SelectionDAG.cpp revision 9b6af8de58140566a0e6567508bf906027422e7c
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetSelectionDAGInfo.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetIntrinsicInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/ManagedStatic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Support/Mutex.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallSet.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64  switch (VT.getSimpleVT().SimpleTy) {
65  default: llvm_unreachable("Unknown FP format");
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76//===----------------------------------------------------------------------===//
77//                              ConstantFPSDNode Class
78//===----------------------------------------------------------------------===//
79
80/// isExactlyValue - We don't rely on operator== working on double values, as
81/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82/// As such, this method can be used to do an exact bit-for-bit comparison of
83/// two floating point values.
84bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85  return getValueAPF().bitwiseIsEqual(V);
86}
87
88bool ConstantFPSDNode::isValueValidForType(EVT VT,
89                                           const APFloat& Val) {
90  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92  // PPC long double cannot be converted to any other type.
93  if (VT == MVT::ppcf128 ||
94      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95    return false;
96
97  // convert modifies in place, so make a copy.
98  APFloat Val2 = APFloat(Val);
99  bool losesInfo;
100  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101                      &losesInfo);
102  return !losesInfo;
103}
104
105//===----------------------------------------------------------------------===//
106//                              ISD Namespace
107//===----------------------------------------------------------------------===//
108
109/// isBuildVectorAllOnes - Return true if the specified node is a
110/// BUILD_VECTOR where all of the elements are ~0 or undef.
111bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112  // Look through a bit convert.
113  if (N->getOpcode() == ISD::BITCAST)
114    N = N->getOperand(0).getNode();
115
116  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118  unsigned i = 0, e = N->getNumOperands();
119
120  // Skip over all of the undef values.
121  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122    ++i;
123
124  // Do not accept an all-undef vector.
125  if (i == e) return false;
126
127  // Do not accept build_vectors that aren't all constants or which have non-~0
128  // elements.
129  SDValue NotZero = N->getOperand(i);
130  if (isa<ConstantSDNode>(NotZero)) {
131    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132      return false;
133  } else if (isa<ConstantFPSDNode>(NotZero)) {
134    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135                bitcastToAPInt().isAllOnesValue())
136      return false;
137  } else
138    return false;
139
140  // Okay, we have at least one ~0 value, check to see if the rest match or are
141  // undefs.
142  for (++i; i != e; ++i)
143    if (N->getOperand(i) != NotZero &&
144        N->getOperand(i).getOpcode() != ISD::UNDEF)
145      return false;
146  return true;
147}
148
149
150/// isBuildVectorAllZeros - Return true if the specified node is a
151/// BUILD_VECTOR where all of the elements are 0 or undef.
152bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153  // Look through a bit convert.
154  if (N->getOpcode() == ISD::BITCAST)
155    N = N->getOperand(0).getNode();
156
157  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159  unsigned i = 0, e = N->getNumOperands();
160
161  // Skip over all of the undef values.
162  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163    ++i;
164
165  // Do not accept an all-undef vector.
166  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  if (NumElems == 1)
202    return false;
203  for (unsigned i = 1; i < NumElems; ++i) {
204    SDValue V = N->getOperand(i);
205    if (V.getOpcode() != ISD::UNDEF)
206      return false;
207  }
208  return true;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: llvm_unreachable("Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, temporalness, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
476                     bool isNonTemporal) {
477  assert((ConvType & 3) == ConvType &&
478         "ConvType may not require more than 2 bits!");
479  assert((AM & 7) == AM &&
480         "AM may not require more than 3 bits!");
481  return ConvType |
482         (AM << 2) |
483         (isVolatile << 5) |
484         (isNonTemporal << 6);
485}
486
487//===----------------------------------------------------------------------===//
488//                              SelectionDAG Class
489//===----------------------------------------------------------------------===//
490
491/// doNotCSE - Return true if CSE should not be performed for this node.
492static bool doNotCSE(SDNode *N) {
493  if (N->getValueType(0) == MVT::Glue)
494    return true; // Never CSE anything that produces a flag.
495
496  switch (N->getOpcode()) {
497  default: break;
498  case ISD::HANDLENODE:
499  case ISD::EH_LABEL:
500    return true;   // Never CSE these nodes.
501  }
502
503  // Check that remaining values produced are not flags.
504  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
505    if (N->getValueType(i) == MVT::Glue)
506      return true; // Never CSE anything that produces a flag.
507
508  return false;
509}
510
511/// RemoveDeadNodes - This method deletes all unreachable nodes in the
512/// SelectionDAG.
513void SelectionDAG::RemoveDeadNodes() {
514  // Create a dummy node (which is not added to allnodes), that adds a reference
515  // to the root node, preventing it from being deleted.
516  HandleSDNode Dummy(getRoot());
517
518  SmallVector<SDNode*, 128> DeadNodes;
519
520  // Add all obviously-dead nodes to the DeadNodes worklist.
521  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
522    if (I->use_empty())
523      DeadNodes.push_back(I);
524
525  RemoveDeadNodes(DeadNodes);
526
527  // If the root changed (e.g. it was a dead load, update the root).
528  setRoot(Dummy.getValue());
529}
530
531/// RemoveDeadNodes - This method deletes the unreachable nodes in the
532/// given list, and any nodes that become unreachable as a result.
533void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
534                                   DAGUpdateListener *UpdateListener) {
535
536  // Process the worklist, deleting the nodes and adding their uses to the
537  // worklist.
538  while (!DeadNodes.empty()) {
539    SDNode *N = DeadNodes.pop_back_val();
540
541    if (UpdateListener)
542      UpdateListener->NodeDeleted(N, 0);
543
544    // Take the node out of the appropriate CSE map.
545    RemoveNodeFromCSEMaps(N);
546
547    // Next, brutally remove the operand list.  This is safe to do, as there are
548    // no cycles in the graph.
549    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
550      SDUse &Use = *I++;
551      SDNode *Operand = Use.getNode();
552      Use.set(SDValue());
553
554      // Now that we removed this operand, see if there are no uses of it left.
555      if (Operand->use_empty())
556        DeadNodes.push_back(Operand);
557    }
558
559    DeallocateNode(N);
560  }
561}
562
563void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564  SmallVector<SDNode*, 16> DeadNodes(1, N);
565  RemoveDeadNodes(DeadNodes, UpdateListener);
566}
567
568void SelectionDAG::DeleteNode(SDNode *N) {
569  // First take this out of the appropriate CSE map.
570  RemoveNodeFromCSEMaps(N);
571
572  // Finally, remove uses due to operands of this node, remove from the
573  // AllNodes list, and delete the node.
574  DeleteNodeNotInCSEMaps(N);
575}
576
577void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579  assert(N->use_empty() && "Cannot delete a node that is not dead!");
580
581  // Drop all of the operands and decrement used node's use counts.
582  N->DropOperands();
583
584  DeallocateNode(N);
585}
586
587void SelectionDAG::DeallocateNode(SDNode *N) {
588  if (N->OperandsNeedDelete)
589    delete[] N->OperandList;
590
591  // Set the opcode to DELETED_NODE to help catch bugs when node
592  // memory is reallocated.
593  N->NodeType = ISD::DELETED_NODE;
594
595  NodeAllocator.Deallocate(AllNodes.remove(N));
596
597  // Remove the ordering of this node.
598  Ordering->remove(N);
599
600  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
601  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
602  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
603    DbgVals[i]->setIsInvalidated();
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::HANDLENODE: return false;  // noop.
614  case ISD::CONDCODE:
615    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
616           "Cond code doesn't exist!");
617    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
618    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
619    break;
620  case ISD::ExternalSymbol:
621    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
622    break;
623  case ISD::TargetExternalSymbol: {
624    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
625    Erased = TargetExternalSymbols.erase(
626               std::pair<std::string,unsigned char>(ESN->getSymbol(),
627                                                    ESN->getTargetFlags()));
628    break;
629  }
630  case ISD::VALUETYPE: {
631    EVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
636      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
643    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746#ifndef NDEBUG
747/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
748static void VerifyNodeCommon(SDNode *N) {
749  switch (N->getOpcode()) {
750  default:
751    break;
752  case ISD::BUILD_PAIR: {
753    EVT VT = N->getValueType(0);
754    assert(N->getNumValues() == 1 && "Too many results!");
755    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
756           "Wrong return type!");
757    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
758    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
759           "Mismatched operand types!");
760    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
761           "Wrong operand type!");
762    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
763           "Wrong return type size");
764    break;
765  }
766  case ISD::BUILD_VECTOR: {
767    assert(N->getNumValues() == 1 && "Too many results!");
768    assert(N->getValueType(0).isVector() && "Wrong return type!");
769    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
770           "Wrong number of operands!");
771    EVT EltVT = N->getValueType(0).getVectorElementType();
772    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
773      assert((I->getValueType() == EltVT ||
774             (EltVT.isInteger() && I->getValueType().isInteger() &&
775              EltVT.bitsLE(I->getValueType()))) &&
776            "Wrong operand type!");
777    break;
778  }
779  }
780}
781
782/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
783static void VerifySDNode(SDNode *N) {
784  // The SDNode allocators cannot be used to allocate nodes with fields that are
785  // not present in an SDNode!
786  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
787  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
788  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
789  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
790  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
791  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
792  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
793  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
794  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
795  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
796  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
797  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
798  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
799  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
800  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
801  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
802  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
803  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
804  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
805
806  VerifyNodeCommon(N);
807}
808
809/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
810/// invalid.
811static void VerifyMachineNode(SDNode *N) {
812  // The MachineNode allocators cannot be used to allocate nodes with fields
813  // that are not present in a MachineNode!
814  // Currently there are no such nodes.
815
816  VerifyNodeCommon(N);
817}
818#endif // NDEBUG
819
820/// getEVTAlignment - Compute the default alignment value for the
821/// given type.
822///
823unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
824  const Type *Ty = VT == MVT::iPTR ?
825                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
826                   VT.getTypeForEVT(*getContext());
827
828  return TLI.getTargetData()->getABITypeAlignment(Ty);
829}
830
831// EntryNode could meaningfully have debug info if we can find it...
832SelectionDAG::SelectionDAG(const TargetMachine &tm)
833  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
834    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
835    Root(getEntryNode()), Ordering(0) {
836  AllNodes.push_back(&EntryNode);
837  Ordering = new SDNodeOrdering();
838  DbgInfo = new SDDbgInfo();
839}
840
841void SelectionDAG::init(MachineFunction &mf) {
842  MF = &mf;
843  Context = &mf.getFunction()->getContext();
844}
845
846SelectionDAG::~SelectionDAG() {
847  allnodes_clear();
848  delete Ordering;
849  delete DbgInfo;
850}
851
852void SelectionDAG::allnodes_clear() {
853  assert(&*AllNodes.begin() == &EntryNode);
854  AllNodes.remove(AllNodes.begin());
855  while (!AllNodes.empty())
856    DeallocateNode(AllNodes.begin());
857}
858
859void SelectionDAG::clear() {
860  allnodes_clear();
861  OperandAllocator.Reset();
862  CSEMap.clear();
863
864  ExtendedValueTypeNodes.clear();
865  ExternalSymbols.clear();
866  TargetExternalSymbols.clear();
867  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
868            static_cast<CondCodeSDNode*>(0));
869  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
870            static_cast<SDNode*>(0));
871
872  EntryNode.UseList = 0;
873  AllNodes.push_back(&EntryNode);
874  Root = getEntryNode();
875  Ordering->clear();
876  DbgInfo->clear();
877}
878
879SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
880  return VT.bitsGT(Op.getValueType()) ?
881    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
882    getNode(ISD::TRUNCATE, DL, VT, Op);
883}
884
885SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
886  return VT.bitsGT(Op.getValueType()) ?
887    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
888    getNode(ISD::TRUNCATE, DL, VT, Op);
889}
890
891SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
892  assert(!VT.isVector() &&
893         "getZeroExtendInReg should use the vector element type instead of "
894         "the vector type!");
895  if (Op.getValueType() == VT) return Op;
896  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
897  APInt Imm = APInt::getLowBitsSet(BitWidth,
898                                   VT.getSizeInBits());
899  return getNode(ISD::AND, DL, Op.getValueType(), Op,
900                 getConstant(Imm, Op.getValueType()));
901}
902
903/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
904///
905SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
906  EVT EltVT = VT.getScalarType();
907  SDValue NegOne =
908    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
909  return getNode(ISD::XOR, DL, VT, Val, NegOne);
910}
911
912SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
913  EVT EltVT = VT.getScalarType();
914  assert((EltVT.getSizeInBits() >= 64 ||
915         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
916         "getConstant with a uint64_t value that doesn't fit in the type!");
917  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
918}
919
920SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
921  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
922}
923
924SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
925  assert(VT.isInteger() && "Cannot create FP integer constant!");
926
927  EVT EltVT = VT.getScalarType();
928  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
929         "APInt size does not match type size!");
930
931  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
934  ID.AddPointer(&Val);
935  void *IP = 0;
936  SDNode *N = NULL;
937  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
938    if (!VT.isVector())
939      return SDValue(N, 0);
940
941  if (!N) {
942    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
943    CSEMap.InsertNode(N, IP);
944    AllNodes.push_back(N);
945  }
946
947  SDValue Result(N, 0);
948  if (VT.isVector()) {
949    SmallVector<SDValue, 8> Ops;
950    Ops.assign(VT.getVectorNumElements(), Result);
951    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
952  }
953  return Result;
954}
955
956SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
957  return getConstant(Val, TLI.getPointerTy(), isTarget);
958}
959
960
961SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
962  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
963}
964
965SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
966  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
967
968  EVT EltVT = VT.getScalarType();
969
970  // Do the map lookup using the actual bit pattern for the floating point
971  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
972  // we don't have issues with SNANs.
973  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
974  FoldingSetNodeID ID;
975  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
976  ID.AddPointer(&V);
977  void *IP = 0;
978  SDNode *N = NULL;
979  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
980    if (!VT.isVector())
981      return SDValue(N, 0);
982
983  if (!N) {
984    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
985    CSEMap.InsertNode(N, IP);
986    AllNodes.push_back(N);
987  }
988
989  SDValue Result(N, 0);
990  if (VT.isVector()) {
991    SmallVector<SDValue, 8> Ops;
992    Ops.assign(VT.getVectorNumElements(), Result);
993    // FIXME DebugLoc info might be appropriate here
994    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
995  }
996  return Result;
997}
998
999SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1000  EVT EltVT = VT.getScalarType();
1001  if (EltVT==MVT::f32)
1002    return getConstantFP(APFloat((float)Val), VT, isTarget);
1003  else if (EltVT==MVT::f64)
1004    return getConstantFP(APFloat(Val), VT, isTarget);
1005  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1006    bool ignored;
1007    APFloat apf = APFloat(Val);
1008    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1009                &ignored);
1010    return getConstantFP(apf, VT, isTarget);
1011  } else {
1012    assert(0 && "Unsupported type in getConstantFP");
1013    return SDValue();
1014  }
1015}
1016
1017SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1018                                       EVT VT, int64_t Offset,
1019                                       bool isTargetGA,
1020                                       unsigned char TargetFlags) {
1021  assert((TargetFlags == 0 || isTargetGA) &&
1022         "Cannot set target flags on target-independent globals");
1023
1024  // Truncate (with sign-extension) the offset value to the pointer size.
1025  EVT PTy = TLI.getPointerTy();
1026  unsigned BitWidth = PTy.getSizeInBits();
1027  if (BitWidth < 64)
1028    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1029
1030  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1031  if (!GVar) {
1032    // If GV is an alias then use the aliasee for determining thread-localness.
1033    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1034      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1035  }
1036
1037  unsigned Opc;
1038  if (GVar && GVar->isThreadLocal())
1039    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1040  else
1041    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1042
1043  FoldingSetNodeID ID;
1044  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1045  ID.AddPointer(GV);
1046  ID.AddInteger(Offset);
1047  ID.AddInteger(TargetFlags);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051
1052  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1053                                                      Offset, TargetFlags);
1054  CSEMap.InsertNode(N, IP);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1060  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1061  FoldingSetNodeID ID;
1062  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1063  ID.AddInteger(FI);
1064  void *IP = 0;
1065  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1066    return SDValue(E, 0);
1067
1068  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1069  CSEMap.InsertNode(N, IP);
1070  AllNodes.push_back(N);
1071  return SDValue(N, 0);
1072}
1073
1074SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1075                                   unsigned char TargetFlags) {
1076  assert((TargetFlags == 0 || isTarget) &&
1077         "Cannot set target flags on target-independent jump tables");
1078  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1079  FoldingSetNodeID ID;
1080  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1081  ID.AddInteger(JTI);
1082  ID.AddInteger(TargetFlags);
1083  void *IP = 0;
1084  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085    return SDValue(E, 0);
1086
1087  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1088                                                  TargetFlags);
1089  CSEMap.InsertNode(N, IP);
1090  AllNodes.push_back(N);
1091  return SDValue(N, 0);
1092}
1093
1094SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1095                                      unsigned Alignment, int Offset,
1096                                      bool isTarget,
1097                                      unsigned char TargetFlags) {
1098  assert((TargetFlags == 0 || isTarget) &&
1099         "Cannot set target flags on target-independent globals");
1100  if (Alignment == 0)
1101    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1102  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1103  FoldingSetNodeID ID;
1104  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1105  ID.AddInteger(Alignment);
1106  ID.AddInteger(Offset);
1107  ID.AddPointer(C);
1108  ID.AddInteger(TargetFlags);
1109  void *IP = 0;
1110  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1111    return SDValue(E, 0);
1112
1113  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1114                                                     Alignment, TargetFlags);
1115  CSEMap.InsertNode(N, IP);
1116  AllNodes.push_back(N);
1117  return SDValue(N, 0);
1118}
1119
1120
1121SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1122                                      unsigned Alignment, int Offset,
1123                                      bool isTarget,
1124                                      unsigned char TargetFlags) {
1125  assert((TargetFlags == 0 || isTarget) &&
1126         "Cannot set target flags on target-independent globals");
1127  if (Alignment == 0)
1128    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1129  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1130  FoldingSetNodeID ID;
1131  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1132  ID.AddInteger(Alignment);
1133  ID.AddInteger(Offset);
1134  C->AddSelectionDAGCSEId(ID);
1135  ID.AddInteger(TargetFlags);
1136  void *IP = 0;
1137  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1138    return SDValue(E, 0);
1139
1140  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1141                                                     Alignment, TargetFlags);
1142  CSEMap.InsertNode(N, IP);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1148  FoldingSetNodeID ID;
1149  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1150  ID.AddPointer(MBB);
1151  void *IP = 0;
1152  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1153    return SDValue(E, 0);
1154
1155  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1156  CSEMap.InsertNode(N, IP);
1157  AllNodes.push_back(N);
1158  return SDValue(N, 0);
1159}
1160
1161SDValue SelectionDAG::getValueType(EVT VT) {
1162  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1163      ValueTypeNodes.size())
1164    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1165
1166  SDNode *&N = VT.isExtended() ?
1167    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1168
1169  if (N) return SDValue(N, 0);
1170  N = new (NodeAllocator) VTSDNode(VT);
1171  AllNodes.push_back(N);
1172  return SDValue(N, 0);
1173}
1174
1175SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1176  SDNode *&N = ExternalSymbols[Sym];
1177  if (N) return SDValue(N, 0);
1178  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1179  AllNodes.push_back(N);
1180  return SDValue(N, 0);
1181}
1182
1183SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1184                                              unsigned char TargetFlags) {
1185  SDNode *&N =
1186    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1187                                                               TargetFlags)];
1188  if (N) return SDValue(N, 0);
1189  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1190  AllNodes.push_back(N);
1191  return SDValue(N, 0);
1192}
1193
1194SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1195  if ((unsigned)Cond >= CondCodeNodes.size())
1196    CondCodeNodes.resize(Cond+1);
1197
1198  if (CondCodeNodes[Cond] == 0) {
1199    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1200    CondCodeNodes[Cond] = N;
1201    AllNodes.push_back(N);
1202  }
1203
1204  return SDValue(CondCodeNodes[Cond], 0);
1205}
1206
1207// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1208// the shuffle mask M that point at N1 to point at N2, and indices that point
1209// N2 to point at N1.
1210static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1211  std::swap(N1, N2);
1212  int NElts = M.size();
1213  for (int i = 0; i != NElts; ++i) {
1214    if (M[i] >= NElts)
1215      M[i] -= NElts;
1216    else if (M[i] >= 0)
1217      M[i] += NElts;
1218  }
1219}
1220
1221SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1222                                       SDValue N2, const int *Mask) {
1223  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1224  assert(VT.isVector() && N1.getValueType().isVector() &&
1225         "Vector Shuffle VTs must be a vectors");
1226  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1227         && "Vector Shuffle VTs must have same element type");
1228
1229  // Canonicalize shuffle undef, undef -> undef
1230  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1231    return getUNDEF(VT);
1232
1233  // Validate that all indices in Mask are within the range of the elements
1234  // input to the shuffle.
1235  unsigned NElts = VT.getVectorNumElements();
1236  SmallVector<int, 8> MaskVec;
1237  for (unsigned i = 0; i != NElts; ++i) {
1238    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1239    MaskVec.push_back(Mask[i]);
1240  }
1241
1242  // Canonicalize shuffle v, v -> v, undef
1243  if (N1 == N2) {
1244    N2 = getUNDEF(VT);
1245    for (unsigned i = 0; i != NElts; ++i)
1246      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1247  }
1248
1249  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1250  if (N1.getOpcode() == ISD::UNDEF)
1251    commuteShuffle(N1, N2, MaskVec);
1252
1253  // Canonicalize all index into lhs, -> shuffle lhs, undef
1254  // Canonicalize all index into rhs, -> shuffle rhs, undef
1255  bool AllLHS = true, AllRHS = true;
1256  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1257  for (unsigned i = 0; i != NElts; ++i) {
1258    if (MaskVec[i] >= (int)NElts) {
1259      if (N2Undef)
1260        MaskVec[i] = -1;
1261      else
1262        AllLHS = false;
1263    } else if (MaskVec[i] >= 0) {
1264      AllRHS = false;
1265    }
1266  }
1267  if (AllLHS && AllRHS)
1268    return getUNDEF(VT);
1269  if (AllLHS && !N2Undef)
1270    N2 = getUNDEF(VT);
1271  if (AllRHS) {
1272    N1 = getUNDEF(VT);
1273    commuteShuffle(N1, N2, MaskVec);
1274  }
1275
1276  // If Identity shuffle, or all shuffle in to undef, return that node.
1277  bool AllUndef = true;
1278  bool Identity = true;
1279  for (unsigned i = 0; i != NElts; ++i) {
1280    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1281    if (MaskVec[i] >= 0) AllUndef = false;
1282  }
1283  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1284    return N1;
1285  if (AllUndef)
1286    return getUNDEF(VT);
1287
1288  FoldingSetNodeID ID;
1289  SDValue Ops[2] = { N1, N2 };
1290  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1291  for (unsigned i = 0; i != NElts; ++i)
1292    ID.AddInteger(MaskVec[i]);
1293
1294  void* IP = 0;
1295  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1296    return SDValue(E, 0);
1297
1298  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1299  // SDNode doesn't have access to it.  This memory will be "leaked" when
1300  // the node is deallocated, but recovered when the NodeAllocator is released.
1301  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1302  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1303
1304  ShuffleVectorSDNode *N =
1305    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1306  CSEMap.InsertNode(N, IP);
1307  AllNodes.push_back(N);
1308  return SDValue(N, 0);
1309}
1310
1311SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1312                                       SDValue Val, SDValue DTy,
1313                                       SDValue STy, SDValue Rnd, SDValue Sat,
1314                                       ISD::CvtCode Code) {
1315  // If the src and dest types are the same and the conversion is between
1316  // integer types of the same sign or two floats, no conversion is necessary.
