SelectionDAG.cpp revision 9fda2f9106112a522aecf080c016ea5317f52b21
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/ADT/StringExtras.h"
25#include <iostream>
26#include <set>
27#include <cmath>
28#include <algorithm>
29using namespace llvm;
30
31static bool isCommutativeBinOp(unsigned Opcode) {
32  switch (Opcode) {
33  case ISD::ADD:
34  case ISD::MUL:
35  case ISD::MULHU:
36  case ISD::MULHS:
37  case ISD::FADD:
38  case ISD::FMUL:
39  case ISD::AND:
40  case ISD::OR:
41  case ISD::XOR: return true;
42  default: return false; // FIXME: Need commutative info for user ops!
43  }
44}
45
46static bool isAssociativeBinOp(unsigned Opcode) {
47  switch (Opcode) {
48  case ISD::ADD:
49  case ISD::MUL:
50  case ISD::AND:
51  case ISD::OR:
52  case ISD::XOR: return true;
53  default: return false; // FIXME: Need associative info for user ops!
54  }
55}
56
57// isInvertibleForFree - Return true if there is no cost to emitting the logical
58// inverse of this node.
59static bool isInvertibleForFree(SDOperand N) {
60  if (isa<ConstantSDNode>(N.Val)) return true;
61  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
62    return true;
63  return false;
64}
65
66//===----------------------------------------------------------------------===//
67//                              ConstantFPSDNode Class
68//===----------------------------------------------------------------------===//
69
70/// isExactlyValue - We don't rely on operator== working on double values, as
71/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
72/// As such, this method can be used to do an exact bit-for-bit comparison of
73/// two floating point values.
74bool ConstantFPSDNode::isExactlyValue(double V) const {
75  return DoubleToBits(V) == DoubleToBits(Value);
76}
77
78//===----------------------------------------------------------------------===//
79//                              ISD Class
80//===----------------------------------------------------------------------===//
81
82/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
83/// when given the operation for (X op Y).
84ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
85  // To perform this operation, we just need to swap the L and G bits of the
86  // operation.
87  unsigned OldL = (Operation >> 2) & 1;
88  unsigned OldG = (Operation >> 1) & 1;
89  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
90                       (OldL << 1) |       // New G bit
91                       (OldG << 2));        // New L bit.
92}
93
94/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
95/// 'op' is a valid SetCC operation.
96ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
97  unsigned Operation = Op;
98  if (isInteger)
99    Operation ^= 7;   // Flip L, G, E bits, but not U.
100  else
101    Operation ^= 15;  // Flip all of the condition bits.
102  if (Operation > ISD::SETTRUE2)
103    Operation &= ~8;     // Don't let N and U bits get set.
104  return ISD::CondCode(Operation);
105}
106
107
108/// isSignedOp - For an integer comparison, return 1 if the comparison is a
109/// signed operation and 2 if the result is an unsigned comparison.  Return zero
110/// if the operation does not depend on the sign of the input (setne and seteq).
111static int isSignedOp(ISD::CondCode Opcode) {
112  switch (Opcode) {
113  default: assert(0 && "Illegal integer setcc operation!");
114  case ISD::SETEQ:
115  case ISD::SETNE: return 0;
116  case ISD::SETLT:
117  case ISD::SETLE:
118  case ISD::SETGT:
119  case ISD::SETGE: return 1;
120  case ISD::SETULT:
121  case ISD::SETULE:
122  case ISD::SETUGT:
123  case ISD::SETUGE: return 2;
124  }
125}
126
127/// getSetCCOrOperation - Return the result of a logical OR between different
128/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
129/// returns SETCC_INVALID if it is not possible to represent the resultant
130/// comparison.
131ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
132                                       bool isInteger) {
133  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
134    // Cannot fold a signed integer setcc with an unsigned integer setcc.
135    return ISD::SETCC_INVALID;
136
137  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
138
139  // If the N and U bits get set then the resultant comparison DOES suddenly
140  // care about orderedness, and is true when ordered.
141  if (Op > ISD::SETTRUE2)
142    Op &= ~16;     // Clear the N bit.
143  return ISD::CondCode(Op);
144}
145
146/// getSetCCAndOperation - Return the result of a logical AND between different
147/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
148/// function returns zero if it is not possible to represent the resultant
149/// comparison.
150ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
151                                        bool isInteger) {
152  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
153    // Cannot fold a signed setcc with an unsigned setcc.
154    return ISD::SETCC_INVALID;
155
156  // Combine all of the condition bits.
157  return ISD::CondCode(Op1 & Op2);
158}
159
160const TargetMachine &SelectionDAG::getTarget() const {
161  return TLI.getTargetMachine();
162}
163
164//===----------------------------------------------------------------------===//
165//                              SelectionDAG Class
166//===----------------------------------------------------------------------===//
167
168/// RemoveDeadNodes - This method deletes all unreachable nodes in the
169/// SelectionDAG, including nodes (like loads) that have uses of their token
170/// chain but no other uses and no side effect.  If a node is passed in as an
171/// argument, it is used as the seed for node deletion.
172void SelectionDAG::RemoveDeadNodes(SDNode *N) {
173  // Create a dummy node (which is not added to allnodes), that adds a reference
174  // to the root node, preventing it from being deleted.
175  HandleSDNode Dummy(getRoot());
176
177  bool MadeChange = false;
178
179  // If we have a hint to start from, use it.
180  if (N && N->use_empty()) {
181    DestroyDeadNode(N);
182    MadeChange = true;
183  }
184
185  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
186    if (I->use_empty() && I->getOpcode() != 65535) {
187      // Node is dead, recursively delete newly dead uses.
188      DestroyDeadNode(I);
189      MadeChange = true;
190    }
191
192  // Walk the nodes list, removing the nodes we've marked as dead.
193  if (MadeChange) {
194    for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
195      SDNode *N = I++;
196      if (N->use_empty())
197        AllNodes.erase(N);
198    }
199  }
200
201  // If the root changed (e.g. it was a dead load, update the root).
202  setRoot(Dummy.getValue());
203}
204
205/// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the
206/// graph.  If it is the last user of any of its operands, recursively process
207/// them the same way.
208///
209void SelectionDAG::DestroyDeadNode(SDNode *N) {
210  // Okay, we really are going to delete this node.  First take this out of the
211  // appropriate CSE map.
212  RemoveNodeFromCSEMaps(N);
213
214  // Next, brutally remove the operand list.  This is safe to do, as there are
215  // no cycles in the graph.
216  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
217    SDNode *O = I->Val;
218    O->removeUser(N);
219
220    // Now that we removed this operand, see if there are no uses of it left.
221    if (O->use_empty())
222      DestroyDeadNode(O);
223  }
224  delete[] N->OperandList;
225  N->OperandList = 0;
226  N->NumOperands = 0;
227
228  // Mark the node as dead.
229  N->MorphNodeTo(65535);
230}
231
232void SelectionDAG::DeleteNode(SDNode *N) {
233  assert(N->use_empty() && "Cannot delete a node that is not dead!");
234
235  // First take this out of the appropriate CSE map.
236  RemoveNodeFromCSEMaps(N);
237
238  // Finally, remove uses due to operands of this node, remove from the
239  // AllNodes list, and delete the node.
240  DeleteNodeNotInCSEMaps(N);
241}
242
243void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
244
245  // Remove it from the AllNodes list.
246  AllNodes.remove(N);
247
248  // Drop all of the operands and decrement used nodes use counts.
249  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
250    I->Val->removeUser(N);
251  delete[] N->OperandList;
252  N->OperandList = 0;
253  N->NumOperands = 0;
254
255  delete N;
256}
257
258/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
259/// correspond to it.  This is useful when we're about to delete or repurpose
260/// the node.  We don't want future request for structurally identical nodes
261/// to return N anymore.
262void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
263  bool Erased = false;
264  switch (N->getOpcode()) {
265  case ISD::HANDLENODE: return;  // noop.
266  case ISD::Constant:
267    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
268                                            N->getValueType(0)));
269    break;
270  case ISD::TargetConstant:
271    Erased = TargetConstants.erase(std::make_pair(
272                                    cast<ConstantSDNode>(N)->getValue(),
273                                                  N->getValueType(0)));
274    break;
275  case ISD::ConstantFP: {
276    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
277    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
278    break;
279  }
280  case ISD::TargetConstantFP: {
281    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
282    Erased = TargetConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
283    break;
284  }
285  case ISD::STRING:
286    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
287    break;
288  case ISD::CONDCODE:
289    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
290           "Cond code doesn't exist!");
291    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
292    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
293    break;
294  case ISD::GlobalAddress: {
295    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
296    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
297                                               GN->getOffset()));
298    break;
299  }
300  case ISD::TargetGlobalAddress: {
301    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
302    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
303                                                    GN->getOffset()));
304    break;
305  }
306  case ISD::FrameIndex:
307    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
308    break;
309  case ISD::TargetFrameIndex:
310    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
311    break;
312  case ISD::ConstantPool:
313    Erased = ConstantPoolIndices.
314      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
315                           cast<ConstantPoolSDNode>(N)->getAlignment()));
316    break;
317  case ISD::TargetConstantPool:
318    Erased = TargetConstantPoolIndices.
319      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
320                           cast<ConstantPoolSDNode>(N)->getAlignment()));
321    break;
322  case ISD::BasicBlock:
323    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
324    break;
325  case ISD::ExternalSymbol:
326    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
327    break;
328  case ISD::TargetExternalSymbol:
329    Erased =
330      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
331    break;
332  case ISD::VALUETYPE:
333    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
334    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
335    break;
336  case ISD::Register:
337    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
338                                           N->getValueType(0)));
339    break;
340  case ISD::SRCVALUE: {
341    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
342    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
343    break;
344  }
345  case ISD::LOAD:
346    Erased = Loads.erase(std::make_pair(N->getOperand(1),
347                                        std::make_pair(N->getOperand(0),
348                                                       N->getValueType(0))));
349    break;
350  default:
351    if (N->getNumValues() == 1) {
352      if (N->getNumOperands() == 0) {
353        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
354                                                 N->getValueType(0)));
355      } else if (N->getNumOperands() == 1) {
356        Erased =
357          UnaryOps.erase(std::make_pair(N->getOpcode(),
358                                        std::make_pair(N->getOperand(0),
359                                                       N->getValueType(0))));
360      } else if (N->getNumOperands() == 2) {
361        Erased =
362          BinaryOps.erase(std::make_pair(N->getOpcode(),
363                                         std::make_pair(N->getOperand(0),
364                                                        N->getOperand(1))));
365      } else {
366        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
367        Erased =
368          OneResultNodes.erase(std::make_pair(N->getOpcode(),
369                                              std::make_pair(N->getValueType(0),
370                                                             Ops)));
371      }
372    } else {
373      // Remove the node from the ArbitraryNodes map.
