SelectionDAG.cpp revision a04b75710910278334192b389c4c4c62600e162f
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getMemoryVT().getRawBits());
433    ID.AddInteger(LD->getRawSubclassData());
434    break;
435  }
436  case ISD::STORE: {
437    const StoreSDNode *ST = cast<StoreSDNode>(N);
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawSubclassData());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_ADD:
445  case ISD::ATOMIC_LOAD_SUB:
446  case ISD::ATOMIC_LOAD_AND:
447  case ISD::ATOMIC_LOAD_OR:
448  case ISD::ATOMIC_LOAD_XOR:
449  case ISD::ATOMIC_LOAD_NAND:
450  case ISD::ATOMIC_LOAD_MIN:
451  case ISD::ATOMIC_LOAD_MAX:
452  case ISD::ATOMIC_LOAD_UMIN:
453  case ISD::ATOMIC_LOAD_UMAX: {
454    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455    ID.AddInteger(AT->getMemoryVT().getRawBits());
456    ID.AddInteger(AT->getRawSubclassData());
457    break;
458  }
459  } // end switch (N->getOpcode())
460}
461
462/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
463/// data.
464static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
465  AddNodeIDOpcode(ID, N->getOpcode());
466  // Add the return value info.
467  AddNodeIDValueTypes(ID, N->getVTList());
468  // Add the operand info.
469  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
470
471  // Handle SDNode leafs with special info.
472  AddNodeIDCustom(ID, N);
473}
474
475/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476/// the CSE map that carries alignment, volatility, indexing mode, and
477/// extension/truncation information.
478///
479static inline unsigned
480encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
481                     bool isVolatile, unsigned Alignment) {
482  assert((ConvType & 3) == ConvType &&
483         "ConvType may not require more than 2 bits!");
484  assert((AM & 7) == AM &&
485         "AM may not require more than 3 bits!");
486  return ConvType |
487         (AM << 2) |
488         (isVolatile << 5) |
489         ((Log2_32(Alignment) + 1) << 6);
490}
491
492//===----------------------------------------------------------------------===//
493//                              SelectionDAG Class
494//===----------------------------------------------------------------------===//
495
496/// doNotCSE - Return true if CSE should not be performed for this node.
497static bool doNotCSE(SDNode *N) {
498  if (N->getValueType(0) == MVT::Flag)
499    return true; // Never CSE anything that produces a flag.
500
501  switch (N->getOpcode()) {
502  default: break;
503  case ISD::HANDLENODE:
504  case ISD::DBG_LABEL:
505  case ISD::DBG_STOPPOINT:
506  case ISD::EH_LABEL:
507  case ISD::DECLARE:
508    return true;   // Never CSE these nodes.
509  }
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return true; // Never CSE anything that produces a flag.
515
516  return false;
517}
518
519/// RemoveDeadNodes - This method deletes all unreachable nodes in the
520/// SelectionDAG.
521void SelectionDAG::RemoveDeadNodes() {
522  // Create a dummy node (which is not added to allnodes), that adds a reference
523  // to the root node, preventing it from being deleted.
524  HandleSDNode Dummy(getRoot());
525
526  SmallVector<SDNode*, 128> DeadNodes;
527
528  // Add all obviously-dead nodes to the DeadNodes worklist.
529  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530    if (I->use_empty())
531      DeadNodes.push_back(I);
532
533  RemoveDeadNodes(DeadNodes);
534
535  // If the root changed (e.g. it was a dead load, update the root).
536  setRoot(Dummy.getValue());
537}
538
539/// RemoveDeadNodes - This method deletes the unreachable nodes in the
540/// given list, and any nodes that become unreachable as a result.
541void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542                                   DAGUpdateListener *UpdateListener) {
543
544  // Process the worklist, deleting the nodes and adding their uses to the
545  // worklist.
546  while (!DeadNodes.empty()) {
547    SDNode *N = DeadNodes.pop_back_val();
548
549    if (UpdateListener)
550      UpdateListener->NodeDeleted(N, 0);
551
552    // Take the node out of the appropriate CSE map.
553    RemoveNodeFromCSEMaps(N);
554
555    // Next, brutally remove the operand list.  This is safe to do, as there are
556    // no cycles in the graph.
557    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558      SDUse &Use = *I++;
559      SDNode *Operand = Use.getNode();
560      Use.set(SDValue());
561
562      // Now that we removed this operand, see if there are no uses of it left.
563      if (Operand->use_empty())
564        DeadNodes.push_back(Operand);
565    }
566
567    DeallocateNode(N);
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  // First take this out of the appropriate CSE map.
578  RemoveNodeFromCSEMaps(N);
579
580  // Finally, remove uses due to operands of this node, remove from the
581  // AllNodes list, and delete the node.
582  DeleteNodeNotInCSEMaps(N);
583}
584
585void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587  assert(N->use_empty() && "Cannot delete a node that is not dead!");
588
589  // Drop all of the operands and decrement used node's use counts.
590  N->DropOperands();
591
592  DeallocateNode(N);
593}
594
595void SelectionDAG::DeallocateNode(SDNode *N) {
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  // Set the opcode to DELETED_NODE to help catch bugs when node
600  // memory is reallocated.
601  N->NodeType = ISD::DELETED_NODE;
602
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::EntryToken:
614    assert(0 && "EntryToken should not be in CSEMaps!");
615    return false;
616  case ISD::HANDLENODE: return false;  // noop.
617  case ISD::CONDCODE:
618    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619           "Cond code doesn't exist!");
620    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622    break;
623  case ISD::ExternalSymbol:
624    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::TargetExternalSymbol:
627    Erased =
628      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
629    break;
630  case ISD::VALUETYPE: {
631    MVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
636      ValueTypeNodes[VT.getSimpleVT()] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    Erased = CSEMap.RemoveNode(N);
643    break;
644  }
645#ifndef NDEBUG
646  // Verify that the node was actually in one of the CSE maps, unless it has a
647  // flag result (which cannot be CSE'd) or is one of the special cases that are
648  // not subject to CSE.
649  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650      !N->isMachineOpcode() && !doNotCSE(N)) {
651    N->dump(this);
652    cerr << "\n";
653    assert(0 && "Node is not in map!");
654  }
655#endif
656  return Erased;
657}
658
659/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660/// maps and modified in place. Add it back to the CSE maps, unless an identical
661/// node already exists, in which case transfer all its users to the existing
662/// node. This transfer can potentially trigger recursive merging.
663///
664void
665SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666                                       DAGUpdateListener *UpdateListener) {
667  // For node types that aren't CSE'd, just act as if no identical node
668  // already exists.
669  if (!doNotCSE(N)) {
670    SDNode *Existing = CSEMap.GetOrInsertNode(N);
671    if (Existing != N) {
672      // If there was already an existing matching node, use ReplaceAllUsesWith
673      // to replace the dead one with the existing one.  This can cause
674      // recursive merging of other unrelated nodes down the line.
675      ReplaceAllUsesWith(N, Existing, UpdateListener);
676
677      // N is now dead.  Inform the listener if it exists and delete it.
678      if (UpdateListener)
679        UpdateListener->NodeDeleted(N, Existing);
680      DeleteNodeNotInCSEMaps(N);
681      return;
682    }
683  }
684
685  // If the node doesn't already exist, we updated it.  Inform a listener if
686  // it exists.
687  if (UpdateListener)
688    UpdateListener->NodeUpdated(N);
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696                                           void *&InsertPos) {
697  if (doNotCSE(N))
698    return 0;
699
700  SDValue Ops[] = { Op };
701  FoldingSetNodeID ID;
702  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703  AddNodeIDCustom(ID, N);
704  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
705}
706
707/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708/// were replaced with those specified.  If this node is never memoized,
709/// return null, otherwise return a pointer to the slot it would take.  If a
710/// node already exists with these operands, the slot will be non-null.
711SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
712                                           SDValue Op1, SDValue Op2,
713                                           void *&InsertPos) {
714  if (doNotCSE(N))
715    return 0;
716
717  SDValue Ops[] = { Op1, Op2 };
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
720  AddNodeIDCustom(ID, N);
721  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           const SDValue *Ops,unsigned NumOps,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737  AddNodeIDCustom(ID, N);
738  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739}
740
741/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
742void SelectionDAG::VerifyNode(SDNode *N) {
743  switch (N->getOpcode()) {
744  default:
745    break;
746  case ISD::BUILD_PAIR: {
747    MVT VT = N->getValueType(0);
748    assert(N->getNumValues() == 1 && "Too many results!");
749    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
750           "Wrong return type!");
751    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
752    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
753           "Mismatched operand types!");
754    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
755           "Wrong operand type!");
756    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
757           "Wrong return type size");
758    break;
759  }
760  case ISD::BUILD_VECTOR: {
761    assert(N->getNumValues() == 1 && "Too many results!");
762    assert(N->getValueType(0).isVector() && "Wrong return type!");
763    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
764           "Wrong number of operands!");
765    // FIXME: Change vector_shuffle to a variadic node with mask elements being
766    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
767    // operand, and it is not always possible to legalize it.  Turning off the
768    // following checks at least makes it possible to legalize most of the time.
769//    MVT EltVT = N->getValueType(0).getVectorElementType();
770//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
771//      assert(I->getValueType() == EltVT &&
772//             "Wrong operand type!");
773    break;
774  }
775  }
776}
777
778/// getMVTAlignment - Compute the default alignment value for the
779/// given type.
780///
781unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
782  const Type *Ty = VT == MVT::iPTR ?
783                   PointerType::get(Type::Int8Ty, 0) :
784                   VT.getTypeForMVT();
785
786  return TLI.getTargetData()->getABITypeAlignment(Ty);
787}
788
789SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
790  : TLI(tli), FLI(fli), DW(0),
791    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
792    Root(getEntryNode()) {
793  AllNodes.push_back(&EntryNode);
794}
795
796void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
797                        DwarfWriter *dw) {
798  MF = &mf;
799  MMI = mmi;
800  DW = dw;
801}
802
803SelectionDAG::~SelectionDAG() {
804  allnodes_clear();
805}
806
807void SelectionDAG::allnodes_clear() {
808  assert(&*AllNodes.begin() == &EntryNode);
809  AllNodes.remove(AllNodes.begin());
810  while (!AllNodes.empty())
811    DeallocateNode(AllNodes.begin());
812}
813
814void SelectionDAG::clear() {
815  allnodes_clear();
816  OperandAllocator.Reset();
817  CSEMap.clear();
818
819  ExtendedValueTypeNodes.clear();
820  ExternalSymbols.clear();
821  TargetExternalSymbols.clear();
822  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
823            static_cast<CondCodeSDNode*>(0));
824  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
825            static_cast<SDNode*>(0));
826
827  EntryNode.UseList = 0;
828  AllNodes.push_back(&EntryNode);
829  Root = getEntryNode();
830}
831
832SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
833  if (Op.getValueType() == VT) return Op;
834  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
835                                   VT.getSizeInBits());
836  return getNode(ISD::AND, Op.getValueType(), Op,
837                 getConstant(Imm, Op.getValueType()));
838}
839
840SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
841  if (Op.getValueType() == VT) return Op;
842  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
843                                   VT.getSizeInBits());
844  return getNode(ISD::AND, DL, Op.getValueType(), Op,
845                 getConstant(Imm, Op.getValueType()));
846}
847
848/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
849///
850SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
851  SDValue NegOne;
852  if (VT.isVector()) {
853    MVT EltVT = VT.getVectorElementType();
854    SDValue NegOneElt =
855      getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), EltVT);
856    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
857    NegOne = getNode(ISD::BUILD_VECTOR, DL, VT, &NegOnes[0], NegOnes.size());
858  } else {
859    NegOne = getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
860  }
861  return getNode(ISD::XOR, DL, VT, Val, NegOne);
862}
863
864SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
865  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
866  assert((EltVT.getSizeInBits() >= 64 ||
867         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
868         "getConstant with a uint64_t value that doesn't fit in the type!");
869  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
870}
871
872SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
873  return getConstant(*ConstantInt::get(Val), VT, isT);
874}
875
876SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
877  assert(VT.isInteger() && "Cannot create FP integer constant!");
878
879  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
880  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
881         "APInt size does not match type size!");
882
883  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
884  FoldingSetNodeID ID;
885  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
886  ID.AddPointer(&Val);
887  void *IP = 0;
888  SDNode *N = NULL;
889  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
890    if (!VT.isVector())
891      return SDValue(N, 0);
892  if (!N) {
893    N = NodeAllocator.Allocate<ConstantSDNode>();
894    new (N) ConstantSDNode(isT, &Val, EltVT);
895    CSEMap.InsertNode(N, IP);
896    AllNodes.push_back(N);
897  }
898
899  SDValue Result(N, 0);
900  if (VT.isVector()) {
901    SmallVector<SDValue, 8> Ops;
902    Ops.assign(VT.getVectorNumElements(), Result);
903    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
904  }
905  return Result;
906}
907
908SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
909  return getConstant(Val, TLI.getPointerTy(), isTarget);
910}
911
912
913SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
914  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
915}
916
917SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
918  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
919
920  MVT EltVT =
921    VT.isVector() ? VT.getVectorElementType() : VT;
922
923  // Do the map lookup using the actual bit pattern for the floating point
924  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
925  // we don't have issues with SNANs.
926  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
927  FoldingSetNodeID ID;
928  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
929  ID.AddPointer(&V);
930  void *IP = 0;
931  SDNode *N = NULL;
932  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
933    if (!VT.isVector())
934      return SDValue(N, 0);
935  if (!N) {
936    N = NodeAllocator.Allocate<ConstantFPSDNode>();
937    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
938    CSEMap.InsertNode(N, IP);
939    AllNodes.push_back(N);
940  }
941
942  SDValue Result(N, 0);
943  if (VT.isVector()) {
944    SmallVector<SDValue, 8> Ops;
945    Ops.assign(VT.getVectorNumElements(), Result);
946    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
947  }
948  return Result;
949}
950
951SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
952  MVT EltVT =
953    VT.isVector() ? VT.getVectorElementType() : VT;
954  if (EltVT==MVT::f32)
955    return getConstantFP(APFloat((float)Val), VT, isTarget);
956  else
957    return getConstantFP(APFloat(Val), VT, isTarget);
958}
959
960SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
961                                       MVT VT, int64_t Offset,
962                                       bool isTargetGA) {
963  unsigned Opc;
964
965  // Truncate (with sign-extension) the offset value to the pointer size.
966  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
967  if (BitWidth < 64)
968    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
969
970  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
971  if (!GVar) {
972    // If GV is an alias then use the aliasee for determining thread-localness.
973    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
974      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
975  }
976
977  if (GVar && GVar->isThreadLocal())
978    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
979  else
980    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
981
982  FoldingSetNodeID ID;
983  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
984  ID.AddPointer(GV);
985  ID.AddInteger(Offset);
986  void *IP = 0;
987  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
988    return SDValue(E, 0);
989  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
990  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
991  CSEMap.InsertNode(N, IP);
992  AllNodes.push_back(N);
993  return SDValue(N, 0);
994}
995
996SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
997  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
998  FoldingSetNodeID ID;
999  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1000  ID.AddInteger(FI);
1001  void *IP = 0;
1002  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1003    return SDValue(E, 0);
1004  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1005  new (N) FrameIndexSDNode(FI, VT, isTarget);
1006  CSEMap.InsertNode(N, IP);
1007  AllNodes.push_back(N);
1008  return SDValue(N, 0);
1009}
1010
1011SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1012  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1013  FoldingSetNodeID ID;
1014  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1015  ID.AddInteger(JTI);
1016  void *IP = 0;
1017  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1018    return SDValue(E, 0);
1019  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1020  new (N) JumpTableSDNode(JTI, VT, isTarget);
1021  CSEMap.InsertNode(N, IP);
1022  AllNodes.push_back(N);
1023  return SDValue(N, 0);
1024}
1025
1026SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1027                                      unsigned Alignment, int Offset,
1028                                      bool isTarget) {
1029  if (Alignment == 0)
1030    Alignment =
1031      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1032  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1033  FoldingSetNodeID ID;
1034  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1035  ID.AddInteger(Alignment);
1036  ID.AddInteger(Offset);
1037  ID.AddPointer(C);
1038  void *IP = 0;
1039  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1040    return SDValue(E, 0);
1041  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1042  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1043  CSEMap.InsertNode(N, IP);
1044  AllNodes.push_back(N);
1045  return SDValue(N, 0);
1046}
1047
1048
1049SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1050                                      unsigned Alignment, int Offset,
1051                                      bool isTarget) {
1052  if (Alignment == 0)
1053    Alignment =
1054      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1055  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1056  FoldingSetNodeID ID;
1057  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1058  ID.AddInteger(Alignment);
1059  ID.AddInteger(Offset);
1060  C->AddSelectionDAGCSEId(ID);
1061  void *IP = 0;
1062  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1063    return SDValue(E, 0);
1064  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1065  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1066  CSEMap.InsertNode(N, IP);
1067  AllNodes.push_back(N);
1068  return SDValue(N, 0);
1069}
1070
1071
1072SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1073  FoldingSetNodeID ID;
1074  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1075  ID.AddPointer(MBB);
1076  void *IP = 0;
1077  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1078    return SDValue(E, 0);
1079  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1080  new (N) BasicBlockSDNode(MBB);
1081  CSEMap.InsertNode(N, IP);
1082  AllNodes.push_back(N);
1083  return SDValue(N, 0);
1084}
1085
1086SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB, DebugLoc dl) {
1087  FoldingSetNodeID ID;
1088  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1089  ID.AddPointer(MBB);
1090  void *IP = 0;
1091  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1092    return SDValue(E, 0);
1093  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1094  new (N) BasicBlockSDNode(MBB, dl);
1095  CSEMap.InsertNode(N, IP);
1096  AllNodes.push_back(N);
1097  return SDValue(N, 0);
1098}
1099
1100SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1101  FoldingSetNodeID ID;
1102  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1103  ID.AddInteger(Flags.getRawBits());
1104  void *IP = 0;
1105  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1106    return SDValue(E, 0);
1107  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1108  new (N) ARG_FLAGSSDNode(Flags);
1109  CSEMap.InsertNode(N, IP);
1110  AllNodes.push_back(N);
1111  return SDValue(N, 0);
1112}
1113
1114SDValue SelectionDAG::getValueType(MVT VT) {
1115  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1116    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1117
1118  SDNode *&N = VT.isExtended() ?
1119    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1120
1121  if (N) return SDValue(N, 0);
1122  N = NodeAllocator.Allocate<VTSDNode>();
1123  new (N) VTSDNode(VT);
1124  AllNodes.push_back(N);
1125  return SDValue(N, 0);
1126}
1127
1128SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1129  SDNode *&N = ExternalSymbols[Sym];
1130  if (N) return SDValue(N, 0);
1131  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1132  new (N) ExternalSymbolSDNode(false, Sym, VT);
1133  AllNodes.push_back(N);
1134  return SDValue(N, 0);
1135}
1136
1137SDValue SelectionDAG::getExternalSymbol(const char *Sym, DebugLoc dl, MVT VT) {
1138  SDNode *&N = ExternalSymbols[Sym];
1139  if (N) return SDValue(N, 0);
1140  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1141  new (N) ExternalSymbolSDNode(false, dl, Sym, VT);
1142  AllNodes.push_back(N);
1143  return SDValue(N, 0);
1144}
1145
1146SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1147  SDNode *&N = TargetExternalSymbols[Sym];
1148  if (N) return SDValue(N, 0);
1149  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1150  new (N) ExternalSymbolSDNode(true, Sym, VT);
1151  AllNodes.push_back(N);
1152  return SDValue(N, 0);
1153}
1154
1155SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, DebugLoc dl,
1156                                              MVT VT) {
1157  SDNode *&N = TargetExternalSymbols[Sym];
1158  if (N) return SDValue(N, 0);
1159  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1160  new (N) ExternalSymbolSDNode(true, dl, Sym, VT);
1161  AllNodes.push_back(N);
1162  return SDValue(N, 0);
1163}
1164
1165SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1166  if ((unsigned)Cond >= CondCodeNodes.size())
1167    CondCodeNodes.resize(Cond+1);
1168
1169  if (CondCodeNodes[Cond] == 0) {
1170    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1171    new (N) CondCodeSDNode(Cond);
1172    CondCodeNodes[Cond] = N;
1173    AllNodes.push_back(N);
1174  }
1175  return SDValue(CondCodeNodes[Cond], 0);
1176}
1177
1178SDValue SelectionDAG::getConvertRndSat(MVT VT,
1179                                       SDValue Val, SDValue DTy,
1180                                       SDValue STy, SDValue Rnd, SDValue Sat,
1181                                       ISD::CvtCode Code) {
1182  // If the src and dest types are the same, no conversion is necessary.
1183  if (DTy == STy)
1184    return Val;
1185
1186  FoldingSetNodeID ID;
1187  void* IP = 0;
1188  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1189    return SDValue(E, 0);
1190  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1191  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1192  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1193  CSEMap.InsertNode(N, IP);
1194  AllNodes.push_back(N);
1195  return SDValue(N, 0);
1196}
1197
1198SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1199                                       SDValue Val, SDValue DTy,
1200                                       SDValue STy, SDValue Rnd, SDValue Sat,
1201                                       ISD::CvtCode Code) {
1202  // If the src and dest types are the same, no conversion is necessary.