1317  if (DTy == STy &&
1318      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1319    return Val;
1320
1321  FoldingSetNodeID ID;
1322  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1323  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1324  void* IP = 0;
1325  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1326    return SDValue(E, 0);
1327
1328  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1329                                                           Code);
1330  CSEMap.InsertNode(N, IP);
1331  AllNodes.push_back(N);
1332  return SDValue(N, 0);
1333}
1334
1335SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1336  FoldingSetNodeID ID;
1337  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1338  ID.AddInteger(RegNo);
1339  void *IP = 0;
1340  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1341    return SDValue(E, 0);
1342
1343  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1344  CSEMap.InsertNode(N, IP);
1345  AllNodes.push_back(N);
1346  return SDValue(N, 0);
1347}
1348
1349SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1350  FoldingSetNodeID ID;
1351  SDValue Ops[] = { Root };
1352  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1353  ID.AddPointer(Label);
1354  void *IP = 0;
1355  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356    return SDValue(E, 0);
1357
1358  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1359  CSEMap.InsertNode(N, IP);
1360  AllNodes.push_back(N);
1361  return SDValue(N, 0);
1362}
1363
1364
1365SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1366                                      bool isTarget,
1367                                      unsigned char TargetFlags) {
1368  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1369
1370  FoldingSetNodeID ID;
1371  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1372  ID.AddPointer(BA);
1373  ID.AddInteger(TargetFlags);
1374  void *IP = 0;
1375  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1376    return SDValue(E, 0);
1377
1378  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1379  CSEMap.InsertNode(N, IP);
1380  AllNodes.push_back(N);
1381  return SDValue(N, 0);
1382}
1383
1384SDValue SelectionDAG::getSrcValue(const Value *V) {
1385  assert((!V || V->getType()->isPointerTy()) &&
1386         "SrcValue is not a pointer?");
1387
1388  FoldingSetNodeID ID;
1389  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1390  ID.AddPointer(V);
1391
1392  void *IP = 0;
1393  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1394    return SDValue(E, 0);
1395
1396  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1397  CSEMap.InsertNode(N, IP);
1398  AllNodes.push_back(N);
1399  return SDValue(N, 0);
1400}
1401
1402/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1403SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1404  FoldingSetNodeID ID;
1405  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1406  ID.AddPointer(MD);
1407
1408  void *IP = 0;
1409  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1410    return SDValue(E, 0);
1411
1412  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1413  CSEMap.InsertNode(N, IP);
1414  AllNodes.push_back(N);
1415  return SDValue(N, 0);
1416}
1417
1418
1419/// getShiftAmountOperand - Return the specified value casted to
1420/// the target's desired shift amount type.
1421SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1422  EVT OpTy = Op.getValueType();
1423  MVT ShTy = TLI.getShiftAmountTy();
1424  if (OpTy == ShTy || OpTy.isVector()) return Op;
1425
1426  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1427  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1428}
1429
1430/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1431/// specified value type.
1432SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1433  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1434  unsigned ByteSize = VT.getStoreSize();
1435  const Type *Ty = VT.getTypeForEVT(*getContext());
1436  unsigned StackAlign =
1437  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1438
1439  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1440  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1441}
1442
1443/// CreateStackTemporary - Create a stack temporary suitable for holding
1444/// either of the specified value types.
1445SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1446  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1447                            VT2.getStoreSizeInBits())/8;
1448  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1449  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1450  const TargetData *TD = TLI.getTargetData();
1451  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1452                            TD->getPrefTypeAlignment(Ty2));
1453
1454  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1455  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1456  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1457}
1458
1459SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1460                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1461  // These setcc operations always fold.
1462  switch (Cond) {
1463  default: break;
1464  case ISD::SETFALSE:
1465  case ISD::SETFALSE2: return getConstant(0, VT);
1466  case ISD::SETTRUE:
1467  case ISD::SETTRUE2:  return getConstant(1, VT);
1468
1469  case ISD::SETOEQ:
1470  case ISD::SETOGT:
1471  case ISD::SETOGE:
1472  case ISD::SETOLT:
1473  case ISD::SETOLE:
1474  case ISD::SETONE:
1475  case ISD::SETO:
1476  case ISD::SETUO:
1477  case ISD::SETUEQ:
1478  case ISD::SETUNE:
1479    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1480    break;
1481  }
1482
1483  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1484    const APInt &C2 = N2C->getAPIntValue();
1485    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1486      const APInt &C1 = N1C->getAPIntValue();
1487
1488      switch (Cond) {
1489      default: llvm_unreachable("Unknown integer setcc!");
1490      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1491      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1492      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1493      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1494      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1495      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1496      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1497      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1498      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1499      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1500      }
1501    }
1502  }
1503  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1504    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1505      // No compile time operations on this type yet.
1506      if (N1C->getValueType(0) == MVT::ppcf128)
1507        return SDValue();
1508
1509      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1510      switch (Cond) {
1511      default: break;
1512      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1513                          return getUNDEF(VT);
1514                        // fall through
1515      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1516      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1517                          return getUNDEF(VT);
1518                        // fall through
1519      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1520                                           R==APFloat::cmpLessThan, VT);
1521      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1522                          return getUNDEF(VT);
1523                        // fall through
1524      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1525      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1526                          return getUNDEF(VT);
1527                        // fall through
1528      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1529      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1530                          return getUNDEF(VT);
1531                        // fall through
1532      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1533                                           R==APFloat::cmpEqual, VT);
1534      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1535                          return getUNDEF(VT);
1536                        // fall through
1537      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1538                                           R==APFloat::cmpEqual, VT);
1539      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1540      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1541      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1542                                           R==APFloat::cmpEqual, VT);
1543      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1544      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1545                                           R==APFloat::cmpLessThan, VT);
1546      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1547                                           R==APFloat::cmpUnordered, VT);
1548      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1549      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1550      }
1551    } else {
1552      // Ensure that the constant occurs on the RHS.
1553      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1554    }
1555  }
1556
1557  // Could not fold it.
1558  return SDValue();
1559}
1560
1561/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1562/// use this predicate to simplify operations downstream.
1563bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1564  // This predicate is not safe for vector operations.
1565  if (Op.getValueType().isVector())
1566    return false;
1567
1568  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1569  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1570}
1571
1572/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1573/// this predicate to simplify operations downstream.  Mask is known to be zero
1574/// for bits that V cannot have.
1575bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1576                                     unsigned Depth) const {
1577  APInt KnownZero, KnownOne;
1578  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1579  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1580  return (KnownZero & Mask) == Mask;
1581}
1582
1583/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1584/// known to be either zero or one and return them in the KnownZero/KnownOne
1585/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1586/// processing.
1587void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1588                                     APInt &KnownZero, APInt &KnownOne,
1589                                     unsigned Depth) const {
1590  unsigned BitWidth = Mask.getBitWidth();
1591  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1592         "Mask size mismatches value type size!");
1593
1594  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1595  if (Depth == 6 || Mask == 0)
1596    return;  // Limit search depth.
1597
1598  APInt KnownZero2, KnownOne2;
1599
1600  switch (Op.getOpcode()) {
1601  case ISD::Constant:
1602    // We know all of the bits for a constant!
1603    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1604    KnownZero = ~KnownOne & Mask;
1605    return;
1606  case ISD::AND:
1607    // If either the LHS or the RHS are Zero, the result is zero.
1608    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1609    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1610                      KnownZero2, KnownOne2, Depth+1);
1611    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1612    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1613
1614    // Output known-1 bits are only known if set in both the LHS & RHS.
1615    KnownOne &= KnownOne2;
1616    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1617    KnownZero |= KnownZero2;
1618    return;
1619  case ISD::OR:
1620    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1621    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1622                      KnownZero2, KnownOne2, Depth+1);
1623    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1625
1626    // Output known-0 bits are only known if clear in both the LHS & RHS.
1627    KnownZero &= KnownZero2;
1628    // Output known-1 are known to be set if set in either the LHS | RHS.
1629    KnownOne |= KnownOne2;
1630    return;
1631  case ISD::XOR: {
1632    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1633    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1634    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1636
1637    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1638    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1639    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1640    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1641    KnownZero = KnownZeroOut;
1642    return;
1643  }
1644  case ISD::MUL: {
1645    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1646    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1647    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1648    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1649    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1650
1651    // If low bits are zero in either operand, output low known-0 bits.
1652    // Also compute a conserative estimate for high known-0 bits.
1653    // More trickiness is possible, but this is sufficient for the
1654    // interesting case of alignment computation.
1655    KnownOne.clearAllBits();
1656    unsigned TrailZ = KnownZero.countTrailingOnes() +
1657                      KnownZero2.countTrailingOnes();
1658    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1659                               KnownZero2.countLeadingOnes(),
1660                               BitWidth) - BitWidth;
1661
1662    TrailZ = std::min(TrailZ, BitWidth);
1663    LeadZ = std::min(LeadZ, BitWidth);
1664    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1665                APInt::getHighBitsSet(BitWidth, LeadZ);
1666    KnownZero &= Mask;
1667    return;
1668  }
1669  case ISD::UDIV: {
1670    // For the purposes of computing leading zeros we can conservatively
1671    // treat a udiv as a logical right shift by the power of 2 known to
1672    // be less than the denominator.
1673    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1674    ComputeMaskedBits(Op.getOperand(0),
1675                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1676    unsigned LeadZ = KnownZero2.countLeadingOnes();
1677
1678    KnownOne2.clearAllBits();
1679    KnownZero2.clearAllBits();
1680    ComputeMaskedBits(Op.getOperand(1),
1681                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1682    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1683    if (RHSUnknownLeadingOnes != BitWidth)
1684      LeadZ = std::min(BitWidth,
1685                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1686
1687    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1688    return;
1689  }
1690  case ISD::SELECT:
1691    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1692    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1693    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1695
1696    // Only known if known in both the LHS and RHS.
1697    KnownOne &= KnownOne2;
1698    KnownZero &= KnownZero2;
1699    return;
1700  case ISD::SELECT_CC:
1701    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1702    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1703    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1705
1706    // Only known if known in both the LHS and RHS.
1707    KnownOne &= KnownOne2;
1708    KnownZero &= KnownZero2;
1709    return;
1710  case ISD::SADDO:
1711  case ISD::UADDO:
1712  case ISD::SSUBO:
1713  case ISD::USUBO:
1714  case ISD::SMULO:
1715  case ISD::UMULO:
1716    if (Op.getResNo() != 1)
1717      return;
1718    // The boolean result conforms to getBooleanContents.  Fall through.
1719  case ISD::SETCC:
1720    // If we know the result of a setcc has the top bits zero, use this info.
1721    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1722        BitWidth > 1)
1723      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1724    return;
1725  case ISD::SHL:
1726    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1727    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1728      unsigned ShAmt = SA->getZExtValue();
1729
1730      // If the shift count is an invalid immediate, don't do anything.
1731      if (ShAmt >= BitWidth)
1732        return;
1733
1734      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1735                        KnownZero, KnownOne, Depth+1);
1736      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737      KnownZero <<= ShAmt;
1738      KnownOne  <<= ShAmt;
1739      // low bits known zero.
1740      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1741    }
1742    return;
1743  case ISD::SRL:
1744    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1745    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1746      unsigned ShAmt = SA->getZExtValue();
1747
1748      // If the shift count is an invalid immediate, don't do anything.
1749      if (ShAmt >= BitWidth)
1750        return;
1751
1752      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1753                        KnownZero, KnownOne, Depth+1);
1754      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1755      KnownZero = KnownZero.lshr(ShAmt);
1756      KnownOne  = KnownOne.lshr(ShAmt);
1757
1758      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1759      KnownZero |= HighBits;  // High bits known zero.
1760    }
1761    return;
1762  case ISD::SRA:
1763    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1764      unsigned ShAmt = SA->getZExtValue();
1765
1766      // If the shift count is an invalid immediate, don't do anything.
1767      if (ShAmt >= BitWidth)
1768        return;
1769
1770      APInt InDemandedMask = (Mask << ShAmt);
1771      // If any of the demanded bits are produced by the sign extension, we also
1772      // demand the input sign bit.
1773      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1774      if (HighBits.getBoolValue())
1775        InDemandedMask |= APInt::getSignBit(BitWidth);
1776
1777      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1778                        Depth+1);
1779      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1780      KnownZero = KnownZero.lshr(ShAmt);
1781      KnownOne  = KnownOne.lshr(ShAmt);
1782
1783      // Handle the sign bits.
1784      APInt SignBit = APInt::getSignBit(BitWidth);
1785      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1786
1787      if (KnownZero.intersects(SignBit)) {
1788        KnownZero |= HighBits;  // New bits are known zero.
1789      } else if (KnownOne.intersects(SignBit)) {
1790        KnownOne  |= HighBits;  // New bits are known one.
1791      }
1792    }
1793    return;
1794  case ISD::SIGN_EXTEND_INREG: {
1795    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1796    unsigned EBits = EVT.getScalarType().getSizeInBits();
1797
1798    // Sign extension.  Compute the demanded bits in the result that are not
1799    // present in the input.
1800    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1801
1802    APInt InSignBit = APInt::getSignBit(EBits);
1803    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1804
1805    // If the sign extended bits are demanded, we know that the sign
1806    // bit is demanded.
1807    InSignBit = InSignBit.zext(BitWidth);
1808    if (NewBits.getBoolValue())
1809      InputDemandedBits |= InSignBit;
1810
1811    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1812                      KnownZero, KnownOne, Depth+1);
1813    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1814
1815    // If the sign bit of the input is known set or clear, then we know the
1816    // top bits of the result.
1817    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1818      KnownZero |= NewBits;
1819      KnownOne  &= ~NewBits;
1820    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1821      KnownOne  |= NewBits;
1822      KnownZero &= ~NewBits;
1823    } else {                              // Input sign bit unknown
1824      KnownZero &= ~NewBits;
1825      KnownOne  &= ~NewBits;
1826    }
1827    return;
1828  }
1829  case ISD::CTTZ:
1830  case ISD::CTLZ:
1831  case ISD::CTPOP: {
1832    unsigned LowBits = Log2_32(BitWidth)+1;
1833    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1834    KnownOne.clearAllBits();
1835    return;
1836  }
1837  case ISD::LOAD: {
1838    if (ISD::isZEXTLoad(Op.getNode())) {
1839      LoadSDNode *LD = cast<LoadSDNode>(Op);
1840      EVT VT = LD->getMemoryVT();
1841      unsigned MemBits = VT.getScalarType().getSizeInBits();
1842      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1843    }
1844    return;
1845  }
1846  case ISD::ZERO_EXTEND: {
1847    EVT InVT = Op.getOperand(0).getValueType();
1848    unsigned InBits = InVT.getScalarType().getSizeInBits();
1849    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1850    APInt InMask    = Mask.trunc(InBits);
1851    KnownZero = KnownZero.trunc(InBits);
1852    KnownOne = KnownOne.trunc(InBits);
1853    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1854    KnownZero = KnownZero.zext(BitWidth);
1855    KnownOne = KnownOne.zext(BitWidth);
1856    KnownZero |= NewBits;
1857    return;
1858  }
1859  case ISD::SIGN_EXTEND: {
1860    EVT InVT = Op.getOperand(0).getValueType();
1861    unsigned InBits = InVT.getScalarType().getSizeInBits();
1862    APInt InSignBit = APInt::getSignBit(InBits);
1863    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1864    APInt InMask = Mask.trunc(InBits);
1865
1866    // If any of the sign extended bits are demanded, we know that the sign
1867    // bit is demanded. Temporarily set this bit in the mask for our callee.
1868    if (NewBits.getBoolValue())
1869      InMask |= InSignBit;
1870
1871    KnownZero = KnownZero.trunc(InBits);
1872    KnownOne = KnownOne.trunc(InBits);
1873    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874
1875    // Note if the sign bit is known to be zero or one.
1876    bool SignBitKnownZero = KnownZero.isNegative();
1877    bool SignBitKnownOne  = KnownOne.isNegative();
1878    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1879           "Sign bit can't be known to be both zero and one!");
1880
1881    // If the sign bit wasn't actually demanded by our caller, we don't
1882    // want it set in the KnownZero and KnownOne result values. Reset the
1883    // mask and reapply it to the result values.
1884    InMask = Mask.trunc(InBits);
1885    KnownZero &= InMask;
1886    KnownOne  &= InMask;
1887
1888    KnownZero = KnownZero.zext(BitWidth);
1889    KnownOne = KnownOne.zext(BitWidth);
1890
1891    // If the sign bit is known zero or one, the top bits match.
1892    if (SignBitKnownZero)
1893      KnownZero |= NewBits;
1894    else if (SignBitKnownOne)
1895      KnownOne  |= NewBits;
1896    return;
1897  }
1898  case ISD::ANY_EXTEND: {
1899    EVT InVT = Op.getOperand(0).getValueType();
1900    unsigned InBits = InVT.getScalarType().getSizeInBits();
1901    APInt InMask = Mask.trunc(InBits);
1902    KnownZero = KnownZero.trunc(InBits);
1903    KnownOne = KnownOne.trunc(InBits);
1904    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1905    KnownZero = KnownZero.zext(BitWidth);
1906    KnownOne = KnownOne.zext(BitWidth);
1907    return;
1908  }
1909  case ISD::TRUNCATE: {
1910    EVT InVT = Op.getOperand(0).getValueType();
1911    unsigned InBits = InVT.getScalarType().getSizeInBits();
1912    APInt InMask = Mask.zext(InBits);
1913    KnownZero = KnownZero.zext(InBits);
1914    KnownOne = KnownOne.zext(InBits);
1915    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1916    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1917    KnownZero = KnownZero.trunc(BitWidth);
1918    KnownOne = KnownOne.trunc(BitWidth);
1919    break;
1920  }
1921  case ISD::AssertZext: {
1922    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1923    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1924    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1925                      KnownOne, Depth+1);
1926    KnownZero |= (~InMask) & Mask;
1927    return;
1928  }
1929  case ISD::FGETSIGN:
1930    // All bits are zero except the low bit.
1931    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1932    return;
1933
1934  case ISD::SUB: {
1935    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1936      // We know that the top bits of C-X are clear if X contains less bits
1937      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1938      // positive if we can prove that X is >= 0 and < 16.
1939      if (CLHS->getAPIntValue().isNonNegative()) {
1940        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1941        // NLZ can't be BitWidth with no sign bit
1942        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1943        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1944                          Depth+1);
1945
1946        // If all of the MaskV bits are known to be zero, then we know the
1947        // output top bits are zero, because we now know that the output is
1948        // from [0-C].
1949        if ((KnownZero2 & MaskV) == MaskV) {
1950          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1951          // Top bits known zero.
1952          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1953        }
1954      }
1955    }
1956  }
1957  // fall through
1958  case ISD::ADD:
1959  case ISD::ADDE: {
1960    // Output known-0 bits are known if clear or set in both the low clear bits
1961    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1962    // low 3 bits clear.
1963    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1964                                       BitWidth - Mask.countLeadingZeros());
1965    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1966    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1967    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1968
1969    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1970    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1971    KnownZeroOut = std::min(KnownZeroOut,
1972                            KnownZero2.countTrailingOnes());
1973
1974    if (Op.getOpcode() == ISD::ADD) {
1975      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1976      return;
1977    }
1978
1979    // With ADDE, a carry bit may be added in, so we can only use this
1980    // information if we know (at least) that the low two bits are clear.  We
1981    // then return to the caller that the low bit is unknown but that other bits
1982    // are known zero.
1983    if (KnownZeroOut >= 2) // ADDE
1984      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
1985    return;
1986  }
1987  case ISD::SREM:
1988    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1989      const APInt &RA = Rem->getAPIntValue().abs();
1990      if (RA.isPowerOf2()) {
1991        APInt LowBits = RA - 1;
1992        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1993        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1994
1995        // The low bits of the first operand are unchanged by the srem.
1996        KnownZero = KnownZero2 & LowBits;
1997        KnownOne = KnownOne2 & LowBits;
1998
1999        // If the first operand is non-negative or has all low bits zero, then
2000        // the upper bits are all zero.
2001        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2002          KnownZero |= ~LowBits;
2003
2004        // If the first operand is negative and not all low bits are zero, then
2005        // the upper bits are all one.
2006        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2007          KnownOne |= ~LowBits;
2008
2009        KnownZero &= Mask;
2010        KnownOne &= Mask;
2011
2012        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2013      }
2014    }
2015    return;
2016  case ISD::UREM: {
2017    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2018      const APInt &RA = Rem->getAPIntValue();
2019      if (RA.isPowerOf2()) {
2020        APInt LowBits = (RA - 1);
2021        APInt Mask2 = LowBits & Mask;
2022        KnownZero |= ~LowBits & Mask;
2023        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2024        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2025        break;
2026      }
2027    }
2028
2029    // Since the result is less than or equal to either operand, any leading
2030    // zero bits in either operand must also exist in the result.
2031    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2032    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2033                      Depth+1);
2034    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2035                      Depth+1);
2036
2037    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2038                                KnownZero2.countLeadingOnes());
2039    KnownOne.clearAllBits();
2040    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2041    return;
2042  }
2043  case ISD::FrameIndex:
2044  case ISD::TargetFrameIndex:
2045    if (unsigned Align = InferPtrAlignment(Op)) {
2046      // The low bits are known zero if the pointer is aligned.
2047      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2048      return;
2049    }
2050    break;
2051
2052  default:
2053    // Allow the target to implement this method for its nodes.
2054    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2055  case ISD::INTRINSIC_WO_CHAIN:
2056  case ISD::INTRINSIC_W_CHAIN:
2057  case ISD::INTRINSIC_VOID:
2058      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2059                                         Depth);
2060    }
2061    return;
2062  }
2063}
2064
2065/// ComputeNumSignBits - Return the number of times the sign bit of the
2066/// register is replicated into the other bits.  We know that at least 1 bit
2067/// is always equal to the sign bit (itself), but other cases can give us
2068/// information.  For example, immediately after an "SRA X, 2", we know that
2069/// the top 3 bits are all equal to each other, so we return 3.
2070unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2071  EVT VT = Op.getValueType();
2072  assert(VT.isInteger() && "Invalid VT!");
2073  unsigned VTBits = VT.getScalarType().getSizeInBits();
2074  unsigned Tmp, Tmp2;
2075  unsigned FirstAnswer = 1;
2076
2077  if (Depth == 6)
2078    return 1;  // Limit search depth.
2079
2080  switch (Op.getOpcode()) {
2081  default: break;
2082  case ISD::AssertSext:
2083    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2084    return VTBits-Tmp+1;
2085  case ISD::AssertZext:
2086    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2087    return VTBits-Tmp;
2088
2089  case ISD::Constant: {
2090    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2091    return Val.getNumSignBits();
2092  }
2093
2094  case ISD::SIGN_EXTEND:
2095    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2096    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2097
2098  case ISD::SIGN_EXTEND_INREG:
2099    // Max of the input and what this extends.
2100    Tmp =
2101      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2102    Tmp = VTBits-Tmp+1;
2103
2104    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2105    return std::max(Tmp, Tmp2);
2106
2107  case ISD::SRA:
2108    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2109    // SRA X, C   -> adds C sign bits.
2110    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2111      Tmp += C->getZExtValue();
2112      if (Tmp > VTBits) Tmp = VTBits;
2113    }
2114    return Tmp;
2115  case ISD::SHL:
2116    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2117      // shl destroys sign bits.
2118      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2119      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2120          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2121      return Tmp - C->getZExtValue();
2122    }
2123    break;
2124  case ISD::AND:
2125  case ISD::OR:
2126  case ISD::XOR:    // NOT is handled here.
2127    // Logical binary ops preserve the number of sign bits at the worst.
2128    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2129    if (Tmp != 1) {
2130      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2131      FirstAnswer = std::min(Tmp, Tmp2);
2132      // We computed what we know about the sign bits as our first
2133      // answer. Now proceed to the generic code that uses
2134      // ComputeMaskedBits, and pick whichever answer is better.
2135    }
2136    break;
2137
2138  case ISD::SELECT:
2139    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2140    if (Tmp == 1) return 1;  // Early out.
