SelectionDAG.cpp revision a7ce741ff0ab02510833854bfa6a1c8c265faee3
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getMemoryVT().getRawBits());
433    ID.AddInteger(LD->getRawSubclassData());
434    break;
435  }
436  case ISD::STORE: {
437    const StoreSDNode *ST = cast<StoreSDNode>(N);
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawSubclassData());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_ADD:
445  case ISD::ATOMIC_LOAD_SUB:
446  case ISD::ATOMIC_LOAD_AND:
447  case ISD::ATOMIC_LOAD_OR:
448  case ISD::ATOMIC_LOAD_XOR:
449  case ISD::ATOMIC_LOAD_NAND:
450  case ISD::ATOMIC_LOAD_MIN:
451  case ISD::ATOMIC_LOAD_MAX:
452  case ISD::ATOMIC_LOAD_UMIN:
453  case ISD::ATOMIC_LOAD_UMAX: {
454    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455    ID.AddInteger(AT->getMemoryVT().getRawBits());
456    ID.AddInteger(AT->getRawSubclassData());
457    break;
458  }
459  } // end switch (N->getOpcode())
460}
461
462/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
463/// data.
464static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
465  AddNodeIDOpcode(ID, N->getOpcode());
466  // Add the return value info.
467  AddNodeIDValueTypes(ID, N->getVTList());
468  // Add the operand info.
469  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
470
471  // Handle SDNode leafs with special info.
472  AddNodeIDCustom(ID, N);
473}
474
475/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476/// the CSE map that carries alignment, volatility, indexing mode, and
477/// extension/truncation information.
478///
479static inline unsigned
480encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
481                     bool isVolatile, unsigned Alignment) {
482  assert((ConvType & 3) == ConvType &&
483         "ConvType may not require more than 2 bits!");
484  assert((AM & 7) == AM &&
485         "AM may not require more than 3 bits!");
486  return ConvType |
487         (AM << 2) |
488         (isVolatile << 5) |
489         ((Log2_32(Alignment) + 1) << 6);
490}
491
492//===----------------------------------------------------------------------===//
493//                              SelectionDAG Class
494//===----------------------------------------------------------------------===//
495
496/// doNotCSE - Return true if CSE should not be performed for this node.
497static bool doNotCSE(SDNode *N) {
498  if (N->getValueType(0) == MVT::Flag)
499    return true; // Never CSE anything that produces a flag.
500
501  switch (N->getOpcode()) {
502  default: break;
503  case ISD::HANDLENODE:
504  case ISD::DBG_LABEL:
505  case ISD::DBG_STOPPOINT:
506  case ISD::EH_LABEL:
507  case ISD::DECLARE:
508    return true;   // Never CSE these nodes.
509  }
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return true; // Never CSE anything that produces a flag.
515
516  return false;
517}
518
519/// RemoveDeadNodes - This method deletes all unreachable nodes in the
520/// SelectionDAG.
521void SelectionDAG::RemoveDeadNodes() {
522  // Create a dummy node (which is not added to allnodes), that adds a reference
523  // to the root node, preventing it from being deleted.
524  HandleSDNode Dummy(getRoot());
525
526  SmallVector<SDNode*, 128> DeadNodes;
527
528  // Add all obviously-dead nodes to the DeadNodes worklist.
529  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530    if (I->use_empty())
531      DeadNodes.push_back(I);
532
533  RemoveDeadNodes(DeadNodes);
534
535  // If the root changed (e.g. it was a dead load, update the root).
536  setRoot(Dummy.getValue());
537}
538
539/// RemoveDeadNodes - This method deletes the unreachable nodes in the
540/// given list, and any nodes that become unreachable as a result.
541void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542                                   DAGUpdateListener *UpdateListener) {
543
544  // Process the worklist, deleting the nodes and adding their uses to the
545  // worklist.
546  while (!DeadNodes.empty()) {
547    SDNode *N = DeadNodes.pop_back_val();
548
549    if (UpdateListener)
550      UpdateListener->NodeDeleted(N, 0);
551
552    // Take the node out of the appropriate CSE map.
553    RemoveNodeFromCSEMaps(N);
554
555    // Next, brutally remove the operand list.  This is safe to do, as there are
556    // no cycles in the graph.
557    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558      SDUse &Use = *I++;
559      SDNode *Operand = Use.getNode();
560      Use.set(SDValue());
561
562      // Now that we removed this operand, see if there are no uses of it left.
563      if (Operand->use_empty())
564        DeadNodes.push_back(Operand);
565    }
566
567    DeallocateNode(N);
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  // First take this out of the appropriate CSE map.
578  RemoveNodeFromCSEMaps(N);
579
580  // Finally, remove uses due to operands of this node, remove from the
581  // AllNodes list, and delete the node.
582  DeleteNodeNotInCSEMaps(N);
583}
584
585void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587  assert(N->use_empty() && "Cannot delete a node that is not dead!");
588
589  // Drop all of the operands and decrement used node's use counts.
590  N->DropOperands();
591
592  DeallocateNode(N);
593}
594
595void SelectionDAG::DeallocateNode(SDNode *N) {
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  // Set the opcode to DELETED_NODE to help catch bugs when node
600  // memory is reallocated.
601  N->NodeType = ISD::DELETED_NODE;
602
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::EntryToken:
614    assert(0 && "EntryToken should not be in CSEMaps!");
615    return false;
616  case ISD::HANDLENODE: return false;  // noop.
617  case ISD::CONDCODE:
618    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619           "Cond code doesn't exist!");
620    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622    break;
623  case ISD::ExternalSymbol:
624    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::TargetExternalSymbol:
627    Erased =
628      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
629    break;
630  case ISD::VALUETYPE: {
631    MVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
636      ValueTypeNodes[VT.getSimpleVT()] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    Erased = CSEMap.RemoveNode(N);
643    break;
644  }
645#ifndef NDEBUG
646  // Verify that the node was actually in one of the CSE maps, unless it has a
647  // flag result (which cannot be CSE'd) or is one of the special cases that are
648  // not subject to CSE.
649  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650      !N->isMachineOpcode() && !doNotCSE(N)) {
651    N->dump(this);
652    cerr << "\n";
653    assert(0 && "Node is not in map!");
654  }
655#endif
656  return Erased;
657}
658
659/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660/// maps and modified in place. Add it back to the CSE maps, unless an identical
661/// node already exists, in which case transfer all its users to the existing
662/// node. This transfer can potentially trigger recursive merging.
663///
664void
665SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666                                       DAGUpdateListener *UpdateListener) {
667  // For node types that aren't CSE'd, just act as if no identical node
668  // already exists.
669  if (!doNotCSE(N)) {
670    SDNode *Existing = CSEMap.GetOrInsertNode(N);
671    if (Existing != N) {
672      // If there was already an existing matching node, use ReplaceAllUsesWith
673      // to replace the dead one with the existing one.  This can cause
674      // recursive merging of other unrelated nodes down the line.
675      ReplaceAllUsesWith(N, Existing, UpdateListener);
676
677      // N is now dead.  Inform the listener if it exists and delete it.
678      if (UpdateListener)
679        UpdateListener->NodeDeleted(N, Existing);
680      DeleteNodeNotInCSEMaps(N);
681      return;
682    }
683  }
684
685  // If the node doesn't already exist, we updated it.  Inform a listener if
686  // it exists.
687  if (UpdateListener)
688    UpdateListener->NodeUpdated(N);
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696                                           void *&InsertPos) {
697  if (doNotCSE(N))
698    return 0;
699
700  SDValue Ops[] = { Op };
701  FoldingSetNodeID ID;
702  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703  AddNodeIDCustom(ID, N);
704  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
705}
706
707/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708/// were replaced with those specified.  If this node is never memoized,
709/// return null, otherwise return a pointer to the slot it would take.  If a
710/// node already exists with these operands, the slot will be non-null.
711SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
712                                           SDValue Op1, SDValue Op2,
713                                           void *&InsertPos) {
714  if (doNotCSE(N))
715    return 0;
716
717  SDValue Ops[] = { Op1, Op2 };
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
720  AddNodeIDCustom(ID, N);
721  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           const SDValue *Ops,unsigned NumOps,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737  AddNodeIDCustom(ID, N);
738  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739}
740
741/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
742void SelectionDAG::VerifyNode(SDNode *N) {
743  switch (N->getOpcode()) {
744  default:
745    break;
746  case ISD::BUILD_PAIR: {
747    MVT VT = N->getValueType(0);
748    assert(N->getNumValues() == 1 && "Too many results!");
749    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
750           "Wrong return type!");
751    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
752    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
753           "Mismatched operand types!");
754    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
755           "Wrong operand type!");
756    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
757           "Wrong return type size");
758    break;
759  }
760  case ISD::BUILD_VECTOR: {
761    assert(N->getNumValues() == 1 && "Too many results!");
762    assert(N->getValueType(0).isVector() && "Wrong return type!");
763    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
764           "Wrong number of operands!");
765    // FIXME: Change vector_shuffle to a variadic node with mask elements being
766    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
767    // operand, and it is not always possible to legalize it.  Turning off the
768    // following checks at least makes it possible to legalize most of the time.
769//    MVT EltVT = N->getValueType(0).getVectorElementType();
770//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
771//      assert(I->getValueType() == EltVT &&
772//             "Wrong operand type!");
773    break;
774  }
775  }
776}
777
778/// getMVTAlignment - Compute the default alignment value for the
779/// given type.
780///
781unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
782  const Type *Ty = VT == MVT::iPTR ?
783                   PointerType::get(Type::Int8Ty, 0) :
784                   VT.getTypeForMVT();
785
786  return TLI.getTargetData()->getABITypeAlignment(Ty);
787}
788
789SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
790  : TLI(tli), FLI(fli),
791    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
792    Root(getEntryNode()) {
793  AllNodes.push_back(&EntryNode);
794}
795
796void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
797                        DwarfWriter *dw) {
798  MF = &mf;
799  MMI = mmi;
800  DW = dw;
801}
802
803SelectionDAG::~SelectionDAG() {
804  allnodes_clear();
805}
806
807void SelectionDAG::allnodes_clear() {
808  assert(&*AllNodes.begin() == &EntryNode);
809  AllNodes.remove(AllNodes.begin());
810  while (!AllNodes.empty())
811    DeallocateNode(AllNodes.begin());
812}
813
814void SelectionDAG::clear() {
815  allnodes_clear();
816  OperandAllocator.Reset();
817  CSEMap.clear();
818
819  ExtendedValueTypeNodes.clear();
820  ExternalSymbols.clear();
821  TargetExternalSymbols.clear();
822  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
823            static_cast<CondCodeSDNode*>(0));
824  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
825            static_cast<SDNode*>(0));
826
827  EntryNode.UseList = 0;
828  AllNodes.push_back(&EntryNode);
829  Root = getEntryNode();
830}
831
832SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
833  if (Op.getValueType() == VT) return Op;
834  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
835                                   VT.getSizeInBits());
836  return getNode(ISD::AND, Op.getValueType(), Op,
837                 getConstant(Imm, Op.getValueType()));
838}
839
840SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
841  if (Op.getValueType() == VT) return Op;
842  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
843                                   VT.getSizeInBits());
844  return getNode(ISD::AND, DL, Op.getValueType(), Op,
845                 getConstant(Imm, Op.getValueType()));
846}
847
848/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
849///
850SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
851  SDValue NegOne;
852  if (VT.isVector()) {
853    MVT EltVT = VT.getVectorElementType();
854    SDValue NegOneElt =
855      getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), EltVT);
856    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
857    NegOne = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(), VT,
858                     &NegOnes[0], NegOnes.size());
859  } else {
860    NegOne = getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
861  }
862  return getNode(ISD::XOR, DL, VT, Val, NegOne);
863}
864
865SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
866  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
867  assert((EltVT.getSizeInBits() >= 64 ||
868         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
869         "getConstant with a uint64_t value that doesn't fit in the type!");
870  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
871}
872
873SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
874  return getConstant(*ConstantInt::get(Val), VT, isT);
875}
876
877SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
878  assert(VT.isInteger() && "Cannot create FP integer constant!");
879
880  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
881  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
882         "APInt size does not match type size!");
883
884  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
885  FoldingSetNodeID ID;
886  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
887  ID.AddPointer(&Val);
888  void *IP = 0;
889  SDNode *N = NULL;
890  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
891    if (!VT.isVector())
892      return SDValue(N, 0);
893  if (!N) {
894    N = NodeAllocator.Allocate<ConstantSDNode>();
895    new (N) ConstantSDNode(isT, &Val, EltVT);
896    CSEMap.InsertNode(N, IP);
897    AllNodes.push_back(N);
898  }
899
900  SDValue Result(N, 0);
901  if (VT.isVector()) {
902    SmallVector<SDValue, 8> Ops;
903    Ops.assign(VT.getVectorNumElements(), Result);
904    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
905  }
906  return Result;
907}
908
909SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
910  return getConstant(Val, TLI.getPointerTy(), isTarget);
911}
912
913
914SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
915  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
916}
917
918SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
919  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
920
921  MVT EltVT =
922    VT.isVector() ? VT.getVectorElementType() : VT;
923
924  // Do the map lookup using the actual bit pattern for the floating point
925  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
926  // we don't have issues with SNANs.
927  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
928  FoldingSetNodeID ID;
929  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
930  ID.AddPointer(&V);
931  void *IP = 0;
932  SDNode *N = NULL;
933  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
934    if (!VT.isVector())
935      return SDValue(N, 0);
936  if (!N) {
937    N = NodeAllocator.Allocate<ConstantFPSDNode>();
938    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
939    CSEMap.InsertNode(N, IP);
940    AllNodes.push_back(N);
941  }
942
943  SDValue Result(N, 0);
944  if (VT.isVector()) {
945    SmallVector<SDValue, 8> Ops;
946    Ops.assign(VT.getVectorNumElements(), Result);
947    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
948  }
949  return Result;
950}
951
952SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
953  MVT EltVT =
954    VT.isVector() ? VT.getVectorElementType() : VT;
955  if (EltVT==MVT::f32)
956    return getConstantFP(APFloat((float)Val), VT, isTarget);
957  else
958    return getConstantFP(APFloat(Val), VT, isTarget);
959}
960
961SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
962                                       MVT VT, int64_t Offset,
963                                       bool isTargetGA) {
964  unsigned Opc;
965
966  // Truncate (with sign-extension) the offset value to the pointer size.
967  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
968  if (BitWidth < 64)
969    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
970
971  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
972  if (!GVar) {
973    // If GV is an alias then use the aliasee for determining thread-localness.
974    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
975      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
976  }
977
978  if (GVar && GVar->isThreadLocal())
979    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
980  else
981    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
982
983  FoldingSetNodeID ID;
984  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
985  ID.AddPointer(GV);
986  ID.AddInteger(Offset);
987  void *IP = 0;
988  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
989    return SDValue(E, 0);
990  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
991  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
992  CSEMap.InsertNode(N, IP);
993  AllNodes.push_back(N);
994  return SDValue(N, 0);
995}
996
997SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
998  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
999  FoldingSetNodeID ID;
1000  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1001  ID.AddInteger(FI);
1002  void *IP = 0;
1003  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1004    return SDValue(E, 0);
1005  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1006  new (N) FrameIndexSDNode(FI, VT, isTarget);
1007  CSEMap.InsertNode(N, IP);
1008  AllNodes.push_back(N);
1009  return SDValue(N, 0);
1010}
1011
1012SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1013  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1014  FoldingSetNodeID ID;
1015  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1016  ID.AddInteger(JTI);
1017  void *IP = 0;
1018  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1019    return SDValue(E, 0);
1020  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1021  new (N) JumpTableSDNode(JTI, VT, isTarget);
1022  CSEMap.InsertNode(N, IP);
1023  AllNodes.push_back(N);
1024  return SDValue(N, 0);
1025}
1026
1027SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1028                                      unsigned Alignment, int Offset,
1029                                      bool isTarget) {
1030  if (Alignment == 0)
1031    Alignment =
1032      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1033  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1034  FoldingSetNodeID ID;
1035  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1036  ID.AddInteger(Alignment);
1037  ID.AddInteger(Offset);
1038  ID.AddPointer(C);
1039  void *IP = 0;
1040  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1041    return SDValue(E, 0);
1042  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1043  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1044  CSEMap.InsertNode(N, IP);
1045  AllNodes.push_back(N);
1046  return SDValue(N, 0);
1047}
1048
1049
1050SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1051                                      unsigned Alignment, int Offset,
1052                                      bool isTarget) {
1053  if (Alignment == 0)
1054    Alignment =
1055      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1056  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1057  FoldingSetNodeID ID;
1058  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1059  ID.AddInteger(Alignment);
1060  ID.AddInteger(Offset);
1061  C->AddSelectionDAGCSEId(ID);
1062  void *IP = 0;
1063  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1064    return SDValue(E, 0);
1065  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1066  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1067  CSEMap.InsertNode(N, IP);
1068  AllNodes.push_back(N);
1069  return SDValue(N, 0);
1070}
1071
1072
1073SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1074  FoldingSetNodeID ID;
1075  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1076  ID.AddPointer(MBB);
1077  void *IP = 0;
1078  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1079    return SDValue(E, 0);
1080  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1081  new (N) BasicBlockSDNode(MBB);
1082  CSEMap.InsertNode(N, IP);
1083  AllNodes.push_back(N);
1084  return SDValue(N, 0);
1085}
1086
1087SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB, DebugLoc dl) {
1088  FoldingSetNodeID ID;
1089  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1090  ID.AddPointer(MBB);
1091  void *IP = 0;
1092  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1093    return SDValue(E, 0);
1094  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1095  new (N) BasicBlockSDNode(MBB, dl);
1096  CSEMap.InsertNode(N, IP);
1097  AllNodes.push_back(N);
1098  return SDValue(N, 0);
1099}
1100
1101SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1102  FoldingSetNodeID ID;
1103  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1104  ID.AddInteger(Flags.getRawBits());
1105  void *IP = 0;
1106  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1107    return SDValue(E, 0);
1108  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1109  new (N) ARG_FLAGSSDNode(Flags);
1110  CSEMap.InsertNode(N, IP);
1111  AllNodes.push_back(N);
1112  return SDValue(N, 0);
1113}
1114
1115SDValue SelectionDAG::getValueType(MVT VT) {
1116  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1117    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1118