1203  if (DTy == STy)
1204    return Val;
1205
1206  FoldingSetNodeID ID;
1207  void* IP = 0;
1208  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1209    return SDValue(E, 0);
1210  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1211  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1212  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1213  CSEMap.InsertNode(N, IP);
1214  AllNodes.push_back(N);
1215  return SDValue(N, 0);
1216}
1217
1218SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1219  FoldingSetNodeID ID;
1220  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1221  ID.AddInteger(RegNo);
1222  void *IP = 0;
1223  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1224    return SDValue(E, 0);
1225  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1226  new (N) RegisterSDNode(RegNo, VT);
1227  CSEMap.InsertNode(N, IP);
1228  AllNodes.push_back(N);
1229  return SDValue(N, 0);
1230}
1231
1232SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1233                                      unsigned Line, unsigned Col,
1234                                      Value *CU) {
1235  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1236  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1237  AllNodes.push_back(N);
1238  return SDValue(N, 0);
1239}
1240
1241SDValue SelectionDAG::getLabel(unsigned Opcode,
1242                               SDValue Root,
1243                               unsigned LabelID) {
1244  FoldingSetNodeID ID;
1245  SDValue Ops[] = { Root };
1246  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1247  ID.AddInteger(LabelID);
1248  void *IP = 0;
1249  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1250    return SDValue(E, 0);
1251  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1252  new (N) LabelSDNode(Opcode, Root, LabelID);
1253  CSEMap.InsertNode(N, IP);
1254  AllNodes.push_back(N);
1255  return SDValue(N, 0);
1256}
1257
1258SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1259                               SDValue Root,
1260                               unsigned LabelID) {
1261  FoldingSetNodeID ID;
1262  SDValue Ops[] = { Root };
1263  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1264  ID.AddInteger(LabelID);
1265  void *IP = 0;
1266  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1267    return SDValue(E, 0);
1268  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1269  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1270  CSEMap.InsertNode(N, IP);
1271  AllNodes.push_back(N);
1272  return SDValue(N, 0);
1273}
1274
1275SDValue SelectionDAG::getSrcValue(const Value *V) {
1276  assert((!V || isa<PointerType>(V->getType())) &&
1277         "SrcValue is not a pointer?");
1278
1279  FoldingSetNodeID ID;
1280  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1281  ID.AddPointer(V);
1282
1283  void *IP = 0;
1284  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1285    return SDValue(E, 0);
1286
1287  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1288  new (N) SrcValueSDNode(V);
1289  CSEMap.InsertNode(N, IP);
1290  AllNodes.push_back(N);
1291  return SDValue(N, 0);
1292}
1293
1294SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1295#ifndef NDEBUG
1296  const Value *v = MO.getValue();
1297  assert((!v || isa<PointerType>(v->getType())) &&
1298         "SrcValue is not a pointer?");
1299#endif
1300
1301  FoldingSetNodeID ID;
1302  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1303  MO.Profile(ID);
1304
1305  void *IP = 0;
1306  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1307    return SDValue(E, 0);
1308
1309  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1310  new (N) MemOperandSDNode(MO);
1311  CSEMap.InsertNode(N, IP);
1312  AllNodes.push_back(N);
1313  return SDValue(N, 0);
1314}
1315
1316/// getShiftAmountOperand - Return the specified value casted to
1317/// the target's desired shift amount type.
1318SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1319  MVT OpTy = Op.getValueType();
1320  MVT ShTy = TLI.getShiftAmountTy();
1321  if (OpTy == ShTy || OpTy.isVector()) return Op;
1322
1323  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1324  return getNode(Opcode, ShTy, Op);
1325}
1326
1327/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1328/// specified value type.
1329SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1330  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1331  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1332  const Type *Ty = VT.getTypeForMVT();
1333  unsigned StackAlign =
1334  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1335
1336  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1337  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1338}
1339
1340/// CreateStackTemporary - Create a stack temporary suitable for holding
1341/// either of the specified value types.
1342SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1343  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1344                            VT2.getStoreSizeInBits())/8;
1345  const Type *Ty1 = VT1.getTypeForMVT();
1346  const Type *Ty2 = VT2.getTypeForMVT();
1347  const TargetData *TD = TLI.getTargetData();
1348  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1349                            TD->getPrefTypeAlignment(Ty2));
1350
1351  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1352  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1353  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1354}
1355
1356SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1357                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1358  // These setcc operations always fold.
1359  switch (Cond) {
1360  default: break;
1361  case ISD::SETFALSE:
1362  case ISD::SETFALSE2: return getConstant(0, VT);
1363  case ISD::SETTRUE:
1364  case ISD::SETTRUE2:  return getConstant(1, VT);
1365
1366  case ISD::SETOEQ:
1367  case ISD::SETOGT:
1368  case ISD::SETOGE:
1369  case ISD::SETOLT:
1370  case ISD::SETOLE:
1371  case ISD::SETONE:
1372  case ISD::SETO:
1373  case ISD::SETUO:
1374  case ISD::SETUEQ:
1375  case ISD::SETUNE:
1376    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1377    break;
1378  }
1379
1380  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1381    const APInt &C2 = N2C->getAPIntValue();
1382    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1383      const APInt &C1 = N1C->getAPIntValue();
1384
1385      switch (Cond) {
1386      default: assert(0 && "Unknown integer setcc!");
1387      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1388      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1389      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1390      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1391      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1392      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1393      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1394      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1395      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1396      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1397      }
1398    }
1399  }
1400  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1401    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1402      // No compile time operations on this type yet.
1403      if (N1C->getValueType(0) == MVT::ppcf128)
1404        return SDValue();
1405
1406      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1407      switch (Cond) {
1408      default: break;
1409      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1410                          return getNode(ISD::UNDEF, dl, VT);
1411                        // fall through
1412      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1413      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1414                          return getNode(ISD::UNDEF, dl, VT);
1415                        // fall through
1416      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1417                                           R==APFloat::cmpLessThan, VT);
1418      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1419                          return getNode(ISD::UNDEF, dl, VT);
1420                        // fall through
1421      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1422      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1423                          return getNode(ISD::UNDEF, dl, VT);
1424                        // fall through
1425      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1426      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1427                          return getNode(ISD::UNDEF, dl, VT);
1428                        // fall through
1429      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1430                                           R==APFloat::cmpEqual, VT);
1431      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1432                          return getNode(ISD::UNDEF, dl, VT);
1433                        // fall through
1434      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1435                                           R==APFloat::cmpEqual, VT);
1436      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1437      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1438      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1439                                           R==APFloat::cmpEqual, VT);
1440      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1441      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1442                                           R==APFloat::cmpLessThan, VT);
1443      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1444                                           R==APFloat::cmpUnordered, VT);
1445      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1446      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1447      }
1448    } else {
1449      // Ensure that the constant occurs on the RHS.
1450      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1451    }
1452  }
1453
1454  // Could not fold it.
1455  return SDValue();
1456}
1457
1458/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1459/// use this predicate to simplify operations downstream.
1460bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1461  unsigned BitWidth = Op.getValueSizeInBits();
1462  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1463}
1464
1465/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1466/// this predicate to simplify operations downstream.  Mask is known to be zero
1467/// for bits that V cannot have.
1468bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1469                                     unsigned Depth) const {
1470  APInt KnownZero, KnownOne;
1471  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1472  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1473  return (KnownZero & Mask) == Mask;
1474}
1475
1476/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1477/// known to be either zero or one and return them in the KnownZero/KnownOne
1478/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1479/// processing.
1480void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1481                                     APInt &KnownZero, APInt &KnownOne,
1482                                     unsigned Depth) const {
1483  unsigned BitWidth = Mask.getBitWidth();
1484  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1485         "Mask size mismatches value type size!");
1486
1487  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1488  if (Depth == 6 || Mask == 0)
1489    return;  // Limit search depth.
1490
1491  APInt KnownZero2, KnownOne2;
1492
1493  switch (Op.getOpcode()) {
1494  case ISD::Constant:
1495    // We know all of the bits for a constant!
1496    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1497    KnownZero = ~KnownOne & Mask;
1498    return;
1499  case ISD::AND:
1500    // If either the LHS or the RHS are Zero, the result is zero.
1501    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1502    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1503                      KnownZero2, KnownOne2, Depth+1);
1504    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1505    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1506
1507    // Output known-1 bits are only known if set in both the LHS & RHS.
1508    KnownOne &= KnownOne2;
1509    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1510    KnownZero |= KnownZero2;
1511    return;
1512  case ISD::OR:
1513    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1514    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1515                      KnownZero2, KnownOne2, Depth+1);
1516    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1517    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1518
1519    // Output known-0 bits are only known if clear in both the LHS & RHS.
1520    KnownZero &= KnownZero2;
1521    // Output known-1 are known to be set if set in either the LHS | RHS.
1522    KnownOne |= KnownOne2;
1523    return;
1524  case ISD::XOR: {
1525    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1526    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1527    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1528    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1529
1530    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1531    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1532    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1533    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1534    KnownZero = KnownZeroOut;
1535    return;
1536  }
1537  case ISD::MUL: {
1538    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1539    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1540    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1541    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1542    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1543
1544    // If low bits are zero in either operand, output low known-0 bits.
1545    // Also compute a conserative estimate for high known-0 bits.
1546    // More trickiness is possible, but this is sufficient for the
1547    // interesting case of alignment computation.
1548    KnownOne.clear();
1549    unsigned TrailZ = KnownZero.countTrailingOnes() +
1550                      KnownZero2.countTrailingOnes();
1551    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1552                               KnownZero2.countLeadingOnes(),
1553                               BitWidth) - BitWidth;
1554
1555    TrailZ = std::min(TrailZ, BitWidth);
1556    LeadZ = std::min(LeadZ, BitWidth);
1557    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1558                APInt::getHighBitsSet(BitWidth, LeadZ);
1559    KnownZero &= Mask;
1560    return;
1561  }
1562  case ISD::UDIV: {
1563    // For the purposes of computing leading zeros we can conservatively
1564    // treat a udiv as a logical right shift by the power of 2 known to
1565    // be less than the denominator.
1566    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1567    ComputeMaskedBits(Op.getOperand(0),
1568                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1569    unsigned LeadZ = KnownZero2.countLeadingOnes();
1570
1571    KnownOne2.clear();
1572    KnownZero2.clear();
1573    ComputeMaskedBits(Op.getOperand(1),
1574                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1575    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1576    if (RHSUnknownLeadingOnes != BitWidth)
1577      LeadZ = std::min(BitWidth,
1578                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1579
1580    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1581    return;
1582  }
1583  case ISD::SELECT:
1584    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1585    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1586    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1587    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1588
1589    // Only known if known in both the LHS and RHS.
1590    KnownOne &= KnownOne2;
1591    KnownZero &= KnownZero2;
1592    return;
1593  case ISD::SELECT_CC:
1594    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1595    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1596    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1597    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1598
1599    // Only known if known in both the LHS and RHS.
1600    KnownOne &= KnownOne2;
1601    KnownZero &= KnownZero2;
1602    return;
1603  case ISD::SADDO:
1604  case ISD::UADDO:
1605  case ISD::SSUBO:
1606  case ISD::USUBO:
1607  case ISD::SMULO:
1608  case ISD::UMULO:
1609    if (Op.getResNo() != 1)
1610      return;
1611    // The boolean result conforms to getBooleanContents.  Fall through.
1612  case ISD::SETCC:
1613    // If we know the result of a setcc has the top bits zero, use this info.
1614    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1615        BitWidth > 1)
1616      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1617    return;
1618  case ISD::SHL:
1619    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1620    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1621      unsigned ShAmt = SA->getZExtValue();
1622
1623      // If the shift count is an invalid immediate, don't do anything.
1624      if (ShAmt >= BitWidth)
1625        return;
1626
1627      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1628                        KnownZero, KnownOne, Depth+1);
1629      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1630      KnownZero <<= ShAmt;
1631      KnownOne  <<= ShAmt;
1632      // low bits known zero.
1633      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1634    }
1635    return;
1636  case ISD::SRL:
1637    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1638    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1639      unsigned ShAmt = SA->getZExtValue();
1640
1641      // If the shift count is an invalid immediate, don't do anything.
1642      if (ShAmt >= BitWidth)
1643        return;
1644
1645      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1646                        KnownZero, KnownOne, Depth+1);
1647      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1648      KnownZero = KnownZero.lshr(ShAmt);
1649      KnownOne  = KnownOne.lshr(ShAmt);
1650
1651      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1652      KnownZero |= HighBits;  // High bits known zero.
1653    }
1654    return;
1655  case ISD::SRA:
1656    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1657      unsigned ShAmt = SA->getZExtValue();
1658
1659      // If the shift count is an invalid immediate, don't do anything.
1660      if (ShAmt >= BitWidth)
1661        return;
1662
1663      APInt InDemandedMask = (Mask << ShAmt);
1664      // If any of the demanded bits are produced by the sign extension, we also
1665      // demand the input sign bit.
1666      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1667      if (HighBits.getBoolValue())
1668        InDemandedMask |= APInt::getSignBit(BitWidth);
1669
1670      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1671                        Depth+1);
1672      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1673      KnownZero = KnownZero.lshr(ShAmt);
1674      KnownOne  = KnownOne.lshr(ShAmt);
1675
1676      // Handle the sign bits.
1677      APInt SignBit = APInt::getSignBit(BitWidth);
1678      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1679
1680      if (KnownZero.intersects(SignBit)) {
1681        KnownZero |= HighBits;  // New bits are known zero.
1682      } else if (KnownOne.intersects(SignBit)) {
1683        KnownOne  |= HighBits;  // New bits are known one.
1684      }
1685    }
1686    return;
1687  case ISD::SIGN_EXTEND_INREG: {
1688    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1689    unsigned EBits = EVT.getSizeInBits();
1690
1691    // Sign extension.  Compute the demanded bits in the result that are not
1692    // present in the input.
1693    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1694
1695    APInt InSignBit = APInt::getSignBit(EBits);
1696    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1697
1698    // If the sign extended bits are demanded, we know that the sign
1699    // bit is demanded.
1700    InSignBit.zext(BitWidth);
1701    if (NewBits.getBoolValue())
1702      InputDemandedBits |= InSignBit;
1703
1704    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1705                      KnownZero, KnownOne, Depth+1);
1706    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1707
1708    // If the sign bit of the input is known set or clear, then we know the
1709    // top bits of the result.
1710    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1711      KnownZero |= NewBits;
1712      KnownOne  &= ~NewBits;
1713    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1714      KnownOne  |= NewBits;
1715      KnownZero &= ~NewBits;
1716    } else {                              // Input sign bit unknown
1717      KnownZero &= ~NewBits;
1718      KnownOne  &= ~NewBits;
1719    }
1720    return;
1721  }
1722  case ISD::CTTZ:
1723  case ISD::CTLZ:
1724  case ISD::CTPOP: {
1725    unsigned LowBits = Log2_32(BitWidth)+1;
1726    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1727    KnownOne.clear();
1728    return;
1729  }
1730  case ISD::LOAD: {
1731    if (ISD::isZEXTLoad(Op.getNode())) {
1732      LoadSDNode *LD = cast<LoadSDNode>(Op);
1733      MVT VT = LD->getMemoryVT();
1734      unsigned MemBits = VT.getSizeInBits();
1735      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1736    }
1737    return;
1738  }
1739  case ISD::ZERO_EXTEND: {
1740    MVT InVT = Op.getOperand(0).getValueType();
1741    unsigned InBits = InVT.getSizeInBits();
1742    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1743    APInt InMask    = Mask;
1744    InMask.trunc(InBits);
1745    KnownZero.trunc(InBits);
1746    KnownOne.trunc(InBits);
1747    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1748    KnownZero.zext(BitWidth);
1749    KnownOne.zext(BitWidth);
1750    KnownZero |= NewBits;
1751    return;
1752  }
1753  case ISD::SIGN_EXTEND: {
1754    MVT InVT = Op.getOperand(0).getValueType();
1755    unsigned InBits = InVT.getSizeInBits();
1756    APInt InSignBit = APInt::getSignBit(InBits);
1757    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1758    APInt InMask = Mask;
1759    InMask.trunc(InBits);
1760
1761    // If any of the sign extended bits are demanded, we know that the sign
1762    // bit is demanded. Temporarily set this bit in the mask for our callee.
1763    if (NewBits.getBoolValue())
1764      InMask |= InSignBit;
1765
1766    KnownZero.trunc(InBits);
1767    KnownOne.trunc(InBits);
1768    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1769
1770    // Note if the sign bit is known to be zero or one.
1771    bool SignBitKnownZero = KnownZero.isNegative();
1772    bool SignBitKnownOne  = KnownOne.isNegative();
1773    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1774           "Sign bit can't be known to be both zero and one!");
1775
1776    // If the sign bit wasn't actually demanded by our caller, we don't
1777    // want it set in the KnownZero and KnownOne result values. Reset the
1778    // mask and reapply it to the result values.
1779    InMask = Mask;
1780    InMask.trunc(InBits);
1781    KnownZero &= InMask;
1782    KnownOne  &= InMask;
1783
1784    KnownZero.zext(BitWidth);
1785    KnownOne.zext(BitWidth);
1786
1787    // If the sign bit is known zero or one, the top bits match.
1788    if (SignBitKnownZero)
1789      KnownZero |= NewBits;
1790    else if (SignBitKnownOne)
1791      KnownOne  |= NewBits;
1792    return;
1793  }
1794  case ISD::ANY_EXTEND: {
1795    MVT InVT = Op.getOperand(0).getValueType();
1796    unsigned InBits = InVT.getSizeInBits();
1797    APInt InMask = Mask;
1798    InMask.trunc(InBits);
1799    KnownZero.trunc(InBits);
1800    KnownOne.trunc(InBits);
1801    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1802    KnownZero.zext(BitWidth);
1803    KnownOne.zext(BitWidth);
1804    return;
1805  }
1806  case ISD::TRUNCATE: {
1807    MVT InVT = Op.getOperand(0).getValueType();
1808    unsigned InBits = InVT.getSizeInBits();
1809    APInt InMask = Mask;
1810    InMask.zext(InBits);
1811    KnownZero.zext(InBits);
1812    KnownOne.zext(InBits);
1813    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1814    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1815    KnownZero.trunc(BitWidth);
1816    KnownOne.trunc(BitWidth);
1817    break;
1818  }
1819  case ISD::AssertZext: {
1820    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1821    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1822    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1823                      KnownOne, Depth+1);
1824    KnownZero |= (~InMask) & Mask;
1825    return;
1826  }
1827  case ISD::FGETSIGN:
1828    // All bits are zero except the low bit.
1829    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1830    return;
1831
1832  case ISD::SUB: {
1833    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1834      // We know that the top bits of C-X are clear if X contains less bits
1835      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1836      // positive if we can prove that X is >= 0 and < 16.
1837      if (CLHS->getAPIntValue().isNonNegative()) {
1838        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1839        // NLZ can't be BitWidth with no sign bit
1840        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1841        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1842                          Depth+1);
1843
1844        // If all of the MaskV bits are known to be zero, then we know the
1845        // output top bits are zero, because we now know that the output is
1846        // from [0-C].
1847        if ((KnownZero2 & MaskV) == MaskV) {
1848          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1849          // Top bits known zero.
1850          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1851        }
1852      }
1853    }
1854  }
1855  // fall through
1856  case ISD::ADD: {
1857    // Output known-0 bits are known if clear or set in both the low clear bits
1858    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1859    // low 3 bits clear.
1860    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1861    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1862    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1863    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1864
1865    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1866    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1867    KnownZeroOut = std::min(KnownZeroOut,
1868                            KnownZero2.countTrailingOnes());
1869
1870    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1871    return;
1872  }
1873  case ISD::SREM:
1874    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1875      const APInt &RA = Rem->getAPIntValue();
1876      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1877        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1878        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1879        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1880
1881        // If the sign bit of the first operand is zero, the sign bit of
1882        // the result is zero. If the first operand has no one bits below
1883        // the second operand's single 1 bit, its sign will be zero.
1884        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1885          KnownZero2 |= ~LowBits;
1886
1887        KnownZero |= KnownZero2 & Mask;
1888
1889        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1890      }
1891    }
1892    return;
1893  case ISD::UREM: {
1894    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1895      const APInt &RA = Rem->getAPIntValue();
1896      if (RA.isPowerOf2()) {
1897        APInt LowBits = (RA - 1);
1898        APInt Mask2 = LowBits & Mask;
1899        KnownZero |= ~LowBits & Mask;
1900        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1901        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1902        break;
1903      }
1904    }
1905
1906    // Since the result is less than or equal to either operand, any leading
1907    // zero bits in either operand must also exist in the result.
1908    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1909    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1910                      Depth+1);
1911    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1912                      Depth+1);
1913
1914    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1915                                KnownZero2.countLeadingOnes());
1916    KnownOne.clear();
1917    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1918    return;
1919  }
1920  default:
1921    // Allow the target to implement this method for its nodes.
1922    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1923  case ISD::INTRINSIC_WO_CHAIN:
1924  case ISD::INTRINSIC_W_CHAIN:
1925  case ISD::INTRINSIC_VOID:
1926      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1927    }
1928    return;
1929  }
1930}
1931
1932/// ComputeNumSignBits - Return the number of times the sign bit of the
1933/// register is replicated into the other bits.  We know that at least 1 bit
1934/// is always equal to the sign bit (itself), but other cases can give us
1935/// information.  For example, immediately after an "SRA X, 2", we know that
1936/// the top 3 bits are all equal to each other, so we return 3.
1937unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1938  MVT VT = Op.getValueType();
1939  assert(VT.isInteger() && "Invalid VT!");
1940  unsigned VTBits = VT.getSizeInBits();
1941  unsigned Tmp, Tmp2;
1942  unsigned FirstAnswer = 1;
1943
1944  if (Depth == 6)
1945    return 1;  // Limit search depth.
1946
1947  switch (Op.getOpcode()) {
1948  default: break;
1949  case ISD::AssertSext:
1950    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1951    return VTBits-Tmp+1;
1952  case ISD::AssertZext:
1953    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1954    return VTBits-Tmp;
1955
1956  case ISD::Constant: {
1957    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1958    // If negative, return # leading ones.
1959    if (Val.isNegative())
1960      return Val.countLeadingOnes();
1961
1962    // Return # leading zeros.
1963    return Val.countLeadingZeros();
1964  }
1965
1966  case ISD::SIGN_EXTEND:
1967    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1968    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1969
1970  case ISD::SIGN_EXTEND_INREG:
1971    // Max of the input and what this extends.
1972    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1973    Tmp = VTBits-Tmp+1;
1974
1975    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1976    return std::max(Tmp, Tmp2);
1977
1978  case ISD::SRA:
1979    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1980    // SRA X, C   -> adds C sign bits.
1981    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1982      Tmp += C->getZExtValue();
1983      if (Tmp > VTBits) Tmp = VTBits;
1984    }
1985    return Tmp;
1986  case ISD::SHL:
1987    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1988      // shl destroys sign bits.
1989      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1990      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1991          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1992      return Tmp - C->getZExtValue();
1993    }
1994    break;
1995  case ISD::AND:
1996  case ISD::OR:
1997  case ISD::XOR:    // NOT is handled here.
1998    // Logical binary ops preserve the number of sign bits at the worst.