2141    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2142    return std::min(Tmp, Tmp2);
2143
2144  case ISD::SADDO:
2145  case ISD::UADDO:
2146  case ISD::SSUBO:
2147  case ISD::USUBO:
2148  case ISD::SMULO:
2149  case ISD::UMULO:
2150    if (Op.getResNo() != 1)
2151      break;
2152    // The boolean result conforms to getBooleanContents.  Fall through.
2153  case ISD::SETCC:
2154    // If setcc returns 0/-1, all bits are sign bits.
2155    if (TLI.getBooleanContents() ==
2156        TargetLowering::ZeroOrNegativeOneBooleanContent)
2157      return VTBits;
2158    break;
2159  case ISD::ROTL:
2160  case ISD::ROTR:
2161    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2162      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2163
2164      // Handle rotate right by N like a rotate left by 32-N.
2165      if (Op.getOpcode() == ISD::ROTR)
2166        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2167
2168      // If we aren't rotating out all of the known-in sign bits, return the
2169      // number that are left.  This handles rotl(sext(x), 1) for example.
2170      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2171      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2172    }
2173    break;
2174  case ISD::ADD:
2175    // Add can have at most one carry bit.  Thus we know that the output
2176    // is, at worst, one more bit than the inputs.
2177    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2178    if (Tmp == 1) return 1;  // Early out.
2179
2180    // Special case decrementing a value (ADD X, -1):
2181    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2182      if (CRHS->isAllOnesValue()) {
2183        APInt KnownZero, KnownOne;
2184        APInt Mask = APInt::getAllOnesValue(VTBits);
2185        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2186
2187        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2188        // sign bits set.
2189        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2190          return VTBits;
2191
2192        // If we are subtracting one from a positive number, there is no carry
2193        // out of the result.
2194        if (KnownZero.isNegative())
2195          return Tmp;
2196      }
2197
2198    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2199    if (Tmp2 == 1) return 1;
2200      return std::min(Tmp, Tmp2)-1;
2201    break;
2202
2203  case ISD::SUB:
2204    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2205    if (Tmp2 == 1) return 1;
2206
2207    // Handle NEG.
2208    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2209      if (CLHS->isNullValue()) {
2210        APInt KnownZero, KnownOne;
2211        APInt Mask = APInt::getAllOnesValue(VTBits);
2212        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2213        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2214        // sign bits set.
2215        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2216          return VTBits;
2217
2218        // If the input is known to be positive (the sign bit is known clear),
2219        // the output of the NEG has the same number of sign bits as the input.
2220        if (KnownZero.isNegative())
2221          return Tmp2;
2222
2223        // Otherwise, we treat this like a SUB.
2224      }
2225
2226    // Sub can have at most one carry bit.  Thus we know that the output
2227    // is, at worst, one more bit than the inputs.
2228    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2229    if (Tmp == 1) return 1;  // Early out.
2230      return std::min(Tmp, Tmp2)-1;
2231    break;
2232  case ISD::TRUNCATE:
2233    // FIXME: it's tricky to do anything useful for this, but it is an important
2234    // case for targets like X86.
2235    break;
2236  }
2237
2238  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2239  if (Op.getOpcode() == ISD::LOAD) {
2240    LoadSDNode *LD = cast<LoadSDNode>(Op);
2241    unsigned ExtType = LD->getExtensionType();
2242    switch (ExtType) {
2243    default: break;
2244    case ISD::SEXTLOAD:    // '17' bits known
2245      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2246      return VTBits-Tmp+1;
2247    case ISD::ZEXTLOAD:    // '16' bits known
2248      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2249      return VTBits-Tmp;
2250    }
2251  }
2252
2253  // Allow the target to implement this method for its nodes.
2254  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2255      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2256      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2257      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2258    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2259    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2260  }
2261
2262  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2263  // use this information.
2264  APInt KnownZero, KnownOne;
2265  APInt Mask = APInt::getAllOnesValue(VTBits);
2266  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2267
2268  if (KnownZero.isNegative()) {        // sign bit is 0
2269    Mask = KnownZero;
2270  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2271    Mask = KnownOne;
2272  } else {
2273    // Nothing known.
2274    return FirstAnswer;
2275  }
2276
2277  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2278  // the number of identical bits in the top of the input value.
2279  Mask = ~Mask;
2280  Mask <<= Mask.getBitWidth()-VTBits;
2281  // Return # leading zeros.  We use 'min' here in case Val was zero before
2282  // shifting.  We don't want to return '64' as for an i32 "0".
2283  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2284}
2285
2286/// isBaseWithConstantOffset - Return true if the specified operand is an
2287/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2288/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2289/// semantics as an ADD.  This handles the equivalence:
2290///     X|Cst == X+Cst iff X&Cst = 0.
2291bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2292  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2293      !isa<ConstantSDNode>(Op.getOperand(1)))
2294    return false;
2295
2296  if (Op.getOpcode() == ISD::OR &&
2297      !MaskedValueIsZero(Op.getOperand(0),
2298                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2299    return false;
2300
2301  return true;
2302}
2303
2304
2305bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2306  // If we're told that NaNs won't happen, assume they won't.
2307  if (NoNaNsFPMath)
2308    return true;
2309
2310  // If the value is a constant, we can obviously see if it is a NaN or not.
2311  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2312    return !C->getValueAPF().isNaN();
2313
2314  // TODO: Recognize more cases here.
2315
2316  return false;
2317}
2318
2319bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2320  // If the value is a constant, we can obviously see if it is a zero or not.
2321  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2322    return !C->isZero();
2323
2324  // TODO: Recognize more cases here.
2325
2326  return false;
2327}
2328
2329bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2330  // Check the obvious case.
2331  if (A == B) return true;
2332
2333  // For for negative and positive zero.
2334  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2335    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2336      if (CA->isZero() && CB->isZero()) return true;
2337
2338  // Otherwise they may not be equal.
2339  return false;
2340}
2341
2342bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2343  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2344  if (!GA) return false;
2345  if (GA->getOffset() != 0) return false;
2346  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2347  if (!GV) return false;
2348  return MF->getMMI().hasDebugInfo();
2349}
2350
2351
2352/// getNode - Gets or creates the specified node.
2353///
2354SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2355  FoldingSetNodeID ID;
2356  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2357  void *IP = 0;
2358  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2359    return SDValue(E, 0);
2360
2361  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2362  CSEMap.InsertNode(N, IP);
2363
2364  AllNodes.push_back(N);
2365#ifndef NDEBUG
2366  VerifySDNode(N);
2367#endif
2368  return SDValue(N, 0);
2369}
2370
2371SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2372                              EVT VT, SDValue Operand) {
2373  // Constant fold unary operations with an integer constant operand.
2374  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2375    const APInt &Val = C->getAPIntValue();
2376    switch (Opcode) {
2377    default: break;
2378    case ISD::SIGN_EXTEND:
2379      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2380    case ISD::ANY_EXTEND:
2381    case ISD::ZERO_EXTEND:
2382    case ISD::TRUNCATE:
2383      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2384    case ISD::UINT_TO_FP:
2385    case ISD::SINT_TO_FP: {
2386      // No compile time operations on ppcf128.
2387      if (VT == MVT::ppcf128) break;
2388      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2389      (void)apf.convertFromAPInt(Val,
2390                                 Opcode==ISD::SINT_TO_FP,
2391                                 APFloat::rmNearestTiesToEven);
2392      return getConstantFP(apf, VT);
2393    }
2394    case ISD::BITCAST:
2395      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2396        return getConstantFP(Val.bitsToFloat(), VT);
2397      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2398        return getConstantFP(Val.bitsToDouble(), VT);
2399      break;
2400    case ISD::BSWAP:
2401      return getConstant(Val.byteSwap(), VT);
2402    case ISD::CTPOP:
2403      return getConstant(Val.countPopulation(), VT);
2404    case ISD::CTLZ:
2405      return getConstant(Val.countLeadingZeros(), VT);
2406    case ISD::CTTZ:
2407      return getConstant(Val.countTrailingZeros(), VT);
2408    }
2409  }
2410
2411  // Constant fold unary operations with a floating point constant operand.
2412  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2413    APFloat V = C->getValueAPF();    // make copy
2414    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2415      switch (Opcode) {
2416      case ISD::FNEG:
2417        V.changeSign();
2418        return getConstantFP(V, VT);
2419      case ISD::FABS:
2420        V.clearSign();
2421        return getConstantFP(V, VT);
2422      case ISD::FP_ROUND:
2423      case ISD::FP_EXTEND: {
2424        bool ignored;
2425        // This can return overflow, underflow, or inexact; we don't care.
2426        // FIXME need to be more flexible about rounding mode.
2427        (void)V.convert(*EVTToAPFloatSemantics(VT),
2428                        APFloat::rmNearestTiesToEven, &ignored);
2429        return getConstantFP(V, VT);
2430      }
2431      case ISD::FP_TO_SINT:
2432      case ISD::FP_TO_UINT: {
2433        integerPart x[2];
2434        bool ignored;
2435        assert(integerPartWidth >= 64);
2436        // FIXME need to be more flexible about rounding mode.
2437        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2438                              Opcode==ISD::FP_TO_SINT,
2439                              APFloat::rmTowardZero, &ignored);
2440        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2441          break;
2442        APInt api(VT.getSizeInBits(), 2, x);
2443        return getConstant(api, VT);
2444      }
2445      case ISD::BITCAST:
2446        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2447          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2448        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2449          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2450        break;
2451      }
2452    }
2453  }
2454
2455  unsigned OpOpcode = Operand.getNode()->getOpcode();
2456  switch (Opcode) {
2457  case ISD::TokenFactor:
2458  case ISD::MERGE_VALUES:
2459  case ISD::CONCAT_VECTORS:
2460    return Operand;         // Factor, merge or concat of one node?  No need.
2461  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2462  case ISD::FP_EXTEND:
2463    assert(VT.isFloatingPoint() &&
2464           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2465    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2466    assert((!VT.isVector() ||
2467            VT.getVectorNumElements() ==
2468            Operand.getValueType().getVectorNumElements()) &&
2469           "Vector element count mismatch!");
2470    if (Operand.getOpcode() == ISD::UNDEF)
2471      return getUNDEF(VT);
2472    break;
2473  case ISD::SIGN_EXTEND:
2474    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2475           "Invalid SIGN_EXTEND!");
2476    if (Operand.getValueType() == VT) return Operand;   // noop extension
2477    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2478           "Invalid sext node, dst < src!");
2479    assert((!VT.isVector() ||
2480            VT.getVectorNumElements() ==
2481            Operand.getValueType().getVectorNumElements()) &&
2482           "Vector element count mismatch!");
2483    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2484      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2485    break;
2486  case ISD::ZERO_EXTEND:
2487    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2488           "Invalid ZERO_EXTEND!");
2489    if (Operand.getValueType() == VT) return Operand;   // noop extension
2490    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2491           "Invalid zext node, dst < src!");
2492    assert((!VT.isVector() ||
2493            VT.getVectorNumElements() ==
2494            Operand.getValueType().getVectorNumElements()) &&
2495           "Vector element count mismatch!");
2496    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2497      return getNode(ISD::ZERO_EXTEND, DL, VT,
2498                     Operand.getNode()->getOperand(0));
2499    break;
2500  case ISD::ANY_EXTEND:
2501    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2502           "Invalid ANY_EXTEND!");
2503    if (Operand.getValueType() == VT) return Operand;   // noop extension
2504    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2505           "Invalid anyext node, dst < src!");
2506    assert((!VT.isVector() ||
2507            VT.getVectorNumElements() ==
2508            Operand.getValueType().getVectorNumElements()) &&
2509           "Vector element count mismatch!");
2510
2511    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2512        OpOpcode == ISD::ANY_EXTEND)
2513      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2514      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2515
2516    // (ext (trunx x)) -> x
2517    if (OpOpcode == ISD::TRUNCATE) {
2518      SDValue OpOp = Operand.getNode()->getOperand(0);
2519      if (OpOp.getValueType() == VT)
2520        return OpOp;
2521    }
2522    break;
2523  case ISD::TRUNCATE:
2524    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2525           "Invalid TRUNCATE!");
2526    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2527    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2528           "Invalid truncate node, src < dst!");
2529    assert((!VT.isVector() ||
2530            VT.getVectorNumElements() ==
2531            Operand.getValueType().getVectorNumElements()) &&
2532           "Vector element count mismatch!");
2533    if (OpOpcode == ISD::TRUNCATE)
2534      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2535    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2536             OpOpcode == ISD::ANY_EXTEND) {
2537      // If the source is smaller than the dest, we still need an extend.
2538      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2539            .bitsLT(VT.getScalarType()))
2540        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2541      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2542        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2543      else
2544        return Operand.getNode()->getOperand(0);
2545    }
2546    break;
2547  case ISD::BITCAST:
2548    // Basic sanity checking.
2549    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2550           && "Cannot BITCAST between types of different sizes!");
2551    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2552    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2553      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2554    if (OpOpcode == ISD::UNDEF)
2555      return getUNDEF(VT);
2556    break;
2557  case ISD::SCALAR_TO_VECTOR:
2558    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2559           (VT.getVectorElementType() == Operand.getValueType() ||
2560            (VT.getVectorElementType().isInteger() &&
2561             Operand.getValueType().isInteger() &&
2562             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2563           "Illegal SCALAR_TO_VECTOR node!");
2564    if (OpOpcode == ISD::UNDEF)
2565      return getUNDEF(VT);
2566    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2567    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2568        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2569        Operand.getConstantOperandVal(1) == 0 &&
2570        Operand.getOperand(0).getValueType() == VT)
2571      return Operand.getOperand(0);
2572    break;
2573  case ISD::FNEG:
2574    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2575    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2576      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2577                     Operand.getNode()->getOperand(0));
2578    if (OpOpcode == ISD::FNEG)  // --X -> X
2579      return Operand.getNode()->getOperand(0);
2580    break;
2581  case ISD::FABS:
2582    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2583      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2584    break;
2585  }
2586
2587  SDNode *N;
2588  SDVTList VTs = getVTList(VT);
2589  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2590    FoldingSetNodeID ID;
2591    SDValue Ops[1] = { Operand };
2592    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2593    void *IP = 0;
2594    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2595      return SDValue(E, 0);
2596
2597    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2598    CSEMap.InsertNode(N, IP);
2599  } else {
2600    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2601  }
2602
2603  AllNodes.push_back(N);
2604#ifndef NDEBUG
2605  VerifySDNode(N);
2606#endif
2607  return SDValue(N, 0);
2608}
2609
2610SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2611                                             EVT VT,
2612                                             ConstantSDNode *Cst1,
2613                                             ConstantSDNode *Cst2) {
2614  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2615
2616  switch (Opcode) {
2617  case ISD::ADD:  return getConstant(C1 + C2, VT);
2618  case ISD::SUB:  return getConstant(C1 - C2, VT);
2619  case ISD::MUL:  return getConstant(C1 * C2, VT);
2620  case ISD::UDIV:
2621    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2622    break;
2623  case ISD::UREM:
2624    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2625    break;
2626  case ISD::SDIV:
2627    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2628    break;
2629  case ISD::SREM:
2630    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2631    break;
2632  case ISD::AND:  return getConstant(C1 & C2, VT);
2633  case ISD::OR:   return getConstant(C1 | C2, VT);
2634  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2635  case ISD::SHL:  return getConstant(C1 << C2, VT);
2636  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2637  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2638  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2639  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2640  default: break;
2641  }
2642
2643  return SDValue();
2644}
2645
2646SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2647                              SDValue N1, SDValue N2) {
2648  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2649  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2650  switch (Opcode) {
2651  default: break;
2652  case ISD::TokenFactor:
2653    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2654           N2.getValueType() == MVT::Other && "Invalid token factor!");
2655    // Fold trivial token factors.
2656    if (N1.getOpcode() == ISD::EntryToken) return N2;
2657    if (N2.getOpcode() == ISD::EntryToken) return N1;
2658    if (N1 == N2) return N1;
2659    break;
2660  case ISD::CONCAT_VECTORS:
2661    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2662    // one big BUILD_VECTOR.
2663    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2664        N2.getOpcode() == ISD::BUILD_VECTOR) {
2665      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2666                                    N1.getNode()->op_end());
2667      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2668      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2669    }
2670    break;
2671  case ISD::AND:
2672    assert(VT.isInteger() && "This operator does not apply to FP types!");
2673    assert(N1.getValueType() == N2.getValueType() &&
2674           N1.getValueType() == VT && "Binary operator types must match!");
2675    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2676    // worth handling here.
2677    if (N2C && N2C->isNullValue())
2678      return N2;
2679    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2680      return N1;
2681    break;
2682  case ISD::OR:
2683  case ISD::XOR:
2684  case ISD::ADD:
2685  case ISD::SUB:
2686    assert(VT.isInteger() && "This operator does not apply to FP types!");
2687    assert(N1.getValueType() == N2.getValueType() &&
2688           N1.getValueType() == VT && "Binary operator types must match!");
2689    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2690    // it's worth handling here.
2691    if (N2C && N2C->isNullValue())
2692      return N1;
2693    break;
2694  case ISD::UDIV:
2695  case ISD::UREM:
2696  case ISD::MULHU:
2697  case ISD::MULHS:
2698  case ISD::MUL:
2699  case ISD::SDIV:
2700  case ISD::SREM:
2701    assert(VT.isInteger() && "This operator does not apply to FP types!");
2702    assert(N1.getValueType() == N2.getValueType() &&
2703           N1.getValueType() == VT && "Binary operator types must match!");
2704    break;
2705  case ISD::FADD:
2706  case ISD::FSUB:
2707  case ISD::FMUL:
2708  case ISD::FDIV:
2709  case ISD::FREM:
2710    if (UnsafeFPMath) {
2711      if (Opcode == ISD::FADD) {
2712        // 0+x --> x
2713        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2714          if (CFP->getValueAPF().isZero())
2715            return N2;
2716        // x+0 --> x
2717        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2718          if (CFP->getValueAPF().isZero())
2719            return N1;
2720      } else if (Opcode == ISD::FSUB) {
2721        // x-0 --> x
2722        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2723          if (CFP->getValueAPF().isZero())
2724            return N1;
2725      }
2726    }
2727    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2728    assert(N1.getValueType() == N2.getValueType() &&
2729           N1.getValueType() == VT && "Binary operator types must match!");
2730    break;
2731  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2732    assert(N1.getValueType() == VT &&
2733           N1.getValueType().isFloatingPoint() &&
2734           N2.getValueType().isFloatingPoint() &&
2735           "Invalid FCOPYSIGN!");
2736    break;
2737  case ISD::SHL:
2738  case ISD::SRA:
2739  case ISD::SRL:
2740  case ISD::ROTL:
2741  case ISD::ROTR:
2742    assert(VT == N1.getValueType() &&
2743           "Shift operators return type must be the same as their first arg");
2744    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2745           "Shifts only work on integers");
2746    // Verify that the shift amount VT is bit enough to hold valid shift
2747    // amounts.  This catches things like trying to shift an i1024 value by an
2748    // i8, which is easy to fall into in generic code that uses
2749    // TLI.getShiftAmount().
2750    assert(N2.getValueType().getSizeInBits() >=
2751                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2752           "Invalid use of small shift amount with oversized value!");
2753
2754    // Always fold shifts of i1 values so the code generator doesn't need to
2755    // handle them.  Since we know the size of the shift has to be less than the
2756    // size of the value, the shift/rotate count is guaranteed to be zero.
2757    if (VT == MVT::i1)
2758      return N1;
2759    if (N2C && N2C->isNullValue())
2760      return N1;
2761    break;
2762  case ISD::FP_ROUND_INREG: {
2763    EVT EVT = cast<VTSDNode>(N2)->getVT();
2764    assert(VT == N1.getValueType() && "Not an inreg round!");
2765    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2766           "Cannot FP_ROUND_INREG integer types");
2767    assert(EVT.isVector() == VT.isVector() &&
2768           "FP_ROUND_INREG type should be vector iff the operand "
2769           "type is vector!");
2770    assert((!EVT.isVector() ||
2771            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2772           "Vector element counts must match in FP_ROUND_INREG");
2773    assert(EVT.bitsLE(VT) && "Not rounding down!");
2774    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2775    break;
2776  }
2777  case ISD::FP_ROUND:
2778    assert(VT.isFloatingPoint() &&
2779           N1.getValueType().isFloatingPoint() &&
2780           VT.bitsLE(N1.getValueType()) &&
2781           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2782    if (N1.getValueType() == VT) return N1;  // noop conversion.
2783    break;
2784  case ISD::AssertSext:
2785  case ISD::AssertZext: {
2786    EVT EVT = cast<VTSDNode>(N2)->getVT();
2787    assert(VT == N1.getValueType() && "Not an inreg extend!");
2788    assert(VT.isInteger() && EVT.isInteger() &&
2789           "Cannot *_EXTEND_INREG FP types");
2790    assert(!EVT.isVector() &&
2791           "AssertSExt/AssertZExt type should be the vector element type "
2792           "rather than the vector type!");
2793    assert(EVT.bitsLE(VT) && "Not extending!");
2794    if (VT == EVT) return N1; // noop assertion.
2795    break;
2796  }
2797  case ISD::SIGN_EXTEND_INREG: {
2798    EVT EVT = cast<VTSDNode>(N2)->getVT();
2799    assert(VT == N1.getValueType() && "Not an inreg extend!");
2800    assert(VT.isInteger() && EVT.isInteger() &&
2801           "Cannot *_EXTEND_INREG FP types");
2802    assert(EVT.isVector() == VT.isVector() &&
2803           "SIGN_EXTEND_INREG type should be vector iff the operand "
2804           "type is vector!");
2805    assert((!EVT.isVector() ||
2806            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2807           "Vector element counts must match in SIGN_EXTEND_INREG");
2808    assert(EVT.bitsLE(VT) && "Not extending!");
2809    if (EVT == VT) return N1;  // Not actually extending
2810
2811    if (N1C) {
2812      APInt Val = N1C->getAPIntValue();
2813      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2814      Val <<= Val.getBitWidth()-FromBits;
2815      Val = Val.ashr(Val.getBitWidth()-FromBits);
2816      return getConstant(Val, VT);
2817    }
2818    break;
2819  }
2820  case ISD::EXTRACT_VECTOR_ELT:
2821    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2822    if (N1.getOpcode() == ISD::UNDEF)
2823      return getUNDEF(VT);
2824
2825    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2826    // expanding copies of large vectors from registers.
2827    if (N2C &&
2828        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2829        N1.getNumOperands() > 0) {
2830      unsigned Factor =
2831        N1.getOperand(0).getValueType().getVectorNumElements();
2832      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2833                     N1.getOperand(N2C->getZExtValue() / Factor),
2834                     getConstant(N2C->getZExtValue() % Factor,
2835                                 N2.getValueType()));
2836    }
2837
2838    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2839    // expanding large vector constants.
2840    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2841      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2842      EVT VEltTy = N1.getValueType().getVectorElementType();
2843      if (Elt.getValueType() != VEltTy) {
2844        // If the vector element type is not legal, the BUILD_VECTOR operands
2845        // are promoted and implicitly truncated.  Make that explicit here.
2846        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2847      }
2848      if (VT != VEltTy) {
2849        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2850        // result is implicitly extended.
2851        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2852      }
2853      return Elt;
2854    }
2855
2856    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2857    // operations are lowered to scalars.
2858    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2859      // If the indices are the same, return the inserted element else
2860      // if the indices are known different, extract the element from
2861      // the original vector.
2862      SDValue N1Op2 = N1.getOperand(2);
2863      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2864
2865      if (N1Op2C && N2C) {
2866        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2867          if (VT == N1.getOperand(1).getValueType())
2868            return N1.getOperand(1);
2869          else
2870            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2871        }
2872
2873        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2874      }
2875    }
2876    break;
2877  case ISD::EXTRACT_ELEMENT:
2878    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2879    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2880           (N1.getValueType().isInteger() == VT.isInteger()) &&
2881           "Wrong types for EXTRACT_ELEMENT!");
2882
2883    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2884    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2885    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2886    if (N1.getOpcode() == ISD::BUILD_PAIR)
2887      return N1.getOperand(N2C->getZExtValue());
2888
2889    // EXTRACT_ELEMENT of a constant int is also very common.
