SelectionDAG.cpp revision a1dc6025422cd0e6f951c69a8427f7f885cf52c3
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44/// makeVTList - Return an instance of the SDVTList struct initialized with the
45/// specified members.
46static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
47  SDVTList Res = {VTs, NumVTs};
48  return Res;
49}
50
51static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
52  switch (VT.getSimpleVT()) {
53  default: assert(0 && "Unknown FP format");
54  case MVT::f32:     return &APFloat::IEEEsingle;
55  case MVT::f64:     return &APFloat::IEEEdouble;
56  case MVT::f80:     return &APFloat::x87DoubleExtended;
57  case MVT::f128:    return &APFloat::IEEEquad;
58  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
59  }
60}
61
62SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
73  return getValueAPF().bitwiseIsEqual(V);
74}
75
76bool ConstantFPSDNode::isValueValidForType(MVT VT,
77                                           const APFloat& Val) {
78  assert(VT.isFloatingPoint() && "Can only convert between FP types");
79
80  // PPC long double cannot be converted to any other type.
81  if (VT == MVT::ppcf128 ||
82      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  bool losesInfo;
88  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
89                      &losesInfo);
90  return !losesInfo;
91}
92
93//===----------------------------------------------------------------------===//
94//                              ISD Namespace
95//===----------------------------------------------------------------------===//
96
97/// isBuildVectorAllOnes - Return true if the specified node is a
98/// BUILD_VECTOR where all of the elements are ~0 or undef.
99bool ISD::isBuildVectorAllOnes(const SDNode *N) {
100  // Look through a bit convert.
101  if (N->getOpcode() == ISD::BIT_CONVERT)
102    N = N->getOperand(0).getNode();
103
104  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
105
106  unsigned i = 0, e = N->getNumOperands();
107
108  // Skip over all of the undef values.
109  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
110    ++i;
111
112  // Do not accept an all-undef vector.
113  if (i == e) return false;
114
115  // Do not accept build_vectors that aren't all constants or which have non-~0
116  // elements.
117  SDValue NotZero = N->getOperand(i);
118  if (isa<ConstantSDNode>(NotZero)) {
119    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
120      return false;
121  } else if (isa<ConstantFPSDNode>(NotZero)) {
122    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
123                bitcastToAPInt().isAllOnesValue())
124      return false;
125  } else
126    return false;
127
128  // Okay, we have at least one ~0 value, check to see if the rest match or are
129  // undefs.
130  for (++i; i != e; ++i)
131    if (N->getOperand(i) != NotZero &&
132        N->getOperand(i).getOpcode() != ISD::UNDEF)
133      return false;
134  return true;
135}
136
137
138/// isBuildVectorAllZeros - Return true if the specified node is a
139/// BUILD_VECTOR where all of the elements are 0 or undef.
140bool ISD::isBuildVectorAllZeros(const SDNode *N) {
141  // Look through a bit convert.
142  if (N->getOpcode() == ISD::BIT_CONVERT)
143    N = N->getOperand(0).getNode();
144
145  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
146
147  unsigned i = 0, e = N->getNumOperands();
148
149  // Skip over all of the undef values.
150  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
151    ++i;
152
153  // Do not accept an all-undef vector.
154  if (i == e) return false;
155
156  // Do not accept build_vectors that aren't all constants or which have non-~0
157  // elements.
158  SDValue Zero = N->getOperand(i);
159  if (isa<ConstantSDNode>(Zero)) {
160    if (!cast<ConstantSDNode>(Zero)->isNullValue())
161      return false;
162  } else if (isa<ConstantFPSDNode>(Zero)) {
163    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
164      return false;
165  } else
166    return false;
167
168  // Okay, we have at least one ~0 value, check to see if the rest match or are
169  // undefs.
170  for (++i; i != e; ++i)
171    if (N->getOperand(i) != Zero &&
172        N->getOperand(i).getOpcode() != ISD::UNDEF)
173      return false;
174  return true;
175}
176
177/// isScalarToVector - Return true if the specified node is a
178/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
179/// element is not an undef.
180bool ISD::isScalarToVector(const SDNode *N) {
181  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
182    return true;
183
184  if (N->getOpcode() != ISD::BUILD_VECTOR)
185    return false;
186  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
187    return false;
188  unsigned NumElems = N->getNumOperands();
189  for (unsigned i = 1; i < NumElems; ++i) {
190    SDValue V = N->getOperand(i);
191    if (V.getOpcode() != ISD::UNDEF)
192      return false;
193  }
194  return true;
195}
196
197
198/// isDebugLabel - Return true if the specified node represents a debug
199/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
200bool ISD::isDebugLabel(const SDNode *N) {
201  SDValue Zero;
202  if (N->getOpcode() == ISD::DBG_LABEL)
203    return true;
204  if (N->isMachineOpcode() &&
205      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
206    return true;
207  return false;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309const TargetMachine &SelectionDAG::getTarget() const {
310  return MF->getTarget();
311}
312
313//===----------------------------------------------------------------------===//
314//                           SDNode Profile Support
315//===----------------------------------------------------------------------===//
316
317/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
318///
319static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
320  ID.AddInteger(OpC);
321}
322
323/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
324/// solely with their pointer.
325static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
326  ID.AddPointer(VTList.VTs);
327}
328
329/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
330///
331static void AddNodeIDOperands(FoldingSetNodeID &ID,
332                              const SDValue *Ops, unsigned NumOps) {
333  for (; NumOps; --NumOps, ++Ops) {
334    ID.AddPointer(Ops->getNode());
335    ID.AddInteger(Ops->getResNo());
336  }
337}
338
339/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
340///
341static void AddNodeIDOperands(FoldingSetNodeID &ID,
342                              const SDUse *Ops, unsigned NumOps) {
343  for (; NumOps; --NumOps, ++Ops) {
344    ID.AddPointer(Ops->getVal());
345    ID.AddInteger(Ops->getSDValue().getResNo());
346  }
347}
348
349static void AddNodeIDNode(FoldingSetNodeID &ID,
350                          unsigned short OpC, SDVTList VTList,
351                          const SDValue *OpList, unsigned N) {
352  AddNodeIDOpcode(ID, OpC);
353  AddNodeIDValueTypes(ID, VTList);
354  AddNodeIDOperands(ID, OpList, N);
355}
356
357
358/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
359/// data.
360static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
361  AddNodeIDOpcode(ID, N->getOpcode());
362  // Add the return value info.
363  AddNodeIDValueTypes(ID, N->getVTList());
364  // Add the operand info.
365  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
366
367  // Handle SDNode leafs with special info.
368  switch (N->getOpcode()) {
369  default: break;  // Normal nodes don't need extra info.
370  case ISD::ARG_FLAGS:
371    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
372    break;
373  case ISD::TargetConstant:
374  case ISD::Constant:
375    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
376    break;
377  case ISD::TargetConstantFP:
378  case ISD::ConstantFP: {
379    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
380    break;
381  }
382  case ISD::TargetGlobalAddress:
383  case ISD::GlobalAddress:
384  case ISD::TargetGlobalTLSAddress:
385  case ISD::GlobalTLSAddress: {
386    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
387    ID.AddPointer(GA->getGlobal());
388    ID.AddInteger(GA->getOffset());
389    break;
390  }
391  case ISD::BasicBlock:
392    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
393    break;
394  case ISD::Register:
395    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
396    break;
397  case ISD::DBG_STOPPOINT: {
398    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
399    ID.AddInteger(DSP->getLine());
400    ID.AddInteger(DSP->getColumn());
401    ID.AddPointer(DSP->getCompileUnit());
402    break;
403  }
404  case ISD::SRCVALUE:
405    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
406    break;
407  case ISD::MEMOPERAND: {
408    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
409    MO.Profile(ID);
410    break;
411  }
412  case ISD::FrameIndex:
413  case ISD::TargetFrameIndex:
414    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
415    break;
416  case ISD::JumpTable:
417  case ISD::TargetJumpTable:
418    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
419    break;
420  case ISD::ConstantPool:
421  case ISD::TargetConstantPool: {
422    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
423    ID.AddInteger(CP->getAlignment());
424    ID.AddInteger(CP->getOffset());
425    if (CP->isMachineConstantPoolEntry())
426      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
427    else
428      ID.AddPointer(CP->getConstVal());
429    break;
430  }
431  case ISD::CALL: {
432    const CallSDNode *Call = cast<CallSDNode>(N);
433    ID.AddInteger(Call->getCallingConv());
434    ID.AddInteger(Call->isVarArg());
435    break;
436  }
437  case ISD::LOAD: {
438    const LoadSDNode *LD = cast<LoadSDNode>(N);
439    ID.AddInteger(LD->getAddressingMode());
440    ID.AddInteger(LD->getExtensionType());
441    ID.AddInteger(LD->getMemoryVT().getRawBits());
442    ID.AddInteger(LD->getRawFlags());
443    break;
444  }
445  case ISD::STORE: {
446    const StoreSDNode *ST = cast<StoreSDNode>(N);
447    ID.AddInteger(ST->getAddressingMode());
448    ID.AddInteger(ST->isTruncatingStore());
449    ID.AddInteger(ST->getMemoryVT().getRawBits());
450    ID.AddInteger(ST->getRawFlags());
451    break;
452  }
453  case ISD::ATOMIC_CMP_SWAP_8:
454  case ISD::ATOMIC_SWAP_8:
455  case ISD::ATOMIC_LOAD_ADD_8:
456  case ISD::ATOMIC_LOAD_SUB_8:
457  case ISD::ATOMIC_LOAD_AND_8:
458  case ISD::ATOMIC_LOAD_OR_8:
459  case ISD::ATOMIC_LOAD_XOR_8:
460  case ISD::ATOMIC_LOAD_NAND_8:
461  case ISD::ATOMIC_LOAD_MIN_8:
462  case ISD::ATOMIC_LOAD_MAX_8:
463  case ISD::ATOMIC_LOAD_UMIN_8:
464  case ISD::ATOMIC_LOAD_UMAX_8:
465  case ISD::ATOMIC_CMP_SWAP_16:
466  case ISD::ATOMIC_SWAP_16:
467  case ISD::ATOMIC_LOAD_ADD_16:
468  case ISD::ATOMIC_LOAD_SUB_16:
469  case ISD::ATOMIC_LOAD_AND_16:
470  case ISD::ATOMIC_LOAD_OR_16:
471  case ISD::ATOMIC_LOAD_XOR_16:
472  case ISD::ATOMIC_LOAD_NAND_16:
473  case ISD::ATOMIC_LOAD_MIN_16:
474  case ISD::ATOMIC_LOAD_MAX_16:
475  case ISD::ATOMIC_LOAD_UMIN_16:
476  case ISD::ATOMIC_LOAD_UMAX_16:
477  case ISD::ATOMIC_CMP_SWAP_32:
478  case ISD::ATOMIC_SWAP_32:
479  case ISD::ATOMIC_LOAD_ADD_32:
480  case ISD::ATOMIC_LOAD_SUB_32:
481  case ISD::ATOMIC_LOAD_AND_32:
482  case ISD::ATOMIC_LOAD_OR_32:
483  case ISD::ATOMIC_LOAD_XOR_32:
484  case ISD::ATOMIC_LOAD_NAND_32:
485  case ISD::ATOMIC_LOAD_MIN_32:
486  case ISD::ATOMIC_LOAD_MAX_32:
487  case ISD::ATOMIC_LOAD_UMIN_32:
488  case ISD::ATOMIC_LOAD_UMAX_32:
489  case ISD::ATOMIC_CMP_SWAP_64:
490  case ISD::ATOMIC_SWAP_64:
491  case ISD::ATOMIC_LOAD_ADD_64:
492  case ISD::ATOMIC_LOAD_SUB_64:
493  case ISD::ATOMIC_LOAD_AND_64:
494  case ISD::ATOMIC_LOAD_OR_64:
495  case ISD::ATOMIC_LOAD_XOR_64:
496  case ISD::ATOMIC_LOAD_NAND_64:
497  case ISD::ATOMIC_LOAD_MIN_64:
498  case ISD::ATOMIC_LOAD_MAX_64:
499  case ISD::ATOMIC_LOAD_UMIN_64:
500  case ISD::ATOMIC_LOAD_UMAX_64: {
501    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
502    ID.AddInteger(AT->getRawFlags());
503    break;
504  }
505  } // end switch (N->getOpcode())
506}
507
508/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
509/// the CSE map that carries both alignment and volatility information.
510///
511static inline unsigned
512encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
513  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
514}
515
516//===----------------------------------------------------------------------===//
517//                              SelectionDAG Class
518//===----------------------------------------------------------------------===//
519
520/// RemoveDeadNodes - This method deletes all unreachable nodes in the
521/// SelectionDAG.
522void SelectionDAG::RemoveDeadNodes() {
523  // Create a dummy node (which is not added to allnodes), that adds a reference
524  // to the root node, preventing it from being deleted.
525  HandleSDNode Dummy(getRoot());
526
527  SmallVector<SDNode*, 128> DeadNodes;
528
529  // Add all obviously-dead nodes to the DeadNodes worklist.
530  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
531    if (I->use_empty())
532      DeadNodes.push_back(I);
533
534  RemoveDeadNodes(DeadNodes);
535
536  // If the root changed (e.g. it was a dead load, update the root).
537  setRoot(Dummy.getValue());
538}
539
540/// RemoveDeadNodes - This method deletes the unreachable nodes in the
541/// given list, and any nodes that become unreachable as a result.
542void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
543                                   DAGUpdateListener *UpdateListener) {
544
545  // Process the worklist, deleting the nodes and adding their uses to the
546  // worklist.
547  while (!DeadNodes.empty()) {
548    SDNode *N = DeadNodes.back();
549    DeadNodes.pop_back();
550
551    if (UpdateListener)
552      UpdateListener->NodeDeleted(N, 0);
553
554    // Take the node out of the appropriate CSE map.
555    RemoveNodeFromCSEMaps(N);
556
557    // Next, brutally remove the operand list.  This is safe to do, as there are
558    // no cycles in the graph.
559    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
560      SDNode *Operand = I->getVal();
561      Operand->removeUser(std::distance(N->op_begin(), I), N);
562
563      // Now that we removed this operand, see if there are no uses of it left.
564      if (Operand->use_empty())
565        DeadNodes.push_back(Operand);
566    }
567
568    if (N->OperandsNeedDelete)
569      delete[] N->OperandList;
570
571    N->OperandList = 0;
572    N->NumOperands = 0;
573
574    // Finally, remove N itself.
575    NodeAllocator.Deallocate(AllNodes.remove(N));
576  }
577}
578
579void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
580  SmallVector<SDNode*, 16> DeadNodes(1, N);
581  RemoveDeadNodes(DeadNodes, UpdateListener);
582}
583
584void SelectionDAG::DeleteNode(SDNode *N) {
585  assert(N->use_empty() && "Cannot delete a node that is not dead!");
586
587  // First take this out of the appropriate CSE map.
588  RemoveNodeFromCSEMaps(N);
589
590  // Finally, remove uses due to operands of this node, remove from the
591  // AllNodes list, and delete the node.
592  DeleteNodeNotInCSEMaps(N);
593}
594
595void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
596  // Drop all of the operands and decrement used node's use counts.
597  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
598    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
599
600  if (N->OperandsNeedDelete) {
601    delete[] N->OperandList;
602    N->OperandList = 0;
603  }
604
605  assert(N != AllNodes.begin());
606  NodeAllocator.Deallocate(AllNodes.remove(N));
607}
608
609/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
610/// correspond to it.  This is useful when we're about to delete or repurpose
611/// the node.  We don't want future request for structurally identical nodes
612/// to return N anymore.
613bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
614  bool Erased = false;
615  switch (N->getOpcode()) {
616  case ISD::EntryToken:
617    assert(0 && "EntryToken should not be in CSEMaps!");
618    return false;
619  case ISD::HANDLENODE: return false;  // noop.
620  case ISD::CONDCODE:
621    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
622           "Cond code doesn't exist!");
623    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
624    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
625    break;
626  case ISD::ExternalSymbol:
627    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
628    break;
629  case ISD::TargetExternalSymbol:
630    Erased =
631      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
632    break;
633  case ISD::VALUETYPE: {
634    MVT VT = cast<VTSDNode>(N)->getVT();
635    if (VT.isExtended()) {
636      Erased = ExtendedValueTypeNodes.erase(VT);
637    } else {
638      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
639      ValueTypeNodes[VT.getSimpleVT()] = 0;
640    }
641    break;
642  }
643  default:
644    // Remove it from the CSE Map.
645    Erased = CSEMap.RemoveNode(N);
646    break;
647  }
648#ifndef NDEBUG
649  // Verify that the node was actually in one of the CSE maps, unless it has a
650  // flag result (which cannot be CSE'd) or is one of the special cases that are
651  // not subject to CSE.
652  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
653      !N->isMachineOpcode() &&
654      N->getOpcode() != ISD::DBG_LABEL &&
655      N->getOpcode() != ISD::DBG_STOPPOINT &&
656      N->getOpcode() != ISD::EH_LABEL &&
657      N->getOpcode() != ISD::DECLARE) {
658    N->dump(this);
659    cerr << "\n";
660    assert(0 && "Node is not in map!");
661  }
662#endif
663  return Erased;
664}
665
666/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
667/// has been taken out and modified in some way.  If the specified node already
668/// exists in the CSE maps, do not modify the maps, but return the existing node
669/// instead.  If it doesn't exist, add it and return null.
670///
671SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
672  assert(N->getNumOperands() && "This is a leaf node!");
673
674  if (N->getValueType(0) == MVT::Flag)
675    return 0;   // Never CSE anything that produces a flag.
676
677  switch (N->getOpcode()) {
678  default: break;
679  case ISD::HANDLENODE:
680  case ISD::DBG_LABEL:
681  case ISD::DBG_STOPPOINT:
682  case ISD::EH_LABEL:
683  case ISD::DECLARE:
684    return 0;   // Never add these nodes.
685  }
686
687  // Check that remaining values produced are not flags.
688  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
689    if (N->getValueType(i) == MVT::Flag)
690      return 0; // Never CSE anything that produces a flag.
691
692  SDNode *New = CSEMap.GetOrInsertNode(N);
693  if (New != N) return New;  // Node already existed.
694  return 0;
695}
696
697/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
698/// were replaced with those specified.  If this node is never memoized,
699/// return null, otherwise return a pointer to the slot it would take.  If a
700/// node already exists with these operands, the slot will be non-null.
701SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
702                                           void *&InsertPos) {
703  if (N->getValueType(0) == MVT::Flag)
704    return 0;   // Never CSE anything that produces a flag.
705
706  switch (N->getOpcode()) {
707  default: break;
708  case ISD::HANDLENODE:
709  case ISD::DBG_LABEL:
710  case ISD::DBG_STOPPOINT:
711  case ISD::EH_LABEL:
712    return 0;   // Never add these nodes.
713  }
714
715  // Check that remaining values produced are not flags.
716  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
717    if (N->getValueType(i) == MVT::Flag)
718      return 0; // Never CSE anything that produces a flag.
719
720  SDValue Ops[] = { Op };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
723  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
724}
725
726/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
727/// were replaced with those specified.  If this node is never memoized,
728/// return null, otherwise return a pointer to the slot it would take.  If a
729/// node already exists with these operands, the slot will be non-null.
730SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
731                                           SDValue Op1, SDValue Op2,
732                                           void *&InsertPos) {
733  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
734
735  // Check that remaining values produced are not flags.
736  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
737    if (N->getValueType(i) == MVT::Flag)
738      return 0; // Never CSE anything that produces a flag.
739
740  SDValue Ops[] = { Op1, Op2 };
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
743  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
744}
745
746
747/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
748/// were replaced with those specified.  If this node is never memoized,
749/// return null, otherwise return a pointer to the slot it would take.  If a
750/// node already exists with these operands, the slot will be non-null.
751SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
752                                           const SDValue *Ops,unsigned NumOps,
753                                           void *&InsertPos) {
754  if (N->getValueType(0) == MVT::Flag)
755    return 0;   // Never CSE anything that produces a flag.
756
757  switch (N->getOpcode()) {
758  default: break;
759  case ISD::HANDLENODE:
760  case ISD::DBG_LABEL:
761  case ISD::DBG_STOPPOINT:
762  case ISD::EH_LABEL:
763  case ISD::DECLARE:
764    return 0;   // Never add these nodes.
765  }
766
767  // Check that remaining values produced are not flags.
768  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
769    if (N->getValueType(i) == MVT::Flag)
770      return 0; // Never CSE anything that produces a flag.
771
772  FoldingSetNodeID ID;
773  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
774
775  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
776    ID.AddInteger(LD->getAddressingMode());
777    ID.AddInteger(LD->getExtensionType());
778    ID.AddInteger(LD->getMemoryVT().getRawBits());
779    ID.AddInteger(LD->getRawFlags());
780  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
781    ID.AddInteger(ST->getAddressingMode());
782    ID.AddInteger(ST->isTruncatingStore());
783    ID.AddInteger(ST->getMemoryVT().getRawBits());
784    ID.AddInteger(ST->getRawFlags());
785  }
786
787  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
788}
789
790/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
791void SelectionDAG::VerifyNode(SDNode *N) {
792  switch (N->getOpcode()) {
793  default:
794    break;
795  case ISD::BUILD_VECTOR: {
796    assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!");
797    assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!");
798    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
799           "Wrong number of BUILD_VECTOR operands!");
800    MVT EltVT = N->getValueType(0).getVectorElementType();
801    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
802      assert(I->getSDValue().getValueType() == EltVT &&
803             "Wrong BUILD_VECTOR operand type!");
804    break;
805  }
806  }
807}
808
809/// getMVTAlignment - Compute the default alignment value for the
810/// given type.