1999    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2000    if (Tmp != 1) {
2001      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2002      FirstAnswer = std::min(Tmp, Tmp2);
2003      // We computed what we know about the sign bits as our first
2004      // answer. Now proceed to the generic code that uses
2005      // ComputeMaskedBits, and pick whichever answer is better.
2006    }
2007    break;
2008
2009  case ISD::SELECT:
2010    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2011    if (Tmp == 1) return 1;  // Early out.
2012    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2013    return std::min(Tmp, Tmp2);
2014
2015  case ISD::SADDO:
2016  case ISD::UADDO:
2017  case ISD::SSUBO:
2018  case ISD::USUBO:
2019  case ISD::SMULO:
2020  case ISD::UMULO:
2021    if (Op.getResNo() != 1)
2022      break;
2023    // The boolean result conforms to getBooleanContents.  Fall through.
2024  case ISD::SETCC:
2025    // If setcc returns 0/-1, all bits are sign bits.
2026    if (TLI.getBooleanContents() ==
2027        TargetLowering::ZeroOrNegativeOneBooleanContent)
2028      return VTBits;
2029    break;
2030  case ISD::ROTL:
2031  case ISD::ROTR:
2032    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2033      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2034
2035      // Handle rotate right by N like a rotate left by 32-N.
2036      if (Op.getOpcode() == ISD::ROTR)
2037        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2038
2039      // If we aren't rotating out all of the known-in sign bits, return the
2040      // number that are left.  This handles rotl(sext(x), 1) for example.
2041      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2042      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2043    }
2044    break;
2045  case ISD::ADD:
2046    // Add can have at most one carry bit.  Thus we know that the output
2047    // is, at worst, one more bit than the inputs.
2048    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2049    if (Tmp == 1) return 1;  // Early out.
2050
2051    // Special case decrementing a value (ADD X, -1):
2052    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2053      if (CRHS->isAllOnesValue()) {
2054        APInt KnownZero, KnownOne;
2055        APInt Mask = APInt::getAllOnesValue(VTBits);
2056        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2057
2058        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2059        // sign bits set.
2060        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2061          return VTBits;
2062
2063        // If we are subtracting one from a positive number, there is no carry
2064        // out of the result.
2065        if (KnownZero.isNegative())
2066          return Tmp;
2067      }
2068
2069    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2070    if (Tmp2 == 1) return 1;
2071      return std::min(Tmp, Tmp2)-1;
2072    break;
2073
2074  case ISD::SUB:
2075    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2076    if (Tmp2 == 1) return 1;
2077
2078    // Handle NEG.
2079    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2080      if (CLHS->isNullValue()) {
2081        APInt KnownZero, KnownOne;
2082        APInt Mask = APInt::getAllOnesValue(VTBits);
2083        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2084        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2085        // sign bits set.
2086        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2087          return VTBits;
2088
2089        // If the input is known to be positive (the sign bit is known clear),
2090        // the output of the NEG has the same number of sign bits as the input.
2091        if (KnownZero.isNegative())
2092          return Tmp2;
2093
2094        // Otherwise, we treat this like a SUB.
2095      }
2096
2097    // Sub can have at most one carry bit.  Thus we know that the output
2098    // is, at worst, one more bit than the inputs.
2099    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2100    if (Tmp == 1) return 1;  // Early out.
2101      return std::min(Tmp, Tmp2)-1;
2102    break;
2103  case ISD::TRUNCATE:
2104    // FIXME: it's tricky to do anything useful for this, but it is an important
2105    // case for targets like X86.
2106    break;
2107  }
2108
2109  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2110  if (Op.getOpcode() == ISD::LOAD) {
2111    LoadSDNode *LD = cast<LoadSDNode>(Op);
2112    unsigned ExtType = LD->getExtensionType();
2113    switch (ExtType) {
2114    default: break;
2115    case ISD::SEXTLOAD:    // '17' bits known
2116      Tmp = LD->getMemoryVT().getSizeInBits();
2117      return VTBits-Tmp+1;
2118    case ISD::ZEXTLOAD:    // '16' bits known
2119      Tmp = LD->getMemoryVT().getSizeInBits();
2120      return VTBits-Tmp;
2121    }
2122  }
2123
2124  // Allow the target to implement this method for its nodes.
2125  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2126      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2127      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2128      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2129    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2130    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2131  }
2132
2133  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2134  // use this information.
2135  APInt KnownZero, KnownOne;
2136  APInt Mask = APInt::getAllOnesValue(VTBits);
2137  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2138
2139  if (KnownZero.isNegative()) {        // sign bit is 0
2140    Mask = KnownZero;
2141  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2142    Mask = KnownOne;
2143  } else {
2144    // Nothing known.
2145    return FirstAnswer;
2146  }
2147
2148  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2149  // the number of identical bits in the top of the input value.
2150  Mask = ~Mask;
2151  Mask <<= Mask.getBitWidth()-VTBits;
2152  // Return # leading zeros.  We use 'min' here in case Val was zero before
2153  // shifting.  We don't want to return '64' as for an i32 "0".
2154  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2155}
2156
2157
2158bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2159  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2160  if (!GA) return false;
2161  if (GA->getOffset() != 0) return false;
2162  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2163  if (!GV) return false;
2164  MachineModuleInfo *MMI = getMachineModuleInfo();
2165  return MMI && MMI->hasDebugInfo();
2166}
2167
2168
2169/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2170/// element of the result of the vector shuffle.
2171SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2172  MVT VT = N->getValueType(0);
2173  DebugLoc dl = N->getDebugLoc();
2174  SDValue PermMask = N->getOperand(2);
2175  SDValue Idx = PermMask.getOperand(i);
2176  if (Idx.getOpcode() == ISD::UNDEF)
2177    return getNode(ISD::UNDEF, dl, VT.getVectorElementType());
2178  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2179  unsigned NumElems = PermMask.getNumOperands();
2180  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2181  Index %= NumElems;
2182
2183  if (V.getOpcode() == ISD::BIT_CONVERT) {
2184    V = V.getOperand(0);
2185    MVT VVT = V.getValueType();
2186    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2187      return SDValue();
2188  }
2189  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2190    return (Index == 0) ? V.getOperand(0)
2191                      : getNode(ISD::UNDEF, dl, VT.getVectorElementType());
2192  if (V.getOpcode() == ISD::BUILD_VECTOR)
2193    return V.getOperand(Index);
2194  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2195    return getShuffleScalarElt(V.getNode(), Index);
2196  return SDValue();
2197}
2198
2199
2200/// getNode - Gets or creates the specified node.
2201///
2202SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2203  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT);
2204}
2205
2206SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2207  FoldingSetNodeID ID;
2208  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2209  void *IP = 0;
2210  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2211    return SDValue(E, 0);
2212  SDNode *N = NodeAllocator.Allocate<SDNode>();
2213  new (N) SDNode(Opcode, DL, SDNode::getSDVTList(VT));
2214  CSEMap.InsertNode(N, IP);
2215
2216  AllNodes.push_back(N);
2217#ifndef NDEBUG
2218  VerifyNode(N);
2219#endif
2220  return SDValue(N, 0);
2221}
2222
2223SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2224  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Operand);
2225}
2226
2227SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2228                              MVT VT, SDValue Operand) {
2229  // Constant fold unary operations with an integer constant operand.
2230  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2231    const APInt &Val = C->getAPIntValue();
2232    unsigned BitWidth = VT.getSizeInBits();
2233    switch (Opcode) {
2234    default: break;
2235    case ISD::SIGN_EXTEND:
2236      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2237    case ISD::ANY_EXTEND:
2238    case ISD::ZERO_EXTEND:
2239    case ISD::TRUNCATE:
2240      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2241    case ISD::UINT_TO_FP:
2242    case ISD::SINT_TO_FP: {
2243      const uint64_t zero[] = {0, 0};
2244      // No compile time operations on this type.
2245      if (VT==MVT::ppcf128)
2246        break;
2247      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2248      (void)apf.convertFromAPInt(Val,
2249                                 Opcode==ISD::SINT_TO_FP,
2250                                 APFloat::rmNearestTiesToEven);
2251      return getConstantFP(apf, VT);
2252    }
2253    case ISD::BIT_CONVERT:
2254      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2255        return getConstantFP(Val.bitsToFloat(), VT);
2256      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2257        return getConstantFP(Val.bitsToDouble(), VT);
2258      break;
2259    case ISD::BSWAP:
2260      return getConstant(Val.byteSwap(), VT);
2261    case ISD::CTPOP:
2262      return getConstant(Val.countPopulation(), VT);
2263    case ISD::CTLZ:
2264      return getConstant(Val.countLeadingZeros(), VT);
2265    case ISD::CTTZ:
2266      return getConstant(Val.countTrailingZeros(), VT);
2267    }
2268  }
2269
2270  // Constant fold unary operations with a floating point constant operand.
2271  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2272    APFloat V = C->getValueAPF();    // make copy
2273    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2274      switch (Opcode) {
2275      case ISD::FNEG:
2276        V.changeSign();
2277        return getConstantFP(V, VT);
2278      case ISD::FABS:
2279        V.clearSign();
2280        return getConstantFP(V, VT);
2281      case ISD::FP_ROUND:
2282      case ISD::FP_EXTEND: {
2283        bool ignored;
2284        // This can return overflow, underflow, or inexact; we don't care.
2285        // FIXME need to be more flexible about rounding mode.
2286        (void)V.convert(*MVTToAPFloatSemantics(VT),
2287                        APFloat::rmNearestTiesToEven, &ignored);
2288        return getConstantFP(V, VT);
2289      }
2290      case ISD::FP_TO_SINT:
2291      case ISD::FP_TO_UINT: {
2292        integerPart x;
2293        bool ignored;
2294        assert(integerPartWidth >= 64);
2295        // FIXME need to be more flexible about rounding mode.
2296        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2297                              Opcode==ISD::FP_TO_SINT,
2298                              APFloat::rmTowardZero, &ignored);
2299        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2300          break;
2301        return getConstant(x, VT);
2302      }
2303      case ISD::BIT_CONVERT:
2304        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2305          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2306        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2307          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2308        break;
2309      }
2310    }
2311  }
2312
2313  unsigned OpOpcode = Operand.getNode()->getOpcode();
2314  switch (Opcode) {
2315  case ISD::TokenFactor:
2316  case ISD::MERGE_VALUES:
2317  case ISD::CONCAT_VECTORS:
2318    return Operand;         // Factor, merge or concat of one node?  No need.
2319  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2320  case ISD::FP_EXTEND:
2321    assert(VT.isFloatingPoint() &&
2322           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2323    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2324    if (Operand.getOpcode() == ISD::UNDEF)
2325      return getNode(ISD::UNDEF, DL, VT);
2326    break;
2327  case ISD::SIGN_EXTEND:
2328    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2329           "Invalid SIGN_EXTEND!");
2330    if (Operand.getValueType() == VT) return Operand;   // noop extension
2331    assert(Operand.getValueType().bitsLT(VT)
2332           && "Invalid sext node, dst < src!");
2333    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2334      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2335    break;
2336  case ISD::ZERO_EXTEND:
2337    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2338           "Invalid ZERO_EXTEND!");
2339    if (Operand.getValueType() == VT) return Operand;   // noop extension
2340    assert(Operand.getValueType().bitsLT(VT)
2341           && "Invalid zext node, dst < src!");
2342    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2343      return getNode(ISD::ZERO_EXTEND, DL, VT,
2344                     Operand.getNode()->getOperand(0));
2345    break;
2346  case ISD::ANY_EXTEND:
2347    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2348           "Invalid ANY_EXTEND!");
2349    if (Operand.getValueType() == VT) return Operand;   // noop extension
2350    assert(Operand.getValueType().bitsLT(VT)
2351           && "Invalid anyext node, dst < src!");
2352    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2353      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2354      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2355    break;
2356  case ISD::TRUNCATE:
2357    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2358           "Invalid TRUNCATE!");
2359    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2360    assert(Operand.getValueType().bitsGT(VT)
2361           && "Invalid truncate node, src < dst!");
2362    if (OpOpcode == ISD::TRUNCATE)
2363      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2364    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2365             OpOpcode == ISD::ANY_EXTEND) {
2366      // If the source is smaller than the dest, we still need an extend.
2367      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2368        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2369      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2370        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2371      else
2372        return Operand.getNode()->getOperand(0);
2373    }
2374    break;
2375  case ISD::BIT_CONVERT:
2376    // Basic sanity checking.
2377    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2378           && "Cannot BIT_CONVERT between types of different sizes!");
2379    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2380    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2381      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2382    if (OpOpcode == ISD::UNDEF)
2383      return getNode(ISD::UNDEF, DL, VT);
2384    break;
2385  case ISD::SCALAR_TO_VECTOR:
2386    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2387           VT.getVectorElementType() == Operand.getValueType() &&
2388           "Illegal SCALAR_TO_VECTOR node!");
2389    if (OpOpcode == ISD::UNDEF)
2390      return getNode(ISD::UNDEF, DL, VT);
2391    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2392    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2393        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2394        Operand.getConstantOperandVal(1) == 0 &&
2395        Operand.getOperand(0).getValueType() == VT)
2396      return Operand.getOperand(0);
2397    break;
2398  case ISD::FNEG:
2399    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2400    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2401      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2402                     Operand.getNode()->getOperand(0));
2403    if (OpOpcode == ISD::FNEG)  // --X -> X
2404      return Operand.getNode()->getOperand(0);
2405    break;
2406  case ISD::FABS:
2407    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2408      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2409    break;
2410  }
2411
2412  SDNode *N;
2413  SDVTList VTs = getVTList(VT);
2414  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2415    FoldingSetNodeID ID;
2416    SDValue Ops[1] = { Operand };
2417    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2418    void *IP = 0;
2419    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2420      return SDValue(E, 0);
2421    N = NodeAllocator.Allocate<UnarySDNode>();
2422    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2423    CSEMap.InsertNode(N, IP);
2424  } else {
2425    N = NodeAllocator.Allocate<UnarySDNode>();
2426    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2427  }
2428
2429  AllNodes.push_back(N);
2430#ifndef NDEBUG
2431  VerifyNode(N);
2432#endif
2433  return SDValue(N, 0);
2434}
2435
2436SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2437                                             MVT VT,
2438                                             ConstantSDNode *Cst1,
2439                                             ConstantSDNode *Cst2) {
2440  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2441
2442  switch (Opcode) {
2443  case ISD::ADD:  return getConstant(C1 + C2, VT);
2444  case ISD::SUB:  return getConstant(C1 - C2, VT);
2445  case ISD::MUL:  return getConstant(C1 * C2, VT);
2446  case ISD::UDIV:
2447    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2448    break;
2449  case ISD::UREM:
2450    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2451    break;
2452  case ISD::SDIV:
2453    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2454    break;
2455  case ISD::SREM:
2456    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2457    break;
2458  case ISD::AND:  return getConstant(C1 & C2, VT);
2459  case ISD::OR:   return getConstant(C1 | C2, VT);
2460  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2461  case ISD::SHL:  return getConstant(C1 << C2, VT);
2462  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2463  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2464  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2465  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2466  default: break;
2467  }
2468
2469  return SDValue();
2470}
2471
2472SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2473                              SDValue N1, SDValue N2) {
2474  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2);
2475}
2476
2477SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2478                              SDValue N1, SDValue N2) {
2479  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2480  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2481  switch (Opcode) {
2482  default: break;
2483  case ISD::TokenFactor:
2484    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2485           N2.getValueType() == MVT::Other && "Invalid token factor!");
2486    // Fold trivial token factors.
2487    if (N1.getOpcode() == ISD::EntryToken) return N2;
2488    if (N2.getOpcode() == ISD::EntryToken) return N1;
2489    if (N1 == N2) return N1;
2490    break;
2491  case ISD::CONCAT_VECTORS:
2492    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2493    // one big BUILD_VECTOR.
2494    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2495        N2.getOpcode() == ISD::BUILD_VECTOR) {
2496      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2497      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2498      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2499    }
2500    break;
2501  case ISD::AND:
2502    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2503           N1.getValueType() == VT && "Binary operator types must match!");
2504    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2505    // worth handling here.
2506    if (N2C && N2C->isNullValue())
2507      return N2;
2508    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2509      return N1;
2510    break;
2511  case ISD::OR:
2512  case ISD::XOR:
2513  case ISD::ADD:
2514  case ISD::SUB:
2515    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2516           N1.getValueType() == VT && "Binary operator types must match!");
2517    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2518    // it's worth handling here.
2519    if (N2C && N2C->isNullValue())
2520      return N1;
2521    break;
2522  case ISD::UDIV:
2523  case ISD::UREM:
2524  case ISD::MULHU:
2525  case ISD::MULHS:
2526  case ISD::MUL:
2527  case ISD::SDIV:
2528  case ISD::SREM:
2529    assert(VT.isInteger() && "This operator does not apply to FP types!");
2530    // fall through
2531  case ISD::FADD:
2532  case ISD::FSUB:
2533  case ISD::FMUL:
2534  case ISD::FDIV:
2535  case ISD::FREM:
2536    if (UnsafeFPMath) {
2537      if (Opcode == ISD::FADD) {
2538        // 0+x --> x
2539        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2540          if (CFP->getValueAPF().isZero())
2541            return N2;
2542        // x+0 --> x
2543        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2544          if (CFP->getValueAPF().isZero())
2545            return N1;
2546      } else if (Opcode == ISD::FSUB) {
2547        // x-0 --> x
2548        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2549          if (CFP->getValueAPF().isZero())
2550            return N1;
2551      }
2552    }
2553    assert(N1.getValueType() == N2.getValueType() &&
2554           N1.getValueType() == VT && "Binary operator types must match!");
2555    break;
2556  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2557    assert(N1.getValueType() == VT &&
2558           N1.getValueType().isFloatingPoint() &&
2559           N2.getValueType().isFloatingPoint() &&
2560           "Invalid FCOPYSIGN!");
2561    break;
2562  case ISD::SHL:
2563  case ISD::SRA:
2564  case ISD::SRL:
2565  case ISD::ROTL:
2566  case ISD::ROTR:
2567    assert(VT == N1.getValueType() &&
2568           "Shift operators return type must be the same as their first arg");
2569    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2570           "Shifts only work on integers");
2571
2572    // Always fold shifts of i1 values so the code generator doesn't need to
2573    // handle them.  Since we know the size of the shift has to be less than the
2574    // size of the value, the shift/rotate count is guaranteed to be zero.
2575    if (VT == MVT::i1)
2576      return N1;
2577    break;
2578  case ISD::FP_ROUND_INREG: {
2579    MVT EVT = cast<VTSDNode>(N2)->getVT();
2580    assert(VT == N1.getValueType() && "Not an inreg round!");
2581    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2582           "Cannot FP_ROUND_INREG integer types");
2583    assert(EVT.bitsLE(VT) && "Not rounding down!");
2584    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2585    break;
2586  }
2587  case ISD::FP_ROUND:
2588    assert(VT.isFloatingPoint() &&
2589           N1.getValueType().isFloatingPoint() &&
2590           VT.bitsLE(N1.getValueType()) &&
2591           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2592    if (N1.getValueType() == VT) return N1;  // noop conversion.
2593    break;
2594  case ISD::AssertSext:
2595  case ISD::AssertZext: {
2596    MVT EVT = cast<VTSDNode>(N2)->getVT();
2597    assert(VT == N1.getValueType() && "Not an inreg extend!");
2598    assert(VT.isInteger() && EVT.isInteger() &&
2599           "Cannot *_EXTEND_INREG FP types");
2600    assert(EVT.bitsLE(VT) && "Not extending!");
2601    if (VT == EVT) return N1; // noop assertion.
2602    break;
2603  }
2604  case ISD::SIGN_EXTEND_INREG: {
2605    MVT EVT = cast<VTSDNode>(N2)->getVT();
2606    assert(VT == N1.getValueType() && "Not an inreg extend!");
2607    assert(VT.isInteger() && EVT.isInteger() &&
2608           "Cannot *_EXTEND_INREG FP types");
2609    assert(EVT.bitsLE(VT) && "Not extending!");
2610    if (EVT == VT) return N1;  // Not actually extending
2611
2612    if (N1C) {
2613      APInt Val = N1C->getAPIntValue();
2614      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2615      Val <<= Val.getBitWidth()-FromBits;
2616      Val = Val.ashr(Val.getBitWidth()-FromBits);
2617      return getConstant(Val, VT);
2618    }
2619    break;
2620  }
2621  case ISD::EXTRACT_VECTOR_ELT:
2622    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2623    if (N1.getOpcode() == ISD::UNDEF)
2624      return getNode(ISD::UNDEF, DL, VT);
2625
2626    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2627    // expanding copies of large vectors from registers.
2628    if (N2C &&
2629        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2630        N1.getNumOperands() > 0) {
2631      unsigned Factor =
2632        N1.getOperand(0).getValueType().getVectorNumElements();
2633      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2634                     N1.getOperand(N2C->getZExtValue() / Factor),
2635                     getConstant(N2C->getZExtValue() % Factor,
2636                                 N2.getValueType()));
2637    }
2638
2639    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2640    // expanding large vector constants.
2641    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2642      return N1.getOperand(N2C->getZExtValue());
2643
2644    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2645    // operations are lowered to scalars.
2646    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2647      // If the indices are the same, return the inserted element.
2648      if (N1.getOperand(2) == N2)
2649        return N1.getOperand(1);
2650      // If the indices are known different, extract the element from
2651      // the original vector.
2652      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2653               isa<ConstantSDNode>(N2))
2654        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2655    }
2656    break;
2657  case ISD::EXTRACT_ELEMENT:
2658    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2659    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2660           (N1.getValueType().isInteger() == VT.isInteger()) &&
2661           "Wrong types for EXTRACT_ELEMENT!");
2662
2663    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2664    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2665    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2666    if (N1.getOpcode() == ISD::BUILD_PAIR)
2667      return N1.getOperand(N2C->getZExtValue());
2668
2669    // EXTRACT_ELEMENT of a constant int is also very common.
2670    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2671      unsigned ElementSize = VT.getSizeInBits();
2672      unsigned Shift = ElementSize * N2C->getZExtValue();
2673      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2674      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2675    }
2676    break;
2677  case ISD::EXTRACT_SUBVECTOR:
2678    if (N1.getValueType() == VT) // Trivial extraction.