1119  SDNode *&N = VT.isExtended() ?
1120    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1121
1122  if (N) return SDValue(N, 0);
1123  N = NodeAllocator.Allocate<VTSDNode>();
1124  new (N) VTSDNode(VT);
1125  AllNodes.push_back(N);
1126  return SDValue(N, 0);
1127}
1128
1129SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1130  SDNode *&N = ExternalSymbols[Sym];
1131  if (N) return SDValue(N, 0);
1132  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1133  new (N) ExternalSymbolSDNode(false, Sym, VT);
1134  AllNodes.push_back(N);
1135  return SDValue(N, 0);
1136}
1137
1138SDValue SelectionDAG::getExternalSymbol(const char *Sym, DebugLoc dl, MVT VT) {
1139  SDNode *&N = ExternalSymbols[Sym];
1140  if (N) return SDValue(N, 0);
1141  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1142  new (N) ExternalSymbolSDNode(false, dl, Sym, VT);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1148  SDNode *&N = TargetExternalSymbols[Sym];
1149  if (N) return SDValue(N, 0);
1150  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1151  new (N) ExternalSymbolSDNode(true, Sym, VT);
1152  AllNodes.push_back(N);
1153  return SDValue(N, 0);
1154}
1155
1156SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, DebugLoc dl,
1157                                              MVT VT) {
1158  SDNode *&N = TargetExternalSymbols[Sym];
1159  if (N) return SDValue(N, 0);
1160  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1161  new (N) ExternalSymbolSDNode(true, dl, Sym, VT);
1162  AllNodes.push_back(N);
1163  return SDValue(N, 0);
1164}
1165
1166SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1167  if ((unsigned)Cond >= CondCodeNodes.size())
1168    CondCodeNodes.resize(Cond+1);
1169
1170  if (CondCodeNodes[Cond] == 0) {
1171    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1172    new (N) CondCodeSDNode(Cond);
1173    CondCodeNodes[Cond] = N;
1174    AllNodes.push_back(N);
1175  }
1176  return SDValue(CondCodeNodes[Cond], 0);
1177}
1178
1179SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1180                                       SDValue STy, SDValue Rnd, SDValue Sat,
1181                                       ISD::CvtCode Code) {
1182  // If the src and dest types are the same, no conversion is necessary.
1183  if (DTy == STy)
1184    return Val;
1185
1186  FoldingSetNodeID ID;
1187  void* IP = 0;
1188  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1189    return SDValue(E, 0);
1190  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1191  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1192  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1193  CSEMap.InsertNode(N, IP);
1194  AllNodes.push_back(N);
1195  return SDValue(N, 0);
1196}
1197
1198SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1199  FoldingSetNodeID ID;
1200  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1201  ID.AddInteger(RegNo);
1202  void *IP = 0;
1203  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1204    return SDValue(E, 0);
1205  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1206  new (N) RegisterSDNode(RegNo, VT);
1207  CSEMap.InsertNode(N, IP);
1208  AllNodes.push_back(N);
1209  return SDValue(N, 0);
1210}
1211
1212SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1213                                      unsigned Line, unsigned Col,
1214                                      Value *CU) {
1215  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1216  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1217  AllNodes.push_back(N);
1218  return SDValue(N, 0);
1219}
1220
1221SDValue SelectionDAG::getLabel(unsigned Opcode,
1222                               SDValue Root,
1223                               unsigned LabelID) {
1224  FoldingSetNodeID ID;
1225  SDValue Ops[] = { Root };
1226  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1227  ID.AddInteger(LabelID);
1228  void *IP = 0;
1229  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1230    return SDValue(E, 0);
1231  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1232  new (N) LabelSDNode(Opcode, Root, LabelID);
1233  CSEMap.InsertNode(N, IP);
1234  AllNodes.push_back(N);
1235  return SDValue(N, 0);
1236}
1237
1238SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1239                               SDValue Root,
1240                               unsigned LabelID) {
1241  FoldingSetNodeID ID;
1242  SDValue Ops[] = { Root };
1243  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1244  ID.AddInteger(LabelID);
1245  void *IP = 0;
1246  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1247    return SDValue(E, 0);
1248  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1249  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1250  CSEMap.InsertNode(N, IP);
1251  AllNodes.push_back(N);
1252  return SDValue(N, 0);
1253}
1254
1255SDValue SelectionDAG::getSrcValue(const Value *V) {
1256  assert((!V || isa<PointerType>(V->getType())) &&
1257         "SrcValue is not a pointer?");
1258
1259  FoldingSetNodeID ID;
1260  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1261  ID.AddPointer(V);
1262
1263  void *IP = 0;
1264  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1265    return SDValue(E, 0);
1266
1267  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1268  new (N) SrcValueSDNode(V);
1269  CSEMap.InsertNode(N, IP);
1270  AllNodes.push_back(N);
1271  return SDValue(N, 0);
1272}
1273
1274SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1275#ifndef NDEBUG
1276  const Value *v = MO.getValue();
1277  assert((!v || isa<PointerType>(v->getType())) &&
1278         "SrcValue is not a pointer?");
1279#endif
1280
1281  FoldingSetNodeID ID;
1282  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1283  MO.Profile(ID);
1284
1285  void *IP = 0;
1286  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1287    return SDValue(E, 0);
1288
1289  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1290  new (N) MemOperandSDNode(MO);
1291  CSEMap.InsertNode(N, IP);
1292  AllNodes.push_back(N);
1293  return SDValue(N, 0);
1294}
1295
1296/// getShiftAmountOperand - Return the specified value casted to
1297/// the target's desired shift amount type.
1298SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1299  MVT OpTy = Op.getValueType();
1300  MVT ShTy = TLI.getShiftAmountTy();
1301  if (OpTy == ShTy || OpTy.isVector()) return Op;
1302
1303  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1304  return getNode(Opcode, ShTy, Op);
1305}
1306
1307/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1308/// specified value type.
1309SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1310  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1311  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1312  const Type *Ty = VT.getTypeForMVT();
1313  unsigned StackAlign =
1314  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1315
1316  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1317  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1318}
1319
1320/// CreateStackTemporary - Create a stack temporary suitable for holding
1321/// either of the specified value types.
1322SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1323  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1324                            VT2.getStoreSizeInBits())/8;
1325  const Type *Ty1 = VT1.getTypeForMVT();
1326  const Type *Ty2 = VT2.getTypeForMVT();
1327  const TargetData *TD = TLI.getTargetData();
1328  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1329                            TD->getPrefTypeAlignment(Ty2));
1330
1331  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1332  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1333  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1334}
1335
1336SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1337                                SDValue N2, ISD::CondCode Cond) {
1338  // These setcc operations always fold.
1339  switch (Cond) {
1340  default: break;
1341  case ISD::SETFALSE:
1342  case ISD::SETFALSE2: return getConstant(0, VT);
1343  case ISD::SETTRUE:
1344  case ISD::SETTRUE2:  return getConstant(1, VT);
1345
1346  case ISD::SETOEQ:
1347  case ISD::SETOGT:
1348  case ISD::SETOGE:
1349  case ISD::SETOLT:
1350  case ISD::SETOLE:
1351  case ISD::SETONE:
1352  case ISD::SETO:
1353  case ISD::SETUO:
1354  case ISD::SETUEQ:
1355  case ISD::SETUNE:
1356    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1357    break;
1358  }
1359
1360  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1361    const APInt &C2 = N2C->getAPIntValue();
1362    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1363      const APInt &C1 = N1C->getAPIntValue();
1364
1365      switch (Cond) {
1366      default: assert(0 && "Unknown integer setcc!");
1367      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1368      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1369      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1370      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1371      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1372      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1373      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1374      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1375      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1376      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1377      }
1378    }
1379  }
1380  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1381    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1382      // No compile time operations on this type yet.
1383      if (N1C->getValueType(0) == MVT::ppcf128)
1384        return SDValue();
1385
1386      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1387      switch (Cond) {
1388      default: break;
1389      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1390                          return getNode(ISD::UNDEF, VT);
1391                        // fall through
1392      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1393      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1394                          return getNode(ISD::UNDEF, VT);
1395                        // fall through
1396      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1397                                           R==APFloat::cmpLessThan, VT);
1398      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1399                          return getNode(ISD::UNDEF, VT);
1400                        // fall through
1401      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1402      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1403                          return getNode(ISD::UNDEF, VT);
1404                        // fall through
1405      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1406      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1407                          return getNode(ISD::UNDEF, VT);
1408                        // fall through
1409      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1410                                           R==APFloat::cmpEqual, VT);
1411      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1412                          return getNode(ISD::UNDEF, VT);
1413                        // fall through
1414      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1415                                           R==APFloat::cmpEqual, VT);
1416      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1417      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1418      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1419                                           R==APFloat::cmpEqual, VT);
1420      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1421      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1422                                           R==APFloat::cmpLessThan, VT);
1423      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1424                                           R==APFloat::cmpUnordered, VT);
1425      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1426      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1427      }
1428    } else {
1429      // Ensure that the constant occurs on the RHS.
1430      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1431    }
1432  }
1433
1434  // Could not fold it.
1435  return SDValue();
1436}
1437
1438/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1439/// use this predicate to simplify operations downstream.
1440bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1441  unsigned BitWidth = Op.getValueSizeInBits();
1442  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1443}
1444
1445/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1446/// this predicate to simplify operations downstream.  Mask is known to be zero
1447/// for bits that V cannot have.
1448bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1449                                     unsigned Depth) const {
1450  APInt KnownZero, KnownOne;
1451  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1452  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1453  return (KnownZero & Mask) == Mask;
1454}
1455
1456/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1457/// known to be either zero or one and return them in the KnownZero/KnownOne
1458/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1459/// processing.
1460void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1461                                     APInt &KnownZero, APInt &KnownOne,
1462                                     unsigned Depth) const {
1463  unsigned BitWidth = Mask.getBitWidth();
1464  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1465         "Mask size mismatches value type size!");
1466
1467  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1468  if (Depth == 6 || Mask == 0)
1469    return;  // Limit search depth.
1470
1471  APInt KnownZero2, KnownOne2;
1472
1473  switch (Op.getOpcode()) {
1474  case ISD::Constant:
1475    // We know all of the bits for a constant!
1476    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1477    KnownZero = ~KnownOne & Mask;
1478    return;
1479  case ISD::AND:
1480    // If either the LHS or the RHS are Zero, the result is zero.
1481    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1482    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1483                      KnownZero2, KnownOne2, Depth+1);
1484    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1485    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1486
1487    // Output known-1 bits are only known if set in both the LHS & RHS.
1488    KnownOne &= KnownOne2;
1489    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1490    KnownZero |= KnownZero2;
1491    return;
1492  case ISD::OR:
1493    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1494    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1495                      KnownZero2, KnownOne2, Depth+1);
1496    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1497    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1498
1499    // Output known-0 bits are only known if clear in both the LHS & RHS.
1500    KnownZero &= KnownZero2;
1501    // Output known-1 are known to be set if set in either the LHS | RHS.
1502    KnownOne |= KnownOne2;
1503    return;
1504  case ISD::XOR: {
1505    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1506    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1507    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1508    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1509
1510    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1511    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1512    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1513    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1514    KnownZero = KnownZeroOut;
1515    return;
1516  }
1517  case ISD::MUL: {
1518    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1519    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1520    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1521    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1522    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1523
1524    // If low bits are zero in either operand, output low known-0 bits.
1525    // Also compute a conserative estimate for high known-0 bits.
1526    // More trickiness is possible, but this is sufficient for the
1527    // interesting case of alignment computation.
1528    KnownOne.clear();
1529    unsigned TrailZ = KnownZero.countTrailingOnes() +
1530                      KnownZero2.countTrailingOnes();
1531    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1532                               KnownZero2.countLeadingOnes(),
1533                               BitWidth) - BitWidth;
1534
1535    TrailZ = std::min(TrailZ, BitWidth);
1536    LeadZ = std::min(LeadZ, BitWidth);
1537    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1538                APInt::getHighBitsSet(BitWidth, LeadZ);
1539    KnownZero &= Mask;
1540    return;
1541  }
1542  case ISD::UDIV: {
1543    // For the purposes of computing leading zeros we can conservatively
1544    // treat a udiv as a logical right shift by the power of 2 known to
1545    // be less than the denominator.
1546    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1547    ComputeMaskedBits(Op.getOperand(0),
1548                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1549    unsigned LeadZ = KnownZero2.countLeadingOnes();
1550
1551    KnownOne2.clear();
1552    KnownZero2.clear();
1553    ComputeMaskedBits(Op.getOperand(1),
1554                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1555    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1556    if (RHSUnknownLeadingOnes != BitWidth)
1557      LeadZ = std::min(BitWidth,
1558                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1559
1560    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1561    return;
1562  }
1563  case ISD::SELECT:
1564    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1565    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1566    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1567    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1568
1569    // Only known if known in both the LHS and RHS.
1570    KnownOne &= KnownOne2;
1571    KnownZero &= KnownZero2;
1572    return;
1573  case ISD::SELECT_CC:
1574    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1575    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1576    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1577    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1578
1579    // Only known if known in both the LHS and RHS.
1580    KnownOne &= KnownOne2;
1581    KnownZero &= KnownZero2;
1582    return;
1583  case ISD::SADDO:
1584  case ISD::UADDO:
1585  case ISD::SSUBO:
1586  case ISD::USUBO:
1587  case ISD::SMULO:
1588  case ISD::UMULO:
1589    if (Op.getResNo() != 1)
1590      return;
1591    // The boolean result conforms to getBooleanContents.  Fall through.
1592  case ISD::SETCC:
1593    // If we know the result of a setcc has the top bits zero, use this info.
1594    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1595        BitWidth > 1)
1596      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1597    return;
1598  case ISD::SHL:
1599    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1600    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1601      unsigned ShAmt = SA->getZExtValue();
1602
1603      // If the shift count is an invalid immediate, don't do anything.
1604      if (ShAmt >= BitWidth)
1605        return;
1606
1607      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1608                        KnownZero, KnownOne, Depth+1);
1609      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1610      KnownZero <<= ShAmt;
1611      KnownOne  <<= ShAmt;
1612      // low bits known zero.
1613      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1614    }
1615    return;
1616  case ISD::SRL:
1617    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1618    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1619      unsigned ShAmt = SA->getZExtValue();
1620
1621      // If the shift count is an invalid immediate, don't do anything.
1622      if (ShAmt >= BitWidth)
1623        return;
1624
1625      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1626                        KnownZero, KnownOne, Depth+1);
1627      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1628      KnownZero = KnownZero.lshr(ShAmt);
1629      KnownOne  = KnownOne.lshr(ShAmt);
1630
1631      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1632      KnownZero |= HighBits;  // High bits known zero.
1633    }
1634    return;
1635  case ISD::SRA:
1636    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1637      unsigned ShAmt = SA->getZExtValue();
1638
1639      // If the shift count is an invalid immediate, don't do anything.
1640      if (ShAmt >= BitWidth)
1641        return;
1642
1643      APInt InDemandedMask = (Mask << ShAmt);
1644      // If any of the demanded bits are produced by the sign extension, we also
1645      // demand the input sign bit.
1646      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1647      if (HighBits.getBoolValue())
1648        InDemandedMask |= APInt::getSignBit(BitWidth);
1649
1650      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1651                        Depth+1);
1652      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1653      KnownZero = KnownZero.lshr(ShAmt);
1654      KnownOne  = KnownOne.lshr(ShAmt);
1655
1656      // Handle the sign bits.
1657      APInt SignBit = APInt::getSignBit(BitWidth);
1658      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1659
1660      if (KnownZero.intersects(SignBit)) {
1661        KnownZero |= HighBits;  // New bits are known zero.
1662      } else if (KnownOne.intersects(SignBit)) {
1663        KnownOne  |= HighBits;  // New bits are known one.
1664      }
1665    }
1666    return;
1667  case ISD::SIGN_EXTEND_INREG: {
1668    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1669    unsigned EBits = EVT.getSizeInBits();
1670
1671    // Sign extension.  Compute the demanded bits in the result that are not
1672    // present in the input.
1673    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1674
1675    APInt InSignBit = APInt::getSignBit(EBits);
1676    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1677
1678    // If the sign extended bits are demanded, we know that the sign
1679    // bit is demanded.