374      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
375      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
376      Erased =
377        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
378                                            std::make_pair(RV, Ops)));
379    }
380    break;
381  }
382#ifndef NDEBUG
383  // Verify that the node was actually in one of the CSE maps, unless it has a
384  // flag result (which cannot be CSE'd) or is one of the special cases that are
385  // not subject to CSE.
386  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
387      !N->isTargetOpcode()) {
388    N->dump();
389    assert(0 && "Node is not in map!");
390  }
391#endif
392}
393
394/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
395/// has been taken out and modified in some way.  If the specified node already
396/// exists in the CSE maps, do not modify the maps, but return the existing node
397/// instead.  If it doesn't exist, add it and return null.
398///
399SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
400  assert(N->getNumOperands() && "This is a leaf node!");
401  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
402    return 0;    // Never add these nodes.
403
404  // Check that remaining values produced are not flags.
405  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
406    if (N->getValueType(i) == MVT::Flag)
407      return 0;   // Never CSE anything that produces a flag.
408
409  if (N->getNumValues() == 1) {
410    if (N->getNumOperands() == 1) {
411      SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
412                                           std::make_pair(N->getOperand(0),
413                                                          N->getValueType(0)))];
414      if (U) return U;
415      U = N;
416    } else if (N->getNumOperands() == 2) {
417      SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
418                                            std::make_pair(N->getOperand(0),
419                                                           N->getOperand(1)))];
420      if (B) return B;
421      B = N;
422    } else {
423      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
424      SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
425                                      std::make_pair(N->getValueType(0), Ops))];
426      if (ORN) return ORN;
427      ORN = N;
428    }
429  } else {
430    if (N->getOpcode() == ISD::LOAD) {
431      SDNode *&L = Loads[std::make_pair(N->getOperand(1),
432                                        std::make_pair(N->getOperand(0),
433                                                       N->getValueType(0)))];
434      if (L) return L;
435      L = N;
436    } else {
437      // Remove the node from the ArbitraryNodes map.
438      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
439      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
440      SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
441                                                  std::make_pair(RV, Ops))];
442      if (AN) return AN;
443      AN = N;
444    }
445  }
446  return 0;
447}
448
449/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
450/// were replaced with those specified.  If this node is never memoized,
451/// return null, otherwise return a pointer to the slot it would take.  If a
452/// node already exists with these operands, the slot will be non-null.
453SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op) {
454  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
455    return 0;    // Never add these nodes.
456
457  // Check that remaining values produced are not flags.
458  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
459    if (N->getValueType(i) == MVT::Flag)
460      return 0;   // Never CSE anything that produces a flag.
461
462  if (N->getNumValues() == 1) {
463    return &UnaryOps[std::make_pair(N->getOpcode(),
464                                    std::make_pair(Op, N->getValueType(0)))];
465  } else {
466    // Remove the node from the ArbitraryNodes map.
467    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
468    std::vector<SDOperand> Ops;
469    Ops.push_back(Op);
470    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
471                                          std::make_pair(RV, Ops))];
472  }
473  return 0;
474}
475
476/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
477/// were replaced with those specified.  If this node is never memoized,
478/// return null, otherwise return a pointer to the slot it would take.  If a
479/// node already exists with these operands, the slot will be non-null.
480SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
481                                            SDOperand Op1, SDOperand Op2) {
482  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
483    return 0;    // Never add these nodes.
484
485  // Check that remaining values produced are not flags.
486  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
487    if (N->getValueType(i) == MVT::Flag)
488      return 0;   // Never CSE anything that produces a flag.
489
490  if (N->getNumValues() == 1) {
491    return &BinaryOps[std::make_pair(N->getOpcode(),
492                                     std::make_pair(Op1, Op2))];
493  } else {
494    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
495    std::vector<SDOperand> Ops;
496    Ops.push_back(Op1);
497    Ops.push_back(Op2);
498    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
499                                          std::make_pair(RV, Ops))];
500  }
501  return 0;
502}
503
504
505/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
506/// were replaced with those specified.  If this node is never memoized,
507/// return null, otherwise return a pointer to the slot it would take.  If a
508/// node already exists with these operands, the slot will be non-null.
509SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
510                                            const std::vector<SDOperand> &Ops) {
511  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
512    return 0;    // Never add these nodes.
513
514  // Check that remaining values produced are not flags.
515  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
516    if (N->getValueType(i) == MVT::Flag)
517      return 0;   // Never CSE anything that produces a flag.
518
519  if (N->getNumValues() == 1) {
520    if (N->getNumOperands() == 1) {
521      return &UnaryOps[std::make_pair(N->getOpcode(),
522                                      std::make_pair(Ops[0],
523                                                     N->getValueType(0)))];
524    } else if (N->getNumOperands() == 2) {
525      return &BinaryOps[std::make_pair(N->getOpcode(),
526                                       std::make_pair(Ops[0], Ops[1]))];
527    } else {
528      return &OneResultNodes[std::make_pair(N->getOpcode(),
529                                            std::make_pair(N->getValueType(0),
530                                                           Ops))];
531    }
532  } else {
533    if (N->getOpcode() == ISD::LOAD) {
534      return &Loads[std::make_pair(Ops[1],
535                                   std::make_pair(Ops[0], N->getValueType(0)))];
536    } else {
537      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
538      return &ArbitraryNodes[std::make_pair(N->getOpcode(),
539                                            std::make_pair(RV, Ops))];
540    }
541  }
542  return 0;
543}
544
545
546SelectionDAG::~SelectionDAG() {
547  while (!AllNodes.empty()) {
548    SDNode *N = AllNodes.begin();
549    delete [] N->OperandList;
550    N->OperandList = 0;
551    N->NumOperands = 0;
552    AllNodes.pop_front();
553  }
554}
555
556SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
557  if (Op.getValueType() == VT) return Op;
558  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
559  return getNode(ISD::AND, Op.getValueType(), Op,
560                 getConstant(Imm, Op.getValueType()));
561}
562
563SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
564  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
565  // Mask out any bits that are not valid for this constant.
566  if (VT != MVT::i64)
567    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
568
569  SDNode *&N = Constants[std::make_pair(Val, VT)];
570  if (N) return SDOperand(N, 0);
571  N = new ConstantSDNode(false, Val, VT);
572  AllNodes.push_back(N);
573  return SDOperand(N, 0);
574}
575
576SDOperand SelectionDAG::getString(const std::string &Val) {
577  StringSDNode *&N = StringNodes[Val];
578  if (!N) {
579    N = new StringSDNode(Val);
580    AllNodes.push_back(N);
581  }
582  return SDOperand(N, 0);
583}
584
585SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
586  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
587  // Mask out any bits that are not valid for this constant.
588  if (VT != MVT::i64)
589    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
590
591  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
592  if (N) return SDOperand(N, 0);
593  N = new ConstantSDNode(true, Val, VT);
594  AllNodes.push_back(N);
595  return SDOperand(N, 0);
596}
597
598SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
599  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
600  if (VT == MVT::f32)
601    Val = (float)Val;  // Mask out extra precision.
602
603  // Do the map lookup using the actual bit pattern for the floating point
604  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
605  // we don't have issues with SNANs.
606  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
607  if (N) return SDOperand(N, 0);
608  N = new ConstantFPSDNode(false, Val, VT);
609  AllNodes.push_back(N);
610  return SDOperand(N, 0);
611}
612
613SDOperand SelectionDAG::getTargetConstantFP(double Val, MVT::ValueType VT) {
614  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
615  if (VT == MVT::f32)
616    Val = (float)Val;  // Mask out extra precision.
617
618  // Do the map lookup using the actual bit pattern for the floating point
619  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
620  // we don't have issues with SNANs.