2679      return N1;
2680    break;
2681  }
2682
2683  if (N1C) {
2684    if (N2C) {
2685      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2686      if (SV.getNode()) return SV;
2687    } else {      // Cannonicalize constant to RHS if commutative
2688      if (isCommutativeBinOp(Opcode)) {
2689        std::swap(N1C, N2C);
2690        std::swap(N1, N2);
2691      }
2692    }
2693  }
2694
2695  // Constant fold FP operations.
2696  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2697  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2698  if (N1CFP) {
2699    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2700      // Cannonicalize constant to RHS if commutative
2701      std::swap(N1CFP, N2CFP);
2702      std::swap(N1, N2);
2703    } else if (N2CFP && VT != MVT::ppcf128) {
2704      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2705      APFloat::opStatus s;
2706      switch (Opcode) {
2707      case ISD::FADD:
2708        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2709        if (s != APFloat::opInvalidOp)
2710          return getConstantFP(V1, VT);
2711        break;
2712      case ISD::FSUB:
2713        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2714        if (s!=APFloat::opInvalidOp)
2715          return getConstantFP(V1, VT);
2716        break;
2717      case ISD::FMUL:
2718        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2719        if (s!=APFloat::opInvalidOp)
2720          return getConstantFP(V1, VT);
2721        break;
2722      case ISD::FDIV:
2723        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2724        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2725          return getConstantFP(V1, VT);
2726        break;
2727      case ISD::FREM :
2728        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2729        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2730          return getConstantFP(V1, VT);
2731        break;
2732      case ISD::FCOPYSIGN:
2733        V1.copySign(V2);
2734        return getConstantFP(V1, VT);
2735      default: break;
2736      }
2737    }
2738  }
2739
2740  // Canonicalize an UNDEF to the RHS, even over a constant.
2741  if (N1.getOpcode() == ISD::UNDEF) {
2742    if (isCommutativeBinOp(Opcode)) {
2743      std::swap(N1, N2);
2744    } else {
2745      switch (Opcode) {
2746      case ISD::FP_ROUND_INREG:
2747      case ISD::SIGN_EXTEND_INREG:
2748      case ISD::SUB:
2749      case ISD::FSUB:
2750      case ISD::FDIV:
2751      case ISD::FREM:
2752      case ISD::SRA:
2753        return N1;     // fold op(undef, arg2) -> undef
2754      case ISD::UDIV:
2755      case ISD::SDIV:
2756      case ISD::UREM:
2757      case ISD::SREM:
2758      case ISD::SRL:
2759      case ISD::SHL:
2760        if (!VT.isVector())
2761          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2762        // For vectors, we can't easily build an all zero vector, just return
2763        // the LHS.
2764        return N2;
2765      }
2766    }
2767  }
2768
2769  // Fold a bunch of operators when the RHS is undef.
2770  if (N2.getOpcode() == ISD::UNDEF) {
2771    switch (Opcode) {
2772    case ISD::XOR:
2773      if (N1.getOpcode() == ISD::UNDEF)
2774        // Handle undef ^ undef -> 0 special case. This is a common
2775        // idiom (misuse).
2776        return getConstant(0, VT);
2777      // fallthrough
2778    case ISD::ADD:
2779    case ISD::ADDC:
2780    case ISD::ADDE:
2781    case ISD::SUB:
2782    case ISD::FADD:
2783    case ISD::FSUB:
2784    case ISD::FMUL:
2785    case ISD::FDIV:
2786    case ISD::FREM:
2787    case ISD::UDIV:
2788    case ISD::SDIV:
2789    case ISD::UREM:
2790    case ISD::SREM:
2791      return N2;       // fold op(arg1, undef) -> undef
2792    case ISD::MUL:
2793    case ISD::AND:
2794    case ISD::SRL:
2795    case ISD::SHL:
2796      if (!VT.isVector())
2797        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2798      // For vectors, we can't easily build an all zero vector, just return
2799      // the LHS.
2800      return N1;
2801    case ISD::OR:
2802      if (!VT.isVector())
2803        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2804      // For vectors, we can't easily build an all one vector, just return
2805      // the LHS.
2806      return N1;
2807    case ISD::SRA:
2808      return N1;
2809    }
2810  }
2811
2812  // Memoize this node if possible.
2813  SDNode *N;
2814  SDVTList VTs = getVTList(VT);
2815  if (VT != MVT::Flag) {
2816    SDValue Ops[] = { N1, N2 };
2817    FoldingSetNodeID ID;
2818    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2819    void *IP = 0;
2820    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2821      return SDValue(E, 0);
2822    N = NodeAllocator.Allocate<BinarySDNode>();
2823    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2824    CSEMap.InsertNode(N, IP);
2825  } else {
2826    N = NodeAllocator.Allocate<BinarySDNode>();
2827    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2828  }
2829
2830  AllNodes.push_back(N);
2831#ifndef NDEBUG
2832  VerifyNode(N);
2833#endif
2834  return SDValue(N, 0);
2835}
2836
2837SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2838                              SDValue N1, SDValue N2, SDValue N3) {
2839  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3);
2840}
2841
2842SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2843                              SDValue N1, SDValue N2, SDValue N3) {
2844  // Perform various simplifications.
2845  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2846  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2847  switch (Opcode) {
2848  case ISD::CONCAT_VECTORS:
2849    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2850    // one big BUILD_VECTOR.
2851    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2852        N2.getOpcode() == ISD::BUILD_VECTOR &&
2853        N3.getOpcode() == ISD::BUILD_VECTOR) {
2854      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2855      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2856      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2857      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2858    }
2859    break;
2860  case ISD::SETCC: {
2861    // Use FoldSetCC to simplify SETCC's.
2862    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2863    if (Simp.getNode()) return Simp;
2864    break;
2865  }
2866  case ISD::SELECT:
2867    if (N1C) {
2868     if (N1C->getZExtValue())
2869        return N2;             // select true, X, Y -> X
2870      else
2871        return N3;             // select false, X, Y -> Y
2872    }
2873
2874    if (N2 == N3) return N2;   // select C, X, X -> X
2875    break;
2876  case ISD::BRCOND:
2877    if (N2C) {
2878      if (N2C->getZExtValue()) // Unconditional branch
2879        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2880      else
2881        return N1;         // Never-taken branch
2882    }
2883    break;
2884  case ISD::VECTOR_SHUFFLE:
2885    assert(N1.getValueType() == N2.getValueType() &&
2886           N1.getValueType().isVector() &&
2887           VT.isVector() && N3.getValueType().isVector() &&
2888           N3.getOpcode() == ISD::BUILD_VECTOR &&
2889           VT.getVectorNumElements() == N3.getNumOperands() &&
2890           "Illegal VECTOR_SHUFFLE node!");
2891    break;
2892  case ISD::BIT_CONVERT:
2893    // Fold bit_convert nodes from a type to themselves.
2894    if (N1.getValueType() == VT)
2895      return N1;
2896    break;
2897  }
2898
2899  // Memoize node if it doesn't produce a flag.
2900  SDNode *N;
2901  SDVTList VTs = getVTList(VT);
2902  if (VT != MVT::Flag) {
2903    SDValue Ops[] = { N1, N2, N3 };
2904    FoldingSetNodeID ID;
2905    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2906    void *IP = 0;
2907    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2908      return SDValue(E, 0);
2909    N = NodeAllocator.Allocate<TernarySDNode>();
2910    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2911    CSEMap.InsertNode(N, IP);
2912  } else {
2913    N = NodeAllocator.Allocate<TernarySDNode>();
2914    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2915  }
2916  AllNodes.push_back(N);
2917#ifndef NDEBUG
2918  VerifyNode(N);
2919#endif
2920  return SDValue(N, 0);
2921}
2922
2923SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2924                              SDValue N1, SDValue N2, SDValue N3,
2925                              SDValue N4) {
2926  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3, N4);
2927}
2928
2929SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2930                              SDValue N1, SDValue N2, SDValue N3,
2931                              SDValue N4) {
2932  SDValue Ops[] = { N1, N2, N3, N4 };
2933  return getNode(Opcode, DL, VT, Ops, 4);
2934}
2935
2936SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2937                              SDValue N1, SDValue N2, SDValue N3,
2938                              SDValue N4, SDValue N5) {
2939  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3, N4, N5);
2940}
2941
2942SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2943                              SDValue N1, SDValue N2, SDValue N3,
2944                              SDValue N4, SDValue N5) {
2945  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2946  return getNode(Opcode, DL, VT, Ops, 5);
2947}
2948
2949/// getMemsetValue - Vectorized representation of the memset value
2950/// operand.
2951static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2952                              DebugLoc dl) {
2953  unsigned NumBits = VT.isVector() ?
2954    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2955  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2956    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2957    unsigned Shift = 8;
2958    for (unsigned i = NumBits; i > 8; i >>= 1) {
2959      Val = (Val << Shift) | Val;
2960      Shift <<= 1;
2961    }
2962    if (VT.isInteger())
2963      return DAG.getConstant(Val, VT);
2964    return DAG.getConstantFP(APFloat(Val), VT);
2965  }
2966
2967  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2968  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2969  unsigned Shift = 8;
2970  for (unsigned i = NumBits; i > 8; i >>= 1) {
2971    Value = DAG.getNode(ISD::OR, dl, VT,
2972                        DAG.getNode(ISD::SHL, dl, VT, Value,
2973                                    DAG.getConstant(Shift,
2974                                                    TLI.getShiftAmountTy())),
2975                        Value);
2976    Shift <<= 1;
2977  }
2978
2979  return Value;
2980}
2981
2982/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2983/// used when a memcpy is turned into a memset when the source is a constant
2984/// string ptr.
2985static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2986                                    const TargetLowering &TLI,
2987                                    std::string &Str, unsigned Offset) {
2988  // Handle vector with all elements zero.
2989  if (Str.empty()) {
2990    if (VT.isInteger())
2991      return DAG.getConstant(0, VT);
2992    unsigned NumElts = VT.getVectorNumElements();
2993    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2994    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
2995                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2996  }
2997
2998  assert(!VT.isVector() && "Can't handle vector type here!");
2999  unsigned NumBits = VT.getSizeInBits();
3000  unsigned MSB = NumBits / 8;
3001  uint64_t Val = 0;
3002  if (TLI.isLittleEndian())
3003    Offset = Offset + MSB - 1;
3004  for (unsigned i = 0; i != MSB; ++i) {
3005    Val = (Val << 8) | (unsigned char)Str[Offset];
3006    Offset += TLI.isLittleEndian() ? -1 : 1;
3007  }
3008  return DAG.getConstant(Val, VT);
3009}
3010
3011/// getMemBasePlusOffset - Returns base and offset node for the
3012///
3013static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3014                                      SelectionDAG &DAG) {
3015  MVT VT = Base.getValueType();
3016  return DAG.getNode(ISD::ADD, Base.getNode()->getDebugLoc(),
3017                     VT, Base, DAG.getConstant(Offset, VT));
3018}
3019
3020/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3021///
3022static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3023  unsigned SrcDelta = 0;
3024  GlobalAddressSDNode *G = NULL;
3025  if (Src.getOpcode() == ISD::GlobalAddress)
3026    G = cast<GlobalAddressSDNode>(Src);
3027  else if (Src.getOpcode() == ISD::ADD &&
3028           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3029           Src.getOperand(1).getOpcode() == ISD::Constant) {
3030    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3031    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3032  }
3033  if (!G)
3034    return false;
3035
3036  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3037  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3038    return true;
3039
3040  return false;
3041}
3042
3043/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3044/// to replace the memset / memcpy is below the threshold. It also returns the
3045/// types of the sequence of memory ops to perform memset / memcpy.
3046static
3047bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
3048                              SDValue Dst, SDValue Src,
3049                              unsigned Limit, uint64_t Size, unsigned &Align,
3050                              std::string &Str, bool &isSrcStr,
3051                              SelectionDAG &DAG,
3052                              const TargetLowering &TLI) {
3053  isSrcStr = isMemSrcFromString(Src, Str);
3054  bool isSrcConst = isa<ConstantSDNode>(Src);
3055  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3056  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
3057  if (VT != MVT::iAny) {
3058    unsigned NewAlign = (unsigned)
3059      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3060    // If source is a string constant, this will require an unaligned load.
3061    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3062      if (Dst.getOpcode() != ISD::FrameIndex) {
3063        // Can't change destination alignment. It requires a unaligned store.
3064        if (AllowUnalign)
3065          VT = MVT::iAny;
3066      } else {
3067        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3068        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3069        if (MFI->isFixedObjectIndex(FI)) {
3070          // Can't change destination alignment. It requires a unaligned store.
3071          if (AllowUnalign)
3072            VT = MVT::iAny;
3073        } else {
3074          // Give the stack frame object a larger alignment if needed.
3075          if (MFI->getObjectAlignment(FI) < NewAlign)
3076            MFI->setObjectAlignment(FI, NewAlign);
3077          Align = NewAlign;
3078        }
3079      }
3080    }
3081  }
3082
3083  if (VT == MVT::iAny) {
3084    if (AllowUnalign) {
3085      VT = MVT::i64;
3086    } else {
3087      switch (Align & 7) {
3088      case 0:  VT = MVT::i64; break;
3089      case 4:  VT = MVT::i32; break;
3090      case 2:  VT = MVT::i16; break;
3091      default: VT = MVT::i8;  break;
3092      }
3093    }
3094
3095    MVT LVT = MVT::i64;
3096    while (!TLI.isTypeLegal(LVT))
3097      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3098    assert(LVT.isInteger());
3099
3100    if (VT.bitsGT(LVT))
3101      VT = LVT;
3102  }
3103
3104  unsigned NumMemOps = 0;
3105  while (Size != 0) {
3106    unsigned VTSize = VT.getSizeInBits() / 8;
3107    while (VTSize > Size) {
3108      // For now, only use non-vector load / store's for the left-over pieces.
3109      if (VT.isVector()) {
3110        VT = MVT::i64;
3111        while (!TLI.isTypeLegal(VT))
3112          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3113        VTSize = VT.getSizeInBits() / 8;
3114      } else {
3115        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3116        VTSize >>= 1;
3117      }
3118    }
3119
3120    if (++NumMemOps > Limit)
3121      return false;
3122    MemOps.push_back(VT);
3123    Size -= VTSize;
3124  }
3125
3126  return true;
3127}
3128
3129static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3130                                         SDValue Chain, SDValue Dst,
3131                                         SDValue Src, uint64_t Size,
3132                                         unsigned Align, bool AlwaysInline,
3133                                         const Value *DstSV, uint64_t DstSVOff,
3134                                         const Value *SrcSV, uint64_t SrcSVOff){
3135  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3136
3137  // Expand memcpy to a series of load and store ops if the size operand falls
3138  // below a certain threshold.
3139  std::vector<MVT> MemOps;
3140  uint64_t Limit = -1ULL;
3141  if (!AlwaysInline)
3142    Limit = TLI.getMaxStoresPerMemcpy();
3143  unsigned DstAlign = Align;  // Destination alignment can change.
3144  std::string Str;
3145  bool CopyFromStr;
3146  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3147                                Str, CopyFromStr, DAG, TLI))
3148    return SDValue();
3149
3150
3151  bool isZeroStr = CopyFromStr && Str.empty();
3152  SmallVector<SDValue, 8> OutChains;
3153  unsigned NumMemOps = MemOps.size();
3154  uint64_t SrcOff = 0, DstOff = 0;
3155  for (unsigned i = 0; i < NumMemOps; i++) {
3156    MVT VT = MemOps[i];
3157    unsigned VTSize = VT.getSizeInBits() / 8;
3158    SDValue Value, Store;
3159
3160    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3161      // It's unlikely a store of a vector immediate can be done in a single
3162      // instruction. It would require a load from a constantpool first.
3163      // We also handle store a vector with all zero's.
3164      // FIXME: Handle other cases where store of vector immediate is done in
3165      // a single instruction.
3166      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3167      Store = DAG.getStore(Chain, dl, Value,
3168                           getMemBasePlusOffset(Dst, DstOff, DAG),
3169                           DstSV, DstSVOff + DstOff, false, DstAlign);
3170    } else {
3171      Value = DAG.getLoad(VT, dl, Chain,
3172                          getMemBasePlusOffset(Src, SrcOff, DAG),
3173                          SrcSV, SrcSVOff + SrcOff, false, Align);
3174      Store = DAG.getStore(Chain, dl, Value,
3175                           getMemBasePlusOffset(Dst, DstOff, DAG),
3176                           DstSV, DstSVOff + DstOff, false, DstAlign);
3177    }
3178    OutChains.push_back(Store);
3179    SrcOff += VTSize;
3180    DstOff += VTSize;
3181  }
3182
3183  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3184                     &OutChains[0], OutChains.size());
3185}
3186
3187static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3188                                          SDValue Chain, SDValue Dst,
3189                                          SDValue Src, uint64_t Size,
3190                                          unsigned Align, bool AlwaysInline,
3191                                          const Value *DstSV, uint64_t DstSVOff,
3192                                          const Value *SrcSV, uint64_t SrcSVOff){
3193  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3194
3195  // Expand memmove to a series of load and store ops if the size operand falls
3196  // below a certain threshold.
3197  std::vector<MVT> MemOps;
3198  uint64_t Limit = -1ULL;
3199  if (!AlwaysInline)
3200    Limit = TLI.getMaxStoresPerMemmove();
3201  unsigned DstAlign = Align;  // Destination alignment can change.
3202  std::string Str;
3203  bool CopyFromStr;
3204  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3205                                Str, CopyFromStr, DAG, TLI))
3206    return SDValue();
3207
3208  uint64_t SrcOff = 0, DstOff = 0;
3209
3210  SmallVector<SDValue, 8> LoadValues;
3211  SmallVector<SDValue, 8> LoadChains;
3212  SmallVector<SDValue, 8> OutChains;
3213  unsigned NumMemOps = MemOps.size();
3214  for (unsigned i = 0; i < NumMemOps; i++) {
3215    MVT VT = MemOps[i];
3216    unsigned VTSize = VT.getSizeInBits() / 8;
3217    SDValue Value, Store;
3218
3219    Value = DAG.getLoad(VT, dl, Chain,
3220                        getMemBasePlusOffset(Src, SrcOff, DAG),
3221                        SrcSV, SrcSVOff + SrcOff, false, Align);
3222    LoadValues.push_back(Value);
3223    LoadChains.push_back(Value.getValue(1));
3224    SrcOff += VTSize;
3225  }
3226  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3227                      &LoadChains[0], LoadChains.size());
3228  OutChains.clear();
3229  for (unsigned i = 0; i < NumMemOps; i++) {
3230    MVT VT = MemOps[i];
3231    unsigned VTSize = VT.getSizeInBits() / 8;
3232    SDValue Value, Store;
3233
3234    Store = DAG.getStore(Chain, dl, LoadValues[i],
3235                         getMemBasePlusOffset(Dst, DstOff, DAG),
3236                         DstSV, DstSVOff + DstOff, false, DstAlign);
3237    OutChains.push_back(Store);
3238    DstOff += VTSize;
3239  }
3240
3241  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3242                     &OutChains[0], OutChains.size());
3243}
3244
3245static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3246                                 SDValue Chain, SDValue Dst,
3247                                 SDValue Src, uint64_t Size,
3248                                 unsigned Align,
3249                                 const Value *DstSV, uint64_t DstSVOff) {
3250  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3251
3252  // Expand memset to a series of load/store ops if the size operand
3253  // falls below a certain threshold.
3254  std::vector<MVT> MemOps;
3255  std::string Str;
3256  bool CopyFromStr;
3257  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3258                                Size, Align, Str, CopyFromStr, DAG, TLI))
3259    return SDValue();
3260
3261  SmallVector<SDValue, 8> OutChains;
3262  uint64_t DstOff = 0;
3263
3264  unsigned NumMemOps = MemOps.size();
3265  for (unsigned i = 0; i < NumMemOps; i++) {
3266    MVT VT = MemOps[i];
3267    unsigned VTSize = VT.getSizeInBits() / 8;
3268    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3269    SDValue Store = DAG.getStore(Chain, dl, Value,
3270                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3271                                 DstSV, DstSVOff + DstOff);
3272    OutChains.push_back(Store);
3273    DstOff += VTSize;
3274  }
3275
3276  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3277                     &OutChains[0], OutChains.size());
3278}
3279
3280SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3281                                SDValue Src, SDValue Size,
3282                                unsigned Align, bool AlwaysInline,
3283                                const Value *DstSV, uint64_t DstSVOff,
3284                                const Value *SrcSV, uint64_t SrcSVOff) {
3285
3286  // Check to see if we should lower the memcpy to loads and stores first.
3287  // For cases within the target-specified limits, this is the best choice.
3288  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3289  if (ConstantSize) {
3290    // Memcpy with size zero? Just return the original chain.
3291    if (ConstantSize->isNullValue())
3292      return Chain;
3293
3294    SDValue Result =
3295      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3296                              ConstantSize->getZExtValue(),
3297                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3298    if (Result.getNode())
3299      return Result;
3300  }
3301
3302  // Then check to see if we should lower the memcpy with target-specific
3303  // code. If the target chooses to do this, this is the next best.
3304  SDValue Result =
3305    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3306                                AlwaysInline,
3307                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3308  if (Result.getNode())
3309    return Result;
3310
3311  // If we really need inline code and the target declined to provide it,
3312  // use a (potentially long) sequence of loads and stores.
3313  if (AlwaysInline) {
3314    assert(ConstantSize && "AlwaysInline requires a constant size!");
3315    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3316                                   ConstantSize->getZExtValue(), Align, true,
3317                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3318  }
3319
3320  // Emit a library call.
3321  TargetLowering::ArgListTy Args;
3322  TargetLowering::ArgListEntry Entry;
3323  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3324  Entry.Node = Dst; Args.push_back(Entry);
3325  Entry.Node = Src; Args.push_back(Entry);
3326  Entry.Node = Size; Args.push_back(Entry);
3327  // FIXME: pass in DebugLoc
3328  std::pair<SDValue,SDValue> CallResult =
3329    TLI.LowerCallTo(Chain, Type::VoidTy,
3330                    false, false, false, false, CallingConv::C, false,
3331                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3332                    Args, *this, dl);
3333  return CallResult.second;
3334}
3335
3336SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3337                                 SDValue Src, SDValue Size,
3338                                 unsigned Align,
3339                                 const Value *DstSV, uint64_t DstSVOff,
3340                                 const Value *SrcSV, uint64_t SrcSVOff) {
3341
3342  // Check to see if we should lower the memmove to loads and stores first.
