SelectionDAG.cpp revision a09f848c11c9db3c2614e0275a3256310ac26653
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/ADT/StringExtras.h"
26#include <iostream>
27#include <set>
28#include <cmath>
29#include <algorithm>
30using namespace llvm;
31
32static bool isCommutativeBinOp(unsigned Opcode) {
33  switch (Opcode) {
34  case ISD::ADD:
35  case ISD::MUL:
36  case ISD::MULHU:
37  case ISD::MULHS:
38  case ISD::FADD:
39  case ISD::FMUL:
40  case ISD::AND:
41  case ISD::OR:
42  case ISD::XOR: return true;
43  default: return false; // FIXME: Need commutative info for user ops!
44  }
45}
46
47// isInvertibleForFree - Return true if there is no cost to emitting the logical
48// inverse of this node.
49static bool isInvertibleForFree(SDOperand N) {
50  if (isa<ConstantSDNode>(N.Val)) return true;
51  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
52    return true;
53  return false;
54}
55
56//===----------------------------------------------------------------------===//
57//                              ConstantFPSDNode Class
58//===----------------------------------------------------------------------===//
59
60/// isExactlyValue - We don't rely on operator== working on double values, as
61/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
62/// As such, this method can be used to do an exact bit-for-bit comparison of
63/// two floating point values.
64bool ConstantFPSDNode::isExactlyValue(double V) const {
65  return DoubleToBits(V) == DoubleToBits(Value);
66}
67
68//===----------------------------------------------------------------------===//
69//                              ISD Class
70//===----------------------------------------------------------------------===//
71
72/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
73/// when given the operation for (X op Y).
74ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
75  // To perform this operation, we just need to swap the L and G bits of the
76  // operation.
77  unsigned OldL = (Operation >> 2) & 1;
78  unsigned OldG = (Operation >> 1) & 1;
79  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
80                       (OldL << 1) |       // New G bit
81                       (OldG << 2));        // New L bit.
82}
83
84/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
85/// 'op' is a valid SetCC operation.
86ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
87  unsigned Operation = Op;
88  if (isInteger)
89    Operation ^= 7;   // Flip L, G, E bits, but not U.
90  else
91    Operation ^= 15;  // Flip all of the condition bits.
92  if (Operation > ISD::SETTRUE2)
93    Operation &= ~8;     // Don't let N and U bits get set.
94  return ISD::CondCode(Operation);
95}
96
97
98/// isSignedOp - For an integer comparison, return 1 if the comparison is a
99/// signed operation and 2 if the result is an unsigned comparison.  Return zero
100/// if the operation does not depend on the sign of the input (setne and seteq).
101static int isSignedOp(ISD::CondCode Opcode) {
102  switch (Opcode) {
103  default: assert(0 && "Illegal integer setcc operation!");
104  case ISD::SETEQ:
105  case ISD::SETNE: return 0;
106  case ISD::SETLT:
107  case ISD::SETLE:
108  case ISD::SETGT:
109  case ISD::SETGE: return 1;
110  case ISD::SETULT:
111  case ISD::SETULE:
112  case ISD::SETUGT:
113  case ISD::SETUGE: return 2;
114  }
115}
116
117/// getSetCCOrOperation - Return the result of a logical OR between different
118/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
119/// returns SETCC_INVALID if it is not possible to represent the resultant
120/// comparison.
121ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
122                                       bool isInteger) {
123  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
124    // Cannot fold a signed integer setcc with an unsigned integer setcc.
125    return ISD::SETCC_INVALID;
126
127  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
128
129  // If the N and U bits get set then the resultant comparison DOES suddenly
130  // care about orderedness, and is true when ordered.
131  if (Op > ISD::SETTRUE2)
132    Op &= ~16;     // Clear the N bit.
133  return ISD::CondCode(Op);
134}
135
136/// getSetCCAndOperation - Return the result of a logical AND between different
137/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
138/// function returns zero if it is not possible to represent the resultant
139/// comparison.
140ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
141                                        bool isInteger) {
142  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
143    // Cannot fold a signed setcc with an unsigned setcc.
144    return ISD::SETCC_INVALID;
145
146  // Combine all of the condition bits.
147  return ISD::CondCode(Op1 & Op2);
148}
149
150const TargetMachine &SelectionDAG::getTarget() const {
151  return TLI.getTargetMachine();
152}
153
154//===----------------------------------------------------------------------===//
155//                              SelectionDAG Class
156//===----------------------------------------------------------------------===//
157
158/// RemoveDeadNodes - This method deletes all unreachable nodes in the
159/// SelectionDAG, including nodes (like loads) that have uses of their token
160/// chain but no other uses and no side effect.  If a node is passed in as an
161/// argument, it is used as the seed for node deletion.
162void SelectionDAG::RemoveDeadNodes(SDNode *N) {
163  // Create a dummy node (which is not added to allnodes), that adds a reference
164  // to the root node, preventing it from being deleted.
165  HandleSDNode Dummy(getRoot());
166
167  bool MadeChange = false;
168
169  // If we have a hint to start from, use it.
170  if (N && N->use_empty()) {
171    DestroyDeadNode(N);
172    MadeChange = true;
173  }
174
175  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
176    if (I->use_empty() && I->getOpcode() != 65535) {
177      // Node is dead, recursively delete newly dead uses.
178      DestroyDeadNode(I);
179      MadeChange = true;
180    }
181
182  // Walk the nodes list, removing the nodes we've marked as dead.
183  if (MadeChange) {
184    for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
185      SDNode *N = I++;
186      if (N->use_empty())
187        AllNodes.erase(N);
188    }
189  }
190
191  // If the root changed (e.g. it was a dead load, update the root).
192  setRoot(Dummy.getValue());
193}
194
195/// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the
196/// graph.  If it is the last user of any of its operands, recursively process
197/// them the same way.
198///
199void SelectionDAG::DestroyDeadNode(SDNode *N) {
200  // Okay, we really are going to delete this node.  First take this out of the
201  // appropriate CSE map.
202  RemoveNodeFromCSEMaps(N);
203
204  // Next, brutally remove the operand list.  This is safe to do, as there are
205  // no cycles in the graph.
206  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
207    SDNode *O = I->Val;
208    O->removeUser(N);
209
210    // Now that we removed this operand, see if there are no uses of it left.
211    if (O->use_empty())
212      DestroyDeadNode(O);
213  }
214  delete[] N->OperandList;
215  N->OperandList = 0;
216  N->NumOperands = 0;
217
218  // Mark the node as dead.
219  N->MorphNodeTo(65535);
220}
221
222void SelectionDAG::DeleteNode(SDNode *N) {
223  assert(N->use_empty() && "Cannot delete a node that is not dead!");
224
225  // First take this out of the appropriate CSE map.
226  RemoveNodeFromCSEMaps(N);
227
228  // Finally, remove uses due to operands of this node, remove from the
229  // AllNodes list, and delete the node.
230  DeleteNodeNotInCSEMaps(N);
231}
232
233void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
234
235  // Remove it from the AllNodes list.
236  AllNodes.remove(N);
237
238  // Drop all of the operands and decrement used nodes use counts.
239  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
240    I->Val->removeUser(N);
241  delete[] N->OperandList;
242  N->OperandList = 0;
243  N->NumOperands = 0;
244
245  delete N;
246}
247
248/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
249/// correspond to it.  This is useful when we're about to delete or repurpose
250/// the node.  We don't want future request for structurally identical nodes
251/// to return N anymore.
252void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
253  bool Erased = false;
254  switch (N->getOpcode()) {
255  case ISD::HANDLENODE: return;  // noop.
256  case ISD::Constant:
257    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
258                                            N->getValueType(0)));
259    break;
260  case ISD::TargetConstant:
261    Erased = TargetConstants.erase(std::make_pair(
262                                    cast<ConstantSDNode>(N)->getValue(),
263                                                  N->getValueType(0)));
264    break;
265  case ISD::ConstantFP: {
266    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
267    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
268    break;
269  }
270  case ISD::TargetConstantFP: {
271    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
272    Erased = TargetConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
273    break;
274  }
275  case ISD::STRING:
276    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
277    break;
278  case ISD::CONDCODE:
279    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
280           "Cond code doesn't exist!");
281    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
282    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
283    break;
284  case ISD::GlobalAddress: {
285    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
286    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
287                                               GN->getOffset()));
288    break;
289  }
290  case ISD::TargetGlobalAddress: {
291    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
292    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
293                                                    GN->getOffset()));
294    break;
295  }
296  case ISD::FrameIndex:
297    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
298    break;
299  case ISD::TargetFrameIndex:
300    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
301    break;
302  case ISD::ConstantPool:
303    Erased = ConstantPoolIndices.
304      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
305                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
306                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
307    break;
308  case ISD::TargetConstantPool:
309    Erased = TargetConstantPoolIndices.
310      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
311                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
312                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
313    break;
314  case ISD::BasicBlock:
315    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
316    break;
317  case ISD::ExternalSymbol:
318    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
319    break;
320  case ISD::TargetExternalSymbol:
321    Erased =
322      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
323    break;
324  case ISD::VALUETYPE:
325    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
326    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
327    break;
328  case ISD::Register:
329    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
330                                           N->getValueType(0)));
331    break;
332  case ISD::SRCVALUE: {
333    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
334    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
335    break;
336  }
337  case ISD::LOAD:
338    Erased = Loads.erase(std::make_pair(N->getOperand(1),
339                                        std::make_pair(N->getOperand(0),
340                                                       N->getValueType(0))));
341    break;
342  default:
343    if (N->getNumValues() == 1) {
344      if (N->getNumOperands() == 0) {
345        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
346                                                 N->getValueType(0)));
347      } else if (N->getNumOperands() == 1) {
348        Erased =
349          UnaryOps.erase(std::make_pair(N->getOpcode(),
350                                        std::make_pair(N->getOperand(0),
351                                                       N->getValueType(0))));
352      } else if (N->getNumOperands() == 2) {
353        Erased =
354          BinaryOps.erase(std::make_pair(N->getOpcode(),
355                                         std::make_pair(N->getOperand(0),
356                                                        N->getOperand(1))));
357      } else {
358        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
359        Erased =
360          OneResultNodes.erase(std::make_pair(N->getOpcode(),
361                                              std::make_pair(N->getValueType(0),
362                                                             Ops)));
363      }
364    } else {
365      // Remove the node from the ArbitraryNodes map.
366      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
367      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
368      Erased =
369        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
370                                            std::make_pair(RV, Ops)));
371    }
372    break;
373  }
374#ifndef NDEBUG
375  // Verify that the node was actually in one of the CSE maps, unless it has a
376  // flag result (which cannot be CSE'd) or is one of the special cases that are
377  // not subject to CSE.
378  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
379      !N->isTargetOpcode()) {
380    N->dump();
381    assert(0 && "Node is not in map!");
382  }
383#endif
384}
385
386/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
387/// has been taken out and modified in some way.  If the specified node already
388/// exists in the CSE maps, do not modify the maps, but return the existing node
389/// instead.  If it doesn't exist, add it and return null.
390///
391SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
392  assert(N->getNumOperands() && "This is a leaf node!");
393  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
394    return 0;    // Never add these nodes.
395
396  // Check that remaining values produced are not flags.
397  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
398    if (N->getValueType(i) == MVT::Flag)
399      return 0;   // Never CSE anything that produces a flag.