1680    InSignBit.zext(BitWidth);
1681    if (NewBits.getBoolValue())
1682      InputDemandedBits |= InSignBit;
1683
1684    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1685                      KnownZero, KnownOne, Depth+1);
1686    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1687
1688    // If the sign bit of the input is known set or clear, then we know the
1689    // top bits of the result.
1690    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1691      KnownZero |= NewBits;
1692      KnownOne  &= ~NewBits;
1693    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1694      KnownOne  |= NewBits;
1695      KnownZero &= ~NewBits;
1696    } else {                              // Input sign bit unknown
1697      KnownZero &= ~NewBits;
1698      KnownOne  &= ~NewBits;
1699    }
1700    return;
1701  }
1702  case ISD::CTTZ:
1703  case ISD::CTLZ:
1704  case ISD::CTPOP: {
1705    unsigned LowBits = Log2_32(BitWidth)+1;
1706    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1707    KnownOne.clear();
1708    return;
1709  }
1710  case ISD::LOAD: {
1711    if (ISD::isZEXTLoad(Op.getNode())) {
1712      LoadSDNode *LD = cast<LoadSDNode>(Op);
1713      MVT VT = LD->getMemoryVT();
1714      unsigned MemBits = VT.getSizeInBits();
1715      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1716    }
1717    return;
1718  }
1719  case ISD::ZERO_EXTEND: {
1720    MVT InVT = Op.getOperand(0).getValueType();
1721    unsigned InBits = InVT.getSizeInBits();
1722    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1723    APInt InMask    = Mask;
1724    InMask.trunc(InBits);
1725    KnownZero.trunc(InBits);
1726    KnownOne.trunc(InBits);
1727    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1728    KnownZero.zext(BitWidth);
1729    KnownOne.zext(BitWidth);
1730    KnownZero |= NewBits;
1731    return;
1732  }
1733  case ISD::SIGN_EXTEND: {
1734    MVT InVT = Op.getOperand(0).getValueType();
1735    unsigned InBits = InVT.getSizeInBits();
1736    APInt InSignBit = APInt::getSignBit(InBits);
1737    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1738    APInt InMask = Mask;
1739    InMask.trunc(InBits);
1740
1741    // If any of the sign extended bits are demanded, we know that the sign
1742    // bit is demanded. Temporarily set this bit in the mask for our callee.
1743    if (NewBits.getBoolValue())
1744      InMask |= InSignBit;
1745
1746    KnownZero.trunc(InBits);
1747    KnownOne.trunc(InBits);
1748    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1749
1750    // Note if the sign bit is known to be zero or one.
1751    bool SignBitKnownZero = KnownZero.isNegative();
1752    bool SignBitKnownOne  = KnownOne.isNegative();
1753    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1754           "Sign bit can't be known to be both zero and one!");
1755
1756    // If the sign bit wasn't actually demanded by our caller, we don't
1757    // want it set in the KnownZero and KnownOne result values. Reset the
1758    // mask and reapply it to the result values.
1759    InMask = Mask;
1760    InMask.trunc(InBits);
1761    KnownZero &= InMask;
1762    KnownOne  &= InMask;
1763
1764    KnownZero.zext(BitWidth);
1765    KnownOne.zext(BitWidth);
1766
1767    // If the sign bit is known zero or one, the top bits match.
1768    if (SignBitKnownZero)
1769      KnownZero |= NewBits;
1770    else if (SignBitKnownOne)
1771      KnownOne  |= NewBits;
1772    return;
1773  }
1774  case ISD::ANY_EXTEND: {
1775    MVT InVT = Op.getOperand(0).getValueType();
1776    unsigned InBits = InVT.getSizeInBits();
1777    APInt InMask = Mask;
1778    InMask.trunc(InBits);
1779    KnownZero.trunc(InBits);
1780    KnownOne.trunc(InBits);
1781    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1782    KnownZero.zext(BitWidth);
1783    KnownOne.zext(BitWidth);
1784    return;
1785  }
1786  case ISD::TRUNCATE: {
1787    MVT InVT = Op.getOperand(0).getValueType();
1788    unsigned InBits = InVT.getSizeInBits();
1789    APInt InMask = Mask;
1790    InMask.zext(InBits);
1791    KnownZero.zext(InBits);
1792    KnownOne.zext(InBits);
1793    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1794    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1795    KnownZero.trunc(BitWidth);
1796    KnownOne.trunc(BitWidth);
1797    break;
1798  }
1799  case ISD::AssertZext: {
1800    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1801    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1802    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1803                      KnownOne, Depth+1);
1804    KnownZero |= (~InMask) & Mask;
1805    return;
1806  }
1807  case ISD::FGETSIGN:
1808    // All bits are zero except the low bit.
1809    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1810    return;
1811
1812  case ISD::SUB: {
1813    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1814      // We know that the top bits of C-X are clear if X contains less bits
1815      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1816      // positive if we can prove that X is >= 0 and < 16.
1817      if (CLHS->getAPIntValue().isNonNegative()) {
1818        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1819        // NLZ can't be BitWidth with no sign bit
1820        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1821        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1822                          Depth+1);
1823
1824        // If all of the MaskV bits are known to be zero, then we know the
1825        // output top bits are zero, because we now know that the output is
1826        // from [0-C].
1827        if ((KnownZero2 & MaskV) == MaskV) {
1828          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1829          // Top bits known zero.
1830          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1831        }
1832      }
1833    }
1834  }
1835  // fall through
1836  case ISD::ADD: {
1837    // Output known-0 bits are known if clear or set in both the low clear bits
1838    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1839    // low 3 bits clear.
1840    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1841    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1842    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1843    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1844
1845    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1846    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1847    KnownZeroOut = std::min(KnownZeroOut,
1848                            KnownZero2.countTrailingOnes());
1849
1850    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1851    return;
1852  }
1853  case ISD::SREM:
1854    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1855      const APInt &RA = Rem->getAPIntValue();
1856      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1857        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1858        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1859        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1860
1861        // If the sign bit of the first operand is zero, the sign bit of
1862        // the result is zero. If the first operand has no one bits below
1863        // the second operand's single 1 bit, its sign will be zero.
1864        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1865          KnownZero2 |= ~LowBits;
1866
1867        KnownZero |= KnownZero2 & Mask;
1868
1869        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1870      }
1871    }
1872    return;
1873  case ISD::UREM: {
1874    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1875      const APInt &RA = Rem->getAPIntValue();
1876      if (RA.isPowerOf2()) {
1877        APInt LowBits = (RA - 1);
1878        APInt Mask2 = LowBits & Mask;
1879        KnownZero |= ~LowBits & Mask;
1880        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1881        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1882        break;
1883      }
1884    }
1885
1886    // Since the result is less than or equal to either operand, any leading
1887    // zero bits in either operand must also exist in the result.
1888    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1889    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1890                      Depth+1);
1891    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1892                      Depth+1);
1893
1894    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1895                                KnownZero2.countLeadingOnes());
1896    KnownOne.clear();
1897    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1898    return;
1899  }
1900  default:
1901    // Allow the target to implement this method for its nodes.
1902    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1903  case ISD::INTRINSIC_WO_CHAIN:
1904  case ISD::INTRINSIC_W_CHAIN:
1905  case ISD::INTRINSIC_VOID:
1906      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1907    }
1908    return;
1909  }
1910}
1911
1912/// ComputeNumSignBits - Return the number of times the sign bit of the
1913/// register is replicated into the other bits.  We know that at least 1 bit
1914/// is always equal to the sign bit (itself), but other cases can give us
1915/// information.  For example, immediately after an "SRA X, 2", we know that
1916/// the top 3 bits are all equal to each other, so we return 3.
1917unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1918  MVT VT = Op.getValueType();
1919  assert(VT.isInteger() && "Invalid VT!");
1920  unsigned VTBits = VT.getSizeInBits();
1921  unsigned Tmp, Tmp2;
1922  unsigned FirstAnswer = 1;
1923
1924  if (Depth == 6)
1925    return 1;  // Limit search depth.
1926
1927  switch (Op.getOpcode()) {
1928  default: break;
1929  case ISD::AssertSext:
1930    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1931    return VTBits-Tmp+1;
1932  case ISD::AssertZext:
1933    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1934    return VTBits-Tmp;
1935
1936  case ISD::Constant: {
1937    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1938    // If negative, return # leading ones.
1939    if (Val.isNegative())
1940      return Val.countLeadingOnes();
1941
1942    // Return # leading zeros.
1943    return Val.countLeadingZeros();
1944  }
1945
1946  case ISD::SIGN_EXTEND:
1947    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1948    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1949
1950  case ISD::SIGN_EXTEND_INREG:
1951    // Max of the input and what this extends.
1952    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1953    Tmp = VTBits-Tmp+1;
1954
1955    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1956    return std::max(Tmp, Tmp2);
1957
1958  case ISD::SRA:
1959    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1960    // SRA X, C   -> adds C sign bits.
1961    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1962      Tmp += C->getZExtValue();
1963      if (Tmp > VTBits) Tmp = VTBits;
1964    }
1965    return Tmp;
1966  case ISD::SHL:
1967    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1968      // shl destroys sign bits.
1969      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1970      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1971          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1972      return Tmp - C->getZExtValue();
1973    }
1974    break;
1975  case ISD::AND:
1976  case ISD::OR:
1977  case ISD::XOR:    // NOT is handled here.
1978    // Logical binary ops preserve the number of sign bits at the worst.
1979    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1980    if (Tmp != 1) {
1981      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1982      FirstAnswer = std::min(Tmp, Tmp2);
1983      // We computed what we know about the sign bits as our first
1984      // answer. Now proceed to the generic code that uses
1985      // ComputeMaskedBits, and pick whichever answer is better.
1986    }
1987    break;
1988
1989  case ISD::SELECT:
1990    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1991    if (Tmp == 1) return 1;  // Early out.
1992    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1993    return std::min(Tmp, Tmp2);
1994
1995  case ISD::SADDO:
1996  case ISD::UADDO:
1997  case ISD::SSUBO:
1998  case ISD::USUBO:
1999  case ISD::SMULO:
2000  case ISD::UMULO:
2001    if (Op.getResNo() != 1)
2002      break;
2003    // The boolean result conforms to getBooleanContents.  Fall through.
2004  case ISD::SETCC:
2005    // If setcc returns 0/-1, all bits are sign bits.
2006    if (TLI.getBooleanContents() ==
2007        TargetLowering::ZeroOrNegativeOneBooleanContent)
2008      return VTBits;
2009    break;
2010  case ISD::ROTL:
2011  case ISD::ROTR:
2012    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2013      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2014
2015      // Handle rotate right by N like a rotate left by 32-N.
2016      if (Op.getOpcode() == ISD::ROTR)
2017        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2018
2019      // If we aren't rotating out all of the known-in sign bits, return the
2020      // number that are left.  This handles rotl(sext(x), 1) for example.
2021      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2022      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2023    }
2024    break;
2025  case ISD::ADD:
2026    // Add can have at most one carry bit.  Thus we know that the output
2027    // is, at worst, one more bit than the inputs.
2028    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2029    if (Tmp == 1) return 1;  // Early out.
2030
2031    // Special case decrementing a value (ADD X, -1):
2032    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2033      if (CRHS->isAllOnesValue()) {
2034        APInt KnownZero, KnownOne;
2035        APInt Mask = APInt::getAllOnesValue(VTBits);
2036        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2037
2038        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2039        // sign bits set.
2040        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2041          return VTBits;
2042
2043        // If we are subtracting one from a positive number, there is no carry
2044        // out of the result.
2045        if (KnownZero.isNegative())
2046          return Tmp;
2047      }
2048
2049    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2050    if (Tmp2 == 1) return 1;
2051      return std::min(Tmp, Tmp2)-1;
2052    break;
2053
2054  case ISD::SUB:
2055    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2056    if (Tmp2 == 1) return 1;
2057
2058    // Handle NEG.
2059    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2060      if (CLHS->isNullValue()) {
2061        APInt KnownZero, KnownOne;
2062        APInt Mask = APInt::getAllOnesValue(VTBits);
2063        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2064        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2065        // sign bits set.
2066        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2067          return VTBits;
2068
2069        // If the input is known to be positive (the sign bit is known clear),
2070        // the output of the NEG has the same number of sign bits as the input.
2071        if (KnownZero.isNegative())
2072          return Tmp2;
2073
2074        // Otherwise, we treat this like a SUB.
2075      }
2076
2077    // Sub can have at most one carry bit.  Thus we know that the output
2078    // is, at worst, one more bit than the inputs.
2079    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2080    if (Tmp == 1) return 1;  // Early out.
2081      return std::min(Tmp, Tmp2)-1;
2082    break;
2083  case ISD::TRUNCATE:
2084    // FIXME: it's tricky to do anything useful for this, but it is an important
2085    // case for targets like X86.
2086    break;
2087  }
2088
2089  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2090  if (Op.getOpcode() == ISD::LOAD) {
2091    LoadSDNode *LD = cast<LoadSDNode>(Op);
2092    unsigned ExtType = LD->getExtensionType();
2093    switch (ExtType) {
2094    default: break;
2095    case ISD::SEXTLOAD:    // '17' bits known
2096      Tmp = LD->getMemoryVT().getSizeInBits();
2097      return VTBits-Tmp+1;
2098    case ISD::ZEXTLOAD:    // '16' bits known
2099      Tmp = LD->getMemoryVT().getSizeInBits();
2100      return VTBits-Tmp;
2101    }
2102  }
2103
2104  // Allow the target to implement this method for its nodes.
2105  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2106      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2107      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2108      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2109    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2110    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2111  }
2112
2113  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2114  // use this information.
2115  APInt KnownZero, KnownOne;
2116  APInt Mask = APInt::getAllOnesValue(VTBits);
2117  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2118
2119  if (KnownZero.isNegative()) {        // sign bit is 0
2120    Mask = KnownZero;
2121  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2122    Mask = KnownOne;
2123  } else {
2124    // Nothing known.
2125    return FirstAnswer;
2126  }
2127
2128  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2129  // the number of identical bits in the top of the input value.
2130  Mask = ~Mask;
2131  Mask <<= Mask.getBitWidth()-VTBits;
2132  // Return # leading zeros.  We use 'min' here in case Val was zero before
2133  // shifting.  We don't want to return '64' as for an i32 "0".
2134  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2135}
2136
2137
2138bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2139  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2140  if (!GA) return false;
2141  if (GA->getOffset() != 0) return false;
2142  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2143  if (!GV) return false;
2144  MachineModuleInfo *MMI = getMachineModuleInfo();
2145  return MMI && MMI->hasDebugInfo();
2146}
2147
2148
2149/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2150/// element of the result of the vector shuffle.
2151SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2152  MVT VT = N->getValueType(0);
2153  SDValue PermMask = N->getOperand(2);
2154  SDValue Idx = PermMask.getOperand(i);
2155  if (Idx.getOpcode() == ISD::UNDEF)
2156    return getNode(ISD::UNDEF, VT.getVectorElementType());
2157  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2158  unsigned NumElems = PermMask.getNumOperands();
2159  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2160  Index %= NumElems;
2161
2162  if (V.getOpcode() == ISD::BIT_CONVERT) {
2163    V = V.getOperand(0);
2164    MVT VVT = V.getValueType();
2165    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2166      return SDValue();
2167  }
2168  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2169    return (Index == 0) ? V.getOperand(0)
2170                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2171  if (V.getOpcode() == ISD::BUILD_VECTOR)
2172    return V.getOperand(Index);
2173  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2174    return getShuffleScalarElt(V.getNode(), Index);
2175  return SDValue();
2176}
2177
2178
2179/// getNode - Gets or creates the specified node.
2180///
2181SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2182  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT);
2183}
2184
2185SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2186  FoldingSetNodeID ID;
2187  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2188  void *IP = 0;
2189  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2190    return SDValue(E, 0);
2191  SDNode *N = NodeAllocator.Allocate<SDNode>();
2192  new (N) SDNode(Opcode, DL, SDNode::getSDVTList(VT));
2193  CSEMap.InsertNode(N, IP);
2194
2195  AllNodes.push_back(N);
2196#ifndef NDEBUG
2197  VerifyNode(N);
2198#endif
2199  return SDValue(N, 0);
2200}
2201
2202SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2203  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Operand);
2204}
2205
2206SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2207                              MVT VT, SDValue Operand) {
2208  // Constant fold unary operations with an integer constant operand.
2209  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2210    const APInt &Val = C->getAPIntValue();
2211    unsigned BitWidth = VT.getSizeInBits();
2212    switch (Opcode) {
2213    default: break;
2214    case ISD::SIGN_EXTEND:
2215      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2216    case ISD::ANY_EXTEND:
2217    case ISD::ZERO_EXTEND:
2218    case ISD::TRUNCATE:
2219      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2220    case ISD::UINT_TO_FP:
2221    case ISD::SINT_TO_FP: {
2222      const uint64_t zero[] = {0, 0};
2223      // No compile time operations on this type.