621  SDNode *&N = TargetConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
622  if (N) return SDOperand(N, 0);
623  N = new ConstantFPSDNode(true, Val, VT);
624  AllNodes.push_back(N);
625  return SDOperand(N, 0);
626}
627
628SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
629                                         MVT::ValueType VT, int offset) {
630  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
631  if (N) return SDOperand(N, 0);
632  N = new GlobalAddressSDNode(false, GV, VT, offset);
633  AllNodes.push_back(N);
634  return SDOperand(N, 0);
635}
636
637SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
638                                               MVT::ValueType VT, int offset) {
639  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
640  if (N) return SDOperand(N, 0);
641  N = new GlobalAddressSDNode(true, GV, VT, offset);
642  AllNodes.push_back(N);
643  return SDOperand(N, 0);
644}
645
646SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
647  SDNode *&N = FrameIndices[FI];
648  if (N) return SDOperand(N, 0);
649  N = new FrameIndexSDNode(FI, VT, false);
650  AllNodes.push_back(N);
651  return SDOperand(N, 0);
652}
653
654SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
655  SDNode *&N = TargetFrameIndices[FI];
656  if (N) return SDOperand(N, 0);
657  N = new FrameIndexSDNode(FI, VT, true);
658  AllNodes.push_back(N);
659  return SDOperand(N, 0);
660}
661
662SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
663                                        unsigned Alignment) {
664  SDNode *&N = ConstantPoolIndices[std::make_pair(C, Alignment)];
665  if (N) return SDOperand(N, 0);
666  N = new ConstantPoolSDNode(C, VT, Alignment, false);
667  AllNodes.push_back(N);
668  return SDOperand(N, 0);
669}
670
671SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT,
672                                              unsigned Alignment) {
673  SDNode *&N = TargetConstantPoolIndices[std::make_pair(C, Alignment)];
674  if (N) return SDOperand(N, 0);
675  N = new ConstantPoolSDNode(C, VT, Alignment, true);
676  AllNodes.push_back(N);
677  return SDOperand(N, 0);
678}
679
680SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
681  SDNode *&N = BBNodes[MBB];
682  if (N) return SDOperand(N, 0);
683  N = new BasicBlockSDNode(MBB);
684  AllNodes.push_back(N);
685  return SDOperand(N, 0);
686}
687
688SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
689  if ((unsigned)VT >= ValueTypeNodes.size())
690    ValueTypeNodes.resize(VT+1);
691  if (ValueTypeNodes[VT] == 0) {
692    ValueTypeNodes[VT] = new VTSDNode(VT);
693    AllNodes.push_back(ValueTypeNodes[VT]);
694  }
695
696  return SDOperand(ValueTypeNodes[VT], 0);
697}
698
699SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
700  SDNode *&N = ExternalSymbols[Sym];
701  if (N) return SDOperand(N, 0);
702  N = new ExternalSymbolSDNode(false, Sym, VT);
703  AllNodes.push_back(N);
704  return SDOperand(N, 0);
705}
706
707SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
708                                                MVT::ValueType VT) {
709  SDNode *&N = TargetExternalSymbols[Sym];
710  if (N) return SDOperand(N, 0);
711  N = new ExternalSymbolSDNode(true, Sym, VT);
712  AllNodes.push_back(N);
713  return SDOperand(N, 0);
714}
715
716SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
717  if ((unsigned)Cond >= CondCodeNodes.size())
718    CondCodeNodes.resize(Cond+1);
719
720  if (CondCodeNodes[Cond] == 0) {
721    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
722    AllNodes.push_back(CondCodeNodes[Cond]);
723  }
724  return SDOperand(CondCodeNodes[Cond], 0);
725}
726
727SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
728  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
729  if (!Reg) {
730    Reg = new RegisterSDNode(RegNo, VT);
731    AllNodes.push_back(Reg);
732  }
733  return SDOperand(Reg, 0);
734}
735
736SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
737                                      SDOperand N2, ISD::CondCode Cond) {
738  // These setcc operations always fold.
739  switch (Cond) {
740  default: break;
741  case ISD::SETFALSE:
742  case ISD::SETFALSE2: return getConstant(0, VT);
743  case ISD::SETTRUE:
744  case ISD::SETTRUE2:  return getConstant(1, VT);
745  }
746
747  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
748    uint64_t C2 = N2C->getValue();
749    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
750      uint64_t C1 = N1C->getValue();
751
752      // Sign extend the operands if required
753      if (ISD::isSignedIntSetCC(Cond)) {
754        C1 = N1C->getSignExtended();
755        C2 = N2C->getSignExtended();
756      }
757
758      switch (Cond) {
759      default: assert(0 && "Unknown integer setcc!");
760      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
761      case ISD::SETNE:  return getConstant(C1 != C2, VT);
762      case ISD::SETULT: return getConstant(C1 <  C2, VT);
763      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
764      case ISD::SETULE: return getConstant(C1 <= C2, VT);
765      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
766      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
767      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
768      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
769      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
770      }
771    } else {
772      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
773      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
774        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
775
776        // If the comparison constant has bits in the upper part, the
777        // zero-extended value could never match.
778        if (C2 & (~0ULL << InSize)) {
779          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
780          switch (Cond) {
781          case ISD::SETUGT:
782          case ISD::SETUGE:
783          case ISD::SETEQ: return getConstant(0, VT);
784          case ISD::SETULT:
785          case ISD::SETULE:
786          case ISD::SETNE: return getConstant(1, VT);
787          case ISD::SETGT:
788          case ISD::SETGE:
789            // True if the sign bit of C2 is set.
790            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
791          case ISD::SETLT:
792          case ISD::SETLE:
793            // True if the sign bit of C2 isn't set.
794            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
795          default:
796            break;
797          }
798        }
799
800        // Otherwise, we can perform the comparison with the low bits.
801        switch (Cond) {
802        case ISD::SETEQ:
803        case ISD::SETNE:
804        case ISD::SETUGT:
805        case ISD::SETUGE:
806        case ISD::SETULT:
807        case ISD::SETULE:
808          return getSetCC(VT, N1.getOperand(0),
809                          getConstant(C2, N1.getOperand(0).getValueType()),
810                          Cond);
811        default:
812          break;   // todo, be more careful with signed comparisons
813        }
814      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
815                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
816        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
817        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
818        MVT::ValueType ExtDstTy = N1.getValueType();
819        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
820
821        // If the extended part has any inconsistent bits, it cannot ever
822        // compare equal.  In other words, they have to be all ones or all
823        // zeros.
824        uint64_t ExtBits =
825          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
826        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
827          return getConstant(Cond == ISD::SETNE, VT);
828
829        // Otherwise, make this a use of a zext.
830        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
831                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
832                        Cond);
833      }
834
835      uint64_t MinVal, MaxVal;
836      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
837      if (ISD::isSignedIntSetCC(Cond)) {
838        MinVal = 1ULL << (OperandBitSize-1);
839        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
840          MaxVal = ~0ULL >> (65-OperandBitSize);
841        else
842          MaxVal = 0;
843      } else {
844        MinVal = 0;
845        MaxVal = ~0ULL >> (64-OperandBitSize);
846      }
847
848      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
849      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
850        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
851        --C2;                                          // X >= C1 --> X > (C1-1)
852        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
853                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
854      }
855
856      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
857        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
858        ++C2;                                          // X <= C1 --> X < (C1+1)
859        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
860                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
861      }
862
863      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
864        return getConstant(0, VT);      // X < MIN --> false
865
866      // Canonicalize setgt X, Min --> setne X, Min
867      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
868        return getSetCC(VT, N1, N2, ISD::SETNE);
869
870      // If we have setult X, 1, turn it into seteq X, 0
871      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
872        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
873                        ISD::SETEQ);
874      // If we have setugt X, Max-1, turn it into seteq X, Max
875      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
876        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
877                        ISD::SETEQ);
878
879      // If we have "setcc X, C1", check to see if we can shrink the immediate
880      // by changing cc.
881
882      // SETUGT X, SINTMAX  -> SETLT X, 0
883      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
884          C2 == (~0ULL >> (65-OperandBitSize)))
885        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
886
887      // FIXME: Implement the rest of these.
888
889
890      // Fold bit comparisons when we can.
891      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
892          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
893        if (ConstantSDNode *AndRHS =
894                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
895          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
896            // Perform the xform if the AND RHS is a single bit.
897            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
898              return getNode(ISD::SRL, VT, N1,
899                             getConstant(Log2_64(AndRHS->getValue()),
900                                                   TLI.getShiftAmountTy()));
901            }
902          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
903            // (X & 8) == 8  -->  (X & 8) >> 3
904            // Perform the xform if C2 is a single bit.
905            if ((C2 & (C2-1)) == 0) {
906              return getNode(ISD::SRL, VT, N1,
907                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
908            }
909          }
910        }
911    }
912  } else if (isa<ConstantSDNode>(N1.Val)) {
913      // Ensure that the constant occurs on the RHS.
914    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
915  }
916
917  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
918    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
919      double C1 = N1C->getValue(), C2 = N2C->getValue();
920
921      switch (Cond) {
922      default: break; // FIXME: Implement the rest of these!
923      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
924      case ISD::SETNE:  return getConstant(C1 != C2, VT);
925      case ISD::SETLT:  return getConstant(C1 < C2, VT);
926      case ISD::SETGT:  return getConstant(C1 > C2, VT);
927      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
928      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
929      }
930    } else {
931      // Ensure that the constant occurs on the RHS.
932      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
933    }
934
935  // Could not fold it.
936  return SDOperand();
937}
938
939/// getNode - Gets or creates the specified node.
940///
941SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
942  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
943  if (!N) {
944    N = new SDNode(Opcode, VT);
945    AllNodes.push_back(N);
946  }
947  return SDOperand(N, 0);
948}
949
950SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
951                                SDOperand Operand) {
952  unsigned Tmp1;
953  // Constant fold unary operations with an integer constant operand.
954  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
955    uint64_t Val = C->getValue();
956    switch (Opcode) {
957    default: break;
958    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
959    case ISD::ANY_EXTEND:
960    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
961    case ISD::TRUNCATE:    return getConstant(Val, VT);
962    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
963    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
964    case ISD::BIT_CONVERT:
965      if (VT == MVT::f32) {
966        assert(C->getValueType(0) == MVT::i32 && "Invalid bit_convert!");
967        return getConstantFP(BitsToFloat(Val), VT);
968      } else if (VT == MVT::f64) {
969        assert(C->getValueType(0) == MVT::i64 && "Invalid bit_convert!");
970        return getConstantFP(BitsToDouble(Val), VT);
971      }
972      break;
973    case ISD::BSWAP:
974      switch(VT) {
975      default: assert(0 && "Invalid bswap!"); break;
976      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
977      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
978      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
979      }
980      break;
981    case ISD::CTPOP:
982      switch(VT) {
983      default: assert(0 && "Invalid ctpop!"); break;
984      case MVT::i1: return getConstant(Val != 0, VT);
985      case MVT::i8:
986        Tmp1 = (unsigned)Val & 0xFF;
987        return getConstant(CountPopulation_32(Tmp1), VT);
988      case MVT::i16:
989        Tmp1 = (unsigned)Val & 0xFFFF;
990        return getConstant(CountPopulation_32(Tmp1), VT);
991      case MVT::i32:
992        return getConstant(CountPopulation_32((unsigned)Val), VT);
993      case MVT::i64:
994        return getConstant(CountPopulation_64(Val), VT);
995      }
996    case ISD::CTLZ:
997      switch(VT) {
998      default: assert(0 && "Invalid ctlz!"); break;
999      case MVT::i1: return getConstant(Val == 0, VT);
1000      case MVT::i8:
1001        Tmp1 = (unsigned)Val & 0xFF;
1002        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1003      case MVT::i16:
1004        Tmp1 = (unsigned)Val & 0xFFFF;
1005        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1006      case MVT::i32:
1007        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1008      case MVT::i64:
1009        return getConstant(CountLeadingZeros_64(Val), VT);
1010      }
1011    case ISD::CTTZ:
1012      switch(VT) {
1013      default: assert(0 && "Invalid cttz!"); break;
1014      case MVT::i1: return getConstant(Val == 0, VT);
1015      case MVT::i8:
1016        Tmp1 = (unsigned)Val | 0x100;
1017        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1018      case MVT::i16:
1019        Tmp1 = (unsigned)Val | 0x10000;
1020        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1021      case MVT::i32:
1022        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1023      case MVT::i64:
1024        return getConstant(CountTrailingZeros_64(Val), VT);
1025      }
1026    }
1027  }
1028
1029  // Constant fold unary operations with an floating point constant operand.
