSize > Size) {
3330      // For now, only use non-vector load / store's for the left-over pieces.
3331      if (VT.isVector() || VT.isFloatingPoint()) {
3332        VT = MVT::i64;
3333        while (!TLI.isTypeLegal(VT))
3334          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3335        VTSize = VT.getSizeInBits() / 8;
3336      } else {
3337        // This can result in a type that is not legal on the target, e.g.
3338        // 1 or 2 bytes on PPC.
3339        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3340        VTSize >>= 1;
3341      }
3342    }
3343
3344    if (++NumMemOps > Limit)
3345      return false;
3346    MemOps.push_back(VT);
3347    Size -= VTSize;
3348  }
3349
3350  return true;
3351}
3352
3353static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3354                                       SDValue Chain, SDValue Dst,
3355                                       SDValue Src, uint64_t Size,
3356                                       unsigned Align, bool isVol,
3357                                       bool AlwaysInline,
3358                                       MachinePointerInfo DstPtrInfo,
3359                                       MachinePointerInfo SrcPtrInfo) {
3360  // Turn a memcpy of undef to nop.
3361  if (Src.getOpcode() == ISD::UNDEF)
3362    return Chain;
3363
3364  // Expand memcpy to a series of load and store ops if the size operand falls
3365  // below a certain threshold.
3366  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3367  // rather than maybe a humongous number of loads and stores.
3368  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3369  std::vector<EVT> MemOps;
3370  bool DstAlignCanChange = false;
3371  MachineFunction &MF = DAG.getMachineFunction();
3372  MachineFrameInfo *MFI = MF.getFrameInfo();
3373  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3374  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3375  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3376    DstAlignCanChange = true;
3377  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3378  if (Align > SrcAlign)
3379    SrcAlign = Align;
3380  std::string Str;
3381  bool CopyFromStr = isMemSrcFromString(Src, Str);
3382  bool isZeroStr = CopyFromStr && Str.empty();
3383  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3384
3385  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3386                                (DstAlignCanChange ? 0 : Align),
3387                                (isZeroStr ? 0 : SrcAlign),
3388                                true, CopyFromStr, DAG, TLI))
3389    return SDValue();
3390
3391  if (DstAlignCanChange) {
3392    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3393    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3394    if (NewAlign > Align) {
3395      // Give the stack frame object a larger alignment if needed.
3396      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3397        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3398      Align = NewAlign;
3399    }
3400  }
3401
3402  SmallVector<SDValue, 8> OutChains;
3403  unsigned NumMemOps = MemOps.size();
3404  uint64_t SrcOff = 0, DstOff = 0;
3405  for (unsigned i = 0; i != NumMemOps; ++i) {
3406    EVT VT = MemOps[i];
3407    unsigned VTSize = VT.getSizeInBits() / 8;
3408    SDValue Value, Store;
3409
3410    if (CopyFromStr &&
3411        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3412      // It's unlikely a store of a vector immediate can be done in a single
3413      // instruction. It would require a load from a constantpool first.
3414      // We only handle zero vectors here.
3415      // FIXME: Handle other cases where store of vector immediate is done in
3416      // a single instruction.
3417      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3418      Store = DAG.getStore(Chain, dl, Value,
3419                           getMemBasePlusOffset(Dst, DstOff, DAG),
3420                           DstPtrInfo.getWithOffset(DstOff), isVol,
3421                           false, Align);
3422    } else {
3423      // The type might not be legal for the target.  This should only happen
3424      // if the type is smaller than a legal type, as on PPC, so the right
3425      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3426      // to Load/Store if NVT==VT.
3427      // FIXME does the case above also need this?
3428      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3429      assert(NVT.bitsGE(VT));
3430      Value = DAG.getExtLoad(ISD::EXTLOAD, NVT, dl, Chain,
3431                             getMemBasePlusOffset(Src, SrcOff, DAG),
3432                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3433                             MinAlign(SrcAlign, SrcOff));
3434      Store = DAG.getTruncStore(Chain, dl, Value,
3435                                getMemBasePlusOffset(Dst, DstOff, DAG),
3436                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3437                                false, Align);
3438    }
3439    OutChains.push_back(Store);
3440    SrcOff += VTSize;
3441    DstOff += VTSize;
3442  }
3443
3444  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3445                     &OutChains[0], OutChains.size());
3446}
3447
3448static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3449                                        SDValue Chain, SDValue Dst,
3450                                        SDValue Src, uint64_t Size,
3451                                        unsigned Align,  bool isVol,
3452                                        bool AlwaysInline,
3453                                        MachinePointerInfo DstPtrInfo,
3454                                        MachinePointerInfo SrcPtrInfo) {
3455  // Turn a memmove of undef to nop.
3456  if (Src.getOpcode() == ISD::UNDEF)
3457    return Chain;
3458
3459  // Expand memmove to a series of load and store ops if the size operand falls
3460  // below a certain threshold.
3461  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3462  std::vector<EVT> MemOps;
3463  bool DstAlignCanChange = false;
3464  MachineFunction &MF = DAG.getMachineFunction();
3465  MachineFrameInfo *MFI = MF.getFrameInfo();
3466  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3467  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3468  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3469    DstAlignCanChange = true;
3470  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3471  if (Align > SrcAlign)
3472    SrcAlign = Align;
3473  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3474
3475  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3476                                (DstAlignCanChange ? 0 : Align),
3477                                SrcAlign, true, false, DAG, TLI))
3478    return SDValue();
3479
3480  if (DstAlignCanChange) {
3481    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3482    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3483    if (NewAlign > Align) {
3484      // Give the stack frame object a larger alignment if needed.
3485      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3486        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3487      Align = NewAlign;
3488    }
3489  }
3490
3491  uint64_t SrcOff = 0, DstOff = 0;
3492  SmallVector<SDValue, 8> LoadValues;
3493  SmallVector<SDValue, 8> LoadChains;
3494  SmallVector<SDValue, 8> OutChains;
3495  unsigned NumMemOps = MemOps.size();
3496  for (unsigned i = 0; i < NumMemOps; i++) {
3497    EVT VT = MemOps[i];
3498    unsigned VTSize = VT.getSizeInBits() / 8;
3499    SDValue Value, Store;
3500
3501    Value = DAG.getLoad(VT, dl, Chain,
3502                        getMemBasePlusOffset(Src, SrcOff, DAG),
3503                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3504                        false, SrcAlign);
3505    LoadValues.push_back(Value);
3506    LoadChains.push_back(Value.getValue(1));
3507    SrcOff += VTSize;
3508  }
3509  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3510                      &LoadChains[0], LoadChains.size());
3511  OutChains.clear();
3512  for (unsigned i = 0; i < NumMemOps; i++) {
3513    EVT VT = MemOps[i];
3514    unsigned VTSize = VT.getSizeInBits() / 8;
3515    SDValue Value, Store;
3516
3517    Store = DAG.getStore(Chain, dl, LoadValues[i],
3518                         getMemBasePlusOffset(Dst, DstOff, DAG),
3519                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3520    OutChains.push_back(Store);
3521    DstOff += VTSize;
3522  }
3523
3524  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3525                     &OutChains[0], OutChains.size());
3526}
3527
3528static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3529                               SDValue Chain, SDValue Dst,
3530                               SDValue Src, uint64_t Size,
3531                               unsigned Align, bool isVol,
3532                               MachinePointerInfo DstPtrInfo) {
3533  // Turn a memset of undef to nop.
3534  if (Src.getOpcode() == ISD::UNDEF)
3535    return Chain;
3536
3537  // Expand memset to a series of load/store ops if the size operand
3538  // falls below a certain threshold.
3539  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3540  std::vector<EVT> MemOps;
3541  bool DstAlignCanChange = false;
3542  MachineFunction &MF = DAG.getMachineFunction();
3543  MachineFrameInfo *MFI = MF.getFrameInfo();
3544  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3545  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3546  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3547    DstAlignCanChange = true;
3548  bool NonScalarIntSafe =
3549    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3550  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3551                                Size, (DstAlignCanChange ? 0 : Align), 0,
3552                                NonScalarIntSafe, false, DAG, TLI))
3553    return SDValue();
3554
3555  if (DstAlignCanChange) {
3556    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3557    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3558    if (NewAlign > Align) {
3559      // Give the stack frame object a larger alignment if needed.
3560      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3561        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3562      Align = NewAlign;
3563    }
3564  }
3565
3566  SmallVector<SDValue, 8> OutChains;
3567  uint64_t DstOff = 0;
3568  unsigned NumMemOps = MemOps.size();
3569
3570  // Find the largest store and generate the bit pattern for it.
3571  EVT LargestVT = MemOps[0];
3572  for (unsigned i = 1; i < NumMemOps; i++)
3573    if (MemOps[i].bitsGT(LargestVT))
3574      LargestVT = MemOps[i];
3575  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3576
3577  for (unsigned i = 0; i < NumMemOps; i++) {
3578    EVT VT = MemOps[i];
3579
3580    // If this store is smaller than the largest store see whether we can get
3581    // the smaller value for free with a truncate.
3582    SDValue Value = MemSetValue;
3583    if (VT.bitsLT(LargestVT)) {
3584      if (!LargestVT.isVector() && !VT.isVector() &&
3585          TLI.isTruncateFree(LargestVT, VT))
3586        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3587      else
3588        Value = getMemsetValue(Src, VT, DAG, dl);
3589    }
3590    assert(Value.getValueType() == VT && "Value with wrong type.");
3591    SDValue Store = DAG.getStore(Chain, dl, Value,
3592                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3593                                 DstPtrInfo.getWithOffset(DstOff),
3594                                 isVol, false, Align);
3595    OutChains.push_back(Store);
3596    DstOff += VT.getSizeInBits() / 8;
3597  }
3598
3599  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3600                     &OutChains[0], OutChains.size());
3601}
3602
3603SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3604                                SDValue Src, SDValue Size,
3605                                unsigned Align, bool isVol, bool AlwaysInline,
3606                                MachinePointerInfo DstPtrInfo,
3607                                MachinePointerInfo SrcPtrInfo) {
3608
3609  // Check to see if we should lower the memcpy to loads and stores first.
3610  // For cases within the target-specified limits, this is the best choice.
3611  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3612  if (ConstantSize) {
3613    // Memcpy with size zero? Just return the original chain.
3614    if (ConstantSize->isNullValue())
3615      return Chain;
3616
3617    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3618                                             ConstantSize->getZExtValue(),Align,
3619                                isVol, false, DstPtrInfo, SrcPtrInfo);
3620    if (Result.getNode())
3621      return Result;
3622  }
3623
3624  // Then check to see if we should lower the memcpy with target-specific
3625  // code. If the target chooses to do this, this is the next best.
3626  SDValue Result =
3627    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3628                                isVol, AlwaysInline,
3629                                DstPtrInfo, SrcPtrInfo);
3630  if (Result.getNode())
3631    return Result;
3632
3633  // If we really need inline code and the target declined to provide it,
3634  // use a (potentially long) sequence of loads and stores.
3635  if (AlwaysInline) {
3636    assert(ConstantSize && "AlwaysInline requires a constant size!");
3637    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3638                                   ConstantSize->getZExtValue(), Align, isVol,
3639                                   true, DstPtrInfo, SrcPtrInfo);
3640  }
3641
3642  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3643  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3644  // respect volatile, so they may do things like read or write memory
3645  // beyond the given memory regions. But fixing this isn't easy, and most
3646  // people don't care.
3647
3648  // Emit a library call.
3649  TargetLowering::ArgListTy Args;
3650  TargetLowering::ArgListEntry Entry;
3651  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3652  Entry.Node = Dst; Args.push_back(Entry);
3653  Entry.Node = Src; Args.push_back(Entry);
3654  Entry.Node = Size; Args.push_back(Entry);
3655  // FIXME: pass in DebugLoc
3656  std::pair<SDValue,SDValue> CallResult =
3657    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3658                    false, false, false, false, 0,
3659                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3660                    /*isReturnValueUsed=*/false,
3661                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3662                                      TLI.getPointerTy()),
3663                    Args, *this, dl);
3664  return CallResult.second;
3665}
3666
3667SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3668                                 SDValue Src, SDValue Size,
3669                                 unsigned Align, bool isVol,
3670                                 MachinePointerInfo DstPtrInfo,
3671                                 MachinePointerInfo SrcPtrInfo) {
3672
3673  // Check to see if we should lower the memmove to loads and stores first.
3674  // For cases within the target-specified limits, this is the best choice.
3675  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3676  if (ConstantSize) {
3677    // Memmove with size zero? Just return the original chain.
3678    if (ConstantSize->isNullValue())
3679      return Chain;
3680
3681    SDValue Result =
3682      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3683                               ConstantSize->getZExtValue(), Align, isVol,
3684                               false, DstPtrInfo, SrcPtrInfo);
3685    if (Result.getNode())
3686      return Result;
3687  }
3688
3689  // Then check to see if we should lower the memmove with target-specific
3690  // code. If the target chooses to do this, this is the next best.
3691  SDValue Result =
3692    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3693                                 DstPtrInfo, SrcPtrInfo);
3694  if (Result.getNode())
3695    return Result;
3696
3697  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3698  // not be safe.  See memcpy above for more details.
3699
3700  // Emit a library call.