2224      if (VT==MVT::ppcf128)
2225        break;
2226      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2227      (void)apf.convertFromAPInt(Val,
2228                                 Opcode==ISD::SINT_TO_FP,
2229                                 APFloat::rmNearestTiesToEven);
2230      return getConstantFP(apf, VT);
2231    }
2232    case ISD::BIT_CONVERT:
2233      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2234        return getConstantFP(Val.bitsToFloat(), VT);
2235      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2236        return getConstantFP(Val.bitsToDouble(), VT);
2237      break;
2238    case ISD::BSWAP:
2239      return getConstant(Val.byteSwap(), VT);
2240    case ISD::CTPOP:
2241      return getConstant(Val.countPopulation(), VT);
2242    case ISD::CTLZ:
2243      return getConstant(Val.countLeadingZeros(), VT);
2244    case ISD::CTTZ:
2245      return getConstant(Val.countTrailingZeros(), VT);
2246    }
2247  }
2248
2249  // Constant fold unary operations with a floating point constant operand.
2250  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2251    APFloat V = C->getValueAPF();    // make copy
2252    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2253      switch (Opcode) {
2254      case ISD::FNEG:
2255        V.changeSign();
2256        return getConstantFP(V, VT);
2257      case ISD::FABS:
2258        V.clearSign();
2259        return getConstantFP(V, VT);
2260      case ISD::FP_ROUND:
2261      case ISD::FP_EXTEND: {
2262        bool ignored;
2263        // This can return overflow, underflow, or inexact; we don't care.
2264        // FIXME need to be more flexible about rounding mode.
2265        (void)V.convert(*MVTToAPFloatSemantics(VT),
2266                        APFloat::rmNearestTiesToEven, &ignored);
2267        return getConstantFP(V, VT);
2268      }
2269      case ISD::FP_TO_SINT:
2270      case ISD::FP_TO_UINT: {
2271        integerPart x;
2272        bool ignored;
2273        assert(integerPartWidth >= 64);
2274        // FIXME need to be more flexible about rounding mode.
2275        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2276                              Opcode==ISD::FP_TO_SINT,
2277                              APFloat::rmTowardZero, &ignored);
2278        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2279          break;
2280        return getConstant(x, VT);
2281      }
2282      case ISD::BIT_CONVERT:
2283        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2284          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2285        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2286          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2287        break;
2288      }
2289    }
2290  }
2291
2292  unsigned OpOpcode = Operand.getNode()->getOpcode();
2293  switch (Opcode) {
2294  case ISD::TokenFactor:
2295  case ISD::MERGE_VALUES:
2296  case ISD::CONCAT_VECTORS:
2297    return Operand;         // Factor, merge or concat of one node?  No need.
2298  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2299  case ISD::FP_EXTEND:
2300    assert(VT.isFloatingPoint() &&
2301           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2302    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2303    if (Operand.getOpcode() == ISD::UNDEF)
2304      return getNode(ISD::UNDEF, VT);
2305    break;
2306  case ISD::SIGN_EXTEND:
2307    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2308           "Invalid SIGN_EXTEND!");
2309    if (Operand.getValueType() == VT) return Operand;   // noop extension
2310    assert(Operand.getValueType().bitsLT(VT)
2311           && "Invalid sext node, dst < src!");
2312    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2313      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2314    break;
2315  case ISD::ZERO_EXTEND:
2316    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2317           "Invalid ZERO_EXTEND!");
2318    if (Operand.getValueType() == VT) return Operand;   // noop extension
2319    assert(Operand.getValueType().bitsLT(VT)
2320           && "Invalid zext node, dst < src!");
2321    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2322      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2323    break;
2324  case ISD::ANY_EXTEND:
2325    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2326           "Invalid ANY_EXTEND!");
2327    if (Operand.getValueType() == VT) return Operand;   // noop extension
2328    assert(Operand.getValueType().bitsLT(VT)
2329           && "Invalid anyext node, dst < src!");
2330    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2331      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2332      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2333    break;
2334  case ISD::TRUNCATE:
2335    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2336           "Invalid TRUNCATE!");
2337    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2338    assert(Operand.getValueType().bitsGT(VT)
2339           && "Invalid truncate node, src < dst!");
2340    if (OpOpcode == ISD::TRUNCATE)
2341      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2342    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2343             OpOpcode == ISD::ANY_EXTEND) {
2344      // If the source is smaller than the dest, we still need an extend.
2345      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2346        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2347      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2348        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2349      else
2350        return Operand.getNode()->getOperand(0);
2351    }
2352    break;
2353  case ISD::BIT_CONVERT:
2354    // Basic sanity checking.
2355    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2356           && "Cannot BIT_CONVERT between types of different sizes!");
2357    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2358    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2359      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2360    if (OpOpcode == ISD::UNDEF)
2361      return getNode(ISD::UNDEF, VT);
2362    break;
2363  case ISD::SCALAR_TO_VECTOR:
2364    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2365           VT.getVectorElementType() == Operand.getValueType() &&
2366           "Illegal SCALAR_TO_VECTOR node!");
2367    if (OpOpcode == ISD::UNDEF)
2368      return getNode(ISD::UNDEF, VT);
2369    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2370    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2371        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2372        Operand.getConstantOperandVal(1) == 0 &&
2373        Operand.getOperand(0).getValueType() == VT)
2374      return Operand.getOperand(0);
2375    break;
2376  case ISD::FNEG:
2377    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2378    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2379      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2380                     Operand.getNode()->getOperand(0));
2381    if (OpOpcode == ISD::FNEG)  // --X -> X
2382      return Operand.getNode()->getOperand(0);
2383    break;
2384  case ISD::FABS:
2385    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2386      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2387    break;
2388  }
2389
2390  SDNode *N;
2391  SDVTList VTs = getVTList(VT);
2392  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2393    FoldingSetNodeID ID;
2394    SDValue Ops[1] = { Operand };
2395    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2396    void *IP = 0;
2397    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2398      return SDValue(E, 0);
2399    N = NodeAllocator.Allocate<UnarySDNode>();
2400    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2401    CSEMap.InsertNode(N, IP);
2402  } else {
2403    N = NodeAllocator.Allocate<UnarySDNode>();
2404    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2405  }
2406
2407  AllNodes.push_back(N);
2408#ifndef NDEBUG
2409  VerifyNode(N);
2410#endif
2411  return SDValue(N, 0);
2412}
2413
2414SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2415                                             MVT VT,
2416                                             ConstantSDNode *Cst1,
2417                                             ConstantSDNode *Cst2) {
2418  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2419
2420  switch (Opcode) {
2421  case ISD::ADD:  return getConstant(C1 + C2, VT);
2422  case ISD::SUB:  return getConstant(C1 - C2, VT);
2423  case ISD::MUL:  return getConstant(C1 * C2, VT);
2424  case ISD::UDIV:
2425    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2426    break;
2427  case ISD::UREM:
2428    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2429    break;
2430  case ISD::SDIV:
2431    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2432    break;
2433  case ISD::SREM:
2434    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2435    break;
2436  case ISD::AND:  return getConstant(C1 & C2, VT);
2437  case ISD::OR:   return getConstant(C1 | C2, VT);
2438  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2439  case ISD::SHL:  return getConstant(C1 << C2, VT);
2440  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2441  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2442  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2443  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2444  default: break;
2445  }
2446
2447  return SDValue();
2448}
2449
2450SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2451                              SDValue N1, SDValue N2) {
2452  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2);
2453}
2454
2455SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2456                              SDValue N1, SDValue N2) {
2457  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2458  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2459  switch (Opcode) {
2460  default: break;
2461  case ISD::TokenFactor:
2462    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2463           N2.getValueType() == MVT::Other && "Invalid token factor!");
2464    // Fold trivial token factors.
2465    if (N1.getOpcode() == ISD::EntryToken) return N2;
2466    if (N2.getOpcode() == ISD::EntryToken) return N1;
2467    if (N1 == N2) return N1;
2468    break;
2469  case ISD::CONCAT_VECTORS:
2470    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2471    // one big BUILD_VECTOR.
2472    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2473        N2.getOpcode() == ISD::BUILD_VECTOR) {
2474      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2475      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2476      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2477    }
2478    break;
2479  case ISD::AND:
2480    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2481           N1.getValueType() == VT && "Binary operator types must match!");
2482    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2483    // worth handling here.
2484    if (N2C && N2C->isNullValue())
2485      return N2;
2486    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2487      return N1;
2488    break;
2489  case ISD::OR:
2490  case ISD::XOR:
2491  case ISD::ADD:
2492  case ISD::SUB:
2493    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2494           N1.getValueType() == VT && "Binary operator types must match!");
2495    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2496    // it's worth handling here.
2497    if (N2C && N2C->isNullValue())
2498      return N1;
2499    break;
2500  case ISD::UDIV:
2501  case ISD::UREM:
2502  case ISD::MULHU:
2503  case ISD::MULHS:
2504  case ISD::MUL:
2505  case ISD::SDIV:
2506  case ISD::SREM:
2507    assert(VT.isInteger() && "This operator does not apply to FP types!");
2508    // fall through
2509  case ISD::FADD:
2510  case ISD::FSUB:
2511  case ISD::FMUL:
2512  case ISD::FDIV:
2513  case ISD::FREM:
2514    if (UnsafeFPMath) {
2515      if (Opcode == ISD::FADD) {
2516        // 0+x --> x
2517        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2518          if (CFP->getValueAPF().isZero())
2519            return N2;
2520        // x+0 --> x
2521        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2522          if (CFP->getValueAPF().isZero())
2523            return N1;
2524      } else if (Opcode == ISD::FSUB) {
2525        // x-0 --> x
2526        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2527          if (CFP->getValueAPF().isZero())
2528            return N1;
2529      }
2530    }
2531    assert(N1.getValueType() == N2.getValueType() &&
2532           N1.getValueType() == VT && "Binary operator types must match!");
2533    break;
2534  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2535    assert(N1.getValueType() == VT &&
2536           N1.getValueType().isFloatingPoint() &&
2537           N2.getValueType().isFloatingPoint() &&
2538           "Invalid FCOPYSIGN!");
2539    break;
2540  case ISD::SHL:
2541  case ISD::SRA:
2542  case ISD::SRL:
2543  case ISD::ROTL:
2544  case ISD::ROTR:
2545    assert(VT == N1.getValueType() &&
2546           "Shift operators return type must be the same as their first arg");
2547    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2548           "Shifts only work on integers");
2549
2550    // Always fold shifts of i1 values so the code generator doesn't need to
2551    // handle them.  Since we know the size of the shift has to be less than the
2552    // size of the value, the shift/rotate count is guaranteed to be zero.
2553    if (VT == MVT::i1)
2554      return N1;
2555    break;
2556  case ISD::FP_ROUND_INREG: {
2557    MVT EVT = cast<VTSDNode>(N2)->getVT();
2558    assert(VT == N1.getValueType() && "Not an inreg round!");
2559    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2560           "Cannot FP_ROUND_INREG integer types");
2561    assert(EVT.bitsLE(VT) && "Not rounding down!");
2562    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2563    break;
2564  }
2565  case ISD::FP_ROUND:
2566    assert(VT.isFloatingPoint() &&
2567           N1.getValueType().isFloatingPoint() &&
2568           VT.bitsLE(N1.getValueType()) &&
2569           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2570    if (N1.getValueType() == VT) return N1;  // noop conversion.
2571    break;
2572  case ISD::AssertSext:
2573  case ISD::AssertZext: {
2574    MVT EVT = cast<VTSDNode>(N2)->getVT();
2575    assert(VT == N1.getValueType() && "Not an inreg extend!");
2576    assert(VT.isInteger() && EVT.isInteger() &&
2577           "Cannot *_EXTEND_INREG FP types");
2578    assert(EVT.bitsLE(VT) && "Not extending!");
2579    if (VT == EVT) return N1; // noop assertion.
2580    break;
2581  }
2582  case ISD::SIGN_EXTEND_INREG: {
2583    MVT EVT = cast<VTSDNode>(N2)->getVT();
2584    assert(VT == N1.getValueType() && "Not an inreg extend!");
2585    assert(VT.isInteger() && EVT.isInteger() &&
2586           "Cannot *_EXTEND_INREG FP types");
2587    assert(EVT.bitsLE(VT) && "Not extending!");
2588    if (EVT == VT) return N1;  // Not actually extending
2589
2590    if (N1C) {
2591      APInt Val = N1C->getAPIntValue();
2592      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2593      Val <<= Val.getBitWidth()-FromBits;
2594      Val = Val.ashr(Val.getBitWidth()-FromBits);
2595      return getConstant(Val, VT);
2596    }
2597    break;
2598  }
2599  case ISD::EXTRACT_VECTOR_ELT:
2600    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2601    if (N1.getOpcode() == ISD::UNDEF)
2602      return getNode(ISD::UNDEF, VT);
2603
2604    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2605    // expanding copies of large vectors from registers.
2606    if (N2C &&
2607        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2608        N1.getNumOperands() > 0) {
2609      unsigned Factor =
2610        N1.getOperand(0).getValueType().getVectorNumElements();
2611      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2612                     N1.getOperand(N2C->getZExtValue() / Factor),
2613                     getConstant(N2C->getZExtValue() % Factor,
2614                                 N2.getValueType()));
2615    }
2616
2617    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2618    // expanding large vector constants.
2619    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2620      return N1.getOperand(N2C->getZExtValue());
2621
2622    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2623    // operations are lowered to scalars.
2624    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2625      // If the indices are the same, return the inserted element.
2626      if (N1.getOperand(2) == N2)
2627        return N1.getOperand(1);
2628      // If the indices are known different, extract the element from
2629      // the original vector.
2630      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2631               isa<ConstantSDNode>(N2))
2632        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2633    }
2634    break;
2635  case ISD::EXTRACT_ELEMENT:
2636    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2637    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2638           (N1.getValueType().isInteger() == VT.isInteger()) &&
2639           "Wrong types for EXTRACT_ELEMENT!");
2640
2641    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2642    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2643    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2644    if (N1.getOpcode() == ISD::BUILD_PAIR)
2645      return N1.getOperand(N2C->getZExtValue());
2646
2647    // EXTRACT_ELEMENT of a constant int is also very common.
2648    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2649      unsigned ElementSize = VT.getSizeInBits();
2650      unsigned Shift = ElementSize * N2C->getZExtValue();
2651      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2652      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2653    }
2654    break;
2655  case ISD::EXTRACT_SUBVECTOR:
2656    if (N1.getValueType() == VT) // Trivial extraction.
2657      return N1;
2658    break;
2659  }
2660
2661  if (N1C) {
2662    if (N2C) {
2663      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2664      if (SV.getNode()) return SV;
2665    } else {      // Cannonicalize constant to RHS if commutative
2666      if (isCommutativeBinOp(Opcode)) {
2667        std::swap(N1C, N2C);
2668        std::swap(N1, N2);
2669      }
2670    }
2671  }
2672
2673  // Constant fold FP operations.
2674  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2675  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2676  if (N1CFP) {
2677    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2678      // Cannonicalize constant to RHS if commutative
2679      std::swap(N1CFP, N2CFP);
2680      std::swap(N1, N2);
2681    } else if (N2CFP && VT != MVT::ppcf128) {
2682      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2683      APFloat::opStatus s;
2684      switch (Opcode) {
2685      case ISD::FADD:
2686        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2687        if (s != APFloat::opInvalidOp)
2688          return getConstantFP(V1, VT);
2689        break;
2690      case ISD::FSUB:
2691        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2692        if (s!=APFloat::opInvalidOp)
2693          return getConstantFP(V1, VT);
2694        break;
2695      case ISD::FMUL:
2696        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2697        if (s!=APFloat::opInvalidOp)
2698          return getConstantFP(V1, VT);
2699        break;
2700      case ISD::FDIV:
2701        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2702        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2703          return getConstantFP(V1, VT);
2704        break;
2705      case ISD::FREM :
2706        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2707        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2708          return getConstantFP(V1, VT);
2709        break;
2710      case ISD::FCOPYSIGN:
2711        V1.copySign(V2);
2712        return getConstantFP(V1, VT);
2713      default: break;
2714      }
2715    }
2716  }
2717
2718  // Canonicalize an UNDEF to the RHS, even over a constant.
2719  if (N1.getOpcode() == ISD::UNDEF) {
2720    if (isCommutativeBinOp(Opcode)) {
2721      std::swap(N1, N2);
2722    } else {
2723      switch (Opcode) {
2724      case ISD::FP_ROUND_INREG:
2725      case ISD::SIGN_EXTEND_INREG:
2726      case ISD::SUB:
2727      case ISD::FSUB:
2728      case ISD::FDIV:
2729      case ISD::FREM:
2730      case ISD::SRA:
2731        return N1;     // fold op(undef, arg2) -> undef
2732      case ISD::UDIV:
2733      case ISD::SDIV:
2734      case ISD::UREM:
2735      case ISD::SREM:
2736      case ISD::SRL:
2737      case ISD::SHL:
2738        if (!VT.isVector())
2739          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2740        // For vectors, we can't easily build an all zero vector, just return
2741        // the LHS.
2742        return N2;
2743      }
2744    }
2745  }
2746
2747  // Fold a bunch of operators when the RHS is undef.
2748  if (N2.getOpcode() == ISD::UNDEF) {
2749    switch (Opcode) {
2750    case ISD::XOR:
2751      if (N1.getOpcode() == ISD::UNDEF)
2752        // Handle undef ^ undef -> 0 special case. This is a common
2753        // idiom (misuse).