400
401  if (N->getNumValues() == 1) {
402    if (N->getNumOperands() == 1) {
403      SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
404                                           std::make_pair(N->getOperand(0),
405                                                          N->getValueType(0)))];
406      if (U) return U;
407      U = N;
408    } else if (N->getNumOperands() == 2) {
409      SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
410                                            std::make_pair(N->getOperand(0),
411                                                           N->getOperand(1)))];
412      if (B) return B;
413      B = N;
414    } else {
415      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
416      SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
417                                      std::make_pair(N->getValueType(0), Ops))];
418      if (ORN) return ORN;
419      ORN = N;
420    }
421  } else {
422    if (N->getOpcode() == ISD::LOAD) {
423      SDNode *&L = Loads[std::make_pair(N->getOperand(1),
424                                        std::make_pair(N->getOperand(0),
425                                                       N->getValueType(0)))];
426      if (L) return L;
427      L = N;
428    } else {
429      // Remove the node from the ArbitraryNodes map.
430      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
431      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
432      SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
433                                                  std::make_pair(RV, Ops))];
434      if (AN) return AN;
435      AN = N;
436    }
437  }
438  return 0;
439}
440
441/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
442/// were replaced with those specified.  If this node is never memoized,
443/// return null, otherwise return a pointer to the slot it would take.  If a
444/// node already exists with these operands, the slot will be non-null.
445SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op) {
446  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
447    return 0;    // Never add these nodes.
448
449  // Check that remaining values produced are not flags.
450  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
451    if (N->getValueType(i) == MVT::Flag)
452      return 0;   // Never CSE anything that produces a flag.
453
454  if (N->getNumValues() == 1) {
455    return &UnaryOps[std::make_pair(N->getOpcode(),
456                                    std::make_pair(Op, N->getValueType(0)))];
457  } else {
458    // Remove the node from the ArbitraryNodes map.
459    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
460    std::vector<SDOperand> Ops;
461    Ops.push_back(Op);
462    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
463                                          std::make_pair(RV, Ops))];
464  }
465  return 0;
466}
467
468/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
469/// were replaced with those specified.  If this node is never memoized,
470/// return null, otherwise return a pointer to the slot it would take.  If a
471/// node already exists with these operands, the slot will be non-null.
472SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
473                                            SDOperand Op1, SDOperand Op2) {
474  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
475    return 0;    // Never add these nodes.
476
477  // Check that remaining values produced are not flags.
478  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
479    if (N->getValueType(i) == MVT::Flag)
480      return 0;   // Never CSE anything that produces a flag.
481
482  if (N->getNumValues() == 1) {
483    return &BinaryOps[std::make_pair(N->getOpcode(),
484                                     std::make_pair(Op1, Op2))];
485  } else {
486    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
487    std::vector<SDOperand> Ops;
488    Ops.push_back(Op1);
489    Ops.push_back(Op2);
490    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
491                                          std::make_pair(RV, Ops))];
492  }
493  return 0;
494}
495
496
497/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
498/// were replaced with those specified.  If this node is never memoized,
499/// return null, otherwise return a pointer to the slot it would take.  If a
500/// node already exists with these operands, the slot will be non-null.
501SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
502                                            const std::vector<SDOperand> &Ops) {
503  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
504    return 0;    // Never add these nodes.
505
506  // Check that remaining values produced are not flags.
507  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
508    if (N->getValueType(i) == MVT::Flag)
509      return 0;   // Never CSE anything that produces a flag.
510
511  if (N->getNumValues() == 1) {
512    if (N->getNumOperands() == 1) {
513      return &UnaryOps[std::make_pair(N->getOpcode(),
514                                      std::make_pair(Ops[0],
515                                                     N->getValueType(0)))];
516    } else if (N->getNumOperands() == 2) {
517      return &BinaryOps[std::make_pair(N->getOpcode(),
518                                       std::make_pair(Ops[0], Ops[1]))];
519    } else {
520      return &OneResultNodes[std::make_pair(N->getOpcode(),
521                                            std::make_pair(N->getValueType(0),
522                                                           Ops))];
523    }
524  } else {
525    if (N->getOpcode() == ISD::LOAD) {
526      return &Loads[std::make_pair(Ops[1],
527                                   std::make_pair(Ops[0], N->getValueType(0)))];
528    } else {
529      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
530      return &ArbitraryNodes[std::make_pair(N->getOpcode(),
531                                            std::make_pair(RV, Ops))];
532    }
533  }
534  return 0;
535}
536
537
538SelectionDAG::~SelectionDAG() {
539  while (!AllNodes.empty()) {
540    SDNode *N = AllNodes.begin();
541    delete [] N->OperandList;
542    N->OperandList = 0;
543    N->NumOperands = 0;
544    AllNodes.pop_front();
545  }
546}
547
548SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
549  if (Op.getValueType() == VT) return Op;
550  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
551  return getNode(ISD::AND, Op.getValueType(), Op,
552                 getConstant(Imm, Op.getValueType()));
553}
554
555SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
556  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
557  // Mask out any bits that are not valid for this constant.
558  if (VT != MVT::i64)
559    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
560
561  SDNode *&N = Constants[std::make_pair(Val, VT)];
562  if (N) return SDOperand(N, 0);
563  N = new ConstantSDNode(false, Val, VT);
564  AllNodes.push_back(N);
565  return SDOperand(N, 0);
566}
567
568SDOperand SelectionDAG::getString(const std::string &Val) {
569  StringSDNode *&N = StringNodes[Val];
570  if (!N) {
571    N = new StringSDNode(Val);
572    AllNodes.push_back(N);
573  }
574  return SDOperand(N, 0);
575}
576
577SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
578  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
579  // Mask out any bits that are not valid for this constant.
580  if (VT != MVT::i64)
581    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
582
583  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
584  if (N) return SDOperand(N, 0);
585  N = new ConstantSDNode(true, Val, VT);
586  AllNodes.push_back(N);
587  return SDOperand(N, 0);
588}
589
590SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
591  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
592  if (VT == MVT::f32)
593    Val = (float)Val;  // Mask out extra precision.
594
595  // Do the map lookup using the actual bit pattern for the floating point
596  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
597  // we don't have issues with SNANs.
598  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
599  if (N) return SDOperand(N, 0);
600  N = new ConstantFPSDNode(false, Val, VT);
601  AllNodes.push_back(N);
602  return SDOperand(N, 0);
603}
604
605SDOperand SelectionDAG::getTargetConstantFP(double Val, MVT::ValueType VT) {
606  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
607  if (VT == MVT::f32)
608    Val = (float)Val;  // Mask out extra precision.
609
610  // Do the map lookup using the actual bit pattern for the floating point
611  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
612  // we don't have issues with SNANs.
613  SDNode *&N = TargetConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
614  if (N) return SDOperand(N, 0);
615  N = new ConstantFPSDNode(true, Val, VT);
616  AllNodes.push_back(N);
617  return SDOperand(N, 0);
618}
619
620SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
621                                         MVT::ValueType VT, int offset) {
622  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
623  if (N) return SDOperand(N, 0);
624  N = new GlobalAddressSDNode(false, GV, VT, offset);
625  AllNodes.push_back(N);
626  return SDOperand(N, 0);
627}
628
629SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
630                                               MVT::ValueType VT, int offset) {
631  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
632  if (N) return SDOperand(N, 0);
633  N = new GlobalAddressSDNode(true, GV, VT, offset);
634  AllNodes.push_back(N);
635  return SDOperand(N, 0);
636}
637
638SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
639  SDNode *&N = FrameIndices[FI];
640  if (N) return SDOperand(N, 0);
641  N = new FrameIndexSDNode(FI, VT, false);
642  AllNodes.push_back(N);
643  return SDOperand(N, 0);
644}
645
646SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
647  SDNode *&N = TargetFrameIndices[FI];
648  if (N) return SDOperand(N, 0);
649  N = new FrameIndexSDNode(FI, VT, true);
650  AllNodes.push_back(N);
651  return SDOperand(N, 0);
652}
653
654SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
655                                        unsigned Alignment,  int Offset) {
656  SDNode *&N = ConstantPoolIndices[std::make_pair(C,
657                                            std::make_pair(Offset, Alignment))];
658  if (N) return SDOperand(N, 0);
659  N = new ConstantPoolSDNode(false, C, VT, Offset, Alignment);
660  AllNodes.push_back(N);
661  return SDOperand(N, 0);
662}
663
664SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT,
665                                             unsigned Alignment,  int Offset) {
666  SDNode *&N = TargetConstantPoolIndices[std::make_pair(C,
667                                            std::make_pair(Offset, Alignment))];
668  if (N) return SDOperand(N, 0);
669  N = new ConstantPoolSDNode(true, C, VT, Offset, Alignment);
670  AllNodes.push_back(N);
671  return SDOperand(N, 0);
672}
673
674SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
675  SDNode *&N = BBNodes[MBB];
676  if (N) return SDOperand(N, 0);
677  N = new BasicBlockSDNode(MBB);
678  AllNodes.push_back(N);
679  return SDOperand(N, 0);
680}
681
682SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
683  if ((unsigned)VT >= ValueTypeNodes.size())
684    ValueTypeNodes.resize(VT+1);
685  if (ValueTypeNodes[VT] == 0) {
686    ValueTypeNodes[VT] = new VTSDNode(VT);
687    AllNodes.push_back(ValueTypeNodes[VT]);
688  }
689
690  return SDOperand(ValueTypeNodes[VT], 0);
691}
692
693SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
694  SDNode *&N = ExternalSymbols[Sym];
695  if (N) return SDOperand(N, 0);
696  N = new ExternalSymbolSDNode(false, Sym, VT);
697  AllNodes.push_back(N);
698  return SDOperand(N, 0);
699}
700
701SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
702                                                MVT::ValueType VT) {
703  SDNode *&N = TargetExternalSymbols[Sym];
704  if (N) return SDOperand(N, 0);
705  N = new ExternalSymbolSDNode(true, Sym, VT);
706  AllNodes.push_back(N);
707  return SDOperand(N, 0);
708}
709
710SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
711  if ((unsigned)Cond >= CondCodeNodes.size())
712    CondCodeNodes.resize(Cond+1);
713
714  if (CondCodeNodes[Cond] == 0) {
715    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
716    AllNodes.push_back(CondCodeNodes[Cond]);
717  }
718  return SDOperand(CondCodeNodes[Cond], 0);
719}
720
721SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
722  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
723  if (!Reg) {
724    Reg = new RegisterSDNode(RegNo, VT);
725    AllNodes.push_back(Reg);
726  }
727  return SDOperand(Reg, 0);
728}
729
730SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
731                                      SDOperand N2, ISD::CondCode Cond) {
732  // These setcc operations always fold.
733  switch (Cond) {
734  default: break;
735  case ISD::SETFALSE:
736  case ISD::SETFALSE2: return getConstant(0, VT);
737  case ISD::SETTRUE:
738  case ISD::SETTRUE2:  return getConstant(1, VT);
739  }
740
741  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
742    uint64_t C2 = N2C->getValue();
743    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
744      uint64_t C1 = N1C->getValue();
745
746      // Sign extend the operands if required
747      if (ISD::isSignedIntSetCC(Cond)) {
748        C1 = N1C->getSignExtended();
749        C2 = N2C->getSignExtended();
750      }
751
752      switch (Cond) {
753      default: assert(0 && "Unknown integer setcc!");
754      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
755      case ISD::SETNE:  return getConstant(C1 != C2, VT);
756      case ISD::SETULT: return getConstant(C1 <  C2, VT);
757      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
758      case ISD::SETULE: return getConstant(C1 <= C2, VT);
759      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
760      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
761      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
762      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
763      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
764      }
765    } else {
766      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
767      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
768        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
769
770        // If the comparison constant has bits in the upper part, the
771        // zero-extended value could never match.