3701  TargetLowering::ArgListTy Args;
3702  TargetLowering::ArgListEntry Entry;
3703  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3704  Entry.Node = Dst; Args.push_back(Entry);
3705  Entry.Node = Src; Args.push_back(Entry);
3706  Entry.Node = Size; Args.push_back(Entry);
3707  // FIXME:  pass in DebugLoc
3708  std::pair<SDValue,SDValue> CallResult =
3709    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3710                    false, false, false, false, 0,
3711                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3712                    /*isReturnValueUsed=*/false,
3713                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3714                                      TLI.getPointerTy()),
3715                    Args, *this, dl);
3716  return CallResult.second;
3717}
3718
3719SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3720                                SDValue Src, SDValue Size,
3721                                unsigned Align, bool isVol,
3722                                MachinePointerInfo DstPtrInfo) {
3723
3724  // Check to see if we should lower the memset to stores first.
3725  // For cases within the target-specified limits, this is the best choice.
3726  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3727  if (ConstantSize) {
3728    // Memset with size zero? Just return the original chain.
3729    if (ConstantSize->isNullValue())
3730      return Chain;
3731
3732    SDValue Result =
3733      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3734                      Align, isVol, DstPtrInfo);
3735
3736    if (Result.getNode())
3737      return Result;
3738  }
3739
3740  // Then check to see if we should lower the memset with target-specific
3741  // code. If the target chooses to do this, this is the next best.
3742  SDValue Result =
3743    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3744                                DstPtrInfo);
3745  if (Result.getNode())
3746    return Result;
3747
3748  // Emit a library call.
3749  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3750  TargetLowering::ArgListTy Args;
3751  TargetLowering::ArgListEntry Entry;
3752  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3753  Args.push_back(Entry);
3754  // Extend or truncate the argument to be an i32 value for the call.
3755  if (Src.getValueType().bitsGT(MVT::i32))
3756    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3757  else
3758    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3759  Entry.Node = Src;
3760  Entry.Ty = Type::getInt32Ty(*getContext());
3761  Entry.isSExt = true;
3762  Args.push_back(Entry);
3763  Entry.Node = Size;
3764  Entry.Ty = IntPtrTy;
3765  Entry.isSExt = false;
3766  Args.push_back(Entry);
3767  // FIXME: pass in DebugLoc
3768  std::pair<SDValue,SDValue> CallResult =
3769    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3770                    false, false, false, false, 0,
3771                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3772                    /*isReturnValueUsed=*/false,
3773                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3774                                      TLI.getPointerTy()),
3775                    Args, *this, dl);
3776  return CallResult.second;
3777}
3778
3779SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3780                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3781                                SDValue Swp, MachinePointerInfo PtrInfo,
3782                                unsigned Alignment) {
3783  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3784    Alignment = getEVTAlignment(MemVT);
3785
3786  MachineFunction &MF = getMachineFunction();
3787  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3788
3789  // For now, atomics are considered to be volatile always.
3790  Flags |= MachineMemOperand::MOVolatile;
3791
3792  MachineMemOperand *MMO =
3793    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3794
3795  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3796}
3797
3798SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3799                                SDValue Chain,
3800                                SDValue Ptr, SDValue Cmp,
3801                                SDValue Swp, MachineMemOperand *MMO) {
3802  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3803  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3804
3805  EVT VT = Cmp.getValueType();
3806
3807  SDVTList VTs = getVTList(VT, MVT::Other);
3808  FoldingSetNodeID ID;
3809  ID.AddInteger(MemVT.getRawBits());
3810  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3811  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3812  void* IP = 0;
3813  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3814    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3815    return SDValue(E, 0);
3816  }
3817  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3818                                               Ptr, Cmp, Swp, MMO);
3819  CSEMap.InsertNode(N, IP);
3820  AllNodes.push_back(N);
3821  return SDValue(N, 0);
3822}
3823
3824SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3825                                SDValue Chain,
3826                                SDValue Ptr, SDValue Val,
3827                                const Value* PtrVal,
3828                                unsigned Alignment) {
3829  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3830    Alignment = getEVTAlignment(MemVT);
3831
3832  MachineFunction &MF = getMachineFunction();
3833  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3834
3835  // For now, atomics are considered to be volatile always.
3836  Flags |= MachineMemOperand::MOVolatile;
3837
3838  MachineMemOperand *MMO =
3839    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3840                            MemVT.getStoreSize(), Alignment);
3841
3842  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3843}
3844
3845SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3846                                SDValue Chain,
3847                                SDValue Ptr, SDValue Val,
3848                                MachineMemOperand *MMO) {
3849  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3850          Opcode == ISD::ATOMIC_LOAD_SUB ||
3851          Opcode == ISD::ATOMIC_LOAD_AND ||
3852          Opcode == ISD::ATOMIC_LOAD_OR ||
3853          Opcode == ISD::ATOMIC_LOAD_XOR ||
3854          Opcode == ISD::ATOMIC_LOAD_NAND ||
3855          Opcode == ISD::ATOMIC_LOAD_MIN ||
3856          Opcode == ISD::ATOMIC_LOAD_MAX ||
3857          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3858          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3859          Opcode == ISD::ATOMIC_SWAP) &&
3860         "Invalid Atomic Op");
3861
3862  EVT VT = Val.getValueType();
3863
3864  SDVTList VTs = getVTList(VT, MVT::Other);
3865  FoldingSetNodeID ID;
3866  ID.AddInteger(MemVT.getRawBits());
3867  SDValue Ops[] = {Chain, Ptr, Val};
3868  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3869  void* IP = 0;
3870  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3871    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3872    return SDValue(E, 0);
3873  }
3874  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3875                                               Ptr, Val, MMO);
3876  CSEMap.InsertNode(N, IP);
3877  AllNodes.push_back(N);
3878  return SDValue(N, 0);
3879}
3880
3881/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3882/// Allowed to return something different (and simpler) if Simplify is true.
3883SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3884                                     DebugLoc dl) {
3885  if (NumOps == 1)
3886    return Ops[0];
3887
3888  SmallVector<EVT, 4> VTs;
3889  VTs.reserve(NumOps);
3890  for (unsigned i = 0; i < NumOps; ++i)
3891    VTs.push_back(Ops[i].getValueType());
3892  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3893                 Ops, NumOps);
3894}
3895
3896SDValue
3897SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3898                                  const EVT *VTs, unsigned NumVTs,
3899                                  const SDValue *Ops, unsigned NumOps,
3900                                  EVT MemVT, MachinePointerInfo PtrInfo,
3901                                  unsigned Align, bool Vol,
3902                                  bool ReadMem, bool WriteMem) {
3903  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3904                             MemVT, PtrInfo, Align, Vol,
3905                             ReadMem, WriteMem);
3906}
3907
3908SDValue
3909SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3910                                  const SDValue *Ops, unsigned NumOps,
3911                                  EVT MemVT, MachinePointerInfo PtrInfo,
3912                                  unsigned Align, bool Vol,
3913                                  bool ReadMem, bool WriteMem) {
3914  if (Align == 0)  // Ensure that codegen never sees alignment 0
3915    Align = getEVTAlignment(MemVT);
3916
3917  MachineFunction &MF = getMachineFunction();
3918  unsigned Flags = 0;
3919  if (WriteMem)
3920    Flags |= MachineMemOperand::MOStore;
3921  if (ReadMem)
3922    Flags |= MachineMemOperand::MOLoad;
3923  if (Vol)
3924    Flags |= MachineMemOperand::MOVolatile;
3925  MachineMemOperand *MMO =
3926    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3927
3928  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3929}
3930
3931SDValue
3932SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3933                                  const SDValue *Ops, unsigned NumOps,
3934                                  EVT MemVT, MachineMemOperand *MMO) {
3935  assert((Opcode == ISD::INTRINSIC_VOID ||
3936          Opcode == ISD::INTRINSIC_W_CHAIN ||
3937          Opcode == ISD::PREFETCH ||
3938          (Opcode <= INT_MAX &&
3939           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3940         "Opcode is not a memory-accessing opcode!");
3941
3942  // Memoize the node unless it returns a flag.
3943  MemIntrinsicSDNode *N;
3944  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
3945    FoldingSetNodeID ID;
3946    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3947    void *IP = 0;
3948    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3949      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3950      return SDValue(E, 0);
3951    }
3952
3953    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3954                                               MemVT, MMO);
3955    CSEMap.InsertNode(N, IP);
3956  } else {
3957    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3958                                               MemVT, MMO);
3959  }
3960  AllNodes.push_back(N);
3961  return SDValue(N, 0);
3962}
3963
3964/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3965/// MachinePointerInfo record from it.  This is particularly useful because the
3966/// code generator has many cases where it doesn't bother passing in a
3967/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3968static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
3969  // If this is FI+Offset, we can model it.
3970  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
3971    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
3972
3973  // If this is (FI+Offset1)+Offset2, we can model it.
3974  if (Ptr.getOpcode() != ISD::ADD ||
3975      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
3976      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
3977    return MachinePointerInfo();
3978
3979  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3980  return MachinePointerInfo::getFixedStack(FI, Offset+
3981                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
3982}
3983
3984/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3985/// MachinePointerInfo record from it.  This is particularly useful because the
3986/// code generator has many cases where it doesn't bother passing in a
3987/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3988static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
3989  // If the 'Offset' value isn't a constant, we can't handle this.
3990  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
3991    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
3992  if (OffsetOp.getOpcode() == ISD::UNDEF)
3993    return InferPointerInfo(Ptr);
3994  return MachinePointerInfo();
3995}
3996
3997
3998SDValue
3999SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4000                      EVT VT, DebugLoc dl, SDValue Chain,
4001                      SDValue Ptr, SDValue Offset,
4002                      MachinePointerInfo PtrInfo, EVT MemVT,
4003                      bool isVolatile, bool isNonTemporal,
4004                      unsigned Alignment, const MDNode *TBAAInfo) {
4005  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4006    Alignment = getEVTAlignment(VT);
4007
4008  unsigned Flags = MachineMemOperand::MOLoad;
4009  if (isVolatile)
4010    Flags |= MachineMemOperand::MOVolatile;
4011  if (isNonTemporal)
4012    Flags |= MachineMemOperand::MONonTemporal;
4013
4014  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4015  // clients.
4016  if (PtrInfo.V == 0)
4017    PtrInfo = InferPointerInfo(Ptr, Offset);
4018
4019  MachineFunction &MF = getMachineFunction();
4020  MachineMemOperand *MMO =
4021    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4022                            TBAAInfo);
4023  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4024}
4025
4026SDValue
4027SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4028                      EVT VT, DebugLoc dl, SDValue Chain,
4029                      SDValue Ptr, SDValue Offset, EVT MemVT,
4030                      MachineMemOperand *MMO) {
4031  if (VT == MemVT) {
4032    ExtType = ISD::NON_EXTLOAD;
4033  } else if (ExtType == ISD::NON_EXTLOAD) {
4034    assert(VT == MemVT && "Non-extending load from different memory type!");
4035  } else {
4036    // Extending load.
4037    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4038           "Should only be an extending load, not truncating!");
4039    assert(VT.isInteger() == MemVT.isInteger() &&
4040           "Cannot convert from FP to Int or Int -> FP!");
4041    assert(VT.isVector() == MemVT.isVector() &&
4042           "Cannot use trunc store to convert to or from a vector!");
4043    assert((!VT.isVector() ||
4044            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4045           "Cannot use trunc store to change the number of vector elements!");
4046  }
4047
4048  bool Indexed = AM != ISD::UNINDEXED;
4049  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4050         "Unindexed load with an offset!");