2754        return getConstant(0, VT);
2755      // fallthrough
2756    case ISD::ADD:
2757    case ISD::ADDC:
2758    case ISD::ADDE:
2759    case ISD::SUB:
2760    case ISD::FADD:
2761    case ISD::FSUB:
2762    case ISD::FMUL:
2763    case ISD::FDIV:
2764    case ISD::FREM:
2765    case ISD::UDIV:
2766    case ISD::SDIV:
2767    case ISD::UREM:
2768    case ISD::SREM:
2769      return N2;       // fold op(arg1, undef) -> undef
2770    case ISD::MUL:
2771    case ISD::AND:
2772    case ISD::SRL:
2773    case ISD::SHL:
2774      if (!VT.isVector())
2775        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2776      // For vectors, we can't easily build an all zero vector, just return
2777      // the LHS.
2778      return N1;
2779    case ISD::OR:
2780      if (!VT.isVector())
2781        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2782      // For vectors, we can't easily build an all one vector, just return
2783      // the LHS.
2784      return N1;
2785    case ISD::SRA:
2786      return N1;
2787    }
2788  }
2789
2790  // Memoize this node if possible.
2791  SDNode *N;
2792  SDVTList VTs = getVTList(VT);
2793  if (VT != MVT::Flag) {
2794    SDValue Ops[] = { N1, N2 };
2795    FoldingSetNodeID ID;
2796    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2797    void *IP = 0;
2798    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2799      return SDValue(E, 0);
2800    N = NodeAllocator.Allocate<BinarySDNode>();
2801    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2802    CSEMap.InsertNode(N, IP);
2803  } else {
2804    N = NodeAllocator.Allocate<BinarySDNode>();
2805    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2806  }
2807
2808  AllNodes.push_back(N);
2809#ifndef NDEBUG
2810  VerifyNode(N);
2811#endif
2812  return SDValue(N, 0);
2813}
2814
2815SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2816                              SDValue N1, SDValue N2, SDValue N3) {
2817  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3);
2818}
2819
2820SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2821                              SDValue N1, SDValue N2, SDValue N3) {
2822  // Perform various simplifications.
2823  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2824  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2825  switch (Opcode) {
2826  case ISD::CONCAT_VECTORS:
2827    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2828    // one big BUILD_VECTOR.
2829    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2830        N2.getOpcode() == ISD::BUILD_VECTOR &&
2831        N3.getOpcode() == ISD::BUILD_VECTOR) {
2832      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2833      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2834      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2835      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2836    }
2837    break;
2838  case ISD::SETCC: {
2839    // Use FoldSetCC to simplify SETCC's.
2840    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2841    if (Simp.getNode()) return Simp;
2842    break;
2843  }
2844  case ISD::SELECT:
2845    if (N1C) {
2846     if (N1C->getZExtValue())
2847        return N2;             // select true, X, Y -> X
2848      else
2849        return N3;             // select false, X, Y -> Y
2850    }
2851
2852    if (N2 == N3) return N2;   // select C, X, X -> X
2853    break;
2854  case ISD::BRCOND:
2855    if (N2C) {
2856      if (N2C->getZExtValue()) // Unconditional branch
2857        return getNode(ISD::BR, MVT::Other, N1, N3);
2858      else
2859        return N1;         // Never-taken branch
2860    }
2861    break;
2862  case ISD::VECTOR_SHUFFLE:
2863    assert(N1.getValueType() == N2.getValueType() &&
2864           N1.getValueType().isVector() &&
2865           VT.isVector() && N3.getValueType().isVector() &&
2866           N3.getOpcode() == ISD::BUILD_VECTOR &&
2867           VT.getVectorNumElements() == N3.getNumOperands() &&
2868           "Illegal VECTOR_SHUFFLE node!");
2869    break;
2870  case ISD::BIT_CONVERT:
2871    // Fold bit_convert nodes from a type to themselves.
2872    if (N1.getValueType() == VT)
2873      return N1;
2874    break;
2875  }
2876
2877  // Memoize node if it doesn't produce a flag.
2878  SDNode *N;
2879  SDVTList VTs = getVTList(VT);
2880  if (VT != MVT::Flag) {
2881    SDValue Ops[] = { N1, N2, N3 };
2882    FoldingSetNodeID ID;
2883    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2884    void *IP = 0;
2885    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2886      return SDValue(E, 0);
2887    N = NodeAllocator.Allocate<TernarySDNode>();
2888    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2889    CSEMap.InsertNode(N, IP);
2890  } else {
2891    N = NodeAllocator.Allocate<TernarySDNode>();
2892    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2893  }
2894  AllNodes.push_back(N);
2895#ifndef NDEBUG
2896  VerifyNode(N);
2897#endif
2898  return SDValue(N, 0);
2899}
2900
2901SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2902                              SDValue N1, SDValue N2, SDValue N3,
2903                              SDValue N4) {
2904  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3, N4);
2905}
2906
2907SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2908                              SDValue N1, SDValue N2, SDValue N3,
2909                              SDValue N4) {
2910  SDValue Ops[] = { N1, N2, N3, N4 };
2911  return getNode(Opcode, DL, VT, Ops, 4);
2912}
2913
2914SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2915                              SDValue N1, SDValue N2, SDValue N3,
2916                              SDValue N4, SDValue N5) {
2917  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3, N4, N5);
2918}
2919
2920SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2921                              SDValue N1, SDValue N2, SDValue N3,
2922                              SDValue N4, SDValue N5) {
2923  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2924  return getNode(Opcode, DL, VT, Ops, 5);
2925}
2926
2927/// getMemsetValue - Vectorized representation of the memset value
2928/// operand.
2929static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2930  unsigned NumBits = VT.isVector() ?
2931    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2932  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2933    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2934    unsigned Shift = 8;
2935    for (unsigned i = NumBits; i > 8; i >>= 1) {
2936      Val = (Val << Shift) | Val;
2937      Shift <<= 1;
2938    }
2939    if (VT.isInteger())
2940      return DAG.getConstant(Val, VT);
2941    return DAG.getConstantFP(APFloat(Val), VT);
2942  }
2943
2944  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2945  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2946  unsigned Shift = 8;
2947  for (unsigned i = NumBits; i > 8; i >>= 1) {
2948    Value = DAG.getNode(ISD::OR, VT,
2949                        DAG.getNode(ISD::SHL, VT, Value,
2950                                    DAG.getConstant(Shift,
2951                                                    TLI.getShiftAmountTy())),
2952                        Value);
2953    Shift <<= 1;
2954  }
2955
2956  return Value;
2957}
2958
2959/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2960/// used when a memcpy is turned into a memset when the source is a constant
2961/// string ptr.
2962static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2963                                    const TargetLowering &TLI,
2964                                    std::string &Str, unsigned Offset) {
2965  // Handle vector with all elements zero.
2966  if (Str.empty()) {
2967    if (VT.isInteger())
2968      return DAG.getConstant(0, VT);
2969    unsigned NumElts = VT.getVectorNumElements();
2970    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2971    return DAG.getNode(ISD::BIT_CONVERT, VT,
2972                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2973  }
2974
2975  assert(!VT.isVector() && "Can't handle vector type here!");
2976  unsigned NumBits = VT.getSizeInBits();
2977  unsigned MSB = NumBits / 8;
2978  uint64_t Val = 0;
2979  if (TLI.isLittleEndian())
2980    Offset = Offset + MSB - 1;
2981  for (unsigned i = 0; i != MSB; ++i) {
2982    Val = (Val << 8) | (unsigned char)Str[Offset];
2983    Offset += TLI.isLittleEndian() ? -1 : 1;
2984  }
2985  return DAG.getConstant(Val, VT);
2986}
2987
2988/// getMemBasePlusOffset - Returns base and offset node for the
2989///
2990static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2991                                      SelectionDAG &DAG) {
2992  MVT VT = Base.getValueType();
2993  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2994}
2995
2996/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2997///
2998static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2999  unsigned SrcDelta = 0;
3000  GlobalAddressSDNode *G = NULL;
3001  if (Src.getOpcode() == ISD::GlobalAddress)
3002    G = cast<GlobalAddressSDNode>(Src);
3003  else if (Src.getOpcode() == ISD::ADD &&
3004           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3005           Src.getOperand(1).getOpcode() == ISD::Constant) {
3006    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3007    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3008  }
3009  if (!G)
3010    return false;
3011
3012  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3013  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3014    return true;
3015
3016  return false;
3017}
3018
3019/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3020/// to replace the memset / memcpy is below the threshold. It also returns the
3021/// types of the sequence of memory ops to perform memset / memcpy.
3022static
3023bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
3024                              SDValue Dst, SDValue Src,
3025                              unsigned Limit, uint64_t Size, unsigned &Align,
3026                              std::string &Str, bool &isSrcStr,
3027                              SelectionDAG &DAG,
3028                              const TargetLowering &TLI) {
3029  isSrcStr = isMemSrcFromString(Src, Str);
3030  bool isSrcConst = isa<ConstantSDNode>(Src);
3031  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3032  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
3033  if (VT != MVT::iAny) {
3034    unsigned NewAlign = (unsigned)
3035      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3036    // If source is a string constant, this will require an unaligned load.
3037    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3038      if (Dst.getOpcode() != ISD::FrameIndex) {
3039        // Can't change destination alignment. It requires a unaligned store.
3040        if (AllowUnalign)
3041          VT = MVT::iAny;
3042      } else {
3043        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3044        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3045        if (MFI->isFixedObjectIndex(FI)) {
3046          // Can't change destination alignment. It requires a unaligned store.
3047          if (AllowUnalign)
3048            VT = MVT::iAny;
3049        } else {
3050          // Give the stack frame object a larger alignment if needed.
3051          if (MFI->getObjectAlignment(FI) < NewAlign)
3052            MFI->setObjectAlignment(FI, NewAlign);
3053          Align = NewAlign;
3054        }
3055      }
3056    }
3057  }
3058
3059  if (VT == MVT::iAny) {
3060    if (AllowUnalign) {
3061      VT = MVT::i64;
3062    } else {
3063      switch (Align & 7) {
3064      case 0:  VT = MVT::i64; break;
3065      case 4:  VT = MVT::i32; break;
3066      case 2:  VT = MVT::i16; break;
3067      default: VT = MVT::i8;  break;
3068      }
3069    }
3070
3071    MVT LVT = MVT::i64;
3072    while (!TLI.isTypeLegal(LVT))
3073      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3074    assert(LVT.isInteger());
3075
3076    if (VT.bitsGT(LVT))
3077      VT = LVT;
3078  }
3079
3080  unsigned NumMemOps = 0;
3081  while (Size != 0) {
3082    unsigned VTSize = VT.getSizeInBits() / 8;
3083    while (VTSize > Size) {
3084      // For now, only use non-vector load / store's for the left-over pieces.
3085      if (VT.isVector()) {
3086        VT = MVT::i64;
3087        while (!TLI.isTypeLegal(VT))
3088          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3089        VTSize = VT.getSizeInBits() / 8;
3090      } else {
3091        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3092        VTSize >>= 1;
3093      }
3094    }
3095
3096    if (++NumMemOps > Limit)
3097      return false;
3098    MemOps.push_back(VT);
3099    Size -= VTSize;
3100  }
3101
3102  return true;
3103}
3104
3105static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
3106                                         SDValue Chain, SDValue Dst,
3107                                         SDValue Src, uint64_t Size,
3108                                         unsigned Align, bool AlwaysInline,
3109                                         const Value *DstSV, uint64_t DstSVOff,
3110                                         const Value *SrcSV, uint64_t SrcSVOff){
3111  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3112
3113  // Expand memcpy to a series of load and store ops if the size operand falls
3114  // below a certain threshold.
3115  std::vector<MVT> MemOps;
3116  uint64_t Limit = -1ULL;
3117  if (!AlwaysInline)
3118    Limit = TLI.getMaxStoresPerMemcpy();
3119  unsigned DstAlign = Align;  // Destination alignment can change.
3120  std::string Str;
3121  bool CopyFromStr;
3122  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3123                                Str, CopyFromStr, DAG, TLI))
3124    return SDValue();
3125
3126
3127  bool isZeroStr = CopyFromStr && Str.empty();
3128  SmallVector<SDValue, 8> OutChains;
3129  unsigned NumMemOps = MemOps.size();
3130  uint64_t SrcOff = 0, DstOff = 0;
3131  for (unsigned i = 0; i < NumMemOps; i++) {
3132    MVT VT = MemOps[i];
3133    unsigned VTSize = VT.getSizeInBits() / 8;
3134    SDValue Value, Store;
3135
3136    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3137      // It's unlikely a store of a vector immediate can be done in a single
3138      // instruction. It would require a load from a constantpool first.
3139      // We also handle store a vector with all zero's.
3140      // FIXME: Handle other cases where store of vector immediate is done in
3141      // a single instruction.
3142      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3143      Store = DAG.getStore(Chain, Value,
3144                           getMemBasePlusOffset(Dst, DstOff, DAG),
3145                           DstSV, DstSVOff + DstOff, false, DstAlign);
3146    } else {
3147      Value = DAG.getLoad(VT, Chain,
3148                          getMemBasePlusOffset(Src, SrcOff, DAG),
3149                          SrcSV, SrcSVOff + SrcOff, false, Align);
3150      Store = DAG.getStore(Chain, Value,
3151                           getMemBasePlusOffset(Dst, DstOff, DAG),
3152                           DstSV, DstSVOff + DstOff, false, DstAlign);
3153    }
3154    OutChains.push_back(Store);
3155    SrcOff += VTSize;
3156    DstOff += VTSize;
3157  }
3158
3159  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3160                     &OutChains[0], OutChains.size());
3161}
3162
3163static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3164                                          SDValue Chain, SDValue Dst,
3165                                          SDValue Src, uint64_t Size,
3166                                          unsigned Align, bool AlwaysInline,
3167                                          const Value *DstSV, uint64_t DstSVOff,
3168                                          const Value *SrcSV, uint64_t SrcSVOff){
3169  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3170
3171  // Expand memmove to a series of load and store ops if the size operand falls
3172  // below a certain threshold.
3173  std::vector<MVT> MemOps;
3174  uint64_t Limit = -1ULL;
3175  if (!AlwaysInline)
3176    Limit = TLI.getMaxStoresPerMemmove();
3177  unsigned DstAlign = Align;  // Destination alignment can change.
3178  std::string Str;
3179  bool CopyFromStr;
3180  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3181                                Str, CopyFromStr, DAG, TLI))
3182    return SDValue();
3183
3184  uint64_t SrcOff = 0, DstOff = 0;
3185
3186  SmallVector<SDValue, 8> LoadValues;
3187  SmallVector<SDValue, 8> LoadChains;
3188  SmallVector<SDValue, 8> OutChains;
3189  unsigned NumMemOps = MemOps.size();
3190  for (unsigned i = 0; i < NumMemOps; i++) {
3191    MVT VT = MemOps[i];
3192    unsigned VTSize = VT.getSizeInBits() / 8;
3193    SDValue Value, Store;
3194
3195    Value = DAG.getLoad(VT, Chain,
3196                        getMemBasePlusOffset(Src, SrcOff, DAG),
3197                        SrcSV, SrcSVOff + SrcOff, false, Align);
3198    LoadValues.push_back(Value);
3199    LoadChains.push_back(Value.getValue(1));
3200    SrcOff += VTSize;
3201  }
3202  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3203                      &LoadChains[0], LoadChains.size());
3204  OutChains.clear();
3205  for (unsigned i = 0; i < NumMemOps; i++) {
3206    MVT VT = MemOps[i];
3207    unsigned VTSize = VT.getSizeInBits() / 8;
3208    SDValue Value, Store;
3209
3210    Store = DAG.getStore(Chain, LoadValues[i],
3211                         getMemBasePlusOffset(Dst, DstOff, DAG),
3212                         DstSV, DstSVOff + DstOff, false, DstAlign);
3213    OutChains.push_back(Store);
3214    DstOff += VTSize;
3215  }
3216
3217  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3218                     &OutChains[0], OutChains.size());
3219}
3220
3221static SDValue getMemsetStores(SelectionDAG &DAG,
3222                                 SDValue Chain, SDValue Dst,
3223                                 SDValue Src, uint64_t Size,
3224                                 unsigned Align,
3225                                 const Value *DstSV, uint64_t DstSVOff) {
3226  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3227
3228  // Expand memset to a series of load/store ops if the size operand
3229  // falls below a certain threshold.
3230  std::vector<MVT> MemOps;
3231  std::string Str;
3232  bool CopyFromStr;
3233  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3234                                Size, Align, Str, CopyFromStr, DAG, TLI))
3235    return SDValue();
3236
3237  SmallVector<SDValue, 8> OutChains;
3238  uint64_t DstOff = 0;
3239
3240  unsigned NumMemOps = MemOps.size();
3241  for (unsigned i = 0; i < NumMemOps; i++) {
3242    MVT VT = MemOps[i];
3243    unsigned VTSize = VT.getSizeInBits() / 8;
3244    SDValue Value = getMemsetValue(Src, VT, DAG);
3245    SDValue Store = DAG.getStore(Chain, Value,
3246                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3247                                 DstSV, DstSVOff + DstOff);
3248    OutChains.push_back(Store);
3249    DstOff += VTSize;
3250  }
3251
3252  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3253                     &OutChains[0], OutChains.size());
3254}
3255
3256SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3257                                SDValue Src, SDValue Size,
3258                                unsigned Align, bool AlwaysInline,
3259                                const Value *DstSV, uint64_t DstSVOff,
3260                                const Value *SrcSV, uint64_t SrcSVOff) {
3261
3262  // Check to see if we should lower the memcpy to loads and stores first.