1030  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1031    switch (Opcode) {
1032    case ISD::FNEG:
1033      return getConstantFP(-C->getValue(), VT);
1034    case ISD::FABS:
1035      return getConstantFP(fabs(C->getValue()), VT);
1036    case ISD::FP_ROUND:
1037    case ISD::FP_EXTEND:
1038      return getConstantFP(C->getValue(), VT);
1039    case ISD::FP_TO_SINT:
1040      return getConstant((int64_t)C->getValue(), VT);
1041    case ISD::FP_TO_UINT:
1042      return getConstant((uint64_t)C->getValue(), VT);
1043    case ISD::BIT_CONVERT:
1044      if (VT == MVT::i32) {
1045        assert(C->getValueType(0) == MVT::f32 && "Invalid bit_convert!");
1046        return getConstant(FloatToBits(C->getValue()), VT);
1047      } else if (VT == MVT::i64) {
1048        assert(C->getValueType(0) == MVT::f64 && "Invalid bit_convert!");
1049        return getConstant(DoubleToBits(C->getValue()), VT);
1050      }
1051      break;
1052    }
1053
1054  unsigned OpOpcode = Operand.Val->getOpcode();
1055  switch (Opcode) {
1056  case ISD::TokenFactor:
1057    return Operand;         // Factor of one node?  No factor.
1058  case ISD::SIGN_EXTEND:
1059    if (Operand.getValueType() == VT) return Operand;   // noop extension
1060    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1061      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1062    break;
1063  case ISD::ZERO_EXTEND:
1064    if (Operand.getValueType() == VT) return Operand;   // noop extension
1065    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1066      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1067    break;
1068  case ISD::ANY_EXTEND:
1069    if (Operand.getValueType() == VT) return Operand;   // noop extension
1070    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1071      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1072      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1073    break;
1074  case ISD::TRUNCATE:
1075    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1076    if (OpOpcode == ISD::TRUNCATE)
1077      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1078    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1079             OpOpcode == ISD::ANY_EXTEND) {
1080      // If the source is smaller than the dest, we still need an extend.
1081      if (Operand.Val->getOperand(0).getValueType() < VT)
1082        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1083      else if (Operand.Val->getOperand(0).getValueType() > VT)
1084        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1085      else
1086        return Operand.Val->getOperand(0);
1087    }
1088    break;
1089  case ISD::BIT_CONVERT:
1090    // Basic sanity checking.
1091    assert(MVT::getSizeInBits(VT)==MVT::getSizeInBits(Operand.getValueType()) &&
1092           "Cannot BIT_CONVERT between two different types!");
1093    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1094    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1095      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1096    break;
1097  case ISD::FNEG:
1098    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1099      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1100                     Operand.Val->getOperand(0));
1101    if (OpOpcode == ISD::FNEG)  // --X -> X
1102      return Operand.Val->getOperand(0);
1103    break;
1104  case ISD::FABS:
1105    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1106      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1107    break;
1108  }
1109
1110  SDNode *N;
1111  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1112    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1113    if (E) return SDOperand(E, 0);
1114    E = N = new SDNode(Opcode, Operand);
1115  } else {
1116    N = new SDNode(Opcode, Operand);
1117  }
1118  N->setValueTypes(VT);
1119  AllNodes.push_back(N);
1120  return SDOperand(N, 0);
1121}
1122
1123
1124
1125SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1126                                SDOperand N1, SDOperand N2) {
1127#ifndef NDEBUG
1128  switch (Opcode) {
1129  case ISD::TokenFactor:
1130    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1131           N2.getValueType() == MVT::Other && "Invalid token factor!");
1132    break;
1133  case ISD::AND:
1134  case ISD::OR:
1135  case ISD::XOR:
1136  case ISD::UDIV:
1137  case ISD::UREM:
1138  case ISD::MULHU:
1139  case ISD::MULHS:
1140    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1141    // fall through
1142  case ISD::ADD:
1143  case ISD::SUB:
1144  case ISD::MUL:
1145  case ISD::SDIV:
1146  case ISD::SREM:
1147    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1148    // fall through.
1149  case ISD::FADD:
1150  case ISD::FSUB:
1151  case ISD::FMUL:
1152  case ISD::FDIV:
1153  case ISD::FREM:
1154    assert(N1.getValueType() == N2.getValueType() &&
1155           N1.getValueType() == VT && "Binary operator types must match!");
1156    break;
1157
1158  case ISD::SHL:
1159  case ISD::SRA:
1160  case ISD::SRL:
1161  case ISD::ROTL:
1162  case ISD::ROTR:
1163    assert(VT == N1.getValueType() &&
1164           "Shift operators return type must be the same as their first arg");
1165    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1166           VT != MVT::i1 && "Shifts only work on integers");
1167    break;
1168  case ISD::FP_ROUND_INREG: {
1169    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1170    assert(VT == N1.getValueType() && "Not an inreg round!");
1171    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1172           "Cannot FP_ROUND_INREG integer types");
1173    assert(EVT <= VT && "Not rounding down!");
1174    break;
1175  }
1176  case ISD::AssertSext:
1177  case ISD::AssertZext:
1178  case ISD::SIGN_EXTEND_INREG: {
1179    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1180    assert(VT == N1.getValueType() && "Not an inreg extend!");
1181    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1182           "Cannot *_EXTEND_INREG FP types");
1183    assert(EVT <= VT && "Not extending!");
1184  }
1185
1186  default: break;
1187  }
1188#endif
1189
1190  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1191  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1192  if (N1C) {
1193    if (N2C) {
1194      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1195      switch (Opcode) {
1196      case ISD::ADD: return getConstant(C1 + C2, VT);
1197      case ISD::SUB: return getConstant(C1 - C2, VT);
1198      case ISD::MUL: return getConstant(C1 * C2, VT);
1199      case ISD::UDIV:
1200        if (C2) return getConstant(C1 / C2, VT);
1201        break;
1202      case ISD::UREM :
1203        if (C2) return getConstant(C1 % C2, VT);
1204        break;
1205      case ISD::SDIV :
1206        if (C2) return getConstant(N1C->getSignExtended() /
1207                                   N2C->getSignExtended(), VT);
1208        break;
1209      case ISD::SREM :
1210        if (C2) return getConstant(N1C->getSignExtended() %
1211                                   N2C->getSignExtended(), VT);
1212        break;
1213      case ISD::AND  : return getConstant(C1 & C2, VT);
1214      case ISD::OR   : return getConstant(C1 | C2, VT);
1215      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1216      case ISD::SHL  : return getConstant(C1 << C2, VT);
1217      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1218      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1219      case ISD::ROTL :
1220        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1221                           VT);
1222      case ISD::ROTR :
1223        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1224                           VT);
1225      default: break;
1226      }
1227    } else {      // Cannonicalize constant to RHS if commutative
1228      if (isCommutativeBinOp(Opcode)) {
1229        std::swap(N1C, N2C);
1230        std::swap(N1, N2);
1231      }
1232    }
1233  }
1234
1235  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1236  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1237  if (N1CFP) {
1238    if (N2CFP) {
1239      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1240      switch (Opcode) {
1241      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1242      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1243      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1244      case ISD::FDIV:
1245        if (C2) return getConstantFP(C1 / C2, VT);
1246        break;
1247      case ISD::FREM :
1248        if (C2) return getConstantFP(fmod(C1, C2), VT);
1249        break;
1250      default: break;
1251      }
1252    } else {      // Cannonicalize constant to RHS if commutative
1253      if (isCommutativeBinOp(Opcode)) {
1254        std::swap(N1CFP, N2CFP);
1255        std::swap(N1, N2);
1256      }
1257    }
1258  }
1259
1260  // Finally, fold operations that do not require constants.
1261  switch (Opcode) {
1262  case ISD::FP_ROUND_INREG:
1263    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1264    break;
1265  case ISD::SIGN_EXTEND_INREG: {
1266    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1267    if (EVT == VT) return N1;  // Not actually extending
1268    break;
1269  }
1270
1271  // FIXME: figure out how to safely handle things like
1272  // int foo(int x) { return 1 << (x & 255); }
1273  // int bar() { return foo(256); }
1274#if 0
1275  case ISD::SHL:
1276  case ISD::SRL:
1277  case ISD::SRA:
1278    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1279        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1280      return getNode(Opcode, VT, N1, N2.getOperand(0));
1281    else if (N2.getOpcode() == ISD::AND)
1282      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1283        // If the and is only masking out bits that cannot effect the shift,
1284        // eliminate the and.
1285        unsigned NumBits = MVT::getSizeInBits(VT);
1286        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1287          return getNode(Opcode, VT, N1, N2.getOperand(0));
1288      }
1289    break;
1290#endif
1291  }
1292
1293  // Memoize this node if possible.
1294  SDNode *N;
1295  if (VT != MVT::Flag) {
1296    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1297    if (BON) return SDOperand(BON, 0);
1298
1299    BON = N = new SDNode(Opcode, N1, N2);
1300  } else {
1301    N = new SDNode(Opcode, N1, N2);
1302  }
1303
1304  N->setValueTypes(VT);
1305  AllNodes.push_back(N);
1306  return SDOperand(N, 0);
1307}
1308
1309SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1310                                SDOperand N1, SDOperand N2, SDOperand N3) {
1311  // Perform various simplifications.
1312  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1313  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1314  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1315  switch (Opcode) {
1316  case ISD::SETCC: {
1317    // Use SimplifySetCC  to simplify SETCC's.