772        if (C2 & (~0ULL << InSize)) {
773          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
774          switch (Cond) {
775          case ISD::SETUGT:
776          case ISD::SETUGE:
777          case ISD::SETEQ: return getConstant(0, VT);
778          case ISD::SETULT:
779          case ISD::SETULE:
780          case ISD::SETNE: return getConstant(1, VT);
781          case ISD::SETGT:
782          case ISD::SETGE:
783            // True if the sign bit of C2 is set.
784            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
785          case ISD::SETLT:
786          case ISD::SETLE:
787            // True if the sign bit of C2 isn't set.
788            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
789          default:
790            break;
791          }
792        }
793
794        // Otherwise, we can perform the comparison with the low bits.
795        switch (Cond) {
796        case ISD::SETEQ:
797        case ISD::SETNE:
798        case ISD::SETUGT:
799        case ISD::SETUGE:
800        case ISD::SETULT:
801        case ISD::SETULE:
802          return getSetCC(VT, N1.getOperand(0),
803                          getConstant(C2, N1.getOperand(0).getValueType()),
804                          Cond);
805        default:
806          break;   // todo, be more careful with signed comparisons
807        }
808      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
809                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
810        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
811        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
812        MVT::ValueType ExtDstTy = N1.getValueType();
813        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
814
815        // If the extended part has any inconsistent bits, it cannot ever
816        // compare equal.  In other words, they have to be all ones or all
817        // zeros.
818        uint64_t ExtBits =
819          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
820        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
821          return getConstant(Cond == ISD::SETNE, VT);
822
823        // Otherwise, make this a use of a zext.
824        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
825                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
826                        Cond);
827      }
828
829      uint64_t MinVal, MaxVal;
830      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
831      if (ISD::isSignedIntSetCC(Cond)) {
832        MinVal = 1ULL << (OperandBitSize-1);
833        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
834          MaxVal = ~0ULL >> (65-OperandBitSize);
835        else
836          MaxVal = 0;
837      } else {
838        MinVal = 0;
839        MaxVal = ~0ULL >> (64-OperandBitSize);
840      }
841
842      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
843      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
844        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
845        --C2;                                          // X >= C1 --> X > (C1-1)
846        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
847                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
848      }
849
850      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
851        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
852        ++C2;                                          // X <= C1 --> X < (C1+1)
853        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
854                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
855      }
856
857      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
858        return getConstant(0, VT);      // X < MIN --> false
859
860      // Canonicalize setgt X, Min --> setne X, Min
861      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
862        return getSetCC(VT, N1, N2, ISD::SETNE);
863
864      // If we have setult X, 1, turn it into seteq X, 0
865      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
866        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
867                        ISD::SETEQ);
868      // If we have setugt X, Max-1, turn it into seteq X, Max
869      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
870        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
871                        ISD::SETEQ);
872
873      // If we have "setcc X, C1", check to see if we can shrink the immediate
874      // by changing cc.
875
876      // SETUGT X, SINTMAX  -> SETLT X, 0
877      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
878          C2 == (~0ULL >> (65-OperandBitSize)))
879        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
880
881      // FIXME: Implement the rest of these.
882
883
884      // Fold bit comparisons when we can.
885      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
886          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
887        if (ConstantSDNode *AndRHS =
888                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
889          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
890            // Perform the xform if the AND RHS is a single bit.
891            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
892              return getNode(ISD::SRL, VT, N1,
893                             getConstant(Log2_64(AndRHS->getValue()),
894                                                   TLI.getShiftAmountTy()));
895            }
896          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
897            // (X & 8) == 8  -->  (X & 8) >> 3
898            // Perform the xform if C2 is a single bit.
899            if ((C2 & (C2-1)) == 0) {
900              return getNode(ISD::SRL, VT, N1,
901                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
902            }
903          }
904        }
905    }
906  } else if (isa<ConstantSDNode>(N1.Val)) {
907      // Ensure that the constant occurs on the RHS.
908    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
909  }
910
911  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
912    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
913      double C1 = N1C->getValue(), C2 = N2C->getValue();
914
915      switch (Cond) {
916      default: break; // FIXME: Implement the rest of these!
917      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
918      case ISD::SETNE:  return getConstant(C1 != C2, VT);
919      case ISD::SETLT:  return getConstant(C1 < C2, VT);
920      case ISD::SETGT:  return getConstant(C1 > C2, VT);
921      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
922      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
923      }
924    } else {
925      // Ensure that the constant occurs on the RHS.
926      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
927    }
928
929  // Could not fold it.
930  return SDOperand();
931}
932
933/// getNode - Gets or creates the specified node.
934///
935SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
936  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
937  if (!N) {
938    N = new SDNode(Opcode, VT);
939    AllNodes.push_back(N);
940  }
941  return SDOperand(N, 0);
942}
943
944SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
945                                SDOperand Operand) {
946  unsigned Tmp1;
947  // Constant fold unary operations with an integer constant operand.
948  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
949    uint64_t Val = C->getValue();
950    switch (Opcode) {
951    default: break;
952    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
953    case ISD::ANY_EXTEND:
954    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
955    case ISD::TRUNCATE:    return getConstant(Val, VT);
956    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
957    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
958    case ISD::BIT_CONVERT:
959      if (VT == MVT::f32) {
960        assert(C->getValueType(0) == MVT::i32 && "Invalid bit_convert!");
961        return getConstantFP(BitsToFloat(Val), VT);
962      } else if (VT == MVT::f64) {
963        assert(C->getValueType(0) == MVT::i64 && "Invalid bit_convert!");
964        return getConstantFP(BitsToDouble(Val), VT);
965      }
966      break;
967    case ISD::BSWAP:
968      switch(VT) {
969      default: assert(0 && "Invalid bswap!"); break;
970      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
971      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
972      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
973      }
974      break;
975    case ISD::CTPOP:
976      switch(VT) {
977      default: assert(0 && "Invalid ctpop!"); break;
978      case MVT::i1: return getConstant(Val != 0, VT);
979      case MVT::i8:
980        Tmp1 = (unsigned)Val & 0xFF;
981        return getConstant(CountPopulation_32(Tmp1), VT);
982      case MVT::i16:
983        Tmp1 = (unsigned)Val & 0xFFFF;
984        return getConstant(CountPopulation_32(Tmp1), VT);
985      case MVT::i32:
986        return getConstant(CountPopulation_32((unsigned)Val), VT);
987      case MVT::i64:
988        return getConstant(CountPopulation_64(Val), VT);
989      }
990    case ISD::CTLZ:
991      switch(VT) {
992      default: assert(0 && "Invalid ctlz!"); break;
993      case MVT::i1: return getConstant(Val == 0, VT);
994      case MVT::i8:
995        Tmp1 = (unsigned)Val & 0xFF;
996        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
997      case MVT::i16:
998        Tmp1 = (unsigned)Val & 0xFFFF;
999        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1000      case MVT::i32:
1001        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1002      case MVT::i64:
1003        return getConstant(CountLeadingZeros_64(Val), VT);
1004      }
1005    case ISD::CTTZ:
1006      switch(VT) {
1007      default: assert(0 && "Invalid cttz!"); break;
1008      case MVT::i1: return getConstant(Val == 0, VT);
1009      case MVT::i8:
1010        Tmp1 = (unsigned)Val | 0x100;
1011        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1012      case MVT::i16:
1013        Tmp1 = (unsigned)Val | 0x10000;
1014        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1015      case MVT::i32:
1016        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1017      case MVT::i64:
1018        return getConstant(CountTrailingZeros_64(Val), VT);
1019      }
1020    }
1021  }
1022
1023  // Constant fold unary operations with an floating point constant operand.
1024  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1025    switch (Opcode) {
1026    case ISD::FNEG:
1027      return getConstantFP(-C->getValue(), VT);
1028    case ISD::FABS:
1029      return getConstantFP(fabs(C->getValue()), VT);
1030    case ISD::FP_ROUND:
1031    case ISD::FP_EXTEND:
1032      return getConstantFP(C->getValue(), VT);
1033    case ISD::FP_TO_SINT:
1034      return getConstant((int64_t)C->getValue(), VT);
1035    case ISD::FP_TO_UINT:
1036      return getConstant((uint64_t)C->getValue(), VT);
1037    case ISD::BIT_CONVERT:
1038      if (VT == MVT::i32) {
1039        assert(C->getValueType(0) == MVT::f32 && "Invalid bit_convert!");
1040        return getConstant(FloatToBits(C->getValue()), VT);
1041      } else if (VT == MVT::i64) {
1042        assert(C->getValueType(0) == MVT::f64 && "Invalid bit_convert!");
1043        return getConstant(DoubleToBits(C->getValue()), VT);
1044      }
1045      break;
1046    }
1047
1048  unsigned OpOpcode = Operand.Val->getOpcode();
1049  switch (Opcode) {
1050  case ISD::TokenFactor:
1051    return Operand;         // Factor of one node?  No factor.
1052  case ISD::SIGN_EXTEND:
1053    if (Operand.getValueType() == VT) return Operand;   // noop extension
1054    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1055    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1056      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1057    break;
1058  case ISD::ZERO_EXTEND:
1059    if (Operand.getValueType() == VT) return Operand;   // noop extension
1060    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1061    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1062      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1063    break;
1064  case ISD::ANY_EXTEND:
1065    if (Operand.getValueType() == VT) return Operand;   // noop extension
1066    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1067    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1068      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1069      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1070    break;
1071  case ISD::TRUNCATE:
1072    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1073    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1074    if (OpOpcode == ISD::TRUNCATE)
1075      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1076    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1077             OpOpcode == ISD::ANY_EXTEND) {
1078      // If the source is smaller than the dest, we still need an extend.
1079      if (Operand.Val->getOperand(0).getValueType() < VT)
1080        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1081      else if (Operand.Val->getOperand(0).getValueType() > VT)
1082        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1083      else
1084        return Operand.Val->getOperand(0);
1085    }
1086    break;
1087  case ISD::BIT_CONVERT:
1088    // Basic sanity checking.
1089    assert(MVT::getSizeInBits(VT)==MVT::getSizeInBits(Operand.getValueType()) &&
1090           "Cannot BIT_CONVERT between two different types!");
1091    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1092    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1093      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1094    break;
1095  case ISD::FNEG:
1096    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1097      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1098                     Operand.Val->getOperand(0));
1099    if (OpOpcode == ISD::FNEG)  // --X -> X
1100      return Operand.Val->getOperand(0);
1101    break;
1102  case ISD::FABS:
1103    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1104      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1105    break;
1106  }
1107
1108  SDNode *N;
1109  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1110    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1111    if (E) return SDOperand(E, 0);
1112    E = N = new SDNode(Opcode, Operand);
1113  } else {
1114    N = new SDNode(Opcode, Operand);
1115  }
1116  N->setValueTypes(VT);
1117  AllNodes.push_back(N);
1118  return SDOperand(N, 0);
1119}
1120
1121
1122
1123SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1124                                SDOperand N1, SDOperand N2) {
1125#ifndef NDEBUG
1126  switch (Opcode) {
1127  case ISD::TokenFactor:
1128    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1129           N2.getValueType() == MVT::Other && "Invalid token factor!");
1130    break;
1131  case ISD::AND:
1132  case ISD::OR:
1133  case ISD::XOR:
1134  case ISD::UDIV:
1135  case ISD::UREM:
1136  case ISD::MULHU:
1137  case ISD::MULHS:
1138    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1139    // fall through
1140  case ISD::ADD:
1141  case ISD::SUB:
1142  case ISD::MUL:
1143  case ISD::SDIV:
1144  case ISD::SREM:
1145    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1146    // fall through.