3343  // For cases within the target-specified limits, this is the best choice.
3344  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3345  if (ConstantSize) {
3346    // Memmove with size zero? Just return the original chain.
3347    if (ConstantSize->isNullValue())
3348      return Chain;
3349
3350    SDValue Result =
3351      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3352                               ConstantSize->getZExtValue(),
3353                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3354    if (Result.getNode())
3355      return Result;
3356  }
3357
3358  // Then check to see if we should lower the memmove with target-specific
3359  // code. If the target chooses to do this, this is the next best.
3360  SDValue Result =
3361    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3362                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3363  if (Result.getNode())
3364    return Result;
3365
3366  // Emit a library call.
3367  TargetLowering::ArgListTy Args;
3368  TargetLowering::ArgListEntry Entry;
3369  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3370  Entry.Node = Dst; Args.push_back(Entry);
3371  Entry.Node = Src; Args.push_back(Entry);
3372  Entry.Node = Size; Args.push_back(Entry);
3373  // FIXME:  pass in DebugLoc
3374  std::pair<SDValue,SDValue> CallResult =
3375    TLI.LowerCallTo(Chain, Type::VoidTy,
3376                    false, false, false, false, CallingConv::C, false,
3377                    getExternalSymbol("memmove", TLI.getPointerTy()),
3378                    Args, *this, dl);
3379  return CallResult.second;
3380}
3381
3382SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3383                                SDValue Src, SDValue Size,
3384                                unsigned Align,
3385                                const Value *DstSV, uint64_t DstSVOff) {
3386
3387  // Check to see if we should lower the memset to stores first.
3388  // For cases within the target-specified limits, this is the best choice.
3389  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3390  if (ConstantSize) {
3391    // Memset with size zero? Just return the original chain.
3392    if (ConstantSize->isNullValue())
3393      return Chain;
3394
3395    SDValue Result =
3396      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3397                      Align, DstSV, DstSVOff);
3398    if (Result.getNode())
3399      return Result;
3400  }
3401
3402  // Then check to see if we should lower the memset with target-specific
3403  // code. If the target chooses to do this, this is the next best.
3404  SDValue Result =
3405    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3406                                DstSV, DstSVOff);
3407  if (Result.getNode())
3408    return Result;
3409
3410  // Emit a library call.
3411  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3412  TargetLowering::ArgListTy Args;
3413  TargetLowering::ArgListEntry Entry;
3414  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3415  Args.push_back(Entry);
3416  // Extend or truncate the argument to be an i32 value for the call.
3417  if (Src.getValueType().bitsGT(MVT::i32))
3418    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3419  else
3420    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3421  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3422  Args.push_back(Entry);
3423  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3424  Args.push_back(Entry);
3425  // FIXME: pass in DebugLoc
3426  std::pair<SDValue,SDValue> CallResult =
3427    TLI.LowerCallTo(Chain, Type::VoidTy,
3428                    false, false, false, false, CallingConv::C, false,
3429                    getExternalSymbol("memset", TLI.getPointerTy()),
3430                    Args, *this, dl);
3431  return CallResult.second;
3432}
3433
3434SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3435                                SDValue Chain,
3436                                SDValue Ptr, SDValue Cmp,
3437                                SDValue Swp, const Value* PtrVal,
3438                                unsigned Alignment) {
3439  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3440  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3441
3442  MVT VT = Cmp.getValueType();
3443
3444  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3445    Alignment = getMVTAlignment(MemVT);
3446
3447  SDVTList VTs = getVTList(VT, MVT::Other);
3448  FoldingSetNodeID ID;
3449  ID.AddInteger(MemVT.getRawBits());
3450  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3451  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3452  void* IP = 0;
3453  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3454    return SDValue(E, 0);
3455  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3456  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3457                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3458  CSEMap.InsertNode(N, IP);
3459  AllNodes.push_back(N);
3460  return SDValue(N, 0);
3461}
3462
3463SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3464                                SDValue Chain,
3465                                SDValue Ptr, SDValue Cmp,
3466                                SDValue Swp, const Value* PtrVal,
3467                                unsigned Alignment) {
3468  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3469  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3470
3471  MVT VT = Cmp.getValueType();
3472
3473  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3474    Alignment = getMVTAlignment(MemVT);
3475
3476  SDVTList VTs = getVTList(VT, MVT::Other);
3477  FoldingSetNodeID ID;
3478  ID.AddInteger(MemVT.getRawBits());
3479  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3480  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3481  void* IP = 0;
3482  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3483    return SDValue(E, 0);
3484  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3485  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3486                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3487  CSEMap.InsertNode(N, IP);
3488  AllNodes.push_back(N);
3489  return SDValue(N, 0);
3490}
3491
3492SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3493                                SDValue Chain,
3494                                SDValue Ptr, SDValue Val,
3495                                const Value* PtrVal,
3496                                unsigned Alignment) {
3497  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3498          Opcode == ISD::ATOMIC_LOAD_SUB ||
3499          Opcode == ISD::ATOMIC_LOAD_AND ||
3500          Opcode == ISD::ATOMIC_LOAD_OR ||
3501          Opcode == ISD::ATOMIC_LOAD_XOR ||
3502          Opcode == ISD::ATOMIC_LOAD_NAND ||
3503          Opcode == ISD::ATOMIC_LOAD_MIN ||
3504          Opcode == ISD::ATOMIC_LOAD_MAX ||
3505          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3506          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3507          Opcode == ISD::ATOMIC_SWAP) &&
3508         "Invalid Atomic Op");
3509
3510  MVT VT = Val.getValueType();
3511
3512  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3513    Alignment = getMVTAlignment(MemVT);
3514
3515  SDVTList VTs = getVTList(VT, MVT::Other);
3516  FoldingSetNodeID ID;
3517  ID.AddInteger(MemVT.getRawBits());
3518  SDValue Ops[] = {Chain, Ptr, Val};
3519  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3520  void* IP = 0;
3521  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3522    return SDValue(E, 0);
3523  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3524  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3525                       Chain, Ptr, Val, PtrVal, Alignment);
3526  CSEMap.InsertNode(N, IP);
3527  AllNodes.push_back(N);
3528  return SDValue(N, 0);
3529}
3530
3531SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3532                                SDValue Chain,
3533                                SDValue Ptr, SDValue Val,
3534                                const Value* PtrVal,
3535                                unsigned Alignment) {
3536  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3537          Opcode == ISD::ATOMIC_LOAD_SUB ||
3538          Opcode == ISD::ATOMIC_LOAD_AND ||
3539          Opcode == ISD::ATOMIC_LOAD_OR ||
3540          Opcode == ISD::ATOMIC_LOAD_XOR ||
3541          Opcode == ISD::ATOMIC_LOAD_NAND ||
3542          Opcode == ISD::ATOMIC_LOAD_MIN ||
3543          Opcode == ISD::ATOMIC_LOAD_MAX ||
3544          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3545          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3546          Opcode == ISD::ATOMIC_SWAP) &&
3547         "Invalid Atomic Op");
3548
3549  MVT VT = Val.getValueType();
3550
3551  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3552    Alignment = getMVTAlignment(MemVT);
3553
3554  SDVTList VTs = getVTList(VT, MVT::Other);
3555  FoldingSetNodeID ID;
3556  ID.AddInteger(MemVT.getRawBits());
3557  SDValue Ops[] = {Chain, Ptr, Val};
3558  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3559  void* IP = 0;
3560  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3561    return SDValue(E, 0);
3562  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3563  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3564                       Chain, Ptr, Val, PtrVal, Alignment);
3565  CSEMap.InsertNode(N, IP);
3566  AllNodes.push_back(N);
3567  return SDValue(N, 0);
3568}
3569
3570/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3571/// Allowed to return something different (and simpler) if Simplify is true.
3572SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3573  if (NumOps == 1)
3574    return Ops[0];
3575
3576  SmallVector<MVT, 4> VTs;
3577  VTs.reserve(NumOps);
3578  for (unsigned i = 0; i < NumOps; ++i)
3579    VTs.push_back(Ops[i].getValueType());
3580  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3581}
3582
3583/// DebugLoc-aware version.
3584SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3585                                     DebugLoc dl) {
3586  if (NumOps == 1)
3587    return Ops[0];
3588
3589  SmallVector<MVT, 4> VTs;
3590  VTs.reserve(NumOps);
3591  for (unsigned i = 0; i < NumOps; ++i)
3592    VTs.push_back(Ops[i].getValueType());
3593  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3594                 Ops, NumOps);
3595}
3596
3597SDValue
3598SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3599                                  const MVT *VTs, unsigned NumVTs,
3600                                  const SDValue *Ops, unsigned NumOps,
3601                                  MVT MemVT, const Value *srcValue, int SVOff,
3602                                  unsigned Align, bool Vol,
3603                                  bool ReadMem, bool WriteMem) {
3604  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3605                             MemVT, srcValue, SVOff, Align, Vol,
3606                             ReadMem, WriteMem);
3607}
3608
3609SDValue
3610SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3611                                  const MVT *VTs, unsigned NumVTs,
3612                                  const SDValue *Ops, unsigned NumOps,
3613                                  MVT MemVT, const Value *srcValue, int SVOff,
3614                                  unsigned Align, bool Vol,
3615                                  bool ReadMem, bool WriteMem) {
3616  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3617                             MemVT, srcValue, SVOff, Align, Vol,
3618                             ReadMem, WriteMem);
3619}
3620
3621SDValue
3622SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3623                                  const SDValue *Ops, unsigned NumOps,
3624                                  MVT MemVT, const Value *srcValue, int SVOff,
3625                                  unsigned Align, bool Vol,
3626                                  bool ReadMem, bool WriteMem) {
3627  // Memoize the node unless it returns a flag.
3628  MemIntrinsicSDNode *N;
3629  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3630    FoldingSetNodeID ID;
3631    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3632    void *IP = 0;
3633    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3634      return SDValue(E, 0);
3635
3636    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3637    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3638                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3639    CSEMap.InsertNode(N, IP);
3640  } else {
3641    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3642    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3643                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3644  }
3645  AllNodes.push_back(N);
3646  return SDValue(N, 0);
3647}
3648
3649SDValue
3650SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3651                                  const SDValue *Ops, unsigned NumOps,
3652                                  MVT MemVT, const Value *srcValue, int SVOff,
3653                                  unsigned Align, bool Vol,
3654                                  bool ReadMem, bool WriteMem) {
3655  // Memoize the node unless it returns a flag.
3656  MemIntrinsicSDNode *N;
3657  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3658    FoldingSetNodeID ID;
3659    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3660    void *IP = 0;
3661    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3662      return SDValue(E, 0);
3663
3664    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3665    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3666                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3667    CSEMap.InsertNode(N, IP);
3668  } else {
3669    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3670    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3671                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3672  }
3673  AllNodes.push_back(N);
3674  return SDValue(N, 0);
3675}
3676
3677SDValue
3678SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3679                      bool IsInreg, SDVTList VTs,
3680                      const SDValue *Operands, unsigned NumOperands) {
3681  // Do not include isTailCall in the folding set profile.
3682  FoldingSetNodeID ID;
3683  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3684  ID.AddInteger(CallingConv);
3685  ID.AddInteger(IsVarArgs);
3686  void *IP = 0;
3687  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3688    // Instead of including isTailCall in the folding set, we just
3689    // set the flag of the existing node.
3690    if (!IsTailCall)
3691      cast<CallSDNode>(E)->setNotTailCall();
3692    return SDValue(E, 0);
3693  }
3694  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3695  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3696                     VTs, Operands, NumOperands);
3697  CSEMap.InsertNode(N, IP);
3698  AllNodes.push_back(N);
3699  return SDValue(N, 0);
3700}
3701
3702SDValue
3703SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3704                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3705                      const SDValue *Operands, unsigned NumOperands) {
3706  // Do not include isTailCall in the folding set profile.
3707  FoldingSetNodeID ID;
3708  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3709  ID.AddInteger(CallingConv);
3710  ID.AddInteger(IsVarArgs);
3711  void *IP = 0;
3712  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3713    // Instead of including isTailCall in the folding set, we just
3714    // set the flag of the existing node.
3715    if (!IsTailCall)
3716      cast<CallSDNode>(E)->setNotTailCall();
3717    return SDValue(E, 0);
3718  }
3719  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3720  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3721                     VTs, Operands, NumOperands);
3722  CSEMap.InsertNode(N, IP);
3723  AllNodes.push_back(N);
3724  return SDValue(N, 0);
3725}
3726
3727SDValue
3728SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3729                      MVT VT, SDValue Chain,
3730                      SDValue Ptr, SDValue Offset,
3731                      const Value *SV, int SVOffset, MVT EVT,
3732                      bool isVolatile, unsigned Alignment) {
3733  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3734    Alignment = getMVTAlignment(VT);
3735
3736  if (VT == EVT) {
3737    ExtType = ISD::NON_EXTLOAD;
3738  } else if (ExtType == ISD::NON_EXTLOAD) {
3739    assert(VT == EVT && "Non-extending load from different memory type!");
3740  } else {
3741    // Extending load.
3742    if (VT.isVector())
3743      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3744             "Invalid vector extload!");
3745    else
3746      assert(EVT.bitsLT(VT) &&
3747             "Should only be an extending load, not truncating!");
3748    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3749           "Cannot sign/zero extend a FP/Vector load!");
3750    assert(VT.isInteger() == EVT.isInteger() &&
3751           "Cannot convert from FP to Int or Int -> FP!");
3752  }
3753
3754  bool Indexed = AM != ISD::UNINDEXED;
3755  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3756         "Unindexed load with an offset!");
3757
3758  SDVTList VTs = Indexed ?
3759    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3760  SDValue Ops[] = { Chain, Ptr, Offset };
3761  FoldingSetNodeID ID;
3762  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3763  ID.AddInteger(EVT.getRawBits());
3764  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3765  void *IP = 0;
3766  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3767    return SDValue(E, 0);
3768  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3769  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3770                     Alignment, isVolatile);
3771  CSEMap.InsertNode(N, IP);
3772  AllNodes.push_back(N);
3773  return SDValue(N, 0);
3774}
3775
3776SDValue
3777SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3778                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3779                      SDValue Ptr, SDValue Offset,
3780                      const Value *SV, int SVOffset, MVT EVT,
3781                      bool isVolatile, unsigned Alignment) {
3782  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3783    Alignment = getMVTAlignment(VT);
3784
3785  if (VT == EVT) {
3786    ExtType = ISD::NON_EXTLOAD;
3787  } else if (ExtType == ISD::NON_EXTLOAD) {
3788    assert(VT == EVT && "Non-extending load from different memory type!");
3789  } else {
3790    // Extending load.
3791    if (VT.isVector())
3792      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3793             "Invalid vector extload!");
3794    else
3795      assert(EVT.bitsLT(VT) &&
3796             "Should only be an extending load, not truncating!");
3797    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3798           "Cannot sign/zero extend a FP/Vector load!");
3799    assert(VT.isInteger() == EVT.isInteger() &&
3800           "Cannot convert from FP to Int or Int -> FP!");
3801  }
3802
3803  bool Indexed = AM != ISD::UNINDEXED;
3804  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3805         "Unindexed load with an offset!");
3806
3807  SDVTList VTs = Indexed ?
3808    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3809  SDValue Ops[] = { Chain, Ptr, Offset };
3810  FoldingSetNodeID ID;
3811  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3812  ID.AddInteger(EVT.getRawBits());
3813  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3814  void *IP = 0;
3815  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3816    return SDValue(E, 0);
3817  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3818  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3819                     Alignment, isVolatile);
3820  CSEMap.InsertNode(N, IP);
3821  AllNodes.push_back(N);
3822  return SDValue(N, 0);
3823}
3824
3825SDValue SelectionDAG::getLoad(MVT VT,
3826                              SDValue Chain, SDValue Ptr,
3827                              const Value *SV, int SVOffset,
3828                              bool isVolatile, unsigned Alignment) {
3829  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3830  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3831                 SV, SVOffset, VT, isVolatile, Alignment);
3832}
3833
3834SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3835                              SDValue Chain, SDValue Ptr,
3836                              const Value *SV, int SVOffset,
3837                              bool isVolatile, unsigned Alignment) {
3838  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3839  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3840                 SV, SVOffset, VT, isVolatile, Alignment);
3841}
3842
3843SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3844                                 SDValue Chain, SDValue Ptr,
3845                                 const Value *SV,
3846                                 int SVOffset, MVT EVT,
3847                                 bool isVolatile, unsigned Alignment) {
3848  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3849  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3850                 SV, SVOffset, EVT, isVolatile, Alignment);
3851}
3852
3853SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3854                                 SDValue Chain, SDValue Ptr,
3855                                 const Value *SV,
3856                                 int SVOffset, MVT EVT,
3857                                 bool isVolatile, unsigned Alignment) {
3858  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3859  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3860                 SV, SVOffset, EVT, isVolatile, Alignment);
3861}
3862
3863SDValue
3864SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3865                             SDValue Offset, ISD::MemIndexedMode AM) {
3866  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3867  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3868         "Load is already a indexed load!");
3869  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3870                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3871                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3872                 LD->isVolatile(), LD->getAlignment());
3873}
3874
3875SDValue
3876SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3877                             SDValue Offset, ISD::MemIndexedMode AM) {
3878  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3879  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3880         "Load is already a indexed load!");
3881  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3882                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3883                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3884                 LD->isVolatile(), LD->getAlignment());
3885}
3886
3887SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3888                               SDValue Ptr, const Value *SV, int SVOffset,
3889                               bool isVolatile, unsigned Alignment) {
3890  MVT VT = Val.getValueType();
3891
3892  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3893    Alignment = getMVTAlignment(VT);
3894
3895  SDVTList VTs = getVTList(MVT::Other);
3896  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3897  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3898  FoldingSetNodeID ID;
3899  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3900  ID.AddInteger(VT.getRawBits());
3901  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3902                                     isVolatile, Alignment));
3903  void *IP = 0;
3904  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3905    return SDValue(E, 0);
3906  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3907  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3908                      VT, SV, SVOffset, Alignment, isVolatile);
3909  CSEMap.InsertNode(N, IP);
3910  AllNodes.push_back(N);
3911  return SDValue(N, 0);
3912}
3913
3914SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3915                               SDValue Ptr, const Value *SV, int SVOffset,
3916                               bool isVolatile, unsigned Alignment) {
3917  MVT VT = Val.getValueType();
3918
3919  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3920    Alignment = getMVTAlignment(VT);
3921
3922  SDVTList VTs = getVTList(MVT::Other);
3923  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3924  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3925  FoldingSetNodeID ID;
3926  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3927  ID.AddInteger(VT.getRawBits());
3928  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3929                                     isVolatile, Alignment));
3930  void *IP = 0;
3931  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3932    return SDValue(E, 0);
3933  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3934  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3935                      VT, SV, SVOffset, Alignment, isVolatile);
3936  CSEMap.InsertNode(N, IP);
3937  AllNodes.push_back(N);
3938  return SDValue(N, 0);
3939}
3940
3941SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3942                                    SDValue Ptr, const Value *SV,
3943                                    int SVOffset, MVT SVT,
3944                                    bool isVolatile, unsigned Alignment) {
3945  MVT VT = Val.getValueType();
3946
3947  if (VT == SVT)
3948    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3949
3950  assert(VT.bitsGT(SVT) && "Not a truncation?");
3951  assert(VT.isInteger() == SVT.isInteger() &&
3952         "Can't do FP-INT conversion!");
3953
3954  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3955    Alignment = getMVTAlignment(VT);
3956
3957  SDVTList VTs = getVTList(MVT::Other);
3958  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3959  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3960  FoldingSetNodeID ID;
3961  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3962  ID.AddInteger(SVT.getRawBits());
3963  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3964                                     isVolatile, Alignment));
3965  void *IP = 0;
3966  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3967    return SDValue(E, 0);
3968  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3969  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3970                      SVT, SV, SVOffset, Alignment, isVolatile);
3971  CSEMap.InsertNode(N, IP);
3972  AllNodes.push_back(N);
3973  return SDValue(N, 0);
3974}
3975
3976SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3977                                    SDValue Ptr, const Value *SV,
3978                                    int SVOffset, MVT SVT,
3979                                    bool isVolatile, unsigned Alignment) {
3980  MVT VT = Val.getValueType();
3981
3982  if (VT == SVT)
3983    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3984
3985  assert(VT.bitsGT(SVT) && "Not a truncation?");
3986  assert(VT.isInteger() == SVT.isInteger() &&
3987         "Can't do FP-INT conversion!");
3988
3989  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3990    Alignment = getMVTAlignment(VT);
3991
3992  SDVTList VTs = getVTList(MVT::Other);
3993  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3994  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3995  FoldingSetNodeID ID;
3996  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3997  ID.AddInteger(SVT.getRawBits());
3998  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3999                                     isVolatile, Alignment));
4000  void *IP = 0;
4001  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4002    return SDValue(E, 0);
4003  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4004  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
4005                      SVT, SV, SVOffset, Alignment, isVolatile);
4006  CSEMap.InsertNode(N, IP);
4007  AllNodes.push_back(N);
4008  return SDValue(N, 0);
4009}
4010
4011SDValue
4012SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
4013                              SDValue Offset, ISD::MemIndexedMode AM) {
4014  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4015  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4016         "Store is already a indexed store!");
4017  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4018  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4019  FoldingSetNodeID ID;
4020  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4021  ID.AddInteger(ST->getMemoryVT().getRawBits());
4022  ID.AddInteger(ST->getRawSubclassData());
4023  void *IP = 0;
4024  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4025    return SDValue(E, 0);
4026  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4027  new (N) StoreSDNode(Ops, VTs, AM,
4028                      ST->isTruncatingStore(), ST->getMemoryVT(),
4029                      ST->getSrcValue(), ST->getSrcValueOffset(),
4030                      ST->getAlignment(), ST->isVolatile());
4031  CSEMap.InsertNode(N, IP);
4032  AllNodes.push_back(N);
4033  return SDValue(N, 0);
4034}
4035
4036SDValue
4037SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4038                              SDValue Offset, ISD::MemIndexedMode AM) {
4039  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4040  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4041         "Store is already a indexed store!");
4042  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4043  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4044  FoldingSetNodeID ID;
4045  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4046  ID.AddInteger(ST->getMemoryVT().getRawBits());
4047  ID.AddInteger(ST->getRawSubclassData());
4048  void *IP = 0;
4049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4050    return SDValue(E, 0);
4051  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4052  new (N) StoreSDNode(Ops, dl, VTs, AM,
4053                      ST->isTruncatingStore(), ST->getMemoryVT(),
4054                      ST->getSrcValue(), ST->getSrcValueOffset(),
4055                      ST->getAlignment(), ST->isVolatile());
4056  CSEMap.InsertNode(N, IP);
4057  AllNodes.push_back(N);
4058  return SDValue(N, 0);
4059}
4060
4061SDValue SelectionDAG::getVAArg(MVT VT,
4062                               SDValue Chain, SDValue Ptr,
4063                               SDValue SV) {
4064  SDValue Ops[] = { Chain, Ptr, SV };
4065  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
4066}
4067
4068SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
4069                               SDValue Chain, SDValue Ptr,
4070                               SDValue SV) {
4071  SDValue Ops[] = { Chain, Ptr, SV };
4072  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4073}
4074
4075SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
4076                              const SDUse *Ops, unsigned NumOps) {
4077  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Ops, NumOps);
4078}
4079
4080SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
4081                              const SDUse *Ops, unsigned NumOps) {
4082  switch (NumOps) {
4083  case 0: return getNode(Opcode, DL, VT);
4084  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4085  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4086  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4087  default: break;
4088  }
4089
4090  // Copy from an SDUse array into an SDValue array for use with
4091  // the regular getNode logic.