4051
4052  SDVTList VTs = Indexed ?
4053    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4054  SDValue Ops[] = { Chain, Ptr, Offset };
4055  FoldingSetNodeID ID;
4056  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4057  ID.AddInteger(MemVT.getRawBits());
4058  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4059                                     MMO->isNonTemporal()));
4060  void *IP = 0;
4061  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4062    cast<LoadSDNode>(E)->refineAlignment(MMO);
4063    return SDValue(E, 0);
4064  }
4065  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4066                                             MemVT, MMO);
4067  CSEMap.InsertNode(N, IP);
4068  AllNodes.push_back(N);
4069  return SDValue(N, 0);
4070}
4071
4072SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4073                              SDValue Chain, SDValue Ptr,
4074                              MachinePointerInfo PtrInfo,
4075                              bool isVolatile, bool isNonTemporal,
4076                              unsigned Alignment, const MDNode *TBAAInfo) {
4077  SDValue Undef = getUNDEF(Ptr.getValueType());
4078  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4079                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4080}
4081
4082SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, EVT VT, DebugLoc dl,
4083                                 SDValue Chain, SDValue Ptr,
4084                                 MachinePointerInfo PtrInfo, EVT MemVT,
4085                                 bool isVolatile, bool isNonTemporal,
4086                                 unsigned Alignment, const MDNode *TBAAInfo) {
4087  SDValue Undef = getUNDEF(Ptr.getValueType());
4088  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4089                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4090                 TBAAInfo);
4091}
4092
4093
4094SDValue
4095SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4096                             SDValue Offset, ISD::MemIndexedMode AM) {
4097  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4098  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4099         "Load is already a indexed load!");
4100  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4101                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4102                 LD->getMemoryVT(),
4103                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4104}
4105
4106SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4107                               SDValue Ptr, MachinePointerInfo PtrInfo,
4108                               bool isVolatile, bool isNonTemporal,
4109                               unsigned Alignment, const MDNode *TBAAInfo) {
4110  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4111    Alignment = getEVTAlignment(Val.getValueType());
4112
4113  unsigned Flags = MachineMemOperand::MOStore;
4114  if (isVolatile)
4115    Flags |= MachineMemOperand::MOVolatile;
4116  if (isNonTemporal)
4117    Flags |= MachineMemOperand::MONonTemporal;
4118
4119  if (PtrInfo.V == 0)
4120    PtrInfo = InferPointerInfo(Ptr);
4121
4122  MachineFunction &MF = getMachineFunction();
4123  MachineMemOperand *MMO =
4124    MF.getMachineMemOperand(PtrInfo, Flags,
4125                            Val.getValueType().getStoreSize(), Alignment,
4126                            TBAAInfo);
4127
4128  return getStore(Chain, dl, Val, Ptr, MMO);
4129}
4130
4131SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4132                               SDValue Ptr, MachineMemOperand *MMO) {
4133  EVT VT = Val.getValueType();
4134  SDVTList VTs = getVTList(MVT::Other);
4135  SDValue Undef = getUNDEF(Ptr.getValueType());
4136  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4137  FoldingSetNodeID ID;
4138  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4139  ID.AddInteger(VT.getRawBits());
4140  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4141                                     MMO->isNonTemporal()));
4142  void *IP = 0;
4143  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4144    cast<StoreSDNode>(E)->refineAlignment(MMO);
4145    return SDValue(E, 0);
4146  }
4147  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4148                                              false, VT, MMO);
4149  CSEMap.InsertNode(N, IP);
4150  AllNodes.push_back(N);
4151  return SDValue(N, 0);
4152}
4153
4154SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4155                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4156                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4157                                    unsigned Alignment,
4158                                    const MDNode *TBAAInfo) {
4159  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4160    Alignment = getEVTAlignment(SVT);
4161
4162  unsigned Flags = MachineMemOperand::MOStore;
4163  if (isVolatile)
4164    Flags |= MachineMemOperand::MOVolatile;
4165  if (isNonTemporal)
4166    Flags |= MachineMemOperand::MONonTemporal;
4167
4168  if (PtrInfo.V == 0)
4169    PtrInfo = InferPointerInfo(Ptr);
4170
4171  MachineFunction &MF = getMachineFunction();
4172  MachineMemOperand *MMO =
4173    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4174                            TBAAInfo);
4175
4176  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4177}
4178
4179SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4180                                    SDValue Ptr, EVT SVT,
4181                                    MachineMemOperand *MMO) {
4182  EVT VT = Val.getValueType();
4183
4184  if (VT == SVT)
4185    return getStore(Chain, dl, Val, Ptr, MMO);
4186
4187  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4188         "Should only be a truncating store, not extending!");
4189  assert(VT.isInteger() == SVT.isInteger() &&
4190         "Can't do FP-INT conversion!");
4191  assert(VT.isVector() == SVT.isVector() &&
4192         "Cannot use trunc store to convert to or from a vector!");
4193  assert((!VT.isVector() ||
4194          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4195         "Cannot use trunc store to change the number of vector elements!");
4196
4197  SDVTList VTs = getVTList(MVT::Other);
4198  SDValue Undef = getUNDEF(Ptr.getValueType());
4199  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4200  FoldingSetNodeID ID;
4201  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4202  ID.AddInteger(SVT.getRawBits());
4203  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4204                                     MMO->isNonTemporal()));
4205  void *IP = 0;
4206  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4207    cast<StoreSDNode>(E)->refineAlignment(MMO);
4208    return SDValue(E, 0);
4209  }
4210  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4211                                              true, SVT, MMO);
4212  CSEMap.InsertNode(N, IP);
4213  AllNodes.push_back(N);
4214  return SDValue(N, 0);
4215}
4216
4217SDValue
4218SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4219                              SDValue Offset, ISD::MemIndexedMode AM) {
4220  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4221  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4222         "Store is already a indexed store!");
4223  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4224  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4225  FoldingSetNodeID ID;
4226  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4227  ID.AddInteger(ST->getMemoryVT().getRawBits());
4228  ID.AddInteger(ST->getRawSubclassData());
4229  void *IP = 0;
4230  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4231    return SDValue(E, 0);
4232
4233  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4234                                              ST->isTruncatingStore(),
4235                                              ST->getMemoryVT(),
4236                                              ST->getMemOperand());
4237  CSEMap.InsertNode(N, IP);
4238  AllNodes.push_back(N);
4239  return SDValue(N, 0);
4240}
4241
4242SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4243                               SDValue Chain, SDValue Ptr,
4244                               SDValue SV,
4245                               unsigned Align) {
4246  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4247  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4248}
4249
4250SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4251                              const SDUse *Ops, unsigned NumOps) {
4252  switch (NumOps) {
4253  case 0: return getNode(Opcode, DL, VT);
4254  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4255  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4256  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4257  default: break;
4258  }
4259
4260  // Copy from an SDUse array into an SDValue array for use with
4261  // the regular getNode logic.
4262  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4263  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4264}
4265
4266SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4267                              const SDValue *Ops, unsigned NumOps) {
4268  switch (NumOps) {
4269  case 0: return getNode(Opcode, DL, VT);
4270  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4271  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4272  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4273  default: break;
4274  }
4275
4276  switch (Opcode) {
4277  default: break;
4278  case ISD::SELECT_CC: {
4279    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4280    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4281           "LHS and RHS of condition must have same type!");
4282    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4283           "True and False arms of SelectCC must have same type!");
4284    assert(Ops[2].getValueType() == VT &&
4285           "select_cc node must be of same type as true and false value!");
4286    break;
4287  }
4288  case ISD::BR_CC: {
4289    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4290    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4291           "LHS/RHS of comparison should match types!");
4292    break;
4293  }
4294  }
4295
4296  // Memoize nodes.
4297  SDNode *N;
4298  SDVTList VTs = getVTList(VT);
4299
4300  if (VT != MVT::Glue) {
4301    FoldingSetNodeID ID;
4302    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4303    void *IP = 0;
4304
4305    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4306      return SDValue(E, 0);
4307
4308    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4309    CSEMap.InsertNode(N, IP);
4310  } else {
4311    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4312  }
4313
4314  AllNodes.push_back(N);
4315#ifndef NDEBUG
4316  VerifySDNode(N);
4317#endif
4318  return SDValue(N, 0);
4319}
4320
4321SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4322                              const std::vector<EVT> &ResultTys,
4323                              const SDValue *Ops, unsigned NumOps) {
4324  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4325                 Ops, NumOps);
4326}
4327
4328SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4329                              const EVT *VTs, unsigned NumVTs,
4330                              const SDValue *Ops, unsigned NumOps) {
4331  if (NumVTs == 1)
4332    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4333  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4334}
4335
4336SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4337                              const SDValue *Ops, unsigned NumOps) {
4338  if (VTList.NumVTs == 1)
4339    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4340
4341#if 0
4342  switch (Opcode) {
4343  // FIXME: figure out how to safely handle things like
4344  // int foo(int x) { return 1 << (x & 255); }
4345  // int bar() { return foo(256); }
4346  case ISD::SRA_PARTS:
4347  case ISD::SRL_PARTS:
4348  case ISD::SHL_PARTS:
4349    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4350        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4351      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4352    else if (N3.getOpcode() == ISD::AND)
4353      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4354        // If the and is only masking out bits that cannot effect the shift,
4355        // eliminate the and.
4356        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4357        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4358          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4359      }
4360    break;
4361  }
4362#endif
4363
4364  // Memoize the node unless it returns a flag.
4365  SDNode *N;
4366  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4367    FoldingSetNodeID ID;
4368    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4369    void *IP = 0;
4370    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4371      return SDValue(E, 0);
4372
4373    if (NumOps == 1) {
4374      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4375    } else if (NumOps == 2) {
4376      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4377    } else if (NumOps == 3) {
4378      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4379                                            Ops[2]);
4380    } else {
4381      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4382    }
4383    CSEMap.InsertNode(N, IP);
4384  } else {
4385    if (NumOps == 1) {
4386      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4387    } else if (NumOps == 2) {
4388      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4389    } else if (NumOps == 3) {
4390      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4391                                            Ops[2]);
4392    } else {
4393      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4394    }
4395  }
4396  AllNodes.push_back(N);
4397#ifndef NDEBUG
4398  VerifySDNode(N);
4399#endif
4400  return SDValue(N, 0);
4401}
4402
4403SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4404  return getNode(Opcode, DL, VTList, 0, 0);
4405}
4406
4407SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4408                              SDValue N1) {
4409  SDValue Ops[] = { N1 };
4410  return getNode(Opcode, DL, VTList, Ops, 1);
4411}
4412
4413SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4414                              SDValue N1, SDValue N2) {
4415  SDValue Ops[] = { N1, N2 };
4416  return getNode(Opcode, DL, VTList, Ops, 2);
4417}
4418
4419SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4420                              SDValue N1, SDValue N2, SDValue N3) {
4421  SDValue Ops[] = { N1, N2, N3 };
4422  return getNode(Opcode, DL, VTList, Ops, 3);
4423}
4424
4425SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4426                              SDValue N1, SDValue N2, SDValue N3,
4427                              SDValue N4) {
4428  SDValue Ops[] = { N1, N2, N3, N4 };
4429  return getNode(Opcode, DL, VTList, Ops, 4);
4430}
4431
4432SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4433                              SDValue N1, SDValue N2, SDValue N3,
4434                              SDValue N4, SDValue N5) {
4435  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4436  return getNode(Opcode, DL, VTList, Ops, 5);
4437}
4438
4439SDVTList SelectionDAG::getVTList(EVT VT) {
4440  return makeVTList(SDNode::getValueTypeList(VT), 1);
4441}
4442
4443SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4444  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4445       E = VTList.rend(); I != E; ++I)
4446    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4447      return *I;
4448
4449  EVT *Array = Allocator.Allocate<EVT>(2);
4450  Array[0] = VT1;
4451  Array[1] = VT2;
4452  SDVTList Result = makeVTList(Array, 2);
4453  VTList.push_back(Result);
4454  return Result;
4455}
4456
4457SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4458  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4459       E = VTList.rend(); I != E; ++I)
4460    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4461                          I->VTs[2] == VT3)
4462      return *I;
4463
4464  EVT *Array = Allocator.Allocate<EVT>(3);
4465  Array[0] = VT1;
4466  Array[1] = VT2;
4467  Array[2] = VT3;
4468  SDVTList Result = makeVTList(Array, 3);
4469  VTList.push_back(Result);
4470  return Result;
4471}
4472
4473SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4474  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4475       E = VTList.rend(); I != E; ++I)
4476    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4477                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4478      return *I;
4479
4480  EVT *Array = Allocator.Allocate<EVT>(4);
4481  Array[0] = VT1;
4482  Array[1] = VT2;
4483  Array[2] = VT3;
4484  Array[3] = VT4;
4485  SDVTList Result = makeVTList(Array, 4);
4486  VTList.push_back(Result);
4487  return Result;
4488}
4489
4490SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4491  switch (NumVTs) {
4492    case 0: llvm_unreachable("Cannot have nodes without results!");
4493    case 1: return getVTList(VTs[0]);
4494    case 2: return getVTList(VTs[0], VTs[1]);
4495    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4496    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4497    default: break;
4498  }
4499
4500  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4501       E = VTList.rend(); I != E; ++I) {
4502    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4503      continue;
4504
4505    bool NoMatch = false;
4506    for (unsigned i = 2; i != NumVTs; ++i)
4507      if (VTs[i] != I->VTs[i]) {
4508        NoMatch = true;
4509        break;
4510      }
4511    if (!NoMatch)
4512      return *I;
4513  }
4514
4515  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4516  std::copy(VTs, VTs+NumVTs, Array);
4517  SDVTList Result = makeVTList(Array, NumVTs);
4518  VTList.push_back(Result);
4519  return Result;
4520}
4521
4522
4523/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4524/// specified operands.  If the resultant node already exists in the DAG,
4525/// this does not modify the specified node, instead it returns the node that
4526/// already exists.  If the resultant node does not exist in the DAG, the
4527/// input node is returned.  As a degenerate case, if you specify the same
4528/// input operands as the node already has, the input node is returned.
4529SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4530  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4531
4532  // Check to see if there is no change.
4533  if (Op == N->getOperand(0)) return N;
4534
4535  // See if the modified node already exists.
4536  void *InsertPos = 0;
4537  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4538    return Existing;
4539
4540  // Nope it doesn't.  Remove the node from its current place in the maps.
4541  if (InsertPos)
4542    if (!RemoveNodeFromCSEMaps(N))
4543      InsertPos = 0;
4544
4545  // Now we update the operands.
4546  N->OperandList[0].set(Op);
4547
4548  // If this gets put into a CSE map, add it.
4549  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4550  return N;
4551}
4552
4553SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4554  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4555
4556  // Check to see if there is no change.
4557  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4558    return N;   // No operands changed, just return the input node.
4559
4560  // See if the modified node already exists.
4561  void *InsertPos = 0;
4562  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4563    return Existing;
4564
4565  // Nope it doesn't.  Remove the node from its current place in the maps.