1147  case ISD::FADD:
1148  case ISD::FSUB:
1149  case ISD::FMUL:
1150  case ISD::FDIV:
1151  case ISD::FREM:
1152    assert(N1.getValueType() == N2.getValueType() &&
1153           N1.getValueType() == VT && "Binary operator types must match!");
1154    break;
1155  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1156    assert(N1.getValueType() == VT &&
1157           MVT::isFloatingPoint(N1.getValueType()) &&
1158           MVT::isFloatingPoint(N2.getValueType()) &&
1159           "Invalid FCOPYSIGN!");
1160    break;
1161  case ISD::SHL:
1162  case ISD::SRA:
1163  case ISD::SRL:
1164  case ISD::ROTL:
1165  case ISD::ROTR:
1166    assert(VT == N1.getValueType() &&
1167           "Shift operators return type must be the same as their first arg");
1168    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1169           VT != MVT::i1 && "Shifts only work on integers");
1170    break;
1171  case ISD::FP_ROUND_INREG: {
1172    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1173    assert(VT == N1.getValueType() && "Not an inreg round!");
1174    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1175           "Cannot FP_ROUND_INREG integer types");
1176    assert(EVT <= VT && "Not rounding down!");
1177    break;
1178  }
1179  case ISD::AssertSext:
1180  case ISD::AssertZext:
1181  case ISD::SIGN_EXTEND_INREG: {
1182    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1183    assert(VT == N1.getValueType() && "Not an inreg extend!");
1184    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1185           "Cannot *_EXTEND_INREG FP types");
1186    assert(EVT <= VT && "Not extending!");
1187  }
1188
1189  default: break;
1190  }
1191#endif
1192
1193  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1194  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1195  if (N1C) {
1196    if (N2C) {
1197      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1198      switch (Opcode) {
1199      case ISD::ADD: return getConstant(C1 + C2, VT);
1200      case ISD::SUB: return getConstant(C1 - C2, VT);
1201      case ISD::MUL: return getConstant(C1 * C2, VT);
1202      case ISD::UDIV:
1203        if (C2) return getConstant(C1 / C2, VT);
1204        break;
1205      case ISD::UREM :
1206        if (C2) return getConstant(C1 % C2, VT);
1207        break;
1208      case ISD::SDIV :
1209        if (C2) return getConstant(N1C->getSignExtended() /
1210                                   N2C->getSignExtended(), VT);
1211        break;
1212      case ISD::SREM :
1213        if (C2) return getConstant(N1C->getSignExtended() %
1214                                   N2C->getSignExtended(), VT);
1215        break;
1216      case ISD::AND  : return getConstant(C1 & C2, VT);
1217      case ISD::OR   : return getConstant(C1 | C2, VT);
1218      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1219      case ISD::SHL  : return getConstant(C1 << C2, VT);
1220      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1221      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1222      case ISD::ROTL :
1223        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1224                           VT);
1225      case ISD::ROTR :
1226        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1227                           VT);
1228      default: break;
1229      }
1230    } else {      // Cannonicalize constant to RHS if commutative
1231      if (isCommutativeBinOp(Opcode)) {
1232        std::swap(N1C, N2C);
1233        std::swap(N1, N2);
1234      }
1235    }
1236  }
1237
1238  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1239  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1240  if (N1CFP) {
1241    if (N2CFP) {
1242      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1243      switch (Opcode) {
1244      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1245      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1246      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1247      case ISD::FDIV:
1248        if (C2) return getConstantFP(C1 / C2, VT);
1249        break;
1250      case ISD::FREM :
1251        if (C2) return getConstantFP(fmod(C1, C2), VT);
1252        break;
1253      default: break;
1254      }
1255    } else {      // Cannonicalize constant to RHS if commutative
1256      if (isCommutativeBinOp(Opcode)) {
1257        std::swap(N1CFP, N2CFP);
1258        std::swap(N1, N2);
1259      }
1260    }
1261  }
1262
1263  // Finally, fold operations that do not require constants.
1264  switch (Opcode) {
1265  case ISD::FP_ROUND_INREG:
1266    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1267    break;
1268  case ISD::SIGN_EXTEND_INREG: {
1269    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1270    if (EVT == VT) return N1;  // Not actually extending
1271    break;
1272  }
1273
1274  // FIXME: figure out how to safely handle things like
1275  // int foo(int x) { return 1 << (x & 255); }
1276  // int bar() { return foo(256); }
1277#if 0
1278  case ISD::SHL:
1279  case ISD::SRL:
1280  case ISD::SRA:
1281    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1282        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1283      return getNode(Opcode, VT, N1, N2.getOperand(0));
1284    else if (N2.getOpcode() == ISD::AND)
1285      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1286        // If the and is only masking out bits that cannot effect the shift,
1287        // eliminate the and.
1288        unsigned NumBits = MVT::getSizeInBits(VT);
1289        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1290          return getNode(Opcode, VT, N1, N2.getOperand(0));
1291      }
1292    break;
1293#endif
1294  }
1295
1296  // Memoize this node if possible.
1297  SDNode *N;
1298  if (VT != MVT::Flag) {
1299    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1300    if (BON) return SDOperand(BON, 0);
1301
1302    BON = N = new SDNode(Opcode, N1, N2);
1303  } else {
1304    N = new SDNode(Opcode, N1, N2);
1305  }
1306
1307  N->setValueTypes(VT);
1308  AllNodes.push_back(N);
1309  return SDOperand(N, 0);
1310}
1311
1312SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1313                                SDOperand N1, SDOperand N2, SDOperand N3) {
1314  // Perform various simplifications.
1315  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1316  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1317  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1318  switch (Opcode) {
1319  case ISD::SETCC: {
1320    // Use SimplifySetCC  to simplify SETCC's.
1321    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1322    if (Simp.Val) return Simp;
1323    break;
1324  }
1325  case ISD::SELECT:
1326    if (N1C)
1327      if (N1C->getValue())
1328        return N2;             // select true, X, Y -> X
1329      else
1330        return N3;             // select false, X, Y -> Y
1331
1332    if (N2 == N3) return N2;   // select C, X, X -> X
1333    break;
1334  case ISD::BRCOND:
1335    if (N2C)
1336      if (N2C->getValue()) // Unconditional branch
1337        return getNode(ISD::BR, MVT::Other, N1, N3);
1338      else
1339        return N1;         // Never-taken branch
1340    break;
1341  }
1342
1343  std::vector<SDOperand> Ops;
1344  Ops.reserve(3);
1345  Ops.push_back(N1);
1346  Ops.push_back(N2);
1347  Ops.push_back(N3);
1348
1349  // Memoize node if it doesn't produce a flag.
1350  SDNode *N;
1351  if (VT != MVT::Flag) {
1352    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1353    if (E) return SDOperand(E, 0);
1354    E = N = new SDNode(Opcode, N1, N2, N3);
1355  } else {
1356    N = new SDNode(Opcode, N1, N2, N3);
1357  }
1358  N->setValueTypes(VT);
1359  AllNodes.push_back(N);
1360  return SDOperand(N, 0);
1361}
1362
1363SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1364                                SDOperand N1, SDOperand N2, SDOperand N3,
1365                                SDOperand N4) {
1366  std::vector<SDOperand> Ops;
1367  Ops.reserve(4);
1368  Ops.push_back(N1);
1369  Ops.push_back(N2);
1370  Ops.push_back(N3);
1371  Ops.push_back(N4);
1372  return getNode(Opcode, VT, Ops);
1373}
1374
1375SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1376                                SDOperand N1, SDOperand N2, SDOperand N3,
1377                                SDOperand N4, SDOperand N5) {
1378  std::vector<SDOperand> Ops;
1379  Ops.reserve(5);
1380  Ops.push_back(N1);
1381  Ops.push_back(N2);
1382  Ops.push_back(N3);
1383  Ops.push_back(N4);
1384  Ops.push_back(N5);
1385  return getNode(Opcode, VT, Ops);
1386}
1387
1388SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1389                                SDOperand Chain, SDOperand Ptr,
1390                                SDOperand SV) {
1391  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1392  if (N) return SDOperand(N, 0);
1393  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1394
1395  // Loads have a token chain.
1396  setNodeValueTypes(N, VT, MVT::Other);
1397  AllNodes.push_back(N);
1398  return SDOperand(N, 0);
1399}
1400
1401SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1402                                   SDOperand Chain, SDOperand Ptr,
1403                                   SDOperand SV) {
1404  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, EVT))];
1405  if (N) return SDOperand(N, 0);
1406  std::vector<SDOperand> Ops;
1407  Ops.reserve(5);
1408  Ops.push_back(getConstant(Count, MVT::i32));
1409  Ops.push_back(getValueType(EVT));
1410  Ops.push_back(Chain);
1411  Ops.push_back(Ptr);
1412  Ops.push_back(SV);
1413  std::vector<MVT::ValueType> VTs;
1414  VTs.reserve(2);
1415  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1416  return getNode(ISD::VLOAD, VTs, Ops);
1417}
1418
1419SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1420                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1421                                   MVT::ValueType EVT) {
1422  std::vector<SDOperand> Ops;
1423  Ops.reserve(4);
1424  Ops.push_back(Chain);
1425  Ops.push_back(Ptr);
1426  Ops.push_back(SV);
1427  Ops.push_back(getValueType(EVT));
1428  std::vector<MVT::ValueType> VTs;
1429  VTs.reserve(2);
1430  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1431  return getNode(Opcode, VTs, Ops);
1432}
1433
1434SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1435  assert((!V || isa<PointerType>(V->getType())) &&
1436         "SrcValue is not a pointer?");
1437  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1438  if (N) return SDOperand(N, 0);
1439
1440  N = new SrcValueSDNode(V, Offset);
1441  AllNodes.push_back(N);
1442  return SDOperand(N, 0);
1443}
1444
1445SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1446                                 SDOperand Chain, SDOperand Ptr,
1447                                 SDOperand SV) {
1448  std::vector<SDOperand> Ops;
1449  Ops.reserve(3);
1450  Ops.push_back(Chain);
1451  Ops.push_back(Ptr);
1452  Ops.push_back(SV);
1453  std::vector<MVT::ValueType> VTs;
1454  VTs.reserve(2);
1455  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1456  return getNode(ISD::VAARG, VTs, Ops);
1457}
1458
1459SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1460                                std::vector<SDOperand> &Ops) {
1461  switch (Ops.size()) {
1462  case 0: return getNode(Opcode, VT);
1463  case 1: return getNode(Opcode, VT, Ops[0]);
1464  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1465  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1466  default: break;
1467  }
1468
1469  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1470  switch (Opcode) {
1471  default: break;
1472  case ISD::BRCONDTWOWAY:
1473    if (N1C)
1474      if (N1C->getValue()) // Unconditional branch to true dest.
1475        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1476      else                 // Unconditional branch to false dest.
1477        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1478    break;
1479  case ISD::BRTWOWAY_CC:
1480    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1481    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1482           "LHS and RHS of comparison must have same type!");
1483    break;
1484  case ISD::TRUNCSTORE: {
1485    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1486    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1487#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1488    // If this is a truncating store of a constant, convert to the desired type
1489    // and store it instead.
1490    if (isa<Constant>(Ops[0])) {
1491      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1492      if (isa<Constant>(Op))
1493        N1 = Op;
1494    }
1495    // Also for ConstantFP?
1496#endif
1497    if (Ops[0].getValueType() == EVT)       // Normal store?
1498      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1499    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1500    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1501           "Can't do FP-INT conversion!");
1502    break;
1503  }
1504  case ISD::SELECT_CC: {
1505    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1506    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1507           "LHS and RHS of condition must have same type!");
1508    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1509           "True and False arms of SelectCC must have same type!");
1510    assert(Ops[2].getValueType() == VT &&
1511           "select_cc node must be of same type as true and false value!");
1512    break;
1513  }
1514  case ISD::BR_CC: {
1515    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1516    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1517           "LHS/RHS of comparison should match types!");
1518    break;
1519  }
1520  }
1521
1522  // Memoize nodes.