811///
812unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
813  const Type *Ty = VT == MVT::iPTR ?
814                   PointerType::get(Type::Int8Ty, 0) :
815                   VT.getTypeForMVT();
816
817  return TLI.getTargetData()->getABITypeAlignment(Ty);
818}
819
820SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
821  : TLI(tli), FLI(fli),
822    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
823    Root(getEntryNode()) {
824  AllNodes.push_back(&EntryNode);
825}
826
827void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
828  MF = &mf;
829  MMI = mmi;
830}
831
832SelectionDAG::~SelectionDAG() {
833  allnodes_clear();
834}
835
836void SelectionDAG::allnodes_clear() {
837  assert(&*AllNodes.begin() == &EntryNode);
838  AllNodes.remove(AllNodes.begin());
839  while (!AllNodes.empty()) {
840    SDNode *N = AllNodes.remove(AllNodes.begin());
841    N->SetNextInBucket(0);
842
843    if (N->OperandsNeedDelete) {
844      delete [] N->OperandList;
845      N->OperandList = 0;
846    }
847
848    NodeAllocator.Deallocate(N);
849  }
850}
851
852void SelectionDAG::clear() {
853  allnodes_clear();
854  OperandAllocator.Reset();
855  CSEMap.clear();
856
857  ExtendedValueTypeNodes.clear();
858  ExternalSymbols.clear();
859  TargetExternalSymbols.clear();
860  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
861            static_cast<CondCodeSDNode*>(0));
862  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
863            static_cast<SDNode*>(0));
864
865  EntryNode.Uses = 0;
866  AllNodes.push_back(&EntryNode);
867  Root = getEntryNode();
868}
869
870SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
871  if (Op.getValueType() == VT) return Op;
872  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
873                                   VT.getSizeInBits());
874  return getNode(ISD::AND, Op.getValueType(), Op,
875                 getConstant(Imm, Op.getValueType()));
876}
877
878SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
879  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
880  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
881}
882
883SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
884  return getConstant(*ConstantInt::get(Val), VT, isT);
885}
886
887SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
888  assert(VT.isInteger() && "Cannot create FP integer constant!");
889
890  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
891  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
892         "APInt size does not match type size!");
893
894  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
895  FoldingSetNodeID ID;
896  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
897  ID.AddPointer(&Val);
898  void *IP = 0;
899  SDNode *N = NULL;
900  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
901    if (!VT.isVector())
902      return SDValue(N, 0);
903  if (!N) {
904    N = NodeAllocator.Allocate<ConstantSDNode>();
905    new (N) ConstantSDNode(isT, &Val, EltVT);
906    CSEMap.InsertNode(N, IP);
907    AllNodes.push_back(N);
908  }
909
910  SDValue Result(N, 0);
911  if (VT.isVector()) {
912    SmallVector<SDValue, 8> Ops;
913    Ops.assign(VT.getVectorNumElements(), Result);
914    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
915  }
916  return Result;
917}
918
919SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
920  return getConstant(Val, TLI.getPointerTy(), isTarget);
921}
922
923
924SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
925  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
926}
927
928SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
929  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
930
931  MVT EltVT =
932    VT.isVector() ? VT.getVectorElementType() : VT;
933
934  // Do the map lookup using the actual bit pattern for the floating point
935  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
936  // we don't have issues with SNANs.
937  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
938  FoldingSetNodeID ID;
939  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
940  ID.AddPointer(&V);
941  void *IP = 0;
942  SDNode *N = NULL;
943  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
944    if (!VT.isVector())
945      return SDValue(N, 0);
946  if (!N) {
947    N = NodeAllocator.Allocate<ConstantFPSDNode>();
948    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
949    CSEMap.InsertNode(N, IP);
950    AllNodes.push_back(N);
951  }
952
953  SDValue Result(N, 0);
954  if (VT.isVector()) {
955    SmallVector<SDValue, 8> Ops;
956    Ops.assign(VT.getVectorNumElements(), Result);
957    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
958  }
959  return Result;
960}
961
962SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
963  MVT EltVT =
964    VT.isVector() ? VT.getVectorElementType() : VT;
965  if (EltVT==MVT::f32)
966    return getConstantFP(APFloat((float)Val), VT, isTarget);
967  else
968    return getConstantFP(APFloat(Val), VT, isTarget);
969}
970
971SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
972                                       MVT VT, int64_t Offset,
973                                       bool isTargetGA) {
974  unsigned Opc;
975
976  // Truncate (with sign-extension) the offset value to the pointer size.
977  unsigned BitWidth = VT.getSizeInBits();
978  if (BitWidth < 64)
979    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
980
981  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
982  if (!GVar) {
983    // If GV is an alias then use the aliasee for determining thread-localness.
984    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
985      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
986  }
987
988  if (GVar && GVar->isThreadLocal())
989    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
990  else
991    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
992
993  FoldingSetNodeID ID;
994  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
995  ID.AddPointer(GV);
996  ID.AddInteger(Offset);
997  void *IP = 0;
998  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
999   return SDValue(E, 0);
1000  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1001  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
1002  CSEMap.InsertNode(N, IP);
1003  AllNodes.push_back(N);
1004  return SDValue(N, 0);
1005}
1006
1007SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
1008  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1009  FoldingSetNodeID ID;
1010  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1011  ID.AddInteger(FI);
1012  void *IP = 0;
1013  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1014    return SDValue(E, 0);
1015  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1016  new (N) FrameIndexSDNode(FI, VT, isTarget);
1017  CSEMap.InsertNode(N, IP);
1018  AllNodes.push_back(N);
1019  return SDValue(N, 0);
1020}
1021
1022SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1023  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1024  FoldingSetNodeID ID;
1025  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1026  ID.AddInteger(JTI);
1027  void *IP = 0;
1028  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1029    return SDValue(E, 0);
1030  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1031  new (N) JumpTableSDNode(JTI, VT, isTarget);
1032  CSEMap.InsertNode(N, IP);
1033  AllNodes.push_back(N);
1034  return SDValue(N, 0);
1035}
1036
1037SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1038                                      unsigned Alignment, int Offset,
1039                                      bool isTarget) {
1040  if (Alignment == 0)
1041    Alignment =
1042      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1043  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1044  FoldingSetNodeID ID;
1045  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1046  ID.AddInteger(Alignment);
1047  ID.AddInteger(Offset);
1048  ID.AddPointer(C);
1049  void *IP = 0;
1050  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1051    return SDValue(E, 0);
1052  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1053  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1054  CSEMap.InsertNode(N, IP);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059
1060SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1061                                      unsigned Alignment, int Offset,
1062                                      bool isTarget) {
1063  if (Alignment == 0)
1064    Alignment =
1065      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1066  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1067  FoldingSetNodeID ID;
1068  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1069  ID.AddInteger(Alignment);
1070  ID.AddInteger(Offset);
1071  C->AddSelectionDAGCSEId(ID);
1072  void *IP = 0;
1073  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1074    return SDValue(E, 0);
1075  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1076  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1077  CSEMap.InsertNode(N, IP);
1078  AllNodes.push_back(N);
1079  return SDValue(N, 0);
1080}
1081
1082
1083SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1084  FoldingSetNodeID ID;
1085  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1086  ID.AddPointer(MBB);
1087  void *IP = 0;
1088  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1089    return SDValue(E, 0);
1090  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1091  new (N) BasicBlockSDNode(MBB);
1092  CSEMap.InsertNode(N, IP);
1093  AllNodes.push_back(N);
1094  return SDValue(N, 0);
1095}
1096
1097SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1098  FoldingSetNodeID ID;
1099  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1100  ID.AddInteger(Flags.getRawBits());
1101  void *IP = 0;
1102  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1103    return SDValue(E, 0);
1104  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1105  new (N) ARG_FLAGSSDNode(Flags);
1106  CSEMap.InsertNode(N, IP);
1107  AllNodes.push_back(N);
1108  return SDValue(N, 0);
1109}
1110
1111SDValue SelectionDAG::getValueType(MVT VT) {
1112  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1113    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1114
1115  SDNode *&N = VT.isExtended() ?
1116    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1117
1118  if (N) return SDValue(N, 0);
1119  N = NodeAllocator.Allocate<VTSDNode>();
1120  new (N) VTSDNode(VT);
1121  AllNodes.push_back(N);
1122  return SDValue(N, 0);
1123}
1124
1125SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1126  SDNode *&N = ExternalSymbols[Sym];
1127  if (N) return SDValue(N, 0);
1128  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1129  new (N) ExternalSymbolSDNode(false, Sym, VT);
1130  AllNodes.push_back(N);
1131  return SDValue(N, 0);
1132}
1133
1134SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1135  SDNode *&N = TargetExternalSymbols[Sym];
1136  if (N) return SDValue(N, 0);
1137  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1138  new (N) ExternalSymbolSDNode(true, Sym, VT);
1139  AllNodes.push_back(N);
1140  return SDValue(N, 0);
1141}
1142
1143SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1144  if ((unsigned)Cond >= CondCodeNodes.size())
1145    CondCodeNodes.resize(Cond+1);
1146
1147  if (CondCodeNodes[Cond] == 0) {
1148    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1149    new (N) CondCodeSDNode(Cond);
1150    CondCodeNodes[Cond] = N;
1151    AllNodes.push_back(N);
1152  }
1153  return SDValue(CondCodeNodes[Cond], 0);
1154}
1155
1156SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1157  FoldingSetNodeID ID;
1158  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1159  ID.AddInteger(RegNo);
1160  void *IP = 0;
1161  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1162    return SDValue(E, 0);
1163  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1164  new (N) RegisterSDNode(RegNo, VT);
1165  CSEMap.InsertNode(N, IP);
1166  AllNodes.push_back(N);
1167  return SDValue(N, 0);
1168}
1169
1170SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1171                                        unsigned Line, unsigned Col,
1172                                        const CompileUnitDesc *CU) {
1173  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1174  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1175  AllNodes.push_back(N);
1176  return SDValue(N, 0);
1177}
1178
1179SDValue SelectionDAG::getLabel(unsigned Opcode,
1180                               SDValue Root,
1181                               unsigned LabelID) {
1182  FoldingSetNodeID ID;
1183  SDValue Ops[] = { Root };
1184  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1185  ID.AddInteger(LabelID);
1186  void *IP = 0;
1187  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1188    return SDValue(E, 0);
1189  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1190  new (N) LabelSDNode(Opcode, Root, LabelID);
1191  CSEMap.InsertNode(N, IP);
1192  AllNodes.push_back(N);
1193  return SDValue(N, 0);
1194}
1195
1196SDValue SelectionDAG::getSrcValue(const Value *V) {
1197  assert((!V || isa<PointerType>(V->getType())) &&
1198         "SrcValue is not a pointer?");
1199
1200  FoldingSetNodeID ID;
1201  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1202  ID.AddPointer(V);
1203
1204  void *IP = 0;
1205  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1206    return SDValue(E, 0);
1207
1208  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1209  new (N) SrcValueSDNode(V);
1210  CSEMap.InsertNode(N, IP);
1211  AllNodes.push_back(N);
1212  return SDValue(N, 0);
1213}
1214
1215SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1216  const Value *v = MO.getValue();
1217  assert((!v || isa<PointerType>(v->getType())) &&
1218         "SrcValue is not a pointer?");
1219
1220  FoldingSetNodeID ID;
1221  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1222  MO.Profile(ID);
1223
1224  void *IP = 0;
1225  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1226    return SDValue(E, 0);
1227
1228  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1229  new (N) MemOperandSDNode(MO);
1230  CSEMap.InsertNode(N, IP);
1231  AllNodes.push_back(N);
1232  return SDValue(N, 0);
1233}
1234
1235/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1236/// specified value type.
1237SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1238  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1239  unsigned ByteSize = VT.getSizeInBits()/8;
1240  const Type *Ty = VT.getTypeForMVT();
1241  unsigned StackAlign =
1242  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1243
1244  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1245  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1246}
1247
1248SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1249                                SDValue N2, ISD::CondCode Cond) {
1250  // These setcc operations always fold.
1251  switch (Cond) {
1252  default: break;
1253  case ISD::SETFALSE:
1254  case ISD::SETFALSE2: return getConstant(0, VT);
1255  case ISD::SETTRUE:
1256  case ISD::SETTRUE2:  return getConstant(1, VT);
1257
1258  case ISD::SETOEQ:
1259  case ISD::SETOGT:
1260  case ISD::SETOGE:
1261  case ISD::SETOLT:
1262  case ISD::SETOLE:
1263  case ISD::SETONE:
1264  case ISD::SETO:
1265  case ISD::SETUO:
1266  case ISD::SETUEQ:
1267  case ISD::SETUNE:
1268    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1269    break;
1270  }
1271
1272  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1273    const APInt &C2 = N2C->getAPIntValue();
1274    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1275      const APInt &C1 = N1C->getAPIntValue();
1276
1277      switch (Cond) {
1278      default: assert(0 && "Unknown integer setcc!");
1279      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1280      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1281      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1282      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1283      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1284      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1285      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1286      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1287      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1288      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1289      }
1290    }
1291  }
1292  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1293    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1294      // No compile time operations on this type yet.
1295      if (N1C->getValueType(0) == MVT::ppcf128)
1296        return SDValue();
1297
1298      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1299      switch (Cond) {
1300      default: break;
1301      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1302                          return getNode(ISD::UNDEF, VT);
1303                        // fall through
1304      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1305      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1306                          return getNode(ISD::UNDEF, VT);
1307                        // fall through
1308      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1309                                           R==APFloat::cmpLessThan, VT);
1310      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1311                          return getNode(ISD::UNDEF, VT);
1312                        // fall through
1313      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1314      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1315                          return getNode(ISD::UNDEF, VT);
1316                        // fall through
1317      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1318      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1319                          return getNode(ISD::UNDEF, VT);
1320                        // fall through
1321      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1322                                           R==APFloat::cmpEqual, VT);
1323      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1324                          return getNode(ISD::UNDEF, VT);
1325                        // fall through
1326      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1327                                           R==APFloat::cmpEqual, VT);
1328      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1329      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1330      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1331                                           R==APFloat::cmpEqual, VT);
1332      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1333      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1334                                           R==APFloat::cmpLessThan, VT);
1335      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1336                                           R==APFloat::cmpUnordered, VT);
1337      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1338      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1339      }
1340    } else {
1341      // Ensure that the constant occurs on the RHS.
1342      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1343    }
1344  }
1345
1346  // Could not fold it.
1347  return SDValue();
1348}
1349
1350/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1351/// use this predicate to simplify operations downstream.
1352bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1353  unsigned BitWidth = Op.getValueSizeInBits();
1354  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1355}
1356
1357/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1358/// this predicate to simplify operations downstream.  Mask is known to be zero
1359/// for bits that V cannot have.
1360bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1361                                     unsigned Depth) const {
1362  APInt KnownZero, KnownOne;
1363  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1364  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1365  return (KnownZero & Mask) == Mask;
1366}
1367
1368/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1369/// known to be either zero or one and return them in the KnownZero/KnownOne
1370/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1371/// processing.
1372void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1373                                     APInt &KnownZero, APInt &KnownOne,
1374                                     unsigned Depth) const {
1375  unsigned BitWidth = Mask.getBitWidth();
1376  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1377         "Mask size mismatches value type size!");
1378
1379  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1380  if (Depth == 6 || Mask == 0)
1381    return;  // Limit search depth.
1382
1383  APInt KnownZero2, KnownOne2;
1384
1385  switch (Op.getOpcode()) {
1386  case ISD::Constant:
1387    // We know all of the bits for a constant!
1388    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1389    KnownZero = ~KnownOne & Mask;
1390    return;
1391  case ISD::AND:
1392    // If either the LHS or the RHS are Zero, the result is zero.
1393    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1394    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1395                      KnownZero2, KnownOne2, Depth+1);
1396    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1397    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1398
1399    // Output known-1 bits are only known if set in both the LHS & RHS.
1400    KnownOne &= KnownOne2;
1401    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1402    KnownZero |= KnownZero2;
1403    return;
1404  case ISD::OR:
1405    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1406    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1407                      KnownZero2, KnownOne2, Depth+1);
1408    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1409    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1410
1411    // Output known-0 bits are only known if clear in both the LHS & RHS.
1412    KnownZero &= KnownZero2;
1413    // Output known-1 are known to be set if set in either the LHS | RHS.
1414    KnownOne |= KnownOne2;
1415    return;
1416  case ISD::XOR: {
1417    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1418    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1419    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1420    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1421
1422    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1423    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1424    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1425    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1426    KnownZero = KnownZeroOut;
1427    return;
1428  }
1429  case ISD::MUL: {
1430    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1431    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1432    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1433    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1434    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1435
1436    // If low bits are zero in either operand, output low known-0 bits.
1437    // Also compute a conserative estimate for high known-0 bits.
1438    // More trickiness is possible, but this is sufficient for the
1439    // interesting case of alignment computation.
1440    KnownOne.clear();
1441    unsigned TrailZ = KnownZero.countTrailingOnes() +
1442                      KnownZero2.countTrailingOnes();
1443    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1444                               KnownZero2.countLeadingOnes(),
1445                               BitWidth) - BitWidth;
1446
1447    TrailZ = std::min(TrailZ, BitWidth);
1448    LeadZ = std::min(LeadZ, BitWidth);
1449    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1450                APInt::getHighBitsSet(BitWidth, LeadZ);
1451    KnownZero &= Mask;
1452    return;
1453  }
1454  case ISD::UDIV: {
1455    // For the purposes of computing leading zeros we can conservatively
1456    // treat a udiv as a logical right shift by the power of 2 known to
1457    // be less than the denominator.
1458    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1459    ComputeMaskedBits(Op.getOperand(0),
1460                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1461    unsigned LeadZ = KnownZero2.countLeadingOnes();
1462
1463    KnownOne2.clear();
1464    KnownZero2.clear();
1465    ComputeMaskedBits(Op.getOperand(1),
1466                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1467    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1468    if (RHSUnknownLeadingOnes != BitWidth)
1469      LeadZ = std::min(BitWidth,
1470                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1471
1472    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1473    return;
1474  }
1475  case ISD::SELECT:
1476    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1477    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1478    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1479    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1480
1481    // Only known if known in both the LHS and RHS.
1482    KnownOne &= KnownOne2;
1483    KnownZero &= KnownZero2;
1484    return;
1485  case ISD::SELECT_CC:
1486    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1487    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1488    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1489    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1490
1491    // Only known if known in both the LHS and RHS.
1492    KnownOne &= KnownOne2;
1493    KnownZero &= KnownZero2;
1494    return;
1495  case ISD::SETCC:
1496    // If we know the result of a setcc has the top bits zero, use this info.
1497    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1498        BitWidth > 1)
1499      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1500    return;
1501  case ISD::SHL:
1502    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1503    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1504      unsigned ShAmt = SA->getZExtValue();
1505
1506      // If the shift count is an invalid immediate, don't do anything.
1507      if (ShAmt >= BitWidth)
1508        return;
1509
1510      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1511                        KnownZero, KnownOne, Depth+1);
1512      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1513      KnownZero <<= ShAmt;
1514      KnownOne  <<= ShAmt;
1515      // low bits known zero.
1516      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1517    }
1518    return;
1519  case ISD::SRL:
1520    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1521    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1522      unsigned ShAmt = SA->getZExtValue();
1523
1524      // If the shift count is an invalid immediate, don't do anything.
1525      if (ShAmt >= BitWidth)
1526        return;
1527
1528      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1529                        KnownZero, KnownOne, Depth+1);
1530      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1531      KnownZero = KnownZero.lshr(ShAmt);
1532      KnownOne  = KnownOne.lshr(ShAmt);
1533
1534      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1535      KnownZero |= HighBits;  // High bits known zero.
1536    }
1537    return;
1538  case ISD::SRA:
1539    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1540      unsigned ShAmt = SA->getZExtValue();
1541
1542      // If the shift count is an invalid immediate, don't do anything.
1543      if (ShAmt >= BitWidth)
1544        return;
1545
1546      APInt InDemandedMask = (Mask << ShAmt);
1547      // If any of the demanded bits are produced by the sign extension, we also
1548      // demand the input sign bit.
1549      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1550      if (HighBits.getBoolValue())
1551        InDemandedMask |= APInt::getSignBit(BitWidth);
1552
1553      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1554                        Depth+1);
1555      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1556      KnownZero = KnownZero.lshr(ShAmt);
1557      KnownOne  = KnownOne.lshr(ShAmt);
1558
1559      // Handle the sign bits.