4092  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4093  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4094}
4095
4096SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
4097                              const SDValue *Ops, unsigned NumOps) {
4098  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Ops, NumOps);
4099}
4100
4101SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
4102                              const SDValue *Ops, unsigned NumOps) {
4103  switch (NumOps) {
4104  case 0: return getNode(Opcode, DL, VT);
4105  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4106  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4107  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4108  default: break;
4109  }
4110
4111  switch (Opcode) {
4112  default: break;
4113  case ISD::SELECT_CC: {
4114    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4115    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4116           "LHS and RHS of condition must have same type!");
4117    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4118           "True and False arms of SelectCC must have same type!");
4119    assert(Ops[2].getValueType() == VT &&
4120           "select_cc node must be of same type as true and false value!");
4121    break;
4122  }
4123  case ISD::BR_CC: {
4124    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4125    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4126           "LHS/RHS of comparison should match types!");
4127    break;
4128  }
4129  }
4130
4131  // Memoize nodes.
4132  SDNode *N;
4133  SDVTList VTs = getVTList(VT);
4134
4135  if (VT != MVT::Flag) {
4136    FoldingSetNodeID ID;
4137    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4138    void *IP = 0;
4139
4140    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4141      return SDValue(E, 0);
4142
4143    N = NodeAllocator.Allocate<SDNode>();
4144    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4145    CSEMap.InsertNode(N, IP);
4146  } else {
4147    N = NodeAllocator.Allocate<SDNode>();
4148    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4149  }
4150
4151  AllNodes.push_back(N);
4152#ifndef NDEBUG
4153  VerifyNode(N);
4154#endif
4155  return SDValue(N, 0);
4156}
4157
4158SDValue SelectionDAG::getNode(unsigned Opcode,
4159                              const std::vector<MVT> &ResultTys,
4160                              const SDValue *Ops, unsigned NumOps) {
4161  return getNode(Opcode, DebugLoc::getUnknownLoc(), ResultTys, Ops, NumOps);
4162}
4163
4164SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4165                              const std::vector<MVT> &ResultTys,
4166                              const SDValue *Ops, unsigned NumOps) {
4167  return getNode(Opcode, DL, getNodeValueTypes(ResultTys), ResultTys.size(),
4168                 Ops, NumOps);
4169}
4170
4171SDValue SelectionDAG::getNode(unsigned Opcode,
4172                              const MVT *VTs, unsigned NumVTs,
4173                              const SDValue *Ops, unsigned NumOps) {
4174  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTs, NumVTs, Ops, NumOps);
4175}
4176
4177SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4178                              const MVT *VTs, unsigned NumVTs,
4179                              const SDValue *Ops, unsigned NumOps) {
4180  if (NumVTs == 1)
4181    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4182  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4183}
4184
4185SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4186                              const SDValue *Ops, unsigned NumOps) {
4187  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, Ops, NumOps);
4188}
4189
4190SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4191                              const SDValue *Ops, unsigned NumOps) {
4192  if (VTList.NumVTs == 1)
4193    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4194
4195  switch (Opcode) {
4196  // FIXME: figure out how to safely handle things like
4197  // int foo(int x) { return 1 << (x & 255); }
4198  // int bar() { return foo(256); }
4199#if 0
4200  case ISD::SRA_PARTS:
4201  case ISD::SRL_PARTS:
4202  case ISD::SHL_PARTS:
4203    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4204        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4205      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4206    else if (N3.getOpcode() == ISD::AND)
4207      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4208        // If the and is only masking out bits that cannot effect the shift,
4209        // eliminate the and.
4210        unsigned NumBits = VT.getSizeInBits()*2;
4211        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4212          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4213      }
4214    break;
4215#endif
4216  }
4217
4218  // Memoize the node unless it returns a flag.
4219  SDNode *N;
4220  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4221    FoldingSetNodeID ID;
4222    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4223    void *IP = 0;
4224    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4225      return SDValue(E, 0);
4226    if (NumOps == 1) {
4227      N = NodeAllocator.Allocate<UnarySDNode>();
4228      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4229    } else if (NumOps == 2) {
4230      N = NodeAllocator.Allocate<BinarySDNode>();
4231      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4232    } else if (NumOps == 3) {
4233      N = NodeAllocator.Allocate<TernarySDNode>();
4234      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4235    } else {
4236      N = NodeAllocator.Allocate<SDNode>();
4237      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4238    }
4239    CSEMap.InsertNode(N, IP);
4240  } else {
4241    if (NumOps == 1) {
4242      N = NodeAllocator.Allocate<UnarySDNode>();
4243      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4244    } else if (NumOps == 2) {
4245      N = NodeAllocator.Allocate<BinarySDNode>();
4246      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4247    } else if (NumOps == 3) {
4248      N = NodeAllocator.Allocate<TernarySDNode>();
4249      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4250    } else {
4251      N = NodeAllocator.Allocate<SDNode>();
4252      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4253    }
4254  }
4255  AllNodes.push_back(N);
4256#ifndef NDEBUG
4257  VerifyNode(N);
4258#endif
4259  return SDValue(N, 0);
4260}
4261
4262SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
4263  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList);
4264}
4265
4266SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4267  return getNode(Opcode, DL, VTList, 0, 0);
4268}
4269
4270SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4271                              SDValue N1) {
4272  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1);
4273}
4274
4275SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4276                              SDValue N1) {
4277  SDValue Ops[] = { N1 };
4278  return getNode(Opcode, DL, VTList, Ops, 1);
4279}
4280
4281SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4282                              SDValue N1, SDValue N2) {
4283  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2);
4284}
4285
4286SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4287                              SDValue N1, SDValue N2) {
4288  SDValue Ops[] = { N1, N2 };
4289  return getNode(Opcode, DL, VTList, Ops, 2);
4290}
4291
4292SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4293                              SDValue N1, SDValue N2, SDValue N3) {
4294  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3);
4295}
4296
4297SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4298                              SDValue N1, SDValue N2, SDValue N3) {
4299  SDValue Ops[] = { N1, N2, N3 };
4300  return getNode(Opcode, DL, VTList, Ops, 3);
4301}
4302
4303SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4304                              SDValue N1, SDValue N2, SDValue N3,
4305                              SDValue N4) {
4306  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3, N4);
4307}
4308
4309SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4310                              SDValue N1, SDValue N2, SDValue N3,
4311                              SDValue N4) {
4312  SDValue Ops[] = { N1, N2, N3, N4 };
4313  return getNode(Opcode, DL, VTList, Ops, 4);
4314}
4315
4316SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4317                              SDValue N1, SDValue N2, SDValue N3,
4318                              SDValue N4, SDValue N5) {
4319  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3, N4, N5);
4320}
4321
4322SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4323                              SDValue N1, SDValue N2, SDValue N3,
4324                              SDValue N4, SDValue N5) {
4325  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4326  return getNode(Opcode, DL, VTList, Ops, 5);
4327}
4328
4329SDVTList SelectionDAG::getVTList(MVT VT) {
4330  return makeVTList(SDNode::getValueTypeList(VT), 1);
4331}
4332
4333SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
4334  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4335       E = VTList.rend(); I != E; ++I)
4336    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4337      return *I;
4338
4339  MVT *Array = Allocator.Allocate<MVT>(2);
4340  Array[0] = VT1;
4341  Array[1] = VT2;
4342  SDVTList Result = makeVTList(Array, 2);
4343  VTList.push_back(Result);
4344  return Result;
4345}
4346
4347SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
4348  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4349       E = VTList.rend(); I != E; ++I)
4350    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4351                          I->VTs[2] == VT3)
4352      return *I;
4353
4354  MVT *Array = Allocator.Allocate<MVT>(3);
4355  Array[0] = VT1;
4356  Array[1] = VT2;
4357  Array[2] = VT3;
4358  SDVTList Result = makeVTList(Array, 3);
4359  VTList.push_back(Result);
4360  return Result;
4361}
4362
4363SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
4364  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4365       E = VTList.rend(); I != E; ++I)
4366    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4367                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4368      return *I;
4369
4370  MVT *Array = Allocator.Allocate<MVT>(3);
4371  Array[0] = VT1;
4372  Array[1] = VT2;
4373  Array[2] = VT3;
4374  Array[3] = VT4;
4375  SDVTList Result = makeVTList(Array, 4);
4376  VTList.push_back(Result);
4377  return Result;
4378}
4379
4380SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4381  switch (NumVTs) {
4382    case 0: assert(0 && "Cannot have nodes without results!");
4383    case 1: return getVTList(VTs[0]);
4384    case 2: return getVTList(VTs[0], VTs[1]);
4385    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4386    default: break;
4387  }
4388
4389  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4390       E = VTList.rend(); I != E; ++I) {
4391    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4392      continue;
4393
4394    bool NoMatch = false;
4395    for (unsigned i = 2; i != NumVTs; ++i)
4396      if (VTs[i] != I->VTs[i]) {
4397        NoMatch = true;
4398        break;
4399      }
4400    if (!NoMatch)
4401      return *I;
4402  }
4403
4404  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4405  std::copy(VTs, VTs+NumVTs, Array);
4406  SDVTList Result = makeVTList(Array, NumVTs);
4407  VTList.push_back(Result);
4408  return Result;
4409}
4410
4411
4412/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4413/// specified operands.  If the resultant node already exists in the DAG,
4414/// this does not modify the specified node, instead it returns the node that
4415/// already exists.  If the resultant node does not exist in the DAG, the
4416/// input node is returned.  As a degenerate case, if you specify the same
4417/// input operands as the node already has, the input node is returned.
4418SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4419  SDNode *N = InN.getNode();
4420  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4421
4422  // Check to see if there is no change.
4423  if (Op == N->getOperand(0)) return InN;
4424
4425  // See if the modified node already exists.
4426  void *InsertPos = 0;
4427  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4428    return SDValue(Existing, InN.getResNo());
4429
4430  // Nope it doesn't.  Remove the node from its current place in the maps.
4431  if (InsertPos)
4432    if (!RemoveNodeFromCSEMaps(N))
4433      InsertPos = 0;
4434
4435  // Now we update the operands.
4436  N->OperandList[0].set(Op);
4437
4438  // If this gets put into a CSE map, add it.
4439  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4440  return InN;
4441}
4442
4443SDValue SelectionDAG::
4444UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4445  SDNode *N = InN.getNode();
4446  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4447
4448  // Check to see if there is no change.
4449  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4450    return InN;   // No operands changed, just return the input node.
4451
4452  // See if the modified node already exists.
4453  void *InsertPos = 0;
4454  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4455    return SDValue(Existing, InN.getResNo());
4456
4457  // Nope it doesn't.  Remove the node from its current place in the maps.
4458  if (InsertPos)
4459    if (!RemoveNodeFromCSEMaps(N))
4460      InsertPos = 0;
4461
4462  // Now we update the operands.
4463  if (N->OperandList[0] != Op1)
4464    N->OperandList[0].set(Op1);
4465  if (N->OperandList[1] != Op2)
4466    N->OperandList[1].set(Op2);
4467
4468  // If this gets put into a CSE map, add it.
4469  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4470  return InN;
4471}
4472
4473SDValue SelectionDAG::
4474UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4475  SDValue Ops[] = { Op1, Op2, Op3 };
4476  return UpdateNodeOperands(N, Ops, 3);
4477}
4478
4479SDValue SelectionDAG::
4480UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4481                   SDValue Op3, SDValue Op4) {
4482  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4483  return UpdateNodeOperands(N, Ops, 4);
4484}
4485
4486SDValue SelectionDAG::
4487UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4488                   SDValue Op3, SDValue Op4, SDValue Op5) {
4489  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4490  return UpdateNodeOperands(N, Ops, 5);
4491}
4492
4493SDValue SelectionDAG::
4494UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4495  SDNode *N = InN.getNode();
4496  assert(N->getNumOperands() == NumOps &&
4497         "Update with wrong number of operands");
4498
4499  // Check to see if there is no change.
4500  bool AnyChange = false;
4501  for (unsigned i = 0; i != NumOps; ++i) {
4502    if (Ops[i] != N->getOperand(i)) {
4503      AnyChange = true;
4504      break;
4505    }
4506  }
4507
4508  // No operands changed, just return the input node.
4509  if (!AnyChange) return InN;
4510
4511  // See if the modified node already exists.
4512  void *InsertPos = 0;
4513  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4514    return SDValue(Existing, InN.getResNo());
4515
4516  // Nope it doesn't.  Remove the node from its current place in the maps.
4517  if (InsertPos)
4518    if (!RemoveNodeFromCSEMaps(N))
4519      InsertPos = 0;
4520
4521  // Now we update the operands.
4522  for (unsigned i = 0; i != NumOps; ++i)
4523    if (N->OperandList[i] != Ops[i])
4524      N->OperandList[i].set(Ops[i]);
4525
4526  // If this gets put into a CSE map, add it.
4527  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4528  return InN;
4529}
4530
4531/// DropOperands - Release the operands and set this node to have
4532/// zero operands.
4533void SDNode::DropOperands() {
4534  // Unlike the code in MorphNodeTo that does this, we don't need to
4535  // watch for dead nodes here.
4536  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4537    SDUse &Use = *I++;
4538    Use.set(SDValue());
4539  }
4540}
4541
4542/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4543/// machine opcode.
4544///
4545SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4546                                   MVT VT) {
4547  SDVTList VTs = getVTList(VT);
4548  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4549}
4550
4551SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4552                                   MVT VT, SDValue Op1) {
4553  SDVTList VTs = getVTList(VT);
4554  SDValue Ops[] = { Op1 };
4555  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4556}
4557
4558SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4559                                   MVT VT, SDValue Op1,
4560                                   SDValue Op2) {
4561  SDVTList VTs = getVTList(VT);
4562  SDValue Ops[] = { Op1, Op2 };
4563  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4564}
4565
4566SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4567                                   MVT VT, SDValue Op1,
4568                                   SDValue Op2, SDValue Op3) {
4569  SDVTList VTs = getVTList(VT);
4570  SDValue Ops[] = { Op1, Op2, Op3 };
4571  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4572}
4573
4574SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4575                                   MVT VT, const SDValue *Ops,
4576                                   unsigned NumOps) {
4577  SDVTList VTs = getVTList(VT);
4578  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4579}
4580
4581SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4582                                   MVT VT1, MVT VT2, const SDValue *Ops,
4583                                   unsigned NumOps) {
4584  SDVTList VTs = getVTList(VT1, VT2);
4585  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4586}
4587
4588SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4589                                   MVT VT1, MVT VT2) {
4590  SDVTList VTs = getVTList(VT1, VT2);
4591  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4592}
4593
4594SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4595                                   MVT VT1, MVT VT2, MVT VT3,
4596                                   const SDValue *Ops, unsigned NumOps) {
4597  SDVTList VTs = getVTList(VT1, VT2, VT3);
4598  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4599}
4600
4601SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4602                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4603                                   const SDValue *Ops, unsigned NumOps) {
4604  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4605  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4606}
4607
4608SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4609                                   MVT VT1, MVT VT2,
4610                                   SDValue Op1) {
4611  SDVTList VTs = getVTList(VT1, VT2);
4612  SDValue Ops[] = { Op1 };
4613  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4614}
4615
4616SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4617                                   MVT VT1, MVT VT2,
4618                                   SDValue Op1, SDValue Op2) {
4619  SDVTList VTs = getVTList(VT1, VT2);
4620  SDValue Ops[] = { Op1, Op2 };
4621  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4622}
4623
4624SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4625                                   MVT VT1, MVT VT2,
4626                                   SDValue Op1, SDValue Op2,
4627                                   SDValue Op3) {
4628  SDVTList VTs = getVTList(VT1, VT2);
4629  SDValue Ops[] = { Op1, Op2, Op3 };
4630  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4631}
4632
4633SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4634                                   MVT VT1, MVT VT2, MVT VT3,
4635                                   SDValue Op1, SDValue Op2,
4636                                   SDValue Op3) {
4637  SDVTList VTs = getVTList(VT1, VT2, VT3);
4638  SDValue Ops[] = { Op1, Op2, Op3 };
4639  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4640}
4641
4642SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4643                                   SDVTList VTs, const SDValue *Ops,
4644                                   unsigned NumOps) {
4645  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4646}
4647
4648SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4649                                  MVT VT) {
4650  SDVTList VTs = getVTList(VT);
4651  return MorphNodeTo(N, Opc, VTs, 0, 0);
4652}
4653
4654SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4655                                  MVT VT, SDValue Op1) {
4656  SDVTList VTs = getVTList(VT);
4657  SDValue Ops[] = { Op1 };
4658  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4659}
4660
4661SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4662                                  MVT VT, SDValue Op1,
4663                                  SDValue Op2) {
4664  SDVTList VTs = getVTList(VT);
4665  SDValue Ops[] = { Op1, Op2 };
4666  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4667}
4668
4669SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4670                                  MVT VT, SDValue Op1,
4671                                  SDValue Op2, SDValue Op3) {
4672  SDVTList VTs = getVTList(VT);
4673  SDValue Ops[] = { Op1, Op2, Op3 };
4674  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4675}
4676
4677SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4678                                  MVT VT, const SDValue *Ops,
4679                                  unsigned NumOps) {
4680  SDVTList VTs = getVTList(VT);
4681  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4682}
4683
4684SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4685                                  MVT VT1, MVT VT2, const SDValue *Ops,
4686                                  unsigned NumOps) {
4687  SDVTList VTs = getVTList(VT1, VT2);
4688  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4689}
4690
4691SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4692                                  MVT VT1, MVT VT2) {
4693  SDVTList VTs = getVTList(VT1, VT2);
4694  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4695}
4696
4697SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4698                                  MVT VT1, MVT VT2, MVT VT3,
4699                                  const SDValue *Ops, unsigned NumOps) {
4700  SDVTList VTs = getVTList(VT1, VT2, VT3);
4701  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4702}
4703
4704SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4705                                  MVT VT1, MVT VT2,
4706                                  SDValue Op1) {
4707  SDVTList VTs = getVTList(VT1, VT2);
4708  SDValue Ops[] = { Op1 };
4709  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4710}
4711
4712SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4713                                  MVT VT1, MVT VT2,
4714                                  SDValue Op1, SDValue Op2) {
4715  SDVTList VTs = getVTList(VT1, VT2);
4716  SDValue Ops[] = { Op1, Op2 };
4717  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4718}
4719
4720SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4721                                  MVT VT1, MVT VT2,
4722                                  SDValue Op1, SDValue Op2,
4723                                  SDValue Op3) {
4724  SDVTList VTs = getVTList(VT1, VT2);
4725  SDValue Ops[] = { Op1, Op2, Op3 };
4726  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4727}
4728
4729/// MorphNodeTo - These *mutate* the specified node to have the specified
4730/// return type, opcode, and operands.
4731///
4732/// Note that MorphNodeTo returns the resultant node.  If there is already a
4733/// node of the specified opcode and operands, it returns that node instead of
4734/// the current one.
4735///
4736/// Using MorphNodeTo is faster than creating a new node and swapping it in
4737/// with ReplaceAllUsesWith both because it often avoids allocating a new
4738/// node, and because it doesn't require CSE recalculation for any of
4739/// the node's users.
4740///
4741SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4742                                  SDVTList VTs, const SDValue *Ops,
4743                                  unsigned NumOps) {
4744  // If an identical node already exists, use it.
4745  void *IP = 0;
4746  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4747    FoldingSetNodeID ID;
4748    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4749    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4750      return ON;
4751  }
4752
4753  if (!RemoveNodeFromCSEMaps(N))
4754    IP = 0;
4755
4756  // Start the morphing.
4757  N->NodeType = Opc;
4758  N->ValueList = VTs.VTs;
4759  N->NumValues = VTs.NumVTs;
4760
4761  // Clear the operands list, updating used nodes to remove this from their
4762  // use list.  Keep track of any operands that become dead as a result.
4763  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4764  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4765    SDUse &Use = *I++;
4766    SDNode *Used = Use.getNode();
4767    Use.set(SDValue());
4768    if (Used->use_empty())
4769      DeadNodeSet.insert(Used);
4770  }
4771
4772  // If NumOps is larger than the # of operands we currently have, reallocate
4773  // the operand list.
4774  if (NumOps > N->NumOperands) {
4775    if (N->OperandsNeedDelete)
4776      delete[] N->OperandList;
4777
4778    if (N->isMachineOpcode()) {
4779      // We're creating a final node that will live unmorphed for the
4780      // remainder of the current SelectionDAG iteration, so we can allocate
4781      // the operands directly out of a pool with no recycling metadata.
4782      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4783      N->OperandsNeedDelete = false;
4784    } else {
4785      N->OperandList = new SDUse[NumOps];
4786      N->OperandsNeedDelete = true;
4787    }
4788  }
4789
4790  // Assign the new operands.