4566  if (InsertPos)
4567    if (!RemoveNodeFromCSEMaps(N))
4568      InsertPos = 0;
4569
4570  // Now we update the operands.
4571  if (N->OperandList[0] != Op1)
4572    N->OperandList[0].set(Op1);
4573  if (N->OperandList[1] != Op2)
4574    N->OperandList[1].set(Op2);
4575
4576  // If this gets put into a CSE map, add it.
4577  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4578  return N;
4579}
4580
4581SDNode *SelectionDAG::
4582UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4583  SDValue Ops[] = { Op1, Op2, Op3 };
4584  return UpdateNodeOperands(N, Ops, 3);
4585}
4586
4587SDNode *SelectionDAG::
4588UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4589                   SDValue Op3, SDValue Op4) {
4590  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4591  return UpdateNodeOperands(N, Ops, 4);
4592}
4593
4594SDNode *SelectionDAG::
4595UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4596                   SDValue Op3, SDValue Op4, SDValue Op5) {
4597  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4598  return UpdateNodeOperands(N, Ops, 5);
4599}
4600
4601SDNode *SelectionDAG::
4602UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4603  assert(N->getNumOperands() == NumOps &&
4604         "Update with wrong number of operands");
4605
4606  // Check to see if there is no change.
4607  bool AnyChange = false;
4608  for (unsigned i = 0; i != NumOps; ++i) {
4609    if (Ops[i] != N->getOperand(i)) {
4610      AnyChange = true;
4611      break;
4612    }
4613  }
4614
4615  // No operands changed, just return the input node.
4616  if (!AnyChange) return N;
4617
4618  // See if the modified node already exists.
4619  void *InsertPos = 0;
4620  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4621    return Existing;
4622
4623  // Nope it doesn't.  Remove the node from its current place in the maps.
4624  if (InsertPos)
4625    if (!RemoveNodeFromCSEMaps(N))
4626      InsertPos = 0;
4627
4628  // Now we update the operands.
4629  for (unsigned i = 0; i != NumOps; ++i)
4630    if (N->OperandList[i] != Ops[i])
4631      N->OperandList[i].set(Ops[i]);
4632
4633  // If this gets put into a CSE map, add it.
4634  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4635  return N;
4636}
4637
4638/// DropOperands - Release the operands and set this node to have
4639/// zero operands.
4640void SDNode::DropOperands() {
4641  // Unlike the code in MorphNodeTo that does this, we don't need to
4642  // watch for dead nodes here.
4643  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4644    SDUse &Use = *I++;
4645    Use.set(SDValue());
4646  }
4647}
4648
4649/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4650/// machine opcode.
4651///
4652SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4653                                   EVT VT) {
4654  SDVTList VTs = getVTList(VT);
4655  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4656}
4657
4658SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4659                                   EVT VT, SDValue Op1) {
4660  SDVTList VTs = getVTList(VT);
4661  SDValue Ops[] = { Op1 };
4662  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4663}
4664
4665SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4666                                   EVT VT, SDValue Op1,
4667                                   SDValue Op2) {
4668  SDVTList VTs = getVTList(VT);
4669  SDValue Ops[] = { Op1, Op2 };
4670  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4671}
4672
4673SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4674                                   EVT VT, SDValue Op1,
4675                                   SDValue Op2, SDValue Op3) {
4676  SDVTList VTs = getVTList(VT);
4677  SDValue Ops[] = { Op1, Op2, Op3 };
4678  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4679}
4680
4681SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4682                                   EVT VT, const SDValue *Ops,
4683                                   unsigned NumOps) {
4684  SDVTList VTs = getVTList(VT);
4685  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4686}
4687
4688SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4689                                   EVT VT1, EVT VT2, const SDValue *Ops,
4690                                   unsigned NumOps) {
4691  SDVTList VTs = getVTList(VT1, VT2);
4692  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4693}
4694
4695SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4696                                   EVT VT1, EVT VT2) {
4697  SDVTList VTs = getVTList(VT1, VT2);
4698  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4699}
4700
4701SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4702                                   EVT VT1, EVT VT2, EVT VT3,
4703                                   const SDValue *Ops, unsigned NumOps) {
4704  SDVTList VTs = getVTList(VT1, VT2, VT3);
4705  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4706}
4707
4708SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4709                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4710                                   const SDValue *Ops, unsigned NumOps) {
4711  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4712  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4713}
4714
4715SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4716                                   EVT VT1, EVT VT2,
4717                                   SDValue Op1) {
4718  SDVTList VTs = getVTList(VT1, VT2);
4719  SDValue Ops[] = { Op1 };
4720  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4721}
4722
4723SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4724                                   EVT VT1, EVT VT2,
4725                                   SDValue Op1, SDValue Op2) {
4726  SDVTList VTs = getVTList(VT1, VT2);
4727  SDValue Ops[] = { Op1, Op2 };
4728  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4729}
4730
4731SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4732                                   EVT VT1, EVT VT2,
4733                                   SDValue Op1, SDValue Op2,
4734                                   SDValue Op3) {
4735  SDVTList VTs = getVTList(VT1, VT2);
4736  SDValue Ops[] = { Op1, Op2, Op3 };
4737  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4738}
4739
4740SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4741                                   EVT VT1, EVT VT2, EVT VT3,
4742                                   SDValue Op1, SDValue Op2,
4743                                   SDValue Op3) {
4744  SDVTList VTs = getVTList(VT1, VT2, VT3);
4745  SDValue Ops[] = { Op1, Op2, Op3 };
4746  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4747}
4748
4749SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4750                                   SDVTList VTs, const SDValue *Ops,
4751                                   unsigned NumOps) {
4752  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4753  // Reset the NodeID to -1.
4754  N->setNodeId(-1);
4755  return N;
4756}
4757
4758/// MorphNodeTo - This *mutates* the specified node to have the specified
4759/// return type, opcode, and operands.
4760///
4761/// Note that MorphNodeTo returns the resultant node.  If there is already a
4762/// node of the specified opcode and operands, it returns that node instead of
4763/// the current one.  Note that the DebugLoc need not be the same.
4764///
4765/// Using MorphNodeTo is faster than creating a new node and swapping it in
4766/// with ReplaceAllUsesWith both because it often avoids allocating a new
4767/// node, and because it doesn't require CSE recalculation for any of
4768/// the node's users.
4769///
4770SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4771                                  SDVTList VTs, const SDValue *Ops,
4772                                  unsigned NumOps) {
4773  // If an identical node already exists, use it.
4774  void *IP = 0;
4775  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4776    FoldingSetNodeID ID;
4777    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4778    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4779      return ON;
4780  }
4781
4782  if (!RemoveNodeFromCSEMaps(N))
4783    IP = 0;
4784
4785  // Start the morphing.
4786  N->NodeType = Opc;
4787  N->ValueList = VTs.VTs;
4788  N->NumValues = VTs.NumVTs;
4789
4790  // Clear the operands list, updating used nodes to remove this from their
4791  // use list.  Keep track of any operands that become dead as a result.
4792  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4793  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4794    SDUse &Use = *I++;
4795    SDNode *Used = Use.getNode();
4796    Use.set(SDValue());
4797    if (Used->use_empty())
4798      DeadNodeSet.insert(Used);
4799  }
4800
4801  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4802    // Initialize the memory references information.
4803    MN->setMemRefs(0, 0);
4804    // If NumOps is larger than the # of operands we can have in a
4805    // MachineSDNode, reallocate the operand list.
4806    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4807      if (MN->OperandsNeedDelete)
4808        delete[] MN->OperandList;
4809      if (NumOps > array_lengthof(MN->LocalOperands))
4810        // We're creating a final node that will live unmorphed for the
4811        // remainder of the current SelectionDAG iteration, so we can allocate
4812        // the operands directly out of a pool with no recycling metadata.
4813        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4814                         Ops, NumOps);
4815      else
4816        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4817      MN->OperandsNeedDelete = false;
4818    } else
4819      MN->InitOperands(MN->OperandList, Ops, NumOps);
4820  } else {
4821    // If NumOps is larger than the # of operands we currently have, reallocate
4822    // the operand list.
4823    if (NumOps > N->NumOperands) {
4824      if (N->OperandsNeedDelete)
4825        delete[] N->OperandList;
4826      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4827      N->OperandsNeedDelete = true;
4828    } else
4829      N->InitOperands(N->OperandList, Ops, NumOps);
4830  }
4831
4832  // Delete any nodes that are still dead after adding the uses for the
4833  // new operands.
4834  if (!DeadNodeSet.empty()) {
4835    SmallVector<SDNode *, 16> DeadNodes;
4836    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4837         E = DeadNodeSet.end(); I != E; ++I)
4838      if ((*I)->use_empty())
4839        DeadNodes.push_back(*I);
4840    RemoveDeadNodes(DeadNodes);
4841  }
4842
4843  if (IP)
4844    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4845  return N;
4846}
4847
4848
4849/// getMachineNode - These are used for target selectors to create a new node
4850/// with specified return type(s), MachineInstr opcode, and operands.
4851///
4852/// Note that getMachineNode returns the resultant node.  If there is already a
4853/// node of the specified opcode and operands, it returns that node instead of
4854/// the current one.
4855MachineSDNode *
4856SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4857  SDVTList VTs = getVTList(VT);
4858  return getMachineNode(Opcode, dl, VTs, 0, 0);
4859}
4860
4861MachineSDNode *
4862SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4863  SDVTList VTs = getVTList(VT);
4864  SDValue Ops[] = { Op1 };
4865  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4866}
4867
4868MachineSDNode *
4869SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4870                             SDValue Op1, SDValue Op2) {
4871  SDVTList VTs = getVTList(VT);
4872  SDValue Ops[] = { Op1, Op2 };
4873  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4874}
4875
4876MachineSDNode *
4877SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4878                             SDValue Op1, SDValue Op2, SDValue Op3) {
4879  SDVTList VTs = getVTList(VT);
4880  SDValue Ops[] = { Op1, Op2, Op3 };
4881  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4882}
4883
4884MachineSDNode *
4885SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4886                             const SDValue *Ops, unsigned NumOps) {
4887  SDVTList VTs = getVTList(VT);
4888  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4889}
4890
4891MachineSDNode *
4892SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4893  SDVTList VTs = getVTList(VT1, VT2);
4894  return getMachineNode(Opcode, dl, VTs, 0, 0);
4895}
4896
4897MachineSDNode *
4898SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4899                             EVT VT1, EVT VT2, SDValue Op1) {
4900  SDVTList VTs = getVTList(VT1, VT2);
4901  SDValue Ops[] = { Op1 };
4902  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4903}
4904
4905MachineSDNode *
4906SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4907                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4908  SDVTList VTs = getVTList(VT1, VT2);
4909  SDValue Ops[] = { Op1, Op2 };
4910  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4911}
4912
4913MachineSDNode *
4914SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4915                             EVT VT1, EVT VT2, SDValue Op1,
4916                             SDValue Op2, SDValue Op3) {
4917  SDVTList VTs = getVTList(VT1, VT2);
4918  SDValue Ops[] = { Op1, Op2, Op3 };
4919  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4920}
4921
4922MachineSDNode *
4923SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4924                             EVT VT1, EVT VT2,
4925                             const SDValue *Ops, unsigned NumOps) {
4926  SDVTList VTs = getVTList(VT1, VT2);
4927  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4928}
4929
4930MachineSDNode *
4931SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4932                             EVT VT1, EVT VT2, EVT VT3,
4933                             SDValue Op1, SDValue Op2) {
4934  SDVTList VTs = getVTList(VT1, VT2, VT3);
4935  SDValue Ops[] = { Op1, Op2 };
4936  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4937}
4938
4939MachineSDNode *
4940SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4941                             EVT VT1, EVT VT2, EVT VT3,
4942                             SDValue Op1, SDValue Op2, SDValue Op3) {
4943  SDVTList VTs = getVTList(VT1, VT2, VT3);
4944  SDValue Ops[] = { Op1, Op2, Op3 };
4945  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4946}
4947
4948MachineSDNode *
4949SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4950                             EVT VT1, EVT VT2, EVT VT3,
4951                             const SDValue *Ops, unsigned NumOps) {
4952  SDVTList VTs = getVTList(VT1, VT2, VT3);
4953  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4954}
4955
4956MachineSDNode *
4957SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4958                             EVT VT2, EVT VT3, EVT VT4,
4959                             const SDValue *Ops, unsigned NumOps) {
4960  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4961  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4962}
4963
4964MachineSDNode *
4965SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4966                             const std::vector<EVT> &ResultTys,
4967                             const SDValue *Ops, unsigned NumOps) {
4968  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4969  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4970}
4971
4972MachineSDNode *
4973SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4974                             const SDValue *Ops, unsigned NumOps) {
4975  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
4976  MachineSDNode *N;
4977  void *IP = 0;
4978
4979  if (DoCSE) {
4980    FoldingSetNodeID ID;
4981    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4982    IP = 0;
4983    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4984      return cast<MachineSDNode>(E);
4985  }
4986
4987  // Allocate a new MachineSDNode.
4988  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4989
4990  // Initialize the operands list.
4991  if (NumOps > array_lengthof(N->LocalOperands))
4992    // We're creating a final node that will live unmorphed for the
4993    // remainder of the current SelectionDAG iteration, so we can allocate
4994    // the operands directly out of a pool with no recycling metadata.