1523  SDNode *N;
1524  if (VT != MVT::Flag) {
1525    SDNode *&E =
1526      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1527    if (E) return SDOperand(E, 0);
1528    E = N = new SDNode(Opcode, Ops);
1529  } else {
1530    N = new SDNode(Opcode, Ops);
1531  }
1532  N->setValueTypes(VT);
1533  AllNodes.push_back(N);
1534  return SDOperand(N, 0);
1535}
1536
1537SDOperand SelectionDAG::getNode(unsigned Opcode,
1538                                std::vector<MVT::ValueType> &ResultTys,
1539                                std::vector<SDOperand> &Ops) {
1540  if (ResultTys.size() == 1)
1541    return getNode(Opcode, ResultTys[0], Ops);
1542
1543  switch (Opcode) {
1544  case ISD::EXTLOAD:
1545  case ISD::SEXTLOAD:
1546  case ISD::ZEXTLOAD: {
1547    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1548    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1549    // If they are asking for an extending load from/to the same thing, return a
1550    // normal load.
1551    if (ResultTys[0] == EVT)
1552      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1553    assert(EVT < ResultTys[0] &&
1554           "Should only be an extending load, not truncating!");
1555    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1556           "Cannot sign/zero extend a FP load!");
1557    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1558           "Cannot convert from FP to Int or Int -> FP!");
1559    break;
1560  }
1561
1562  // FIXME: figure out how to safely handle things like
1563  // int foo(int x) { return 1 << (x & 255); }
1564  // int bar() { return foo(256); }
1565#if 0
1566  case ISD::SRA_PARTS:
1567  case ISD::SRL_PARTS:
1568  case ISD::SHL_PARTS:
1569    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1570        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1571      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1572    else if (N3.getOpcode() == ISD::AND)
1573      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1574        // If the and is only masking out bits that cannot effect the shift,
1575        // eliminate the and.
1576        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1577        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1578          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1579      }
1580    break;
1581#endif
1582  }
1583
1584  // Memoize the node unless it returns a flag.
1585  SDNode *N;
1586  if (ResultTys.back() != MVT::Flag) {
1587    SDNode *&E =
1588      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1589    if (E) return SDOperand(E, 0);
1590    E = N = new SDNode(Opcode, Ops);
1591  } else {
1592    N = new SDNode(Opcode, Ops);
1593  }
1594  setNodeValueTypes(N, ResultTys);
1595  AllNodes.push_back(N);
1596  return SDOperand(N, 0);
1597}
1598
1599void SelectionDAG::setNodeValueTypes(SDNode *N,
1600                                     std::vector<MVT::ValueType> &RetVals) {
1601  switch (RetVals.size()) {
1602  case 0: return;
1603  case 1: N->setValueTypes(RetVals[0]); return;
1604  case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
1605  default: break;
1606  }
1607
1608  std::list<std::vector<MVT::ValueType> >::iterator I =
1609    std::find(VTList.begin(), VTList.end(), RetVals);
1610  if (I == VTList.end()) {
1611    VTList.push_front(RetVals);
1612    I = VTList.begin();
1613  }
1614
1615  N->setValueTypes(&(*I)[0], I->size());
1616}
1617
1618void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
1619                                     MVT::ValueType VT2) {
1620  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1621       E = VTList.end(); I != E; ++I) {
1622    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
1623      N->setValueTypes(&(*I)[0], 2);
1624      return;
1625    }
1626  }
1627  std::vector<MVT::ValueType> V;
1628  V.push_back(VT1);
1629  V.push_back(VT2);
1630  VTList.push_front(V);
1631  N->setValueTypes(&(*VTList.begin())[0], 2);
1632}
1633
1634/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1635/// specified operands.  If the resultant node already exists in the DAG,
1636/// this does not modify the specified node, instead it returns the node that
1637/// already exists.  If the resultant node does not exist in the DAG, the
1638/// input node is returned.  As a degenerate case, if you specify the same
1639/// input operands as the node already has, the input node is returned.
1640SDOperand SelectionDAG::
1641UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1642  SDNode *N = InN.Val;
1643  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1644
1645  // Check to see if there is no change.
1646  if (Op == N->getOperand(0)) return InN;
1647
1648  // See if the modified node already exists.
1649  SDNode **NewSlot = FindModifiedNodeSlot(N, Op);
1650  if (NewSlot && *NewSlot)
1651    return SDOperand(*NewSlot, InN.ResNo);
1652
1653  // Nope it doesn't.  Remove the node from it's current place in the maps.
1654  if (NewSlot)
1655    RemoveNodeFromCSEMaps(N);
1656
1657  // Now we update the operands.
1658  N->OperandList[0].Val->removeUser(N);
1659  Op.Val->addUser(N);
1660  N->OperandList[0] = Op;
1661
1662  // If this gets put into a CSE map, add it.
1663  if (NewSlot) *NewSlot = N;
1664  return InN;
1665}
1666
1667SDOperand SelectionDAG::
1668UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1669  SDNode *N = InN.Val;
1670  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1671
1672  // Check to see if there is no change.
1673  bool AnyChange = false;
1674  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1675    return InN;   // No operands changed, just return the input node.
1676
1677  // See if the modified node already exists.
1678  SDNode **NewSlot = FindModifiedNodeSlot(N, Op1, Op2);
1679  if (NewSlot && *NewSlot)
1680    return SDOperand(*NewSlot, InN.ResNo);
1681
1682  // Nope it doesn't.  Remove the node from it's current place in the maps.
1683  if (NewSlot)
1684    RemoveNodeFromCSEMaps(N);
1685
1686  // Now we update the operands.
1687  if (N->OperandList[0] != Op1) {
1688    N->OperandList[0].Val->removeUser(N);
1689    Op1.Val->addUser(N);
1690    N->OperandList[0] = Op1;
1691  }
1692  if (N->OperandList[1] != Op2) {
1693    N->OperandList[1].Val->removeUser(N);
1694    Op2.Val->addUser(N);
1695    N->OperandList[1] = Op2;
1696  }
1697
1698  // If this gets put into a CSE map, add it.
1699  if (NewSlot) *NewSlot = N;
1700  return InN;
1701}
1702
1703SDOperand SelectionDAG::
1704UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1705  std::vector<SDOperand> Ops;
1706  Ops.push_back(Op1);
1707  Ops.push_back(Op2);
1708  Ops.push_back(Op3);
1709  return UpdateNodeOperands(N, Ops);
1710}
1711
1712SDOperand SelectionDAG::
1713UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1714                   SDOperand Op3, SDOperand Op4) {
1715  std::vector<SDOperand> Ops;
1716  Ops.push_back(Op1);
1717  Ops.push_back(Op2);
1718  Ops.push_back(Op3);
1719  Ops.push_back(Op4);
1720  return UpdateNodeOperands(N, Ops);
1721}
1722
1723SDOperand SelectionDAG::
1724UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1725                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1726  std::vector<SDOperand> Ops;
1727  Ops.push_back(Op1);
1728  Ops.push_back(Op2);
1729  Ops.push_back(Op3);
1730  Ops.push_back(Op4);
1731  Ops.push_back(Op5);
1732  return UpdateNodeOperands(N, Ops);
1733}
1734
1735
1736SDOperand SelectionDAG::
1737UpdateNodeOperands(SDOperand InN, const std::vector<SDOperand> &Ops) {
1738  SDNode *N = InN.Val;
1739  assert(N->getNumOperands() == Ops.size() &&
1740         "Update with wrong number of operands");
1741
1742  // Check to see if there is no change.
1743  unsigned NumOps = Ops.size();
1744  bool AnyChange = false;
1745  for (unsigned i = 0; i != NumOps; ++i) {
1746    if (Ops[i] != N->getOperand(i)) {
1747      AnyChange = true;
1748      break;
1749    }
1750  }
1751
1752  // No operands changed, just return the input node.
1753  if (!AnyChange) return InN;
1754
1755  // See if the modified node already exists.
1756  SDNode **NewSlot = FindModifiedNodeSlot(N, Ops);
1757  if (NewSlot && *NewSlot)
1758    return SDOperand(*NewSlot, InN.ResNo);
1759
1760  // Nope it doesn't.  Remove the node from it's current place in the maps.
1761  if (NewSlot)
1762    RemoveNodeFromCSEMaps(N);
1763
1764  // Now we update the operands.
1765  for (unsigned i = 0; i != NumOps; ++i) {
1766    if (N->OperandList[i] != Ops[i]) {
1767      N->OperandList[i].Val->removeUser(N);
1768      Ops[i].Val->addUser(N);
1769      N->OperandList[i] = Ops[i];
1770    }
1771  }
1772
1773  // If this gets put into a CSE map, add it.
1774  if (NewSlot) *NewSlot = N;
1775  return InN;
1776}
1777
1778
1779
1780
1781/// SelectNodeTo - These are used for target selectors to *mutate* the
1782/// specified node to have the specified return type, Target opcode, and
1783/// operands.  Note that target opcodes are stored as
1784/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1785///
1786/// Note that SelectNodeTo returns the resultant node.  If there is already a
1787/// node of the specified opcode and operands, it returns that node instead of
1788/// the current one.
1789SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1790                                     MVT::ValueType VT) {
1791  // If an identical node already exists, use it.
1792  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1793  if (ON) return SDOperand(ON, 0);
1794
1795  RemoveNodeFromCSEMaps(N);
1796
1797  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1798  N->setValueTypes(VT);
1799
1800  ON = N;   // Memoize the new node.
1801  return SDOperand(N, 0);
1802}
1803
1804SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1805                                     MVT::ValueType VT, SDOperand Op1) {
1806  // If an identical node already exists, use it.
1807  SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1808                                        std::make_pair(Op1, VT))];
1809  if (ON) return SDOperand(ON, 0);
1810
1811  RemoveNodeFromCSEMaps(N);
1812  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1813  N->setValueTypes(VT);
1814  N->setOperands(Op1);
1815
1816  ON = N;   // Memoize the new node.
1817  return SDOperand(N, 0);
1818}
1819
1820SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1821                                     MVT::ValueType VT, SDOperand Op1,
1822                                     SDOperand Op2) {
1823  // If an identical node already exists, use it.
1824  SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1825                                         std::make_pair(Op1, Op2))];
1826  if (ON) return SDOperand(ON, 0);
1827
1828  RemoveNodeFromCSEMaps(N);
1829  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1830  N->setValueTypes(VT);
1831  N->setOperands(Op1, Op2);
1832
1833  ON = N;   // Memoize the new node.
1834  return SDOperand(N, 0);
1835}
1836
1837SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1838                                     MVT::ValueType VT, SDOperand Op1,
1839                                     SDOperand Op2, SDOperand Op3) {
1840  // If an identical node already exists, use it.
1841  std::vector<SDOperand> OpList;
1842  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1843  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1844                                              std::make_pair(VT, OpList))];
1845  if (ON) return SDOperand(ON, 0);
1846
1847  RemoveNodeFromCSEMaps(N);
1848  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1849  N->setValueTypes(VT);
1850  N->setOperands(Op1, Op2, Op3);
1851
1852  ON = N;   // Memoize the new node.
1853  return SDOperand(N, 0);
1854}
1855
1856SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1857                                     MVT::ValueType VT, SDOperand Op1,
1858                                     SDOperand Op2, SDOperand Op3,
1859                                     SDOperand Op4) {
1860  // If an identical node already exists, use it.