1318    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1319    if (Simp.Val) return Simp;
1320    break;
1321  }
1322  case ISD::SELECT:
1323    if (N1C)
1324      if (N1C->getValue())
1325        return N2;             // select true, X, Y -> X
1326      else
1327        return N3;             // select false, X, Y -> Y
1328
1329    if (N2 == N3) return N2;   // select C, X, X -> X
1330    break;
1331  case ISD::BRCOND:
1332    if (N2C)
1333      if (N2C->getValue()) // Unconditional branch
1334        return getNode(ISD::BR, MVT::Other, N1, N3);
1335      else
1336        return N1;         // Never-taken branch
1337    break;
1338  }
1339
1340  std::vector<SDOperand> Ops;
1341  Ops.reserve(3);
1342  Ops.push_back(N1);
1343  Ops.push_back(N2);
1344  Ops.push_back(N3);
1345
1346  // Memoize node if it doesn't produce a flag.
1347  SDNode *N;
1348  if (VT != MVT::Flag) {
1349    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1350    if (E) return SDOperand(E, 0);
1351    E = N = new SDNode(Opcode, N1, N2, N3);
1352  } else {
1353    N = new SDNode(Opcode, N1, N2, N3);
1354  }
1355  N->setValueTypes(VT);
1356  AllNodes.push_back(N);
1357  return SDOperand(N, 0);
1358}
1359
1360SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1361                                SDOperand N1, SDOperand N2, SDOperand N3,
1362                                SDOperand N4) {
1363  std::vector<SDOperand> Ops;
1364  Ops.reserve(4);
1365  Ops.push_back(N1);
1366  Ops.push_back(N2);
1367  Ops.push_back(N3);
1368  Ops.push_back(N4);
1369  return getNode(Opcode, VT, Ops);
1370}
1371
1372SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1373                                SDOperand N1, SDOperand N2, SDOperand N3,
1374                                SDOperand N4, SDOperand N5) {
1375  std::vector<SDOperand> Ops;
1376  Ops.reserve(5);
1377  Ops.push_back(N1);
1378  Ops.push_back(N2);
1379  Ops.push_back(N3);
1380  Ops.push_back(N4);
1381  Ops.push_back(N5);
1382  return getNode(Opcode, VT, Ops);
1383}
1384
1385SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1386                                SDOperand Chain, SDOperand Ptr,
1387                                SDOperand SV) {
1388  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1389  if (N) return SDOperand(N, 0);
1390  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1391
1392  // Loads have a token chain.
1393  setNodeValueTypes(N, VT, MVT::Other);
1394  AllNodes.push_back(N);
1395  return SDOperand(N, 0);
1396}
1397
1398SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1399                                   SDOperand Chain, SDOperand Ptr,
1400                                   SDOperand SV) {
1401  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, EVT))];
1402  if (N) return SDOperand(N, 0);
1403  std::vector<SDOperand> Ops;
1404  Ops.reserve(5);
1405  Ops.push_back(Chain);
1406  Ops.push_back(Ptr);
1407  Ops.push_back(getConstant(Count, MVT::i32));
1408  Ops.push_back(getValueType(EVT));
1409  Ops.push_back(SV);
1410  std::vector<MVT::ValueType> VTs;
1411  VTs.reserve(2);
1412  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1413  return getNode(ISD::VLOAD, VTs, Ops);
1414}
1415
1416SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1417                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1418                                   MVT::ValueType EVT) {
1419  std::vector<SDOperand> Ops;
1420  Ops.reserve(4);
1421  Ops.push_back(Chain);
1422  Ops.push_back(Ptr);
1423  Ops.push_back(SV);
1424  Ops.push_back(getValueType(EVT));
1425  std::vector<MVT::ValueType> VTs;
1426  VTs.reserve(2);
1427  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1428  return getNode(Opcode, VTs, Ops);
1429}
1430
1431SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1432  assert((!V || isa<PointerType>(V->getType())) &&
1433         "SrcValue is not a pointer?");
1434  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1435  if (N) return SDOperand(N, 0);
1436
1437  N = new SrcValueSDNode(V, Offset);
1438  AllNodes.push_back(N);
1439  return SDOperand(N, 0);
1440}
1441
1442SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1443                                 SDOperand Chain, SDOperand Ptr,
1444                                 SDOperand SV) {
1445  std::vector<SDOperand> Ops;
1446  Ops.reserve(3);
1447  Ops.push_back(Chain);
1448  Ops.push_back(Ptr);
1449  Ops.push_back(SV);
1450  std::vector<MVT::ValueType> VTs;
1451  VTs.reserve(2);
1452  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1453  return getNode(ISD::VAARG, VTs, Ops);
1454}
1455
1456SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1457                                std::vector<SDOperand> &Ops) {
1458  switch (Ops.size()) {
1459  case 0: return getNode(Opcode, VT);
1460  case 1: return getNode(Opcode, VT, Ops[0]);
1461  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1462  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1463  default: break;
1464  }
1465
1466  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1467  switch (Opcode) {
1468  default: break;
1469  case ISD::BRCONDTWOWAY:
1470    if (N1C)
1471      if (N1C->getValue()) // Unconditional branch to true dest.
1472        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1473      else                 // Unconditional branch to false dest.
1474        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1475    break;
1476  case ISD::BRTWOWAY_CC:
1477    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1478    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1479           "LHS and RHS of comparison must have same type!");
1480    break;
1481  case ISD::TRUNCSTORE: {
1482    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1483    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1484#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1485    // If this is a truncating store of a constant, convert to the desired type
1486    // and store it instead.
1487    if (isa<Constant>(Ops[0])) {
1488      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1489      if (isa<Constant>(Op))
1490        N1 = Op;
1491    }
1492    // Also for ConstantFP?
1493#endif
1494    if (Ops[0].getValueType() == EVT)       // Normal store?
1495      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1496    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1497    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1498           "Can't do FP-INT conversion!");
1499    break;
1500  }
1501  case ISD::SELECT_CC: {
1502    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1503    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1504           "LHS and RHS of condition must have same type!");
1505    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1506           "True and False arms of SelectCC must have same type!");
1507    assert(Ops[2].getValueType() == VT &&
1508           "select_cc node must be of same type as true and false value!");
1509    break;
1510  }
1511  case ISD::BR_CC: {
1512    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1513    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1514           "LHS/RHS of comparison should match types!");
1515    break;
1516  }
1517  }
1518
1519  // Memoize nodes.
1520  SDNode *N;
1521  if (VT != MVT::Flag) {
1522    SDNode *&E =
1523      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1524    if (E) return SDOperand(E, 0);
1525    E = N = new SDNode(Opcode, Ops);
1526  } else {
1527    N = new SDNode(Opcode, Ops);
1528  }
1529  N->setValueTypes(VT);
1530  AllNodes.push_back(N);
1531  return SDOperand(N, 0);
1532}
1533
1534SDOperand SelectionDAG::getNode(unsigned Opcode,
1535                                std::vector<MVT::ValueType> &ResultTys,
1536                                std::vector<SDOperand> &Ops) {
1537  if (ResultTys.size() == 1)
1538    return getNode(Opcode, ResultTys[0], Ops);
1539
1540  switch (Opcode) {
1541  case ISD::EXTLOAD:
1542  case ISD::SEXTLOAD:
1543  case ISD::ZEXTLOAD: {
1544    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1545    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1546    // If they are asking for an extending load from/to the same thing, return a
1547    // normal load.
1548    if (ResultTys[0] == EVT)
1549      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1550    assert(EVT < ResultTys[0] &&
1551           "Should only be an extending load, not truncating!");
1552    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1553           "Cannot sign/zero extend a FP load!");
1554    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1555           "Cannot convert from FP to Int or Int -> FP!");
1556    break;
1557  }
1558
1559  // FIXME: figure out how to safely handle things like
1560  // int foo(int x) { return 1 << (x & 255); }
1561  // int bar() { return foo(256); }
1562#if 0
1563  case ISD::SRA_PARTS:
1564  case ISD::SRL_PARTS:
1565  case ISD::SHL_PARTS:
1566    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1567        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1568      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1569    else if (N3.getOpcode() == ISD::AND)
1570      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1571        // If the and is only masking out bits that cannot effect the shift,
1572        // eliminate the and.
1573        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1574        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1575          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1576      }
1577    break;
1578#endif
1579  }
1580
1581  // Memoize the node unless it returns a flag.
1582  SDNode *N;
1583  if (ResultTys.back() != MVT::Flag) {
1584    SDNode *&E =
1585      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1586    if (E) return SDOperand(E, 0);
1587    E = N = new SDNode(Opcode, Ops);
1588  } else {
1589    N = new SDNode(Opcode, Ops);
1590  }
1591  setNodeValueTypes(N, ResultTys);
1592  AllNodes.push_back(N);
1593  return SDOperand(N, 0);
1594}
1595
1596void SelectionDAG::setNodeValueTypes(SDNode *N,
1597                                     std::vector<MVT::ValueType> &RetVals) {
1598  switch (RetVals.size()) {
1599  case 0: return;
1600  case 1: N->setValueTypes(RetVals[0]); return;
1601  case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
1602  default: break;
1603  }
1604
1605  std::list<std::vector<MVT::ValueType> >::iterator I =
1606    std::find(VTList.begin(), VTList.end(), RetVals);
1607  if (I == VTList.end()) {
1608    VTList.push_front(RetVals);
1609    I = VTList.begin();
1610  }
1611
1612  N->setValueTypes(&(*I)[0], I->size());
1613}
1614
1615void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
1616                                     MVT::ValueType VT2) {
1617  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1618       E = VTList.end(); I != E; ++I) {
1619    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
1620      N->setValueTypes(&(*I)[0], 2);
1621      return;
1622    }
1623  }
1624  std::vector<MVT::ValueType> V;
1625  V.push_back(VT1);
1626  V.push_back(VT2);
1627  VTList.push_front(V);
1628  N->setValueTypes(&(*VTList.begin())[0], 2);
1629}
1630
1631/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1632/// specified operands.  If the resultant node already exists in the DAG,
1633/// this does not modify the specified node, instead it returns the node that
1634/// already exists.  If the resultant node does not exist in the DAG, the
1635/// input node is returned.  As a degenerate case, if you specify the same
1636/// input operands as the node already has, the input node is returned.
1637SDOperand SelectionDAG::
1638UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1639  SDNode *N = InN.Val;
1640  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1641
1642  // Check to see if there is no change.