4995    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4996                    Ops, NumOps);
4997  else
4998    N->InitOperands(N->LocalOperands, Ops, NumOps);
4999  N->OperandsNeedDelete = false;
5000
5001  if (DoCSE)
5002    CSEMap.InsertNode(N, IP);
5003
5004  AllNodes.push_back(N);
5005#ifndef NDEBUG
5006  VerifyMachineNode(N);
5007#endif
5008  return N;
5009}
5010
5011/// getTargetExtractSubreg - A convenience function for creating
5012/// TargetOpcode::EXTRACT_SUBREG nodes.
5013SDValue
5014SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5015                                     SDValue Operand) {
5016  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5017  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5018                                  VT, Operand, SRIdxVal);
5019  return SDValue(Subreg, 0);
5020}
5021
5022/// getTargetInsertSubreg - A convenience function for creating
5023/// TargetOpcode::INSERT_SUBREG nodes.
5024SDValue
5025SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5026                                    SDValue Operand, SDValue Subreg) {
5027  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5028  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5029                                  VT, Operand, Subreg, SRIdxVal);
5030  return SDValue(Result, 0);
5031}
5032
5033/// getNodeIfExists - Get the specified node if it's already available, or
5034/// else return NULL.
5035SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5036                                      const SDValue *Ops, unsigned NumOps) {
5037  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5038    FoldingSetNodeID ID;
5039    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5040    void *IP = 0;
5041    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5042      return E;
5043  }
5044  return NULL;
5045}
5046
5047/// getDbgValue - Creates a SDDbgValue node.
5048///
5049SDDbgValue *
5050SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5051                          DebugLoc DL, unsigned O) {
5052  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5053}
5054
5055SDDbgValue *
5056SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5057                          DebugLoc DL, unsigned O) {
5058  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5059}
5060
5061SDDbgValue *
5062SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5063                          DebugLoc DL, unsigned O) {
5064  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5065}
5066
5067namespace {
5068
5069/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5070/// pointed to by a use iterator is deleted, increment the use iterator
5071/// so that it doesn't dangle.
5072///
5073/// This class also manages a "downlink" DAGUpdateListener, to forward
5074/// messages to ReplaceAllUsesWith's callers.
5075///
5076class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5077  SelectionDAG::DAGUpdateListener *DownLink;
5078  SDNode::use_iterator &UI;
5079  SDNode::use_iterator &UE;
5080
5081  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5082    // Increment the iterator as needed.
5083    while (UI != UE && N == *UI)
5084      ++UI;
5085
5086    // Then forward the message.
5087    if (DownLink) DownLink->NodeDeleted(N, E);
5088  }
5089
5090  virtual void NodeUpdated(SDNode *N) {
5091    // Just forward the message.
5092    if (DownLink) DownLink->NodeUpdated(N);
5093  }
5094
5095public:
5096  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5097                     SDNode::use_iterator &ui,
5098                     SDNode::use_iterator &ue)
5099    : DownLink(dl), UI(ui), UE(ue) {}
5100};
5101
5102}
5103
5104/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5105/// This can cause recursive merging of nodes in the DAG.
5106///
5107/// This version assumes From has a single result value.
5108///
5109void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5110                                      DAGUpdateListener *UpdateListener) {
5111  SDNode *From = FromN.getNode();
5112  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5113         "Cannot replace with this method!");
5114  assert(From != To.getNode() && "Cannot replace uses of with self");
5115
5116  // Iterate over all the existing uses of From. New uses will be added
5117  // to the beginning of the use list, which we avoid visiting.
5118  // This specifically avoids visiting uses of From that arise while the
5119  // replacement is happening, because any such uses would be the result
5120  // of CSE: If an existing node looks like From after one of its operands
5121  // is replaced by To, we don't want to replace of all its users with To
5122  // too. See PR3018 for more info.
5123  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5124  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5125  while (UI != UE) {
5126    SDNode *User = *UI;
5127
5128    // This node is about to morph, remove its old self from the CSE maps.
5129    RemoveNodeFromCSEMaps(User);
5130
5131    // A user can appear in a use list multiple times, and when this
5132    // happens the uses are usually next to each other in the list.
5133    // To help reduce the number of CSE recomputations, process all
5134    // the uses of this user that we can find this way.
5135    do {
5136      SDUse &Use = UI.getUse();
5137      ++UI;
5138      Use.set(To);
5139    } while (UI != UE && *UI == User);
5140
5141    // Now that we have modified User, add it back to the CSE maps.  If it
5142    // already exists there, recursively merge the results together.
5143    AddModifiedNodeToCSEMaps(User, &Listener);
5144  }
5145}
5146
5147/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5148/// This can cause recursive merging of nodes in the DAG.
5149///
5150/// This version assumes that for each value of From, there is a
5151/// corresponding value in To in the same position with the same type.
5152///
5153void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5154                                      DAGUpdateListener *UpdateListener) {
5155#ifndef NDEBUG
5156  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5157    assert((!From->hasAnyUseOfValue(i) ||
5158            From->getValueType(i) == To->getValueType(i)) &&
5159           "Cannot use this version of ReplaceAllUsesWith!");
5160#endif
5161
5162  // Handle the trivial case.
5163  if (From == To)
5164    return;
5165
5166  // Iterate over just the existing users of From. See the comments in
5167  // the ReplaceAllUsesWith above.
5168  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5169  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5170  while (UI != UE) {
5171    SDNode *User = *UI;
5172
5173    // This node is about to morph, remove its old self from the CSE maps.
5174    RemoveNodeFromCSEMaps(User);
5175
5176    // A user can appear in a use list multiple times, and when this
5177    // happens the uses are usually next to each other in the list.
5178    // To help reduce the number of CSE recomputations, process all
5179    // the uses of this user that we can find this way.
5180    do {
5181      SDUse &Use = UI.getUse();
5182      ++UI;
5183      Use.setNode(To);
5184    } while (UI != UE && *UI == User);
5185
5186    // Now that we have modified User, add it back to the CSE maps.  If it
5187    // already exists there, recursively merge the results together.
5188    AddModifiedNodeToCSEMaps(User, &Listener);
5189  }
5190}
5191
5192/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5193/// This can cause recursive merging of nodes in the DAG.
5194///
5195/// This version can replace From with any result values.  To must match the
5196/// number and types of values returned by From.
5197void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5198                                      const SDValue *To,
5199                                      DAGUpdateListener *UpdateListener) {
5200  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5201    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5202
5203  // Iterate over just the existing users of From. See the comments in
5204  // the ReplaceAllUsesWith above.
5205  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5206  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5207  while (UI != UE) {
5208    SDNode *User = *UI;
5209
5210    // This node is about to morph, remove its old self from the CSE maps.
5211    RemoveNodeFromCSEMaps(User);
5212
5213    // A user can appear in a use list multiple times, and when this
5214    // happens the uses are usually next to each other in the list.
5215    // To help reduce the number of CSE recomputations, process all
5216    // the uses of this user that we can find this way.
5217    do {
5218      SDUse &Use = UI.getUse();
5219      const SDValue &ToOp = To[Use.getResNo()];
5220      ++UI;
5221      Use.set(ToOp);
5222    } while (UI != UE && *UI == User);
5223
5224    // Now that we have modified User, add it back to the CSE maps.  If it
5225    // already exists there, recursively merge the results together.
5226    AddModifiedNodeToCSEMaps(User, &Listener);
5227  }
5228}
5229
5230/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5231/// uses of other values produced by From.getNode() alone.  The Deleted
5232/// vector is handled the same way as for ReplaceAllUsesWith.
5233void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5234                                             DAGUpdateListener *UpdateListener){
5235  // Handle the really simple, really trivial case efficiently.
5236  if (From == To) return;
5237
5238  // Handle the simple, trivial, case efficiently.
5239  if (From.getNode()->getNumValues() == 1) {
5240    ReplaceAllUsesWith(From, To, UpdateListener);
5241    return;
5242  }
5243
5244  // Iterate over just the existing users of From. See the comments in
5245  // the ReplaceAllUsesWith above.
5246  SDNode::use_iterator UI = From.getNode()->use_begin(),
5247                       UE = From.getNode()->use_end();
5248  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5249  while (UI != UE) {
5250    SDNode *User = *UI;
5251    bool UserRemovedFromCSEMaps = false;
5252
5253    // A user can appear in a use list multiple times, and when this
5254    // happens the uses are usually next to each other in the list.
5255    // To help reduce the number of CSE recomputations, process all
5256    // the uses of this user that we can find this way.
5257    do {
5258      SDUse &Use = UI.getUse();
5259
5260      // Skip uses of different values from the same node.
5261      if (Use.getResNo() != From.getResNo()) {
5262        ++UI;
5263        continue;
5264      }
5265
5266      // If this node hasn't been modified yet, it's still in the CSE maps,
5267      // so remove its old self from the CSE maps.
5268      if (!UserRemovedFromCSEMaps) {
5269        RemoveNodeFromCSEMaps(User);
5270        UserRemovedFromCSEMaps = true;
5271      }
5272
5273      ++UI;
5274      Use.set(To);
5275    } while (UI != UE && *UI == User);
5276
5277    // We are iterating over all uses of the From node, so if a use
5278    // doesn't use the specific value, no changes are made.
5279    if (!UserRemovedFromCSEMaps)
5280      continue;
5281
5282    // Now that we have modified User, add it back to the CSE maps.  If it
5283    // already exists there, recursively merge the results together.
5284    AddModifiedNodeToCSEMaps(User, &Listener);
5285  }
5286}
5287
5288namespace {
5289  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5290  /// to record information about a use.
5291  struct UseMemo {
5292    SDNode *User;
5293    unsigned Index;
5294    SDUse *Use;
5295  };
5296
5297  /// operator< - Sort Memos by User.
5298  bool operator<(const UseMemo &L, const UseMemo &R) {
5299    return (intptr_t)L.User < (intptr_t)R.User;
5300  }
5301}
5302
5303/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5304/// uses of other values produced by From.getNode() alone.  The same value
5305/// may appear in both the From and To list.  The Deleted vector is
5306/// handled the same way as for ReplaceAllUsesWith.
5307void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5308                                              const SDValue *To,
5309                                              unsigned Num,
5310                                              DAGUpdateListener *UpdateListener){
5311  // Handle the simple, trivial case efficiently.
5312  if (Num == 1)
5313    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5314
5315  // Read up all the uses and make records of them. This helps
5316  // processing new uses that are introduced during the
5317  // replacement process.
5318  SmallVector<UseMemo, 4> Uses;
5319  for (unsigned i = 0; i != Num; ++i) {
5320    unsigned FromResNo = From[i].getResNo();
5321    SDNode *FromNode = From[i].getNode();
5322    for (SDNode::use_iterator UI = FromNode->use_begin(),
5323         E = FromNode->use_end(); UI != E; ++UI) {
5324      SDUse &Use = UI.getUse();
5325      if (Use.getResNo() == FromResNo) {
5326        UseMemo Memo = { *UI, i, &Use };
5327        Uses.push_back(Memo);
5328      }
5329    }
5330  }
5331
5332  // Sort the uses, so that all the uses from a given User are together.
5333  std::sort(Uses.begin(), Uses.end());
5334
5335  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5336       UseIndex != UseIndexEnd; ) {
5337    // We know that this user uses some value of From.  If it is the right
5338    // value, update it.
5339    SDNode *User = Uses[UseIndex].User;
5340
5341    // This node is about to morph, remove its old self from the CSE maps.
5342    RemoveNodeFromCSEMaps(User);
5343
5344    // The Uses array is sorted, so all the uses for a given User
5345    // are next to each other in the list.
5346    // To help reduce the number of CSE recomputations, process all
5347    // the uses of this user that we can find this way.
5348    do {
5349      unsigned i = Uses[UseIndex].Index;
5350      SDUse &Use = *Uses[UseIndex].Use;
5351      ++UseIndex;
5352
5353      Use.set(To[i]);
5354    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5355
5356    // Now that we have modified User, add it back to the CSE maps.  If it
5357    // already exists there, recursively merge the results together.
5358    AddModifiedNodeToCSEMaps(User, UpdateListener);
5359  }
5360}
5361
5362/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5363/// based on their topological order. It returns the maximum id and a vector
5364/// of the SDNodes* in assigned order by reference.
5365unsigned SelectionDAG::AssignTopologicalOrder() {
5366
5367  unsigned DAGSize = 0;
5368
5369  // SortedPos tracks the progress of the algorithm. Nodes before it are
5370  // sorted, nodes after it are unsorted. When the algorithm completes
5371  // it is at the end of the list.
5372  allnodes_iterator SortedPos = allnodes_begin();
5373
5374  // Visit all the nodes. Move nodes with no operands to the front of
5375  // the list immediately. Annotate nodes that do have operands with their
5376  // operand count. Before we do this, the Node Id fields of the nodes
5377  // may contain arbitrary values. After, the Node Id fields for nodes
5378  // before SortedPos will contain the topological sort index, and the
5379  // Node Id fields for nodes At SortedPos and after will contain the
5380  // count of outstanding operands.