1861  std::vector<SDOperand> OpList;
1862  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1863  OpList.push_back(Op4);
1864  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1865                                              std::make_pair(VT, OpList))];
1866  if (ON) return SDOperand(ON, 0);
1867
1868  RemoveNodeFromCSEMaps(N);
1869  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1870  N->setValueTypes(VT);
1871  N->setOperands(Op1, Op2, Op3, Op4);
1872
1873  ON = N;   // Memoize the new node.
1874  return SDOperand(N, 0);
1875}
1876
1877SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1878                                     MVT::ValueType VT, SDOperand Op1,
1879                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1880                                     SDOperand Op5) {
1881  // If an identical node already exists, use it.
1882  std::vector<SDOperand> OpList;
1883  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1884  OpList.push_back(Op4); OpList.push_back(Op5);
1885  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1886                                              std::make_pair(VT, OpList))];
1887  if (ON) return SDOperand(ON, 0);
1888
1889  RemoveNodeFromCSEMaps(N);
1890  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1891  N->setValueTypes(VT);
1892  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1893
1894  ON = N;   // Memoize the new node.
1895  return SDOperand(N, 0);
1896}
1897
1898SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1899                                     MVT::ValueType VT, SDOperand Op1,
1900                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1901                                     SDOperand Op5, SDOperand Op6) {
1902  // If an identical node already exists, use it.
1903  std::vector<SDOperand> OpList;
1904  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1905  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1906  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1907                                              std::make_pair(VT, OpList))];
1908  if (ON) return SDOperand(ON, 0);
1909
1910  RemoveNodeFromCSEMaps(N);
1911  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1912  N->setValueTypes(VT);
1913  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
1914
1915  ON = N;   // Memoize the new node.
1916  return SDOperand(N, 0);
1917}
1918
1919SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1920                                     MVT::ValueType VT, SDOperand Op1,
1921                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1922                                     SDOperand Op5, SDOperand Op6,
1923				     SDOperand Op7) {
1924  // If an identical node already exists, use it.
1925  std::vector<SDOperand> OpList;
1926  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1927  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1928  OpList.push_back(Op7);
1929  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1930                                              std::make_pair(VT, OpList))];
1931  if (ON) return SDOperand(ON, 0);
1932
1933  RemoveNodeFromCSEMaps(N);
1934  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1935  N->setValueTypes(VT);
1936  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
1937
1938  ON = N;   // Memoize the new node.
1939  return SDOperand(N, 0);
1940}
1941SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1942                                     MVT::ValueType VT, SDOperand Op1,
1943                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1944                                     SDOperand Op5, SDOperand Op6,
1945				     SDOperand Op7, SDOperand Op8) {
1946  // If an identical node already exists, use it.
1947  std::vector<SDOperand> OpList;
1948  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1949  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1950  OpList.push_back(Op7); OpList.push_back(Op8);
1951  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1952                                              std::make_pair(VT, OpList))];
1953  if (ON) return SDOperand(ON, 0);
1954
1955  RemoveNodeFromCSEMaps(N);
1956  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1957  N->setValueTypes(VT);
1958  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
1959
1960  ON = N;   // Memoize the new node.
1961  return SDOperand(N, 0);
1962}
1963
1964SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1965                                     MVT::ValueType VT1, MVT::ValueType VT2,
1966                                     SDOperand Op1, SDOperand Op2) {
1967  // If an identical node already exists, use it.
1968  std::vector<SDOperand> OpList;
1969  OpList.push_back(Op1); OpList.push_back(Op2);
1970  std::vector<MVT::ValueType> VTList;
1971  VTList.push_back(VT1); VTList.push_back(VT2);
1972  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1973                                              std::make_pair(VTList, OpList))];
1974  if (ON) return SDOperand(ON, 0);
1975
1976  RemoveNodeFromCSEMaps(N);
1977  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1978  setNodeValueTypes(N, VT1, VT2);
1979  N->setOperands(Op1, Op2);
1980
1981  ON = N;   // Memoize the new node.
1982  return SDOperand(N, 0);
1983}
1984
1985SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1986                                     MVT::ValueType VT1, MVT::ValueType VT2,
1987                                     SDOperand Op1, SDOperand Op2,
1988                                     SDOperand Op3) {
1989  // If an identical node already exists, use it.
1990  std::vector<SDOperand> OpList;
1991  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1992  std::vector<MVT::ValueType> VTList;
1993  VTList.push_back(VT1); VTList.push_back(VT2);
1994  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1995                                              std::make_pair(VTList, OpList))];
1996  if (ON) return SDOperand(ON, 0);
1997
1998  RemoveNodeFromCSEMaps(N);
1999  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2000  setNodeValueTypes(N, VT1, VT2);
2001  N->setOperands(Op1, Op2, Op3);
2002
2003  ON = N;   // Memoize the new node.
2004  return SDOperand(N, 0);
2005}
2006
2007SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2008                                     MVT::ValueType VT1, MVT::ValueType VT2,
2009                                     SDOperand Op1, SDOperand Op2,
2010                                     SDOperand Op3, SDOperand Op4) {
2011  // If an identical node already exists, use it.
2012  std::vector<SDOperand> OpList;
2013  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2014  OpList.push_back(Op4);
2015  std::vector<MVT::ValueType> VTList;
2016  VTList.push_back(VT1); VTList.push_back(VT2);
2017  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2018                                              std::make_pair(VTList, OpList))];
2019  if (ON) return SDOperand(ON, 0);
2020
2021  RemoveNodeFromCSEMaps(N);
2022  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2023  setNodeValueTypes(N, VT1, VT2);
2024  N->setOperands(Op1, Op2, Op3, Op4);
2025
2026  ON = N;   // Memoize the new node.
2027  return SDOperand(N, 0);
2028}
2029
2030SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2031                                     MVT::ValueType VT1, MVT::ValueType VT2,
2032                                     SDOperand Op1, SDOperand Op2,
2033                                     SDOperand Op3, SDOperand Op4,
2034                                     SDOperand Op5) {
2035  // If an identical node already exists, use it.
2036  std::vector<SDOperand> OpList;
2037  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2038  OpList.push_back(Op4); OpList.push_back(Op5);
2039  std::vector<MVT::ValueType> VTList;
2040  VTList.push_back(VT1); VTList.push_back(VT2);
2041  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2042                                              std::make_pair(VTList, OpList))];
2043  if (ON) return SDOperand(ON, 0);
2044
2045  RemoveNodeFromCSEMaps(N);
2046  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2047  setNodeValueTypes(N, VT1, VT2);
2048  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2049
2050  ON = N;   // Memoize the new node.
2051  return SDOperand(N, 0);
2052}
2053
2054/// getTargetNode - These are used for target selectors to create a new node
2055/// with specified return type(s), target opcode, and operands.
2056///
2057/// Note that getTargetNode returns the resultant node.  If there is already a
2058/// node of the specified opcode and operands, it returns that node instead of
2059/// the current one.
2060SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2061  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2062}
2063SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2064                                    SDOperand Op1) {
2065  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2066}
2067SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2068                                    SDOperand Op1, SDOperand Op2) {
2069  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2070}
2071SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2072                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2073  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2074}
2075SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2076                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2077                                    SDOperand Op4) {
2078  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4).Val;
2079}
2080SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2081                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2082                                    SDOperand Op4, SDOperand Op5) {
2083  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4, Op5).Val;
2084}
2085SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2086                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2087                                    SDOperand Op4, SDOperand Op5, SDOperand Op6) {
2088  std::vector<SDOperand> Ops;
2089  Ops.reserve(6);
2090  Ops.push_back(Op1);
2091  Ops.push_back(Op2);
2092  Ops.push_back(Op3);
2093  Ops.push_back(Op4);
2094  Ops.push_back(Op5);
2095  Ops.push_back(Op6);
2096  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2097}
2098SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2099                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2100                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2101                                    SDOperand Op7) {
2102  std::vector<SDOperand> Ops;
2103  Ops.reserve(7);
2104  Ops.push_back(Op1);
2105  Ops.push_back(Op2);
2106  Ops.push_back(Op3);
2107  Ops.push_back(Op4);
2108  Ops.push_back(Op5);
2109  Ops.push_back(Op6);
2110  Ops.push_back(Op7);
2111  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2112}
2113SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2114                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2115                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2116                                    SDOperand Op7, SDOperand Op8) {
2117  std::vector<SDOperand> Ops;
2118  Ops.reserve(8);
2119  Ops.push_back(Op1);
2120  Ops.push_back(Op2);
2121  Ops.push_back(Op3);
2122  Ops.push_back(Op4);
2123  Ops.push_back(Op5);
2124  Ops.push_back(Op6);
2125  Ops.push_back(Op7);
2126  Ops.push_back(Op8);
2127  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2128}
2129SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2130                                    std::vector<SDOperand> &Ops) {
2131  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2132}
2133SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2134                                    MVT::ValueType VT2, SDOperand Op1) {
2135  std::vector<MVT::ValueType> ResultTys;
2136  ResultTys.push_back(VT1);
2137  ResultTys.push_back(VT2);
2138  std::vector<SDOperand> Ops;
2139  Ops.push_back(Op1);
2140  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2141}
2142SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2143                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2) {
2144  std::vector<MVT::ValueType> ResultTys;
2145  ResultTys.push_back(VT1);
2146  ResultTys.push_back(VT2);
2147  std::vector<SDOperand> Ops;
2148  Ops.push_back(Op1);
2149  Ops.push_back(Op2);
2150  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2151}
2152SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2153                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2154                                    SDOperand Op3) {
2155  std::vector<MVT::ValueType> ResultTys;
2156  ResultTys.push_back(VT1);
2157  ResultTys.push_back(VT2);
2158  std::vector<SDOperand> Ops;
2159  Ops.push_back(Op1);
2160  Ops.push_back(Op2);
2161  Ops.push_back(Op3);
2162  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2163}
2164SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2165                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2166                                    SDOperand Op3, SDOperand Op4) {
2167  std::vector<MVT::ValueType> ResultTys;
2168  ResultTys.push_back(VT1);
2169  ResultTys.push_back(VT2);
2170  std::vector<SDOperand> Ops;
2171  Ops.push_back(Op1);
2172  Ops.push_back(Op2);
2173  Ops.push_back(Op3);
2174  Ops.push_back(Op4);
2175  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2176}
2177SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2178                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2179                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2180  std::vector<MVT::ValueType> ResultTys;
2181  ResultTys.push_back(VT1);
2182  ResultTys.push_back(VT2);
2183  std::vector<SDOperand> Ops;
2184  Ops.push_back(Op1);
2185  Ops.push_back(Op2);
2186  Ops.push_back(Op3);
2187  Ops.push_back(Op4);
2188  Ops.push_back(Op5);
2189  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2190}
2191SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2192                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2193                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2194                                    SDOperand Op6) {
2195  std::vector<MVT::ValueType> ResultTys;
2196  ResultTys.push_back(VT1);
2197  ResultTys.push_back(VT2);
2198  std::vector<SDOperand> Ops;
2199  Ops.push_back(Op1);
2200  Ops.push_back(Op2);
2201  Ops.push_back(Op3);
2202  Ops.push_back(Op4);
2203  Ops.push_back(Op5);
2204  Ops.push_back(Op6);
2205  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2206}
2207SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2208                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2209                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2210                                    SDOperand Op6, SDOperand Op7) {
2211  std::vector<MVT::ValueType> ResultTys;
2212  ResultTys.push_back(VT1);
2213  ResultTys.push_back(VT2);
2214  std::vector<SDOperand> Ops;
2215  Ops.push_back(Op1);
2216  Ops.push_back(Op2);
2217  Ops.push_back(Op3);
2218  Ops.push_back(Op4);
2219  Ops.push_back(Op5);
2220  Ops.push_back(Op6);
2221  Ops.push_back(Op7);
2222  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2223}
2224SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2225                                    MVT::ValueType VT2, MVT::ValueType VT3,
2226                                    SDOperand Op1, SDOperand Op2) {
2227  std::vector<MVT::ValueType> ResultTys;
2228  ResultTys.push_back(VT1);
2229  ResultTys.push_back(VT2);
2230  ResultTys.push_back(VT3);
2231  std::vector<SDOperand> Ops;
2232  Ops.push_back(Op1);
2233  Ops.push_back(Op2);
2234  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2235}
2236SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2237                                    MVT::ValueType VT2, MVT::ValueType VT3,
2238                                    SDOperand Op1, SDOperand Op2,
2239                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2240  std::vector<MVT::ValueType> ResultTys;
2241  ResultTys.push_back(VT1);
2242  ResultTys.push_back(VT2);
2243  ResultTys.push_back(VT3);
2244  std::vector<SDOperand> Ops;
2245  Ops.push_back(Op1);
2246  Ops.push_back(Op2);
2247  Ops.push_back(Op3);
2248  Ops.push_back(Op4);
2249  Ops.push_back(Op5);
2250  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2251}
2252SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2253                                    MVT::ValueType VT2, MVT::ValueType VT3,
2254                                    SDOperand Op1, SDOperand Op2,
2255                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2256                                    SDOperand Op6) {
2257  std::vector<MVT::ValueType> ResultTys;
2258  ResultTys.push_back(VT1);
2259  ResultTys.push_back(VT2);
2260  ResultTys.push_back(VT3);
2261  std::vector<SDOperand> Ops;
2262  Ops.push_back(Op1);
2263  Ops.push_back(Op2);
2264  Ops.push_back(Op3);
2265  Ops.push_back(Op4);
2266  Ops.push_back(Op5);
2267  Ops.push_back(Op6);
2268  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2269}
2270SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2271                                    MVT::ValueType VT2, MVT::ValueType VT3,
2272                                    SDOperand Op1, SDOperand Op2,
2273                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2274                                    SDOperand Op6, SDOperand Op7) {
2275  std::vector<MVT::ValueType> ResultTys;
2276  ResultTys.push_back(VT1);
2277  ResultTys.push_back(VT2);
2278  ResultTys.push_back(VT3);
2279  std::vector<SDOperand> Ops;
2280  Ops.push_back(Op1);
2281  Ops.push_back(Op2);
2282  Ops.push_back(Op3);
2283  Ops.push_back(Op4);
2284  Ops.push_back(Op5);
2285  Ops.push_back(Op6);
2286  Ops.push_back(Op7);
2287  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2288}
2289SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2290                                    MVT::ValueType VT2, std::vector<SDOperand> &Ops) {
2291  std::vector<MVT::ValueType> ResultTys;
2292  ResultTys.push_back(VT1);
2293  ResultTys.push_back(VT2);
2294  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2295}
2296
2297// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2298/// This can cause recursive merging of nodes in the DAG.