1643  if (Op == N->getOperand(0)) return InN;
1644
1645  // See if the modified node already exists.
1646  SDNode **NewSlot = FindModifiedNodeSlot(N, Op);
1647  if (NewSlot && *NewSlot)
1648    return SDOperand(*NewSlot, InN.ResNo);
1649
1650  // Nope it doesn't.  Remove the node from it's current place in the maps.
1651  if (NewSlot)
1652    RemoveNodeFromCSEMaps(N);
1653
1654  // Now we update the operands.
1655  N->OperandList[0].Val->removeUser(N);
1656  Op.Val->addUser(N);
1657  N->OperandList[0] = Op;
1658
1659  // If this gets put into a CSE map, add it.
1660  if (NewSlot) *NewSlot = N;
1661  return InN;
1662}
1663
1664SDOperand SelectionDAG::
1665UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1666  SDNode *N = InN.Val;
1667  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1668
1669  // Check to see if there is no change.
1670  bool AnyChange = false;
1671  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1672    return InN;   // No operands changed, just return the input node.
1673
1674  // See if the modified node already exists.
1675  SDNode **NewSlot = FindModifiedNodeSlot(N, Op1, Op2);
1676  if (NewSlot && *NewSlot)
1677    return SDOperand(*NewSlot, InN.ResNo);
1678
1679  // Nope it doesn't.  Remove the node from it's current place in the maps.
1680  if (NewSlot)
1681    RemoveNodeFromCSEMaps(N);
1682
1683  // Now we update the operands.
1684  if (N->OperandList[0] != Op1) {
1685    N->OperandList[0].Val->removeUser(N);
1686    Op1.Val->addUser(N);
1687    N->OperandList[0] = Op1;
1688  }
1689  if (N->OperandList[1] != Op2) {
1690    N->OperandList[1].Val->removeUser(N);
1691    Op2.Val->addUser(N);
1692    N->OperandList[1] = Op2;
1693  }
1694
1695  // If this gets put into a CSE map, add it.
1696  if (NewSlot) *NewSlot = N;
1697  return InN;
1698}
1699
1700SDOperand SelectionDAG::
1701UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1702  std::vector<SDOperand> Ops;
1703  Ops.push_back(Op1);
1704  Ops.push_back(Op2);
1705  Ops.push_back(Op3);
1706  return UpdateNodeOperands(N, Ops);
1707}
1708
1709SDOperand SelectionDAG::
1710UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1711                   SDOperand Op3, SDOperand Op4) {
1712  std::vector<SDOperand> Ops;
1713  Ops.push_back(Op1);
1714  Ops.push_back(Op2);
1715  Ops.push_back(Op3);
1716  Ops.push_back(Op4);
1717  return UpdateNodeOperands(N, Ops);
1718}
1719
1720SDOperand SelectionDAG::
1721UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1722                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1723  std::vector<SDOperand> Ops;
1724  Ops.push_back(Op1);
1725  Ops.push_back(Op2);
1726  Ops.push_back(Op3);
1727  Ops.push_back(Op4);
1728  Ops.push_back(Op5);
1729  return UpdateNodeOperands(N, Ops);
1730}
1731
1732
1733SDOperand SelectionDAG::
1734UpdateNodeOperands(SDOperand InN, const std::vector<SDOperand> &Ops) {
1735  SDNode *N = InN.Val;
1736  assert(N->getNumOperands() == Ops.size() &&
1737         "Update with wrong number of operands");
1738
1739  // Check to see if there is no change.
1740  unsigned NumOps = Ops.size();
1741  bool AnyChange = false;
1742  for (unsigned i = 0; i != NumOps; ++i) {
1743    if (Ops[i] != N->getOperand(i)) {
1744      AnyChange = true;
1745      break;
1746    }
1747  }
1748
1749  // No operands changed, just return the input node.
1750  if (!AnyChange) return InN;
1751
1752  // See if the modified node already exists.
1753  SDNode **NewSlot = FindModifiedNodeSlot(N, Ops);
1754  if (NewSlot && *NewSlot)
1755    return SDOperand(*NewSlot, InN.ResNo);
1756
1757  // Nope it doesn't.  Remove the node from it's current place in the maps.
1758  if (NewSlot)
1759    RemoveNodeFromCSEMaps(N);
1760
1761  // Now we update the operands.
1762  for (unsigned i = 0; i != NumOps; ++i) {
1763    if (N->OperandList[i] != Ops[i]) {
1764      N->OperandList[i].Val->removeUser(N);
1765      Ops[i].Val->addUser(N);
1766      N->OperandList[i] = Ops[i];
1767    }
1768  }
1769
1770  // If this gets put into a CSE map, add it.
1771  if (NewSlot) *NewSlot = N;
1772  return InN;
1773}
1774
1775
1776
1777
1778/// SelectNodeTo - These are used for target selectors to *mutate* the
1779/// specified node to have the specified return type, Target opcode, and
1780/// operands.  Note that target opcodes are stored as
1781/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1782///
1783/// Note that SelectNodeTo returns the resultant node.  If there is already a
1784/// node of the specified opcode and operands, it returns that node instead of
1785/// the current one.
1786SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1787                                     MVT::ValueType VT) {
1788  // If an identical node already exists, use it.
1789  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1790  if (ON) return SDOperand(ON, 0);
1791
1792  RemoveNodeFromCSEMaps(N);
1793
1794  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1795  N->setValueTypes(VT);
1796
1797  ON = N;   // Memoize the new node.
1798  return SDOperand(N, 0);
1799}
1800
1801SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1802                                     MVT::ValueType VT, SDOperand Op1) {
1803  // If an identical node already exists, use it.
1804  SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1805                                        std::make_pair(Op1, VT))];
1806  if (ON) return SDOperand(ON, 0);
1807
1808  RemoveNodeFromCSEMaps(N);
1809  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1810  N->setValueTypes(VT);
1811  N->setOperands(Op1);
1812
1813  ON = N;   // Memoize the new node.
1814  return SDOperand(N, 0);
1815}
1816
1817SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1818                                     MVT::ValueType VT, SDOperand Op1,
1819                                     SDOperand Op2) {
1820  // If an identical node already exists, use it.
1821  SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1822                                         std::make_pair(Op1, Op2))];
1823  if (ON) return SDOperand(ON, 0);
1824
1825  RemoveNodeFromCSEMaps(N);
1826  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1827  N->setValueTypes(VT);
1828  N->setOperands(Op1, Op2);
1829
1830  ON = N;   // Memoize the new node.
1831  return SDOperand(N, 0);
1832}
1833
1834SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1835                                     MVT::ValueType VT, SDOperand Op1,
1836                                     SDOperand Op2, SDOperand Op3) {
1837  // If an identical node already exists, use it.
1838  std::vector<SDOperand> OpList;
1839  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1840  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1841                                              std::make_pair(VT, OpList))];
1842  if (ON) return SDOperand(ON, 0);
1843
1844  RemoveNodeFromCSEMaps(N);
1845  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1846  N->setValueTypes(VT);
1847  N->setOperands(Op1, Op2, Op3);
1848
1849  ON = N;   // Memoize the new node.
1850  return SDOperand(N, 0);
1851}
1852
1853SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1854                                     MVT::ValueType VT, SDOperand Op1,
1855                                     SDOperand Op2, SDOperand Op3,
1856                                     SDOperand Op4) {
1857  // If an identical node already exists, use it.
1858  std::vector<SDOperand> OpList;
1859  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1860  OpList.push_back(Op4);
1861  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1862                                              std::make_pair(VT, OpList))];
1863  if (ON) return SDOperand(ON, 0);
1864
1865  RemoveNodeFromCSEMaps(N);
1866  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1867  N->setValueTypes(VT);
1868  N->setOperands(Op1, Op2, Op3, Op4);
1869
1870  ON = N;   // Memoize the new node.
1871  return SDOperand(N, 0);
1872}
1873
1874SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1875                                     MVT::ValueType VT, SDOperand Op1,
1876                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1877                                     SDOperand Op5) {
1878  // If an identical node already exists, use it.
1879  std::vector<SDOperand> OpList;
1880  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1881  OpList.push_back(Op4); OpList.push_back(Op5);
1882  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1883                                              std::make_pair(VT, OpList))];
1884  if (ON) return SDOperand(ON, 0);
1885
1886  RemoveNodeFromCSEMaps(N);
1887  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1888  N->setValueTypes(VT);
1889  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1890
1891  ON = N;   // Memoize the new node.
1892  return SDOperand(N, 0);
1893}
1894
1895SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1896                                     MVT::ValueType VT, SDOperand Op1,
1897                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1898                                     SDOperand Op5, SDOperand Op6) {
1899  // If an identical node already exists, use it.
1900  std::vector<SDOperand> OpList;
1901  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1902  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1903  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1904                                              std::make_pair(VT, OpList))];
1905  if (ON) return SDOperand(ON, 0);
1906
1907  RemoveNodeFromCSEMaps(N);
1908  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1909  N->setValueTypes(VT);
1910  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
1911
1912  ON = N;   // Memoize the new node.
1913  return SDOperand(N, 0);
1914}
1915
1916SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1917                                     MVT::ValueType VT, SDOperand Op1,
1918                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1919                                     SDOperand Op5, SDOperand Op6,
1920				     SDOperand Op7) {
1921  // If an identical node already exists, use it.
1922  std::vector<SDOperand> OpList;
1923  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1924  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1925  OpList.push_back(Op7);
1926  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1927                                              std::make_pair(VT, OpList))];
1928  if (ON) return SDOperand(ON, 0);
1929
1930  RemoveNodeFromCSEMaps(N);
1931  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1932  N->setValueTypes(VT);
1933  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
1934
1935  ON = N;   // Memoize the new node.
1936  return SDOperand(N, 0);
1937}
1938SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1939                                     MVT::ValueType VT, SDOperand Op1,
1940                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1941                                     SDOperand Op5, SDOperand Op6,
1942				     SDOperand Op7, SDOperand Op8) {
1943  // If an identical node already exists, use it.