5381  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5382    SDNode *N = I++;
5383    checkForCycles(N);
5384    unsigned Degree = N->getNumOperands();
5385    if (Degree == 0) {
5386      // A node with no uses, add it to the result array immediately.
5387      N->setNodeId(DAGSize++);
5388      allnodes_iterator Q = N;
5389      if (Q != SortedPos)
5390        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5391      assert(SortedPos != AllNodes.end() && "Overran node list");
5392      ++SortedPos;
5393    } else {
5394      // Temporarily use the Node Id as scratch space for the degree count.
5395      N->setNodeId(Degree);
5396    }
5397  }
5398
5399  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5400  // such that by the time the end is reached all nodes will be sorted.
5401  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5402    SDNode *N = I;
5403    checkForCycles(N);
5404    // N is in sorted position, so all its uses have one less operand
5405    // that needs to be sorted.
5406    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5407         UI != UE; ++UI) {
5408      SDNode *P = *UI;
5409      unsigned Degree = P->getNodeId();
5410      assert(Degree != 0 && "Invalid node degree");
5411      --Degree;
5412      if (Degree == 0) {
5413        // All of P's operands are sorted, so P may sorted now.
5414        P->setNodeId(DAGSize++);
5415        if (P != SortedPos)
5416          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5417        assert(SortedPos != AllNodes.end() && "Overran node list");
5418        ++SortedPos;
5419      } else {
5420        // Update P's outstanding operand count.
5421        P->setNodeId(Degree);
5422      }
5423    }
5424    if (I == SortedPos) {
5425#ifndef NDEBUG
5426      SDNode *S = ++I;
5427      dbgs() << "Overran sorted position:\n";
5428      S->dumprFull();
5429#endif
5430      llvm_unreachable(0);
5431    }
5432  }
5433
5434  assert(SortedPos == AllNodes.end() &&
5435         "Topological sort incomplete!");
5436  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5437         "First node in topological sort is not the entry token!");
5438  assert(AllNodes.front().getNodeId() == 0 &&
5439         "First node in topological sort has non-zero id!");
5440  assert(AllNodes.front().getNumOperands() == 0 &&
5441         "First node in topological sort has operands!");
5442  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5443         "Last node in topologic sort has unexpected id!");
5444  assert(AllNodes.back().use_empty() &&
5445         "Last node in topologic sort has users!");
5446  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5447  return DAGSize;
5448}
5449
5450/// AssignOrdering - Assign an order to the SDNode.
5451void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5452  assert(SD && "Trying to assign an order to a null node!");
5453  Ordering->add(SD, Order);
5454}
5455
5456/// GetOrdering - Get the order for the SDNode.
5457unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5458  assert(SD && "Trying to get the order of a null node!");
5459  return Ordering->getOrder(SD);
5460}
5461
5462/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5463/// value is produced by SD.
5464void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5465  DbgInfo->add(DB, SD, isParameter);
5466  if (SD)
5467    SD->setHasDebugValue(true);
5468}
5469
5470/// TransferDbgValues - Transfer SDDbgValues.
5471void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5472  if (From == To || !From.getNode()->getHasDebugValue())
5473    return;
5474  SDNode *FromNode = From.getNode();
5475  SDNode *ToNode = To.getNode();
5476  SmallVector<SDDbgValue*,2> &DVs = GetDbgValues(FromNode);
5477  DbgInfo->removeSDDbgValues(FromNode);
5478  for (SmallVector<SDDbgValue *, 2>::iterator I = DVs.begin(), E = DVs.end();
5479       I != E; ++I) {
5480    if ((*I)->getKind() == SDDbgValue::SDNODE) {
5481      AddDbgValue(*I, ToNode, false);
5482      (*I)->setSDNode(ToNode, To.getResNo());
5483    }
5484  }
5485}
5486
5487//===----------------------------------------------------------------------===//
5488//                              SDNode Class
5489//===----------------------------------------------------------------------===//
5490
5491HandleSDNode::~HandleSDNode() {
5492  DropOperands();
5493}
5494
5495GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5496                                         const GlobalValue *GA,
5497                                         EVT VT, int64_t o, unsigned char TF)
5498  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5499  TheGlobal = GA;
5500}
5501
5502MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5503                     MachineMemOperand *mmo)
5504 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5505  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5506                                      MMO->isNonTemporal());
5507  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5508  assert(isNonTemporal() == MMO->isNonTemporal() &&
5509         "Non-temporal encoding error!");
5510  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5511}
5512
5513MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5514                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5515                     MachineMemOperand *mmo)
5516   : SDNode(Opc, dl, VTs, Ops, NumOps),
5517     MemoryVT(memvt), MMO(mmo) {
5518  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5519                                      MMO->isNonTemporal());
5520  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5521  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5522}
5523
5524/// Profile - Gather unique data for the node.
5525///
5526void SDNode::Profile(FoldingSetNodeID &ID) const {
5527  AddNodeIDNode(ID, this);
5528}
5529
5530namespace {
5531  struct EVTArray {
5532    std::vector<EVT> VTs;
5533
5534    EVTArray() {
5535      VTs.reserve(MVT::LAST_VALUETYPE);
5536      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5537        VTs.push_back(MVT((MVT::SimpleValueType)i));
5538    }
5539  };
5540}
5541
5542static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5543static ManagedStatic<EVTArray> SimpleVTArray;
5544static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5545
5546/// getValueTypeList - Return a pointer to the specified value type.
5547///
5548const EVT *SDNode::getValueTypeList(EVT VT) {
5549  if (VT.isExtended()) {
5550    sys::SmartScopedLock<true> Lock(*VTMutex);
5551    return &(*EVTs->insert(VT).first);
5552  } else {
5553    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5554           "Value type out of range!");
5555    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5556  }
5557}
5558
5559/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5560/// indicated value.  This method ignores uses of other values defined by this
5561/// operation.
5562bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5563  assert(Value < getNumValues() && "Bad value!");
5564
5565  // TODO: Only iterate over uses of a given value of the node
5566  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5567    if (UI.getUse().getResNo() == Value) {
5568      if (NUses == 0)
5569        return false;
5570      --NUses;
5571    }
5572  }
5573
5574  // Found exactly the right number of uses?
5575  return NUses == 0;
5576}
5577
5578
5579/// hasAnyUseOfValue - Return true if there are any use of the indicated
5580/// value. This method ignores uses of other values defined by this operation.
5581bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5582  assert(Value < getNumValues() && "Bad value!");
5583
5584  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5585    if (UI.getUse().getResNo() == Value)
5586      return true;
5587
5588  return false;
5589}
5590
5591
5592/// isOnlyUserOf - Return true if this node is the only use of N.
5593///
5594bool SDNode::isOnlyUserOf(SDNode *N) const {
5595  bool Seen = false;
5596  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5597    SDNode *User = *I;
5598    if (User == this)
5599      Seen = true;
5600    else
5601      return false;
5602  }
5603
5604  return Seen;
5605}
5606
5607/// isOperand - Return true if this node is an operand of N.
5608///
5609bool SDValue::isOperandOf(SDNode *N) const {
5610  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5611    if (*this == N->getOperand(i))
5612      return true;
5613  return false;
5614}
5615
5616bool SDNode::isOperandOf(SDNode *N) const {
5617  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5618    if (this == N->OperandList[i].getNode())
5619      return true;
5620  return false;
5621}
5622
5623/// reachesChainWithoutSideEffects - Return true if this operand (which must
5624/// be a chain) reaches the specified operand without crossing any
5625/// side-effecting instructions on any chain path.  In practice, this looks
5626/// through token factors and non-volatile loads.  In order to remain efficient,
5627/// this only looks a couple of nodes in, it does not do an exhaustive search.
5628bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5629                                               unsigned Depth) const {
5630  if (*this == Dest) return true;
5631
5632  // Don't search too deeply, we just want to be able to see through
5633  // TokenFactor's etc.
5634  if (Depth == 0) return false;
5635
5636  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5637  // of the operands of the TF does not reach dest, then we cannot do the xform.
5638  if (getOpcode() == ISD::TokenFactor) {
5639    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5640      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5641        return false;
5642    return true;
5643  }
5644
5645  // Loads don't have side effects, look through them.
5646  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5647    if (!Ld->isVolatile())
5648      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5649  }
5650  return false;
5651}
5652
5653/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5654/// is either an operand of N or it can be reached by traversing up the operands.
5655/// NOTE: this is an expensive method. Use it carefully.
5656bool SDNode::isPredecessorOf(SDNode *N) const {
5657  SmallPtrSet<SDNode *, 32> Visited;
5658  SmallVector<SDNode *, 16> Worklist;
5659  Worklist.push_back(N);
5660
5661  do {
5662    N = Worklist.pop_back_val();
5663    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5664      SDNode *Op = N->getOperand(i).getNode();
5665      if (Op == this)
5666        return true;
5667      if (Visited.insert(Op))
5668        Worklist.push_back(Op);
5669    }
5670  } while (!Worklist.empty());
5671
5672  return false;
5673}
5674
5675uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5676  assert(Num < NumOperands && "Invalid child # of SDNode!");
5677  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5678}
5679
5680std::string SDNode::getOperationName(const SelectionDAG *G) const {
5681  switch (getOpcode()) {
5682  default:
5683    if (getOpcode() < ISD::BUILTIN_OP_END)
5684      return "<<Unknown DAG Node>>";
5685    if (isMachineOpcode()) {
5686      if (G)
5687        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5688          if (getMachineOpcode() < TII->getNumOpcodes())
5689            return TII->get(getMachineOpcode()).getName();
5690      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5691    }
5692    if (G) {
5693      const TargetLowering &TLI = G->getTargetLoweringInfo();
5694      const char *Name = TLI.getTargetNodeName(getOpcode());
5695      if (Name) return Name;
5696      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5697    }
5698    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5699
5700#ifndef NDEBUG
5701  case ISD::DELETED_NODE:
5702    return "<<Deleted Node!>>";
5703#endif
5704  case ISD::PREFETCH:      return "Prefetch";
5705  case ISD::MEMBARRIER:    return "MemBarrier";
5706  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5707  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5708  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5709  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5710  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5711  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5712  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5713  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5714  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5715  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5716  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5717  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5718  case ISD::PCMARKER:      return "PCMarker";
5719  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5720  case ISD::SRCVALUE:      return "SrcValue";
5721  case ISD::MDNODE_SDNODE: return "MDNode";
5722  case ISD::EntryToken:    return "EntryToken";
5723  case ISD::TokenFactor:   return "TokenFactor";
5724  case ISD::AssertSext:    return "AssertSext";
5725  case ISD::AssertZext:    return "AssertZext";
5726
5727  case ISD::BasicBlock:    return "BasicBlock";
5728  case ISD::VALUETYPE:     return "ValueType";
5729  case ISD::Register:      return "Register";
5730
5731  case ISD::Constant:      return "Constant";
5732  case ISD::ConstantFP:    return "ConstantFP";
5733  case ISD::GlobalAddress: return "GlobalAddress";
5734  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5735  case ISD::FrameIndex:    return "FrameIndex";
5736  case ISD::JumpTable:     return "JumpTable";
5737  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5738  case ISD::RETURNADDR: return "RETURNADDR";
5739  case ISD::FRAMEADDR: return "FRAMEADDR";
5740  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5741  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5742  case ISD::LSDAADDR: return "LSDAADDR";
5743  case ISD::EHSELECTION: return "EHSELECTION";
5744  case ISD::EH_RETURN: return "EH_RETURN";
5745  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5746  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5747  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5748  case ISD::ConstantPool:  return "ConstantPool";
5749  case ISD::ExternalSymbol: return "ExternalSymbol";
5750  case ISD::BlockAddress:  return "BlockAddress";
5751  case ISD::INTRINSIC_WO_CHAIN:
5752  case ISD::INTRINSIC_VOID:
5753  case ISD::INTRINSIC_W_CHAIN: {
5754    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5755    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5756    if (IID < Intrinsic::num_intrinsics)
5757      return Intrinsic::getName((Intrinsic::ID)IID);
5758    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5759      return TII->getName(IID);
5760    llvm_unreachable("Invalid intrinsic ID");
5761  }
5762
5763  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5764  case ISD::TargetConstant: return "TargetConstant";
5765  case ISD::TargetConstantFP:return "TargetConstantFP";
5766  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5767  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5768  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5769  case ISD::TargetJumpTable:  return "TargetJumpTable";
5770  case ISD::TargetConstantPool:  return "TargetConstantPool";
5771  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5772  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5773
5774  case ISD::CopyToReg:     return "CopyToReg";
5775  case ISD::CopyFromReg:   return "CopyFromReg";
5776  case ISD::UNDEF:         return "undef";
5777  case ISD::MERGE_VALUES:  return "merge_values";
5778  case ISD::INLINEASM:     return "inlineasm";
5779  case ISD::EH_LABEL:      return "eh_label";
5780  case ISD::HANDLENODE:    return "handlenode";
5781
5782  // Unary operators
5783  case ISD::FABS:   return "fabs";
5784  case ISD::FNEG:   return "fneg";
5785  case ISD::FSQRT:  return "fsqrt";
5786  case ISD::FSIN:   return "fsin";
5787  case ISD::FCOS:   return "fcos";
5788  case ISD::FTRUNC: return "ftrunc";
5789  case ISD::FFLOOR: return "ffloor";
5790  case ISD::FCEIL:  return "fceil";
5791  case ISD::FRINT:  return "frint";
5792  case ISD::FNEARBYINT: return "fnearbyint";
5793  case ISD::FEXP:   return "fexp";
5794  case ISD::FEXP2:  return "fexp2";
5795  case ISD::FLOG:   return "flog";
5796  case ISD::FLOG2:  return "flog2";
5797  case ISD::FLOG10: return "flog10";
5798
5799  // Binary operators
5800  case ISD::ADD:    return "add";
5801  case ISD::SUB:    return "sub";
5802  case ISD::MUL:    return "mul";
5803  case ISD::MULHU:  return "mulhu";
5804  case ISD::MULHS:  return "mulhs";
5805  case ISD::SDIV:   return "sdiv";
5806  case ISD::UDIV:   return "udiv";
5807  case ISD::SREM:   return "srem";
5808  case ISD::UREM:   return "urem";
5809  case ISD::SMUL_LOHI:  return "smul_lohi";
5810  case ISD::UMUL_LOHI:  return "umul_lohi";
5811  case ISD::SDIVREM:    return "sdivrem";
5812  case ISD::UDIVREM:    return "udivrem";
5813  case ISD::AND:    return "and";
5814  case ISD::OR:     return "or";
5815  case ISD::XOR:    return "xor";
5816  case ISD::SHL:    return "shl";
5817  case ISD::SRA:    return "sra";
5818  case ISD::SRL:    return "srl";
5819  case ISD::ROTL:   return "rotl";
5820  case ISD::ROTR:   return "rotr";
5821  case ISD::FADD:   return "fadd";
5822  case ISD::FSUB:   return "fsub";
5823  case ISD::FMUL:   return "fmul";
5824  case ISD::FDIV:   return "fdiv";
5825  case ISD::FREM:   return "frem";
5826  case ISD::FCOPYSIGN: return "fcopysign";
5827  case ISD::FGETSIGN:  return "fgetsign";
5828  case ISD::FPOW:   return "fpow";
5829
5830  case ISD::FPOWI:  return "fpowi";
5831  case ISD::SETCC:       return "setcc";
5832  case ISD::VSETCC:      return "vsetcc";
5833  case ISD::SELECT:      return "select";
5834  case ISD::SELECT_CC:   return "select_cc";
5835  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5836  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5837  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5838  case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
5839  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5840  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5841  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5842  case ISD::CARRY_FALSE:         return "carry_false";
5843  case ISD::ADDC:        return "addc";
5844  case ISD::ADDE:        return "adde";
5845  case ISD::SADDO:       return "saddo";
5846  case ISD::UADDO:       return "uaddo";
5847  case ISD::SSUBO:       return "ssubo";
5848  case ISD::USUBO:       return "usubo";
5849  case ISD::SMULO:       return "smulo";
5850  case ISD::UMULO:       return "umulo";
5851  case ISD::SUBC:        return "subc";
5852  case ISD::SUBE:        return "sube";
5853  case ISD::SHL_PARTS:   return "shl_parts";
5854  case ISD::SRA_PARTS:   return "sra_parts";
5855  case ISD::SRL_PARTS:   return "srl_parts";
5856
5857  // Conversion operators.