1560      APInt SignBit = APInt::getSignBit(BitWidth);
1561      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1562
1563      if (KnownZero.intersects(SignBit)) {
1564        KnownZero |= HighBits;  // New bits are known zero.
1565      } else if (KnownOne.intersects(SignBit)) {
1566        KnownOne  |= HighBits;  // New bits are known one.
1567      }
1568    }
1569    return;
1570  case ISD::SIGN_EXTEND_INREG: {
1571    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1572    unsigned EBits = EVT.getSizeInBits();
1573
1574    // Sign extension.  Compute the demanded bits in the result that are not
1575    // present in the input.
1576    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1577
1578    APInt InSignBit = APInt::getSignBit(EBits);
1579    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1580
1581    // If the sign extended bits are demanded, we know that the sign
1582    // bit is demanded.
1583    InSignBit.zext(BitWidth);
1584    if (NewBits.getBoolValue())
1585      InputDemandedBits |= InSignBit;
1586
1587    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1588                      KnownZero, KnownOne, Depth+1);
1589    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1590
1591    // If the sign bit of the input is known set or clear, then we know the
1592    // top bits of the result.
1593    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1594      KnownZero |= NewBits;
1595      KnownOne  &= ~NewBits;
1596    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1597      KnownOne  |= NewBits;
1598      KnownZero &= ~NewBits;
1599    } else {                              // Input sign bit unknown
1600      KnownZero &= ~NewBits;
1601      KnownOne  &= ~NewBits;
1602    }
1603    return;
1604  }
1605  case ISD::CTTZ:
1606  case ISD::CTLZ:
1607  case ISD::CTPOP: {
1608    unsigned LowBits = Log2_32(BitWidth)+1;
1609    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1610    KnownOne.clear();
1611    return;
1612  }
1613  case ISD::LOAD: {
1614    if (ISD::isZEXTLoad(Op.getNode())) {
1615      LoadSDNode *LD = cast<LoadSDNode>(Op);
1616      MVT VT = LD->getMemoryVT();
1617      unsigned MemBits = VT.getSizeInBits();
1618      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1619    }
1620    return;
1621  }
1622  case ISD::ZERO_EXTEND: {
1623    MVT InVT = Op.getOperand(0).getValueType();
1624    unsigned InBits = InVT.getSizeInBits();
1625    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1626    APInt InMask    = Mask;
1627    InMask.trunc(InBits);
1628    KnownZero.trunc(InBits);
1629    KnownOne.trunc(InBits);
1630    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1631    KnownZero.zext(BitWidth);
1632    KnownOne.zext(BitWidth);
1633    KnownZero |= NewBits;
1634    return;
1635  }
1636  case ISD::SIGN_EXTEND: {
1637    MVT InVT = Op.getOperand(0).getValueType();
1638    unsigned InBits = InVT.getSizeInBits();
1639    APInt InSignBit = APInt::getSignBit(InBits);
1640    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1641    APInt InMask = Mask;
1642    InMask.trunc(InBits);
1643
1644    // If any of the sign extended bits are demanded, we know that the sign
1645    // bit is demanded. Temporarily set this bit in the mask for our callee.
1646    if (NewBits.getBoolValue())
1647      InMask |= InSignBit;
1648
1649    KnownZero.trunc(InBits);
1650    KnownOne.trunc(InBits);
1651    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1652
1653    // Note if the sign bit is known to be zero or one.
1654    bool SignBitKnownZero = KnownZero.isNegative();
1655    bool SignBitKnownOne  = KnownOne.isNegative();
1656    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1657           "Sign bit can't be known to be both zero and one!");
1658
1659    // If the sign bit wasn't actually demanded by our caller, we don't
1660    // want it set in the KnownZero and KnownOne result values. Reset the
1661    // mask and reapply it to the result values.
1662    InMask = Mask;
1663    InMask.trunc(InBits);
1664    KnownZero &= InMask;
1665    KnownOne  &= InMask;
1666
1667    KnownZero.zext(BitWidth);
1668    KnownOne.zext(BitWidth);
1669
1670    // If the sign bit is known zero or one, the top bits match.
1671    if (SignBitKnownZero)
1672      KnownZero |= NewBits;
1673    else if (SignBitKnownOne)
1674      KnownOne  |= NewBits;
1675    return;
1676  }
1677  case ISD::ANY_EXTEND: {
1678    MVT InVT = Op.getOperand(0).getValueType();
1679    unsigned InBits = InVT.getSizeInBits();
1680    APInt InMask = Mask;
1681    InMask.trunc(InBits);
1682    KnownZero.trunc(InBits);
1683    KnownOne.trunc(InBits);
1684    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1685    KnownZero.zext(BitWidth);
1686    KnownOne.zext(BitWidth);
1687    return;
1688  }
1689  case ISD::TRUNCATE: {
1690    MVT InVT = Op.getOperand(0).getValueType();
1691    unsigned InBits = InVT.getSizeInBits();
1692    APInt InMask = Mask;
1693    InMask.zext(InBits);
1694    KnownZero.zext(InBits);
1695    KnownOne.zext(InBits);
1696    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1697    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1698    KnownZero.trunc(BitWidth);
1699    KnownOne.trunc(BitWidth);
1700    break;
1701  }
1702  case ISD::AssertZext: {
1703    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1704    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1705    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1706                      KnownOne, Depth+1);
1707    KnownZero |= (~InMask) & Mask;
1708    return;
1709  }
1710  case ISD::FGETSIGN:
1711    // All bits are zero except the low bit.
1712    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1713    return;
1714
1715  case ISD::SUB: {
1716    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1717      // We know that the top bits of C-X are clear if X contains less bits
1718      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1719      // positive if we can prove that X is >= 0 and < 16.
1720      if (CLHS->getAPIntValue().isNonNegative()) {
1721        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1722        // NLZ can't be BitWidth with no sign bit
1723        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1724        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1725                          Depth+1);
1726
1727        // If all of the MaskV bits are known to be zero, then we know the
1728        // output top bits are zero, because we now know that the output is
1729        // from [0-C].
1730        if ((KnownZero2 & MaskV) == MaskV) {
1731          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1732          // Top bits known zero.
1733          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1734        }
1735      }
1736    }
1737  }
1738  // fall through
1739  case ISD::ADD: {
1740    // Output known-0 bits are known if clear or set in both the low clear bits
1741    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1742    // low 3 bits clear.
1743    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1744    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1745    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1746    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1747
1748    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1749    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1750    KnownZeroOut = std::min(KnownZeroOut,
1751                            KnownZero2.countTrailingOnes());
1752
1753    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1754    return;
1755  }
1756  case ISD::SREM:
1757    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1758      const APInt &RA = Rem->getAPIntValue();
1759      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1760        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1761        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1762        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1763
1764        // If the sign bit of the first operand is zero, the sign bit of
1765        // the result is zero. If the first operand has no one bits below
1766        // the second operand's single 1 bit, its sign will be zero.
1767        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1768          KnownZero2 |= ~LowBits;
1769
1770        KnownZero |= KnownZero2 & Mask;
1771
1772        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1773      }
1774    }
1775    return;
1776  case ISD::UREM: {
1777    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1778      const APInt &RA = Rem->getAPIntValue();
1779      if (RA.isPowerOf2()) {
1780        APInt LowBits = (RA - 1);
1781        APInt Mask2 = LowBits & Mask;
1782        KnownZero |= ~LowBits & Mask;
1783        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1784        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1785        break;
1786      }
1787    }
1788
1789    // Since the result is less than or equal to either operand, any leading
1790    // zero bits in either operand must also exist in the result.
1791    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1792    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1793                      Depth+1);
1794    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1795                      Depth+1);
1796
1797    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1798                                KnownZero2.countLeadingOnes());
1799    KnownOne.clear();
1800    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1801    return;
1802  }
1803  default:
1804    // Allow the target to implement this method for its nodes.
1805    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1806  case ISD::INTRINSIC_WO_CHAIN:
1807  case ISD::INTRINSIC_W_CHAIN:
1808  case ISD::INTRINSIC_VOID:
1809      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1810    }
1811    return;
1812  }
1813}
1814
1815/// ComputeNumSignBits - Return the number of times the sign bit of the
1816/// register is replicated into the other bits.  We know that at least 1 bit
1817/// is always equal to the sign bit (itself), but other cases can give us
1818/// information.  For example, immediately after an "SRA X, 2", we know that
1819/// the top 3 bits are all equal to each other, so we return 3.
1820unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1821  MVT VT = Op.getValueType();
1822  assert(VT.isInteger() && "Invalid VT!");
1823  unsigned VTBits = VT.getSizeInBits();
1824  unsigned Tmp, Tmp2;
1825  unsigned FirstAnswer = 1;
1826
1827  if (Depth == 6)
1828    return 1;  // Limit search depth.
1829
1830  switch (Op.getOpcode()) {
1831  default: break;
1832  case ISD::AssertSext:
1833    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1834    return VTBits-Tmp+1;
1835  case ISD::AssertZext:
1836    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1837    return VTBits-Tmp;
1838
1839  case ISD::Constant: {
1840    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1841    // If negative, return # leading ones.
1842    if (Val.isNegative())
1843      return Val.countLeadingOnes();
1844
1845    // Return # leading zeros.
1846    return Val.countLeadingZeros();
1847  }
1848
1849  case ISD::SIGN_EXTEND:
1850    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1851    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1852
1853  case ISD::SIGN_EXTEND_INREG:
1854    // Max of the input and what this extends.
1855    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1856    Tmp = VTBits-Tmp+1;
1857
1858    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1859    return std::max(Tmp, Tmp2);
1860
1861  case ISD::SRA:
1862    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1863    // SRA X, C   -> adds C sign bits.
1864    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1865      Tmp += C->getZExtValue();
1866      if (Tmp > VTBits) Tmp = VTBits;
1867    }
1868    return Tmp;
1869  case ISD::SHL:
1870    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1871      // shl destroys sign bits.
1872      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1873      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1874          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1875      return Tmp - C->getZExtValue();
1876    }
1877    break;
1878  case ISD::AND:
1879  case ISD::OR:
1880  case ISD::XOR:    // NOT is handled here.
1881    // Logical binary ops preserve the number of sign bits at the worst.
1882    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1883    if (Tmp != 1) {
1884      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1885      FirstAnswer = std::min(Tmp, Tmp2);
1886      // We computed what we know about the sign bits as our first
1887      // answer. Now proceed to the generic code that uses
1888      // ComputeMaskedBits, and pick whichever answer is better.
1889    }
1890    break;
1891
1892  case ISD::SELECT:
1893    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1894    if (Tmp == 1) return 1;  // Early out.
1895    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1896    return std::min(Tmp, Tmp2);
1897
1898  case ISD::SETCC:
1899    // If setcc returns 0/-1, all bits are sign bits.
1900    if (TLI.getSetCCResultContents() ==
1901        TargetLowering::ZeroOrNegativeOneSetCCResult)
1902      return VTBits;
1903    break;
1904  case ISD::ROTL:
1905  case ISD::ROTR:
1906    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1907      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1908
1909      // Handle rotate right by N like a rotate left by 32-N.
1910      if (Op.getOpcode() == ISD::ROTR)
1911        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1912
1913      // If we aren't rotating out all of the known-in sign bits, return the
1914      // number that are left.  This handles rotl(sext(x), 1) for example.
1915      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1916      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1917    }
1918    break;
1919  case ISD::ADD:
1920    // Add can have at most one carry bit.  Thus we know that the output
1921    // is, at worst, one more bit than the inputs.
1922    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1923    if (Tmp == 1) return 1;  // Early out.
1924
1925    // Special case decrementing a value (ADD X, -1):
1926    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1927      if (CRHS->isAllOnesValue()) {
1928        APInt KnownZero, KnownOne;
1929        APInt Mask = APInt::getAllOnesValue(VTBits);
1930        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1931
1932        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1933        // sign bits set.
1934        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1935          return VTBits;
1936
1937        // If we are subtracting one from a positive number, there is no carry
1938        // out of the result.
1939        if (KnownZero.isNegative())
1940          return Tmp;
1941      }
1942
1943    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1944    if (Tmp2 == 1) return 1;
1945      return std::min(Tmp, Tmp2)-1;
1946    break;
1947
1948  case ISD::SUB:
1949    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1950    if (Tmp2 == 1) return 1;
1951
1952    // Handle NEG.
1953    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1954      if (CLHS->isNullValue()) {
1955        APInt KnownZero, KnownOne;
1956        APInt Mask = APInt::getAllOnesValue(VTBits);
1957        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1958        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1959        // sign bits set.
1960        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1961          return VTBits;
1962
1963        // If the input is known to be positive (the sign bit is known clear),
1964        // the output of the NEG has the same number of sign bits as the input.
1965        if (KnownZero.isNegative())
1966          return Tmp2;
1967
1968        // Otherwise, we treat this like a SUB.
1969      }
1970
1971    // Sub can have at most one carry bit.  Thus we know that the output
1972    // is, at worst, one more bit than the inputs.
1973    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1974    if (Tmp == 1) return 1;  // Early out.
1975      return std::min(Tmp, Tmp2)-1;
1976    break;
1977  case ISD::TRUNCATE:
1978    // FIXME: it's tricky to do anything useful for this, but it is an important
1979    // case for targets like X86.
1980    break;
1981  }
1982
1983  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1984  if (Op.getOpcode() == ISD::LOAD) {
1985    LoadSDNode *LD = cast<LoadSDNode>(Op);
1986    unsigned ExtType = LD->getExtensionType();
1987    switch (ExtType) {
1988    default: break;
1989    case ISD::SEXTLOAD:    // '17' bits known
1990      Tmp = LD->getMemoryVT().getSizeInBits();
1991      return VTBits-Tmp+1;
1992    case ISD::ZEXTLOAD:    // '16' bits known
1993      Tmp = LD->getMemoryVT().getSizeInBits();
1994      return VTBits-Tmp;
1995    }
1996  }
1997
1998  // Allow the target to implement this method for its nodes.
1999  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2000      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2001      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2002      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2003    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2004    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2005  }
2006
2007  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2008  // use this information.
2009  APInt KnownZero, KnownOne;
2010  APInt Mask = APInt::getAllOnesValue(VTBits);
2011  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2012
2013  if (KnownZero.isNegative()) {        // sign bit is 0
2014    Mask = KnownZero;
2015  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2016    Mask = KnownOne;
2017  } else {
2018    // Nothing known.
2019    return FirstAnswer;
2020  }
2021
2022  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2023  // the number of identical bits in the top of the input value.
2024  Mask = ~Mask;
2025  Mask <<= Mask.getBitWidth()-VTBits;
2026  // Return # leading zeros.  We use 'min' here in case Val was zero before
2027  // shifting.  We don't want to return '64' as for an i32 "0".
2028  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2029}
2030
2031
2032bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2033  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2034  if (!GA) return false;
2035  if (GA->getOffset() != 0) return false;
2036  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2037  if (!GV) return false;
2038  MachineModuleInfo *MMI = getMachineModuleInfo();
2039  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2040}
2041
2042
2043/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2044/// element of the result of the vector shuffle.
2045SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2046  MVT VT = N->getValueType(0);
2047  SDValue PermMask = N->getOperand(2);
2048  SDValue Idx = PermMask.getOperand(i);
2049  if (Idx.getOpcode() == ISD::UNDEF)
2050    return getNode(ISD::UNDEF, VT.getVectorElementType());
2051  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2052  unsigned NumElems = PermMask.getNumOperands();
2053  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2054  Index %= NumElems;
2055
2056  if (V.getOpcode() == ISD::BIT_CONVERT) {
2057    V = V.getOperand(0);
2058    if (V.getValueType().getVectorNumElements() != NumElems)
2059      return SDValue();
2060  }
2061  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2062    return (Index == 0) ? V.getOperand(0)
2063                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2064  if (V.getOpcode() == ISD::BUILD_VECTOR)
2065    return V.getOperand(Index);
2066  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2067    return getShuffleScalarElt(V.getNode(), Index);
2068  return SDValue();
2069}
2070
2071
2072/// getNode - Gets or creates the specified node.
2073///
2074SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2075  FoldingSetNodeID ID;
2076  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2077  void *IP = 0;
2078  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2079    return SDValue(E, 0);
2080  SDNode *N = NodeAllocator.Allocate<SDNode>();
2081  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2082  CSEMap.InsertNode(N, IP);
2083
2084  AllNodes.push_back(N);
2085#ifndef NDEBUG
2086  VerifyNode(N);
2087#endif
2088  return SDValue(N, 0);
2089}
2090
2091SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2092  // Constant fold unary operations with an integer constant operand.
2093  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2094    const APInt &Val = C->getAPIntValue();
2095    unsigned BitWidth = VT.getSizeInBits();
2096    switch (Opcode) {
2097    default: break;
2098    case ISD::SIGN_EXTEND:
2099      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2100    case ISD::ANY_EXTEND:
2101    case ISD::ZERO_EXTEND:
2102    case ISD::TRUNCATE:
2103      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2104    case ISD::UINT_TO_FP:
2105    case ISD::SINT_TO_FP: {
2106      const uint64_t zero[] = {0, 0};
2107      // No compile time operations on this type.
2108      if (VT==MVT::ppcf128)
2109        break;
2110      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2111      (void)apf.convertFromAPInt(Val,
2112                                 Opcode==ISD::SINT_TO_FP,
2113                                 APFloat::rmNearestTiesToEven);
2114      return getConstantFP(apf, VT);
2115    }
2116    case ISD::BIT_CONVERT:
2117      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2118        return getConstantFP(Val.bitsToFloat(), VT);
2119      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2120        return getConstantFP(Val.bitsToDouble(), VT);
2121      break;
2122    case ISD::BSWAP:
2123      return getConstant(Val.byteSwap(), VT);
2124    case ISD::CTPOP:
2125      return getConstant(Val.countPopulation(), VT);
2126    case ISD::CTLZ:
2127      return getConstant(Val.countLeadingZeros(), VT);
2128    case ISD::CTTZ:
2129      return getConstant(Val.countTrailingZeros(), VT);
2130    }
2131  }
2132
2133  // Constant fold unary operations with a floating point constant operand.
2134  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2135    APFloat V = C->getValueAPF();    // make copy
2136    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2137      switch (Opcode) {
2138      case ISD::FNEG:
2139        V.changeSign();
2140        return getConstantFP(V, VT);
2141      case ISD::FABS:
2142        V.clearSign();
2143        return getConstantFP(V, VT);
2144      case ISD::FP_ROUND:
2145      case ISD::FP_EXTEND: {
2146        bool ignored;
2147        // This can return overflow, underflow, or inexact; we don't care.
2148        // FIXME need to be more flexible about rounding mode.
2149        (void)V.convert(*MVTToAPFloatSemantics(VT),
2150                        APFloat::rmNearestTiesToEven, &ignored);
2151        return getConstantFP(V, VT);
2152      }
2153      case ISD::FP_TO_SINT:
2154      case ISD::FP_TO_UINT: {
2155        integerPart x;
2156        bool ignored;
2157        assert(integerPartWidth >= 64);
2158        // FIXME need to be more flexible about rounding mode.
2159        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2160                              Opcode==ISD::FP_TO_SINT,
2161                              APFloat::rmTowardZero, &ignored);
2162        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2163          break;
2164        return getConstant(x, VT);
2165      }
2166      case ISD::BIT_CONVERT:
2167        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2168          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2169        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2170          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2171        break;
2172      }
2173    }
2174  }
2175
2176  unsigned OpOpcode = Operand.getNode()->getOpcode();
2177  switch (Opcode) {
2178  case ISD::TokenFactor:
2179  case ISD::CONCAT_VECTORS:
2180    return Operand;         // Factor or concat of one node?  No need.
2181  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2182  case ISD::FP_EXTEND:
2183    assert(VT.isFloatingPoint() &&
2184           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2185    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2186    if (Operand.getOpcode() == ISD::UNDEF)
2187      return getNode(ISD::UNDEF, VT);
2188    break;
2189  case ISD::SIGN_EXTEND:
2190    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2191           "Invalid SIGN_EXTEND!");
2192    if (Operand.getValueType() == VT) return Operand;   // noop extension
2193    assert(Operand.getValueType().bitsLT(VT)
2194           && "Invalid sext node, dst < src!");
2195    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2196      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2197    break;
2198  case ISD::ZERO_EXTEND:
2199    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2200           "Invalid ZERO_EXTEND!");
2201    if (Operand.getValueType() == VT) return Operand;   // noop extension
2202    assert(Operand.getValueType().bitsLT(VT)
2203           && "Invalid zext node, dst < src!");
2204    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2205      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2206    break;
2207  case ISD::ANY_EXTEND:
2208    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2209           "Invalid ANY_EXTEND!");
2210    if (Operand.getValueType() == VT) return Operand;   // noop extension
2211    assert(Operand.getValueType().bitsLT(VT)
2212           && "Invalid anyext node, dst < src!");
2213    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2214      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2215      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2216    break;
2217  case ISD::TRUNCATE:
2218    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2219           "Invalid TRUNCATE!");
2220    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2221    assert(Operand.getValueType().bitsGT(VT)
2222           && "Invalid truncate node, src < dst!");
2223    if (OpOpcode == ISD::TRUNCATE)
2224      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2225    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2226             OpOpcode == ISD::ANY_EXTEND) {
2227      // If the source is smaller than the dest, we still need an extend.