1944  std::vector<SDOperand> OpList;
1945  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1946  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1947  OpList.push_back(Op7); OpList.push_back(Op8);
1948  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1949                                              std::make_pair(VT, OpList))];
1950  if (ON) return SDOperand(ON, 0);
1951
1952  RemoveNodeFromCSEMaps(N);
1953  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1954  N->setValueTypes(VT);
1955  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
1956
1957  ON = N;   // Memoize the new node.
1958  return SDOperand(N, 0);
1959}
1960
1961SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1962                                     MVT::ValueType VT1, MVT::ValueType VT2,
1963                                     SDOperand Op1, SDOperand Op2) {
1964  // If an identical node already exists, use it.
1965  std::vector<SDOperand> OpList;
1966  OpList.push_back(Op1); OpList.push_back(Op2);
1967  std::vector<MVT::ValueType> VTList;
1968  VTList.push_back(VT1); VTList.push_back(VT2);
1969  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1970                                              std::make_pair(VTList, OpList))];
1971  if (ON) return SDOperand(ON, 0);
1972
1973  RemoveNodeFromCSEMaps(N);
1974  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1975  setNodeValueTypes(N, VT1, VT2);
1976  N->setOperands(Op1, Op2);
1977
1978  ON = N;   // Memoize the new node.
1979  return SDOperand(N, 0);
1980}
1981
1982SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1983                                     MVT::ValueType VT1, MVT::ValueType VT2,
1984                                     SDOperand Op1, SDOperand Op2,
1985                                     SDOperand Op3) {
1986  // If an identical node already exists, use it.
1987  std::vector<SDOperand> OpList;
1988  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1989  std::vector<MVT::ValueType> VTList;
1990  VTList.push_back(VT1); VTList.push_back(VT2);
1991  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1992                                              std::make_pair(VTList, OpList))];
1993  if (ON) return SDOperand(ON, 0);
1994
1995  RemoveNodeFromCSEMaps(N);
1996  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1997  setNodeValueTypes(N, VT1, VT2);
1998  N->setOperands(Op1, Op2, Op3);
1999
2000  ON = N;   // Memoize the new node.
2001  return SDOperand(N, 0);
2002}
2003
2004SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2005                                     MVT::ValueType VT1, MVT::ValueType VT2,
2006                                     SDOperand Op1, SDOperand Op2,
2007                                     SDOperand Op3, SDOperand Op4) {
2008  // If an identical node already exists, use it.
2009  std::vector<SDOperand> OpList;
2010  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2011  OpList.push_back(Op4);
2012  std::vector<MVT::ValueType> VTList;
2013  VTList.push_back(VT1); VTList.push_back(VT2);
2014  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2015                                              std::make_pair(VTList, OpList))];
2016  if (ON) return SDOperand(ON, 0);
2017
2018  RemoveNodeFromCSEMaps(N);
2019  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2020  setNodeValueTypes(N, VT1, VT2);
2021  N->setOperands(Op1, Op2, Op3, Op4);
2022
2023  ON = N;   // Memoize the new node.
2024  return SDOperand(N, 0);
2025}
2026
2027SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2028                                     MVT::ValueType VT1, MVT::ValueType VT2,
2029                                     SDOperand Op1, SDOperand Op2,
2030                                     SDOperand Op3, SDOperand Op4,
2031                                     SDOperand Op5) {
2032  // If an identical node already exists, use it.
2033  std::vector<SDOperand> OpList;
2034  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2035  OpList.push_back(Op4); OpList.push_back(Op5);
2036  std::vector<MVT::ValueType> VTList;
2037  VTList.push_back(VT1); VTList.push_back(VT2);
2038  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2039                                              std::make_pair(VTList, OpList))];
2040  if (ON) return SDOperand(ON, 0);
2041
2042  RemoveNodeFromCSEMaps(N);
2043  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2044  setNodeValueTypes(N, VT1, VT2);
2045  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2046
2047  ON = N;   // Memoize the new node.
2048  return SDOperand(N, 0);
2049}
2050
2051// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2052/// This can cause recursive merging of nodes in the DAG.
2053///
2054/// This version assumes From/To have a single result value.
2055///
2056void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2057                                      std::vector<SDNode*> *Deleted) {
2058  SDNode *From = FromN.Val, *To = ToN.Val;
2059  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2060         "Cannot replace with this method!");
2061  assert(From != To && "Cannot replace uses of with self");
2062
2063  while (!From->use_empty()) {
2064    // Process users until they are all gone.
2065    SDNode *U = *From->use_begin();
2066
2067    // This node is about to morph, remove its old self from the CSE maps.
2068    RemoveNodeFromCSEMaps(U);
2069
2070    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2071         I != E; ++I)
2072      if (I->Val == From) {
2073        From->removeUser(U);
2074        I->Val = To;
2075        To->addUser(U);
2076      }
2077
2078    // Now that we have modified U, add it back to the CSE maps.  If it already
2079    // exists there, recursively merge the results together.
2080    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2081      ReplaceAllUsesWith(U, Existing, Deleted);
2082      // U is now dead.
2083      if (Deleted) Deleted->push_back(U);
2084      DeleteNodeNotInCSEMaps(U);
2085    }
2086  }
2087}
2088
2089/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2090/// This can cause recursive merging of nodes in the DAG.
2091///
2092/// This version assumes From/To have matching types and numbers of result
2093/// values.
2094///
2095void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2096                                      std::vector<SDNode*> *Deleted) {
2097  assert(From != To && "Cannot replace uses of with self");
2098  assert(From->getNumValues() == To->getNumValues() &&
2099         "Cannot use this version of ReplaceAllUsesWith!");
2100  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2101    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2102    return;
2103  }
2104
2105  while (!From->use_empty()) {
2106    // Process users until they are all gone.
2107    SDNode *U = *From->use_begin();
2108
2109    // This node is about to morph, remove its old self from the CSE maps.
2110    RemoveNodeFromCSEMaps(U);
2111
2112    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2113         I != E; ++I)
2114      if (I->Val == From) {
2115        From->removeUser(U);
2116        I->Val = To;
2117        To->addUser(U);
2118      }
2119
2120    // Now that we have modified U, add it back to the CSE maps.  If it already
2121    // exists there, recursively merge the results together.
2122    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2123      ReplaceAllUsesWith(U, Existing, Deleted);
2124      // U is now dead.
2125      if (Deleted) Deleted->push_back(U);
2126      DeleteNodeNotInCSEMaps(U);
2127    }
2128  }
2129}
2130
2131/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2132/// This can cause recursive merging of nodes in the DAG.
2133///
2134/// This version can replace From with any result values.  To must match the
2135/// number and types of values returned by From.
2136void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2137                                      const std::vector<SDOperand> &To,
2138                                      std::vector<SDNode*> *Deleted) {
2139  assert(From->getNumValues() == To.size() &&
2140         "Incorrect number of values to replace with!");
2141  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2142    // Degenerate case handled above.
2143    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2144    return;
2145  }
2146
2147  while (!From->use_empty()) {
2148    // Process users until they are all gone.
2149    SDNode *U = *From->use_begin();
2150
2151    // This node is about to morph, remove its old self from the CSE maps.
2152    RemoveNodeFromCSEMaps(U);
2153
2154    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2155         I != E; ++I)
2156      if (I->Val == From) {
2157        const SDOperand &ToOp = To[I->ResNo];
2158        From->removeUser(U);
2159        *I = ToOp;
2160        ToOp.Val->addUser(U);
2161      }
2162
2163    // Now that we have modified U, add it back to the CSE maps.  If it already
2164    // exists there, recursively merge the results together.
2165    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2166      ReplaceAllUsesWith(U, Existing, Deleted);
2167      // U is now dead.
2168      if (Deleted) Deleted->push_back(U);
2169      DeleteNodeNotInCSEMaps(U);
2170    }
2171  }
2172}
2173
2174
2175//===----------------------------------------------------------------------===//
2176//                              SDNode Class
2177//===----------------------------------------------------------------------===//
2178
2179
2180/// getValueTypeList - Return a pointer to the specified value type.
2181///
2182MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2183  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2184  VTs[VT] = VT;
2185  return &VTs[VT];
2186}
2187
2188/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2189/// indicated value.  This method ignores uses of other values defined by this
2190/// operation.
2191bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
2192  assert(Value < getNumValues() && "Bad value!");
2193
2194  // If there is only one value, this is easy.
2195  if (getNumValues() == 1)
2196    return use_size() == NUses;
2197  if (Uses.size() < NUses) return false;
2198
2199  SDOperand TheValue(this, Value);
2200
2201  std::set<SDNode*> UsersHandled;
2202
2203  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
2204       UI != E; ++UI) {
2205    SDNode *User = *UI;
2206    if (User->getNumOperands() == 1 ||
2207        UsersHandled.insert(User).second)     // First time we've seen this?
2208      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2209        if (User->getOperand(i) == TheValue) {
2210          if (NUses == 0)
2211            return false;   // too many uses
2212          --NUses;
2213        }
2214  }
2215
2216  // Found exactly the right number of uses?