3263  // For cases within the target-specified limits, this is the best choice.
3264  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3265  if (ConstantSize) {
3266    // Memcpy with size zero? Just return the original chain.
3267    if (ConstantSize->isNullValue())
3268      return Chain;
3269
3270    SDValue Result =
3271      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3272                              ConstantSize->getZExtValue(),
3273                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3274    if (Result.getNode())
3275      return Result;
3276  }
3277
3278  // Then check to see if we should lower the memcpy with target-specific
3279  // code. If the target chooses to do this, this is the next best.
3280  SDValue Result =
3281    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3282                                AlwaysInline,
3283                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3284  if (Result.getNode())
3285    return Result;
3286
3287  // If we really need inline code and the target declined to provide it,
3288  // use a (potentially long) sequence of loads and stores.
3289  if (AlwaysInline) {
3290    assert(ConstantSize && "AlwaysInline requires a constant size!");
3291    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3292                                   ConstantSize->getZExtValue(), Align, true,
3293                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3294  }
3295
3296  // Emit a library call.
3297  TargetLowering::ArgListTy Args;
3298  TargetLowering::ArgListEntry Entry;
3299  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3300  Entry.Node = Dst; Args.push_back(Entry);
3301  Entry.Node = Src; Args.push_back(Entry);
3302  Entry.Node = Size; Args.push_back(Entry);
3303  // FIXME: pass in DebugLoc
3304  std::pair<SDValue,SDValue> CallResult =
3305    TLI.LowerCallTo(Chain, Type::VoidTy,
3306                    false, false, false, false, CallingConv::C, false,
3307                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3308                    Args, *this, DebugLoc::getUnknownLoc());
3309  return CallResult.second;
3310}
3311
3312SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3313                                 SDValue Src, SDValue Size,
3314                                 unsigned Align,
3315                                 const Value *DstSV, uint64_t DstSVOff,
3316                                 const Value *SrcSV, uint64_t SrcSVOff) {
3317
3318  // Check to see if we should lower the memmove to loads and stores first.
3319  // For cases within the target-specified limits, this is the best choice.
3320  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3321  if (ConstantSize) {
3322    // Memmove with size zero? Just return the original chain.
3323    if (ConstantSize->isNullValue())
3324      return Chain;
3325
3326    SDValue Result =
3327      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3328                               ConstantSize->getZExtValue(),
3329                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3330    if (Result.getNode())
3331      return Result;
3332  }
3333
3334  // Then check to see if we should lower the memmove with target-specific
3335  // code. If the target chooses to do this, this is the next best.
3336  SDValue Result =
3337    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3338                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3339  if (Result.getNode())
3340    return Result;
3341
3342  // Emit a library call.
3343  TargetLowering::ArgListTy Args;
3344  TargetLowering::ArgListEntry Entry;
3345  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3346  Entry.Node = Dst; Args.push_back(Entry);
3347  Entry.Node = Src; Args.push_back(Entry);
3348  Entry.Node = Size; Args.push_back(Entry);
3349  // FIXME:  pass in DebugLoc
3350  std::pair<SDValue,SDValue> CallResult =
3351    TLI.LowerCallTo(Chain, Type::VoidTy,
3352                    false, false, false, false, CallingConv::C, false,
3353                    getExternalSymbol("memmove", TLI.getPointerTy()),
3354                    Args, *this, DebugLoc::getUnknownLoc());
3355  return CallResult.second;
3356}
3357
3358SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3359                                SDValue Src, SDValue Size,
3360                                unsigned Align,
3361                                const Value *DstSV, uint64_t DstSVOff) {
3362
3363  // Check to see if we should lower the memset to stores first.
3364  // For cases within the target-specified limits, this is the best choice.
3365  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3366  if (ConstantSize) {
3367    // Memset with size zero? Just return the original chain.
3368    if (ConstantSize->isNullValue())
3369      return Chain;
3370
3371    SDValue Result =
3372      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3373                      Align, DstSV, DstSVOff);
3374    if (Result.getNode())
3375      return Result;
3376  }
3377
3378  // Then check to see if we should lower the memset with target-specific
3379  // code. If the target chooses to do this, this is the next best.
3380  SDValue Result =
3381    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3382                                DstSV, DstSVOff);
3383  if (Result.getNode())
3384    return Result;
3385
3386  // Emit a library call.
3387  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3388  TargetLowering::ArgListTy Args;
3389  TargetLowering::ArgListEntry Entry;
3390  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3391  Args.push_back(Entry);
3392  // Extend or truncate the argument to be an i32 value for the call.
3393  if (Src.getValueType().bitsGT(MVT::i32))
3394    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3395  else
3396    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3397  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3398  Args.push_back(Entry);
3399  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3400  Args.push_back(Entry);
3401  // FIXME: pass in DebugLoc
3402  std::pair<SDValue,SDValue> CallResult =
3403    TLI.LowerCallTo(Chain, Type::VoidTy,
3404                    false, false, false, false, CallingConv::C, false,
3405                    getExternalSymbol("memset", TLI.getPointerTy()),
3406                    Args, *this, DebugLoc::getUnknownLoc());
3407  return CallResult.second;
3408}
3409
3410SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3411                                SDValue Chain,
3412                                SDValue Ptr, SDValue Cmp,
3413                                SDValue Swp, const Value* PtrVal,
3414                                unsigned Alignment) {
3415  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3416  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3417
3418  MVT VT = Cmp.getValueType();
3419
3420  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3421    Alignment = getMVTAlignment(MemVT);
3422
3423  SDVTList VTs = getVTList(VT, MVT::Other);
3424  FoldingSetNodeID ID;
3425  ID.AddInteger(MemVT.getRawBits());
3426  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3427  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3428  void* IP = 0;
3429  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3430    return SDValue(E, 0);
3431  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3432  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3433                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3434  CSEMap.InsertNode(N, IP);
3435  AllNodes.push_back(N);
3436  return SDValue(N, 0);
3437}
3438
3439SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3440                                SDValue Chain,
3441                                SDValue Ptr, SDValue Cmp,
3442                                SDValue Swp, const Value* PtrVal,
3443                                unsigned Alignment) {
3444  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3445  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3446
3447  MVT VT = Cmp.getValueType();
3448
3449  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3450    Alignment = getMVTAlignment(MemVT);
3451
3452  SDVTList VTs = getVTList(VT, MVT::Other);
3453  FoldingSetNodeID ID;
3454  ID.AddInteger(MemVT.getRawBits());
3455  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3456  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3457  void* IP = 0;
3458  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3459    return SDValue(E, 0);
3460  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3461  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3462                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3463  CSEMap.InsertNode(N, IP);
3464  AllNodes.push_back(N);
3465  return SDValue(N, 0);
3466}
3467
3468SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3469                                SDValue Chain,
3470                                SDValue Ptr, SDValue Val,
3471                                const Value* PtrVal,
3472                                unsigned Alignment) {
3473  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3474          Opcode == ISD::ATOMIC_LOAD_SUB ||
3475          Opcode == ISD::ATOMIC_LOAD_AND ||
3476          Opcode == ISD::ATOMIC_LOAD_OR ||
3477          Opcode == ISD::ATOMIC_LOAD_XOR ||
3478          Opcode == ISD::ATOMIC_LOAD_NAND ||
3479          Opcode == ISD::ATOMIC_LOAD_MIN ||
3480          Opcode == ISD::ATOMIC_LOAD_MAX ||
3481          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3482          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3483          Opcode == ISD::ATOMIC_SWAP) &&
3484         "Invalid Atomic Op");
3485
3486  MVT VT = Val.getValueType();
3487
3488  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3489    Alignment = getMVTAlignment(MemVT);
3490
3491  SDVTList VTs = getVTList(VT, MVT::Other);
3492  FoldingSetNodeID ID;
3493  ID.AddInteger(MemVT.getRawBits());
3494  SDValue Ops[] = {Chain, Ptr, Val};
3495  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3496  void* IP = 0;
3497  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3498    return SDValue(E, 0);
3499  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3500  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3501                       Chain, Ptr, Val, PtrVal, Alignment);
3502  CSEMap.InsertNode(N, IP);
3503  AllNodes.push_back(N);
3504  return SDValue(N, 0);
3505}
3506
3507SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3508                                SDValue Chain,
3509                                SDValue Ptr, SDValue Val,
3510                                const Value* PtrVal,
3511                                unsigned Alignment) {
3512  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3513          Opcode == ISD::ATOMIC_LOAD_SUB ||
3514          Opcode == ISD::ATOMIC_LOAD_AND ||
3515          Opcode == ISD::ATOMIC_LOAD_OR ||
3516          Opcode == ISD::ATOMIC_LOAD_XOR ||
3517          Opcode == ISD::ATOMIC_LOAD_NAND ||
3518          Opcode == ISD::ATOMIC_LOAD_MIN ||
3519          Opcode == ISD::ATOMIC_LOAD_MAX ||
3520          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3521          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3522          Opcode == ISD::ATOMIC_SWAP) &&
3523         "Invalid Atomic Op");
3524
3525  MVT VT = Val.getValueType();
3526
3527  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3528    Alignment = getMVTAlignment(MemVT);
3529
3530  SDVTList VTs = getVTList(VT, MVT::Other);
3531  FoldingSetNodeID ID;
3532  ID.AddInteger(MemVT.getRawBits());
3533  SDValue Ops[] = {Chain, Ptr, Val};
3534  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3535  void* IP = 0;
3536  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3537    return SDValue(E, 0);
3538  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3539  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3540                       Chain, Ptr, Val, PtrVal, Alignment);
3541  CSEMap.InsertNode(N, IP);
3542  AllNodes.push_back(N);
3543  return SDValue(N, 0);
3544}
3545
3546/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3547/// Allowed to return something different (and simpler) if Simplify is true.
3548SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3549  if (NumOps == 1)
3550    return Ops[0];
3551
3552  SmallVector<MVT, 4> VTs;
3553  VTs.reserve(NumOps);
3554  for (unsigned i = 0; i < NumOps; ++i)
3555    VTs.push_back(Ops[i].getValueType());
3556  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3557}
3558
3559/// DebugLoc-aware version.
3560SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3561                                     DebugLoc dl) {
3562  if (NumOps == 1)
3563    return Ops[0];
3564
3565  SmallVector<MVT, 4> VTs;
3566  VTs.reserve(NumOps);
3567  for (unsigned i = 0; i < NumOps; ++i)
3568    VTs.push_back(Ops[i].getValueType());
3569  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3570                 Ops, NumOps);
3571}
3572
3573SDValue
3574SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3575                                  const MVT *VTs, unsigned NumVTs,
3576                                  const SDValue *Ops, unsigned NumOps,
3577                                  MVT MemVT, const Value *srcValue, int SVOff,
3578                                  unsigned Align, bool Vol,
3579                                  bool ReadMem, bool WriteMem) {
3580  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3581                             MemVT, srcValue, SVOff, Align, Vol,
3582                             ReadMem, WriteMem);
3583}
3584
3585SDValue
3586SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3587                                  const MVT *VTs, unsigned NumVTs,
3588                                  const SDValue *Ops, unsigned NumOps,
3589                                  MVT MemVT, const Value *srcValue, int SVOff,
3590                                  unsigned Align, bool Vol,
3591                                  bool ReadMem, bool WriteMem) {
3592  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3593                             MemVT, srcValue, SVOff, Align, Vol,
3594                             ReadMem, WriteMem);
3595}
3596
3597SDValue
3598SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3599                                  const SDValue *Ops, unsigned NumOps,
3600                                  MVT MemVT, const Value *srcValue, int SVOff,
3601                                  unsigned Align, bool Vol,
3602                                  bool ReadMem, bool WriteMem) {
3603  // Memoize the node unless it returns a flag.
3604  MemIntrinsicSDNode *N;
3605  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3606    FoldingSetNodeID ID;
3607    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3608    void *IP = 0;
3609    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3610      return SDValue(E, 0);
3611
3612    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3613    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3614                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3615    CSEMap.InsertNode(N, IP);
3616  } else {
3617    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3618    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3619                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3620  }
3621  AllNodes.push_back(N);
3622  return SDValue(N, 0);
3623}
3624
3625SDValue
3626SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3627                                  const SDValue *Ops, unsigned NumOps,
3628                                  MVT MemVT, const Value *srcValue, int SVOff,
3629                                  unsigned Align, bool Vol,
3630                                  bool ReadMem, bool WriteMem) {
3631  // Memoize the node unless it returns a flag.
3632  MemIntrinsicSDNode *N;
3633  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3634    FoldingSetNodeID ID;
3635    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3636    void *IP = 0;
3637    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3638      return SDValue(E, 0);
3639
3640    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3641    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3642                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3643    CSEMap.InsertNode(N, IP);
3644  } else {
3645    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3646    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3647                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3648  }
3649  AllNodes.push_back(N);
3650  return SDValue(N, 0);
3651}
3652
3653SDValue
3654SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3655                      bool IsInreg, SDVTList VTs,
3656                      const SDValue *Operands, unsigned NumOperands) {
3657  // Do not include isTailCall in the folding set profile.
3658  FoldingSetNodeID ID;
3659  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3660  ID.AddInteger(CallingConv);
3661  ID.AddInteger(IsVarArgs);
3662  void *IP = 0;
3663  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3664    // Instead of including isTailCall in the folding set, we just
3665    // set the flag of the existing node.
3666    if (!IsTailCall)
3667      cast<CallSDNode>(E)->setNotTailCall();
3668    return SDValue(E, 0);
3669  }
3670  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3671  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3672                     VTs, Operands, NumOperands);
3673  CSEMap.InsertNode(N, IP);
3674  AllNodes.push_back(N);
3675  return SDValue(N, 0);
3676}
3677
3678SDValue
3679SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3680                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3681                      const SDValue *Operands, unsigned NumOperands) {
3682  // Do not include isTailCall in the folding set profile.
3683  FoldingSetNodeID ID;
3684  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3685  ID.AddInteger(CallingConv);
3686  ID.AddInteger(IsVarArgs);
3687  void *IP = 0;
3688  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3689    // Instead of including isTailCall in the folding set, we just
3690    // set the flag of the existing node.
3691    if (!IsTailCall)
3692      cast<CallSDNode>(E)->setNotTailCall();
3693    return SDValue(E, 0);
3694  }
3695  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3696  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3697                     VTs, Operands, NumOperands);
3698  CSEMap.InsertNode(N, IP);
3699  AllNodes.push_back(N);
3700  return SDValue(N, 0);
3701}
3702
3703SDValue
3704SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3705                      MVT VT, SDValue Chain,
3706                      SDValue Ptr, SDValue Offset,
3707                      const Value *SV, int SVOffset, MVT EVT,
3708                      bool isVolatile, unsigned Alignment) {
3709  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3710    Alignment = getMVTAlignment(VT);
3711
3712  if (VT == EVT) {
3713    ExtType = ISD::NON_EXTLOAD;
3714  } else if (ExtType == ISD::NON_EXTLOAD) {
3715    assert(VT == EVT && "Non-extending load from different memory type!");
3716  } else {
3717    // Extending load.
3718    if (VT.isVector())
3719      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3720             "Invalid vector extload!");
3721    else
3722      assert(EVT.bitsLT(VT) &&
3723             "Should only be an extending load, not truncating!");
3724    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3725           "Cannot sign/zero extend a FP/Vector load!");
3726    assert(VT.isInteger() == EVT.isInteger() &&
3727           "Cannot convert from FP to Int or Int -> FP!");
3728  }
3729
3730  bool Indexed = AM != ISD::UNINDEXED;
3731  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3732         "Unindexed load with an offset!");
3733
3734  SDVTList VTs = Indexed ?
3735    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3736  SDValue Ops[] = { Chain, Ptr, Offset };
3737  FoldingSetNodeID ID;
3738  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3739  ID.AddInteger(EVT.getRawBits());
3740  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3741  void *IP = 0;
3742  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3743    return SDValue(E, 0);
3744  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3745  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3746                     Alignment, isVolatile);
3747  CSEMap.InsertNode(N, IP);
3748  AllNodes.push_back(N);
3749  return SDValue(N, 0);
3750}
3751
3752SDValue
3753SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3754                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3755                      SDValue Ptr, SDValue Offset,
3756                      const Value *SV, int SVOffset, MVT EVT,
3757                      bool isVolatile, unsigned Alignment) {
3758  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3759    Alignment = getMVTAlignment(VT);
3760
3761  if (VT == EVT) {
3762    ExtType = ISD::NON_EXTLOAD;
3763  } else if (ExtType == ISD::NON_EXTLOAD) {
3764    assert(VT == EVT && "Non-extending load from different memory type!");
3765  } else {
3766    // Extending load.