2890    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2891      unsigned ElementSize = VT.getSizeInBits();
2892      unsigned Shift = ElementSize * N2C->getZExtValue();
2893      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2894      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2895    }
2896    break;
2897  case ISD::EXTRACT_SUBVECTOR: {
2898    SDValue Index = N2;
2899    if (VT.isSimple() && N1.getValueType().isSimple()) {
2900      assert(VT.isVector() && N1.getValueType().isVector() &&
2901             "Extract subvector VTs must be a vectors!");
2902      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2903             "Extract subvector VTs must have the same element type!");
2904      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2905             "Extract subvector must be from larger vector to smaller vector!");
2906
2907      if (isa<ConstantSDNode>(Index.getNode())) {
2908        assert((VT.getVectorNumElements() +
2909                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2910                <= N1.getValueType().getVectorNumElements())
2911               && "Extract subvector overflow!");
2912      }
2913
2914      // Trivial extraction.
2915      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2916        return N1;
2917    }
2918    break;
2919  }
2920  }
2921
2922  if (N1C) {
2923    if (N2C) {
2924      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2925      if (SV.getNode()) return SV;
2926    } else {      // Cannonicalize constant to RHS if commutative
2927      if (isCommutativeBinOp(Opcode)) {
2928        std::swap(N1C, N2C);
2929        std::swap(N1, N2);
2930      }
2931    }
2932  }
2933
2934  // Constant fold FP operations.
2935  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2936  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2937  if (N1CFP) {
2938    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2939      // Cannonicalize constant to RHS if commutative
2940      std::swap(N1CFP, N2CFP);
2941      std::swap(N1, N2);
2942    } else if (N2CFP && VT != MVT::ppcf128) {
2943      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2944      APFloat::opStatus s;
2945      switch (Opcode) {
2946      case ISD::FADD:
2947        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2948        if (s != APFloat::opInvalidOp)
2949          return getConstantFP(V1, VT);
2950        break;
2951      case ISD::FSUB:
2952        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2953        if (s!=APFloat::opInvalidOp)
2954          return getConstantFP(V1, VT);
2955        break;
2956      case ISD::FMUL:
2957        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2958        if (s!=APFloat::opInvalidOp)
2959          return getConstantFP(V1, VT);
2960        break;
2961      case ISD::FDIV:
2962        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2963        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2964          return getConstantFP(V1, VT);
2965        break;
2966      case ISD::FREM :
2967        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2968        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2969          return getConstantFP(V1, VT);
2970        break;
2971      case ISD::FCOPYSIGN:
2972        V1.copySign(V2);
2973        return getConstantFP(V1, VT);
2974      default: break;
2975      }
2976    }
2977  }
2978
2979  // Canonicalize an UNDEF to the RHS, even over a constant.
2980  if (N1.getOpcode() == ISD::UNDEF) {
2981    if (isCommutativeBinOp(Opcode)) {
2982      std::swap(N1, N2);
2983    } else {
2984      switch (Opcode) {
2985      case ISD::FP_ROUND_INREG:
2986      case ISD::SIGN_EXTEND_INREG:
2987      case ISD::SUB:
2988      case ISD::FSUB:
2989      case ISD::FDIV:
2990      case ISD::FREM:
2991      case ISD::SRA:
2992        return N1;     // fold op(undef, arg2) -> undef
2993      case ISD::UDIV:
2994      case ISD::SDIV:
2995      case ISD::UREM:
2996      case ISD::SREM:
2997      case ISD::SRL:
2998      case ISD::SHL:
2999        if (!VT.isVector())
3000          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3001        // For vectors, we can't easily build an all zero vector, just return
3002        // the LHS.
3003        return N2;
3004      }
3005    }
3006  }
3007
3008  // Fold a bunch of operators when the RHS is undef.
3009  if (N2.getOpcode() == ISD::UNDEF) {
3010    switch (Opcode) {
3011    case ISD::XOR:
3012      if (N1.getOpcode() == ISD::UNDEF)
3013        // Handle undef ^ undef -> 0 special case. This is a common
3014        // idiom (misuse).
3015        return getConstant(0, VT);
3016      // fallthrough
3017    case ISD::ADD:
3018    case ISD::ADDC:
3019    case ISD::ADDE:
3020    case ISD::SUB:
3021    case ISD::UDIV:
3022    case ISD::SDIV:
3023    case ISD::UREM:
3024    case ISD::SREM:
3025      return N2;       // fold op(arg1, undef) -> undef
3026    case ISD::FADD:
3027    case ISD::FSUB:
3028    case ISD::FMUL:
3029    case ISD::FDIV:
3030    case ISD::FREM:
3031      if (UnsafeFPMath)
3032        return N2;
3033      break;
3034    case ISD::MUL:
3035    case ISD::AND:
3036    case ISD::SRL:
3037    case ISD::SHL:
3038      if (!VT.isVector())
3039        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3040      // For vectors, we can't easily build an all zero vector, just return
3041      // the LHS.
3042      return N1;
3043    case ISD::OR:
3044      if (!VT.isVector())
3045        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3046      // For vectors, we can't easily build an all one vector, just return
3047      // the LHS.
3048      return N1;
3049    case ISD::SRA:
3050      return N1;
3051    }
3052  }
3053
3054  // Memoize this node if possible.
3055  SDNode *N;
3056  SDVTList VTs = getVTList(VT);
3057  if (VT != MVT::Glue) {
3058    SDValue Ops[] = { N1, N2 };
3059    FoldingSetNodeID ID;
3060    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3061    void *IP = 0;
3062    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3063      return SDValue(E, 0);
3064
3065    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3066    CSEMap.InsertNode(N, IP);
3067  } else {
3068    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3069  }
3070
3071  AllNodes.push_back(N);
3072#ifndef NDEBUG
3073  VerifySDNode(N);
3074#endif
3075  return SDValue(N, 0);
3076}
3077
3078SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3079                              SDValue N1, SDValue N2, SDValue N3) {
3080  // Perform various simplifications.
3081  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3082  switch (Opcode) {
3083  case ISD::CONCAT_VECTORS:
3084    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3085    // one big BUILD_VECTOR.
3086    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3087        N2.getOpcode() == ISD::BUILD_VECTOR &&
3088        N3.getOpcode() == ISD::BUILD_VECTOR) {
3089      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3090                                    N1.getNode()->op_end());
3091      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3092      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3093      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3094    }
3095    break;
3096  case ISD::SETCC: {
3097    // Use FoldSetCC to simplify SETCC's.
3098    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3099    if (Simp.getNode()) return Simp;
3100    break;
3101  }
3102  case ISD::SELECT:
3103    if (N1C) {
3104     if (N1C->getZExtValue())
3105        return N2;             // select true, X, Y -> X
3106      else
3107        return N3;             // select false, X, Y -> Y
3108    }
3109
3110    if (N2 == N3) return N2;   // select C, X, X -> X
3111    break;
3112  case ISD::VECTOR_SHUFFLE:
3113    llvm_unreachable("should use getVectorShuffle constructor!");
3114    break;
3115  case ISD::INSERT_SUBVECTOR: {
3116    SDValue Index = N3;
3117    if (VT.isSimple() && N1.getValueType().isSimple()
3118        && N2.getValueType().isSimple()) {
3119      assert(VT.isVector() && N1.getValueType().isVector() &&
3120             N2.getValueType().isVector() &&
3121             "Insert subvector VTs must be a vectors");
3122      assert(VT == N1.getValueType() &&
3123             "Dest and insert subvector source types must match!");
3124      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3125             "Insert subvector must be from smaller vector to larger vector!");
3126      if (isa<ConstantSDNode>(Index.getNode())) {
3127        assert((N2.getValueType().getVectorNumElements() +
3128                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3129                <= VT.getVectorNumElements())
3130               && "Insert subvector overflow!");
3131      }
3132
3133      // Trivial insertion.
3134      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3135        return N2;
3136    }
3137    break;
3138  }
3139  case ISD::BITCAST:
3140    // Fold bit_convert nodes from a type to themselves.
3141    if (N1.getValueType() == VT)
3142      return N1;
3143    break;
3144  }
3145
3146  // Memoize node if it doesn't produce a flag.
3147  SDNode *N;
3148  SDVTList VTs = getVTList(VT);
3149  if (VT != MVT::Glue) {
3150    SDValue Ops[] = { N1, N2, N3 };
3151    FoldingSetNodeID ID;
3152    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3153    void *IP = 0;
3154    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3155      return SDValue(E, 0);
3156
3157    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3158    CSEMap.InsertNode(N, IP);
3159  } else {
3160    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3161  }
3162
3163  AllNodes.push_back(N);
3164#ifndef NDEBUG
3165  VerifySDNode(N);
3166#endif
3167  return SDValue(N, 0);
3168}
3169
3170SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3171                              SDValue N1, SDValue N2, SDValue N3,
3172                              SDValue N4) {
3173  SDValue Ops[] = { N1, N2, N3, N4 };
3174  return getNode(Opcode, DL, VT, Ops, 4);
3175}
3176
3177SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3178                              SDValue N1, SDValue N2, SDValue N3,
3179                              SDValue N4, SDValue N5) {
3180  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3181  return getNode(Opcode, DL, VT, Ops, 5);
3182}
3183
3184/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3185/// the incoming stack arguments to be loaded from the stack.
3186SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3187  SmallVector<SDValue, 8> ArgChains;
3188
3189  // Include the original chain at the beginning of the list. When this is
3190  // used by target LowerCall hooks, this helps legalize find the
3191  // CALLSEQ_BEGIN node.
3192  ArgChains.push_back(Chain);
3193
3194  // Add a chain value for each stack argument.
3195  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3196       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3197    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3198      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3199        if (FI->getIndex() < 0)
3200          ArgChains.push_back(SDValue(L, 1));
3201
3202  // Build a tokenfactor for all the chains.
3203  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3204                 &ArgChains[0], ArgChains.size());
3205}
3206
3207/// SplatByte - Distribute ByteVal over NumBits bits.
3208static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3209  APInt Val = APInt(NumBits, ByteVal);
3210  unsigned Shift = 8;
3211  for (unsigned i = NumBits; i > 8; i >>= 1) {
3212    Val = (Val << Shift) | Val;
3213    Shift <<= 1;
3214  }
3215  return Val;
3216}
3217
3218/// getMemsetValue - Vectorized representation of the memset value
3219/// operand.
3220static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3221                              DebugLoc dl) {
3222  assert(Value.getOpcode() != ISD::UNDEF);
3223
3224  unsigned NumBits = VT.getScalarType().getSizeInBits();
3225  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3226    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3227    if (VT.isInteger())
3228      return DAG.getConstant(Val, VT);
3229    return DAG.getConstantFP(APFloat(Val), VT);
3230  }
3231
3232  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3233  if (NumBits > 8) {
3234    // Use a multiplication with 0x010101... to extend the input to the
3235    // required length.
3236    APInt Magic = SplatByte(NumBits, 0x01);
3237    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3238  }
3239
3240  return Value;
3241}
3242
3243/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3244/// used when a memcpy is turned into a memset when the source is a constant
3245/// string ptr.
3246static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3247                                  const TargetLowering &TLI,
3248                                  std::string &Str, unsigned Offset) {
3249  // Handle vector with all elements zero.
3250  if (Str.empty()) {
3251    if (VT.isInteger())
3252      return DAG.getConstant(0, VT);
3253    else if (VT == MVT::f32 || VT == MVT::f64)
3254      return DAG.getConstantFP(0.0, VT);
3255    else if (VT.isVector()) {
3256      unsigned NumElts = VT.getVectorNumElements();
3257      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3258      return DAG.getNode(ISD::BITCAST, dl, VT,
3259                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3260                                                             EltVT, NumElts)));
3261    } else
3262      llvm_unreachable("Expected type!");
3263  }
3264
3265  assert(!VT.isVector() && "Can't handle vector type here!");
3266  unsigned NumBits = VT.getSizeInBits();
3267  unsigned MSB = NumBits / 8;
3268  uint64_t Val = 0;
3269  if (TLI.isLittleEndian())
3270    Offset = Offset + MSB - 1;
3271  for (unsigned i = 0; i != MSB; ++i) {
3272    Val = (Val << 8) | (unsigned char)Str[Offset];
3273    Offset += TLI.isLittleEndian() ? -1 : 1;
3274  }
3275  return DAG.getConstant(Val, VT);
3276}
3277
3278/// getMemBasePlusOffset - Returns base and offset node for the
3279///
3280static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3281                                      SelectionDAG &DAG) {
3282  EVT VT = Base.getValueType();
3283  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3284                     VT, Base, DAG.getConstant(Offset, VT));
3285}
3286
3287/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3288///
3289static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3290  unsigned SrcDelta = 0;
3291  GlobalAddressSDNode *G = NULL;
3292  if (Src.getOpcode() == ISD::GlobalAddress)
3293    G = cast<GlobalAddressSDNode>(Src);
3294  else if (Src.getOpcode() == ISD::ADD &&
3295           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3296           Src.getOperand(1).getOpcode() == ISD::Constant) {
3297    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3298    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3299  }
3300  if (!G)
3301    return false;
3302
3303  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3304  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3305    return true;
3306
3307  return false;
3308}
3309
3310/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3311/// to replace the memset / memcpy. Return true if the number of memory ops
3312/// is below the threshold. It returns the types of the sequence of
3313/// memory ops to perform memset / memcpy by reference.
3314static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3315                                     unsigned Limit, uint64_t Size,
3316                                     unsigned DstAlign, unsigned SrcAlign,
3317                                     bool NonScalarIntSafe,
3318                                     bool MemcpyStrSrc,
3319                                     SelectionDAG &DAG,
3320                                     const TargetLowering &TLI) {
3321  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3322         "Expecting memcpy / memset source to meet alignment requirement!");
3323  // If 'SrcAlign' is zero, that means the memory operation does not need load
3324  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3325  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3326  // specified alignment of the memory operation. If it is zero, that means
3327  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3328  // indicates whether the memcpy source is constant so it does not need to be
3329  // loaded.
3330  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3331                                   NonScalarIntSafe, MemcpyStrSrc,
3332                                   DAG.getMachineFunction());
3333
3334  if (VT == MVT::Other) {
3335    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3336        TLI.allowsUnalignedMemoryAccesses(VT)) {
3337      VT = TLI.getPointerTy();
3338    } else {
3339      switch (DstAlign & 7) {
3340      case 0:  VT = MVT::i64; break;
3341      case 4:  VT = MVT::i32; break;
3342      case 2:  VT = MVT::i16; break;
3343      default: VT = MVT::i8;  break;
3344      }
3345    }
3346
3347    MVT LVT = MVT::i64;
3348    while (!TLI.isTypeLegal(LVT))
3349      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3350    assert(LVT.isInteger());
3351
3352    if (VT.bitsGT(LVT))
3353      VT = LVT;
3354  }
3355
3356  unsigned NumMemOps = 0;
3357  while (Size != 0) {
3358    unsigned VTSize = VT.getSizeInBits() / 8;
3359    while (VTSize > Size) {
3360      // For now, only use non-vector load / store's for the left-over pieces.
3361      if (VT.isVector() || VT.isFloatingPoint()) {
3362        VT = MVT::i64;
3363        while (!TLI.isTypeLegal(VT))
3364          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3365        VTSize = VT.getSizeInBits() / 8;
3366      } else {
3367        // This can result in a type that is not legal on the target, e.g.
3368        // 1 or 2 bytes on PPC.
3369        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3370        VTSize >>= 1;
3371      }
3372    }
3373
3374    if (++NumMemOps > Limit)
3375      return false;
3376    MemOps.push_back(VT);
3377    Size -= VTSize;
3378  }
3379
3380  return true;
3381}
3382
3383static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3384                                       SDValue Chain, SDValue Dst,
3385                                       SDValue Src, uint64_t Size,
3386                                       unsigned Align, bool isVol,
3387                                       bool AlwaysInline,
3388                                       MachinePointerInfo DstPtrInfo,
3389                                       MachinePointerInfo SrcPtrInfo) {
3390  // Turn a memcpy of undef to nop.
3391  if (Src.getOpcode() == ISD::UNDEF)
3392    return Chain;
3393
3394  // Expand memcpy to a series of load and store ops if the size operand falls
3395  // below a certain threshold.
3396  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3397  // rather than maybe a humongous number of loads and stores.
3398  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3399  std::vector<EVT> MemOps;
3400  bool DstAlignCanChange = false;
3401  MachineFunction &MF = DAG.getMachineFunction();
3402  MachineFrameInfo *MFI = MF.getFrameInfo();
3403  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3404  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3405  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3406    DstAlignCanChange = true;
3407  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3408  if (Align > SrcAlign)
3409    SrcAlign = Align;
3410  std::string Str;
3411  bool CopyFromStr = isMemSrcFromString(Src, Str);
3412  bool isZeroStr = CopyFromStr && Str.empty();
3413  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3414
3415  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3416                                (DstAlignCanChange ? 0 : Align),
3417                                (isZeroStr ? 0 : SrcAlign),
3418                                true, CopyFromStr, DAG, TLI))
3419    return SDValue();
3420
3421  if (DstAlignCanChange) {
3422    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3423    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3424    if (NewAlign > Align) {
3425      // Give the stack frame object a larger alignment if needed.
3426      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3427        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3428      Align = NewAlign;
3429    }
3430  }
3431
3432  SmallVector<SDValue, 8> OutChains;
3433  unsigned NumMemOps = MemOps.size();
3434  uint64_t SrcOff = 0, DstOff = 0;
3435  for (unsigned i = 0; i != NumMemOps; ++i) {
3436    EVT VT = MemOps[i];
3437    unsigned VTSize = VT.getSizeInBits() / 8;
3438    SDValue Value, Store;
3439
3440    if (CopyFromStr &&
3441        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3442      // It's unlikely a store of a vector immediate can be done in a single
3443      // instruction. It would require a load from a constantpool first.
3444      // We only handle zero vectors here.
3445      // FIXME: Handle other cases where store of vector immediate is done in
3446      // a single instruction.
3447      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3448      Store = DAG.getStore(Chain, dl, Value,
3449                           getMemBasePlusOffset(Dst, DstOff, DAG),
3450                           DstPtrInfo.getWithOffset(DstOff), isVol,
3451                           false, Align);
3452    } else {
3453      // The type might not be legal for the target.  This should only happen
3454      // if the type is smaller than a legal type, as on PPC, so the right
3455      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3456      // to Load/Store if NVT==VT.
3457      // FIXME does the case above also need this?
3458      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3459      assert(NVT.bitsGE(VT));
3460      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3461                             getMemBasePlusOffset(Src, SrcOff, DAG),
3462                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3463                             MinAlign(SrcAlign, SrcOff));
3464      Store = DAG.getTruncStore(Chain, dl, Value,
3465                                getMemBasePlusOffset(Dst, DstOff, DAG),
3466                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3467                                false, Align);
3468    }
3469    OutChains.push_back(Store);
3470    SrcOff += VTSize;
3471    DstOff += VTSize;
3472  }
3473
3474  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3475                     &OutChains[0], OutChains.size());
3476}
3477
3478static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3479                                        SDValue Chain, SDValue Dst,
3480                                        SDValue Src, uint64_t Size,
3481                                        unsigned Align,  bool isVol,
3482                                        bool AlwaysInline,
3483                                        MachinePointerInfo DstPtrInfo,
3484                                        MachinePointerInfo SrcPtrInfo) {
3485  // Turn a memmove of undef to nop.
3486  if (Src.getOpcode() == ISD::UNDEF)
3487    return Chain;
3488
3489  // Expand memmove to a series of load and store ops if the size operand falls
3490  // below a certain threshold.
3491  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3492  std::vector<EVT> MemOps;
3493  bool DstAlignCanChange = false;
3494  MachineFunction &MF = DAG.getMachineFunction();
3495  MachineFrameInfo *MFI = MF.getFrameInfo();
3496  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3497  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3498  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3499    DstAlignCanChange = true;
3500  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3501  if (Align > SrcAlign)
3502    SrcAlign = Align;
3503  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3504
3505  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3506                                (DstAlignCanChange ? 0 : Align),
3507                                SrcAlign, true, false, DAG, TLI))
3508    return SDValue();
3509
3510  if (DstAlignCanChange) {
3511    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3512    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3513    if (NewAlign > Align) {
3514      // Give the stack frame object a larger alignment if needed.
3515      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3516        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3517      Align = NewAlign;
3518    }
3519  }
3520
3521  uint64_t SrcOff = 0, DstOff = 0;
3522  SmallVector<SDValue, 8> LoadValues;
3523  SmallVector<SDValue, 8> LoadChains;
3524  SmallVector<SDValue, 8> OutChains;
3525  unsigned NumMemOps = MemOps.size();
3526  for (unsigned i = 0; i < NumMemOps; i++) {
3527    EVT VT = MemOps[i];
3528    unsigned VTSize = VT.getSizeInBits() / 8;
3529    SDValue Value, Store;
3530
3531    Value = DAG.getLoad(VT, dl, Chain,
3532                        getMemBasePlusOffset(Src, SrcOff, DAG),
3533                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3534                        false, SrcAlign);
3535    LoadValues.push_back(Value);
3536    LoadChains.push_back(Value.getValue(1));
3537    SrcOff += VTSize;
3538  }
3539  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3540                      &LoadChains[0], LoadChains.size());
3541  OutChains.clear();
3542  for (unsigned i = 0; i < NumMemOps; i++) {
3543    EVT VT = MemOps[i];
3544    unsigned VTSize = VT.getSizeInBits() / 8;
3545    SDValue Value, Store;
3546
3547    Store = DAG.getStore(Chain, dl, LoadValues[i],
3548                         getMemBasePlusOffset(Dst, DstOff, DAG),
3549                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3550    OutChains.push_back(Store);
3551    DstOff += VTSize;
3552  }
3553
3554  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3555                     &OutChains[0], OutChains.size());
3556}
3557
3558static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3559                               SDValue Chain, SDValue Dst,
3560                               SDValue Src, uint64_t Size,
3561                               unsigned Align, bool isVol,
3562                               MachinePointerInfo DstPtrInfo) {
3563  // Turn a memset of undef to nop.
3564  if (Src.getOpcode() == ISD::UNDEF)
3565    return Chain;
3566
3567  // Expand memset to a series of load/store ops if the size operand
3568  // falls below a certain threshold.
3569  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3570  std::vector<EVT> MemOps;
3571  bool DstAlignCanChange = false;
3572  MachineFunction &MF = DAG.getMachineFunction();
3573  MachineFrameInfo *MFI = MF.getFrameInfo();
3574  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3575  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3576  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3577    DstAlignCanChange = true;
3578  bool NonScalarIntSafe =
3579    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3580  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3581                                Size, (DstAlignCanChange ? 0 : Align), 0,
3582                                NonScalarIntSafe, false, DAG, TLI))
3583    return SDValue();
3584
3585  if (DstAlignCanChange) {
3586    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3587    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3588    if (NewAlign > Align) {
3589      // Give the stack frame object a larger alignment if needed.
3590      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3591        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3592      Align = NewAlign;
3593    }
3594  }
3595
3596  SmallVector<SDValue, 8> OutChains;
3597  uint64_t DstOff = 0;
3598  unsigned NumMemOps = MemOps.size();
3599
3600  // Find the largest store and generate the bit pattern for it.
3601  EVT LargestVT = MemOps[0];
3602  for (unsigned i = 1; i < NumMemOps; i++)
3603    if (MemOps[i].bitsGT(LargestVT))
3604      LargestVT = MemOps[i];
3605  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3606
3607  for (unsigned i = 0; i < NumMemOps; i++) {
3608    EVT VT = MemOps[i];
3609
3610    // If this store is smaller than the largest store see whether we can get
3611    // the smaller value for free with a truncate.