2228      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2229        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2230      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2231        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2232      else
2233        return Operand.getNode()->getOperand(0);
2234    }
2235    break;
2236  case ISD::BIT_CONVERT:
2237    // Basic sanity checking.
2238    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2239           && "Cannot BIT_CONVERT between types of different sizes!");
2240    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2241    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2242      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2243    if (OpOpcode == ISD::UNDEF)
2244      return getNode(ISD::UNDEF, VT);
2245    break;
2246  case ISD::SCALAR_TO_VECTOR:
2247    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2248           VT.getVectorElementType() == Operand.getValueType() &&
2249           "Illegal SCALAR_TO_VECTOR node!");
2250    if (OpOpcode == ISD::UNDEF)
2251      return getNode(ISD::UNDEF, VT);
2252    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2253    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2254        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2255        Operand.getConstantOperandVal(1) == 0 &&
2256        Operand.getOperand(0).getValueType() == VT)
2257      return Operand.getOperand(0);
2258    break;
2259  case ISD::FNEG:
2260    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2261      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2262                     Operand.getNode()->getOperand(0));
2263    if (OpOpcode == ISD::FNEG)  // --X -> X
2264      return Operand.getNode()->getOperand(0);
2265    break;
2266  case ISD::FABS:
2267    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2268      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2269    break;
2270  }
2271
2272  SDNode *N;
2273  SDVTList VTs = getVTList(VT);
2274  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2275    FoldingSetNodeID ID;
2276    SDValue Ops[1] = { Operand };
2277    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2278    void *IP = 0;
2279    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2280      return SDValue(E, 0);
2281    N = NodeAllocator.Allocate<UnarySDNode>();
2282    new (N) UnarySDNode(Opcode, VTs, Operand);
2283    CSEMap.InsertNode(N, IP);
2284  } else {
2285    N = NodeAllocator.Allocate<UnarySDNode>();
2286    new (N) UnarySDNode(Opcode, VTs, Operand);
2287  }
2288
2289  AllNodes.push_back(N);
2290#ifndef NDEBUG
2291  VerifyNode(N);
2292#endif
2293  return SDValue(N, 0);
2294}
2295
2296SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2297                                             MVT VT,
2298                                             ConstantSDNode *Cst1,
2299                                             ConstantSDNode *Cst2) {
2300  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2301
2302  switch (Opcode) {
2303  case ISD::ADD:  return getConstant(C1 + C2, VT);
2304  case ISD::SUB:  return getConstant(C1 - C2, VT);
2305  case ISD::MUL:  return getConstant(C1 * C2, VT);
2306  case ISD::UDIV:
2307    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2308    break;
2309  case ISD::UREM:
2310    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2311    break;
2312  case ISD::SDIV:
2313    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2314    break;
2315  case ISD::SREM:
2316    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2317    break;
2318  case ISD::AND:  return getConstant(C1 & C2, VT);
2319  case ISD::OR:   return getConstant(C1 | C2, VT);
2320  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2321  case ISD::SHL:  return getConstant(C1 << C2, VT);
2322  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2323  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2324  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2325  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2326  default: break;
2327  }
2328
2329  return SDValue();
2330}
2331
2332SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2333                              SDValue N1, SDValue N2) {
2334  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2335  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2336  switch (Opcode) {
2337  default: break;
2338  case ISD::TokenFactor:
2339    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2340           N2.getValueType() == MVT::Other && "Invalid token factor!");
2341    // Fold trivial token factors.
2342    if (N1.getOpcode() == ISD::EntryToken) return N2;
2343    if (N2.getOpcode() == ISD::EntryToken) return N1;
2344    if (N1 == N2) return N1;
2345    break;
2346  case ISD::CONCAT_VECTORS:
2347    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2348    // one big BUILD_VECTOR.
2349    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2350        N2.getOpcode() == ISD::BUILD_VECTOR) {
2351      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2352      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2353      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2354    }
2355    break;
2356  case ISD::AND:
2357    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2358           N1.getValueType() == VT && "Binary operator types must match!");
2359    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2360    // worth handling here.
2361    if (N2C && N2C->isNullValue())
2362      return N2;
2363    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2364      return N1;
2365    break;
2366  case ISD::OR:
2367  case ISD::XOR:
2368  case ISD::ADD:
2369  case ISD::SUB:
2370    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2371           N1.getValueType() == VT && "Binary operator types must match!");
2372    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2373    // it's worth handling here.
2374    if (N2C && N2C->isNullValue())
2375      return N1;
2376    break;
2377  case ISD::UDIV:
2378  case ISD::UREM:
2379  case ISD::MULHU:
2380  case ISD::MULHS:
2381    assert(VT.isInteger() && "This operator does not apply to FP types!");
2382    // fall through
2383  case ISD::MUL:
2384  case ISD::SDIV:
2385  case ISD::SREM:
2386  case ISD::FADD:
2387  case ISD::FSUB:
2388  case ISD::FMUL:
2389  case ISD::FDIV:
2390  case ISD::FREM:
2391    assert(N1.getValueType() == N2.getValueType() &&
2392           N1.getValueType() == VT && "Binary operator types must match!");
2393    break;
2394  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2395    assert(N1.getValueType() == VT &&
2396           N1.getValueType().isFloatingPoint() &&
2397           N2.getValueType().isFloatingPoint() &&
2398           "Invalid FCOPYSIGN!");
2399    break;
2400  case ISD::SHL:
2401  case ISD::SRA:
2402  case ISD::SRL:
2403  case ISD::ROTL:
2404  case ISD::ROTR:
2405    assert(VT == N1.getValueType() &&
2406           "Shift operators return type must be the same as their first arg");
2407    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2408           "Shifts only work on integers");
2409
2410    // Always fold shifts of i1 values so the code generator doesn't need to
2411    // handle them.  Since we know the size of the shift has to be less than the
2412    // size of the value, the shift/rotate count is guaranteed to be zero.
2413    if (VT == MVT::i1)
2414      return N1;
2415    break;
2416  case ISD::FP_ROUND_INREG: {
2417    MVT EVT = cast<VTSDNode>(N2)->getVT();
2418    assert(VT == N1.getValueType() && "Not an inreg round!");
2419    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2420           "Cannot FP_ROUND_INREG integer types");
2421    assert(EVT.bitsLE(VT) && "Not rounding down!");
2422    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2423    break;
2424  }
2425  case ISD::FP_ROUND:
2426    assert(VT.isFloatingPoint() &&
2427           N1.getValueType().isFloatingPoint() &&
2428           VT.bitsLE(N1.getValueType()) &&
2429           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2430    if (N1.getValueType() == VT) return N1;  // noop conversion.
2431    break;
2432  case ISD::AssertSext:
2433  case ISD::AssertZext: {
2434    MVT EVT = cast<VTSDNode>(N2)->getVT();
2435    assert(VT == N1.getValueType() && "Not an inreg extend!");
2436    assert(VT.isInteger() && EVT.isInteger() &&
2437           "Cannot *_EXTEND_INREG FP types");
2438    assert(EVT.bitsLE(VT) && "Not extending!");
2439    if (VT == EVT) return N1; // noop assertion.
2440    break;
2441  }
2442  case ISD::SIGN_EXTEND_INREG: {
2443    MVT EVT = cast<VTSDNode>(N2)->getVT();
2444    assert(VT == N1.getValueType() && "Not an inreg extend!");
2445    assert(VT.isInteger() && EVT.isInteger() &&
2446           "Cannot *_EXTEND_INREG FP types");
2447    assert(EVT.bitsLE(VT) && "Not extending!");
2448    if (EVT == VT) return N1;  // Not actually extending
2449
2450    if (N1C) {
2451      APInt Val = N1C->getAPIntValue();
2452      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2453      Val <<= Val.getBitWidth()-FromBits;
2454      Val = Val.ashr(Val.getBitWidth()-FromBits);
2455      return getConstant(Val, VT);
2456    }
2457    break;
2458  }
2459  case ISD::EXTRACT_VECTOR_ELT:
2460    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2461    if (N1.getOpcode() == ISD::UNDEF)
2462      return getNode(ISD::UNDEF, VT);
2463
2464    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2465    // expanding copies of large vectors from registers.
2466    if (N2C &&
2467        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2468        N1.getNumOperands() > 0) {
2469      unsigned Factor =
2470        N1.getOperand(0).getValueType().getVectorNumElements();
2471      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2472                     N1.getOperand(N2C->getZExtValue() / Factor),
2473                     getConstant(N2C->getZExtValue() % Factor,
2474                                 N2.getValueType()));
2475    }
2476
2477    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2478    // expanding large vector constants.
2479    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2480      return N1.getOperand(N2C->getZExtValue());
2481
2482    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2483    // operations are lowered to scalars.
2484    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2485      if (N1.getOperand(2) == N2)
2486        return N1.getOperand(1);
2487      else
2488        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2489    }
2490    break;
2491  case ISD::EXTRACT_ELEMENT:
2492    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2493    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2494           (N1.getValueType().isInteger() == VT.isInteger()) &&
2495           "Wrong types for EXTRACT_ELEMENT!");
2496
2497    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2498    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2499    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2500    if (N1.getOpcode() == ISD::BUILD_PAIR)
2501      return N1.getOperand(N2C->getZExtValue());
2502
2503    // EXTRACT_ELEMENT of a constant int is also very common.
2504    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2505      unsigned ElementSize = VT.getSizeInBits();
2506      unsigned Shift = ElementSize * N2C->getZExtValue();
2507      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2508      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2509    }
2510    break;
2511  case ISD::EXTRACT_SUBVECTOR:
2512    if (N1.getValueType() == VT) // Trivial extraction.
2513      return N1;
2514    break;
2515  }
2516
2517  if (N1C) {
2518    if (N2C) {
2519      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2520      if (SV.getNode()) return SV;
2521    } else {      // Cannonicalize constant to RHS if commutative
2522      if (isCommutativeBinOp(Opcode)) {
2523        std::swap(N1C, N2C);
2524        std::swap(N1, N2);
2525      }
2526    }
2527  }
2528
2529  // Constant fold FP operations.
2530  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2531  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2532  if (N1CFP) {
2533    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2534      // Cannonicalize constant to RHS if commutative
2535      std::swap(N1CFP, N2CFP);
2536      std::swap(N1, N2);
2537    } else if (N2CFP && VT != MVT::ppcf128) {
2538      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2539      APFloat::opStatus s;
2540      switch (Opcode) {
2541      case ISD::FADD:
2542        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2543        if (s != APFloat::opInvalidOp)
2544          return getConstantFP(V1, VT);
2545        break;
2546      case ISD::FSUB:
2547        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2548        if (s!=APFloat::opInvalidOp)
2549          return getConstantFP(V1, VT);
2550        break;
2551      case ISD::FMUL:
2552        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2553        if (s!=APFloat::opInvalidOp)
2554          return getConstantFP(V1, VT);
2555        break;
2556      case ISD::FDIV:
2557        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2558        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2559          return getConstantFP(V1, VT);
2560        break;
2561      case ISD::FREM :
2562        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2563        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2564          return getConstantFP(V1, VT);
2565        break;
2566      case ISD::FCOPYSIGN:
2567        V1.copySign(V2);
2568        return getConstantFP(V1, VT);
2569      default: break;
2570      }
2571    }
2572  }
2573
2574  // Canonicalize an UNDEF to the RHS, even over a constant.
2575  if (N1.getOpcode() == ISD::UNDEF) {
2576    if (isCommutativeBinOp(Opcode)) {
2577      std::swap(N1, N2);
2578    } else {
2579      switch (Opcode) {
2580      case ISD::FP_ROUND_INREG:
2581      case ISD::SIGN_EXTEND_INREG:
2582      case ISD::SUB:
2583      case ISD::FSUB:
2584      case ISD::FDIV:
2585      case ISD::FREM:
2586      case ISD::SRA:
2587        return N1;     // fold op(undef, arg2) -> undef
2588      case ISD::UDIV:
2589      case ISD::SDIV:
2590      case ISD::UREM:
2591      case ISD::SREM:
2592      case ISD::SRL:
2593      case ISD::SHL:
2594        if (!VT.isVector())
2595          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2596        // For vectors, we can't easily build an all zero vector, just return
2597        // the LHS.
2598        return N2;
2599      }
2600    }
2601  }
2602
2603  // Fold a bunch of operators when the RHS is undef.
2604  if (N2.getOpcode() == ISD::UNDEF) {
2605    switch (Opcode) {
2606    case ISD::XOR:
2607      if (N1.getOpcode() == ISD::UNDEF)
2608        // Handle undef ^ undef -> 0 special case. This is a common
2609        // idiom (misuse).
2610        return getConstant(0, VT);
2611      // fallthrough
2612    case ISD::ADD:
2613    case ISD::ADDC:
2614    case ISD::ADDE:
2615    case ISD::SUB:
2616    case ISD::FADD:
2617    case ISD::FSUB:
2618    case ISD::FMUL:
2619    case ISD::FDIV:
2620    case ISD::FREM:
2621    case ISD::UDIV:
2622    case ISD::SDIV:
2623    case ISD::UREM:
2624    case ISD::SREM:
2625      return N2;       // fold op(arg1, undef) -> undef
2626    case ISD::MUL:
2627    case ISD::AND:
2628    case ISD::SRL:
2629    case ISD::SHL:
2630      if (!VT.isVector())
2631        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2632      // For vectors, we can't easily build an all zero vector, just return
2633      // the LHS.
2634      return N1;
2635    case ISD::OR:
2636      if (!VT.isVector())
2637        return getConstant(VT.getIntegerVTBitMask(), VT);
2638      // For vectors, we can't easily build an all one vector, just return
2639      // the LHS.
2640      return N1;
2641    case ISD::SRA:
2642      return N1;
2643    }
2644  }
2645
2646  // Memoize this node if possible.
2647  SDNode *N;
2648  SDVTList VTs = getVTList(VT);
2649  if (VT != MVT::Flag) {
2650    SDValue Ops[] = { N1, N2 };
2651    FoldingSetNodeID ID;
2652    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2653    void *IP = 0;
2654    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2655      return SDValue(E, 0);
2656    N = NodeAllocator.Allocate<BinarySDNode>();
2657    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2658    CSEMap.InsertNode(N, IP);
2659  } else {
2660    N = NodeAllocator.Allocate<BinarySDNode>();
2661    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2662  }
2663
2664  AllNodes.push_back(N);
2665#ifndef NDEBUG
2666  VerifyNode(N);
2667#endif
2668  return SDValue(N, 0);
2669}
2670
2671SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2672                              SDValue N1, SDValue N2, SDValue N3) {
2673  // Perform various simplifications.
2674  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2675  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2676  switch (Opcode) {
2677  case ISD::CONCAT_VECTORS:
2678    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2679    // one big BUILD_VECTOR.
2680    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2681        N2.getOpcode() == ISD::BUILD_VECTOR &&
2682        N3.getOpcode() == ISD::BUILD_VECTOR) {
2683      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2684      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2685      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2686      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2687    }
2688    break;
2689  case ISD::SETCC: {
2690    // Use FoldSetCC to simplify SETCC's.
2691    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2692    if (Simp.getNode()) return Simp;
2693    break;
2694  }
2695  case ISD::SELECT:
2696    if (N1C) {
2697     if (N1C->getZExtValue())
2698        return N2;             // select true, X, Y -> X
2699      else
2700        return N3;             // select false, X, Y -> Y
2701    }
2702
2703    if (N2 == N3) return N2;   // select C, X, X -> X
2704    break;
2705  case ISD::BRCOND:
2706    if (N2C) {
2707      if (N2C->getZExtValue()) // Unconditional branch
2708        return getNode(ISD::BR, MVT::Other, N1, N3);
2709      else
2710        return N1;         // Never-taken branch
2711    }
2712    break;
2713  case ISD::VECTOR_SHUFFLE:
2714    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2715           VT.isVector() && N3.getValueType().isVector() &&
2716           N3.getOpcode() == ISD::BUILD_VECTOR &&
2717           VT.getVectorNumElements() == N3.getNumOperands() &&
2718           "Illegal VECTOR_SHUFFLE node!");
2719    break;
2720  case ISD::BIT_CONVERT:
2721    // Fold bit_convert nodes from a type to themselves.
2722    if (N1.getValueType() == VT)
2723      return N1;
2724    break;
2725  }
2726
2727  // Memoize node if it doesn't produce a flag.
2728  SDNode *N;
2729  SDVTList VTs = getVTList(VT);
2730  if (VT != MVT::Flag) {
2731    SDValue Ops[] = { N1, N2, N3 };
2732    FoldingSetNodeID ID;
2733    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2734    void *IP = 0;
2735    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2736      return SDValue(E, 0);
2737    N = NodeAllocator.Allocate<TernarySDNode>();
2738    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2739    CSEMap.InsertNode(N, IP);
2740  } else {
2741    N = NodeAllocator.Allocate<TernarySDNode>();
2742    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2743  }
2744  AllNodes.push_back(N);
2745#ifndef NDEBUG
2746  VerifyNode(N);
2747#endif
2748  return SDValue(N, 0);
2749}
2750
2751SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2752                              SDValue N1, SDValue N2, SDValue N3,
2753                              SDValue N4) {
2754  SDValue Ops[] = { N1, N2, N3, N4 };
2755  return getNode(Opcode, VT, Ops, 4);
2756}
2757
2758SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2759                              SDValue N1, SDValue N2, SDValue N3,
2760                              SDValue N4, SDValue N5) {
2761  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2762  return getNode(Opcode, VT, Ops, 5);
2763}
2764
2765/// getMemsetValue - Vectorized representation of the memset value
2766/// operand.
2767static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2768  unsigned NumBits = VT.isVector() ?
2769    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2770  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2771    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2772    unsigned Shift = 8;
2773    for (unsigned i = NumBits; i > 8; i >>= 1) {
2774      Val = (Val << Shift) | Val;
2775      Shift <<= 1;
2776    }
2777    if (VT.isInteger())
2778      return DAG.getConstant(Val, VT);
2779    return DAG.getConstantFP(APFloat(Val), VT);
2780  }
2781
2782  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2783  unsigned Shift = 8;
2784  for (unsigned i = NumBits; i > 8; i >>= 1) {
2785    Value = DAG.getNode(ISD::OR, VT,
2786                        DAG.getNode(ISD::SHL, VT, Value,
2787                                    DAG.getConstant(Shift, MVT::i8)), Value);
2788    Shift <<= 1;
2789  }
2790
2791  return Value;
2792}
2793
2794/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2795/// used when a memcpy is turned into a memset when the source is a constant
2796/// string ptr.
2797static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2798                                    const TargetLowering &TLI,
2799                                    std::string &Str, unsigned Offset) {
2800  // Handle vector with all elements zero.
2801  if (Str.empty()) {
2802    if (VT.isInteger())
2803      return DAG.getConstant(0, VT);
2804    unsigned NumElts = VT.getVectorNumElements();
2805    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2806    return DAG.getNode(ISD::BIT_CONVERT, VT,
2807                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2808  }
2809
2810  assert(!VT.isVector() && "Can't handle vector type here!");
2811  unsigned NumBits = VT.getSizeInBits();
2812  unsigned MSB = NumBits / 8;
2813  uint64_t Val = 0;
2814  if (TLI.isLittleEndian())
2815    Offset = Offset + MSB - 1;
2816  for (unsigned i = 0; i != MSB; ++i) {
2817    Val = (Val << 8) | (unsigned char)Str[Offset];
2818    Offset += TLI.isLittleEndian() ? -1 : 1;
2819  }
2820  return DAG.getConstant(Val, VT);
2821}
2822
2823/// getMemBasePlusOffset - Returns base and offset node for the
2824///
2825static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2826                                      SelectionDAG &DAG) {
2827  MVT VT = Base.getValueType();
2828  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2829}
2830
2831/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2832///
2833static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2834  unsigned SrcDelta = 0;
2835  GlobalAddressSDNode *G = NULL;
2836  if (Src.getOpcode() == ISD::GlobalAddress)
2837    G = cast<GlobalAddressSDNode>(Src);
2838  else if (Src.getOpcode() == ISD::ADD &&
2839           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2840           Src.getOperand(1).getOpcode() == ISD::Constant) {
2841    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2842    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2843  }
2844  if (!G)
2845    return false;
2846
2847  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2848  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2849    return true;
2850
2851  return false;
2852}
2853
2854/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2855/// to replace the memset / memcpy is below the threshold. It also returns the
2856/// types of the sequence of memory ops to perform memset / memcpy.
2857static
2858bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2859                              SDValue Dst, SDValue Src,
2860                              unsigned Limit, uint64_t Size, unsigned &Align,
2861                              std::string &Str, bool &isSrcStr,
2862                              SelectionDAG &DAG,
2863                              const TargetLowering &TLI) {
2864  isSrcStr = isMemSrcFromString(Src, Str);
2865  bool isSrcConst = isa<ConstantSDNode>(Src);
2866  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2867  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2868  if (VT != MVT::iAny) {
2869    unsigned NewAlign = (unsigned)
2870      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2871    // If source is a string constant, this will require an unaligned load.
2872    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2873      if (Dst.getOpcode() != ISD::FrameIndex) {
2874        // Can't change destination alignment. It requires a unaligned store.