2217  return NUses == 0;
2218}
2219
2220
2221const char *SDNode::getOperationName(const SelectionDAG *G) const {
2222  switch (getOpcode()) {
2223  default:
2224    if (getOpcode() < ISD::BUILTIN_OP_END)
2225      return "<<Unknown DAG Node>>";
2226    else {
2227      if (G) {
2228        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2229          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2230            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2231
2232        TargetLowering &TLI = G->getTargetLoweringInfo();
2233        const char *Name =
2234          TLI.getTargetNodeName(getOpcode());
2235        if (Name) return Name;
2236      }
2237
2238      return "<<Unknown Target Node>>";
2239    }
2240
2241  case ISD::PCMARKER:      return "PCMarker";
2242  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2243  case ISD::SRCVALUE:      return "SrcValue";
2244  case ISD::VALUETYPE:     return "ValueType";
2245  case ISD::STRING:        return "String";
2246  case ISD::EntryToken:    return "EntryToken";
2247  case ISD::TokenFactor:   return "TokenFactor";
2248  case ISD::AssertSext:    return "AssertSext";
2249  case ISD::AssertZext:    return "AssertZext";
2250  case ISD::Constant:      return "Constant";
2251  case ISD::TargetConstant: return "TargetConstant";
2252  case ISD::ConstantFP:    return "ConstantFP";
2253  case ISD::ConstantVec:   return "ConstantVec";
2254  case ISD::GlobalAddress: return "GlobalAddress";
2255  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2256  case ISD::FrameIndex:    return "FrameIndex";
2257  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2258  case ISD::BasicBlock:    return "BasicBlock";
2259  case ISD::Register:      return "Register";
2260  case ISD::ExternalSymbol: return "ExternalSymbol";
2261  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2262  case ISD::ConstantPool:  return "ConstantPool";
2263  case ISD::TargetConstantPool:  return "TargetConstantPool";
2264  case ISD::CopyToReg:     return "CopyToReg";
2265  case ISD::CopyFromReg:   return "CopyFromReg";
2266  case ISD::UNDEF:         return "undef";
2267  case ISD::MERGE_VALUES:  return "mergevalues";
2268  case ISD::INLINEASM:     return "inlineasm";
2269  case ISD::HANDLENODE:    return "handlenode";
2270
2271  // Unary operators
2272  case ISD::FABS:   return "fabs";
2273  case ISD::FNEG:   return "fneg";
2274  case ISD::FSQRT:  return "fsqrt";
2275  case ISD::FSIN:   return "fsin";
2276  case ISD::FCOS:   return "fcos";
2277
2278  // Binary operators
2279  case ISD::ADD:    return "add";
2280  case ISD::SUB:    return "sub";
2281  case ISD::MUL:    return "mul";
2282  case ISD::MULHU:  return "mulhu";
2283  case ISD::MULHS:  return "mulhs";
2284  case ISD::SDIV:   return "sdiv";
2285  case ISD::UDIV:   return "udiv";
2286  case ISD::SREM:   return "srem";
2287  case ISD::UREM:   return "urem";
2288  case ISD::AND:    return "and";
2289  case ISD::OR:     return "or";
2290  case ISD::XOR:    return "xor";
2291  case ISD::SHL:    return "shl";
2292  case ISD::SRA:    return "sra";
2293  case ISD::SRL:    return "srl";
2294  case ISD::ROTL:   return "rotl";
2295  case ISD::ROTR:   return "rotr";
2296  case ISD::FADD:   return "fadd";
2297  case ISD::FSUB:   return "fsub";
2298  case ISD::FMUL:   return "fmul";
2299  case ISD::FDIV:   return "fdiv";
2300  case ISD::FREM:   return "frem";
2301  case ISD::VADD:   return "vadd";
2302  case ISD::VSUB:   return "vsub";
2303  case ISD::VMUL:   return "vmul";
2304
2305  case ISD::SETCC:       return "setcc";
2306  case ISD::SELECT:      return "select";
2307  case ISD::SELECT_CC:   return "select_cc";
2308  case ISD::ADD_PARTS:   return "add_parts";
2309  case ISD::SUB_PARTS:   return "sub_parts";
2310  case ISD::SHL_PARTS:   return "shl_parts";
2311  case ISD::SRA_PARTS:   return "sra_parts";
2312  case ISD::SRL_PARTS:   return "srl_parts";
2313
2314  // Conversion operators.
2315  case ISD::SIGN_EXTEND: return "sign_extend";
2316  case ISD::ZERO_EXTEND: return "zero_extend";
2317  case ISD::ANY_EXTEND:  return "any_extend";
2318  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2319  case ISD::TRUNCATE:    return "truncate";
2320  case ISD::FP_ROUND:    return "fp_round";
2321  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2322  case ISD::FP_EXTEND:   return "fp_extend";
2323
2324  case ISD::SINT_TO_FP:  return "sint_to_fp";
2325  case ISD::UINT_TO_FP:  return "uint_to_fp";
2326  case ISD::FP_TO_SINT:  return "fp_to_sint";
2327  case ISD::FP_TO_UINT:  return "fp_to_uint";
2328  case ISD::BIT_CONVERT: return "bit_convert";
2329
2330    // Control flow instructions
2331  case ISD::BR:      return "br";
2332  case ISD::BRCOND:  return "brcond";
2333  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
2334  case ISD::BR_CC:  return "br_cc";
2335  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
2336  case ISD::RET:     return "ret";
2337  case ISD::CALLSEQ_START:  return "callseq_start";
2338  case ISD::CALLSEQ_END:    return "callseq_end";
2339
2340    // Other operators
2341  case ISD::LOAD:               return "load";
2342  case ISD::STORE:              return "store";
2343  case ISD::VLOAD:              return "vload";
2344  case ISD::EXTLOAD:            return "extload";
2345  case ISD::SEXTLOAD:           return "sextload";
2346  case ISD::ZEXTLOAD:           return "zextload";
2347  case ISD::TRUNCSTORE:         return "truncstore";
2348  case ISD::VAARG:              return "vaarg";
2349  case ISD::VACOPY:             return "vacopy";
2350  case ISD::VAEND:              return "vaend";
2351  case ISD::VASTART:            return "vastart";
2352  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2353  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2354  case ISD::BUILD_PAIR:         return "build_pair";
2355  case ISD::STACKSAVE:          return "stacksave";
2356  case ISD::STACKRESTORE:       return "stackrestore";
2357
2358  // Block memory operations.
2359  case ISD::MEMSET:  return "memset";
2360  case ISD::MEMCPY:  return "memcpy";
2361  case ISD::MEMMOVE: return "memmove";
2362
2363  // Bit manipulation
2364  case ISD::BSWAP:   return "bswap";
2365  case ISD::CTPOP:   return "ctpop";
2366  case ISD::CTTZ:    return "cttz";
2367  case ISD::CTLZ:    return "ctlz";
2368
2369  // IO Intrinsics
2370  case ISD::READPORT: return "readport";
2371  case ISD::WRITEPORT: return "writeport";
2372  case ISD::READIO: return "readio";
2373  case ISD::WRITEIO: return "writeio";
2374
2375  // Debug info
2376  case ISD::LOCATION: return "location";
2377  case ISD::DEBUG_LOC: return "debug_loc";
2378  case ISD::DEBUG_LABEL: return "debug_label";
2379
2380  case ISD::CONDCODE:
2381    switch (cast<CondCodeSDNode>(this)->get()) {
2382    default: assert(0 && "Unknown setcc condition!");
2383    case ISD::SETOEQ:  return "setoeq";
2384    case ISD::SETOGT:  return "setogt";
2385    case ISD::SETOGE:  return "setoge";
2386    case ISD::SETOLT:  return "setolt";
2387    case ISD::SETOLE:  return "setole";
2388    case ISD::SETONE:  return "setone";
2389
2390    case ISD::SETO:    return "seto";
2391    case ISD::SETUO:   return "setuo";
2392    case ISD::SETUEQ:  return "setue";
2393    case ISD::SETUGT:  return "setugt";
2394    case ISD::SETUGE:  return "setuge";
2395    case ISD::SETULT:  return "setult";
2396    case ISD::SETULE:  return "setule";
2397    case ISD::SETUNE:  return "setune";
2398
2399    case ISD::SETEQ:   return "seteq";
2400    case ISD::SETGT:   return "setgt";
2401    case ISD::SETGE:   return "setge";
2402    case ISD::SETLT:   return "setlt";
2403    case ISD::SETLE:   return "setle";
2404    case ISD::SETNE:   return "setne";
2405    }
2406  }
2407}
2408
2409void SDNode::dump() const { dump(0); }
2410void SDNode::dump(const SelectionDAG *G) const {
2411  std::cerr << (void*)this << ": ";
2412
2413  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2414    if (i) std::cerr << ",";
2415    if (getValueType(i) == MVT::Other)
2416      std::cerr << "ch";
2417    else
2418      std::cerr << MVT::getValueTypeString(getValueType(i));
2419  }
2420  std::cerr << " = " << getOperationName(G);
2421
2422  std::cerr << " ";
2423  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2424    if (i) std::cerr << ", ";
2425    std::cerr << (void*)getOperand(i).Val;
2426    if (unsigned RN = getOperand(i).ResNo)
2427      std::cerr << ":" << RN;
2428  }
2429
2430  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2431    std::cerr << "<" << CSDN->getValue() << ">";
2432  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2433    std::cerr << "<" << CSDN->getValue() << ">";
2434  } else if (const GlobalAddressSDNode *GADN =
2435             dyn_cast<GlobalAddressSDNode>(this)) {
2436    int offset = GADN->getOffset();
2437    std::cerr << "<";
2438    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2439    if (offset > 0)
2440      std::cerr << " + " << offset;
2441    else
2442      std::cerr << " " << offset;
2443  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2444    std::cerr << "<" << FIDN->getIndex() << ">";
2445  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2446    std::cerr << "<" << *CP->get() << ">";
2447  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2448    std::cerr << "<";
2449    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2450    if (LBB)
2451      std::cerr << LBB->getName() << " ";
2452    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2453  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2454    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2455      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2456    } else {
2457      std::cerr << " #" << R->getReg();
2458    }
2459  } else if (const ExternalSymbolSDNode *ES =
2460             dyn_cast<ExternalSymbolSDNode>(this)) {
2461    std::cerr << "'" << ES->getSymbol() << "'";
2462  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2463    if (M->getValue())
2464      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2465    else
2466      std::cerr << "<null:" << M->getOffset() << ">";
2467  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2468    std::cerr << ":" << getValueTypeString(N->getVT());
2469  }
2470}
2471
2472static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2473  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2474    if (N->getOperand(i).Val->hasOneUse())
2475      DumpNodes(N->getOperand(i).Val, indent+2, G);
2476    else
2477      std::cerr << "\n" << std::string(indent+2, ' ')
2478                << (void*)N->getOperand(i).Val << ": <multiple use>";
2479
2480
2481  std::cerr << "\n" << std::string(indent, ' ');
2482  N->dump(G);
2483}
2484
2485void SelectionDAG::dump() const {
2486  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2487  std::vector<const SDNode*> Nodes;
2488  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2489       I != E; ++I)
2490    Nodes.push_back(I);
2491
2492  std::sort(Nodes.begin(), Nodes.end());
2493
2494  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2495    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2496      DumpNodes(Nodes[i], 2, this);
2497  }
2498
2499  DumpNodes(getRoot().Val, 2, this);
2500
2501  std::cerr << "\n\n";
2502}
2503
2504