2299///
2300/// This version assumes From/To have a single result value.
2301///
2302void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2303                                      std::vector<SDNode*> *Deleted) {
2304  SDNode *From = FromN.Val, *To = ToN.Val;
2305  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2306         "Cannot replace with this method!");
2307  assert(From != To && "Cannot replace uses of with self");
2308
2309  while (!From->use_empty()) {
2310    // Process users until they are all gone.
2311    SDNode *U = *From->use_begin();
2312
2313    // This node is about to morph, remove its old self from the CSE maps.
2314    RemoveNodeFromCSEMaps(U);
2315
2316    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2317         I != E; ++I)
2318      if (I->Val == From) {
2319        From->removeUser(U);
2320        I->Val = To;
2321        To->addUser(U);
2322      }
2323
2324    // Now that we have modified U, add it back to the CSE maps.  If it already
2325    // exists there, recursively merge the results together.
2326    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2327      ReplaceAllUsesWith(U, Existing, Deleted);
2328      // U is now dead.
2329      if (Deleted) Deleted->push_back(U);
2330      DeleteNodeNotInCSEMaps(U);
2331    }
2332  }
2333}
2334
2335/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2336/// This can cause recursive merging of nodes in the DAG.
2337///
2338/// This version assumes From/To have matching types and numbers of result
2339/// values.
2340///
2341void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2342                                      std::vector<SDNode*> *Deleted) {
2343  assert(From != To && "Cannot replace uses of with self");
2344  assert(From->getNumValues() == To->getNumValues() &&
2345         "Cannot use this version of ReplaceAllUsesWith!");
2346  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2347    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2348    return;
2349  }
2350
2351  while (!From->use_empty()) {
2352    // Process users until they are all gone.
2353    SDNode *U = *From->use_begin();
2354
2355    // This node is about to morph, remove its old self from the CSE maps.
2356    RemoveNodeFromCSEMaps(U);
2357
2358    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2359         I != E; ++I)
2360      if (I->Val == From) {
2361        From->removeUser(U);
2362        I->Val = To;
2363        To->addUser(U);
2364      }
2365
2366    // Now that we have modified U, add it back to the CSE maps.  If it already
2367    // exists there, recursively merge the results together.
2368    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2369      ReplaceAllUsesWith(U, Existing, Deleted);
2370      // U is now dead.
2371      if (Deleted) Deleted->push_back(U);
2372      DeleteNodeNotInCSEMaps(U);
2373    }
2374  }
2375}
2376
2377/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2378/// This can cause recursive merging of nodes in the DAG.
2379///
2380/// This version can replace From with any result values.  To must match the
2381/// number and types of values returned by From.
2382void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2383                                      const std::vector<SDOperand> &To,
2384                                      std::vector<SDNode*> *Deleted) {
2385  assert(From->getNumValues() == To.size() &&
2386         "Incorrect number of values to replace with!");
2387  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2388    // Degenerate case handled above.
2389    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2390    return;
2391  }
2392
2393  while (!From->use_empty()) {
2394    // Process users until they are all gone.
2395    SDNode *U = *From->use_begin();
2396
2397    // This node is about to morph, remove its old self from the CSE maps.
2398    RemoveNodeFromCSEMaps(U);
2399
2400    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2401         I != E; ++I)
2402      if (I->Val == From) {
2403        const SDOperand &ToOp = To[I->ResNo];
2404        From->removeUser(U);
2405        *I = ToOp;
2406        ToOp.Val->addUser(U);
2407      }
2408
2409    // Now that we have modified U, add it back to the CSE maps.  If it already
2410    // exists there, recursively merge the results together.
2411    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2412      ReplaceAllUsesWith(U, Existing, Deleted);
2413      // U is now dead.
2414      if (Deleted) Deleted->push_back(U);
2415      DeleteNodeNotInCSEMaps(U);
2416    }
2417  }
2418}
2419
2420/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2421/// uses of other values produced by From.Val alone.  The Deleted vector is
2422/// handled the same was as for ReplaceAllUsesWith.
2423void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2424                                             std::vector<SDNode*> &Deleted) {
2425  assert(From != To && "Cannot replace a value with itself");
2426  // Handle the simple, trivial, case efficiently.
2427  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2428    ReplaceAllUsesWith(From, To, &Deleted);
2429    return;
2430  }
2431
2432  // Get all of the users in a nice, deterministically ordered, uniqued set.
2433  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2434
2435  while (!Users.empty()) {
2436    // We know that this user uses some value of From.  If it is the right
2437    // value, update it.
2438    SDNode *User = Users.back();
2439    Users.pop_back();
2440
2441    for (SDOperand *Op = User->OperandList,
2442         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2443      if (*Op == From) {
2444        // Okay, we know this user needs to be updated.  Remove its old self
2445        // from the CSE maps.
2446        RemoveNodeFromCSEMaps(User);
2447
2448        // Update all operands that match "From".
2449        for (; Op != E; ++Op) {
2450          if (*Op == From) {
2451            From.Val->removeUser(User);
2452            *Op = To;
2453            To.Val->addUser(User);
2454          }
2455        }
2456
2457        // Now that we have modified User, add it back to the CSE maps.  If it
2458        // already exists there, recursively merge the results together.
2459        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2460          unsigned NumDeleted = Deleted.size();
2461          ReplaceAllUsesWith(User, Existing, &Deleted);
2462
2463          // User is now dead.
2464          Deleted.push_back(User);
2465          DeleteNodeNotInCSEMaps(User);
2466
2467          // We have to be careful here, because ReplaceAllUsesWith could have
2468          // deleted a user of From, which means there may be dangling pointers
2469          // in the "Users" setvector.  Scan over the deleted node pointers and
2470          // remove them from the setvector.
2471          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2472            Users.remove(Deleted[i]);
2473        }
2474        break;   // Exit the operand scanning loop.
2475      }
2476    }
2477  }
2478}
2479
2480
2481//===----------------------------------------------------------------------===//
2482//                              SDNode Class
2483//===----------------------------------------------------------------------===//
2484
2485
2486/// getValueTypeList - Return a pointer to the specified value type.
2487///
2488MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2489  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2490  VTs[VT] = VT;
2491  return &VTs[VT];
2492}
2493
2494/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2495/// indicated value.  This method ignores uses of other values defined by this
2496/// operation.
2497bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2498  assert(Value < getNumValues() && "Bad value!");
2499
2500  // If there is only one value, this is easy.
2501  if (getNumValues() == 1)
2502    return use_size() == NUses;
2503  if (Uses.size() < NUses) return false;
2504
2505  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2506
2507  std::set<SDNode*> UsersHandled;
2508
2509  for (std::vector<SDNode*>::const_iterator UI = Uses.begin(), E = Uses.end();
2510       UI != E; ++UI) {
2511    SDNode *User = *UI;
2512    if (User->getNumOperands() == 1 ||
2513        UsersHandled.insert(User).second)     // First time we've seen this?
2514      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2515        if (User->getOperand(i) == TheValue) {
2516          if (NUses == 0)
2517            return false;   // too many uses
2518          --NUses;
2519        }
2520  }
2521
2522  // Found exactly the right number of uses?
2523  return NUses == 0;
2524}
2525
2526
2527// isOnlyUse - Return true if this node is the only use of N.
2528bool SDNode::isOnlyUse(SDNode *N) const {
2529  bool Seen = false;
2530  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2531    SDNode *User = *I;
2532    if (User == this)
2533      Seen = true;
2534    else
2535      return false;
2536  }
2537
2538  return Seen;
2539}
2540
2541// isOperand - Return true if this node is an operand of N.