2875        if (AllowUnalign)
2876          VT = MVT::iAny;
2877      } else {
2878        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2879        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2880        if (MFI->isFixedObjectIndex(FI)) {
2881          // Can't change destination alignment. It requires a unaligned store.
2882          if (AllowUnalign)
2883            VT = MVT::iAny;
2884        } else {
2885          // Give the stack frame object a larger alignment if needed.
2886          if (MFI->getObjectAlignment(FI) < NewAlign)
2887            MFI->setObjectAlignment(FI, NewAlign);
2888          Align = NewAlign;
2889        }
2890      }
2891    }
2892  }
2893
2894  if (VT == MVT::iAny) {
2895    if (AllowUnalign) {
2896      VT = MVT::i64;
2897    } else {
2898      switch (Align & 7) {
2899      case 0:  VT = MVT::i64; break;
2900      case 4:  VT = MVT::i32; break;
2901      case 2:  VT = MVT::i16; break;
2902      default: VT = MVT::i8;  break;
2903      }
2904    }
2905
2906    MVT LVT = MVT::i64;
2907    while (!TLI.isTypeLegal(LVT))
2908      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2909    assert(LVT.isInteger());
2910
2911    if (VT.bitsGT(LVT))
2912      VT = LVT;
2913  }
2914
2915  unsigned NumMemOps = 0;
2916  while (Size != 0) {
2917    unsigned VTSize = VT.getSizeInBits() / 8;
2918    while (VTSize > Size) {
2919      // For now, only use non-vector load / store's for the left-over pieces.
2920      if (VT.isVector()) {
2921        VT = MVT::i64;
2922        while (!TLI.isTypeLegal(VT))
2923          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2924        VTSize = VT.getSizeInBits() / 8;
2925      } else {
2926        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2927        VTSize >>= 1;
2928      }
2929    }
2930
2931    if (++NumMemOps > Limit)
2932      return false;
2933    MemOps.push_back(VT);
2934    Size -= VTSize;
2935  }
2936
2937  return true;
2938}
2939
2940static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2941                                         SDValue Chain, SDValue Dst,
2942                                         SDValue Src, uint64_t Size,
2943                                         unsigned Align, bool AlwaysInline,
2944                                         const Value *DstSV, uint64_t DstSVOff,
2945                                         const Value *SrcSV, uint64_t SrcSVOff){
2946  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2947
2948  // Expand memcpy to a series of load and store ops if the size operand falls
2949  // below a certain threshold.
2950  std::vector<MVT> MemOps;
2951  uint64_t Limit = -1ULL;
2952  if (!AlwaysInline)
2953    Limit = TLI.getMaxStoresPerMemcpy();
2954  unsigned DstAlign = Align;  // Destination alignment can change.
2955  std::string Str;
2956  bool CopyFromStr;
2957  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2958                                Str, CopyFromStr, DAG, TLI))
2959    return SDValue();
2960
2961
2962  bool isZeroStr = CopyFromStr && Str.empty();
2963  SmallVector<SDValue, 8> OutChains;
2964  unsigned NumMemOps = MemOps.size();
2965  uint64_t SrcOff = 0, DstOff = 0;
2966  for (unsigned i = 0; i < NumMemOps; i++) {
2967    MVT VT = MemOps[i];
2968    unsigned VTSize = VT.getSizeInBits() / 8;
2969    SDValue Value, Store;
2970
2971    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2972      // It's unlikely a store of a vector immediate can be done in a single
2973      // instruction. It would require a load from a constantpool first.
2974      // We also handle store a vector with all zero's.
2975      // FIXME: Handle other cases where store of vector immediate is done in
2976      // a single instruction.
2977      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2978      Store = DAG.getStore(Chain, Value,
2979                           getMemBasePlusOffset(Dst, DstOff, DAG),
2980                           DstSV, DstSVOff + DstOff, false, DstAlign);
2981    } else {
2982      Value = DAG.getLoad(VT, Chain,
2983                          getMemBasePlusOffset(Src, SrcOff, DAG),
2984                          SrcSV, SrcSVOff + SrcOff, false, Align);
2985      Store = DAG.getStore(Chain, Value,
2986                           getMemBasePlusOffset(Dst, DstOff, DAG),
2987                           DstSV, DstSVOff + DstOff, false, DstAlign);
2988    }
2989    OutChains.push_back(Store);
2990    SrcOff += VTSize;
2991    DstOff += VTSize;
2992  }
2993
2994  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2995                     &OutChains[0], OutChains.size());
2996}
2997
2998static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
2999                                          SDValue Chain, SDValue Dst,
3000                                          SDValue Src, uint64_t Size,
3001                                          unsigned Align, bool AlwaysInline,
3002                                          const Value *DstSV, uint64_t DstSVOff,
3003                                          const Value *SrcSV, uint64_t SrcSVOff){
3004  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3005
3006  // Expand memmove to a series of load and store ops if the size operand falls
3007  // below a certain threshold.
3008  std::vector<MVT> MemOps;
3009  uint64_t Limit = -1ULL;
3010  if (!AlwaysInline)
3011    Limit = TLI.getMaxStoresPerMemmove();
3012  unsigned DstAlign = Align;  // Destination alignment can change.
3013  std::string Str;
3014  bool CopyFromStr;
3015  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3016                                Str, CopyFromStr, DAG, TLI))
3017    return SDValue();
3018
3019  uint64_t SrcOff = 0, DstOff = 0;
3020
3021  SmallVector<SDValue, 8> LoadValues;
3022  SmallVector<SDValue, 8> LoadChains;
3023  SmallVector<SDValue, 8> OutChains;
3024  unsigned NumMemOps = MemOps.size();
3025  for (unsigned i = 0; i < NumMemOps; i++) {
3026    MVT VT = MemOps[i];
3027    unsigned VTSize = VT.getSizeInBits() / 8;
3028    SDValue Value, Store;
3029
3030    Value = DAG.getLoad(VT, Chain,
3031                        getMemBasePlusOffset(Src, SrcOff, DAG),
3032                        SrcSV, SrcSVOff + SrcOff, false, Align);
3033    LoadValues.push_back(Value);
3034    LoadChains.push_back(Value.getValue(1));
3035    SrcOff += VTSize;
3036  }
3037  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3038                      &LoadChains[0], LoadChains.size());
3039  OutChains.clear();
3040  for (unsigned i = 0; i < NumMemOps; i++) {
3041    MVT VT = MemOps[i];
3042    unsigned VTSize = VT.getSizeInBits() / 8;
3043    SDValue Value, Store;
3044
3045    Store = DAG.getStore(Chain, LoadValues[i],
3046                         getMemBasePlusOffset(Dst, DstOff, DAG),
3047                         DstSV, DstSVOff + DstOff, false, DstAlign);
3048    OutChains.push_back(Store);
3049    DstOff += VTSize;
3050  }
3051
3052  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3053                     &OutChains[0], OutChains.size());
3054}
3055
3056static SDValue getMemsetStores(SelectionDAG &DAG,
3057                                 SDValue Chain, SDValue Dst,
3058                                 SDValue Src, uint64_t Size,
3059                                 unsigned Align,
3060                                 const Value *DstSV, uint64_t DstSVOff) {
3061  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3062
3063  // Expand memset to a series of load/store ops if the size operand
3064  // falls below a certain threshold.
3065  std::vector<MVT> MemOps;
3066  std::string Str;
3067  bool CopyFromStr;
3068  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3069                                Size, Align, Str, CopyFromStr, DAG, TLI))
3070    return SDValue();
3071
3072  SmallVector<SDValue, 8> OutChains;
3073  uint64_t DstOff = 0;
3074
3075  unsigned NumMemOps = MemOps.size();
3076  for (unsigned i = 0; i < NumMemOps; i++) {
3077    MVT VT = MemOps[i];
3078    unsigned VTSize = VT.getSizeInBits() / 8;
3079    SDValue Value = getMemsetValue(Src, VT, DAG);
3080    SDValue Store = DAG.getStore(Chain, Value,
3081                                   getMemBasePlusOffset(Dst, DstOff, DAG),
3082                                   DstSV, DstSVOff + DstOff);
3083    OutChains.push_back(Store);
3084    DstOff += VTSize;
3085  }
3086
3087  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3088                     &OutChains[0], OutChains.size());
3089}
3090
3091SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3092                                SDValue Src, SDValue Size,
3093                                unsigned Align, bool AlwaysInline,
3094                                const Value *DstSV, uint64_t DstSVOff,
3095                                const Value *SrcSV, uint64_t SrcSVOff) {
3096
3097  // Check to see if we should lower the memcpy to loads and stores first.
3098  // For cases within the target-specified limits, this is the best choice.
3099  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3100  if (ConstantSize) {
3101    // Memcpy with size zero? Just return the original chain.
3102    if (ConstantSize->isNullValue())
3103      return Chain;
3104
3105    SDValue Result =
3106      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3107                              ConstantSize->getZExtValue(),
3108                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3109    if (Result.getNode())
3110      return Result;
3111  }
3112
3113  // Then check to see if we should lower the memcpy with target-specific
3114  // code. If the target chooses to do this, this is the next best.
3115  SDValue Result =
3116    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3117                                AlwaysInline,
3118                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3119  if (Result.getNode())
3120    return Result;
3121
3122  // If we really need inline code and the target declined to provide it,
3123  // use a (potentially long) sequence of loads and stores.
3124  if (AlwaysInline) {
3125    assert(ConstantSize && "AlwaysInline requires a constant size!");
3126    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3127                                   ConstantSize->getZExtValue(), Align, true,
3128                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3129  }
3130
3131  // Emit a library call.
3132  TargetLowering::ArgListTy Args;
3133  TargetLowering::ArgListEntry Entry;
3134  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3135  Entry.Node = Dst; Args.push_back(Entry);
3136  Entry.Node = Src; Args.push_back(Entry);
3137  Entry.Node = Size; Args.push_back(Entry);
3138  std::pair<SDValue,SDValue> CallResult =
3139    TLI.LowerCallTo(Chain, Type::VoidTy,
3140                    false, false, false, false, CallingConv::C, false,
3141                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3142                    Args, *this);
3143  return CallResult.second;
3144}
3145
3146SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3147                                 SDValue Src, SDValue Size,
3148                                 unsigned Align,
3149                                 const Value *DstSV, uint64_t DstSVOff,
3150                                 const Value *SrcSV, uint64_t SrcSVOff) {
3151
3152  // Check to see if we should lower the memmove to loads and stores first.
3153  // For cases within the target-specified limits, this is the best choice.
3154  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3155  if (ConstantSize) {
3156    // Memmove with size zero? Just return the original chain.
3157    if (ConstantSize->isNullValue())
3158      return Chain;
3159
3160    SDValue Result =
3161      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3162                               ConstantSize->getZExtValue(),
3163                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3164    if (Result.getNode())
3165      return Result;
3166  }
3167
3168  // Then check to see if we should lower the memmove with target-specific
3169  // code. If the target chooses to do this, this is the next best.
3170  SDValue Result =
3171    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3172                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3173  if (Result.getNode())
3174    return Result;
3175
3176  // Emit a library call.
3177  TargetLowering::ArgListTy Args;
3178  TargetLowering::ArgListEntry Entry;
3179  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3180  Entry.Node = Dst; Args.push_back(Entry);
3181  Entry.Node = Src; Args.push_back(Entry);
3182  Entry.Node = Size; Args.push_back(Entry);
3183  std::pair<SDValue,SDValue> CallResult =
3184    TLI.LowerCallTo(Chain, Type::VoidTy,
3185                    false, false, false, false, CallingConv::C, false,
3186                    getExternalSymbol("memmove", TLI.getPointerTy()),
3187                    Args, *this);
3188  return CallResult.second;
3189}
3190
3191SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3192                                SDValue Src, SDValue Size,
3193                                unsigned Align,
3194                                const Value *DstSV, uint64_t DstSVOff) {
3195
3196  // Check to see if we should lower the memset to stores first.
3197  // For cases within the target-specified limits, this is the best choice.
3198  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3199  if (ConstantSize) {
3200    // Memset with size zero? Just return the original chain.
3201    if (ConstantSize->isNullValue())
3202      return Chain;
3203
3204    SDValue Result =
3205      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3206                      Align, DstSV, DstSVOff);
3207    if (Result.getNode())
3208      return Result;
3209  }
3210
3211  // Then check to see if we should lower the memset with target-specific
3212  // code. If the target chooses to do this, this is the next best.
3213  SDValue Result =
3214    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3215                                DstSV, DstSVOff);
3216  if (Result.getNode())
3217    return Result;
3218
3219  // Emit a library call.
3220  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3221  TargetLowering::ArgListTy Args;
3222  TargetLowering::ArgListEntry Entry;
3223  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3224  Args.push_back(Entry);
3225  // Extend or truncate the argument to be an i32 value for the call.
3226  if (Src.getValueType().bitsGT(MVT::i32))
3227    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3228  else
3229    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3230  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3231  Args.push_back(Entry);
3232  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3233  Args.push_back(Entry);
3234  std::pair<SDValue,SDValue> CallResult =
3235    TLI.LowerCallTo(Chain, Type::VoidTy,
3236                    false, false, false, false, CallingConv::C, false,
3237                    getExternalSymbol("memset", TLI.getPointerTy()),
3238                    Args, *this);
3239  return CallResult.second;
3240}
3241
3242SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3243                                SDValue Ptr, SDValue Cmp,
3244                                SDValue Swp, const Value* PtrVal,
3245                                unsigned Alignment) {
3246  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3247          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3248          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3249          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3250  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3251
3252  MVT VT = Cmp.getValueType();
3253
3254  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3255    Alignment = getMVTAlignment(VT);
3256
3257  SDVTList VTs = getVTList(VT, MVT::Other);
3258  FoldingSetNodeID ID;
3259  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3260  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3261  void* IP = 0;
3262  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3263    return SDValue(E, 0);
3264  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3265  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3266  CSEMap.InsertNode(N, IP);
3267  AllNodes.push_back(N);
3268  return SDValue(N, 0);
3269}
3270
3271SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3272                                SDValue Ptr, SDValue Val,
3273                                const Value* PtrVal,
3274                                unsigned Alignment) {
3275  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3276          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3277          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3278          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3279          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3280          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3281          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3282          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3283          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3284          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3285          Opcode == ISD::ATOMIC_SWAP_8 ||
3286          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3287          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3288          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3289          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3290          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3291          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3292          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3293          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3294          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3295          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3296          Opcode == ISD::ATOMIC_SWAP_16 ||
3297          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3298          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3299          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3300          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3301          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3302          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3303          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3304          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3305          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3306          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3307          Opcode == ISD::ATOMIC_SWAP_32 ||
3308          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3309          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3310          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3311          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3312          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3313          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3314          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3315          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3316          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3317          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3318          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3319
3320  MVT VT = Val.getValueType();
3321
3322  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3323    Alignment = getMVTAlignment(VT);
3324
3325  SDVTList VTs = getVTList(VT, MVT::Other);
3326  FoldingSetNodeID ID;
3327  SDValue Ops[] = {Chain, Ptr, Val};
3328  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3329  void* IP = 0;
3330  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3331    return SDValue(E, 0);
3332  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3333  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3334  CSEMap.InsertNode(N, IP);
3335  AllNodes.push_back(N);
3336  return SDValue(N, 0);
3337}
3338
3339/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3340/// Allowed to return something different (and simpler) if Simplify is true.
3341SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3342                                     bool Simplify) {
3343  if (Simplify && NumOps == 1)
3344    return Ops[0];
3345
3346  SmallVector<MVT, 4> VTs;
3347  VTs.reserve(NumOps);
3348  for (unsigned i = 0; i < NumOps; ++i)
3349    VTs.push_back(Ops[i].getValueType());
3350  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3351}
3352
3353SDValue
3354SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3355                                  const MVT *VTs, unsigned NumVTs,
3356                                  const SDValue *Ops, unsigned NumOps,
3357                                  MVT MemVT, const Value *srcValue, int SVOff,
3358                                  unsigned Align, bool Vol,
3359                                  bool ReadMem, bool WriteMem) {
3360  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3361                             MemVT, srcValue, SVOff, Align, Vol,
3362                             ReadMem, WriteMem);
3363}
3364
3365SDValue
3366SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3367                                  const SDValue *Ops, unsigned NumOps,
3368                                  MVT MemVT, const Value *srcValue, int SVOff,
3369                                  unsigned Align, bool Vol,
3370                                  bool ReadMem, bool WriteMem) {
3371  // Memoize the node unless it returns a flag.
3372  MemIntrinsicSDNode *N;
3373  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3374    FoldingSetNodeID ID;
3375    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3376    void *IP = 0;
3377    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3378      return SDValue(E, 0);
3379
3380    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3381    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3382                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3383    CSEMap.InsertNode(N, IP);
3384  } else {
3385    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3386    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3387                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3388  }
3389  AllNodes.push_back(N);
3390  return SDValue(N, 0);
3391}
3392
3393SDValue
3394SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3395                      bool IsInreg, SDVTList VTs,
3396                      const SDValue *Operands, unsigned NumOperands) {
3397  // Do not include isTailCall in the folding set profile.
3398  FoldingSetNodeID ID;
3399  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3400  ID.AddInteger(CallingConv);
3401  ID.AddInteger(IsVarArgs);
3402  void *IP = 0;
3403  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3404    // Instead of including isTailCall in the folding set, we just
3405    // set the flag of the existing node.
3406    if (!IsTailCall)
3407      cast<CallSDNode>(E)->setNotTailCall();
3408    return SDValue(E, 0);
3409  }
3410  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3411  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3412                     VTs, Operands, NumOperands);
3413  CSEMap.InsertNode(N, IP);
3414  AllNodes.push_back(N);
3415  return SDValue(N, 0);
3416}
3417
3418SDValue
3419SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3420                      MVT VT, SDValue Chain,
3421                      SDValue Ptr, SDValue Offset,
3422                      const Value *SV, int SVOffset, MVT EVT,
3423                      bool isVolatile, unsigned Alignment) {
3424  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3425    Alignment = getMVTAlignment(VT);
3426
3427  if (VT == EVT) {
3428    ExtType = ISD::NON_EXTLOAD;
3429  } else if (ExtType == ISD::NON_EXTLOAD) {
3430    assert(VT == EVT && "Non-extending load from different memory type!");
3431  } else {
3432    // Extending load.
3433    if (VT.isVector())
3434      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3435             "Invalid vector extload!");
3436    else
3437      assert(EVT.bitsLT(VT) &&
3438             "Should only be an extending load, not truncating!");
3439    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3440           "Cannot sign/zero extend a FP/Vector load!");
3441    assert(VT.isInteger() == EVT.isInteger() &&
3442           "Cannot convert from FP to Int or Int -> FP!");
3443  }
3444
3445  bool Indexed = AM != ISD::UNINDEXED;
3446  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3447         "Unindexed load with an offset!");
3448
3449  SDVTList VTs = Indexed ?
3450    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3451  SDValue Ops[] = { Chain, Ptr, Offset };
3452  FoldingSetNodeID ID;
3453  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3454  ID.AddInteger(AM);
3455  ID.AddInteger(ExtType);
3456  ID.AddInteger(EVT.getRawBits());
3457  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3458  void *IP = 0;
3459  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3460    return SDValue(E, 0);
3461  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3462  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3463                     Alignment, isVolatile);
3464  CSEMap.InsertNode(N, IP);
3465  AllNodes.push_back(N);
3466  return SDValue(N, 0);
3467}
3468
3469SDValue SelectionDAG::getLoad(MVT VT,
3470                              SDValue Chain, SDValue Ptr,
3471                              const Value *SV, int SVOffset,
3472                              bool isVolatile, unsigned Alignment) {
3473  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3474  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3475                 SV, SVOffset, VT, isVolatile, Alignment);
3476}
3477
3478SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3479                                 SDValue Chain, SDValue Ptr,
3480                                 const Value *SV,
3481                                 int SVOffset, MVT EVT,
3482                                 bool isVolatile, unsigned Alignment) {
3483  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3484  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3485                 SV, SVOffset, EVT, isVolatile, Alignment);
3486}
3487
3488SDValue
3489SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3490                             SDValue Offset, ISD::MemIndexedMode AM) {
3491  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3492  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3493         "Load is already a indexed load!");
3494  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3495                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3496                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3497                 LD->isVolatile(), LD->getAlignment());
3498}
3499
3500SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3501                               SDValue Ptr, const Value *SV, int SVOffset,
3502                               bool isVolatile, unsigned Alignment) {
3503  MVT VT = Val.getValueType();
3504
3505  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3506    Alignment = getMVTAlignment(VT);
3507
3508  SDVTList VTs = getVTList(MVT::Other);
3509  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3510  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3511  FoldingSetNodeID ID;
3512  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3513  ID.AddInteger(ISD::UNINDEXED);
3514  ID.AddInteger(false);
3515  ID.AddInteger(VT.getRawBits());
3516  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3517  void *IP = 0;
3518  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3519    return SDValue(E, 0);
3520  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3521  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3522                      VT, SV, SVOffset, Alignment, isVolatile);
3523  CSEMap.InsertNode(N, IP);
3524  AllNodes.push_back(N);
3525  return SDValue(N, 0);
3526}
3527
3528SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3529                                    SDValue Ptr, const Value *SV,
3530                                    int SVOffset, MVT SVT,
3531                                    bool isVolatile, unsigned Alignment) {
3532  MVT VT = Val.getValueType();
3533
3534  if (VT == SVT)
3535    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3536
3537  assert(VT.bitsGT(SVT) && "Not a truncation?");
3538  assert(VT.isInteger() == SVT.isInteger() &&
3539         "Can't do FP-INT conversion!");
3540
3541  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3542    Alignment = getMVTAlignment(VT);
3543
3544  SDVTList VTs = getVTList(MVT::Other);
3545  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3546  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3547  FoldingSetNodeID ID;
3548  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3549  ID.AddInteger(ISD::UNINDEXED);
3550  ID.AddInteger(1);
3551  ID.AddInteger(SVT.getRawBits());
3552  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3553  void *IP = 0;
3554  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3555    return SDValue(E, 0);
3556  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3557  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3558                      SVT, SV, SVOffset, Alignment, isVolatile);
3559  CSEMap.InsertNode(N, IP);
3560  AllNodes.push_back(N);
3561  return SDValue(N, 0);
3562}
3563
3564SDValue
3565SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3566                              SDValue Offset, ISD::MemIndexedMode AM) {
3567  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3568  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3569         "Store is already a indexed store!");
3570  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3571  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3572  FoldingSetNodeID ID;
3573  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3574  ID.AddInteger(AM);
3575  ID.AddInteger(ST->isTruncatingStore());
3576  ID.AddInteger(ST->getMemoryVT().getRawBits());
3577  ID.AddInteger(ST->getRawFlags());
3578  void *IP = 0;
3579  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3580    return SDValue(E, 0);
3581  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3582  new (N) StoreSDNode(Ops, VTs, AM,
3583                      ST->isTruncatingStore(), ST->getMemoryVT(),
3584                      ST->getSrcValue(), ST->getSrcValueOffset(),
3585                      ST->getAlignment(), ST->isVolatile());
3586  CSEMap.InsertNode(N, IP);
3587  AllNodes.push_back(N);
3588  return SDValue(N, 0);
3589}
3590
3591SDValue SelectionDAG::getVAArg(MVT VT,
3592                               SDValue Chain, SDValue Ptr,
3593                               SDValue SV) {
3594  SDValue Ops[] = { Chain, Ptr, SV };
3595  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3596}
3597
3598SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3599                              const SDUse *Ops, unsigned NumOps) {
3600  switch (NumOps) {
3601  case 0: return getNode(Opcode, VT);
3602  case 1: return getNode(Opcode, VT, Ops[0]);
3603  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3604  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3605  default: break;
3606  }
3607
3608  // Copy from an SDUse array into an SDValue array for use with
3609  // the regular getNode logic.