3767    if (VT.isVector())
3768      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3769             "Invalid vector extload!");
3770    else
3771      assert(EVT.bitsLT(VT) &&
3772             "Should only be an extending load, not truncating!");
3773    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3774           "Cannot sign/zero extend a FP/Vector load!");
3775    assert(VT.isInteger() == EVT.isInteger() &&
3776           "Cannot convert from FP to Int or Int -> FP!");
3777  }
3778
3779  bool Indexed = AM != ISD::UNINDEXED;
3780  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3781         "Unindexed load with an offset!");
3782
3783  SDVTList VTs = Indexed ?
3784    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3785  SDValue Ops[] = { Chain, Ptr, Offset };
3786  FoldingSetNodeID ID;
3787  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3788  ID.AddInteger(EVT.getRawBits());
3789  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3790  void *IP = 0;
3791  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3792    return SDValue(E, 0);
3793  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3794  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3795                     Alignment, isVolatile);
3796  CSEMap.InsertNode(N, IP);
3797  AllNodes.push_back(N);
3798  return SDValue(N, 0);
3799}
3800
3801SDValue SelectionDAG::getLoad(MVT VT,
3802                              SDValue Chain, SDValue Ptr,
3803                              const Value *SV, int SVOffset,
3804                              bool isVolatile, unsigned Alignment) {
3805  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3806  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3807                 SV, SVOffset, VT, isVolatile, Alignment);
3808}
3809
3810SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3811                              SDValue Chain, SDValue Ptr,
3812                              const Value *SV, int SVOffset,
3813                              bool isVolatile, unsigned Alignment) {
3814  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3815  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3816                 SV, SVOffset, VT, isVolatile, Alignment);
3817}
3818
3819SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3820                                 SDValue Chain, SDValue Ptr,
3821                                 const Value *SV,
3822                                 int SVOffset, MVT EVT,
3823                                 bool isVolatile, unsigned Alignment) {
3824  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3825  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3826                 SV, SVOffset, EVT, isVolatile, Alignment);
3827}
3828
3829SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3830                                 SDValue Chain, SDValue Ptr,
3831                                 const Value *SV,
3832                                 int SVOffset, MVT EVT,
3833                                 bool isVolatile, unsigned Alignment) {
3834  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3835  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3836                 SV, SVOffset, EVT, isVolatile, Alignment);
3837}
3838
3839SDValue
3840SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3841                             SDValue Offset, ISD::MemIndexedMode AM) {
3842  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3843  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3844         "Load is already a indexed load!");
3845  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3846                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3847                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3848                 LD->isVolatile(), LD->getAlignment());
3849}
3850
3851SDValue
3852SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3853                             SDValue Offset, ISD::MemIndexedMode AM) {
3854  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3855  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3856         "Load is already a indexed load!");
3857  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3858                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3859                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3860                 LD->isVolatile(), LD->getAlignment());
3861}
3862
3863SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3864                               SDValue Ptr, const Value *SV, int SVOffset,
3865                               bool isVolatile, unsigned Alignment) {
3866  MVT VT = Val.getValueType();
3867
3868  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3869    Alignment = getMVTAlignment(VT);
3870
3871  SDVTList VTs = getVTList(MVT::Other);
3872  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3873  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3874  FoldingSetNodeID ID;
3875  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3876  ID.AddInteger(VT.getRawBits());
3877  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3878                                     isVolatile, Alignment));
3879  void *IP = 0;
3880  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3881    return SDValue(E, 0);
3882  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3883  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3884                      VT, SV, SVOffset, Alignment, isVolatile);
3885  CSEMap.InsertNode(N, IP);
3886  AllNodes.push_back(N);
3887  return SDValue(N, 0);
3888}
3889
3890SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3891                               SDValue Ptr, const Value *SV, int SVOffset,
3892                               bool isVolatile, unsigned Alignment) {
3893  MVT VT = Val.getValueType();
3894
3895  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3896    Alignment = getMVTAlignment(VT);
3897
3898  SDVTList VTs = getVTList(MVT::Other);
3899  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3900  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3901  FoldingSetNodeID ID;
3902  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3903  ID.AddInteger(VT.getRawBits());
3904  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3905                                     isVolatile, Alignment));
3906  void *IP = 0;
3907  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3908    return SDValue(E, 0);
3909  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3910  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3911                      VT, SV, SVOffset, Alignment, isVolatile);
3912  CSEMap.InsertNode(N, IP);
3913  AllNodes.push_back(N);
3914  return SDValue(N, 0);
3915}
3916
3917SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3918                                    SDValue Ptr, const Value *SV,
3919                                    int SVOffset, MVT SVT,
3920                                    bool isVolatile, unsigned Alignment) {
3921  MVT VT = Val.getValueType();
3922
3923  if (VT == SVT)
3924    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3925
3926  assert(VT.bitsGT(SVT) && "Not a truncation?");
3927  assert(VT.isInteger() == SVT.isInteger() &&
3928         "Can't do FP-INT conversion!");
3929
3930  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3931    Alignment = getMVTAlignment(VT);
3932
3933  SDVTList VTs = getVTList(MVT::Other);
3934  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3935  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3936  FoldingSetNodeID ID;
3937  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3938  ID.AddInteger(SVT.getRawBits());
3939  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3940                                     isVolatile, Alignment));
3941  void *IP = 0;
3942  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3943    return SDValue(E, 0);
3944  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3945  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3946                      SVT, SV, SVOffset, Alignment, isVolatile);
3947  CSEMap.InsertNode(N, IP);
3948  AllNodes.push_back(N);
3949  return SDValue(N, 0);
3950}
3951
3952SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3953                                    SDValue Ptr, const Value *SV,
3954                                    int SVOffset, MVT SVT,
3955                                    bool isVolatile, unsigned Alignment) {
3956  MVT VT = Val.getValueType();
3957
3958  if (VT == SVT)
3959    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3960
3961  assert(VT.bitsGT(SVT) && "Not a truncation?");
3962  assert(VT.isInteger() == SVT.isInteger() &&
3963         "Can't do FP-INT conversion!");
3964
3965  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3966    Alignment = getMVTAlignment(VT);
3967
3968  SDVTList VTs = getVTList(MVT::Other);
3969  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3970  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3971  FoldingSetNodeID ID;
3972  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3973  ID.AddInteger(SVT.getRawBits());
3974  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3975                                     isVolatile, Alignment));
3976  void *IP = 0;
3977  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3978    return SDValue(E, 0);
3979  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3980  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3981                      SVT, SV, SVOffset, Alignment, isVolatile);
3982  CSEMap.InsertNode(N, IP);
3983  AllNodes.push_back(N);
3984  return SDValue(N, 0);
3985}
3986
3987SDValue
3988SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3989                              SDValue Offset, ISD::MemIndexedMode AM) {
3990  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3991  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3992         "Store is already a indexed store!");
3993  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3994  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3995  FoldingSetNodeID ID;
3996  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3997  ID.AddInteger(ST->getMemoryVT().getRawBits());
3998  ID.AddInteger(ST->getRawSubclassData());
3999  void *IP = 0;
4000  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4001    return SDValue(E, 0);
4002  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4003  new (N) StoreSDNode(Ops, VTs, AM,
4004                      ST->isTruncatingStore(), ST->getMemoryVT(),
4005                      ST->getSrcValue(), ST->getSrcValueOffset(),
4006                      ST->getAlignment(), ST->isVolatile());
4007  CSEMap.InsertNode(N, IP);
4008  AllNodes.push_back(N);
4009  return SDValue(N, 0);
4010}
4011
4012SDValue
4013SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4014                              SDValue Offset, ISD::MemIndexedMode AM) {
4015  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4016  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4017         "Store is already a indexed store!");
4018  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4019  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4020  FoldingSetNodeID ID;
4021  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4022  ID.AddInteger(ST->getMemoryVT().getRawBits());
4023  ID.AddInteger(ST->getRawSubclassData());
4024  void *IP = 0;
4025  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4026    return SDValue(E, 0);
4027  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4028  new (N) StoreSDNode(Ops, dl, VTs, AM,
4029                      ST->isTruncatingStore(), ST->getMemoryVT(),
4030                      ST->getSrcValue(), ST->getSrcValueOffset(),
4031                      ST->getAlignment(), ST->isVolatile());
4032  CSEMap.InsertNode(N, IP);
4033  AllNodes.push_back(N);
4034  return SDValue(N, 0);
4035}
4036
4037SDValue SelectionDAG::getVAArg(MVT VT,
4038                               SDValue Chain, SDValue Ptr,
4039                               SDValue SV) {
4040  SDValue Ops[] = { Chain, Ptr, SV };
4041  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
4042}
4043
4044SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
4045                              const SDUse *Ops, unsigned NumOps) {
4046  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Ops, NumOps);
4047}
4048
4049SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
4050                              const SDUse *Ops, unsigned NumOps) {
4051  switch (NumOps) {
4052  case 0: return getNode(Opcode, DL, VT);
4053  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4054  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4055  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4056  default: break;
4057  }
4058
4059  // Copy from an SDUse array into an SDValue array for use with
4060  // the regular getNode logic.
4061  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4062  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4063}
4064
4065SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
4066                              const SDValue *Ops, unsigned NumOps) {
4067  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Ops, NumOps);
4068}
4069
4070SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
4071                              const SDValue *Ops, unsigned NumOps) {
4072  switch (NumOps) {
4073  case 0: return getNode(Opcode, DL, VT);
4074  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4075  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4076  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4077  default: break;
4078  }
4079
4080  switch (Opcode) {
4081  default: break;
4082  case ISD::SELECT_CC: {
4083    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4084    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4085           "LHS and RHS of condition must have same type!");
4086    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4087           "True and False arms of SelectCC must have same type!");
4088    assert(Ops[2].getValueType() == VT &&
4089           "select_cc node must be of same type as true and false value!");
4090    break;
4091  }
4092  case ISD::BR_CC: {
4093    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4094    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4095           "LHS/RHS of comparison should match types!");
4096    break;
4097  }
4098  }
4099
4100  // Memoize nodes.
4101  SDNode *N;
4102  SDVTList VTs = getVTList(VT);
4103
4104  if (VT != MVT::Flag) {
4105    FoldingSetNodeID ID;
4106    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4107    void *IP = 0;
4108
4109    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4110      return SDValue(E, 0);
4111
4112    N = NodeAllocator.Allocate<SDNode>();
4113    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4114    CSEMap.InsertNode(N, IP);
4115  } else {
4116    N = NodeAllocator.Allocate<SDNode>();
4117    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4118  }
4119
4120  AllNodes.push_back(N);
4121#ifndef NDEBUG
4122  VerifyNode(N);
4123#endif
4124  return SDValue(N, 0);
4125}
4126
4127SDValue SelectionDAG::getNode(unsigned Opcode,
4128                              const std::vector<MVT> &ResultTys,
4129                              const SDValue *Ops, unsigned NumOps) {
4130  return getNode(Opcode, DebugLoc::getUnknownLoc(), ResultTys, Ops, NumOps);
4131}
4132
4133SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4134                              const std::vector<MVT> &ResultTys,
4135                              const SDValue *Ops, unsigned NumOps) {
4136  return getNode(Opcode, DL, getNodeValueTypes(ResultTys), ResultTys.size(),
4137                 Ops, NumOps);
4138}
4139
4140SDValue SelectionDAG::getNode(unsigned Opcode,
4141                              const MVT *VTs, unsigned NumVTs,
4142                              const SDValue *Ops, unsigned NumOps) {
4143  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTs, NumVTs, Ops, NumOps);
4144}
4145
4146SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4147                              const MVT *VTs, unsigned NumVTs,
4148                              const SDValue *Ops, unsigned NumOps) {
4149  if (NumVTs == 1)
4150    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4151  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4152}
4153
4154SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4155                              const SDValue *Ops, unsigned NumOps) {
4156  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, Ops, NumOps);
4157}
4158
4159SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4160                              const SDValue *Ops, unsigned NumOps) {
4161  if (VTList.NumVTs == 1)
4162    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4163
4164  switch (Opcode) {
4165  // FIXME: figure out how to safely handle things like
4166  // int foo(int x) { return 1 << (x & 255); }
4167  // int bar() { return foo(256); }
4168#if 0
4169  case ISD::SRA_PARTS:
4170  case ISD::SRL_PARTS:
4171  case ISD::SHL_PARTS:
4172    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4173        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4174      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4175    else if (N3.getOpcode() == ISD::AND)
4176      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4177        // If the and is only masking out bits that cannot effect the shift,
4178        // eliminate the and.
4179        unsigned NumBits = VT.getSizeInBits()*2;
4180        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4181          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4182      }
4183    break;
4184#endif
4185  }
4186
4187  // Memoize the node unless it returns a flag.
4188  SDNode *N;
4189  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4190    FoldingSetNodeID ID;
4191    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4192    void *IP = 0;
4193    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4194      return SDValue(E, 0);
4195    if (NumOps == 1) {
4196      N = NodeAllocator.Allocate<UnarySDNode>();
4197      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4198    } else if (NumOps == 2) {
4199      N = NodeAllocator.Allocate<BinarySDNode>();
4200      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4201    } else if (NumOps == 3) {
4202      N = NodeAllocator.Allocate<TernarySDNode>();
4203      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4204    } else {
4205      N = NodeAllocator.Allocate<SDNode>();
4206      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4207    }
4208    CSEMap.InsertNode(N, IP);
4209  } else {
4210    if (NumOps == 1) {
4211      N = NodeAllocator.Allocate<UnarySDNode>();
4212      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4213    } else if (NumOps == 2) {
4214      N = NodeAllocator.Allocate<BinarySDNode>();
4215      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4216    } else if (NumOps == 3) {
4217      N = NodeAllocator.Allocate<TernarySDNode>();
4218      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4219    } else {
4220      N = NodeAllocator.Allocate<SDNode>();
4221      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4222    }
4223  }
4224  AllNodes.push_back(N);
4225#ifndef NDEBUG
4226  VerifyNode(N);
4227#endif
4228  return SDValue(N, 0);
4229}
4230
4231SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
4232  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList);
4233}
4234
4235SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4236  return getNode(Opcode, DL, VTList, 0, 0);
4237}
4238
4239SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4240                              SDValue N1) {
4241  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1);
4242}
4243
4244SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4245                              SDValue N1) {
4246  SDValue Ops[] = { N1 };
4247  return getNode(Opcode, DL, VTList, Ops, 1);
4248}
4249
4250SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4251                              SDValue N1, SDValue N2) {
4252  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2);
4253}
4254
4255SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4256                              SDValue N1, SDValue N2) {
4257  SDValue Ops[] = { N1, N2 };
4258  return getNode(Opcode, DL, VTList, Ops, 2);
4259}
4260
4261SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4262                              SDValue N1, SDValue N2, SDValue N3) {
4263  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3);
4264}
4265
4266SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4267                              SDValue N1, SDValue N2, SDValue N3) {
4268  SDValue Ops[] = { N1, N2, N3 };
4269  return getNode(Opcode, DL, VTList, Ops, 3);
4270}
4271
4272SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4273                              SDValue N1, SDValue N2, SDValue N3,
4274                              SDValue N4) {
4275  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3, N4);
4276}
4277
4278SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4279                              SDValue N1, SDValue N2, SDValue N3,
4280                              SDValue N4) {
4281  SDValue Ops[] = { N1, N2, N3, N4 };
4282  return getNode(Opcode, DL, VTList, Ops, 4);
4283}
4284
4285SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4286                              SDValue N1, SDValue N2, SDValue N3,
4287                              SDValue N4, SDValue N5) {
4288  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3, N4, N5);
4289}
4290
4291SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4292                              SDValue N1, SDValue N2, SDValue N3,
4293                              SDValue N4, SDValue N5) {
4294  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4295  return getNode(Opcode, DL, VTList, Ops, 5);
4296}
4297
4298SDVTList SelectionDAG::getVTList(MVT VT) {
4299  return makeVTList(SDNode::getValueTypeList(VT), 1);
4300}
4301
4302SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
4303  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4304       E = VTList.rend(); I != E; ++I)
4305    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4306      return *I;
4307
4308  MVT *Array = Allocator.Allocate<MVT>(2);
4309  Array[0] = VT1;
4310  Array[1] = VT2;
4311  SDVTList Result = makeVTList(Array, 2);
4312  VTList.push_back(Result);
4313  return Result;
4314}
4315
4316SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
4317  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4318       E = VTList.rend(); I != E; ++I)
4319    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4320                          I->VTs[2] == VT3)
4321      return *I;
4322
4323  MVT *Array = Allocator.Allocate<MVT>(3);
4324  Array[0] = VT1;
4325  Array[1] = VT2;
4326  Array[2] = VT3;
4327  SDVTList Result = makeVTList(Array, 3);
4328  VTList.push_back(Result);
4329  return Result;
4330}
4331
4332SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
4333  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4334       E = VTList.rend(); I != E; ++I)
4335    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4336                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4337      return *I;
4338
4339  MVT *Array = Allocator.Allocate<MVT>(3);
4340  Array[0] = VT1;
4341  Array[1] = VT2;
4342  Array[2] = VT3;
4343  Array[3] = VT4;
4344  SDVTList Result = makeVTList(Array, 4);
4345  VTList.push_back(Result);
4346  return Result;
4347}
4348
4349SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4350  switch (NumVTs) {
4351    case 0: assert(0 && "Cannot have nodes without results!");
4352    case 1: return getVTList(VTs[0]);
4353    case 2: return getVTList(VTs[0], VTs[1]);
4354    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4355    default: break;
4356  }
4357
4358  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4359       E = VTList.rend(); I != E; ++I) {
4360    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4361      continue;
4362
4363    bool NoMatch = false;
4364    for (unsigned i = 2; i != NumVTs; ++i)
4365      if (VTs[i] != I->VTs[i]) {
4366        NoMatch = true;
4367        break;
4368      }
4369    if (!NoMatch)
4370      return *I;
4371  }
4372
4373  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4374  std::copy(VTs, VTs+NumVTs, Array);
4375  SDVTList Result = makeVTList(Array, NumVTs);
4376  VTList.push_back(Result);
4377  return Result;
4378}
4379
4380
4381/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4382/// specified operands.  If the resultant node already exists in the DAG,
4383/// this does not modify the specified node, instead it returns the node that
4384/// already exists.  If the resultant node does not exist in the DAG, the
4385/// input node is returned.  As a degenerate case, if you specify the same
4386/// input operands as the node already has, the input node is returned.