3612    SDValue Value = MemSetValue;
3613    if (VT.bitsLT(LargestVT)) {
3614      if (!LargestVT.isVector() && !VT.isVector() &&
3615          TLI.isTruncateFree(LargestVT, VT))
3616        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3617      else
3618        Value = getMemsetValue(Src, VT, DAG, dl);
3619    }
3620    assert(Value.getValueType() == VT && "Value with wrong type.");
3621    SDValue Store = DAG.getStore(Chain, dl, Value,
3622                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3623                                 DstPtrInfo.getWithOffset(DstOff),
3624                                 isVol, false, Align);
3625    OutChains.push_back(Store);
3626    DstOff += VT.getSizeInBits() / 8;
3627  }
3628
3629  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3630                     &OutChains[0], OutChains.size());
3631}
3632
3633SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3634                                SDValue Src, SDValue Size,
3635                                unsigned Align, bool isVol, bool AlwaysInline,
3636                                MachinePointerInfo DstPtrInfo,
3637                                MachinePointerInfo SrcPtrInfo) {
3638
3639  // Check to see if we should lower the memcpy to loads and stores first.
3640  // For cases within the target-specified limits, this is the best choice.
3641  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3642  if (ConstantSize) {
3643    // Memcpy with size zero? Just return the original chain.
3644    if (ConstantSize->isNullValue())
3645      return Chain;
3646
3647    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3648                                             ConstantSize->getZExtValue(),Align,
3649                                isVol, false, DstPtrInfo, SrcPtrInfo);
3650    if (Result.getNode())
3651      return Result;
3652  }
3653
3654  // Then check to see if we should lower the memcpy with target-specific
3655  // code. If the target chooses to do this, this is the next best.
3656  SDValue Result =
3657    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3658                                isVol, AlwaysInline,
3659                                DstPtrInfo, SrcPtrInfo);
3660  if (Result.getNode())
3661    return Result;
3662
3663  // If we really need inline code and the target declined to provide it,
3664  // use a (potentially long) sequence of loads and stores.
3665  if (AlwaysInline) {
3666    assert(ConstantSize && "AlwaysInline requires a constant size!");
3667    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3668                                   ConstantSize->getZExtValue(), Align, isVol,
3669                                   true, DstPtrInfo, SrcPtrInfo);
3670  }
3671
3672  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3673  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3674  // respect volatile, so they may do things like read or write memory
3675  // beyond the given memory regions. But fixing this isn't easy, and most
3676  // people don't care.
3677
3678  // Emit a library call.
3679  TargetLowering::ArgListTy Args;
3680  TargetLowering::ArgListEntry Entry;
3681  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3682  Entry.Node = Dst; Args.push_back(Entry);
3683  Entry.Node = Src; Args.push_back(Entry);
3684  Entry.Node = Size; Args.push_back(Entry);
3685  // FIXME: pass in DebugLoc
3686  std::pair<SDValue,SDValue> CallResult =
3687    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3688                    false, false, false, false, 0,
3689                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3690                    /*isReturnValueUsed=*/false,
3691                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3692                                      TLI.getPointerTy()),
3693                    Args, *this, dl);
3694  return CallResult.second;
3695}
3696
3697SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3698                                 SDValue Src, SDValue Size,
3699                                 unsigned Align, bool isVol,
3700                                 MachinePointerInfo DstPtrInfo,
3701                                 MachinePointerInfo SrcPtrInfo) {
3702
3703  // Check to see if we should lower the memmove to loads and stores first.
3704  // For cases within the target-specified limits, this is the best choice.
3705  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3706  if (ConstantSize) {
3707    // Memmove with size zero? Just return the original chain.
3708    if (ConstantSize->isNullValue())
3709      return Chain;
3710
3711    SDValue Result =
3712      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3713                               ConstantSize->getZExtValue(), Align, isVol,
3714                               false, DstPtrInfo, SrcPtrInfo);
3715    if (Result.getNode())
3716      return Result;
3717  }
3718
3719  // Then check to see if we should lower the memmove with target-specific
3720  // code. If the target chooses to do this, this is the next best.
3721  SDValue Result =
3722    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3723                                 DstPtrInfo, SrcPtrInfo);
3724  if (Result.getNode())
3725    return Result;
3726
3727  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3728  // not be safe.  See memcpy above for more details.
3729
3730  // Emit a library call.
3731  TargetLowering::ArgListTy Args;
3732  TargetLowering::ArgListEntry Entry;
3733  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3734  Entry.Node = Dst; Args.push_back(Entry);
3735  Entry.Node = Src; Args.push_back(Entry);
3736  Entry.Node = Size; Args.push_back(Entry);
3737  // FIXME:  pass in DebugLoc
3738  std::pair<SDValue,SDValue> CallResult =
3739    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3740                    false, false, false, false, 0,
3741                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3742                    /*isReturnValueUsed=*/false,
3743                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3744                                      TLI.getPointerTy()),
3745                    Args, *this, dl);
3746  return CallResult.second;
3747}
3748
3749SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3750                                SDValue Src, SDValue Size,
3751                                unsigned Align, bool isVol,
3752                                MachinePointerInfo DstPtrInfo) {
3753
3754  // Check to see if we should lower the memset to stores first.
3755  // For cases within the target-specified limits, this is the best choice.
3756  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3757  if (ConstantSize) {
3758    // Memset with size zero? Just return the original chain.
3759    if (ConstantSize->isNullValue())
3760      return Chain;
3761
3762    SDValue Result =
3763      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3764                      Align, isVol, DstPtrInfo);
3765
3766    if (Result.getNode())
3767      return Result;
3768  }
3769
3770  // Then check to see if we should lower the memset with target-specific
3771  // code. If the target chooses to do this, this is the next best.
3772  SDValue Result =
3773    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3774                                DstPtrInfo);
3775  if (Result.getNode())
3776    return Result;
3777
3778  // Emit a library call.
3779  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3780  TargetLowering::ArgListTy Args;
3781  TargetLowering::ArgListEntry Entry;
3782  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3783  Args.push_back(Entry);
3784  // Extend or truncate the argument to be an i32 value for the call.
3785  if (Src.getValueType().bitsGT(MVT::i32))
3786    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3787  else
3788    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3789  Entry.Node = Src;
3790  Entry.Ty = Type::getInt32Ty(*getContext());
3791  Entry.isSExt = true;
3792  Args.push_back(Entry);
3793  Entry.Node = Size;
3794  Entry.Ty = IntPtrTy;
3795  Entry.isSExt = false;
3796  Args.push_back(Entry);
3797  // FIXME: pass in DebugLoc
3798  std::pair<SDValue,SDValue> CallResult =
3799    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3800                    false, false, false, false, 0,
3801                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3802                    /*isReturnValueUsed=*/false,
3803                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3804                                      TLI.getPointerTy()),
3805                    Args, *this, dl);
3806  return CallResult.second;
3807}
3808
3809SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3810                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3811                                SDValue Swp, MachinePointerInfo PtrInfo,
3812                                unsigned Alignment) {
3813  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3814    Alignment = getEVTAlignment(MemVT);
3815
3816  MachineFunction &MF = getMachineFunction();
3817  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3818
3819  // For now, atomics are considered to be volatile always.
3820  Flags |= MachineMemOperand::MOVolatile;
3821
3822  MachineMemOperand *MMO =
3823    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3824
3825  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3826}
3827
3828SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3829                                SDValue Chain,
3830                                SDValue Ptr, SDValue Cmp,
3831                                SDValue Swp, MachineMemOperand *MMO) {
3832  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3833  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3834
3835  EVT VT = Cmp.getValueType();
3836
3837  SDVTList VTs = getVTList(VT, MVT::Other);
3838  FoldingSetNodeID ID;
3839  ID.AddInteger(MemVT.getRawBits());
3840  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3841  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3842  void* IP = 0;
3843  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3844    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3845    return SDValue(E, 0);
3846  }
3847  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3848                                               Ptr, Cmp, Swp, MMO);
3849  CSEMap.InsertNode(N, IP);
3850  AllNodes.push_back(N);
3851  return SDValue(N, 0);
3852}
3853
3854SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3855                                SDValue Chain,
3856                                SDValue Ptr, SDValue Val,
3857                                const Value* PtrVal,
3858                                unsigned Alignment) {
3859  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3860    Alignment = getEVTAlignment(MemVT);
3861
3862  MachineFunction &MF = getMachineFunction();
3863  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3864
3865  // For now, atomics are considered to be volatile always.
3866  Flags |= MachineMemOperand::MOVolatile;
3867
3868  MachineMemOperand *MMO =
3869    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3870                            MemVT.getStoreSize(), Alignment);
3871
3872  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3873}
3874
3875SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3876                                SDValue Chain,
3877                                SDValue Ptr, SDValue Val,
3878                                MachineMemOperand *MMO) {
3879  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3880          Opcode == ISD::ATOMIC_LOAD_SUB ||
3881          Opcode == ISD::ATOMIC_LOAD_AND ||
3882          Opcode == ISD::ATOMIC_LOAD_OR ||
3883          Opcode == ISD::ATOMIC_LOAD_XOR ||
3884          Opcode == ISD::ATOMIC_LOAD_NAND ||
3885          Opcode == ISD::ATOMIC_LOAD_MIN ||
3886          Opcode == ISD::ATOMIC_LOAD_MAX ||
3887          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3888          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3889          Opcode == ISD::ATOMIC_SWAP) &&
3890         "Invalid Atomic Op");
3891
3892  EVT VT = Val.getValueType();
3893
3894  SDVTList VTs = getVTList(VT, MVT::Other);
3895  FoldingSetNodeID ID;
3896  ID.AddInteger(MemVT.getRawBits());
3897  SDValue Ops[] = {Chain, Ptr, Val};
3898  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3899  void* IP = 0;
3900  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3901    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3902    return SDValue(E, 0);
3903  }
3904  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3905                                               Ptr, Val, MMO);
3906  CSEMap.InsertNode(N, IP);
3907  AllNodes.push_back(N);
3908  return SDValue(N, 0);
3909}
3910
3911/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3912SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3913                                     DebugLoc dl) {
3914  if (NumOps == 1)
3915    return Ops[0];
3916
3917  SmallVector<EVT, 4> VTs;
3918  VTs.reserve(NumOps);
3919  for (unsigned i = 0; i < NumOps; ++i)
3920    VTs.push_back(Ops[i].getValueType());
3921  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3922                 Ops, NumOps);
3923}
3924
3925SDValue
3926SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3927                                  const EVT *VTs, unsigned NumVTs,
3928                                  const SDValue *Ops, unsigned NumOps,
3929                                  EVT MemVT, MachinePointerInfo PtrInfo,
3930                                  unsigned Align, bool Vol,
3931                                  bool ReadMem, bool WriteMem) {
3932  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3933                             MemVT, PtrInfo, Align, Vol,
3934                             ReadMem, WriteMem);
3935}
3936
3937SDValue
3938SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3939                                  const SDValue *Ops, unsigned NumOps,
3940                                  EVT MemVT, MachinePointerInfo PtrInfo,
3941                                  unsigned Align, bool Vol,
3942                                  bool ReadMem, bool WriteMem) {
3943  if (Align == 0)  // Ensure that codegen never sees alignment 0
3944    Align = getEVTAlignment(MemVT);
3945
3946  MachineFunction &MF = getMachineFunction();
3947  unsigned Flags = 0;
3948  if (WriteMem)
3949    Flags |= MachineMemOperand::MOStore;
3950  if (ReadMem)
3951    Flags |= MachineMemOperand::MOLoad;
3952  if (Vol)
3953    Flags |= MachineMemOperand::MOVolatile;
3954  MachineMemOperand *MMO =
3955    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3956
3957  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3958}
3959
3960SDValue
3961SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3962                                  const SDValue *Ops, unsigned NumOps,
3963                                  EVT MemVT, MachineMemOperand *MMO) {
3964  assert((Opcode == ISD::INTRINSIC_VOID ||
3965          Opcode == ISD::INTRINSIC_W_CHAIN ||
3966          Opcode == ISD::PREFETCH ||
3967          (Opcode <= INT_MAX &&
3968           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3969         "Opcode is not a memory-accessing opcode!");
3970
3971  // Memoize the node unless it returns a flag.
3972  MemIntrinsicSDNode *N;
3973  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
3974    FoldingSetNodeID ID;
3975    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3976    void *IP = 0;
3977    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3978      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3979      return SDValue(E, 0);
3980    }
3981
3982    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3983                                               MemVT, MMO);
3984    CSEMap.InsertNode(N, IP);
3985  } else {
3986    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3987                                               MemVT, MMO);
3988  }
3989  AllNodes.push_back(N);
3990  return SDValue(N, 0);
3991}
3992
3993/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3994/// MachinePointerInfo record from it.  This is particularly useful because the
3995/// code generator has many cases where it doesn't bother passing in a
3996/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3997static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
3998  // If this is FI+Offset, we can model it.
3999  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4000    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4001
4002  // If this is (FI+Offset1)+Offset2, we can model it.
4003  if (Ptr.getOpcode() != ISD::ADD ||
4004      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4005      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4006    return MachinePointerInfo();
4007
4008  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4009  return MachinePointerInfo::getFixedStack(FI, Offset+
4010                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4011}
4012
4013/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4014/// MachinePointerInfo record from it.  This is particularly useful because the
4015/// code generator has many cases where it doesn't bother passing in a
4016/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4017static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4018  // If the 'Offset' value isn't a constant, we can't handle this.
4019  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4020    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4021  if (OffsetOp.getOpcode() == ISD::UNDEF)
4022    return InferPointerInfo(Ptr);
4023  return MachinePointerInfo();
4024}
4025
4026
4027SDValue
4028SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4029                      EVT VT, DebugLoc dl, SDValue Chain,
4030                      SDValue Ptr, SDValue Offset,
4031                      MachinePointerInfo PtrInfo, EVT MemVT,
4032                      bool isVolatile, bool isNonTemporal,
4033                      unsigned Alignment, const MDNode *TBAAInfo) {
4034  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4035    Alignment = getEVTAlignment(VT);
4036
4037  unsigned Flags = MachineMemOperand::MOLoad;
4038  if (isVolatile)
4039    Flags |= MachineMemOperand::MOVolatile;
4040  if (isNonTemporal)
4041    Flags |= MachineMemOperand::MONonTemporal;
4042
4043  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4044  // clients.
4045  if (PtrInfo.V == 0)
4046    PtrInfo = InferPointerInfo(Ptr, Offset);
4047
4048  MachineFunction &MF = getMachineFunction();
4049  MachineMemOperand *MMO =
4050    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4051                            TBAAInfo);
4052  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4053}
4054
4055SDValue
4056SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4057                      EVT VT, DebugLoc dl, SDValue Chain,
4058                      SDValue Ptr, SDValue Offset, EVT MemVT,
4059                      MachineMemOperand *MMO) {
4060  if (VT == MemVT) {
4061    ExtType = ISD::NON_EXTLOAD;
4062  } else if (ExtType == ISD::NON_EXTLOAD) {
4063    assert(VT == MemVT && "Non-extending load from different memory type!");
4064  } else {
4065    // Extending load.
4066    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4067           "Should only be an extending load, not truncating!");
4068    assert(VT.isInteger() == MemVT.isInteger() &&
4069           "Cannot convert from FP to Int or Int -> FP!");
4070    assert(VT.isVector() == MemVT.isVector() &&
4071           "Cannot use trunc store to convert to or from a vector!");
4072    assert((!VT.isVector() ||
4073            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4074           "Cannot use trunc store to change the number of vector elements!");
4075  }
4076
4077  bool Indexed = AM != ISD::UNINDEXED;
4078  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4079         "Unindexed load with an offset!");
4080
4081  SDVTList VTs = Indexed ?
4082    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4083  SDValue Ops[] = { Chain, Ptr, Offset };
4084  FoldingSetNodeID ID;
4085  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4086  ID.AddInteger(MemVT.getRawBits());
4087  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4088                                     MMO->isNonTemporal()));
4089  void *IP = 0;
4090  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4091    cast<LoadSDNode>(E)->refineAlignment(MMO);
4092    return SDValue(E, 0);
4093  }
4094  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4095                                             MemVT, MMO);
4096  CSEMap.InsertNode(N, IP);
4097  AllNodes.push_back(N);
4098  return SDValue(N, 0);
4099}
4100
4101SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4102                              SDValue Chain, SDValue Ptr,
4103                              MachinePointerInfo PtrInfo,
4104                              bool isVolatile, bool isNonTemporal,
4105                              unsigned Alignment, const MDNode *TBAAInfo) {
4106  SDValue Undef = getUNDEF(Ptr.getValueType());
4107  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4108                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4109}
4110
4111SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4112                                 SDValue Chain, SDValue Ptr,
4113                                 MachinePointerInfo PtrInfo, EVT MemVT,
4114                                 bool isVolatile, bool isNonTemporal,
4115                                 unsigned Alignment, const MDNode *TBAAInfo) {
4116  SDValue Undef = getUNDEF(Ptr.getValueType());
4117  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4118                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4119                 TBAAInfo);
4120}
4121
4122
4123SDValue
4124SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4125                             SDValue Offset, ISD::MemIndexedMode AM) {
4126  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4127  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4128         "Load is already a indexed load!");
4129  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4130                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4131                 LD->getMemoryVT(),
4132                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4133}
4134
4135SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4136                               SDValue Ptr, MachinePointerInfo PtrInfo,
4137                               bool isVolatile, bool isNonTemporal,
4138                               unsigned Alignment, const MDNode *TBAAInfo) {
4139  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4140    Alignment = getEVTAlignment(Val.getValueType());
4141
4142  unsigned Flags = MachineMemOperand::MOStore;
4143  if (isVolatile)
4144    Flags |= MachineMemOperand::MOVolatile;
4145  if (isNonTemporal)
4146    Flags |= MachineMemOperand::MONonTemporal;
4147
4148  if (PtrInfo.V == 0)
4149    PtrInfo = InferPointerInfo(Ptr);
4150
4151  MachineFunction &MF = getMachineFunction();
4152  MachineMemOperand *MMO =
4153    MF.getMachineMemOperand(PtrInfo, Flags,
4154                            Val.getValueType().getStoreSize(), Alignment,
4155                            TBAAInfo);
4156
4157  return getStore(Chain, dl, Val, Ptr, MMO);
4158}
4159
4160SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4161                               SDValue Ptr, MachineMemOperand *MMO) {
4162  EVT VT = Val.getValueType();
4163  SDVTList VTs = getVTList(MVT::Other);
4164  SDValue Undef = getUNDEF(Ptr.getValueType());
4165  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4166  FoldingSetNodeID ID;
4167  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4168  ID.AddInteger(VT.getRawBits());
4169  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4170                                     MMO->isNonTemporal()));
4171  void *IP = 0;
4172  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4173    cast<StoreSDNode>(E)->refineAlignment(MMO);
4174    return SDValue(E, 0);
4175  }
4176  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4177                                              false, VT, MMO);
4178  CSEMap.InsertNode(N, IP);
4179  AllNodes.push_back(N);
4180  return SDValue(N, 0);
4181}
4182
4183SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4184                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4185                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4186                                    unsigned Alignment,
4187                                    const MDNode *TBAAInfo) {
4188  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4189    Alignment = getEVTAlignment(SVT);
4190
4191  unsigned Flags = MachineMemOperand::MOStore;
4192  if (isVolatile)
4193    Flags |= MachineMemOperand::MOVolatile;
4194  if (isNonTemporal)
4195    Flags |= MachineMemOperand::MONonTemporal;
4196
4197  if (PtrInfo.V == 0)
4198    PtrInfo = InferPointerInfo(Ptr);
4199
4200  MachineFunction &MF = getMachineFunction();
4201  MachineMemOperand *MMO =
4202    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4203                            TBAAInfo);
4204
4205  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4206}
4207
4208SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4209                                    SDValue Ptr, EVT SVT,
4210                                    MachineMemOperand *MMO) {
4211  EVT VT = Val.getValueType();
4212
4213  if (VT == SVT)
4214    return getStore(Chain, dl, Val, Ptr, MMO);
4215
4216  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4217         "Should only be a truncating store, not extending!");
4218  assert(VT.isInteger() == SVT.isInteger() &&
4219         "Can't do FP-INT conversion!");
4220  assert(VT.isVector() == SVT.isVector() &&
4221         "Cannot use trunc store to convert to or from a vector!");
4222  assert((!VT.isVector() ||
4223          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4224         "Cannot use trunc store to change the number of vector elements!");
4225
4226  SDVTList VTs = getVTList(MVT::Other);
4227  SDValue Undef = getUNDEF(Ptr.getValueType());
4228  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4229  FoldingSetNodeID ID;
4230  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4231  ID.AddInteger(SVT.getRawBits());
4232  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4233                                     MMO->isNonTemporal()));
4234  void *IP = 0;
4235  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4236    cast<StoreSDNode>(E)->refineAlignment(MMO);
4237    return SDValue(E, 0);
4238  }
4239  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4240                                              true, SVT, MMO);
4241  CSEMap.InsertNode(N, IP);
4242  AllNodes.push_back(N);
4243  return SDValue(N, 0);
4244}
4245
4246SDValue
4247SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4248                              SDValue Offset, ISD::MemIndexedMode AM) {
4249  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4250  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4251         "Store is already a indexed store!");
4252  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4253  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4254  FoldingSetNodeID ID;
4255  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4256  ID.AddInteger(ST->getMemoryVT().getRawBits());
4257  ID.AddInteger(ST->getRawSubclassData());
4258  void *IP = 0;
4259  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4260    return SDValue(E, 0);
4261
4262  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4263                                              ST->isTruncatingStore(),
4264                                              ST->getMemoryVT(),
4265                                              ST->getMemOperand());
4266  CSEMap.InsertNode(N, IP);
4267  AllNodes.push_back(N);
4268  return SDValue(N, 0);
4269}
4270
4271SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4272                               SDValue Chain, SDValue Ptr,
4273                               SDValue SV,
4274                               unsigned Align) {
4275  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4276  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4277}
4278
4279SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4280                              const SDUse *Ops, unsigned NumOps) {
4281  switch (NumOps) {
4282  case 0: return getNode(Opcode, DL, VT);
4283  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4284  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4285  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4286  default: break;
4287  }
4288
4289  // Copy from an SDUse array into an SDValue array for use with
4290  // the regular getNode logic.
4291  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4292  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4293}
4294
4295SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4296                              const SDValue *Ops, unsigned NumOps) {
4297  switch (NumOps) {
4298  case 0: return getNode(Opcode, DL, VT);
4299  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4300  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4301  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4302  default: break;
4303  }
4304
4305  switch (Opcode) {
4306  default: break;
4307  case ISD::SELECT_CC: {
4308    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4309    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4310           "LHS and RHS of condition must have same type!");
4311    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4312           "True and False arms of SelectCC must have same type!");
4313    assert(Ops[2].getValueType() == VT &&
4314           "select_cc node must be of same type as true and false value!");
4315    break;
4316  }
4317  case ISD::BR_CC: {
4318    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4319    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4320           "LHS/RHS of comparison should match types!");
4321    break;
4322  }
4323  }
4324
4325  // Memoize nodes.
4326  SDNode *N;
4327  SDVTList VTs = getVTList(VT);
4328
4329  if (VT != MVT::Glue) {
4330    FoldingSetNodeID ID;
4331    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4332    void *IP = 0;
4333
4334    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4335      return SDValue(E, 0);
4336
4337    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4338    CSEMap.InsertNode(N, IP);
4339  } else {
4340    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4341  }
4342
4343  AllNodes.push_back(N);
4344#ifndef NDEBUG
4345  VerifySDNode(N);
4346#endif
4347  return SDValue(N, 0);
4348}
4349
4350SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4351                              const std::vector<EVT> &ResultTys,
4352                              const SDValue *Ops, unsigned NumOps) {
4353  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4354                 Ops, NumOps);
4355}
4356
4357SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4358                              const EVT *VTs, unsigned NumVTs,
4359                              const SDValue *Ops, unsigned NumOps) {
4360  if (NumVTs == 1)
4361    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4362  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4363}
4364
4365SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4366                              const SDValue *Ops, unsigned NumOps) {
4367  if (VTList.NumVTs == 1)
4368    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4369
4370#if 0
4371  switch (Opcode) {
4372  // FIXME: figure out how to safely handle things like
4373  // int foo(int x) { return 1 << (x & 255); }
4374  // int bar() { return foo(256); }
4375  case ISD::SRA_PARTS:
4376  case ISD::SRL_PARTS:
4377  case ISD::SHL_PARTS:
4378    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4379        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4380      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4381    else if (N3.getOpcode() == ISD::AND)
4382      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4383        // If the and is only masking out bits that cannot effect the shift,
4384        // eliminate the and.