3610  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3611  return getNode(Opcode, VT, &NewOps[0], NumOps);
3612}
3613
3614SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3615                              const SDValue *Ops, unsigned NumOps) {
3616  switch (NumOps) {
3617  case 0: return getNode(Opcode, VT);
3618  case 1: return getNode(Opcode, VT, Ops[0]);
3619  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3620  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3621  default: break;
3622  }
3623
3624  switch (Opcode) {
3625  default: break;
3626  case ISD::SELECT_CC: {
3627    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3628    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3629           "LHS and RHS of condition must have same type!");
3630    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3631           "True and False arms of SelectCC must have same type!");
3632    assert(Ops[2].getValueType() == VT &&
3633           "select_cc node must be of same type as true and false value!");
3634    break;
3635  }
3636  case ISD::BR_CC: {
3637    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3638    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3639           "LHS/RHS of comparison should match types!");
3640    break;
3641  }
3642  }
3643
3644  // Memoize nodes.
3645  SDNode *N;
3646  SDVTList VTs = getVTList(VT);
3647  if (VT != MVT::Flag) {
3648    FoldingSetNodeID ID;
3649    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3650    void *IP = 0;
3651    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3652      return SDValue(E, 0);
3653    N = NodeAllocator.Allocate<SDNode>();
3654    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3655    CSEMap.InsertNode(N, IP);
3656  } else {
3657    N = NodeAllocator.Allocate<SDNode>();
3658    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3659  }
3660  AllNodes.push_back(N);
3661#ifndef NDEBUG
3662  VerifyNode(N);
3663#endif
3664  return SDValue(N, 0);
3665}
3666
3667SDValue SelectionDAG::getNode(unsigned Opcode,
3668                              const std::vector<MVT> &ResultTys,
3669                              const SDValue *Ops, unsigned NumOps) {
3670  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3671                 Ops, NumOps);
3672}
3673
3674SDValue SelectionDAG::getNode(unsigned Opcode,
3675                              const MVT *VTs, unsigned NumVTs,
3676                              const SDValue *Ops, unsigned NumOps) {
3677  if (NumVTs == 1)
3678    return getNode(Opcode, VTs[0], Ops, NumOps);
3679  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3680}
3681
3682SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3683                              const SDValue *Ops, unsigned NumOps) {
3684  if (VTList.NumVTs == 1)
3685    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3686
3687  switch (Opcode) {
3688  // FIXME: figure out how to safely handle things like
3689  // int foo(int x) { return 1 << (x & 255); }
3690  // int bar() { return foo(256); }
3691#if 0
3692  case ISD::SRA_PARTS:
3693  case ISD::SRL_PARTS:
3694  case ISD::SHL_PARTS:
3695    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3696        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3697      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3698    else if (N3.getOpcode() == ISD::AND)
3699      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3700        // If the and is only masking out bits that cannot effect the shift,
3701        // eliminate the and.
3702        unsigned NumBits = VT.getSizeInBits()*2;
3703        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3704          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3705      }
3706    break;
3707#endif
3708  }
3709
3710  // Memoize the node unless it returns a flag.
3711  SDNode *N;
3712  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3713    FoldingSetNodeID ID;
3714    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3715    void *IP = 0;
3716    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3717      return SDValue(E, 0);
3718    if (NumOps == 1) {
3719      N = NodeAllocator.Allocate<UnarySDNode>();
3720      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3721    } else if (NumOps == 2) {
3722      N = NodeAllocator.Allocate<BinarySDNode>();
3723      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3724    } else if (NumOps == 3) {
3725      N = NodeAllocator.Allocate<TernarySDNode>();
3726      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3727    } else {
3728      N = NodeAllocator.Allocate<SDNode>();
3729      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3730    }
3731    CSEMap.InsertNode(N, IP);
3732  } else {
3733    if (NumOps == 1) {
3734      N = NodeAllocator.Allocate<UnarySDNode>();
3735      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3736    } else if (NumOps == 2) {
3737      N = NodeAllocator.Allocate<BinarySDNode>();
3738      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3739    } else if (NumOps == 3) {
3740      N = NodeAllocator.Allocate<TernarySDNode>();
3741      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3742    } else {
3743      N = NodeAllocator.Allocate<SDNode>();
3744      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3745    }
3746  }
3747  AllNodes.push_back(N);
3748#ifndef NDEBUG
3749  VerifyNode(N);
3750#endif
3751  return SDValue(N, 0);
3752}
3753
3754SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3755  return getNode(Opcode, VTList, 0, 0);
3756}
3757
3758SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3759                                SDValue N1) {
3760  SDValue Ops[] = { N1 };
3761  return getNode(Opcode, VTList, Ops, 1);
3762}
3763
3764SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3765                              SDValue N1, SDValue N2) {
3766  SDValue Ops[] = { N1, N2 };
3767  return getNode(Opcode, VTList, Ops, 2);
3768}
3769
3770SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3771                              SDValue N1, SDValue N2, SDValue N3) {
3772  SDValue Ops[] = { N1, N2, N3 };
3773  return getNode(Opcode, VTList, Ops, 3);
3774}
3775
3776SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3777                              SDValue N1, SDValue N2, SDValue N3,
3778                              SDValue N4) {
3779  SDValue Ops[] = { N1, N2, N3, N4 };
3780  return getNode(Opcode, VTList, Ops, 4);
3781}
3782
3783SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3784                              SDValue N1, SDValue N2, SDValue N3,
3785                              SDValue N4, SDValue N5) {
3786  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3787  return getNode(Opcode, VTList, Ops, 5);
3788}
3789
3790SDVTList SelectionDAG::getVTList(MVT VT) {
3791  return makeVTList(SDNode::getValueTypeList(VT), 1);
3792}
3793
3794SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3795  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3796       E = VTList.rend(); I != E; ++I)
3797    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3798      return *I;
3799
3800  MVT *Array = Allocator.Allocate<MVT>(2);
3801  Array[0] = VT1;
3802  Array[1] = VT2;
3803  SDVTList Result = makeVTList(Array, 2);
3804  VTList.push_back(Result);
3805  return Result;
3806}
3807
3808SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3809  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3810       E = VTList.rend(); I != E; ++I)
3811    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3812                          I->VTs[2] == VT3)
3813      return *I;
3814
3815  MVT *Array = Allocator.Allocate<MVT>(3);
3816  Array[0] = VT1;
3817  Array[1] = VT2;
3818  Array[2] = VT3;
3819  SDVTList Result = makeVTList(Array, 3);
3820  VTList.push_back(Result);
3821  return Result;
3822}
3823
3824SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3825  switch (NumVTs) {
3826    case 0: assert(0 && "Cannot have nodes without results!");
3827    case 1: return getVTList(VTs[0]);
3828    case 2: return getVTList(VTs[0], VTs[1]);
3829    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3830    default: break;
3831  }
3832
3833  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3834       E = VTList.rend(); I != E; ++I) {
3835    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3836      continue;
3837
3838    bool NoMatch = false;
3839    for (unsigned i = 2; i != NumVTs; ++i)
3840      if (VTs[i] != I->VTs[i]) {
3841        NoMatch = true;
3842        break;
3843      }
3844    if (!NoMatch)
3845      return *I;
3846  }
3847
3848  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3849  std::copy(VTs, VTs+NumVTs, Array);
3850  SDVTList Result = makeVTList(Array, NumVTs);
3851  VTList.push_back(Result);
3852  return Result;
3853}
3854
3855
3856/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3857/// specified operands.  If the resultant node already exists in the DAG,
3858/// this does not modify the specified node, instead it returns the node that
3859/// already exists.  If the resultant node does not exist in the DAG, the
3860/// input node is returned.  As a degenerate case, if you specify the same
3861/// input operands as the node already has, the input node is returned.
3862SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3863  SDNode *N = InN.getNode();
3864  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3865
3866  // Check to see if there is no change.
3867  if (Op == N->getOperand(0)) return InN;
3868
3869  // See if the modified node already exists.
3870  void *InsertPos = 0;
3871  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3872    return SDValue(Existing, InN.getResNo());
3873
3874  // Nope it doesn't.  Remove the node from its current place in the maps.
3875  if (InsertPos)
3876    if (!RemoveNodeFromCSEMaps(N))
3877      InsertPos = 0;
3878
3879  // Now we update the operands.
3880  N->OperandList[0].getVal()->removeUser(0, N);
3881  N->OperandList[0] = Op;
3882  N->OperandList[0].setUser(N);
3883  Op.getNode()->addUser(0, N);
3884
3885  // If this gets put into a CSE map, add it.
3886  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3887  return InN;
3888}
3889
3890SDValue SelectionDAG::
3891UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3892  SDNode *N = InN.getNode();
3893  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3894
3895  // Check to see if there is no change.
3896  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3897    return InN;   // No operands changed, just return the input node.
3898
3899  // See if the modified node already exists.
3900  void *InsertPos = 0;
3901  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3902    return SDValue(Existing, InN.getResNo());
3903
3904  // Nope it doesn't.  Remove the node from its current place in the maps.
3905  if (InsertPos)
3906    if (!RemoveNodeFromCSEMaps(N))
3907      InsertPos = 0;
3908
3909  // Now we update the operands.
3910  if (N->OperandList[0] != Op1) {
3911    N->OperandList[0].getVal()->removeUser(0, N);
3912    N->OperandList[0] = Op1;
3913    N->OperandList[0].setUser(N);
3914    Op1.getNode()->addUser(0, N);
3915  }
3916  if (N->OperandList[1] != Op2) {
3917    N->OperandList[1].getVal()->removeUser(1, N);
3918    N->OperandList[1] = Op2;
3919    N->OperandList[1].setUser(N);
3920    Op2.getNode()->addUser(1, N);
3921  }
3922
3923  // If this gets put into a CSE map, add it.
3924  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3925  return InN;
3926}
3927
3928SDValue SelectionDAG::
3929UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3930  SDValue Ops[] = { Op1, Op2, Op3 };
3931  return UpdateNodeOperands(N, Ops, 3);
3932}
3933
3934SDValue SelectionDAG::
3935UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3936                   SDValue Op3, SDValue Op4) {
3937  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3938  return UpdateNodeOperands(N, Ops, 4);
3939}
3940
3941SDValue SelectionDAG::
3942UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3943                   SDValue Op3, SDValue Op4, SDValue Op5) {
3944  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3945  return UpdateNodeOperands(N, Ops, 5);
3946}
3947
3948SDValue SelectionDAG::
3949UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3950  SDNode *N = InN.getNode();
3951  assert(N->getNumOperands() == NumOps &&
3952         "Update with wrong number of operands");
3953
3954  // Check to see if there is no change.
3955  bool AnyChange = false;
3956  for (unsigned i = 0; i != NumOps; ++i) {
3957    if (Ops[i] != N->getOperand(i)) {
3958      AnyChange = true;
3959      break;
3960    }
3961  }
3962
3963  // No operands changed, just return the input node.
3964  if (!AnyChange) return InN;
3965
3966  // See if the modified node already exists.
3967  void *InsertPos = 0;
3968  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3969    return SDValue(Existing, InN.getResNo());
3970
3971  // Nope it doesn't.  Remove the node from its current place in the maps.
3972  if (InsertPos)
3973    if (!RemoveNodeFromCSEMaps(N))
3974      InsertPos = 0;
3975
3976  // Now we update the operands.
3977  for (unsigned i = 0; i != NumOps; ++i) {
3978    if (N->OperandList[i] != Ops[i]) {
3979      N->OperandList[i].getVal()->removeUser(i, N);
3980      N->OperandList[i] = Ops[i];
3981      N->OperandList[i].setUser(N);
3982      Ops[i].getNode()->addUser(i, N);
3983    }
3984  }
3985
3986  // If this gets put into a CSE map, add it.
3987  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3988  return InN;
3989}
3990
3991/// DropOperands - Release the operands and set this node to have
3992/// zero operands.
3993void SDNode::DropOperands() {
3994  // Unlike the code in MorphNodeTo that does this, we don't need to
3995  // watch for dead nodes here.
3996  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3997    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3998
3999  NumOperands = 0;
4000}
4001
4002/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4003/// machine opcode.
4004///
4005SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4006                                   MVT VT) {
4007  SDVTList VTs = getVTList(VT);
4008  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4009}
4010
4011SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4012                                   MVT VT, SDValue Op1) {
4013  SDVTList VTs = getVTList(VT);
4014  SDValue Ops[] = { Op1 };
4015  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4016}
4017
4018SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4019                                   MVT VT, SDValue Op1,
4020                                   SDValue Op2) {
4021  SDVTList VTs = getVTList(VT);
4022  SDValue Ops[] = { Op1, Op2 };
4023  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4024}
4025
4026SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4027                                   MVT VT, SDValue Op1,
4028                                   SDValue Op2, SDValue Op3) {
4029  SDVTList VTs = getVTList(VT);
4030  SDValue Ops[] = { Op1, Op2, Op3 };
4031  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4032}
4033
4034SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4035                                   MVT VT, const SDValue *Ops,
4036                                   unsigned NumOps) {
4037  SDVTList VTs = getVTList(VT);
4038  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4039}
4040
4041SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4042                                   MVT VT1, MVT VT2, const SDValue *Ops,
4043                                   unsigned NumOps) {
4044  SDVTList VTs = getVTList(VT1, VT2);
4045  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4046}
4047
4048SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4049                                   MVT VT1, MVT VT2) {
4050  SDVTList VTs = getVTList(VT1, VT2);
4051  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4052}
4053
4054SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4055                                   MVT VT1, MVT VT2, MVT VT3,
4056                                   const SDValue *Ops, unsigned NumOps) {
4057  SDVTList VTs = getVTList(VT1, VT2, VT3);
4058  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4059}
4060
4061SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4062                                   MVT VT1, MVT VT2,
4063                                   SDValue Op1) {
4064  SDVTList VTs = getVTList(VT1, VT2);
4065  SDValue Ops[] = { Op1 };
4066  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4067}
4068
4069SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4070                                   MVT VT1, MVT VT2,
4071                                   SDValue Op1, SDValue Op2) {
4072  SDVTList VTs = getVTList(VT1, VT2);
4073  SDValue Ops[] = { Op1, Op2 };
4074  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4075}
4076
4077SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4078                                   MVT VT1, MVT VT2,
4079                                   SDValue Op1, SDValue Op2,
4080                                   SDValue Op3) {
4081  SDVTList VTs = getVTList(VT1, VT2);
4082  SDValue Ops[] = { Op1, Op2, Op3 };
4083  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4084}
4085
4086SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4087                                   SDVTList VTs, const SDValue *Ops,
4088                                   unsigned NumOps) {
4089  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4090}
4091
4092SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4093                                  MVT VT) {
4094  SDVTList VTs = getVTList(VT);
4095  return MorphNodeTo(N, Opc, VTs, 0, 0);
4096}
4097
4098SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4099                                  MVT VT, SDValue Op1) {
4100  SDVTList VTs = getVTList(VT);
4101  SDValue Ops[] = { Op1 };
4102  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4103}
4104
4105SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4106                                  MVT VT, SDValue Op1,
4107                                  SDValue Op2) {
4108  SDVTList VTs = getVTList(VT);
4109  SDValue Ops[] = { Op1, Op2 };
4110  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4111}
4112
4113SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4114                                  MVT VT, SDValue Op1,
4115                                  SDValue Op2, SDValue Op3) {
4116  SDVTList VTs = getVTList(VT);
4117  SDValue Ops[] = { Op1, Op2, Op3 };
4118  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4119}
4120
4121SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4122                                  MVT VT, const SDValue *Ops,
4123                                  unsigned NumOps) {
4124  SDVTList VTs = getVTList(VT);
4125  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4126}
4127
4128SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4129                                  MVT VT1, MVT VT2, const SDValue *Ops,
4130                                  unsigned NumOps) {
4131  SDVTList VTs = getVTList(VT1, VT2);
4132  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4133}
4134
4135SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4136                                  MVT VT1, MVT VT2) {
4137  SDVTList VTs = getVTList(VT1, VT2);
4138  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4139}
4140
4141SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4142                                  MVT VT1, MVT VT2, MVT VT3,
4143                                  const SDValue *Ops, unsigned NumOps) {
4144  SDVTList VTs = getVTList(VT1, VT2, VT3);
4145  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4146}
4147
4148SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4149                                  MVT VT1, MVT VT2,
4150                                  SDValue Op1) {
4151  SDVTList VTs = getVTList(VT1, VT2);
4152  SDValue Ops[] = { Op1 };
4153  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4154}
4155
4156SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4157                                  MVT VT1, MVT VT2,
4158                                  SDValue Op1, SDValue Op2) {
4159  SDVTList VTs = getVTList(VT1, VT2);
4160  SDValue Ops[] = { Op1, Op2 };
4161  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4162}
4163
4164SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4165                                  MVT VT1, MVT VT2,
4166                                  SDValue Op1, SDValue Op2,
4167                                  SDValue Op3) {
4168  SDVTList VTs = getVTList(VT1, VT2);
4169  SDValue Ops[] = { Op1, Op2, Op3 };
4170  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4171}
4172
4173/// MorphNodeTo - These *mutate* the specified node to have the specified
4174/// return type, opcode, and operands.
4175///
4176/// Note that MorphNodeTo returns the resultant node.  If there is already a
4177/// node of the specified opcode and operands, it returns that node instead of
4178/// the current one.
4179///
4180/// Using MorphNodeTo is faster than creating a new node and swapping it in
4181/// with ReplaceAllUsesWith both because it often avoids allocating a new
4182/// node, and because it doesn't require CSE recalculation for any of
4183/// the node's users.
4184///
4185SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4186                                  SDVTList VTs, const SDValue *Ops,
4187                                  unsigned NumOps) {
4188  // If an identical node already exists, use it.
4189  void *IP = 0;
4190  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4191    FoldingSetNodeID ID;
4192    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4193    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4194      return ON;
4195  }
4196
4197  if (!RemoveNodeFromCSEMaps(N))
4198    IP = 0;
4199
4200  // Start the morphing.
4201  N->NodeType = Opc;
4202  N->ValueList = VTs.VTs;
4203  N->NumValues = VTs.NumVTs;
4204
4205  // Clear the operands list, updating used nodes to remove this from their
4206  // use list.  Keep track of any operands that become dead as a result.
4207  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4208  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4209       I != E; ++I) {
4210    SDNode *Used = I->getVal();
4211    Used->removeUser(std::distance(B, I), N);
4212    if (Used->use_empty())
4213      DeadNodeSet.insert(Used);
4214  }
4215
4216  // If NumOps is larger than the # of operands we currently have, reallocate
4217  // the operand list.