5858  case ISD::SIGN_EXTEND: return "sign_extend";
5859  case ISD::ZERO_EXTEND: return "zero_extend";
5860  case ISD::ANY_EXTEND:  return "any_extend";
5861  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5862  case ISD::TRUNCATE:    return "truncate";
5863  case ISD::FP_ROUND:    return "fp_round";
5864  case ISD::FLT_ROUNDS_: return "flt_rounds";
5865  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5866  case ISD::FP_EXTEND:   return "fp_extend";
5867
5868  case ISD::SINT_TO_FP:  return "sint_to_fp";
5869  case ISD::UINT_TO_FP:  return "uint_to_fp";
5870  case ISD::FP_TO_SINT:  return "fp_to_sint";
5871  case ISD::FP_TO_UINT:  return "fp_to_uint";
5872  case ISD::BITCAST:     return "bit_convert";
5873  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5874  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5875
5876  case ISD::CONVERT_RNDSAT: {
5877    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5878    default: llvm_unreachable("Unknown cvt code!");
5879    case ISD::CVT_FF:  return "cvt_ff";
5880    case ISD::CVT_FS:  return "cvt_fs";
5881    case ISD::CVT_FU:  return "cvt_fu";
5882    case ISD::CVT_SF:  return "cvt_sf";
5883    case ISD::CVT_UF:  return "cvt_uf";
5884    case ISD::CVT_SS:  return "cvt_ss";
5885    case ISD::CVT_SU:  return "cvt_su";
5886    case ISD::CVT_US:  return "cvt_us";
5887    case ISD::CVT_UU:  return "cvt_uu";
5888    }
5889  }
5890
5891    // Control flow instructions
5892  case ISD::BR:      return "br";
5893  case ISD::BRIND:   return "brind";
5894  case ISD::BR_JT:   return "br_jt";
5895  case ISD::BRCOND:  return "brcond";
5896  case ISD::BR_CC:   return "br_cc";
5897  case ISD::CALLSEQ_START:  return "callseq_start";
5898  case ISD::CALLSEQ_END:    return "callseq_end";
5899
5900    // Other operators
5901  case ISD::LOAD:               return "load";
5902  case ISD::STORE:              return "store";
5903  case ISD::VAARG:              return "vaarg";
5904  case ISD::VACOPY:             return "vacopy";
5905  case ISD::VAEND:              return "vaend";
5906  case ISD::VASTART:            return "vastart";
5907  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5908  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5909  case ISD::BUILD_PAIR:         return "build_pair";
5910  case ISD::STACKSAVE:          return "stacksave";
5911  case ISD::STACKRESTORE:       return "stackrestore";
5912  case ISD::TRAP:               return "trap";
5913
5914  // Bit manipulation
5915  case ISD::BSWAP:   return "bswap";
5916  case ISD::CTPOP:   return "ctpop";
5917  case ISD::CTTZ:    return "cttz";
5918  case ISD::CTLZ:    return "ctlz";
5919
5920  // Trampolines
5921  case ISD::TRAMPOLINE: return "trampoline";
5922
5923  case ISD::CONDCODE:
5924    switch (cast<CondCodeSDNode>(this)->get()) {
5925    default: llvm_unreachable("Unknown setcc condition!");
5926    case ISD::SETOEQ:  return "setoeq";
5927    case ISD::SETOGT:  return "setogt";
5928    case ISD::SETOGE:  return "setoge";
5929    case ISD::SETOLT:  return "setolt";
5930    case ISD::SETOLE:  return "setole";
5931    case ISD::SETONE:  return "setone";
5932
5933    case ISD::SETO:    return "seto";
5934    case ISD::SETUO:   return "setuo";
5935    case ISD::SETUEQ:  return "setue";
5936    case ISD::SETUGT:  return "setugt";
5937    case ISD::SETUGE:  return "setuge";
5938    case ISD::SETULT:  return "setult";
5939    case ISD::SETULE:  return "setule";
5940    case ISD::SETUNE:  return "setune";
5941
5942    case ISD::SETEQ:   return "seteq";
5943    case ISD::SETGT:   return "setgt";
5944    case ISD::SETGE:   return "setge";
5945    case ISD::SETLT:   return "setlt";
5946    case ISD::SETLE:   return "setle";
5947    case ISD::SETNE:   return "setne";
5948    }
5949  }
5950}
5951
5952const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5953  switch (AM) {
5954  default:
5955    return "";
5956  case ISD::PRE_INC:
5957    return "<pre-inc>";
5958  case ISD::PRE_DEC:
5959    return "<pre-dec>";
5960  case ISD::POST_INC:
5961    return "<post-inc>";
5962  case ISD::POST_DEC:
5963    return "<post-dec>";
5964  }
5965}
5966
5967std::string ISD::ArgFlagsTy::getArgFlagsString() {
5968  std::string S = "< ";
5969
5970  if (isZExt())
5971    S += "zext ";
5972  if (isSExt())
5973    S += "sext ";
5974  if (isInReg())
5975    S += "inreg ";
5976  if (isSRet())
5977    S += "sret ";
5978  if (isByVal())
5979    S += "byval ";
5980  if (isNest())
5981    S += "nest ";
5982  if (getByValAlign())
5983    S += "byval-align:" + utostr(getByValAlign()) + " ";
5984  if (getOrigAlign())
5985    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5986  if (getByValSize())
5987    S += "byval-size:" + utostr(getByValSize()) + " ";
5988  return S + ">";
5989}
5990
5991void SDNode::dump() const { dump(0); }
5992void SDNode::dump(const SelectionDAG *G) const {
5993  print(dbgs(), G);
5994  dbgs() << '\n';
5995}
5996
5997void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5998  OS << (void*)this << ": ";
5999
6000  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6001    if (i) OS << ",";
6002    if (getValueType(i) == MVT::Other)
6003      OS << "ch";
6004    else
6005      OS << getValueType(i).getEVTString();
6006  }
6007  OS << " = " << getOperationName(G);
6008}
6009
6010void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6011  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6012    if (!MN->memoperands_empty()) {
6013      OS << "<";
6014      OS << "Mem:";
6015      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6016           e = MN->memoperands_end(); i != e; ++i) {
6017        OS << **i;
6018        if (llvm::next(i) != e)
6019          OS << " ";
6020      }
6021      OS << ">";
6022    }
6023  } else if (const ShuffleVectorSDNode *SVN =
6024               dyn_cast<ShuffleVectorSDNode>(this)) {
6025    OS << "<";
6026    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6027      int Idx = SVN->getMaskElt(i);
6028      if (i) OS << ",";
6029      if (Idx < 0)
6030        OS << "u";
6031      else
6032        OS << Idx;
6033    }
6034    OS << ">";
6035  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6036    OS << '<' << CSDN->getAPIntValue() << '>';
6037  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6038    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6039      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6040    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6041      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6042    else {
6043      OS << "<APFloat(";
6044      CSDN->getValueAPF().bitcastToAPInt().dump();
6045      OS << ")>";
6046    }
6047  } else if (const GlobalAddressSDNode *GADN =
6048             dyn_cast<GlobalAddressSDNode>(this)) {
6049    int64_t offset = GADN->getOffset();
6050    OS << '<';
6051    WriteAsOperand(OS, GADN->getGlobal());
6052    OS << '>';
6053    if (offset > 0)
6054      OS << " + " << offset;
6055    else
6056      OS << " " << offset;
6057    if (unsigned int TF = GADN->getTargetFlags())
6058      OS << " [TF=" << TF << ']';
6059  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6060    OS << "<" << FIDN->getIndex() << ">";
6061  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6062    OS << "<" << JTDN->getIndex() << ">";
6063    if (unsigned int TF = JTDN->getTargetFlags())
6064      OS << " [TF=" << TF << ']';
6065  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6066    int offset = CP->getOffset();
6067    if (CP->isMachineConstantPoolEntry())
6068      OS << "<" << *CP->getMachineCPVal() << ">";
6069    else
6070      OS << "<" << *CP->getConstVal() << ">";
6071    if (offset > 0)
6072      OS << " + " << offset;
6073    else
6074      OS << " " << offset;
6075    if (unsigned int TF = CP->getTargetFlags())
6076      OS << " [TF=" << TF << ']';
6077  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6078    OS << "<";
6079    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6080    if (LBB)
6081      OS << LBB->getName() << " ";
6082    OS << (const void*)BBDN->getBasicBlock() << ">";
6083  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6084    OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6085  } else if (const ExternalSymbolSDNode *ES =
6086             dyn_cast<ExternalSymbolSDNode>(this)) {
6087    OS << "'" << ES->getSymbol() << "'";
6088    if (unsigned int TF = ES->getTargetFlags())
6089      OS << " [TF=" << TF << ']';
6090  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6091    if (M->getValue())
6092      OS << "<" << M->getValue() << ">";
6093    else
6094      OS << "<null>";
6095  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6096    if (MD->getMD())
6097      OS << "<" << MD->getMD() << ">";
6098    else
6099      OS << "<null>";
6100  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6101    OS << ":" << N->getVT().getEVTString();
6102  }
6103  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6104    OS << "<" << *LD->getMemOperand();
6105
6106    bool doExt = true;
6107    switch (LD->getExtensionType()) {
6108    default: doExt = false; break;
6109    case ISD::EXTLOAD: OS << ", anyext"; break;
6110    case ISD::SEXTLOAD: OS << ", sext"; break;
6111    case ISD::ZEXTLOAD: OS << ", zext"; break;
6112    }
6113    if (doExt)
6114      OS << " from " << LD->getMemoryVT().getEVTString();
6115
6116    const char *AM = getIndexedModeName(LD->getAddressingMode());
6117    if (*AM)
6118      OS << ", " << AM;
6119
6120    OS << ">";
6121  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6122    OS << "<" << *ST->getMemOperand();
6123
6124    if (ST->isTruncatingStore())
6125      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6126
6127    const char *AM = getIndexedModeName(ST->getAddressingMode());
6128    if (*AM)
6129      OS << ", " << AM;
6130
6131    OS << ">";
6132  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6133    OS << "<" << *M->getMemOperand() << ">";
6134  } else if (const BlockAddressSDNode *BA =
6135               dyn_cast<BlockAddressSDNode>(this)) {
6136    OS << "<";
6137    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6138    OS << ", ";
6139    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6140    OS << ">";
6141    if (unsigned int TF = BA->getTargetFlags())
6142      OS << " [TF=" << TF << ']';
6143  }
6144
6145  if (G)
6146    if (unsigned Order = G->GetOrdering(this))
6147      OS << " [ORD=" << Order << ']';
6148
6149  if (getNodeId() != -1)
6150    OS << " [ID=" << getNodeId() << ']';
6151
6152  DebugLoc dl = getDebugLoc();
6153  if (G && !dl.isUnknown()) {
6154    DIScope
6155      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6156    OS << " dbg:";
6157    // Omit the directory, since it's usually long and uninteresting.