2542bool SDOperand::isOperand(SDNode *N) const {
2543  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2544    if (*this == N->getOperand(i))
2545      return true;
2546  return false;
2547}
2548
2549bool SDNode::isOperand(SDNode *N) const {
2550  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2551    if (this == N->OperandList[i].Val)
2552      return true;
2553  return false;
2554}
2555
2556const char *SDNode::getOperationName(const SelectionDAG *G) const {
2557  switch (getOpcode()) {
2558  default:
2559    if (getOpcode() < ISD::BUILTIN_OP_END)
2560      return "<<Unknown DAG Node>>";
2561    else {
2562      if (G) {
2563        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2564          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2565            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2566
2567        TargetLowering &TLI = G->getTargetLoweringInfo();
2568        const char *Name =
2569          TLI.getTargetNodeName(getOpcode());
2570        if (Name) return Name;
2571      }
2572
2573      return "<<Unknown Target Node>>";
2574    }
2575
2576  case ISD::PCMARKER:      return "PCMarker";
2577  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2578  case ISD::SRCVALUE:      return "SrcValue";
2579  case ISD::EntryToken:    return "EntryToken";
2580  case ISD::TokenFactor:   return "TokenFactor";
2581  case ISD::AssertSext:    return "AssertSext";
2582  case ISD::AssertZext:    return "AssertZext";
2583
2584  case ISD::STRING:        return "String";
2585  case ISD::BasicBlock:    return "BasicBlock";
2586  case ISD::VALUETYPE:     return "ValueType";
2587  case ISD::Register:      return "Register";
2588
2589  case ISD::Constant:      return "Constant";
2590  case ISD::ConstantFP:    return "ConstantFP";
2591  case ISD::GlobalAddress: return "GlobalAddress";
2592  case ISD::FrameIndex:    return "FrameIndex";
2593  case ISD::ConstantPool:  return "ConstantPool";
2594  case ISD::ExternalSymbol: return "ExternalSymbol";
2595
2596  case ISD::ConstantVec:   return "ConstantVec";
2597  case ISD::TargetConstant: return "TargetConstant";
2598  case ISD::TargetConstantFP:return "TargetConstantFP";
2599  case ISD::TargetConstantVec:return "TargetConstantVec";
2600  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2601  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2602  case ISD::TargetConstantPool:  return "TargetConstantPool";
2603  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2604  case ISD::VConstant:     return "VConstant";
2605
2606  case ISD::CopyToReg:     return "CopyToReg";
2607  case ISD::CopyFromReg:   return "CopyFromReg";
2608  case ISD::UNDEF:         return "undef";
2609  case ISD::MERGE_VALUES:  return "mergevalues";
2610  case ISD::INLINEASM:     return "inlineasm";
2611  case ISD::HANDLENODE:    return "handlenode";
2612
2613  // Unary operators
2614  case ISD::FABS:   return "fabs";
2615  case ISD::FNEG:   return "fneg";
2616  case ISD::FSQRT:  return "fsqrt";
2617  case ISD::FSIN:   return "fsin";
2618  case ISD::FCOS:   return "fcos";
2619
2620  // Binary operators
2621  case ISD::ADD:    return "add";
2622  case ISD::SUB:    return "sub";
2623  case ISD::MUL:    return "mul";
2624  case ISD::MULHU:  return "mulhu";
2625  case ISD::MULHS:  return "mulhs";
2626  case ISD::SDIV:   return "sdiv";
2627  case ISD::UDIV:   return "udiv";
2628  case ISD::SREM:   return "srem";
2629  case ISD::UREM:   return "urem";
2630  case ISD::AND:    return "and";
2631  case ISD::OR:     return "or";
2632  case ISD::XOR:    return "xor";
2633  case ISD::SHL:    return "shl";
2634  case ISD::SRA:    return "sra";
2635  case ISD::SRL:    return "srl";
2636  case ISD::ROTL:   return "rotl";
2637  case ISD::ROTR:   return "rotr";
2638  case ISD::FADD:   return "fadd";
2639  case ISD::FSUB:   return "fsub";
2640  case ISD::FMUL:   return "fmul";
2641  case ISD::FDIV:   return "fdiv";
2642  case ISD::FREM:   return "frem";
2643  case ISD::FCOPYSIGN: return "fcopysign";
2644  case ISD::VADD:   return "vadd";
2645  case ISD::VSUB:   return "vsub";
2646  case ISD::VMUL:   return "vmul";
2647
2648  case ISD::SETCC:       return "setcc";
2649  case ISD::SELECT:      return "select";
2650  case ISD::SELECT_CC:   return "select_cc";
2651  case ISD::ADDC:        return "addc";
2652  case ISD::ADDE:        return "adde";
2653  case ISD::SUBC:        return "subc";
2654  case ISD::SUBE:        return "sube";
2655  case ISD::SHL_PARTS:   return "shl_parts";
2656  case ISD::SRA_PARTS:   return "sra_parts";
2657  case ISD::SRL_PARTS:   return "srl_parts";
2658
2659  // Conversion operators.
2660  case ISD::SIGN_EXTEND: return "sign_extend";
2661  case ISD::ZERO_EXTEND: return "zero_extend";
2662  case ISD::ANY_EXTEND:  return "any_extend";
2663  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2664  case ISD::TRUNCATE:    return "truncate";
2665  case ISD::FP_ROUND:    return "fp_round";
2666  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2667  case ISD::FP_EXTEND:   return "fp_extend";
2668
2669  case ISD::SINT_TO_FP:  return "sint_to_fp";
2670  case ISD::UINT_TO_FP:  return "uint_to_fp";
2671  case ISD::FP_TO_SINT:  return "fp_to_sint";
2672  case ISD::FP_TO_UINT:  return "fp_to_uint";
2673  case ISD::BIT_CONVERT: return "bit_convert";
2674
2675    // Control flow instructions
2676  case ISD::BR:      return "br";
2677  case ISD::BRCOND:  return "brcond";
2678  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
2679  case ISD::BR_CC:  return "br_cc";
2680  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
2681  case ISD::RET:     return "ret";
2682  case ISD::CALLSEQ_START:  return "callseq_start";
2683  case ISD::CALLSEQ_END:    return "callseq_end";
2684
2685    // Other operators
2686  case ISD::LOAD:               return "load";
2687  case ISD::STORE:              return "store";
2688  case ISD::VLOAD:              return "vload";
2689  case ISD::EXTLOAD:            return "extload";
2690  case ISD::SEXTLOAD:           return "sextload";
2691  case ISD::ZEXTLOAD:           return "zextload";
2692  case ISD::TRUNCSTORE:         return "truncstore";
2693  case ISD::VAARG:              return "vaarg";
2694  case ISD::VACOPY:             return "vacopy";
2695  case ISD::VAEND:              return "vaend";
2696  case ISD::VASTART:            return "vastart";
2697  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2698  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2699  case ISD::BUILD_PAIR:         return "build_pair";
2700  case ISD::STACKSAVE:          return "stacksave";
2701  case ISD::STACKRESTORE:       return "stackrestore";
2702
2703  // Block memory operations.
2704  case ISD::MEMSET:  return "memset";
2705  case ISD::MEMCPY:  return "memcpy";
2706  case ISD::MEMMOVE: return "memmove";
2707
2708  // Bit manipulation
2709  case ISD::BSWAP:   return "bswap";
2710  case ISD::CTPOP:   return "ctpop";
2711  case ISD::CTTZ:    return "cttz";
2712  case ISD::CTLZ:    return "ctlz";
2713
2714  // Debug info
2715  case ISD::LOCATION: return "location";
2716  case ISD::DEBUG_LOC: return "debug_loc";
2717  case ISD::DEBUG_LABEL: return "debug_label";
2718
2719  case ISD::CONDCODE:
2720    switch (cast<CondCodeSDNode>(this)->get()) {
2721    default: assert(0 && "Unknown setcc condition!");
2722    case ISD::SETOEQ:  return "setoeq";
2723    case ISD::SETOGT:  return "setogt";
2724    case ISD::SETOGE:  return "setoge";
2725    case ISD::SETOLT:  return "setolt";
2726    case ISD::SETOLE:  return "setole";
2727    case ISD::SETONE:  return "setone";
2728
2729    case ISD::SETO:    return "seto";
2730    case ISD::SETUO:   return "setuo";
2731    case ISD::SETUEQ:  return "setue";
2732    case ISD::SETUGT:  return "setugt";
2733    case ISD::SETUGE:  return "setuge";
2734    case ISD::SETULT:  return "setult";
2735    case ISD::SETULE:  return "setule";
2736    case ISD::SETUNE:  return "setune";
2737
2738    case ISD::SETEQ:   return "seteq";
2739    case ISD::SETGT:   return "setgt";
2740    case ISD::SETGE:   return "setge";
2741    case ISD::SETLT:   return "setlt";
2742    case ISD::SETLE:   return "setle";
2743    case ISD::SETNE:   return "setne";
2744    }
2745  }
2746}
2747
2748void SDNode::dump() const { dump(0); }
2749void SDNode::dump(const SelectionDAG *G) const {
2750  std::cerr << (void*)this << ": ";
2751
2752  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2753    if (i) std::cerr << ",";
2754    if (getValueType(i) == MVT::Other)
2755      std::cerr << "ch";
2756    else
2757      std::cerr << MVT::getValueTypeString(getValueType(i));
2758  }
2759  std::cerr << " = " << getOperationName(G);
2760
2761  std::cerr << " ";
2762  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2763    if (i) std::cerr << ", ";
2764    std::cerr << (void*)getOperand(i).Val;
2765    if (unsigned RN = getOperand(i).ResNo)
2766      std::cerr << ":" << RN;
2767  }
2768
2769  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2770    std::cerr << "<" << CSDN->getValue() << ">";
2771  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2772    std::cerr << "<" << CSDN->getValue() << ">";
2773  } else if (const GlobalAddressSDNode *GADN =
2774             dyn_cast<GlobalAddressSDNode>(this)) {
2775    int offset = GADN->getOffset();
2776    std::cerr << "<";
2777    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2778    if (offset > 0)
2779      std::cerr << " + " << offset;
2780    else
2781      std::cerr << " " << offset;
2782  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2783    std::cerr << "<" << FIDN->getIndex() << ">";
2784  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2785    int offset = CP->getOffset();
2786    std::cerr << "<" << *CP->get() << ">";
2787    if (offset > 0)
2788      std::cerr << " + " << offset;
2789    else
2790      std::cerr << " " << offset;
2791  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2792    std::cerr << "<";
2793    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2794    if (LBB)
2795      std::cerr << LBB->getName() << " ";
2796    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2797  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2798    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2799      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2800    } else {
2801      std::cerr << " #" << R->getReg();
2802    }
2803  } else if (const ExternalSymbolSDNode *ES =
2804             dyn_cast<ExternalSymbolSDNode>(this)) {
2805    std::cerr << "'" << ES->getSymbol() << "'";
2806  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2807    if (M->getValue())
2808      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2809    else
2810      std::cerr << "<null:" << M->getOffset() << ">";
2811  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2812    std::cerr << ":" << getValueTypeString(N->getVT());
2813  }
2814}
2815
2816static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2817  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2818    if (N->getOperand(i).Val->hasOneUse())
2819      DumpNodes(N->getOperand(i).Val, indent+2, G);
2820    else
2821      std::cerr << "\n" << std::string(indent+2, ' ')
2822                << (void*)N->getOperand(i).Val << ": <multiple use>";
2823
2824
2825  std::cerr << "\n" << std::string(indent, ' ');
2826  N->dump(G);
2827}
2828
2829void SelectionDAG::dump() const {
2830  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2831  std::vector<const SDNode*> Nodes;
2832  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2833       I != E; ++I)
2834    Nodes.push_back(I);
2835
2836  std::sort(Nodes.begin(), Nodes.end());
2837
2838  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2839    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2840      DumpNodes(Nodes[i], 2, this);
2841  }
2842
2843  DumpNodes(getRoot().Val, 2, this);
2844
2845  std::cerr << "\n\n";
2846}
2847
2848/// InsertISelMapEntry - A helper function to insert a key / element pair
2849/// into a SDOperand to SDOperand map. This is added to avoid the map
2850/// insertion operator from being inlined.
2851void SelectionDAG::InsertISelMapEntry(std::map<SDOperand, SDOperand> &Map,
2852                                      SDNode *Key, unsigned KeyResNo,
2853                                      SDNode *Element, unsigned ElementResNo) {
2854  Map.insert(std::make_pair(SDOperand(Key, KeyResNo),
2855                            SDOperand(Element, ElementResNo)));
2856}
2857