4218  if (NumOps > N->NumOperands) {
4219    if (N->OperandsNeedDelete)
4220      delete[] N->OperandList;
4221
4222    if (N->isMachineOpcode()) {
4223      // We're creating a final node that will live unmorphed for the
4224      // remainder of the current SelectionDAG iteration, so we can allocate
4225      // the operands directly out of a pool with no recycling metadata.
4226      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4227      N->OperandsNeedDelete = false;
4228    } else {
4229      N->OperandList = new SDUse[NumOps];
4230      N->OperandsNeedDelete = true;
4231    }
4232  }
4233
4234  // Assign the new operands.
4235  N->NumOperands = NumOps;
4236  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4237    N->OperandList[i] = Ops[i];
4238    N->OperandList[i].setUser(N);
4239    SDNode *ToUse = N->OperandList[i].getVal();
4240    ToUse->addUser(i, N);
4241  }
4242
4243  // Delete any nodes that are still dead after adding the uses for the
4244  // new operands.
4245  SmallVector<SDNode *, 16> DeadNodes;
4246  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4247       E = DeadNodeSet.end(); I != E; ++I)
4248    if ((*I)->use_empty())
4249      DeadNodes.push_back(*I);
4250  RemoveDeadNodes(DeadNodes);
4251
4252  if (IP)
4253    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4254  return N;
4255}
4256
4257
4258/// getTargetNode - These are used for target selectors to create a new node
4259/// with specified return type(s), target opcode, and operands.
4260///
4261/// Note that getTargetNode returns the resultant node.  If there is already a
4262/// node of the specified opcode and operands, it returns that node instead of
4263/// the current one.
4264SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4265  return getNode(~Opcode, VT).getNode();
4266}
4267SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4268  return getNode(~Opcode, VT, Op1).getNode();
4269}
4270SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4271                                    SDValue Op1, SDValue Op2) {
4272  return getNode(~Opcode, VT, Op1, Op2).getNode();
4273}
4274SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4275                                    SDValue Op1, SDValue Op2,
4276                                    SDValue Op3) {
4277  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4278}
4279SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4280                                    const SDValue *Ops, unsigned NumOps) {
4281  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4282}
4283SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4284  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4285  SDValue Op;
4286  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4287}
4288SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4289                                    MVT VT2, SDValue Op1) {
4290  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4291  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4292}
4293SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4294                                    MVT VT2, SDValue Op1,
4295                                    SDValue Op2) {
4296  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4297  SDValue Ops[] = { Op1, Op2 };
4298  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4299}
4300SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4301                                    MVT VT2, SDValue Op1,
4302                                    SDValue Op2, SDValue Op3) {
4303  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4304  SDValue Ops[] = { Op1, Op2, Op3 };
4305  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4306}
4307SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4308                                    const SDValue *Ops, unsigned NumOps) {
4309  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4310  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4311}
4312SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4313                                    SDValue Op1, SDValue Op2) {
4314  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4315  SDValue Ops[] = { Op1, Op2 };
4316  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4317}
4318SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4319                                    SDValue Op1, SDValue Op2,
4320                                    SDValue Op3) {
4321  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4322  SDValue Ops[] = { Op1, Op2, Op3 };
4323  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4324}
4325SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4326                                    const SDValue *Ops, unsigned NumOps) {
4327  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4328  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4329}
4330SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4331                                    MVT VT2, MVT VT3, MVT VT4,
4332                                    const SDValue *Ops, unsigned NumOps) {
4333  std::vector<MVT> VTList;
4334  VTList.push_back(VT1);
4335  VTList.push_back(VT2);
4336  VTList.push_back(VT3);
4337  VTList.push_back(VT4);
4338  const MVT *VTs = getNodeValueTypes(VTList);
4339  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4340}
4341SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4342                                    const std::vector<MVT> &ResultTys,
4343                                    const SDValue *Ops, unsigned NumOps) {
4344  const MVT *VTs = getNodeValueTypes(ResultTys);
4345  return getNode(~Opcode, VTs, ResultTys.size(),
4346                 Ops, NumOps).getNode();
4347}
4348
4349/// getNodeIfExists - Get the specified node if it's already available, or
4350/// else return NULL.
4351SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4352                                      const SDValue *Ops, unsigned NumOps) {
4353  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4354    FoldingSetNodeID ID;
4355    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4356    void *IP = 0;
4357    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4358      return E;
4359  }
4360  return NULL;
4361}
4362
4363
4364/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4365/// This can cause recursive merging of nodes in the DAG.
4366///
4367/// This version assumes From has a single result value.
4368///
4369void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4370                                      DAGUpdateListener *UpdateListener) {
4371  SDNode *From = FromN.getNode();
4372  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4373         "Cannot replace with this method!");
4374  assert(From != To.getNode() && "Cannot replace uses of with self");
4375
4376  while (!From->use_empty()) {
4377    SDNode::use_iterator UI = From->use_begin();
4378    SDNode *U = *UI;
4379
4380    // This node is about to morph, remove its old self from the CSE maps.
4381    RemoveNodeFromCSEMaps(U);
4382    int operandNum = 0;
4383    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4384         I != E; ++I, ++operandNum)
4385      if (I->getVal() == From) {
4386        From->removeUser(operandNum, U);
4387        *I = To;
4388        I->setUser(U);
4389        To.getNode()->addUser(operandNum, U);
4390      }
4391
4392    // Now that we have modified U, add it back to the CSE maps.  If it already
4393    // exists there, recursively merge the results together.
4394    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4395      ReplaceAllUsesWith(U, Existing, UpdateListener);
4396      // U is now dead.  Inform the listener if it exists and delete it.
4397      if (UpdateListener)
4398        UpdateListener->NodeDeleted(U, Existing);
4399      DeleteNodeNotInCSEMaps(U);
4400    } else {
4401      // If the node doesn't already exist, we updated it.  Inform a listener if
4402      // it exists.
4403      if (UpdateListener)
4404        UpdateListener->NodeUpdated(U);
4405    }
4406  }
4407}
4408
4409/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4410/// This can cause recursive merging of nodes in the DAG.
4411///
4412/// This version assumes From/To have matching types and numbers of result
4413/// values.
4414///
4415void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4416                                      DAGUpdateListener *UpdateListener) {
4417  assert(From->getVTList().VTs == To->getVTList().VTs &&
4418         From->getNumValues() == To->getNumValues() &&
4419         "Cannot use this version of ReplaceAllUsesWith!");
4420
4421  // Handle the trivial case.
4422  if (From == To)
4423    return;
4424
4425  while (!From->use_empty()) {
4426    SDNode::use_iterator UI = From->use_begin();
4427    SDNode *U = *UI;
4428
4429    // This node is about to morph, remove its old self from the CSE maps.
4430    RemoveNodeFromCSEMaps(U);
4431    int operandNum = 0;
4432    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4433         I != E; ++I, ++operandNum)
4434      if (I->getVal() == From) {
4435        From->removeUser(operandNum, U);
4436        I->getSDValue().setNode(To);
4437        To->addUser(operandNum, U);
4438      }
4439
4440    // Now that we have modified U, add it back to the CSE maps.  If it already
4441    // exists there, recursively merge the results together.
4442    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4443      ReplaceAllUsesWith(U, Existing, UpdateListener);
4444      // U is now dead.  Inform the listener if it exists and delete it.
4445      if (UpdateListener)
4446        UpdateListener->NodeDeleted(U, Existing);
4447      DeleteNodeNotInCSEMaps(U);
4448    } else {
4449      // If the node doesn't already exist, we updated it.  Inform a listener if
4450      // it exists.
4451      if (UpdateListener)
4452        UpdateListener->NodeUpdated(U);
4453    }
4454  }
4455}
4456
4457/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4458/// This can cause recursive merging of nodes in the DAG.
4459///
4460/// This version can replace From with any result values.  To must match the
4461/// number and types of values returned by From.
4462void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4463                                      const SDValue *To,
4464                                      DAGUpdateListener *UpdateListener) {
4465  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4466    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4467
4468  while (!From->use_empty()) {
4469    SDNode::use_iterator UI = From->use_begin();
4470    SDNode *U = *UI;
4471
4472    // This node is about to morph, remove its old self from the CSE maps.
4473    RemoveNodeFromCSEMaps(U);
4474    int operandNum = 0;
4475    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4476         I != E; ++I, ++operandNum)
4477      if (I->getVal() == From) {
4478        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4479        From->removeUser(operandNum, U);
4480        *I = ToOp;
4481        I->setUser(U);
4482        ToOp.getNode()->addUser(operandNum, U);
4483      }
4484
4485    // Now that we have modified U, add it back to the CSE maps.  If it already
4486    // exists there, recursively merge the results together.
4487    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4488      ReplaceAllUsesWith(U, Existing, UpdateListener);
4489      // U is now dead.  Inform the listener if it exists and delete it.
4490      if (UpdateListener)
4491        UpdateListener->NodeDeleted(U, Existing);
4492      DeleteNodeNotInCSEMaps(U);
4493    } else {
4494      // If the node doesn't already exist, we updated it.  Inform a listener if
4495      // it exists.
4496      if (UpdateListener)
4497        UpdateListener->NodeUpdated(U);
4498    }
4499  }
4500}
4501
4502/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4503/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4504/// handled the same way as for ReplaceAllUsesWith.
4505void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4506                                             DAGUpdateListener *UpdateListener){
4507  // Handle the really simple, really trivial case efficiently.
4508  if (From == To) return;
4509
4510  // Handle the simple, trivial, case efficiently.
4511  if (From.getNode()->getNumValues() == 1) {
4512    ReplaceAllUsesWith(From, To, UpdateListener);
4513    return;
4514  }
4515
4516  // Get all of the users of From.getNode().  We want these in a nice,
4517  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4518  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4519
4520  while (!Users.empty()) {
4521    // We know that this user uses some value of From.  If it is the right
4522    // value, update it.
4523    SDNode *User = Users.back();
4524    Users.pop_back();
4525
4526    // Scan for an operand that matches From.
4527    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4528    for (; Op != E; ++Op)
4529      if (*Op == From) break;
4530
4531    // If there are no matches, the user must use some other result of From.
4532    if (Op == E) continue;
4533
4534    // Okay, we know this user needs to be updated.  Remove its old self
4535    // from the CSE maps.
4536    RemoveNodeFromCSEMaps(User);
4537
4538    // Update all operands that match "From" in case there are multiple uses.
4539    for (; Op != E; ++Op) {
4540      if (*Op == From) {
4541        From.getNode()->removeUser(Op-User->op_begin(), User);
4542        *Op = To;
4543        Op->setUser(User);
4544        To.getNode()->addUser(Op-User->op_begin(), User);
4545      }
4546    }
4547
4548    // Now that we have modified User, add it back to the CSE maps.  If it
4549    // already exists there, recursively merge the results together.
4550    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4551    if (!Existing) {
4552      if (UpdateListener) UpdateListener->NodeUpdated(User);
4553      continue;  // Continue on to next user.
4554    }
4555
4556    // If there was already an existing matching node, use ReplaceAllUsesWith
4557    // to replace the dead one with the existing one.  This can cause
4558    // recursive merging of other unrelated nodes down the line.
4559    ReplaceAllUsesWith(User, Existing, UpdateListener);
4560
4561    // User is now dead.  Notify a listener if present.
4562    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4563    DeleteNodeNotInCSEMaps(User);
4564  }
4565}
4566
4567/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4568/// uses of other values produced by From.getVal() alone.  The same value may
4569/// appear in both the From and To list.  The Deleted vector is
4570/// handled the same way as for ReplaceAllUsesWith.
4571void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4572                                              const SDValue *To,
4573                                              unsigned Num,
4574                                              DAGUpdateListener *UpdateListener){
4575  // Handle the simple, trivial case efficiently.
4576  if (Num == 1)
4577    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4578
4579  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4580  for (unsigned i = 0; i != Num; ++i)
4581    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4582         E = From[i].getNode()->use_end(); UI != E; ++UI)
4583      Users.push_back(std::make_pair(*UI, i));
4584
4585  while (!Users.empty()) {
4586    // We know that this user uses some value of From.  If it is the right
4587    // value, update it.
4588    SDNode *User = Users.back().first;
4589    unsigned i = Users.back().second;
4590    Users.pop_back();
4591
4592    // Scan for an operand that matches From.
4593    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4594    for (; Op != E; ++Op)
4595      if (*Op == From[i]) break;
4596
4597    // If there are no matches, the user must use some other result of From.
4598    if (Op == E) continue;
4599
4600    // Okay, we know this user needs to be updated.  Remove its old self
4601    // from the CSE maps.
4602    RemoveNodeFromCSEMaps(User);
4603
4604    // Update all operands that match "From" in case there are multiple uses.
4605    for (; Op != E; ++Op) {
4606      if (*Op == From[i]) {
4607        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4608        *Op = To[i];
4609        Op->setUser(User);
4610        To[i].getNode()->addUser(Op-User->op_begin(), User);
4611      }
4612    }
4613
4614    // Now that we have modified User, add it back to the CSE maps.  If it
4615    // already exists there, recursively merge the results together.
4616    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4617    if (!Existing) {
4618      if (UpdateListener) UpdateListener->NodeUpdated(User);
4619      continue;  // Continue on to next user.
4620    }
4621
4622    // If there was already an existing matching node, use ReplaceAllUsesWith
4623    // to replace the dead one with the existing one.  This can cause
4624    // recursive merging of other unrelated nodes down the line.
4625    ReplaceAllUsesWith(User, Existing, UpdateListener);
4626
4627    // User is now dead.  Notify a listener if present.
4628    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4629    DeleteNodeNotInCSEMaps(User);
4630  }
4631}
4632
4633/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4634/// based on their topological order. It returns the maximum id and a vector
4635/// of the SDNodes* in assigned order by reference.
4636unsigned SelectionDAG::AssignTopologicalOrder() {
4637
4638  unsigned DAGSize = 0;
4639
4640  // SortedPos tracks the progress of the algorithm. Nodes before it are
4641  // sorted, nodes after it are unsorted. When the algorithm completes
4642  // it is at the end of the list.
4643  allnodes_iterator SortedPos = allnodes_begin();
4644
4645  // Visit all the nodes. Add nodes with no operands to the TopOrder result
4646  // array immediately. Annotate nodes that do have operands with their
4647  // operand count. Before we do this, the Node Id fields of the nodes
4648  // may contain arbitrary values. After, the Node Id fields for nodes
4649  // before SortedPos will contain the topological sort index, and the
4650  // Node Id fields for nodes At SortedPos and after will contain the
4651  // count of outstanding operands.
4652  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4653    SDNode *N = I++;
4654    unsigned Degree = N->getNumOperands();
4655    if (Degree == 0) {
4656      // A node with no uses, add it to the result array immediately.
4657      N->setNodeId(DAGSize++);
4658      allnodes_iterator Q = N;
4659      if (Q != SortedPos)
4660        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4661      ++SortedPos;
4662    } else {
4663      // Temporarily use the Node Id as scratch space for the degree count.
4664      N->setNodeId(Degree);
4665    }
4666  }
4667
4668  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4669  // such that by the time the end is reached all nodes will be sorted.
4670  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4671    SDNode *N = I;
4672    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4673         UI != UE; ++UI) {
4674      SDNode *P = *UI;
4675      unsigned Degree = P->getNodeId();
4676      --Degree;
4677      if (Degree == 0) {
4678        // All of P's operands are sorted, so P may sorted now.
4679        P->setNodeId(DAGSize++);
4680        if (P != SortedPos)
4681          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4682        ++SortedPos;
4683      } else {
4684        // Update P's outstanding operand count.
4685        P->setNodeId(Degree);
4686      }
4687    }
4688  }
4689
4690  assert(SortedPos == AllNodes.end() &&
4691         "Topological sort incomplete!");
4692  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4693         "First node in topological sort is not the entry token!");
4694  assert(AllNodes.front().getNodeId() == 0 &&
4695         "First node in topological sort has non-zero id!");
4696  assert(AllNodes.front().getNumOperands() == 0 &&
4697         "First node in topological sort has operands!");
4698  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4699         "Last node in topologic sort has unexpected id!");
4700  assert(AllNodes.back().use_empty() &&
4701         "Last node in topologic sort has users!");
4702  assert(DAGSize == allnodes_size() && "TopOrder result count mismatch!");
4703  return DAGSize;
4704}
4705
4706
4707
4708//===----------------------------------------------------------------------===//
4709//                              SDNode Class
4710//===----------------------------------------------------------------------===//
4711
4712// Out-of-line virtual method to give class a home.
4713void SDNode::ANCHOR() {}
4714void UnarySDNode::ANCHOR() {}
4715void BinarySDNode::ANCHOR() {}
4716void TernarySDNode::ANCHOR() {}
4717void HandleSDNode::ANCHOR() {}
4718void ConstantSDNode::ANCHOR() {}
4719void ConstantFPSDNode::ANCHOR() {}
4720void GlobalAddressSDNode::ANCHOR() {}
4721void FrameIndexSDNode::ANCHOR() {}
4722void JumpTableSDNode::ANCHOR() {}
4723void ConstantPoolSDNode::ANCHOR() {}
4724void BasicBlockSDNode::ANCHOR() {}
4725void SrcValueSDNode::ANCHOR() {}
4726void MemOperandSDNode::ANCHOR() {}
4727void RegisterSDNode::ANCHOR() {}
4728void DbgStopPointSDNode::ANCHOR() {}
4729void LabelSDNode::ANCHOR() {}
4730void ExternalSymbolSDNode::ANCHOR() {}
4731void CondCodeSDNode::ANCHOR() {}
4732void ARG_FLAGSSDNode::ANCHOR() {}
4733void VTSDNode::ANCHOR() {}
4734void MemSDNode::ANCHOR() {}
4735void LoadSDNode::ANCHOR() {}
4736void StoreSDNode::ANCHOR() {}
4737void AtomicSDNode::ANCHOR() {}
4738void MemIntrinsicSDNode::ANCHOR() {}
4739void CallSDNode::ANCHOR() {}
4740
4741HandleSDNode::~HandleSDNode() {
4742  DropOperands();
4743}
4744
4745GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4746                                         MVT VT, int64_t o)
4747  : SDNode(isa<GlobalVariable>(GA) &&
4748           cast<GlobalVariable>(GA)->isThreadLocal() ?
4749           // Thread Local
4750           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4751           // Non Thread Local
4752           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4753           getSDVTList(VT)), Offset(o) {
4754  TheGlobal = const_cast<GlobalValue*>(GA);
4755}
4756
4757MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4758                     const Value *srcValue, int SVO,
4759                     unsigned alignment, bool vol)
4760 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4761   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4762
4763  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4764  assert(getAlignment() == alignment && "Alignment representation error!");
4765  assert(isVolatile() == vol && "Volatile representation error!");
4766}
4767
4768MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4769                     unsigned NumOps, MVT memvt, const Value *srcValue,
4770                     int SVO, unsigned alignment, bool vol)
4771   : SDNode(Opc, VTs, Ops, NumOps),
4772     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4773     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4774  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4775  assert(getAlignment() == alignment && "Alignment representation error!");
4776  assert(isVolatile() == vol && "Volatile representation error!");
4777}
4778
4779/// getMemOperand - Return a MachineMemOperand object describing the memory
4780/// reference performed by this memory reference.
4781MachineMemOperand MemSDNode::getMemOperand() const {
4782  int Flags;
4783  if (isa<LoadSDNode>(this))
4784    Flags = MachineMemOperand::MOLoad;
4785  else if (isa<StoreSDNode>(this))
4786    Flags = MachineMemOperand::MOStore;
4787  else if (isa<AtomicSDNode>(this)) {
4788    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4789  }
4790  else {
4791    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4792    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4793    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4794    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4795  }
4796
4797  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4798  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4799
4800  // Check if the memory reference references a frame index
4801  const FrameIndexSDNode *FI =
4802  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4803  if (!getSrcValue() && FI)
4804    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4805                             Flags, 0, Size, getAlignment());
4806  else
4807    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4808                             Size, getAlignment());
4809}
4810
4811/// Profile - Gather unique data for the node.
4812///
4813void SDNode::Profile(FoldingSetNodeID &ID) const {
4814  AddNodeIDNode(ID, this);
4815}
4816
4817/// getValueTypeList - Return a pointer to the specified value type.
4818///
4819const MVT *SDNode::getValueTypeList(MVT VT) {
4820  if (VT.isExtended()) {
4821    static std::set<MVT, MVT::compareRawBits> EVTs;
4822    return &(*EVTs.insert(VT).first);
4823  } else {
4824    static MVT VTs[MVT::LAST_VALUETYPE];
4825    VTs[VT.getSimpleVT()] = VT;
4826    return &VTs[VT.getSimpleVT()];
4827  }
4828}
4829
4830/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4831/// indicated value.  This method ignores uses of other values defined by this
4832/// operation.
4833bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4834  assert(Value < getNumValues() && "Bad value!");
4835
4836  // TODO: Only iterate over uses of a given value of the node
4837  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4838    if (UI.getUse().getSDValue().getResNo() == Value) {
4839      if (NUses == 0)
4840        return false;
4841      --NUses;
4842    }
4843  }
4844
4845  // Found exactly the right number of uses?