4385        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4386        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4387          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4388      }
4389    break;
4390  }
4391#endif
4392
4393  // Memoize the node unless it returns a flag.
4394  SDNode *N;
4395  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4396    FoldingSetNodeID ID;
4397    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4398    void *IP = 0;
4399    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4400      return SDValue(E, 0);
4401
4402    if (NumOps == 1) {
4403      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4404    } else if (NumOps == 2) {
4405      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4406    } else if (NumOps == 3) {
4407      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4408                                            Ops[2]);
4409    } else {
4410      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4411    }
4412    CSEMap.InsertNode(N, IP);
4413  } else {
4414    if (NumOps == 1) {
4415      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4416    } else if (NumOps == 2) {
4417      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4418    } else if (NumOps == 3) {
4419      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4420                                            Ops[2]);
4421    } else {
4422      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4423    }
4424  }
4425  AllNodes.push_back(N);
4426#ifndef NDEBUG
4427  VerifySDNode(N);
4428#endif
4429  return SDValue(N, 0);
4430}
4431
4432SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4433  return getNode(Opcode, DL, VTList, 0, 0);
4434}
4435
4436SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4437                              SDValue N1) {
4438  SDValue Ops[] = { N1 };
4439  return getNode(Opcode, DL, VTList, Ops, 1);
4440}
4441
4442SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4443                              SDValue N1, SDValue N2) {
4444  SDValue Ops[] = { N1, N2 };
4445  return getNode(Opcode, DL, VTList, Ops, 2);
4446}
4447
4448SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4449                              SDValue N1, SDValue N2, SDValue N3) {
4450  SDValue Ops[] = { N1, N2, N3 };
4451  return getNode(Opcode, DL, VTList, Ops, 3);
4452}
4453
4454SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4455                              SDValue N1, SDValue N2, SDValue N3,
4456                              SDValue N4) {
4457  SDValue Ops[] = { N1, N2, N3, N4 };
4458  return getNode(Opcode, DL, VTList, Ops, 4);
4459}
4460
4461SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4462                              SDValue N1, SDValue N2, SDValue N3,
4463                              SDValue N4, SDValue N5) {
4464  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4465  return getNode(Opcode, DL, VTList, Ops, 5);
4466}
4467
4468SDVTList SelectionDAG::getVTList(EVT VT) {
4469  return makeVTList(SDNode::getValueTypeList(VT), 1);
4470}
4471
4472SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4473  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4474       E = VTList.rend(); I != E; ++I)
4475    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4476      return *I;
4477
4478  EVT *Array = Allocator.Allocate<EVT>(2);
4479  Array[0] = VT1;
4480  Array[1] = VT2;
4481  SDVTList Result = makeVTList(Array, 2);
4482  VTList.push_back(Result);
4483  return Result;
4484}
4485
4486SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4487  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4488       E = VTList.rend(); I != E; ++I)
4489    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4490                          I->VTs[2] == VT3)
4491      return *I;
4492
4493  EVT *Array = Allocator.Allocate<EVT>(3);
4494  Array[0] = VT1;
4495  Array[1] = VT2;
4496  Array[2] = VT3;
4497  SDVTList Result = makeVTList(Array, 3);
4498  VTList.push_back(Result);
4499  return Result;
4500}
4501
4502SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4503  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4504       E = VTList.rend(); I != E; ++I)
4505    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4506                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4507      return *I;
4508
4509  EVT *Array = Allocator.Allocate<EVT>(4);
4510  Array[0] = VT1;
4511  Array[1] = VT2;
4512  Array[2] = VT3;
4513  Array[3] = VT4;
4514  SDVTList Result = makeVTList(Array, 4);
4515  VTList.push_back(Result);
4516  return Result;
4517}
4518
4519SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4520  switch (NumVTs) {
4521    case 0: llvm_unreachable("Cannot have nodes without results!");
4522    case 1: return getVTList(VTs[0]);
4523    case 2: return getVTList(VTs[0], VTs[1]);
4524    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4525    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4526    default: break;
4527  }
4528
4529  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4530       E = VTList.rend(); I != E; ++I) {
4531    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4532      continue;
4533
4534    bool NoMatch = false;
4535    for (unsigned i = 2; i != NumVTs; ++i)
4536      if (VTs[i] != I->VTs[i]) {
4537        NoMatch = true;
4538        break;
4539      }
4540    if (!NoMatch)
4541      return *I;
4542  }
4543
4544  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4545  std::copy(VTs, VTs+NumVTs, Array);
4546  SDVTList Result = makeVTList(Array, NumVTs);
4547  VTList.push_back(Result);
4548  return Result;
4549}
4550
4551
4552/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4553/// specified operands.  If the resultant node already exists in the DAG,
4554/// this does not modify the specified node, instead it returns the node that
4555/// already exists.  If the resultant node does not exist in the DAG, the
4556/// input node is returned.  As a degenerate case, if you specify the same
4557/// input operands as the node already has, the input node is returned.
4558SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4559  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4560
4561  // Check to see if there is no change.
4562  if (Op == N->getOperand(0)) return N;
4563
4564  // See if the modified node already exists.
4565  void *InsertPos = 0;
4566  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4567    return Existing;
4568
4569  // Nope it doesn't.  Remove the node from its current place in the maps.
4570  if (InsertPos)
4571    if (!RemoveNodeFromCSEMaps(N))
4572      InsertPos = 0;
4573
4574  // Now we update the operands.
4575  N->OperandList[0].set(Op);
4576
4577  // If this gets put into a CSE map, add it.
4578  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4579  return N;
4580}
4581
4582SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4583  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4584
4585  // Check to see if there is no change.
4586  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4587    return N;   // No operands changed, just return the input node.
4588
4589  // See if the modified node already exists.
4590  void *InsertPos = 0;
4591  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4592    return Existing;
4593
4594  // Nope it doesn't.  Remove the node from its current place in the maps.
4595  if (InsertPos)
4596    if (!RemoveNodeFromCSEMaps(N))
4597      InsertPos = 0;
4598
4599  // Now we update the operands.
4600  if (N->OperandList[0] != Op1)
4601    N->OperandList[0].set(Op1);
4602  if (N->OperandList[1] != Op2)
4603    N->OperandList[1].set(Op2);
4604
4605  // If this gets put into a CSE map, add it.
4606  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4607  return N;
4608}
4609
4610SDNode *SelectionDAG::
4611UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4612  SDValue Ops[] = { Op1, Op2, Op3 };
4613  return UpdateNodeOperands(N, Ops, 3);
4614}
4615
4616SDNode *SelectionDAG::
4617UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4618                   SDValue Op3, SDValue Op4) {
4619  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4620  return UpdateNodeOperands(N, Ops, 4);
4621}
4622
4623SDNode *SelectionDAG::
4624UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4625                   SDValue Op3, SDValue Op4, SDValue Op5) {
4626  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4627  return UpdateNodeOperands(N, Ops, 5);
4628}
4629
4630SDNode *SelectionDAG::
4631UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4632  assert(N->getNumOperands() == NumOps &&
4633         "Update with wrong number of operands");
4634
4635  // Check to see if there is no change.
4636  bool AnyChange = false;
4637  for (unsigned i = 0; i != NumOps; ++i) {
4638    if (Ops[i] != N->getOperand(i)) {
4639      AnyChange = true;
4640      break;
4641    }
4642  }
4643
4644  // No operands changed, just return the input node.
4645  if (!AnyChange) return N;
4646
4647  // See if the modified node already exists.
4648  void *InsertPos = 0;
4649  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4650    return Existing;
4651
4652  // Nope it doesn't.  Remove the node from its current place in the maps.
4653  if (InsertPos)
4654    if (!RemoveNodeFromCSEMaps(N))
4655      InsertPos = 0;
4656
4657  // Now we update the operands.
4658  for (unsigned i = 0; i != NumOps; ++i)
4659    if (N->OperandList[i] != Ops[i])
4660      N->OperandList[i].set(Ops[i]);
4661
4662  // If this gets put into a CSE map, add it.
4663  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4664  return N;
4665}
4666
4667/// DropOperands - Release the operands and set this node to have
4668/// zero operands.
4669void SDNode::DropOperands() {
4670  // Unlike the code in MorphNodeTo that does this, we don't need to
4671  // watch for dead nodes here.
4672  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4673    SDUse &Use = *I++;
4674    Use.set(SDValue());
4675  }
4676}
4677
4678/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4679/// machine opcode.
4680///
4681SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4682                                   EVT VT) {
4683  SDVTList VTs = getVTList(VT);
4684  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4685}
4686
4687SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4688                                   EVT VT, SDValue Op1) {
4689  SDVTList VTs = getVTList(VT);
4690  SDValue Ops[] = { Op1 };
4691  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4692}
4693
4694SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4695                                   EVT VT, SDValue Op1,
4696                                   SDValue Op2) {
4697  SDVTList VTs = getVTList(VT);
4698  SDValue Ops[] = { Op1, Op2 };
4699  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4700}
4701
4702SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4703                                   EVT VT, SDValue Op1,
4704                                   SDValue Op2, SDValue Op3) {
4705  SDVTList VTs = getVTList(VT);
4706  SDValue Ops[] = { Op1, Op2, Op3 };
4707  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4708}
4709
4710SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4711                                   EVT VT, const SDValue *Ops,
4712                                   unsigned NumOps) {
4713  SDVTList VTs = getVTList(VT);
4714  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4715}
4716
4717SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4718                                   EVT VT1, EVT VT2, const SDValue *Ops,
4719                                   unsigned NumOps) {
4720  SDVTList VTs = getVTList(VT1, VT2);
4721  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4722}
4723
4724SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4725                                   EVT VT1, EVT VT2) {
4726  SDVTList VTs = getVTList(VT1, VT2);
4727  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4728}
4729
4730SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4731                                   EVT VT1, EVT VT2, EVT VT3,
4732                                   const SDValue *Ops, unsigned NumOps) {
4733  SDVTList VTs = getVTList(VT1, VT2, VT3);
4734  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4735}
4736
4737SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4738                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4739                                   const SDValue *Ops, unsigned NumOps) {
4740  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4741  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4742}
4743
4744SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4745                                   EVT VT1, EVT VT2,
4746                                   SDValue Op1) {
4747  SDVTList VTs = getVTList(VT1, VT2);
4748  SDValue Ops[] = { Op1 };
4749  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4750}
4751
4752SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4753                                   EVT VT1, EVT VT2,
4754                                   SDValue Op1, SDValue Op2) {
4755  SDVTList VTs = getVTList(VT1, VT2);
4756  SDValue Ops[] = { Op1, Op2 };
4757  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4758}
4759
4760SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4761                                   EVT VT1, EVT VT2,
4762                                   SDValue Op1, SDValue Op2,
4763                                   SDValue Op3) {
4764  SDVTList VTs = getVTList(VT1, VT2);
4765  SDValue Ops[] = { Op1, Op2, Op3 };
4766  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4767}
4768
4769SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4770                                   EVT VT1, EVT VT2, EVT VT3,
4771                                   SDValue Op1, SDValue Op2,
4772                                   SDValue Op3) {
4773  SDVTList VTs = getVTList(VT1, VT2, VT3);
4774  SDValue Ops[] = { Op1, Op2, Op3 };
4775  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4776}
4777
4778SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4779                                   SDVTList VTs, const SDValue *Ops,
4780                                   unsigned NumOps) {
4781  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4782  // Reset the NodeID to -1.
4783  N->setNodeId(-1);
4784  return N;
4785}
4786
4787/// MorphNodeTo - This *mutates* the specified node to have the specified
4788/// return type, opcode, and operands.
4789///
4790/// Note that MorphNodeTo returns the resultant node.  If there is already a
4791/// node of the specified opcode and operands, it returns that node instead of
4792/// the current one.  Note that the DebugLoc need not be the same.
4793///
4794/// Using MorphNodeTo is faster than creating a new node and swapping it in
4795/// with ReplaceAllUsesWith both because it often avoids allocating a new
4796/// node, and because it doesn't require CSE recalculation for any of
4797/// the node's users.
4798///
4799SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4800                                  SDVTList VTs, const SDValue *Ops,
4801                                  unsigned NumOps) {
4802  // If an identical node already exists, use it.
4803  void *IP = 0;
4804  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4805    FoldingSetNodeID ID;
4806    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4807    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4808      return ON;
4809  }
4810
4811  if (!RemoveNodeFromCSEMaps(N))
4812    IP = 0;
4813
4814  // Start the morphing.
4815  N->NodeType = Opc;
4816  N->ValueList = VTs.VTs;
4817  N->NumValues = VTs.NumVTs;
4818
4819  // Clear the operands list, updating used nodes to remove this from their
4820  // use list.  Keep track of any operands that become dead as a result.
4821  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4822  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4823    SDUse &Use = *I++;
4824    SDNode *Used = Use.getNode();
4825    Use.set(SDValue());
4826    if (Used->use_empty())
4827      DeadNodeSet.insert(Used);
4828  }
4829
4830  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4831    // Initialize the memory references information.
4832    MN->setMemRefs(0, 0);
4833    // If NumOps is larger than the # of operands we can have in a
4834    // MachineSDNode, reallocate the operand list.
4835    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4836      if (MN->OperandsNeedDelete)
4837        delete[] MN->OperandList;
4838      if (NumOps > array_lengthof(MN->LocalOperands))
4839        // We're creating a final node that will live unmorphed for the
4840        // remainder of the current SelectionDAG iteration, so we can allocate
4841        // the operands directly out of a pool with no recycling metadata.
4842        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4843                         Ops, NumOps);
4844      else
4845        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4846      MN->OperandsNeedDelete = false;
4847    } else
4848      MN->InitOperands(MN->OperandList, Ops, NumOps);
4849  } else {
4850    // If NumOps is larger than the # of operands we currently have, reallocate
4851    // the operand list.
4852    if (NumOps > N->NumOperands) {
4853      if (N->OperandsNeedDelete)
4854        delete[] N->OperandList;
4855      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4856      N->OperandsNeedDelete = true;
4857    } else
4858      N->InitOperands(N->OperandList, Ops, NumOps);
4859  }
4860
4861  // Delete any nodes that are still dead after adding the uses for the
4862  // new operands.
4863  if (!DeadNodeSet.empty()) {
4864    SmallVector<SDNode *, 16> DeadNodes;
4865    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4866         E = DeadNodeSet.end(); I != E; ++I)
4867      if ((*I)->use_empty())
4868        DeadNodes.push_back(*I);
4869    RemoveDeadNodes(DeadNodes);
4870  }
4871
4872  if (IP)
4873    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4874  return N;
4875}
4876
4877
4878/// getMachineNode - These are used for target selectors to create a new node
4879/// with specified return type(s), MachineInstr opcode, and operands.
4880///
4881/// Note that getMachineNode returns the resultant node.  If there is already a
4882/// node of the specified opcode and operands, it returns that node instead of
4883/// the current one.
4884MachineSDNode *
4885SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4886  SDVTList VTs = getVTList(VT);
4887  return getMachineNode(Opcode, dl, VTs, 0, 0);
4888}
4889
4890MachineSDNode *
4891SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4892  SDVTList VTs = getVTList(VT);
4893  SDValue Ops[] = { Op1 };
4894  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4895}
4896
4897MachineSDNode *
4898SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4899                             SDValue Op1, SDValue Op2) {
4900  SDVTList VTs = getVTList(VT);
4901  SDValue Ops[] = { Op1, Op2 };
4902  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4903}
4904
4905MachineSDNode *
4906SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4907                             SDValue Op1, SDValue Op2, SDValue Op3) {
4908  SDVTList VTs = getVTList(VT);
4909  SDValue Ops[] = { Op1, Op2, Op3 };
4910  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4911}
4912
4913MachineSDNode *
4914SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4915                             const SDValue *Ops, unsigned NumOps) {
4916  SDVTList VTs = getVTList(VT);
4917  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4918}
4919
4920MachineSDNode *
4921SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4922  SDVTList VTs = getVTList(VT1, VT2);
4923  return getMachineNode(Opcode, dl, VTs, 0, 0);
4924}
4925
4926MachineSDNode *
4927SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4928                             EVT VT1, EVT VT2, SDValue Op1) {
4929  SDVTList VTs = getVTList(VT1, VT2);
4930  SDValue Ops[] = { Op1 };
4931  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4932}
4933
4934MachineSDNode *
4935SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4936                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4937  SDVTList VTs = getVTList(VT1, VT2);
4938  SDValue Ops[] = { Op1, Op2 };
4939  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4940}
4941
4942MachineSDNode *
4943SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4944                             EVT VT1, EVT VT2, SDValue Op1,
4945                             SDValue Op2, SDValue Op3) {
4946  SDVTList VTs = getVTList(VT1, VT2);
4947  SDValue Ops[] = { Op1, Op2, Op3 };
4948  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4949}
4950
4951MachineSDNode *
4952SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4953                             EVT VT1, EVT VT2,
4954                             const SDValue *Ops, unsigned NumOps) {
4955  SDVTList VTs = getVTList(VT1, VT2);
4956  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4957}
4958
4959MachineSDNode *
4960SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4961                             EVT VT1, EVT VT2, EVT VT3,
4962                             SDValue Op1, SDValue Op2) {
4963  SDVTList VTs = getVTList(VT1, VT2, VT3);
4964  SDValue Ops[] = { Op1, Op2 };
4965  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4966}
4967
4968MachineSDNode *
4969SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4970                             EVT VT1, EVT VT2, EVT VT3,
4971                             SDValue Op1, SDValue Op2, SDValue Op3) {
4972  SDVTList VTs = getVTList(VT1, VT2, VT3);
4973  SDValue Ops[] = { Op1, Op2, Op3 };
4974  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4975}
4976
4977MachineSDNode *
4978SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4979                             EVT VT1, EVT VT2, EVT VT3,
4980                             const SDValue *Ops, unsigned NumOps) {
4981  SDVTList VTs = getVTList(VT1, VT2, VT3);
4982  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4983}
4984
4985MachineSDNode *
4986SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4987                             EVT VT2, EVT VT3, EVT VT4,
4988                             const SDValue *Ops, unsigned NumOps) {
4989  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4990  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4991}
4992
4993MachineSDNode *
4994SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4995                             const std::vector<EVT> &ResultTys,
4996                             const SDValue *Ops, unsigned NumOps) {
4997  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4998  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4999}
5000
5001MachineSDNode *
5002SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5003                             const SDValue *Ops, unsigned NumOps) {
5004  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5005  MachineSDNode *N;
5006  void *IP = 0;
5007
5008  if (DoCSE) {
5009    FoldingSetNodeID ID;
5010    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5011    IP = 0;
5012    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5013      return cast<MachineSDNode>(E);
5014  }
5015
5016  // Allocate a new MachineSDNode.
5017  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5018
5019  // Initialize the operands list.
5020  if (NumOps > array_lengthof(N->LocalOperands))
5021    // We're creating a final node that will live unmorphed for the
5022    // remainder of the current SelectionDAG iteration, so we can allocate
5023    // the operands directly out of a pool with no recycling metadata.
5024    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5025                    Ops, NumOps);
5026  else
5027    N->InitOperands(N->LocalOperands, Ops, NumOps);
5028  N->OperandsNeedDelete = false;
5029
5030  if (DoCSE)
5031    CSEMap.InsertNode(N, IP);
5032
5033  AllNodes.push_back(N);
5034#ifndef NDEBUG
5035  VerifyMachineNode(N);
5036#endif
5037  return N;
5038}
5039
5040/// getTargetExtractSubreg - A convenience function for creating
5041/// TargetOpcode::EXTRACT_SUBREG nodes.
5042SDValue
5043SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5044                                     SDValue Operand) {
5045  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5046  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5047                                  VT, Operand, SRIdxVal);
5048  return SDValue(Subreg, 0);
5049}
5050
5051/// getTargetInsertSubreg - A convenience function for creating
5052/// TargetOpcode::INSERT_SUBREG nodes.
5053SDValue
5054SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5055                                    SDValue Operand, SDValue Subreg) {
5056  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5057  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5058                                  VT, Operand, Subreg, SRIdxVal);
5059  return SDValue(Result, 0);
5060}
5061
5062/// getNodeIfExists - Get the specified node if it's already available, or
5063/// else return NULL.
5064SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5065                                      const SDValue *Ops, unsigned NumOps) {
5066  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5067    FoldingSetNodeID ID;
5068    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5069    void *IP = 0;
5070    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5071      return E;
5072  }
5073  return NULL;
5074}
5075
5076/// getDbgValue - Creates a SDDbgValue node.
5077///
5078SDDbgValue *
5079SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5080                          DebugLoc DL, unsigned O) {
5081  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5082}
5083
5084SDDbgValue *
5085SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5086                          DebugLoc DL, unsigned O) {
5087  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5088}
5089
5090SDDbgValue *
5091SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5092                          DebugLoc DL, unsigned O) {
5093  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5094}
5095
5096namespace {
5097
5098/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5099/// pointed to by a use iterator is deleted, increment the use iterator
5100/// so that it doesn't dangle.
5101///
5102/// This class also manages a "downlink" DAGUpdateListener, to forward
5103/// messages to ReplaceAllUsesWith's callers.
5104///
5105class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5106  SelectionDAG::DAGUpdateListener *DownLink;
5107  SDNode::use_iterator &UI;
5108  SDNode::use_iterator &UE;
5109
5110  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5111    // Increment the iterator as needed.
5112    while (UI != UE && N == *UI)
5113      ++UI;
5114
5115    // Then forward the message.
5116    if (DownLink) DownLink->NodeDeleted(N, E);
5117  }
5118
5119  virtual void NodeUpdated(SDNode *N) {
5120    // Just forward the message.
5121    if (DownLink) DownLink->NodeUpdated(N);
5122  }
5123
5124public:
5125  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5126                     SDNode::use_iterator &ui,
5127                     SDNode::use_iterator &ue)
5128    : DownLink(dl), UI(ui), UE(ue) {}
5129};
5130
5131}
5132
5133/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5134/// This can cause recursive merging of nodes in the DAG.
5135///
5136/// This version assumes From has a single result value.
5137///
5138void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5139                                      DAGUpdateListener *UpdateListener) {
5140  SDNode *From = FromN.getNode();
5141  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5142         "Cannot replace with this method!");
5143  assert(From != To.getNode() && "Cannot replace uses of with self");
5144
5145  // Iterate over all the existing uses of From. New uses will be added
5146  // to the beginning of the use list, which we avoid visiting.
5147  // This specifically avoids visiting uses of From that arise while the
5148  // replacement is happening, because any such uses would be the result
5149  // of CSE: If an existing node looks like From after one of its operands
5150  // is replaced by To, we don't want to replace of all its users with To
5151  // too. See PR3018 for more info.
5152  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5153  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5154  while (UI != UE) {
5155    SDNode *User = *UI;
5156
5157    // This node is about to morph, remove its old self from the CSE maps.
5158    RemoveNodeFromCSEMaps(User);
5159
5160    // A user can appear in a use list multiple times, and when this
5161    // happens the uses are usually next to each other in the list.
5162    // To help reduce the number of CSE recomputations, process all
5163    // the uses of this user that we can find this way.
5164    do {
5165      SDUse &Use = UI.getUse();
5166      ++UI;
5167      Use.set(To);
5168    } while (UI != UE && *UI == User);
5169
5170    // Now that we have modified User, add it back to the CSE maps.  If it
5171    // already exists there, recursively merge the results together.
5172    AddModifiedNodeToCSEMaps(User, &Listener);
5173  }
5174}
5175
5176/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5177/// This can cause recursive merging of nodes in the DAG.