4791  N->NumOperands = NumOps;
4792  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4793    N->OperandList[i].setUser(N);
4794    N->OperandList[i].setInitial(Ops[i]);
4795  }
4796
4797  // Delete any nodes that are still dead after adding the uses for the
4798  // new operands.
4799  SmallVector<SDNode *, 16> DeadNodes;
4800  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4801       E = DeadNodeSet.end(); I != E; ++I)
4802    if ((*I)->use_empty())
4803      DeadNodes.push_back(*I);
4804  RemoveDeadNodes(DeadNodes);
4805
4806  if (IP)
4807    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4808  return N;
4809}
4810
4811
4812/// getTargetNode - These are used for target selectors to create a new node
4813/// with specified return type(s), target opcode, and operands.
4814///
4815/// Note that getTargetNode returns the resultant node.  If there is already a
4816/// node of the specified opcode and operands, it returns that node instead of
4817/// the current one.
4818SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4819  return getNode(~Opcode, VT).getNode();
4820}
4821SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4822  return getNode(~Opcode, dl, VT).getNode();
4823}
4824
4825SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4826  return getNode(~Opcode, VT, Op1).getNode();
4827}
4828SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4829                                    SDValue Op1) {
4830  return getNode(~Opcode, dl, VT, Op1).getNode();
4831}
4832
4833SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4834                                    SDValue Op1, SDValue Op2) {
4835  return getNode(~Opcode, VT, Op1, Op2).getNode();
4836}
4837SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4838                                    SDValue Op1, SDValue Op2) {
4839  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4840}
4841
4842SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4843                                    SDValue Op1, SDValue Op2,
4844                                    SDValue Op3) {
4845  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4846}
4847SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4848                                    SDValue Op1, SDValue Op2,
4849                                    SDValue Op3) {
4850  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4851}
4852
4853SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4854                                    const SDValue *Ops, unsigned NumOps) {
4855  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4856}
4857SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4858                                    const SDValue *Ops, unsigned NumOps) {
4859  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4860}
4861
4862SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4863  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4864  SDValue Op;
4865  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4866}
4867SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4868                                    MVT VT1, MVT VT2) {
4869  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4870  SDValue Op;
4871  return getNode(~Opcode, dl, VTs, 2, &Op, 0).getNode();
4872}
4873
4874SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4875                                    MVT VT2, SDValue Op1) {
4876  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4877  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4878}
4879SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4880                                    MVT VT2, SDValue Op1) {
4881  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4882  return getNode(~Opcode, dl, VTs, 2, &Op1, 1).getNode();
4883}
4884
4885SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4886                                    MVT VT2, SDValue Op1,
4887                                    SDValue Op2) {
4888  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4889  SDValue Ops[] = { Op1, Op2 };
4890  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4891}
4892SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4893                                    MVT VT2, SDValue Op1,
4894                                    SDValue Op2) {
4895  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4896  SDValue Ops[] = { Op1, Op2 };
4897  return getNode(~Opcode, dl, VTs, 2, Ops, 2).getNode();
4898}
4899
4900SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4901                                    MVT VT2, SDValue Op1,
4902                                    SDValue Op2, SDValue Op3) {
4903  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4904  SDValue Ops[] = { Op1, Op2, Op3 };
4905  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4906}
4907SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4908                                    MVT VT2, SDValue Op1,
4909                                    SDValue Op2, SDValue Op3) {
4910  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4911  SDValue Ops[] = { Op1, Op2, Op3 };
4912  return getNode(~Opcode, dl, VTs, 2, Ops, 3).getNode();
4913}
4914
4915SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4916                                    const SDValue *Ops, unsigned NumOps) {
4917  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4918  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4919}
4920SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4921                                    MVT VT1, MVT VT2,
4922                                    const SDValue *Ops, unsigned NumOps) {
4923  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4924  return getNode(~Opcode, dl, VTs, 2, Ops, NumOps).getNode();
4925}
4926
4927SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4928                                    SDValue Op1, SDValue Op2) {
4929  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4930  SDValue Ops[] = { Op1, Op2 };
4931  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4932}
4933SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4934                                    MVT VT1, MVT VT2, MVT VT3,
4935                                    SDValue Op1, SDValue Op2) {
4936  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4937  SDValue Ops[] = { Op1, Op2 };
4938  return getNode(~Opcode, dl, VTs, 3, Ops, 2).getNode();
4939}
4940
4941SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4942                                    SDValue Op1, SDValue Op2,
4943                                    SDValue Op3) {
4944  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4945  SDValue Ops[] = { Op1, Op2, Op3 };
4946  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4947}
4948SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4949                                    MVT VT1, MVT VT2, MVT VT3,
4950                                    SDValue Op1, SDValue Op2,
4951                                    SDValue Op3) {
4952  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4953  SDValue Ops[] = { Op1, Op2, Op3 };
4954  return getNode(~Opcode, dl, VTs, 3, Ops, 3).getNode();
4955}
4956
4957SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4958                                    const SDValue *Ops, unsigned NumOps) {
4959  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4960  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4961}
4962SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4963                                    MVT VT1, MVT VT2, MVT VT3,
4964                                    const SDValue *Ops, unsigned NumOps) {
4965  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4966  return getNode(~Opcode, dl, VTs, 3, Ops, NumOps).getNode();
4967}
4968
4969SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4970                                    MVT VT2, MVT VT3, MVT VT4,
4971                                    const SDValue *Ops, unsigned NumOps) {
4972  std::vector<MVT> VTList;
4973  VTList.push_back(VT1);
4974  VTList.push_back(VT2);
4975  VTList.push_back(VT3);
4976  VTList.push_back(VT4);
4977  const MVT *VTs = getNodeValueTypes(VTList);
4978  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4979}
4980SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4981                                    MVT VT2, MVT VT3, MVT VT4,
4982                                    const SDValue *Ops, unsigned NumOps) {
4983  std::vector<MVT> VTList;
4984  VTList.push_back(VT1);
4985  VTList.push_back(VT2);
4986  VTList.push_back(VT3);
4987  VTList.push_back(VT4);
4988  const MVT *VTs = getNodeValueTypes(VTList);
4989  return getNode(~Opcode, dl, VTs, 4, Ops, NumOps).getNode();
4990}
4991
4992SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4993                                    const std::vector<MVT> &ResultTys,
4994                                    const SDValue *Ops, unsigned NumOps) {
4995  const MVT *VTs = getNodeValueTypes(ResultTys);
4996  return getNode(~Opcode, VTs, ResultTys.size(),
4997                 Ops, NumOps).getNode();
4998}
4999SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
5000                                    const std::vector<MVT> &ResultTys,
5001                                    const SDValue *Ops, unsigned NumOps) {
5002  const MVT *VTs = getNodeValueTypes(ResultTys);
5003  return getNode(~Opcode, dl, VTs, ResultTys.size(),
5004                 Ops, NumOps).getNode();
5005}
5006
5007/// getNodeIfExists - Get the specified node if it's already available, or
5008/// else return NULL.
5009SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5010                                      const SDValue *Ops, unsigned NumOps) {
5011  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
5012    FoldingSetNodeID ID;
5013    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5014    void *IP = 0;
5015    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5016      return E;
5017  }
5018  return NULL;
5019}
5020
5021/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5022/// This can cause recursive merging of nodes in the DAG.
5023///
5024/// This version assumes From has a single result value.
5025///
5026void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5027                                      DAGUpdateListener *UpdateListener) {
5028  SDNode *From = FromN.getNode();
5029  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5030         "Cannot replace with this method!");
5031  assert(From != To.getNode() && "Cannot replace uses of with self");
5032
5033  // Iterate over all the existing uses of From. New uses will be added
5034  // to the beginning of the use list, which we avoid visiting.
5035  // This specifically avoids visiting uses of From that arise while the
5036  // replacement is happening, because any such uses would be the result
5037  // of CSE: If an existing node looks like From after one of its operands
5038  // is replaced by To, we don't want to replace of all its users with To
5039  // too. See PR3018 for more info.
5040  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5041  while (UI != UE) {
5042    SDNode *User = *UI;
5043
5044    // This node is about to morph, remove its old self from the CSE maps.
5045    RemoveNodeFromCSEMaps(User);
5046
5047    // A user can appear in a use list multiple times, and when this
5048    // happens the uses are usually next to each other in the list.
5049    // To help reduce the number of CSE recomputations, process all
5050    // the uses of this user that we can find this way.
5051    do {
5052      SDUse &Use = UI.getUse();
5053      ++UI;
5054      Use.set(To);
5055    } while (UI != UE && *UI == User);
5056
5057    // Now that we have modified User, add it back to the CSE maps.  If it
5058    // already exists there, recursively merge the results together.
5059    AddModifiedNodeToCSEMaps(User, UpdateListener);
5060  }
5061}
5062
5063/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5064/// This can cause recursive merging of nodes in the DAG.
5065///
5066/// This version assumes From/To have matching types and numbers of result
5067/// values.
5068///
5069void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5070                                      DAGUpdateListener *UpdateListener) {
5071  assert(From->getVTList().VTs == To->getVTList().VTs &&
5072         From->getNumValues() == To->getNumValues() &&
5073         "Cannot use this version of ReplaceAllUsesWith!");
5074
5075  // Handle the trivial case.
5076  if (From == To)
5077    return;
5078
5079  // Iterate over just the existing users of From. See the comments in
5080  // the ReplaceAllUsesWith above.
5081  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5082  while (UI != UE) {
5083    SDNode *User = *UI;
5084
5085    // This node is about to morph, remove its old self from the CSE maps.
5086    RemoveNodeFromCSEMaps(User);
5087
5088    // A user can appear in a use list multiple times, and when this
5089    // happens the uses are usually next to each other in the list.
5090    // To help reduce the number of CSE recomputations, process all
5091    // the uses of this user that we can find this way.
5092    do {
5093      SDUse &Use = UI.getUse();
5094      ++UI;
5095      Use.setNode(To);
5096    } while (UI != UE && *UI == User);
5097
5098    // Now that we have modified User, add it back to the CSE maps.  If it
5099    // already exists there, recursively merge the results together.
5100    AddModifiedNodeToCSEMaps(User, UpdateListener);
5101  }
5102}
5103
5104/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5105/// This can cause recursive merging of nodes in the DAG.
5106///
5107/// This version can replace From with any result values.  To must match the
5108/// number and types of values returned by From.
5109void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5110                                      const SDValue *To,
5111                                      DAGUpdateListener *UpdateListener) {
5112  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5113    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5114
5115  // Iterate over just the existing users of From. See the comments in
5116  // the ReplaceAllUsesWith above.
5117  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5118  while (UI != UE) {
5119    SDNode *User = *UI;
5120
5121    // This node is about to morph, remove its old self from the CSE maps.
5122    RemoveNodeFromCSEMaps(User);
5123
5124    // A user can appear in a use list multiple times, and when this
5125    // happens the uses are usually next to each other in the list.
5126    // To help reduce the number of CSE recomputations, process all
5127    // the uses of this user that we can find this way.
5128    do {
5129      SDUse &Use = UI.getUse();
5130      const SDValue &ToOp = To[Use.getResNo()];
5131      ++UI;
5132      Use.set(ToOp);
5133    } while (UI != UE && *UI == User);
5134
5135    // Now that we have modified User, add it back to the CSE maps.  If it
5136    // already exists there, recursively merge the results together.
5137    AddModifiedNodeToCSEMaps(User, UpdateListener);
5138  }
5139}
5140
5141/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5142/// uses of other values produced by From.getNode() alone.  The Deleted
5143/// vector is handled the same way as for ReplaceAllUsesWith.
5144void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5145                                             DAGUpdateListener *UpdateListener){
5146  // Handle the really simple, really trivial case efficiently.
5147  if (From == To) return;
5148
5149  // Handle the simple, trivial, case efficiently.
5150  if (From.getNode()->getNumValues() == 1) {
5151    ReplaceAllUsesWith(From, To, UpdateListener);
5152    return;
5153  }
5154
5155  // Iterate over just the existing users of From. See the comments in
5156  // the ReplaceAllUsesWith above.
5157  SDNode::use_iterator UI = From.getNode()->use_begin(),
5158                       UE = From.getNode()->use_end();
5159  while (UI != UE) {
5160    SDNode *User = *UI;
5161    bool UserRemovedFromCSEMaps = false;
5162
5163    // A user can appear in a use list multiple times, and when this
5164    // happens the uses are usually next to each other in the list.
5165    // To help reduce the number of CSE recomputations, process all
5166    // the uses of this user that we can find this way.
5167    do {
5168      SDUse &Use = UI.getUse();
5169
5170      // Skip uses of different values from the same node.
5171      if (Use.getResNo() != From.getResNo()) {
5172        ++UI;
5173        continue;
5174      }
5175
5176      // If this node hasn't been modified yet, it's still in the CSE maps,
5177      // so remove its old self from the CSE maps.
5178      if (!UserRemovedFromCSEMaps) {
5179        RemoveNodeFromCSEMaps(User);
5180        UserRemovedFromCSEMaps = true;
5181      }
5182
5183      ++UI;
5184      Use.set(To);
5185    } while (UI != UE && *UI == User);
5186
5187    // We are iterating over all uses of the From node, so if a use
5188    // doesn't use the specific value, no changes are made.
5189    if (!UserRemovedFromCSEMaps)
5190      continue;
5191
5192    // Now that we have modified User, add it back to the CSE maps.  If it
5193    // already exists there, recursively merge the results together.
5194    AddModifiedNodeToCSEMaps(User, UpdateListener);
5195  }
5196}
5197
5198namespace {
5199  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5200  /// to record information about a use.
5201  struct UseMemo {
5202    SDNode *User;
5203    unsigned Index;
5204    SDUse *Use;
5205  };
5206
5207  /// operator< - Sort Memos by User.
5208  bool operator<(const UseMemo &L, const UseMemo &R) {
5209    return (intptr_t)L.User < (intptr_t)R.User;
5210  }
5211}
5212
5213/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5214/// uses of other values produced by From.getNode() alone.  The same value
5215/// may appear in both the From and To list.  The Deleted vector is
5216/// handled the same way as for ReplaceAllUsesWith.
5217void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5218                                              const SDValue *To,
5219                                              unsigned Num,
5220                                              DAGUpdateListener *UpdateListener){
5221  // Handle the simple, trivial case efficiently.
5222  if (Num == 1)
5223    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5224
5225  // Read up all the uses and make records of them. This helps
5226  // processing new uses that are introduced during the
5227  // replacement process.
5228  SmallVector<UseMemo, 4> Uses;
5229  for (unsigned i = 0; i != Num; ++i) {
5230    unsigned FromResNo = From[i].getResNo();
5231    SDNode *FromNode = From[i].getNode();
5232    for (SDNode::use_iterator UI = FromNode->use_begin(),
5233         E = FromNode->use_end(); UI != E; ++UI) {
5234      SDUse &Use = UI.getUse();
5235      if (Use.getResNo() == FromResNo) {
5236        UseMemo Memo = { *UI, i, &Use };
5237        Uses.push_back(Memo);
5238      }
5239    }
5240  }
5241
5242  // Sort the uses, so that all the uses from a given User are together.
5243  std::sort(Uses.begin(), Uses.end());
5244
5245  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5246       UseIndex != UseIndexEnd; ) {
5247    // We know that this user uses some value of From.  If it is the right
5248    // value, update it.
5249    SDNode *User = Uses[UseIndex].User;
5250
5251    // This node is about to morph, remove its old self from the CSE maps.
5252    RemoveNodeFromCSEMaps(User);
5253
5254    // The Uses array is sorted, so all the uses for a given User
5255    // are next to each other in the list.
5256    // To help reduce the number of CSE recomputations, process all
5257    // the uses of this user that we can find this way.
5258    do {
5259      unsigned i = Uses[UseIndex].Index;
5260      SDUse &Use = *Uses[UseIndex].Use;
5261      ++UseIndex;
5262
5263      Use.set(To[i]);
5264    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5265
5266    // Now that we have modified User, add it back to the CSE maps.  If it
5267    // already exists there, recursively merge the results together.
5268    AddModifiedNodeToCSEMaps(User, UpdateListener);
5269  }
5270}
5271
5272/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5273/// based on their topological order. It returns the maximum id and a vector
5274/// of the SDNodes* in assigned order by reference.
5275unsigned SelectionDAG::AssignTopologicalOrder() {
5276
5277  unsigned DAGSize = 0;
5278
5279  // SortedPos tracks the progress of the algorithm. Nodes before it are
5280  // sorted, nodes after it are unsorted. When the algorithm completes
5281  // it is at the end of the list.
5282  allnodes_iterator SortedPos = allnodes_begin();
5283
5284  // Visit all the nodes. Move nodes with no operands to the front of
5285  // the list immediately. Annotate nodes that do have operands with their
5286  // operand count. Before we do this, the Node Id fields of the nodes
5287  // may contain arbitrary values. After, the Node Id fields for nodes
5288  // before SortedPos will contain the topological sort index, and the
5289  // Node Id fields for nodes At SortedPos and after will contain the
5290  // count of outstanding operands.
5291  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5292    SDNode *N = I++;
5293    unsigned Degree = N->getNumOperands();
5294    if (Degree == 0) {
5295      // A node with no uses, add it to the result array immediately.
5296      N->setNodeId(DAGSize++);
5297      allnodes_iterator Q = N;
5298      if (Q != SortedPos)
5299        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5300      ++SortedPos;
5301    } else {
5302      // Temporarily use the Node Id as scratch space for the degree count.
5303      N->setNodeId(Degree);
5304    }
5305  }
5306
5307  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5308  // such that by the time the end is reached all nodes will be sorted.
5309  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5310    SDNode *N = I;
5311    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5312         UI != UE; ++UI) {
5313      SDNode *P = *UI;
5314      unsigned Degree = P->getNodeId();
5315      --Degree;
5316      if (Degree == 0) {
5317        // All of P's operands are sorted, so P may sorted now.
5318        P->setNodeId(DAGSize++);
5319        if (P != SortedPos)
5320          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5321        ++SortedPos;
5322      } else {
5323        // Update P's outstanding operand count.
5324        P->setNodeId(Degree);
5325      }
5326    }
5327  }
5328
5329  assert(SortedPos == AllNodes.end() &&
5330         "Topological sort incomplete!");
5331  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5332         "First node in topological sort is not the entry token!");
5333  assert(AllNodes.front().getNodeId() == 0 &&
5334         "First node in topological sort has non-zero id!");
5335  assert(AllNodes.front().getNumOperands() == 0 &&
5336         "First node in topological sort has operands!");
5337  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5338         "Last node in topologic sort has unexpected id!");
5339  assert(AllNodes.back().use_empty() &&
5340         "Last node in topologic sort has users!");
5341  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5342  return DAGSize;
5343}
5344
5345
5346
5347//===----------------------------------------------------------------------===//
5348//                              SDNode Class
5349//===----------------------------------------------------------------------===//
5350
5351HandleSDNode::~HandleSDNode() {
5352  DropOperands();
5353}
5354
5355GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
5356                                         MVT VT, int64_t o)
5357  : SDNode(isa<GlobalVariable>(GA) &&
5358           cast<GlobalVariable>(GA)->isThreadLocal() ?
5359           // Thread Local
5360           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
5361           // Non Thread Local
5362           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
5363           getSDVTList(VT)), Offset(o) {
5364  TheGlobal = const_cast<GlobalValue*>(GA);
5365}
5366
5367MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
5368                     const Value *srcValue, int SVO,
5369                     unsigned alignment, bool vol)
5370 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
5371  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
5372  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5373  assert(getAlignment() == alignment && "Alignment representation error!");
5374  assert(isVolatile() == vol && "Volatile representation error!");
5375}
5376
5377MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
5378                     unsigned NumOps, MVT memvt, const Value *srcValue,
5379                     int SVO, unsigned alignment, bool vol)
5380   : SDNode(Opc, VTs, Ops, NumOps),
5381     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
5382  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
5383  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5384  assert(getAlignment() == alignment && "Alignment representation error!");
5385  assert(isVolatile() == vol && "Volatile representation error!");
5386}
5387
5388MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
5389                     const Value *srcValue, int SVO,
5390                     unsigned alignment, bool vol)
5391 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
5392  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
5393  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5394  assert(getAlignment() == alignment && "Alignment representation error!");
5395  assert(isVolatile() == vol && "Volatile representation error!");
5396}
5397
5398MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5399                     const SDValue *Ops,
5400                     unsigned NumOps, MVT memvt, const Value *srcValue,
5401                     int SVO, unsigned alignment, bool vol)
5402   : SDNode(Opc, dl, VTs, Ops, NumOps),
5403     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
5404  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
5405  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5406  assert(getAlignment() == alignment && "Alignment representation error!");
5407  assert(isVolatile() == vol && "Volatile representation error!");
5408}
5409
5410/// getMemOperand - Return a MachineMemOperand object describing the memory
5411/// reference performed by this memory reference.
5412MachineMemOperand MemSDNode::getMemOperand() const {
5413  int Flags = 0;
5414  if (isa<LoadSDNode>(this))
5415    Flags = MachineMemOperand::MOLoad;
5416  else if (isa<StoreSDNode>(this))
5417    Flags = MachineMemOperand::MOStore;
5418  else if (isa<AtomicSDNode>(this)) {
5419    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
5420  }
5421  else {
5422    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
5423    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
5424    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
5425    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
5426  }
5427
5428  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
5429  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
5430
5431  // Check if the memory reference references a frame index
5432  const FrameIndexSDNode *FI =
5433  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
5434  if (!getSrcValue() && FI)
5435    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
5436                             Flags, 0, Size, getAlignment());
5437  else
5438    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
5439                             Size, getAlignment());
5440}
5441
5442/// Profile - Gather unique data for the node.
5443///
5444void SDNode::Profile(FoldingSetNodeID &ID) const {
5445  AddNodeIDNode(ID, this);
5446}
5447
5448/// getValueTypeList - Return a pointer to the specified value type.
5449///
5450const MVT *SDNode::getValueTypeList(MVT VT) {
5451  if (VT.isExtended()) {
5452    static std::set<MVT, MVT::compareRawBits> EVTs;
5453    return &(*EVTs.insert(VT).first);
5454  } else {
5455    static MVT VTs[MVT::LAST_VALUETYPE];
5456    VTs[VT.getSimpleVT()] = VT;
5457    return &VTs[VT.getSimpleVT()];
5458  }
5459}
5460
5461/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5462/// indicated value.  This method ignores uses of other values defined by this
5463/// operation.