4846  return NUses == 0;
4847}
4848
4849
4850/// hasAnyUseOfValue - Return true if there are any use of the indicated
4851/// value. This method ignores uses of other values defined by this operation.
4852bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4853  assert(Value < getNumValues() && "Bad value!");
4854
4855  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4856    if (UI.getUse().getSDValue().getResNo() == Value)
4857      return true;
4858
4859  return false;
4860}
4861
4862
4863/// isOnlyUserOf - Return true if this node is the only use of N.
4864///
4865bool SDNode::isOnlyUserOf(SDNode *N) const {
4866  bool Seen = false;
4867  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4868    SDNode *User = *I;
4869    if (User == this)
4870      Seen = true;
4871    else
4872      return false;
4873  }
4874
4875  return Seen;
4876}
4877
4878/// isOperand - Return true if this node is an operand of N.
4879///
4880bool SDValue::isOperandOf(SDNode *N) const {
4881  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4882    if (*this == N->getOperand(i))
4883      return true;
4884  return false;
4885}
4886
4887bool SDNode::isOperandOf(SDNode *N) const {
4888  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4889    if (this == N->OperandList[i].getVal())
4890      return true;
4891  return false;
4892}
4893
4894/// reachesChainWithoutSideEffects - Return true if this operand (which must
4895/// be a chain) reaches the specified operand without crossing any
4896/// side-effecting instructions.  In practice, this looks through token
4897/// factors and non-volatile loads.  In order to remain efficient, this only
4898/// looks a couple of nodes in, it does not do an exhaustive search.
4899bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4900                                               unsigned Depth) const {
4901  if (*this == Dest) return true;
4902
4903  // Don't search too deeply, we just want to be able to see through
4904  // TokenFactor's etc.
4905  if (Depth == 0) return false;
4906
4907  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4908  // of the operands of the TF reach dest, then we can do the xform.
4909  if (getOpcode() == ISD::TokenFactor) {
4910    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4911      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4912        return true;
4913    return false;
4914  }
4915
4916  // Loads don't have side effects, look through them.
4917  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4918    if (!Ld->isVolatile())
4919      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4920  }
4921  return false;
4922}
4923
4924
4925static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4926                            SmallPtrSet<SDNode *, 32> &Visited) {
4927  if (found || !Visited.insert(N))
4928    return;
4929
4930  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4931    SDNode *Op = N->getOperand(i).getNode();
4932    if (Op == P) {
4933      found = true;
4934      return;
4935    }
4936    findPredecessor(Op, P, found, Visited);
4937  }
4938}
4939
4940/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4941/// is either an operand of N or it can be reached by recursively traversing
4942/// up the operands.
4943/// NOTE: this is an expensive method. Use it carefully.
4944bool SDNode::isPredecessorOf(SDNode *N) const {
4945  SmallPtrSet<SDNode *, 32> Visited;
4946  bool found = false;
4947  findPredecessor(N, this, found, Visited);
4948  return found;
4949}
4950
4951uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4952  assert(Num < NumOperands && "Invalid child # of SDNode!");
4953  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4954}
4955
4956std::string SDNode::getOperationName(const SelectionDAG *G) const {
4957  switch (getOpcode()) {
4958  default:
4959    if (getOpcode() < ISD::BUILTIN_OP_END)
4960      return "<<Unknown DAG Node>>";
4961    if (isMachineOpcode()) {
4962      if (G)
4963        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4964          if (getMachineOpcode() < TII->getNumOpcodes())
4965            return TII->get(getMachineOpcode()).getName();
4966      return "<<Unknown Machine Node>>";
4967    }
4968    if (G) {
4969      TargetLowering &TLI = G->getTargetLoweringInfo();
4970      const char *Name = TLI.getTargetNodeName(getOpcode());
4971      if (Name) return Name;
4972      return "<<Unknown Target Node>>";
4973    }
4974    return "<<Unknown Node>>";
4975
4976#ifndef NDEBUG
4977  case ISD::DELETED_NODE:
4978    return "<<Deleted Node!>>";
4979#endif
4980  case ISD::PREFETCH:      return "Prefetch";
4981  case ISD::MEMBARRIER:    return "MemBarrier";
4982  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
4983  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
4984  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
4985  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
4986  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
4987  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
4988  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
4989  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
4990  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
4991  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
4992  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
4993  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
4994  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
4995  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
4996  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
4997  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
4998  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
4999  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
5000  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
5001  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
5002  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
5003  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
5004  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
5005  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
5006  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
5007  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
5008  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
5009  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
5010  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
5011  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
5012  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
5013  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
5014  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
5015  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
5016  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
5017  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
5018  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
5019  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
5020  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
5021  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
5022  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
5023  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
5024  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
5025  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
5026  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
5027  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
5028  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
5029  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
5030  case ISD::PCMARKER:      return "PCMarker";
5031  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5032  case ISD::SRCVALUE:      return "SrcValue";
5033  case ISD::MEMOPERAND:    return "MemOperand";
5034  case ISD::EntryToken:    return "EntryToken";
5035  case ISD::TokenFactor:   return "TokenFactor";
5036  case ISD::AssertSext:    return "AssertSext";
5037  case ISD::AssertZext:    return "AssertZext";
5038
5039  case ISD::BasicBlock:    return "BasicBlock";
5040  case ISD::ARG_FLAGS:     return "ArgFlags";
5041  case ISD::VALUETYPE:     return "ValueType";
5042  case ISD::Register:      return "Register";
5043
5044  case ISD::Constant:      return "Constant";
5045  case ISD::ConstantFP:    return "ConstantFP";
5046  case ISD::GlobalAddress: return "GlobalAddress";
5047  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5048  case ISD::FrameIndex:    return "FrameIndex";
5049  case ISD::JumpTable:     return "JumpTable";
5050  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5051  case ISD::RETURNADDR: return "RETURNADDR";
5052  case ISD::FRAMEADDR: return "FRAMEADDR";
5053  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5054  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5055  case ISD::EHSELECTION: return "EHSELECTION";
5056  case ISD::EH_RETURN: return "EH_RETURN";
5057  case ISD::ConstantPool:  return "ConstantPool";
5058  case ISD::ExternalSymbol: return "ExternalSymbol";
5059  case ISD::INTRINSIC_WO_CHAIN: {
5060    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5061    return Intrinsic::getName((Intrinsic::ID)IID);
5062  }
5063  case ISD::INTRINSIC_VOID:
5064  case ISD::INTRINSIC_W_CHAIN: {
5065    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5066    return Intrinsic::getName((Intrinsic::ID)IID);
5067  }
5068
5069  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5070  case ISD::TargetConstant: return "TargetConstant";
5071  case ISD::TargetConstantFP:return "TargetConstantFP";
5072  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5073  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5074  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5075  case ISD::TargetJumpTable:  return "TargetJumpTable";
5076  case ISD::TargetConstantPool:  return "TargetConstantPool";
5077  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5078
5079  case ISD::CopyToReg:     return "CopyToReg";
5080  case ISD::CopyFromReg:   return "CopyFromReg";
5081  case ISD::UNDEF:         return "undef";
5082  case ISD::MERGE_VALUES:  return "merge_values";
5083  case ISD::INLINEASM:     return "inlineasm";
5084  case ISD::DBG_LABEL:     return "dbg_label";
5085  case ISD::EH_LABEL:      return "eh_label";
5086  case ISD::DECLARE:       return "declare";
5087  case ISD::HANDLENODE:    return "handlenode";
5088  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5089  case ISD::CALL:          return "call";
5090
5091  // Unary operators
5092  case ISD::FABS:   return "fabs";
5093  case ISD::FNEG:   return "fneg";
5094  case ISD::FSQRT:  return "fsqrt";
5095  case ISD::FSIN:   return "fsin";
5096  case ISD::FCOS:   return "fcos";
5097  case ISD::FPOWI:  return "fpowi";
5098  case ISD::FPOW:   return "fpow";
5099  case ISD::FTRUNC: return "ftrunc";
5100  case ISD::FFLOOR: return "ffloor";
5101  case ISD::FCEIL:  return "fceil";
5102  case ISD::FRINT:  return "frint";
5103  case ISD::FNEARBYINT: return "fnearbyint";
5104
5105  // Binary operators
5106  case ISD::ADD:    return "add";
5107  case ISD::SUB:    return "sub";
5108  case ISD::MUL:    return "mul";
5109  case ISD::MULHU:  return "mulhu";
5110  case ISD::MULHS:  return "mulhs";
5111  case ISD::SDIV:   return "sdiv";
5112  case ISD::UDIV:   return "udiv";
5113  case ISD::SREM:   return "srem";
5114  case ISD::UREM:   return "urem";
5115  case ISD::SMUL_LOHI:  return "smul_lohi";
5116  case ISD::UMUL_LOHI:  return "umul_lohi";
5117  case ISD::SDIVREM:    return "sdivrem";
5118  case ISD::UDIVREM:    return "udivrem";
5119  case ISD::AND:    return "and";
5120  case ISD::OR:     return "or";
5121  case ISD::XOR:    return "xor";
5122  case ISD::SHL:    return "shl";
5123  case ISD::SRA:    return "sra";
5124  case ISD::SRL:    return "srl";
5125  case ISD::ROTL:   return "rotl";
5126  case ISD::ROTR:   return "rotr";
5127  case ISD::FADD:   return "fadd";
5128  case ISD::FSUB:   return "fsub";
5129  case ISD::FMUL:   return "fmul";
5130  case ISD::FDIV:   return "fdiv";
5131  case ISD::FREM:   return "frem";
5132  case ISD::FCOPYSIGN: return "fcopysign";
5133  case ISD::FGETSIGN:  return "fgetsign";
5134
5135  case ISD::SETCC:       return "setcc";
5136  case ISD::VSETCC:      return "vsetcc";
5137  case ISD::SELECT:      return "select";
5138  case ISD::SELECT_CC:   return "select_cc";
5139  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5140  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5141  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5142  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5143  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5144  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5145  case ISD::CARRY_FALSE:         return "carry_false";
5146  case ISD::ADDC:        return "addc";
5147  case ISD::ADDE:        return "adde";
5148  case ISD::SUBC:        return "subc";
5149  case ISD::SUBE:        return "sube";
5150  case ISD::SHL_PARTS:   return "shl_parts";
5151  case ISD::SRA_PARTS:   return "sra_parts";
5152  case ISD::SRL_PARTS:   return "srl_parts";
5153
5154  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5155  case ISD::INSERT_SUBREG:      return "insert_subreg";
5156
5157  // Conversion operators.
5158  case ISD::SIGN_EXTEND: return "sign_extend";
5159  case ISD::ZERO_EXTEND: return "zero_extend";
5160  case ISD::ANY_EXTEND:  return "any_extend";
5161  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5162  case ISD::TRUNCATE:    return "truncate";
5163  case ISD::FP_ROUND:    return "fp_round";
5164  case ISD::FLT_ROUNDS_: return "flt_rounds";
5165  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5166  case ISD::FP_EXTEND:   return "fp_extend";
5167
5168  case ISD::SINT_TO_FP:  return "sint_to_fp";
5169  case ISD::UINT_TO_FP:  return "uint_to_fp";
5170  case ISD::FP_TO_SINT:  return "fp_to_sint";
5171  case ISD::FP_TO_UINT:  return "fp_to_uint";
5172  case ISD::BIT_CONVERT: return "bit_convert";
5173
5174    // Control flow instructions
5175  case ISD::BR:      return "br";
5176  case ISD::BRIND:   return "brind";
5177  case ISD::BR_JT:   return "br_jt";
5178  case ISD::BRCOND:  return "brcond";
5179  case ISD::BR_CC:   return "br_cc";
5180  case ISD::RET:     return "ret";
5181  case ISD::CALLSEQ_START:  return "callseq_start";
5182  case ISD::CALLSEQ_END:    return "callseq_end";
5183
5184    // Other operators
5185  case ISD::LOAD:               return "load";
5186  case ISD::STORE:              return "store";
5187  case ISD::VAARG:              return "vaarg";
5188  case ISD::VACOPY:             return "vacopy";
5189  case ISD::VAEND:              return "vaend";
5190  case ISD::VASTART:            return "vastart";
5191  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5192  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5193  case ISD::BUILD_PAIR:         return "build_pair";
5194  case ISD::STACKSAVE:          return "stacksave";
5195  case ISD::STACKRESTORE:       return "stackrestore";
5196  case ISD::TRAP:               return "trap";
5197
5198  // Bit manipulation
5199  case ISD::BSWAP:   return "bswap";
5200  case ISD::CTPOP:   return "ctpop";
5201  case ISD::CTTZ:    return "cttz";
5202  case ISD::CTLZ:    return "ctlz";
5203
5204  // Debug info
5205  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5206  case ISD::DEBUG_LOC: return "debug_loc";
5207
5208  // Trampolines
5209  case ISD::TRAMPOLINE: return "trampoline";
5210
5211  case ISD::CONDCODE:
5212    switch (cast<CondCodeSDNode>(this)->get()) {
5213    default: assert(0 && "Unknown setcc condition!");
5214    case ISD::SETOEQ:  return "setoeq";
5215    case ISD::SETOGT:  return "setogt";
5216    case ISD::SETOGE:  return "setoge";
5217    case ISD::SETOLT:  return "setolt";
5218    case ISD::SETOLE:  return "setole";
5219    case ISD::SETONE:  return "setone";
5220
5221    case ISD::SETO:    return "seto";
5222    case ISD::SETUO:   return "setuo";
5223    case ISD::SETUEQ:  return "setue";
5224    case ISD::SETUGT:  return "setugt";
5225    case ISD::SETUGE:  return "setuge";
5226    case ISD::SETULT:  return "setult";
5227    case ISD::SETULE:  return "setule";
5228    case ISD::SETUNE:  return "setune";
5229
5230    case ISD::SETEQ:   return "seteq";
5231    case ISD::SETGT:   return "setgt";
5232    case ISD::SETGE:   return "setge";
5233    case ISD::SETLT:   return "setlt";
5234    case ISD::SETLE:   return "setle";
5235    case ISD::SETNE:   return "setne";
5236    }
5237  }
5238}
5239
5240const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5241  switch (AM) {
5242  default:
5243    return "";
5244  case ISD::PRE_INC:
5245    return "<pre-inc>";
5246  case ISD::PRE_DEC:
5247    return "<pre-dec>";
5248  case ISD::POST_INC:
5249    return "<post-inc>";
5250  case ISD::POST_DEC:
5251    return "<post-dec>";
5252  }
5253}
5254
5255std::string ISD::ArgFlagsTy::getArgFlagsString() {
5256  std::string S = "< ";
5257
5258  if (isZExt())
5259    S += "zext ";
5260  if (isSExt())
5261    S += "sext ";
5262  if (isInReg())
5263    S += "inreg ";
5264  if (isSRet())
5265    S += "sret ";
5266  if (isByVal())
5267    S += "byval ";
5268  if (isNest())
5269    S += "nest ";
5270  if (getByValAlign())
5271    S += "byval-align:" + utostr(getByValAlign()) + " ";
5272  if (getOrigAlign())
5273    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5274  if (getByValSize())
5275    S += "byval-size:" + utostr(getByValSize()) + " ";
5276  return S + ">";
5277}
5278
5279void SDNode::dump() const { dump(0); }
5280void SDNode::dump(const SelectionDAG *G) const {
5281  print(errs(), G);
5282  errs().flush();
5283}
5284
5285void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5286  OS << (void*)this << ": ";
5287
5288  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5289    if (i) OS << ",";
5290    if (getValueType(i) == MVT::Other)
5291      OS << "ch";
5292    else
5293      OS << getValueType(i).getMVTString();
5294  }
5295  OS << " = " << getOperationName(G);
5296
5297  OS << " ";
5298  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5299    if (i) OS << ", ";
5300    OS << (void*)getOperand(i).getNode();
5301    if (unsigned RN = getOperand(i).getResNo())
5302      OS << ":" << RN;
5303  }
5304
5305  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5306    SDNode *Mask = getOperand(2).getNode();
5307    OS << "<";
5308    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5309      if (i) OS << ",";
5310      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5311        OS << "u";
5312      else
5313        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5314    }
5315    OS << ">";
5316  }
5317
5318  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5319    OS << '<' << CSDN->getAPIntValue() << '>';
5320  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5321    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5322      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5323    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5324      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5325    else {
5326      OS << "<APFloat(";
5327      CSDN->getValueAPF().bitcastToAPInt().dump();
5328      OS << ")>";
5329    }
5330  } else if (const GlobalAddressSDNode *GADN =
5331             dyn_cast<GlobalAddressSDNode>(this)) {
5332    int64_t offset = GADN->getOffset();
5333    OS << '<';
5334    WriteAsOperand(OS, GADN->getGlobal());
5335    OS << '>';
5336    if (offset > 0)
5337      OS << " + " << offset;
5338    else
5339      OS << " " << offset;
5340  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5341    OS << "<" << FIDN->getIndex() << ">";
5342  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5343    OS << "<" << JTDN->getIndex() << ">";
5344  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5345    int offset = CP->getOffset();
5346    if (CP->isMachineConstantPoolEntry())
5347      OS << "<" << *CP->getMachineCPVal() << ">";
5348    else
5349      OS << "<" << *CP->getConstVal() << ">";
5350    if (offset > 0)
5351      OS << " + " << offset;
5352    else
5353      OS << " " << offset;
5354  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5355    OS << "<";
5356    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5357    if (LBB)
5358      OS << LBB->getName() << " ";
5359    OS << (const void*)BBDN->getBasicBlock() << ">";
5360  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5361    if (G && R->getReg() &&
5362        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5363      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5364    } else {
5365      OS << " #" << R->getReg();
5366    }
5367  } else if (const ExternalSymbolSDNode *ES =
5368             dyn_cast<ExternalSymbolSDNode>(this)) {
5369    OS << "'" << ES->getSymbol() << "'";
5370  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5371    if (M->getValue())
5372      OS << "<" << M->getValue() << ">";
5373    else
5374      OS << "<null>";
5375  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5376    if (M->MO.getValue())
5377      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5378    else
5379      OS << "<null:" << M->MO.getOffset() << ">";
5380  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5381    OS << N->getArgFlags().getArgFlagsString();
5382  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5383    OS << ":" << N->getVT().getMVTString();
5384  }
5385  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5386    const Value *SrcValue = LD->getSrcValue();
5387    int SrcOffset = LD->getSrcValueOffset();
5388    OS << " <";
5389    if (SrcValue)
5390      OS << SrcValue;
5391    else
5392      OS << "null";
5393    OS << ":" << SrcOffset << ">";
5394
5395    bool doExt = true;
5396    switch (LD->getExtensionType()) {
5397    default: doExt = false; break;
5398    case ISD::EXTLOAD: OS << " <anyext "; break;
5399    case ISD::SEXTLOAD: OS << " <sext "; break;
5400    case ISD::ZEXTLOAD: OS << " <zext "; break;
5401    }
5402    if (doExt)
5403      OS << LD->getMemoryVT().getMVTString() << ">";
5404
5405    const char *AM = getIndexedModeName(LD->getAddressingMode());
5406    if (*AM)
5407      OS << " " << AM;
5408    if (LD->isVolatile())
5409      OS << " <volatile>";
5410    OS << " alignment=" << LD->getAlignment();
5411  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5412    const Value *SrcValue = ST->getSrcValue();
5413    int SrcOffset = ST->getSrcValueOffset();
5414    OS << " <";
5415    if (SrcValue)
5416      OS << SrcValue;
5417    else
5418      OS << "null";
5419    OS << ":" << SrcOffset << ">";
5420
5421    if (ST->isTruncatingStore())
5422      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5423
5424    const char *AM = getIndexedModeName(ST->getAddressingMode());
5425    if (*AM)
5426      OS << " " << AM;
5427    if (ST->isVolatile())
5428      OS << " <volatile>";
5429    OS << " alignment=" << ST->getAlignment();
5430  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5431    const Value *SrcValue = AT->getSrcValue();
5432    int SrcOffset = AT->getSrcValueOffset();
5433    OS << " <";
5434    if (SrcValue)
5435      OS << SrcValue;
5436    else
5437      OS << "null";
5438    OS << ":" << SrcOffset << ">";
5439    if (AT->isVolatile())
5440      OS << " <volatile>";
5441    OS << " alignment=" << AT->getAlignment();
5442  }
5443}
5444
5445static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5446  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5447    if (N->getOperand(i).getNode()->hasOneUse())
5448      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5449    else
5450      cerr << "\n" << std::string(indent+2, ' ')
5451           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5452
5453
5454  cerr << "\n" << std::string(indent, ' ');
5455  N->dump(G);
5456}
5457
5458void SelectionDAG::dump() const {
5459  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5460
5461  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5462       I != E; ++I) {
5463    const SDNode *N = I;
5464    if (!N->hasOneUse() && N != getRoot().getNode())
5465      DumpNodes(N, 2, this);
5466  }
5467
5468  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5469
5470  cerr << "\n\n";
5471}
5472
5473const Type *ConstantPoolSDNode::getType() const {
5474  if (isMachineConstantPoolEntry())
5475    return Val.MachineCPVal->getType();
5476  return Val.ConstVal->getType();
5477}
5478