5178///
5179/// This version assumes that for each value of From, there is a
5180/// corresponding value in To in the same position with the same type.
5181///
5182void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5183                                      DAGUpdateListener *UpdateListener) {
5184#ifndef NDEBUG
5185  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5186    assert((!From->hasAnyUseOfValue(i) ||
5187            From->getValueType(i) == To->getValueType(i)) &&
5188           "Cannot use this version of ReplaceAllUsesWith!");
5189#endif
5190
5191  // Handle the trivial case.
5192  if (From == To)
5193    return;
5194
5195  // Iterate over just the existing users of From. See the comments in
5196  // the ReplaceAllUsesWith above.
5197  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5198  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5199  while (UI != UE) {
5200    SDNode *User = *UI;
5201
5202    // This node is about to morph, remove its old self from the CSE maps.
5203    RemoveNodeFromCSEMaps(User);
5204
5205    // A user can appear in a use list multiple times, and when this
5206    // happens the uses are usually next to each other in the list.
5207    // To help reduce the number of CSE recomputations, process all
5208    // the uses of this user that we can find this way.
5209    do {
5210      SDUse &Use = UI.getUse();
5211      ++UI;
5212      Use.setNode(To);
5213    } while (UI != UE && *UI == User);
5214
5215    // Now that we have modified User, add it back to the CSE maps.  If it
5216    // already exists there, recursively merge the results together.
5217    AddModifiedNodeToCSEMaps(User, &Listener);
5218  }
5219}
5220
5221/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5222/// This can cause recursive merging of nodes in the DAG.
5223///
5224/// This version can replace From with any result values.  To must match the
5225/// number and types of values returned by From.
5226void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5227                                      const SDValue *To,
5228                                      DAGUpdateListener *UpdateListener) {
5229  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5230    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5231
5232  // Iterate over just the existing users of From. See the comments in
5233  // the ReplaceAllUsesWith above.
5234  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5235  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5236  while (UI != UE) {
5237    SDNode *User = *UI;
5238
5239    // This node is about to morph, remove its old self from the CSE maps.
5240    RemoveNodeFromCSEMaps(User);
5241
5242    // A user can appear in a use list multiple times, and when this
5243    // happens the uses are usually next to each other in the list.
5244    // To help reduce the number of CSE recomputations, process all
5245    // the uses of this user that we can find this way.
5246    do {
5247      SDUse &Use = UI.getUse();
5248      const SDValue &ToOp = To[Use.getResNo()];
5249      ++UI;
5250      Use.set(ToOp);
5251    } while (UI != UE && *UI == User);
5252
5253    // Now that we have modified User, add it back to the CSE maps.  If it
5254    // already exists there, recursively merge the results together.
5255    AddModifiedNodeToCSEMaps(User, &Listener);
5256  }
5257}
5258
5259/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5260/// uses of other values produced by From.getNode() alone.  The Deleted
5261/// vector is handled the same way as for ReplaceAllUsesWith.
5262void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5263                                             DAGUpdateListener *UpdateListener){
5264  // Handle the really simple, really trivial case efficiently.
5265  if (From == To) return;
5266
5267  // Handle the simple, trivial, case efficiently.
5268  if (From.getNode()->getNumValues() == 1) {
5269    ReplaceAllUsesWith(From, To, UpdateListener);
5270    return;
5271  }
5272
5273  // Iterate over just the existing users of From. See the comments in
5274  // the ReplaceAllUsesWith above.
5275  SDNode::use_iterator UI = From.getNode()->use_begin(),
5276                       UE = From.getNode()->use_end();
5277  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5278  while (UI != UE) {
5279    SDNode *User = *UI;
5280    bool UserRemovedFromCSEMaps = false;
5281
5282    // A user can appear in a use list multiple times, and when this
5283    // happens the uses are usually next to each other in the list.
5284    // To help reduce the number of CSE recomputations, process all
5285    // the uses of this user that we can find this way.
5286    do {
5287      SDUse &Use = UI.getUse();
5288
5289      // Skip uses of different values from the same node.
5290      if (Use.getResNo() != From.getResNo()) {
5291        ++UI;
5292        continue;
5293      }
5294
5295      // If this node hasn't been modified yet, it's still in the CSE maps,
5296      // so remove its old self from the CSE maps.
5297      if (!UserRemovedFromCSEMaps) {
5298        RemoveNodeFromCSEMaps(User);
5299        UserRemovedFromCSEMaps = true;
5300      }
5301
5302      ++UI;
5303      Use.set(To);
5304    } while (UI != UE && *UI == User);
5305
5306    // We are iterating over all uses of the From node, so if a use
5307    // doesn't use the specific value, no changes are made.
5308    if (!UserRemovedFromCSEMaps)
5309      continue;
5310
5311    // Now that we have modified User, add it back to the CSE maps.  If it
5312    // already exists there, recursively merge the results together.
5313    AddModifiedNodeToCSEMaps(User, &Listener);
5314  }
5315}
5316
5317namespace {
5318  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5319  /// to record information about a use.
5320  struct UseMemo {
5321    SDNode *User;
5322    unsigned Index;
5323    SDUse *Use;
5324  };
5325
5326  /// operator< - Sort Memos by User.
5327  bool operator<(const UseMemo &L, const UseMemo &R) {
5328    return (intptr_t)L.User < (intptr_t)R.User;
5329  }
5330}
5331
5332/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5333/// uses of other values produced by From.getNode() alone.  The same value
5334/// may appear in both the From and To list.  The Deleted vector is
5335/// handled the same way as for ReplaceAllUsesWith.
5336void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5337                                              const SDValue *To,
5338                                              unsigned Num,
5339                                              DAGUpdateListener *UpdateListener){
5340  // Handle the simple, trivial case efficiently.
5341  if (Num == 1)
5342    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5343
5344  // Read up all the uses and make records of them. This helps
5345  // processing new uses that are introduced during the
5346  // replacement process.
5347  SmallVector<UseMemo, 4> Uses;
5348  for (unsigned i = 0; i != Num; ++i) {
5349    unsigned FromResNo = From[i].getResNo();
5350    SDNode *FromNode = From[i].getNode();
5351    for (SDNode::use_iterator UI = FromNode->use_begin(),
5352         E = FromNode->use_end(); UI != E; ++UI) {
5353      SDUse &Use = UI.getUse();
5354      if (Use.getResNo() == FromResNo) {
5355        UseMemo Memo = { *UI, i, &Use };
5356        Uses.push_back(Memo);
5357      }
5358    }
5359  }
5360
5361  // Sort the uses, so that all the uses from a given User are together.
5362  std::sort(Uses.begin(), Uses.end());
5363
5364  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5365       UseIndex != UseIndexEnd; ) {
5366    // We know that this user uses some value of From.  If it is the right
5367    // value, update it.
5368    SDNode *User = Uses[UseIndex].User;
5369
5370    // This node is about to morph, remove its old self from the CSE maps.
5371    RemoveNodeFromCSEMaps(User);
5372
5373    // The Uses array is sorted, so all the uses for a given User
5374    // are next to each other in the list.
5375    // To help reduce the number of CSE recomputations, process all
5376    // the uses of this user that we can find this way.
5377    do {
5378      unsigned i = Uses[UseIndex].Index;
5379      SDUse &Use = *Uses[UseIndex].Use;
5380      ++UseIndex;
5381
5382      Use.set(To[i]);
5383    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5384
5385    // Now that we have modified User, add it back to the CSE maps.  If it
5386    // already exists there, recursively merge the results together.
5387    AddModifiedNodeToCSEMaps(User, UpdateListener);
5388  }
5389}
5390
5391/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5392/// based on their topological order. It returns the maximum id and a vector
5393/// of the SDNodes* in assigned order by reference.
5394unsigned SelectionDAG::AssignTopologicalOrder() {
5395
5396  unsigned DAGSize = 0;
5397
5398  // SortedPos tracks the progress of the algorithm. Nodes before it are
5399  // sorted, nodes after it are unsorted. When the algorithm completes
5400  // it is at the end of the list.
5401  allnodes_iterator SortedPos = allnodes_begin();
5402
5403  // Visit all the nodes. Move nodes with no operands to the front of
5404  // the list immediately. Annotate nodes that do have operands with their
5405  // operand count. Before we do this, the Node Id fields of the nodes
5406  // may contain arbitrary values. After, the Node Id fields for nodes
5407  // before SortedPos will contain the topological sort index, and the
5408  // Node Id fields for nodes At SortedPos and after will contain the
5409  // count of outstanding operands.
5410  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5411    SDNode *N = I++;
5412    checkForCycles(N);
5413    unsigned Degree = N->getNumOperands();
5414    if (Degree == 0) {
5415      // A node with no uses, add it to the result array immediately.
5416      N->setNodeId(DAGSize++);
5417      allnodes_iterator Q = N;
5418      if (Q != SortedPos)
5419        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5420      assert(SortedPos != AllNodes.end() && "Overran node list");
5421      ++SortedPos;
5422    } else {
5423      // Temporarily use the Node Id as scratch space for the degree count.
5424      N->setNodeId(Degree);
5425    }
5426  }
5427
5428  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5429  // such that by the time the end is reached all nodes will be sorted.
5430  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5431    SDNode *N = I;
5432    checkForCycles(N);
5433    // N is in sorted position, so all its uses have one less operand
5434    // that needs to be sorted.
5435    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5436         UI != UE; ++UI) {
5437      SDNode *P = *UI;
5438      unsigned Degree = P->getNodeId();
5439      assert(Degree != 0 && "Invalid node degree");
5440      --Degree;
5441      if (Degree == 0) {
5442        // All of P's operands are sorted, so P may sorted now.
5443        P->setNodeId(DAGSize++);
5444        if (P != SortedPos)
5445          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5446        assert(SortedPos != AllNodes.end() && "Overran node list");
5447        ++SortedPos;
5448      } else {
5449        // Update P's outstanding operand count.
5450        P->setNodeId(Degree);
5451      }
5452    }
5453    if (I == SortedPos) {
5454#ifndef NDEBUG
5455      SDNode *S = ++I;
5456      dbgs() << "Overran sorted position:\n";
5457      S->dumprFull();
5458#endif
5459      llvm_unreachable(0);
5460    }
5461  }
5462
5463  assert(SortedPos == AllNodes.end() &&
5464         "Topological sort incomplete!");
5465  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5466         "First node in topological sort is not the entry token!");
5467  assert(AllNodes.front().getNodeId() == 0 &&
5468         "First node in topological sort has non-zero id!");
5469  assert(AllNodes.front().getNumOperands() == 0 &&
5470         "First node in topological sort has operands!");
5471  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5472         "Last node in topologic sort has unexpected id!");
5473  assert(AllNodes.back().use_empty() &&
5474         "Last node in topologic sort has users!");
5475  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5476  return DAGSize;
5477}
5478
5479/// AssignOrdering - Assign an order to the SDNode.
5480void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5481  assert(SD && "Trying to assign an order to a null node!");
5482  Ordering->add(SD, Order);
5483}
5484
5485/// GetOrdering - Get the order for the SDNode.
5486unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5487  assert(SD && "Trying to get the order of a null node!");
5488  return Ordering->getOrder(SD);
5489}
5490
5491/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5492/// value is produced by SD.
5493void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5494  DbgInfo->add(DB, SD, isParameter);
5495  if (SD)
5496    SD->setHasDebugValue(true);
5497}
5498
5499/// TransferDbgValues - Transfer SDDbgValues.
5500void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5501  if (From == To || !From.getNode()->getHasDebugValue())
5502    return;
5503  SDNode *FromNode = From.getNode();
5504  SDNode *ToNode = To.getNode();
5505  SmallVector<SDDbgValue *, 2> &DVs = GetDbgValues(FromNode);
5506  SmallVector<SDDbgValue *, 2> ClonedDVs;
5507  for (SmallVector<SDDbgValue *, 2>::iterator I = DVs.begin(), E = DVs.end();
5508       I != E; ++I) {
5509    SDDbgValue *Dbg = *I;
5510    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5511      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5512                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5513                                      Dbg->getOrder());
5514      ClonedDVs.push_back(Clone);
5515    }
5516  }
5517  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5518         E = ClonedDVs.end(); I != E; ++I)
5519    AddDbgValue(*I, ToNode, false);
5520}
5521
5522//===----------------------------------------------------------------------===//
5523//                              SDNode Class
5524//===----------------------------------------------------------------------===//
5525
5526HandleSDNode::~HandleSDNode() {
5527  DropOperands();
5528}
5529
5530GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5531                                         const GlobalValue *GA,
5532                                         EVT VT, int64_t o, unsigned char TF)
5533  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5534  TheGlobal = GA;
5535}
5536
5537MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5538                     MachineMemOperand *mmo)
5539 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5540  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5541                                      MMO->isNonTemporal());
5542  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5543  assert(isNonTemporal() == MMO->isNonTemporal() &&
5544         "Non-temporal encoding error!");
5545  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5546}
5547
5548MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5549                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5550                     MachineMemOperand *mmo)
5551   : SDNode(Opc, dl, VTs, Ops, NumOps),
5552     MemoryVT(memvt), MMO(mmo) {
5553  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5554                                      MMO->isNonTemporal());
5555  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5556  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5557}
5558
5559/// Profile - Gather unique data for the node.
5560///
5561void SDNode::Profile(FoldingSetNodeID &ID) const {
5562  AddNodeIDNode(ID, this);
5563}
5564
5565namespace {
5566  struct EVTArray {
5567    std::vector<EVT> VTs;
5568
5569    EVTArray() {
5570      VTs.reserve(MVT::LAST_VALUETYPE);
5571      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5572        VTs.push_back(MVT((MVT::SimpleValueType)i));
5573    }
5574  };
5575}
5576
5577static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5578static ManagedStatic<EVTArray> SimpleVTArray;
5579static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5580
5581/// getValueTypeList - Return a pointer to the specified value type.
5582///
5583const EVT *SDNode::getValueTypeList(EVT VT) {
5584  if (VT.isExtended()) {
5585    sys::SmartScopedLock<true> Lock(*VTMutex);
5586    return &(*EVTs->insert(VT).first);
5587  } else {
5588    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5589           "Value type out of range!");
5590    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5591  }
5592}
5593
5594/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5595/// indicated value.  This method ignores uses of other values defined by this
5596/// operation.
5597bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5598  assert(Value < getNumValues() && "Bad value!");
5599
5600  // TODO: Only iterate over uses of a given value of the node
5601  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5602    if (UI.getUse().getResNo() == Value) {
5603      if (NUses == 0)
5604        return false;
5605      --NUses;
5606    }
5607  }
5608
5609  // Found exactly the right number of uses?
5610  return NUses == 0;
5611}
5612
5613
5614/// hasAnyUseOfValue - Return true if there are any use of the indicated
5615/// value. This method ignores uses of other values defined by this operation.
5616bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5617  assert(Value < getNumValues() && "Bad value!");
5618
5619  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5620    if (UI.getUse().getResNo() == Value)
5621      return true;
5622
5623  return false;
5624}
5625
5626
5627/// isOnlyUserOf - Return true if this node is the only use of N.
5628///
5629bool SDNode::isOnlyUserOf(SDNode *N) const {
5630  bool Seen = false;
5631  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5632    SDNode *User = *I;
5633    if (User == this)
5634      Seen = true;
5635    else
5636      return false;
5637  }
5638
5639  return Seen;
5640}
5641
5642/// isOperand - Return true if this node is an operand of N.
5643///
5644bool SDValue::isOperandOf(SDNode *N) const {
5645  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5646    if (*this == N->getOperand(i))
5647      return true;
5648  return false;
5649}
5650
5651bool SDNode::isOperandOf(SDNode *N) const {
5652  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5653    if (this == N->OperandList[i].getNode())
5654      return true;
5655  return false;
5656}
5657
5658/// reachesChainWithoutSideEffects - Return true if this operand (which must
5659/// be a chain) reaches the specified operand without crossing any
5660/// side-effecting instructions on any chain path.  In practice, this looks
5661/// through token factors and non-volatile loads.  In order to remain efficient,
5662/// this only looks a couple of nodes in, it does not do an exhaustive search.
5663bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5664                                               unsigned Depth) const {
5665  if (*this == Dest) return true;
5666
5667  // Don't search too deeply, we just want to be able to see through
5668  // TokenFactor's etc.
5669  if (Depth == 0) return false;
5670
5671  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5672  // of the operands of the TF does not reach dest, then we cannot do the xform.
5673  if (getOpcode() == ISD::TokenFactor) {
5674    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5675      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5676        return false;
5677    return true;
5678  }
5679
5680  // Loads don't have side effects, look through them.
5681  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5682    if (!Ld->isVolatile())
5683      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5684  }
5685  return false;
5686}
5687
5688/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5689/// is either an operand of N or it can be reached by traversing up the operands.
5690/// NOTE: this is an expensive method. Use it carefully.
5691bool SDNode::isPredecessorOf(SDNode *N) const {
5692  SmallPtrSet<SDNode *, 32> Visited;
5693  SmallVector<SDNode *, 16> Worklist;
5694  Worklist.push_back(N);
5695
5696  do {
5697    N = Worklist.pop_back_val();
5698    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5699      SDNode *Op = N->getOperand(i).getNode();
5700      if (Op == this)
5701        return true;
5702      if (Visited.insert(Op))
5703        Worklist.push_back(Op);
5704    }
5705  } while (!Worklist.empty());
5706
5707  return false;
5708}
5709
5710uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5711  assert(Num < NumOperands && "Invalid child # of SDNode!");
5712  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5713}
5714
5715std::string SDNode::getOperationName(const SelectionDAG *G) const {
5716  switch (getOpcode()) {
5717  default:
5718    if (getOpcode() < ISD::BUILTIN_OP_END)
5719      return "<<Unknown DAG Node>>";
5720    if (isMachineOpcode()) {
5721      if (G)
5722        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5723          if (getMachineOpcode() < TII->getNumOpcodes())
5724            return TII->get(getMachineOpcode()).getName();
5725      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5726    }
5727    if (G) {
5728      const TargetLowering &TLI = G->getTargetLoweringInfo();
5729      const char *Name = TLI.getTargetNodeName(getOpcode());
5730      if (Name) return Name;
5731      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5732    }
5733    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5734
5735#ifndef NDEBUG
5736  case ISD::DELETED_NODE:
5737    return "<<Deleted Node!>>";
5738#endif
5739  case ISD::PREFETCH:      return "Prefetch";
5740  case ISD::MEMBARRIER:    return "MemBarrier";
5741  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5742  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5743  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5744  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5745  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5746  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5747  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5748  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5749  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5750  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5751  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5752  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5753  case ISD::PCMARKER:      return "PCMarker";
5754  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5755  case ISD::SRCVALUE:      return "SrcValue";
5756  case ISD::MDNODE_SDNODE: return "MDNode";
5757  case ISD::EntryToken:    return "EntryToken";
5758  case ISD::TokenFactor:   return "TokenFactor";
5759  case ISD::AssertSext:    return "AssertSext";
5760  case ISD::AssertZext:    return "AssertZext";
5761
5762  case ISD::BasicBlock:    return "BasicBlock";
5763  case ISD::VALUETYPE:     return "ValueType";
5764  case ISD::Register:      return "Register";
5765
5766  case ISD::Constant:      return "Constant";
5767  case ISD::ConstantFP:    return "ConstantFP";
5768  case ISD::GlobalAddress: return "GlobalAddress";
5769  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5770  case ISD::FrameIndex:    return "FrameIndex";
5771  case ISD::JumpTable:     return "JumpTable";
5772  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5773  case ISD::RETURNADDR: return "RETURNADDR";
5774  case ISD::FRAMEADDR: return "FRAMEADDR";
5775  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5776  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5777  case ISD::LSDAADDR: return "LSDAADDR";
5778  case ISD::EHSELECTION: return "EHSELECTION";
5779  case ISD::EH_RETURN: return "EH_RETURN";
5780  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5781  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5782  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5783  case ISD::ConstantPool:  return "ConstantPool";
5784  case ISD::ExternalSymbol: return "ExternalSymbol";
5785  case ISD::BlockAddress:  return "BlockAddress";
5786  case ISD::INTRINSIC_WO_CHAIN:
5787  case ISD::INTRINSIC_VOID:
5788  case ISD::INTRINSIC_W_CHAIN: {
5789    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5790    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5791    if (IID < Intrinsic::num_intrinsics)
5792      return Intrinsic::getName((Intrinsic::ID)IID);
5793    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5794      return TII->getName(IID);
5795    llvm_unreachable("Invalid intrinsic ID");
5796  }
5797
5798  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5799  case ISD::TargetConstant: return "TargetConstant";
5800  case ISD::TargetConstantFP:return "TargetConstantFP";
5801  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5802  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5803  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5804  case ISD::TargetJumpTable:  return "TargetJumpTable";
5805  case ISD::TargetConstantPool:  return "TargetConstantPool";
5806  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5807  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5808
5809  case ISD::CopyToReg:     return "CopyToReg";
5810  case ISD::CopyFromReg:   return "CopyFromReg";
5811  case ISD::UNDEF:         return "undef";
5812  case ISD::MERGE_VALUES:  return "merge_values";
5813  case ISD::INLINEASM:     return "inlineasm";
5814  case ISD::EH_LABEL:      return "eh_label";
5815  case ISD::HANDLENODE:    return "handlenode";
5816
5817  // Unary operators
5818  case ISD::FABS:   return "fabs";
5819  case ISD::FNEG:   return "fneg";
5820  case ISD::FSQRT:  return "fsqrt";
5821  case ISD::FSIN:   return "fsin";
5822  case ISD::FCOS:   return "fcos";
5823  case ISD::FTRUNC: return "ftrunc";
5824  case ISD::FFLOOR: return "ffloor";
5825  case ISD::FCEIL:  return "fceil";
5826  case ISD::FRINT:  return "frint";
5827  case ISD::FNEARBYINT: return "fnearbyint";
5828  case ISD::FEXP:   return "fexp";
5829  case ISD::FEXP2:  return "fexp2";
5830  case ISD::FLOG:   return "flog";
5831  case ISD::FLOG2:  return "flog2";
5832  case ISD::FLOG10: return "flog10";
5833
5834  // Binary operators
5835  case ISD::ADD:    return "add";
5836  case ISD::SUB:    return "sub";
5837  case ISD::MUL:    return "mul";
5838  case ISD::MULHU:  return "mulhu";
5839  case ISD::MULHS:  return "mulhs";
5840  case ISD::SDIV:   return "sdiv";
5841  case ISD::UDIV:   return "udiv";
5842  case ISD::SREM:   return "srem";
5843  case ISD::UREM:   return "urem";
5844  case ISD::SMUL_LOHI:  return "smul_lohi";
5845  case ISD::UMUL_LOHI:  return "umul_lohi";
5846  case ISD::SDIVREM:    return "sdivrem";
5847  case ISD::UDIVREM:    return "udivrem";
5848  case ISD::AND:    return "and";
5849  case ISD::OR:     return "or";
5850  case ISD::XOR:    return "xor";
5851  case ISD::SHL:    return "shl";
5852  case ISD::SRA:    return "sra";
5853  case ISD::SRL:    return "srl";
5854  case ISD::ROTL:   return "rotl";
5855  case ISD::ROTR:   return "rotr";
5856  case ISD::FADD:   return "fadd";
5857  case ISD::FSUB:   return "fsub";
5858  case ISD::FMUL:   return "fmul";
5859  case ISD::FDIV:   return "fdiv";
5860  case ISD::FREM:   return "frem";
5861  case ISD::FCOPYSIGN: return "fcopysign";
5862  case ISD::FGETSIGN:  return "fgetsign";
5863  case ISD::FPOW:   return "fpow";
5864
5865  case ISD::FPOWI:  return "fpowi";
5866  case ISD::SETCC:       return "setcc";
5867  case ISD::VSETCC:      return "vsetcc";
5868  case ISD::SELECT:      return "select";
5869  case ISD::SELECT_CC:   return "select_cc";
5870  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5871  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5872  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5873  case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
5874  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5875  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5876  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5877  case ISD::CARRY_FALSE:         return "carry_false";
5878  case ISD::ADDC:        return "addc";
5879  case ISD::ADDE:        return "adde";
5880  case ISD::SADDO:       return "saddo";
5881  case ISD::UADDO:       return "uaddo";
5882  case ISD::SSUBO:       return "ssubo";
5883  case ISD::USUBO:       return "usubo";
5884  case ISD::SMULO:       return "smulo";
5885  case ISD::UMULO:       return "umulo";
5886  case ISD::SUBC:        return "subc";
5887  case ISD::SUBE:        return "sube";
5888  case ISD::SHL_PARTS:   return "shl_parts";
5889  case ISD::SRA_PARTS:   return "sra_parts";
5890  case ISD::SRL_PARTS:   return "srl_parts";
5891
5892  // Conversion operators.