6158    if (Scope.Verify())
6159      OS << Scope.getFilename();
6160    else
6161      OS << "<unknown>";
6162    OS << ':' << dl.getLine();
6163    if (dl.getCol() != 0)
6164      OS << ':' << dl.getCol();
6165  }
6166}
6167
6168void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6169  print_types(OS, G);
6170  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6171    if (i) OS << ", "; else OS << " ";
6172    OS << (void*)getOperand(i).getNode();
6173    if (unsigned RN = getOperand(i).getResNo())
6174      OS << ":" << RN;
6175  }
6176  print_details(OS, G);
6177}
6178
6179static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6180                                  const SelectionDAG *G, unsigned depth,
6181                                  unsigned indent)
6182{
6183  if (depth == 0)
6184    return;
6185
6186  OS.indent(indent);
6187
6188  N->print(OS, G);
6189
6190  if (depth < 1)
6191    return;
6192
6193  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6194    OS << '\n';
6195    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6196  }
6197}
6198
6199void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6200                            unsigned depth) const {
6201  printrWithDepthHelper(OS, this, G, depth, 0);
6202}
6203
6204void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6205  // Don't print impossibly deep things.
6206  printrWithDepth(OS, G, 100);
6207}
6208
6209void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6210  printrWithDepth(dbgs(), G, depth);
6211}
6212
6213void SDNode::dumprFull(const SelectionDAG *G) const {
6214  // Don't print impossibly deep things.
6215  dumprWithDepth(G, 100);
6216}
6217
6218static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6219  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6220    if (N->getOperand(i).getNode()->hasOneUse())
6221      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6222    else
6223      dbgs() << "\n" << std::string(indent+2, ' ')
6224           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6225
6226
6227  dbgs() << "\n";
6228  dbgs().indent(indent);
6229  N->dump(G);
6230}
6231
6232SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6233  assert(N->getNumValues() == 1 &&
6234         "Can't unroll a vector with multiple results!");
6235
6236  EVT VT = N->getValueType(0);
6237  unsigned NE = VT.getVectorNumElements();
6238  EVT EltVT = VT.getVectorElementType();
6239  DebugLoc dl = N->getDebugLoc();
6240
6241  SmallVector<SDValue, 8> Scalars;
6242  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6243
6244  // If ResNE is 0, fully unroll the vector op.
6245  if (ResNE == 0)
6246    ResNE = NE;
6247  else if (NE > ResNE)
6248    NE = ResNE;
6249
6250  unsigned i;
6251  for (i= 0; i != NE; ++i) {
6252    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6253      SDValue Operand = N->getOperand(j);
6254      EVT OperandVT = Operand.getValueType();
6255      if (OperandVT.isVector()) {
6256        // A vector operand; extract a single element.
6257        EVT OperandEltVT = OperandVT.getVectorElementType();
6258        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6259                              OperandEltVT,
6260                              Operand,
6261                              getConstant(i, MVT::i32));
6262      } else {
6263        // A scalar operand; just use it as is.
6264        Operands[j] = Operand;
6265      }
6266    }
6267
6268    switch (N->getOpcode()) {
6269    default:
6270      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6271                                &Operands[0], Operands.size()));
6272      break;
6273    case ISD::SHL:
6274    case ISD::SRA:
6275    case ISD::SRL:
6276    case ISD::ROTL:
6277    case ISD::ROTR:
6278      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6279                                getShiftAmountOperand(Operands[1])));
6280      break;
6281    case ISD::SIGN_EXTEND_INREG:
6282    case ISD::FP_ROUND_INREG: {
6283      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6284      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6285                                Operands[0],
6286                                getValueType(ExtVT)));
6287    }
6288    }
6289  }
6290
6291  for (; i < ResNE; ++i)
6292    Scalars.push_back(getUNDEF(EltVT));
6293
6294  return getNode(ISD::BUILD_VECTOR, dl,
6295                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6296                 &Scalars[0], Scalars.size());
6297}
6298
6299
6300/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6301/// location that is 'Dist' units away from the location that the 'Base' load
6302/// is loading from.
6303bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6304                                     unsigned Bytes, int Dist) const {
6305  if (LD->getChain() != Base->getChain())
6306    return false;
6307  EVT VT = LD->getValueType(0);
6308  if (VT.getSizeInBits() / 8 != Bytes)
6309    return false;
6310
6311  SDValue Loc = LD->getOperand(1);
6312  SDValue BaseLoc = Base->getOperand(1);
6313  if (Loc.getOpcode() == ISD::FrameIndex) {
6314    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6315      return false;
6316    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6317    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6318    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6319    int FS  = MFI->getObjectSize(FI);
6320    int BFS = MFI->getObjectSize(BFI);
6321    if (FS != BFS || FS != (int)Bytes) return false;
6322    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6323  }
6324  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6325    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6326    if (V && (V->getSExtValue() == Dist*Bytes))
6327      return true;
6328  }
6329
6330  const GlobalValue *GV1 = NULL;
6331  const GlobalValue *GV2 = NULL;
6332  int64_t Offset1 = 0;
6333  int64_t Offset2 = 0;
6334  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6335  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6336  if (isGA1 && isGA2 && GV1 == GV2)
6337    return Offset1 == (Offset2 + Dist*Bytes);
6338  return false;
6339}
6340
6341
6342/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6343/// it cannot be inferred.
6344unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6345  // If this is a GlobalAddress + cst, return the alignment.
6346  const GlobalValue *GV;
6347  int64_t GVOffset = 0;
6348  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6349    // If GV has specified alignment, then use it. Otherwise, use the preferred
6350    // alignment.
6351    unsigned Align = GV->getAlignment();
6352    if (!Align) {
6353      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6354        if (GVar->hasInitializer()) {
6355          const TargetData *TD = TLI.getTargetData();
6356          Align = TD->getPreferredAlignment(GVar);
6357        }
6358      }
6359    }
6360    return MinAlign(Align, GVOffset);
6361  }
6362
6363  // If this is a direct reference to a stack slot, use information about the
6364  // stack slot's alignment.
6365  int FrameIdx = 1 << 31;
6366  int64_t FrameOffset = 0;
6367  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6368    FrameIdx = FI->getIndex();
6369  } else if (Ptr.getOpcode() == ISD::ADD &&
6370             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6371             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6372    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6373    FrameOffset = Ptr.getConstantOperandVal(1);
6374  }
6375
6376  if (FrameIdx != (1 << 31)) {
6377    // FIXME: Handle FI+CST.
6378    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6379    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6380                                    FrameOffset);
6381    return FIInfoAlign;
6382  }
6383
6384  return 0;
6385}
6386
6387void SelectionDAG::dump() const {
6388  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6389
6390  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6391       I != E; ++I) {
6392    const SDNode *N = I;
6393    if (!N->hasOneUse() && N != getRoot().getNode())
6394      DumpNodes(N, 2, this);
6395  }
6396
6397  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6398
6399  dbgs() << "\n\n";
6400}
6401
6402void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6403  print_types(OS, G);
6404  print_details(OS, G);
6405}
6406
6407typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6408static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6409                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6410  if (!once.insert(N))          // If we've been here before, return now.
6411    return;
6412
6413  // Dump the current SDNode, but don't end the line yet.
6414  OS << std::string(indent, ' ');
6415  N->printr(OS, G);
6416
6417  // Having printed this SDNode, walk the children:
6418  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6419    const SDNode *child = N->getOperand(i).getNode();
6420
6421    if (i) OS << ",";
6422    OS << " ";
6423
6424    if (child->getNumOperands() == 0) {
6425      // This child has no grandchildren; print it inline right here.
6426      child->printr(OS, G);
6427      once.insert(child);
6428    } else {         // Just the address. FIXME: also print the child's opcode.
6429      OS << (void*)child;
6430      if (unsigned RN = N->getOperand(i).getResNo())
6431        OS << ":" << RN;
6432    }
6433  }
6434
6435  OS << "\n";
6436
6437  // Dump children that have grandchildren on their own line(s).
6438  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6439    const SDNode *child = N->getOperand(i).getNode();
6440    DumpNodesr(OS, child, indent+2, G, once);
6441  }
6442}
6443
6444void SDNode::dumpr() const {
6445  VisitedSDNodeSet once;
6446  DumpNodesr(dbgs(), this, 0, 0, once);
6447}
6448
6449void SDNode::dumpr(const SelectionDAG *G) const {
6450  VisitedSDNodeSet once;
6451  DumpNodesr(dbgs(), this, 0, G, once);
6452}
6453
6454
6455// getAddressSpace - Return the address space this GlobalAddress belongs to.
6456unsigned GlobalAddressSDNode::getAddressSpace() const {
6457  return getGlobal()->getType()->getAddressSpace();
6458}
6459
6460
6461const Type *ConstantPoolSDNode::getType() const {
6462  if (isMachineConstantPoolEntry())
6463    return Val.MachineCPVal->getType();
6464  return Val.ConstVal->getType();
6465}
6466
6467bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6468                                        APInt &SplatUndef,
6469                                        unsigned &SplatBitSize,
6470                                        bool &HasAnyUndefs,
6471                                        unsigned MinSplatBits,
6472                                        bool isBigEndian) {
6473  EVT VT = getValueType(0);
6474  assert(VT.isVector() && "Expected a vector type");
6475  unsigned sz = VT.getSizeInBits();
6476  if (MinSplatBits > sz)
6477    return false;
6478
6479  SplatValue = APInt(sz, 0);
6480  SplatUndef = APInt(sz, 0);
6481
6482  // Get the bits.  Bits with undefined values (when the corresponding element
6483  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6484  // in SplatValue.  If any of the values are not constant, give up and return
6485  // false.
6486  unsigned int nOps = getNumOperands();
6487  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6488  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6489
6490  for (unsigned j = 0; j < nOps; ++j) {
6491    unsigned i = isBigEndian ? nOps-1-j : j;
6492    SDValue OpVal = getOperand(i);
6493    unsigned BitPos = j * EltBitSize;
6494
6495    if (OpVal.getOpcode() == ISD::UNDEF)
6496      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6497    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6498      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6499                    zextOrTrunc(sz) << BitPos;
6500    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6501      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6502     else
6503      return false;
6504  }
6505
6506  // The build_vector is all constants or undefs.  Find the smallest element
6507  // size that splats the vector.
6508
6509  HasAnyUndefs = (SplatUndef != 0);
6510  while (sz > 8) {
6511
6512    unsigned HalfSize = sz / 2;
6513    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6514    APInt LowValue = SplatValue.trunc(HalfSize);
6515    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6516    APInt LowUndef = SplatUndef.trunc(HalfSize);
6517
6518    // If the two halves do not match (ignoring undef bits), stop here.
6519    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6520        MinSplatBits > HalfSize)
6521      break;
6522
6523    SplatValue = HighValue | LowValue;
6524    SplatUndef = HighUndef & LowUndef;
6525
6526    sz = HalfSize;
6527  }
6528
6529  SplatBitSize = sz;
6530  return true;
6531}
6532
6533bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6534  // Find the first non-undef value in the shuffle mask.
6535  unsigned i, e;
6536  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6537    /* search */;
6538
6539  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6540
6541  // Make sure all remaining elements are either undef or the same as the first
6542  // non-undef value.
6543  for (int Idx = Mask[i]; i != e; ++i)
6544    if (Mask[i] >= 0 && Mask[i] != Idx)
6545      return false;
6546  return true;
6547}
6548
6549#ifdef XDEBUG
6550static void checkForCyclesHelper(const SDNode *N,
6551                                 SmallPtrSet<const SDNode*, 32> &Visited,
6552                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6553  // If this node has already been checked, don't check it again.
6554  if (Checked.count(N))
6555    return;
6556
6557  // If a node has already been visited on this depth-first walk, reject it as
6558  // a cycle.
6559  if (!Visited.insert(N)) {
6560    dbgs() << "Offending node:\n";
6561    N->dumprFull();
6562    errs() << "Detected cycle in SelectionDAG\n";
6563    abort();
6564  }
6565
6566  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6567    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6568
6569  Checked.insert(N);
6570  Visited.erase(N);
6571}
6572#endif
6573
6574void llvm::checkForCycles(const llvm::SDNode *N) {
6575#ifdef XDEBUG
6576  assert(N && "Checking nonexistant SDNode");
6577  SmallPtrSet<const SDNode*, 32> visited;
6578  SmallPtrSet<const SDNode*, 32> checked;
6579  checkForCyclesHelper(N, visited, checked);
6580#endif
6581}
6582
6583void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6584  checkForCycles(DAG->getRoot().getNode());
6585}
6586