5464bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5465  assert(Value < getNumValues() && "Bad value!");
5466
5467  // TODO: Only iterate over uses of a given value of the node
5468  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5469    if (UI.getUse().getResNo() == Value) {
5470      if (NUses == 0)
5471        return false;
5472      --NUses;
5473    }
5474  }
5475
5476  // Found exactly the right number of uses?
5477  return NUses == 0;
5478}
5479
5480
5481/// hasAnyUseOfValue - Return true if there are any use of the indicated
5482/// value. This method ignores uses of other values defined by this operation.
5483bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5484  assert(Value < getNumValues() && "Bad value!");
5485
5486  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5487    if (UI.getUse().getResNo() == Value)
5488      return true;
5489
5490  return false;
5491}
5492
5493
5494/// isOnlyUserOf - Return true if this node is the only use of N.
5495///
5496bool SDNode::isOnlyUserOf(SDNode *N) const {
5497  bool Seen = false;
5498  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5499    SDNode *User = *I;
5500    if (User == this)
5501      Seen = true;
5502    else
5503      return false;
5504  }
5505
5506  return Seen;
5507}
5508
5509/// isOperand - Return true if this node is an operand of N.
5510///
5511bool SDValue::isOperandOf(SDNode *N) const {
5512  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5513    if (*this == N->getOperand(i))
5514      return true;
5515  return false;
5516}
5517
5518bool SDNode::isOperandOf(SDNode *N) const {
5519  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5520    if (this == N->OperandList[i].getNode())
5521      return true;
5522  return false;
5523}
5524
5525/// reachesChainWithoutSideEffects - Return true if this operand (which must
5526/// be a chain) reaches the specified operand without crossing any
5527/// side-effecting instructions.  In practice, this looks through token
5528/// factors and non-volatile loads.  In order to remain efficient, this only
5529/// looks a couple of nodes in, it does not do an exhaustive search.
5530bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5531                                               unsigned Depth) const {
5532  if (*this == Dest) return true;
5533
5534  // Don't search too deeply, we just want to be able to see through
5535  // TokenFactor's etc.
5536  if (Depth == 0) return false;
5537
5538  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5539  // of the operands of the TF reach dest, then we can do the xform.
5540  if (getOpcode() == ISD::TokenFactor) {
5541    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5542      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5543        return true;
5544    return false;
5545  }
5546
5547  // Loads don't have side effects, look through them.
5548  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5549    if (!Ld->isVolatile())
5550      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5551  }
5552  return false;
5553}
5554
5555
5556static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5557                            SmallPtrSet<SDNode *, 32> &Visited) {
5558  if (found || !Visited.insert(N))
5559    return;
5560
5561  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5562    SDNode *Op = N->getOperand(i).getNode();
5563    if (Op == P) {
5564      found = true;
5565      return;
5566    }
5567    findPredecessor(Op, P, found, Visited);
5568  }
5569}
5570
5571/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5572/// is either an operand of N or it can be reached by recursively traversing
5573/// up the operands.
5574/// NOTE: this is an expensive method. Use it carefully.
5575bool SDNode::isPredecessorOf(SDNode *N) const {
5576  SmallPtrSet<SDNode *, 32> Visited;
5577  bool found = false;
5578  findPredecessor(N, this, found, Visited);
5579  return found;
5580}
5581
5582uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5583  assert(Num < NumOperands && "Invalid child # of SDNode!");
5584  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5585}
5586
5587std::string SDNode::getOperationName(const SelectionDAG *G) const {
5588  switch (getOpcode()) {
5589  default:
5590    if (getOpcode() < ISD::BUILTIN_OP_END)
5591      return "<<Unknown DAG Node>>";
5592    if (isMachineOpcode()) {
5593      if (G)
5594        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5595          if (getMachineOpcode() < TII->getNumOpcodes())
5596            return TII->get(getMachineOpcode()).getName();
5597      return "<<Unknown Machine Node>>";
5598    }
5599    if (G) {
5600      const TargetLowering &TLI = G->getTargetLoweringInfo();
5601      const char *Name = TLI.getTargetNodeName(getOpcode());
5602      if (Name) return Name;
5603      return "<<Unknown Target Node>>";
5604    }
5605    return "<<Unknown Node>>";
5606
5607#ifndef NDEBUG
5608  case ISD::DELETED_NODE:
5609    return "<<Deleted Node!>>";
5610#endif
5611  case ISD::PREFETCH:      return "Prefetch";
5612  case ISD::MEMBARRIER:    return "MemBarrier";
5613  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5614  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5615  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5616  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5617  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5618  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5619  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5620  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5621  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5622  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5623  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5624  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5625  case ISD::PCMARKER:      return "PCMarker";
5626  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5627  case ISD::SRCVALUE:      return "SrcValue";
5628  case ISD::MEMOPERAND:    return "MemOperand";
5629  case ISD::EntryToken:    return "EntryToken";
5630  case ISD::TokenFactor:   return "TokenFactor";
5631  case ISD::AssertSext:    return "AssertSext";
5632  case ISD::AssertZext:    return "AssertZext";
5633
5634  case ISD::BasicBlock:    return "BasicBlock";
5635  case ISD::ARG_FLAGS:     return "ArgFlags";
5636  case ISD::VALUETYPE:     return "ValueType";
5637  case ISD::Register:      return "Register";
5638
5639  case ISD::Constant:      return "Constant";
5640  case ISD::ConstantFP:    return "ConstantFP";
5641  case ISD::GlobalAddress: return "GlobalAddress";
5642  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5643  case ISD::FrameIndex:    return "FrameIndex";
5644  case ISD::JumpTable:     return "JumpTable";
5645  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5646  case ISD::RETURNADDR: return "RETURNADDR";
5647  case ISD::FRAMEADDR: return "FRAMEADDR";
5648  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5649  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5650  case ISD::EHSELECTION: return "EHSELECTION";
5651  case ISD::EH_RETURN: return "EH_RETURN";
5652  case ISD::ConstantPool:  return "ConstantPool";
5653  case ISD::ExternalSymbol: return "ExternalSymbol";
5654  case ISD::INTRINSIC_WO_CHAIN: {
5655    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5656    return Intrinsic::getName((Intrinsic::ID)IID);
5657  }
5658  case ISD::INTRINSIC_VOID:
5659  case ISD::INTRINSIC_W_CHAIN: {
5660    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5661    return Intrinsic::getName((Intrinsic::ID)IID);
5662  }
5663
5664  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5665  case ISD::TargetConstant: return "TargetConstant";
5666  case ISD::TargetConstantFP:return "TargetConstantFP";
5667  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5668  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5669  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5670  case ISD::TargetJumpTable:  return "TargetJumpTable";
5671  case ISD::TargetConstantPool:  return "TargetConstantPool";
5672  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5673
5674  case ISD::CopyToReg:     return "CopyToReg";
5675  case ISD::CopyFromReg:   return "CopyFromReg";
5676  case ISD::UNDEF:         return "undef";
5677  case ISD::MERGE_VALUES:  return "merge_values";
5678  case ISD::INLINEASM:     return "inlineasm";
5679  case ISD::DBG_LABEL:     return "dbg_label";
5680  case ISD::EH_LABEL:      return "eh_label";
5681  case ISD::DECLARE:       return "declare";
5682  case ISD::HANDLENODE:    return "handlenode";
5683  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5684  case ISD::CALL:          return "call";
5685
5686  // Unary operators
5687  case ISD::FABS:   return "fabs";
5688  case ISD::FNEG:   return "fneg";
5689  case ISD::FSQRT:  return "fsqrt";
5690  case ISD::FSIN:   return "fsin";
5691  case ISD::FCOS:   return "fcos";
5692  case ISD::FPOWI:  return "fpowi";
5693  case ISD::FPOW:   return "fpow";
5694  case ISD::FTRUNC: return "ftrunc";
5695  case ISD::FFLOOR: return "ffloor";
5696  case ISD::FCEIL:  return "fceil";
5697  case ISD::FRINT:  return "frint";
5698  case ISD::FNEARBYINT: return "fnearbyint";
5699
5700  // Binary operators
5701  case ISD::ADD:    return "add";
5702  case ISD::SUB:    return "sub";
5703  case ISD::MUL:    return "mul";
5704  case ISD::MULHU:  return "mulhu";
5705  case ISD::MULHS:  return "mulhs";
5706  case ISD::SDIV:   return "sdiv";
5707  case ISD::UDIV:   return "udiv";
5708  case ISD::SREM:   return "srem";
5709  case ISD::UREM:   return "urem";
5710  case ISD::SMUL_LOHI:  return "smul_lohi";
5711  case ISD::UMUL_LOHI:  return "umul_lohi";
5712  case ISD::SDIVREM:    return "sdivrem";
5713  case ISD::UDIVREM:    return "udivrem";
5714  case ISD::AND:    return "and";
5715  case ISD::OR:     return "or";
5716  case ISD::XOR:    return "xor";
5717  case ISD::SHL:    return "shl";
5718  case ISD::SRA:    return "sra";
5719  case ISD::SRL:    return "srl";
5720  case ISD::ROTL:   return "rotl";
5721  case ISD::ROTR:   return "rotr";
5722  case ISD::FADD:   return "fadd";
5723  case ISD::FSUB:   return "fsub";
5724  case ISD::FMUL:   return "fmul";
5725  case ISD::FDIV:   return "fdiv";
5726  case ISD::FREM:   return "frem";
5727  case ISD::FCOPYSIGN: return "fcopysign";
5728  case ISD::FGETSIGN:  return "fgetsign";
5729
5730  case ISD::SETCC:       return "setcc";
5731  case ISD::VSETCC:      return "vsetcc";
5732  case ISD::SELECT:      return "select";
5733  case ISD::SELECT_CC:   return "select_cc";
5734  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5735  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5736  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5737  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5738  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5739  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5740  case ISD::CARRY_FALSE:         return "carry_false";
5741  case ISD::ADDC:        return "addc";
5742  case ISD::ADDE:        return "adde";
5743  case ISD::SADDO:       return "saddo";
5744  case ISD::UADDO:       return "uaddo";
5745  case ISD::SSUBO:       return "ssubo";
5746  case ISD::USUBO:       return "usubo";
5747  case ISD::SMULO:       return "smulo";
5748  case ISD::UMULO:       return "umulo";
5749  case ISD::SUBC:        return "subc";
5750  case ISD::SUBE:        return "sube";
5751  case ISD::SHL_PARTS:   return "shl_parts";
5752  case ISD::SRA_PARTS:   return "sra_parts";
5753  case ISD::SRL_PARTS:   return "srl_parts";
5754
5755  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5756  case ISD::INSERT_SUBREG:      return "insert_subreg";
5757
5758  // Conversion operators.
5759  case ISD::SIGN_EXTEND: return "sign_extend";
5760  case ISD::ZERO_EXTEND: return "zero_extend";
5761  case ISD::ANY_EXTEND:  return "any_extend";
5762  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5763  case ISD::TRUNCATE:    return "truncate";
5764  case ISD::FP_ROUND:    return "fp_round";
5765  case ISD::FLT_ROUNDS_: return "flt_rounds";
5766  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5767  case ISD::FP_EXTEND:   return "fp_extend";
5768
5769  case ISD::SINT_TO_FP:  return "sint_to_fp";
5770  case ISD::UINT_TO_FP:  return "uint_to_fp";
5771  case ISD::FP_TO_SINT:  return "fp_to_sint";
5772  case ISD::FP_TO_UINT:  return "fp_to_uint";
5773  case ISD::BIT_CONVERT: return "bit_convert";
5774
5775  case ISD::CONVERT_RNDSAT: {
5776    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5777    default: assert(0 && "Unknown cvt code!");
5778    case ISD::CVT_FF:  return "cvt_ff";
5779    case ISD::CVT_FS:  return "cvt_fs";
5780    case ISD::CVT_FU:  return "cvt_fu";
5781    case ISD::CVT_SF:  return "cvt_sf";
5782    case ISD::CVT_UF:  return "cvt_uf";
5783    case ISD::CVT_SS:  return "cvt_ss";
5784    case ISD::CVT_SU:  return "cvt_su";
5785    case ISD::CVT_US:  return "cvt_us";
5786    case ISD::CVT_UU:  return "cvt_uu";
5787    }
5788  }
5789
5790    // Control flow instructions
5791  case ISD::BR:      return "br";
5792  case ISD::BRIND:   return "brind";
5793  case ISD::BR_JT:   return "br_jt";
5794  case ISD::BRCOND:  return "brcond";
5795  case ISD::BR_CC:   return "br_cc";
5796  case ISD::RET:     return "ret";
5797  case ISD::CALLSEQ_START:  return "callseq_start";
5798  case ISD::CALLSEQ_END:    return "callseq_end";
5799
5800    // Other operators
5801  case ISD::LOAD:               return "load";
5802  case ISD::STORE:              return "store";
5803  case ISD::VAARG:              return "vaarg";
5804  case ISD::VACOPY:             return "vacopy";
5805  case ISD::VAEND:              return "vaend";
5806  case ISD::VASTART:            return "vastart";
5807  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5808  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5809  case ISD::BUILD_PAIR:         return "build_pair";
5810  case ISD::STACKSAVE:          return "stacksave";
5811  case ISD::STACKRESTORE:       return "stackrestore";
5812  case ISD::TRAP:               return "trap";
5813
5814  // Bit manipulation
5815  case ISD::BSWAP:   return "bswap";
5816  case ISD::CTPOP:   return "ctpop";
5817  case ISD::CTTZ:    return "cttz";
5818  case ISD::CTLZ:    return "ctlz";
5819
5820  // Debug info
5821  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5822  case ISD::DEBUG_LOC: return "debug_loc";
5823
5824  // Trampolines
5825  case ISD::TRAMPOLINE: return "trampoline";
5826
5827  case ISD::CONDCODE:
5828    switch (cast<CondCodeSDNode>(this)->get()) {
5829    default: assert(0 && "Unknown setcc condition!");
5830    case ISD::SETOEQ:  return "setoeq";
5831    case ISD::SETOGT:  return "setogt";
5832    case ISD::SETOGE:  return "setoge";
5833    case ISD::SETOLT:  return "setolt";
5834    case ISD::SETOLE:  return "setole";
5835    case ISD::SETONE:  return "setone";
5836
5837    case ISD::SETO:    return "seto";
5838    case ISD::SETUO:   return "setuo";
5839    case ISD::SETUEQ:  return "setue";
5840    case ISD::SETUGT:  return "setugt";
5841    case ISD::SETUGE:  return "setuge";
5842    case ISD::SETULT:  return "setult";
5843    case ISD::SETULE:  return "setule";
5844    case ISD::SETUNE:  return "setune";
5845
5846    case ISD::SETEQ:   return "seteq";
5847    case ISD::SETGT:   return "setgt";
5848    case ISD::SETGE:   return "setge";
5849    case ISD::SETLT:   return "setlt";
5850    case ISD::SETLE:   return "setle";
5851    case ISD::SETNE:   return "setne";
5852    }
5853  }
5854}
5855
5856const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5857  switch (AM) {
5858  default:
5859    return "";
5860  case ISD::PRE_INC:
5861    return "<pre-inc>";
5862  case ISD::PRE_DEC:
5863    return "<pre-dec>";
5864  case ISD::POST_INC:
5865    return "<post-inc>";
5866  case ISD::POST_DEC:
5867    return "<post-dec>";
5868  }
5869}
5870
5871std::string ISD::ArgFlagsTy::getArgFlagsString() {
5872  std::string S = "< ";
5873
5874  if (isZExt())
5875    S += "zext ";
5876  if (isSExt())
5877    S += "sext ";
5878  if (isInReg())
5879    S += "inreg ";
5880  if (isSRet())
5881    S += "sret ";
5882  if (isByVal())
5883    S += "byval ";
5884  if (isNest())
5885    S += "nest ";
5886  if (getByValAlign())
5887    S += "byval-align:" + utostr(getByValAlign()) + " ";
5888  if (getOrigAlign())
5889    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5890  if (getByValSize())
5891    S += "byval-size:" + utostr(getByValSize()) + " ";
5892  return S + ">";
5893}
5894
5895void SDNode::dump() const { dump(0); }
5896void SDNode::dump(const SelectionDAG *G) const {
5897  print(errs(), G);
5898  errs().flush();
5899}
5900
5901void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5902  OS << (void*)this << ": ";
5903
5904  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5905    if (i) OS << ",";
5906    if (getValueType(i) == MVT::Other)
5907      OS << "ch";
5908    else
5909      OS << getValueType(i).getMVTString();
5910  }
5911  OS << " = " << getOperationName(G);
5912
5913  OS << " ";
5914  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5915    if (i) OS << ", ";
5916    OS << (void*)getOperand(i).getNode();
5917    if (unsigned RN = getOperand(i).getResNo())
5918      OS << ":" << RN;
5919  }
5920
5921  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5922    SDNode *Mask = getOperand(2).getNode();
5923    OS << "<";
5924    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5925      if (i) OS << ",";
5926      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5927        OS << "u";
5928      else
5929        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5930    }
5931    OS << ">";
5932  }
5933
5934  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5935    OS << '<' << CSDN->getAPIntValue() << '>';
5936  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5937    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5938      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5939    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5940      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5941    else {
5942      OS << "<APFloat(";
5943      CSDN->getValueAPF().bitcastToAPInt().dump();
5944      OS << ")>";
5945    }
5946  } else if (const GlobalAddressSDNode *GADN =
5947             dyn_cast<GlobalAddressSDNode>(this)) {
5948    int64_t offset = GADN->getOffset();
5949    OS << '<';
5950    WriteAsOperand(OS, GADN->getGlobal());
5951    OS << '>';
5952    if (offset > 0)
5953      OS << " + " << offset;
5954    else
5955      OS << " " << offset;
5956  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5957    OS << "<" << FIDN->getIndex() << ">";
5958  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5959    OS << "<" << JTDN->getIndex() << ">";
5960  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5961    int offset = CP->getOffset();
5962    if (CP->isMachineConstantPoolEntry())
5963      OS << "<" << *CP->getMachineCPVal() << ">";
5964    else
5965      OS << "<" << *CP->getConstVal() << ">";
5966    if (offset > 0)
5967      OS << " + " << offset;
5968    else
5969      OS << " " << offset;
5970  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5971    OS << "<";
5972    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5973    if (LBB)
5974      OS << LBB->getName() << " ";
5975    OS << (const void*)BBDN->getBasicBlock() << ">";
5976  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5977    if (G && R->getReg() &&
5978        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5979      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5980    } else {
5981      OS << " #" << R->getReg();
5982    }
5983  } else if (const ExternalSymbolSDNode *ES =
5984             dyn_cast<ExternalSymbolSDNode>(this)) {
5985    OS << "'" << ES->getSymbol() << "'";
5986  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5987    if (M->getValue())
5988      OS << "<" << M->getValue() << ">";
5989    else
5990      OS << "<null>";
5991  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5992    if (M->MO.getValue())
5993      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5994    else
5995      OS << "<null:" << M->MO.getOffset() << ">";
5996  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5997    OS << N->getArgFlags().getArgFlagsString();
5998  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5999    OS << ":" << N->getVT().getMVTString();
6000  }
6001  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6002    const Value *SrcValue = LD->getSrcValue();
6003    int SrcOffset = LD->getSrcValueOffset();
6004    OS << " <";
6005    if (SrcValue)
6006      OS << SrcValue;
6007    else
6008      OS << "null";
6009    OS << ":" << SrcOffset << ">";
6010
6011    bool doExt = true;
6012    switch (LD->getExtensionType()) {
6013    default: doExt = false; break;
6014    case ISD::EXTLOAD: OS << " <anyext "; break;
6015    case ISD::SEXTLOAD: OS << " <sext "; break;
6016    case ISD::ZEXTLOAD: OS << " <zext "; break;
6017    }
6018    if (doExt)
6019      OS << LD->getMemoryVT().getMVTString() << ">";
6020
6021    const char *AM = getIndexedModeName(LD->getAddressingMode());
6022    if (*AM)
6023      OS << " " << AM;
6024    if (LD->isVolatile())
6025      OS << " <volatile>";
6026    OS << " alignment=" << LD->getAlignment();
6027  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6028    const Value *SrcValue = ST->getSrcValue();
6029    int SrcOffset = ST->getSrcValueOffset();
6030    OS << " <";
6031    if (SrcValue)
6032      OS << SrcValue;
6033    else
6034      OS << "null";
6035    OS << ":" << SrcOffset << ">";
6036
6037    if (ST->isTruncatingStore())
6038      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
6039
6040    const char *AM = getIndexedModeName(ST->getAddressingMode());
6041    if (*AM)
6042      OS << " " << AM;
6043    if (ST->isVolatile())
6044      OS << " <volatile>";
6045    OS << " alignment=" << ST->getAlignment();
6046  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
6047    const Value *SrcValue = AT->getSrcValue();
6048    int SrcOffset = AT->getSrcValueOffset();
6049    OS << " <";
6050    if (SrcValue)
6051      OS << SrcValue;
6052    else
6053      OS << "null";
6054    OS << ":" << SrcOffset << ">";
6055    if (AT->isVolatile())
6056      OS << " <volatile>";
6057    OS << " alignment=" << AT->getAlignment();
6058  }
6059}
6060
6061static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6062  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6063    if (N->getOperand(i).getNode()->hasOneUse())
6064      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6065    else
6066      cerr << "\n" << std::string(indent+2, ' ')
6067           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6068
6069
6070  cerr << "\n" << std::string(indent, ' ');
6071  N->dump(G);
6072}
6073
6074void SelectionDAG::dump() const {
6075  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
6076
6077  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6078       I != E; ++I) {
6079    const SDNode *N = I;
6080    if (!N->hasOneUse() && N != getRoot().getNode())
6081      DumpNodes(N, 2, this);
6082  }
6083
6084  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6085
6086  cerr << "\n\n";
6087}
6088
6089const Type *ConstantPoolSDNode::getType() const {
6090  if (isMachineConstantPoolEntry())
6091    return Val.MachineCPVal->getType();
6092  return Val.ConstVal->getType();
6093}
6094