5893  case ISD::SIGN_EXTEND: return "sign_extend";
5894  case ISD::ZERO_EXTEND: return "zero_extend";
5895  case ISD::ANY_EXTEND:  return "any_extend";
5896  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5897  case ISD::TRUNCATE:    return "truncate";
5898  case ISD::FP_ROUND:    return "fp_round";
5899  case ISD::FLT_ROUNDS_: return "flt_rounds";
5900  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5901  case ISD::FP_EXTEND:   return "fp_extend";
5902
5903  case ISD::SINT_TO_FP:  return "sint_to_fp";
5904  case ISD::UINT_TO_FP:  return "uint_to_fp";
5905  case ISD::FP_TO_SINT:  return "fp_to_sint";
5906  case ISD::FP_TO_UINT:  return "fp_to_uint";
5907  case ISD::BITCAST:     return "bit_convert";
5908  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5909  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5910
5911  case ISD::CONVERT_RNDSAT: {
5912    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5913    default: llvm_unreachable("Unknown cvt code!");
5914    case ISD::CVT_FF:  return "cvt_ff";
5915    case ISD::CVT_FS:  return "cvt_fs";
5916    case ISD::CVT_FU:  return "cvt_fu";
5917    case ISD::CVT_SF:  return "cvt_sf";
5918    case ISD::CVT_UF:  return "cvt_uf";
5919    case ISD::CVT_SS:  return "cvt_ss";
5920    case ISD::CVT_SU:  return "cvt_su";
5921    case ISD::CVT_US:  return "cvt_us";
5922    case ISD::CVT_UU:  return "cvt_uu";
5923    }
5924  }
5925
5926    // Control flow instructions
5927  case ISD::BR:      return "br";
5928  case ISD::BRIND:   return "brind";
5929  case ISD::BR_JT:   return "br_jt";
5930  case ISD::BRCOND:  return "brcond";
5931  case ISD::BR_CC:   return "br_cc";
5932  case ISD::CALLSEQ_START:  return "callseq_start";
5933  case ISD::CALLSEQ_END:    return "callseq_end";
5934
5935    // Other operators
5936  case ISD::LOAD:               return "load";
5937  case ISD::STORE:              return "store";
5938  case ISD::VAARG:              return "vaarg";
5939  case ISD::VACOPY:             return "vacopy";
5940  case ISD::VAEND:              return "vaend";
5941  case ISD::VASTART:            return "vastart";
5942  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5943  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5944  case ISD::BUILD_PAIR:         return "build_pair";
5945  case ISD::STACKSAVE:          return "stacksave";
5946  case ISD::STACKRESTORE:       return "stackrestore";
5947  case ISD::TRAP:               return "trap";
5948
5949  // Bit manipulation
5950  case ISD::BSWAP:   return "bswap";
5951  case ISD::CTPOP:   return "ctpop";
5952  case ISD::CTTZ:    return "cttz";
5953  case ISD::CTLZ:    return "ctlz";
5954
5955  // Trampolines
5956  case ISD::TRAMPOLINE: return "trampoline";
5957
5958  case ISD::CONDCODE:
5959    switch (cast<CondCodeSDNode>(this)->get()) {
5960    default: llvm_unreachable("Unknown setcc condition!");
5961    case ISD::SETOEQ:  return "setoeq";
5962    case ISD::SETOGT:  return "setogt";
5963    case ISD::SETOGE:  return "setoge";
5964    case ISD::SETOLT:  return "setolt";
5965    case ISD::SETOLE:  return "setole";
5966    case ISD::SETONE:  return "setone";
5967
5968    case ISD::SETO:    return "seto";
5969    case ISD::SETUO:   return "setuo";
5970    case ISD::SETUEQ:  return "setue";
5971    case ISD::SETUGT:  return "setugt";
5972    case ISD::SETUGE:  return "setuge";
5973    case ISD::SETULT:  return "setult";
5974    case ISD::SETULE:  return "setule";
5975    case ISD::SETUNE:  return "setune";
5976
5977    case ISD::SETEQ:   return "seteq";
5978    case ISD::SETGT:   return "setgt";
5979    case ISD::SETGE:   return "setge";
5980    case ISD::SETLT:   return "setlt";
5981    case ISD::SETLE:   return "setle";
5982    case ISD::SETNE:   return "setne";
5983    }
5984  }
5985}
5986
5987const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5988  switch (AM) {
5989  default:
5990    return "";
5991  case ISD::PRE_INC:
5992    return "<pre-inc>";
5993  case ISD::PRE_DEC:
5994    return "<pre-dec>";
5995  case ISD::POST_INC:
5996    return "<post-inc>";
5997  case ISD::POST_DEC:
5998    return "<post-dec>";
5999  }
6000}
6001
6002std::string ISD::ArgFlagsTy::getArgFlagsString() {
6003  std::string S = "< ";
6004
6005  if (isZExt())
6006    S += "zext ";
6007  if (isSExt())
6008    S += "sext ";
6009  if (isInReg())
6010    S += "inreg ";
6011  if (isSRet())
6012    S += "sret ";
6013  if (isByVal())
6014    S += "byval ";
6015  if (isNest())
6016    S += "nest ";
6017  if (getByValAlign())
6018    S += "byval-align:" + utostr(getByValAlign()) + " ";
6019  if (getOrigAlign())
6020    S += "orig-align:" + utostr(getOrigAlign()) + " ";
6021  if (getByValSize())
6022    S += "byval-size:" + utostr(getByValSize()) + " ";
6023  return S + ">";
6024}
6025
6026void SDNode::dump() const { dump(0); }
6027void SDNode::dump(const SelectionDAG *G) const {
6028  print(dbgs(), G);
6029  dbgs() << '\n';
6030}
6031
6032void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6033  OS << (void*)this << ": ";
6034
6035  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6036    if (i) OS << ",";
6037    if (getValueType(i) == MVT::Other)
6038      OS << "ch";
6039    else
6040      OS << getValueType(i).getEVTString();
6041  }
6042  OS << " = " << getOperationName(G);
6043}
6044
6045void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6046  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6047    if (!MN->memoperands_empty()) {
6048      OS << "<";
6049      OS << "Mem:";
6050      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6051           e = MN->memoperands_end(); i != e; ++i) {
6052        OS << **i;
6053        if (llvm::next(i) != e)
6054          OS << " ";
6055      }
6056      OS << ">";
6057    }
6058  } else if (const ShuffleVectorSDNode *SVN =
6059               dyn_cast<ShuffleVectorSDNode>(this)) {
6060    OS << "<";
6061    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6062      int Idx = SVN->getMaskElt(i);
6063      if (i) OS << ",";
6064      if (Idx < 0)
6065        OS << "u";
6066      else
6067        OS << Idx;
6068    }
6069    OS << ">";
6070  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6071    OS << '<' << CSDN->getAPIntValue() << '>';
6072  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6073    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6074      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6075    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6076      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6077    else {
6078      OS << "<APFloat(";
6079      CSDN->getValueAPF().bitcastToAPInt().dump();
6080      OS << ")>";
6081    }
6082  } else if (const GlobalAddressSDNode *GADN =
6083             dyn_cast<GlobalAddressSDNode>(this)) {
6084    int64_t offset = GADN->getOffset();
6085    OS << '<';
6086    WriteAsOperand(OS, GADN->getGlobal());
6087    OS << '>';
6088    if (offset > 0)
6089      OS << " + " << offset;
6090    else
6091      OS << " " << offset;
6092    if (unsigned int TF = GADN->getTargetFlags())
6093      OS << " [TF=" << TF << ']';
6094  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6095    OS << "<" << FIDN->getIndex() << ">";
6096  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6097    OS << "<" << JTDN->getIndex() << ">";
6098    if (unsigned int TF = JTDN->getTargetFlags())
6099      OS << " [TF=" << TF << ']';
6100  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6101    int offset = CP->getOffset();
6102    if (CP->isMachineConstantPoolEntry())
6103      OS << "<" << *CP->getMachineCPVal() << ">";
6104    else
6105      OS << "<" << *CP->getConstVal() << ">";
6106    if (offset > 0)
6107      OS << " + " << offset;
6108    else
6109      OS << " " << offset;
6110    if (unsigned int TF = CP->getTargetFlags())
6111      OS << " [TF=" << TF << ']';
6112  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6113    OS << "<";
6114    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6115    if (LBB)
6116      OS << LBB->getName() << " ";
6117    OS << (const void*)BBDN->getBasicBlock() << ">";
6118  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6119    OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6120  } else if (const ExternalSymbolSDNode *ES =
6121             dyn_cast<ExternalSymbolSDNode>(this)) {
6122    OS << "'" << ES->getSymbol() << "'";
6123    if (unsigned int TF = ES->getTargetFlags())
6124      OS << " [TF=" << TF << ']';
6125  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6126    if (M->getValue())
6127      OS << "<" << M->getValue() << ">";
6128    else
6129      OS << "<null>";
6130  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6131    if (MD->getMD())
6132      OS << "<" << MD->getMD() << ">";
6133    else
6134      OS << "<null>";
6135  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6136    OS << ":" << N->getVT().getEVTString();
6137  }
6138  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6139    OS << "<" << *LD->getMemOperand();
6140
6141    bool doExt = true;
6142    switch (LD->getExtensionType()) {
6143    default: doExt = false; break;
6144    case ISD::EXTLOAD: OS << ", anyext"; break;
6145    case ISD::SEXTLOAD: OS << ", sext"; break;
6146    case ISD::ZEXTLOAD: OS << ", zext"; break;
6147    }
6148    if (doExt)
6149      OS << " from " << LD->getMemoryVT().getEVTString();
6150
6151    const char *AM = getIndexedModeName(LD->getAddressingMode());
6152    if (*AM)
6153      OS << ", " << AM;
6154
6155    OS << ">";
6156  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6157    OS << "<" << *ST->getMemOperand();
6158
6159    if (ST->isTruncatingStore())
6160      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6161
6162    const char *AM = getIndexedModeName(ST->getAddressingMode());
6163    if (*AM)
6164      OS << ", " << AM;
6165
6166    OS << ">";
6167  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6168    OS << "<" << *M->getMemOperand() << ">";
6169  } else if (const BlockAddressSDNode *BA =
6170               dyn_cast<BlockAddressSDNode>(this)) {
6171    OS << "<";
6172    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6173    OS << ", ";
6174    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6175    OS << ">";
6176    if (unsigned int TF = BA->getTargetFlags())
6177      OS << " [TF=" << TF << ']';
6178  }
6179
6180  if (G)
6181    if (unsigned Order = G->GetOrdering(this))
6182      OS << " [ORD=" << Order << ']';
6183
6184  if (getNodeId() != -1)
6185    OS << " [ID=" << getNodeId() << ']';
6186
6187  DebugLoc dl = getDebugLoc();
6188  if (G && !dl.isUnknown()) {
6189    DIScope
6190      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6191    OS << " dbg:";
6192    // Omit the directory, since it's usually long and uninteresting.
6193    if (Scope.Verify())
6194      OS << Scope.getFilename();
6195    else
6196      OS << "<unknown>";
6197    OS << ':' << dl.getLine();
6198    if (dl.getCol() != 0)
6199      OS << ':' << dl.getCol();
6200  }
6201}
6202
6203void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6204  print_types(OS, G);
6205  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6206    if (i) OS << ", "; else OS << " ";
6207    OS << (void*)getOperand(i).getNode();
6208    if (unsigned RN = getOperand(i).getResNo())
6209      OS << ":" << RN;
6210  }
6211  print_details(OS, G);
6212}
6213
6214static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6215                                  const SelectionDAG *G, unsigned depth,
6216                                  unsigned indent)
6217{
6218  if (depth == 0)
6219    return;
6220
6221  OS.indent(indent);
6222
6223  N->print(OS, G);
6224
6225  if (depth < 1)
6226    return;
6227
6228  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6229    OS << '\n';
6230    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6231  }
6232}
6233
6234void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6235                            unsigned depth) const {
6236  printrWithDepthHelper(OS, this, G, depth, 0);
6237}
6238
6239void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6240  // Don't print impossibly deep things.
6241  printrWithDepth(OS, G, 100);
6242}
6243
6244void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6245  printrWithDepth(dbgs(), G, depth);
6246}
6247
6248void SDNode::dumprFull(const SelectionDAG *G) const {
6249  // Don't print impossibly deep things.
6250  dumprWithDepth(G, 100);
6251}
6252
6253static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6254  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6255    if (N->getOperand(i).getNode()->hasOneUse())
6256      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6257    else
6258      dbgs() << "\n" << std::string(indent+2, ' ')
6259           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6260
6261
6262  dbgs() << "\n";
6263  dbgs().indent(indent);
6264  N->dump(G);
6265}
6266
6267SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6268  assert(N->getNumValues() == 1 &&
6269         "Can't unroll a vector with multiple results!");
6270
6271  EVT VT = N->getValueType(0);
6272  unsigned NE = VT.getVectorNumElements();
6273  EVT EltVT = VT.getVectorElementType();
6274  DebugLoc dl = N->getDebugLoc();
6275
6276  SmallVector<SDValue, 8> Scalars;
6277  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6278
6279  // If ResNE is 0, fully unroll the vector op.
6280  if (ResNE == 0)
6281    ResNE = NE;
6282  else if (NE > ResNE)
6283    NE = ResNE;
6284
6285  unsigned i;
6286  for (i= 0; i != NE; ++i) {
6287    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6288      SDValue Operand = N->getOperand(j);
6289      EVT OperandVT = Operand.getValueType();
6290      if (OperandVT.isVector()) {
6291        // A vector operand; extract a single element.
6292        EVT OperandEltVT = OperandVT.getVectorElementType();
6293        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6294                              OperandEltVT,
6295                              Operand,
6296                              getConstant(i, MVT::i32));
6297      } else {
6298        // A scalar operand; just use it as is.
6299        Operands[j] = Operand;
6300      }
6301    }
6302
6303    switch (N->getOpcode()) {
6304    default:
6305      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6306                                &Operands[0], Operands.size()));
6307      break;
6308    case ISD::SHL:
6309    case ISD::SRA:
6310    case ISD::SRL:
6311    case ISD::ROTL:
6312    case ISD::ROTR:
6313      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6314                                getShiftAmountOperand(Operands[1])));
6315      break;
6316    case ISD::SIGN_EXTEND_INREG:
6317    case ISD::FP_ROUND_INREG: {
6318      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6319      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6320                                Operands[0],
6321                                getValueType(ExtVT)));
6322    }
6323    }
6324  }
6325
6326  for (; i < ResNE; ++i)
6327    Scalars.push_back(getUNDEF(EltVT));
6328
6329  return getNode(ISD::BUILD_VECTOR, dl,
6330                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6331                 &Scalars[0], Scalars.size());
6332}
6333
6334
6335/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6336/// location that is 'Dist' units away from the location that the 'Base' load
6337/// is loading from.
6338bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6339                                     unsigned Bytes, int Dist) const {
6340  if (LD->getChain() != Base->getChain())
6341    return false;
6342  EVT VT = LD->getValueType(0);
6343  if (VT.getSizeInBits() / 8 != Bytes)
6344    return false;
6345
6346  SDValue Loc = LD->getOperand(1);
6347  SDValue BaseLoc = Base->getOperand(1);
6348  if (Loc.getOpcode() == ISD::FrameIndex) {
6349    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6350      return false;
6351    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6352    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6353    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6354    int FS  = MFI->getObjectSize(FI);
6355    int BFS = MFI->getObjectSize(BFI);
6356    if (FS != BFS || FS != (int)Bytes) return false;
6357    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6358  }
6359
6360  // Handle X+C
6361  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6362      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6363    return true;
6364
6365  const GlobalValue *GV1 = NULL;
6366  const GlobalValue *GV2 = NULL;
6367  int64_t Offset1 = 0;
6368  int64_t Offset2 = 0;
6369  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6370  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6371  if (isGA1 && isGA2 && GV1 == GV2)
6372    return Offset1 == (Offset2 + Dist*Bytes);
6373  return false;
6374}
6375
6376
6377/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6378/// it cannot be inferred.
6379unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6380  // If this is a GlobalAddress + cst, return the alignment.
6381  const GlobalValue *GV;
6382  int64_t GVOffset = 0;
6383  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6384    // If GV has specified alignment, then use it. Otherwise, use the preferred
6385    // alignment.
6386    unsigned Align = GV->getAlignment();
6387    if (!Align) {
6388      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6389        if (GVar->hasInitializer()) {
6390          const TargetData *TD = TLI.getTargetData();
6391          Align = TD->getPreferredAlignment(GVar);
6392        }
6393      }
6394    }
6395    return MinAlign(Align, GVOffset);
6396  }
6397
6398  // If this is a direct reference to a stack slot, use information about the
6399  // stack slot's alignment.
6400  int FrameIdx = 1 << 31;
6401  int64_t FrameOffset = 0;
6402  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6403    FrameIdx = FI->getIndex();
6404  } else if (isBaseWithConstantOffset(Ptr) &&
6405             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6406    // Handle FI+Cst
6407    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6408    FrameOffset = Ptr.getConstantOperandVal(1);
6409  }
6410
6411  if (FrameIdx != (1 << 31)) {
6412    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6413    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6414                                    FrameOffset);
6415    return FIInfoAlign;
6416  }
6417
6418  return 0;
6419}
6420
6421void SelectionDAG::dump() const {
6422  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6423
6424  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6425       I != E; ++I) {
6426    const SDNode *N = I;
6427    if (!N->hasOneUse() && N != getRoot().getNode())
6428      DumpNodes(N, 2, this);
6429  }
6430
6431  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6432
6433  dbgs() << "\n\n";
6434}
6435
6436void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6437  print_types(OS, G);
6438  print_details(OS, G);
6439}
6440
6441typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6442static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6443                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6444  if (!once.insert(N))          // If we've been here before, return now.
6445    return;
6446
6447  // Dump the current SDNode, but don't end the line yet.
6448  OS << std::string(indent, ' ');
6449  N->printr(OS, G);
6450
6451  // Having printed this SDNode, walk the children:
6452  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6453    const SDNode *child = N->getOperand(i).getNode();
6454
6455    if (i) OS << ",";
6456    OS << " ";
6457
6458    if (child->getNumOperands() == 0) {
6459      // This child has no grandchildren; print it inline right here.
6460      child->printr(OS, G);
6461      once.insert(child);
6462    } else {         // Just the address. FIXME: also print the child's opcode.
6463      OS << (void*)child;
6464      if (unsigned RN = N->getOperand(i).getResNo())
6465        OS << ":" << RN;
6466    }
6467  }
6468
6469  OS << "\n";
6470
6471  // Dump children that have grandchildren on their own line(s).
6472  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6473    const SDNode *child = N->getOperand(i).getNode();
6474    DumpNodesr(OS, child, indent+2, G, once);
6475  }
6476}
6477
6478void SDNode::dumpr() const {
6479  VisitedSDNodeSet once;
6480  DumpNodesr(dbgs(), this, 0, 0, once);
6481}
6482
6483void SDNode::dumpr(const SelectionDAG *G) const {
6484  VisitedSDNodeSet once;
6485  DumpNodesr(dbgs(), this, 0, G, once);
6486}
6487
6488
6489// getAddressSpace - Return the address space this GlobalAddress belongs to.
6490unsigned GlobalAddressSDNode::getAddressSpace() const {
6491  return getGlobal()->getType()->getAddressSpace();
6492}
6493
6494
6495const Type *ConstantPoolSDNode::getType() const {
6496  if (isMachineConstantPoolEntry())
6497    return Val.MachineCPVal->getType();
6498  return Val.ConstVal->getType();
6499}
6500
6501bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6502                                        APInt &SplatUndef,
6503                                        unsigned &SplatBitSize,
6504                                        bool &HasAnyUndefs,
6505                                        unsigned MinSplatBits,
6506                                        bool isBigEndian) {
6507  EVT VT = getValueType(0);
6508  assert(VT.isVector() && "Expected a vector type");
6509  unsigned sz = VT.getSizeInBits();
6510  if (MinSplatBits > sz)
6511    return false;
6512
6513  SplatValue = APInt(sz, 0);
6514  SplatUndef = APInt(sz, 0);
6515
6516  // Get the bits.  Bits with undefined values (when the corresponding element
6517  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6518  // in SplatValue.  If any of the values are not constant, give up and return
6519  // false.
6520  unsigned int nOps = getNumOperands();
6521  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6522  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6523
6524  for (unsigned j = 0; j < nOps; ++j) {
6525    unsigned i = isBigEndian ? nOps-1-j : j;
6526    SDValue OpVal = getOperand(i);
6527    unsigned BitPos = j * EltBitSize;
6528
6529    if (OpVal.getOpcode() == ISD::UNDEF)
6530      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6531    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6532      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6533                    zextOrTrunc(sz) << BitPos;
6534    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6535      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6536     else
6537      return false;
6538  }
6539
6540  // The build_vector is all constants or undefs.  Find the smallest element
6541  // size that splats the vector.
6542
6543  HasAnyUndefs = (SplatUndef != 0);
6544  while (sz > 8) {
6545
6546    unsigned HalfSize = sz / 2;
6547    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6548    APInt LowValue = SplatValue.trunc(HalfSize);
6549    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6550    APInt LowUndef = SplatUndef.trunc(HalfSize);
6551
6552    // If the two halves do not match (ignoring undef bits), stop here.
6553    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6554        MinSplatBits > HalfSize)
6555      break;
6556
6557    SplatValue = HighValue | LowValue;
6558    SplatUndef = HighUndef & LowUndef;
6559
6560    sz = HalfSize;
6561  }
6562
6563  SplatBitSize = sz;
6564  return true;
6565}
6566
6567bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6568  // Find the first non-undef value in the shuffle mask.
6569  unsigned i, e;
6570  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6571    /* search */;
6572
6573  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6574
6575  // Make sure all remaining elements are either undef or the same as the first
6576  // non-undef value.
6577  for (int Idx = Mask[i]; i != e; ++i)
6578    if (Mask[i] >= 0 && Mask[i] != Idx)
6579      return false;
6580  return true;
6581}
6582
6583#ifdef XDEBUG
6584static void checkForCyclesHelper(const SDNode *N,
6585                                 SmallPtrSet<const SDNode*, 32> &Visited,
6586                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6587  // If this node has already been checked, don't check it again.
6588  if (Checked.count(N))
6589    return;
6590
6591  // If a node has already been visited on this depth-first walk, reject it as
6592  // a cycle.
6593  if (!Visited.insert(N)) {
6594    dbgs() << "Offending node:\n";
6595    N->dumprFull();
6596    errs() << "Detected cycle in SelectionDAG\n";
6597    abort();
6598  }
6599
6600  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6601    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6602
6603  Checked.insert(N);
6604  Visited.erase(N);
6605}
6606#endif
6607
6608void llvm::checkForCycles(const llvm::SDNode *N) {
6609#ifdef XDEBUG
6610  assert(N && "Checking nonexistant SDNode");
6611  SmallPtrSet<const SDNode*, 32> visited;
6612  SmallPtrSet<const SDNode*, 32> checked;
6613  checkForCyclesHelper(N, visited, checked);
6614#endif
6615}
6616
6617void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6618  checkForCycles(DAG->getRoot().getNode());
6619}
6620