4387SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4388  SDNode *N = InN.getNode();
4389  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4390
4391  // Check to see if there is no change.
4392  if (Op == N->getOperand(0)) return InN;
4393
4394  // See if the modified node already exists.
4395  void *InsertPos = 0;
4396  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4397    return SDValue(Existing, InN.getResNo());
4398
4399  // Nope it doesn't.  Remove the node from its current place in the maps.
4400  if (InsertPos)
4401    if (!RemoveNodeFromCSEMaps(N))
4402      InsertPos = 0;
4403
4404  // Now we update the operands.
4405  N->OperandList[0].set(Op);
4406
4407  // If this gets put into a CSE map, add it.
4408  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4409  return InN;
4410}
4411
4412SDValue SelectionDAG::
4413UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4414  SDNode *N = InN.getNode();
4415  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4416
4417  // Check to see if there is no change.
4418  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4419    return InN;   // No operands changed, just return the input node.
4420
4421  // See if the modified node already exists.
4422  void *InsertPos = 0;
4423  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4424    return SDValue(Existing, InN.getResNo());
4425
4426  // Nope it doesn't.  Remove the node from its current place in the maps.
4427  if (InsertPos)
4428    if (!RemoveNodeFromCSEMaps(N))
4429      InsertPos = 0;
4430
4431  // Now we update the operands.
4432  if (N->OperandList[0] != Op1)
4433    N->OperandList[0].set(Op1);
4434  if (N->OperandList[1] != Op2)
4435    N->OperandList[1].set(Op2);
4436
4437  // If this gets put into a CSE map, add it.
4438  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4439  return InN;
4440}
4441
4442SDValue SelectionDAG::
4443UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4444  SDValue Ops[] = { Op1, Op2, Op3 };
4445  return UpdateNodeOperands(N, Ops, 3);
4446}
4447
4448SDValue SelectionDAG::
4449UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4450                   SDValue Op3, SDValue Op4) {
4451  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4452  return UpdateNodeOperands(N, Ops, 4);
4453}
4454
4455SDValue SelectionDAG::
4456UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4457                   SDValue Op3, SDValue Op4, SDValue Op5) {
4458  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4459  return UpdateNodeOperands(N, Ops, 5);
4460}
4461
4462SDValue SelectionDAG::
4463UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4464  SDNode *N = InN.getNode();
4465  assert(N->getNumOperands() == NumOps &&
4466         "Update with wrong number of operands");
4467
4468  // Check to see if there is no change.
4469  bool AnyChange = false;
4470  for (unsigned i = 0; i != NumOps; ++i) {
4471    if (Ops[i] != N->getOperand(i)) {
4472      AnyChange = true;
4473      break;
4474    }
4475  }
4476
4477  // No operands changed, just return the input node.
4478  if (!AnyChange) return InN;
4479
4480  // See if the modified node already exists.
4481  void *InsertPos = 0;
4482  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4483    return SDValue(Existing, InN.getResNo());
4484
4485  // Nope it doesn't.  Remove the node from its current place in the maps.
4486  if (InsertPos)
4487    if (!RemoveNodeFromCSEMaps(N))
4488      InsertPos = 0;
4489
4490  // Now we update the operands.
4491  for (unsigned i = 0; i != NumOps; ++i)
4492    if (N->OperandList[i] != Ops[i])
4493      N->OperandList[i].set(Ops[i]);
4494
4495  // If this gets put into a CSE map, add it.
4496  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4497  return InN;
4498}
4499
4500/// DropOperands - Release the operands and set this node to have
4501/// zero operands.
4502void SDNode::DropOperands() {
4503  // Unlike the code in MorphNodeTo that does this, we don't need to
4504  // watch for dead nodes here.
4505  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4506    SDUse &Use = *I++;
4507    Use.set(SDValue());
4508  }
4509}
4510
4511/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4512/// machine opcode.
4513///
4514SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4515                                   MVT VT) {
4516  SDVTList VTs = getVTList(VT);
4517  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4518}
4519
4520SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4521                                   MVT VT, SDValue Op1) {
4522  SDVTList VTs = getVTList(VT);
4523  SDValue Ops[] = { Op1 };
4524  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4525}
4526
4527SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4528                                   MVT VT, SDValue Op1,
4529                                   SDValue Op2) {
4530  SDVTList VTs = getVTList(VT);
4531  SDValue Ops[] = { Op1, Op2 };
4532  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4533}
4534
4535SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4536                                   MVT VT, SDValue Op1,
4537                                   SDValue Op2, SDValue Op3) {
4538  SDVTList VTs = getVTList(VT);
4539  SDValue Ops[] = { Op1, Op2, Op3 };
4540  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4541}
4542
4543SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4544                                   MVT VT, const SDValue *Ops,
4545                                   unsigned NumOps) {
4546  SDVTList VTs = getVTList(VT);
4547  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4548}
4549
4550SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4551                                   MVT VT1, MVT VT2, const SDValue *Ops,
4552                                   unsigned NumOps) {
4553  SDVTList VTs = getVTList(VT1, VT2);
4554  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4555}
4556
4557SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4558                                   MVT VT1, MVT VT2) {
4559  SDVTList VTs = getVTList(VT1, VT2);
4560  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4561}
4562
4563SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4564                                   MVT VT1, MVT VT2, MVT VT3,
4565                                   const SDValue *Ops, unsigned NumOps) {
4566  SDVTList VTs = getVTList(VT1, VT2, VT3);
4567  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4568}
4569
4570SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4571                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4572                                   const SDValue *Ops, unsigned NumOps) {
4573  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4574  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4575}
4576
4577SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4578                                   MVT VT1, MVT VT2,
4579                                   SDValue Op1) {
4580  SDVTList VTs = getVTList(VT1, VT2);
4581  SDValue Ops[] = { Op1 };
4582  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4583}
4584
4585SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4586                                   MVT VT1, MVT VT2,
4587                                   SDValue Op1, SDValue Op2) {
4588  SDVTList VTs = getVTList(VT1, VT2);
4589  SDValue Ops[] = { Op1, Op2 };
4590  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4591}
4592
4593SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4594                                   MVT VT1, MVT VT2,
4595                                   SDValue Op1, SDValue Op2,
4596                                   SDValue Op3) {
4597  SDVTList VTs = getVTList(VT1, VT2);
4598  SDValue Ops[] = { Op1, Op2, Op3 };
4599  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4600}
4601
4602SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4603                                   MVT VT1, MVT VT2, MVT VT3,
4604                                   SDValue Op1, SDValue Op2,
4605                                   SDValue Op3) {
4606  SDVTList VTs = getVTList(VT1, VT2, VT3);
4607  SDValue Ops[] = { Op1, Op2, Op3 };
4608  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4609}
4610
4611SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4612                                   SDVTList VTs, const SDValue *Ops,
4613                                   unsigned NumOps) {
4614  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4615}
4616
4617SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4618                                  MVT VT) {
4619  SDVTList VTs = getVTList(VT);
4620  return MorphNodeTo(N, Opc, VTs, 0, 0);
4621}
4622
4623SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4624                                  MVT VT, SDValue Op1) {
4625  SDVTList VTs = getVTList(VT);
4626  SDValue Ops[] = { Op1 };
4627  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4628}
4629
4630SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4631                                  MVT VT, SDValue Op1,
4632                                  SDValue Op2) {
4633  SDVTList VTs = getVTList(VT);
4634  SDValue Ops[] = { Op1, Op2 };
4635  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4636}
4637
4638SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4639                                  MVT VT, SDValue Op1,
4640                                  SDValue Op2, SDValue Op3) {
4641  SDVTList VTs = getVTList(VT);
4642  SDValue Ops[] = { Op1, Op2, Op3 };
4643  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4644}
4645
4646SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4647                                  MVT VT, const SDValue *Ops,
4648                                  unsigned NumOps) {
4649  SDVTList VTs = getVTList(VT);
4650  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4651}
4652
4653SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4654                                  MVT VT1, MVT VT2, const SDValue *Ops,
4655                                  unsigned NumOps) {
4656  SDVTList VTs = getVTList(VT1, VT2);
4657  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4658}
4659
4660SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4661                                  MVT VT1, MVT VT2) {
4662  SDVTList VTs = getVTList(VT1, VT2);
4663  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4664}
4665
4666SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4667                                  MVT VT1, MVT VT2, MVT VT3,
4668                                  const SDValue *Ops, unsigned NumOps) {
4669  SDVTList VTs = getVTList(VT1, VT2, VT3);
4670  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4671}
4672
4673SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4674                                  MVT VT1, MVT VT2,
4675                                  SDValue Op1) {
4676  SDVTList VTs = getVTList(VT1, VT2);
4677  SDValue Ops[] = { Op1 };
4678  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4679}
4680
4681SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4682                                  MVT VT1, MVT VT2,
4683                                  SDValue Op1, SDValue Op2) {
4684  SDVTList VTs = getVTList(VT1, VT2);
4685  SDValue Ops[] = { Op1, Op2 };
4686  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4687}
4688
4689SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4690                                  MVT VT1, MVT VT2,
4691                                  SDValue Op1, SDValue Op2,
4692                                  SDValue Op3) {
4693  SDVTList VTs = getVTList(VT1, VT2);
4694  SDValue Ops[] = { Op1, Op2, Op3 };
4695  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4696}
4697
4698/// MorphNodeTo - These *mutate* the specified node to have the specified
4699/// return type, opcode, and operands.
4700///
4701/// Note that MorphNodeTo returns the resultant node.  If there is already a
4702/// node of the specified opcode and operands, it returns that node instead of
4703/// the current one.
4704///
4705/// Using MorphNodeTo is faster than creating a new node and swapping it in
4706/// with ReplaceAllUsesWith both because it often avoids allocating a new
4707/// node, and because it doesn't require CSE recalculation for any of
4708/// the node's users.
4709///
4710SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4711                                  SDVTList VTs, const SDValue *Ops,
4712                                  unsigned NumOps) {
4713  // If an identical node already exists, use it.
4714  void *IP = 0;
4715  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4716    FoldingSetNodeID ID;
4717    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4718    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4719      return ON;
4720  }
4721
4722  if (!RemoveNodeFromCSEMaps(N))
4723    IP = 0;
4724
4725  // Start the morphing.
4726  N->NodeType = Opc;
4727  N->ValueList = VTs.VTs;
4728  N->NumValues = VTs.NumVTs;
4729
4730  // Clear the operands list, updating used nodes to remove this from their
4731  // use list.  Keep track of any operands that become dead as a result.
4732  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4733  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4734    SDUse &Use = *I++;
4735    SDNode *Used = Use.getNode();
4736    Use.set(SDValue());
4737    if (Used->use_empty())
4738      DeadNodeSet.insert(Used);
4739  }
4740
4741  // If NumOps is larger than the # of operands we currently have, reallocate
4742  // the operand list.
4743  if (NumOps > N->NumOperands) {
4744    if (N->OperandsNeedDelete)
4745      delete[] N->OperandList;
4746
4747    if (N->isMachineOpcode()) {
4748      // We're creating a final node that will live unmorphed for the
4749      // remainder of the current SelectionDAG iteration, so we can allocate
4750      // the operands directly out of a pool with no recycling metadata.
4751      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4752      N->OperandsNeedDelete = false;
4753    } else {
4754      N->OperandList = new SDUse[NumOps];
4755      N->OperandsNeedDelete = true;
4756    }
4757  }
4758
4759  // Assign the new operands.
4760  N->NumOperands = NumOps;
4761  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4762    N->OperandList[i].setUser(N);
4763    N->OperandList[i].setInitial(Ops[i]);
4764  }
4765
4766  // Delete any nodes that are still dead after adding the uses for the
4767  // new operands.
4768  SmallVector<SDNode *, 16> DeadNodes;
4769  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4770       E = DeadNodeSet.end(); I != E; ++I)
4771    if ((*I)->use_empty())
4772      DeadNodes.push_back(*I);
4773  RemoveDeadNodes(DeadNodes);
4774
4775  if (IP)
4776    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4777  return N;
4778}
4779
4780
4781/// getTargetNode - These are used for target selectors to create a new node
4782/// with specified return type(s), target opcode, and operands.
4783///
4784/// Note that getTargetNode returns the resultant node.  If there is already a
4785/// node of the specified opcode and operands, it returns that node instead of
4786/// the current one.
4787SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4788  return getNode(~Opcode, VT).getNode();
4789}
4790SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4791  return getNode(~Opcode, dl, VT).getNode();
4792}
4793
4794SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4795  return getNode(~Opcode, VT, Op1).getNode();
4796}
4797SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4798                                    SDValue Op1) {
4799  return getNode(~Opcode, dl, VT, Op1).getNode();
4800}
4801
4802SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4803                                    SDValue Op1, SDValue Op2) {
4804  return getNode(~Opcode, VT, Op1, Op2).getNode();
4805}
4806SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4807                                    SDValue Op1, SDValue Op2) {
4808  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4809}
4810
4811SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4812                                    SDValue Op1, SDValue Op2,
4813                                    SDValue Op3) {
4814  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4815}
4816SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4817                                    SDValue Op1, SDValue Op2,
4818                                    SDValue Op3) {
4819  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4820}
4821
4822SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4823                                    const SDValue *Ops, unsigned NumOps) {
4824  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4825}
4826SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4827                                    const SDValue *Ops, unsigned NumOps) {
4828  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4829}
4830
4831SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4832  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4833  SDValue Op;
4834  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4835}
4836SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4837                                    MVT VT1, MVT VT2) {
4838  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4839  SDValue Op;
4840  return getNode(~Opcode, dl, VTs, 2, &Op, 0).getNode();
4841}
4842
4843SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4844                                    MVT VT2, SDValue Op1) {
4845  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4846  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4847}
4848SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4849                                    MVT VT2, SDValue Op1) {
4850  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4851  return getNode(~Opcode, dl, VTs, 2, &Op1, 1).getNode();
4852}
4853
4854SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4855                                    MVT VT2, SDValue Op1,
4856                                    SDValue Op2) {
4857  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4858  SDValue Ops[] = { Op1, Op2 };
4859  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4860}
4861SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4862                                    MVT VT2, SDValue Op1,
4863                                    SDValue Op2) {
4864  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4865  SDValue Ops[] = { Op1, Op2 };
4866  return getNode(~Opcode, dl, VTs, 2, Ops, 2).getNode();
4867}
4868
4869SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4870                                    MVT VT2, SDValue Op1,
4871                                    SDValue Op2, SDValue Op3) {
4872  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4873  SDValue Ops[] = { Op1, Op2, Op3 };
4874  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4875}
4876SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4877                                    MVT VT2, SDValue Op1,
4878                                    SDValue Op2, SDValue Op3) {
4879  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4880  SDValue Ops[] = { Op1, Op2, Op3 };
4881  return getNode(~Opcode, dl, VTs, 2, Ops, 3).getNode();
4882}
4883
4884SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4885                                    const SDValue *Ops, unsigned NumOps) {
4886  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4887  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4888}
4889SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4890                                    MVT VT1, MVT VT2,
4891                                    const SDValue *Ops, unsigned NumOps) {
4892  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4893  return getNode(~Opcode, dl, VTs, 2, Ops, NumOps).getNode();
4894}
4895
4896SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4897                                    SDValue Op1, SDValue Op2) {
4898  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4899  SDValue Ops[] = { Op1, Op2 };
4900  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4901}
4902SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4903                                    MVT VT1, MVT VT2, MVT VT3,
4904                                    SDValue Op1, SDValue Op2) {
4905  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4906  SDValue Ops[] = { Op1, Op2 };
4907  return getNode(~Opcode, dl, VTs, 3, Ops, 2).getNode();
4908}
4909
4910SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4911                                    SDValue Op1, SDValue Op2,
4912                                    SDValue Op3) {
4913  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4914  SDValue Ops[] = { Op1, Op2, Op3 };
4915  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4916}
4917SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4918                                    MVT VT1, MVT VT2, MVT VT3,
4919                                    SDValue Op1, SDValue Op2,
4920                                    SDValue Op3) {
4921  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4922  SDValue Ops[] = { Op1, Op2, Op3 };
4923  return getNode(~Opcode, dl, VTs, 3, Ops, 3).getNode();
4924}
4925
4926SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4927                                    const SDValue *Ops, unsigned NumOps) {
4928  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4929  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4930}
4931SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4932                                    MVT VT1, MVT VT2, MVT VT3,
4933                                    const SDValue *Ops, unsigned NumOps) {
4934  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4935  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4936}
4937
4938SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4939                                    MVT VT2, MVT VT3, MVT VT4,
4940                                    const SDValue *Ops, unsigned NumOps) {
4941  std::vector<MVT> VTList;
4942  VTList.push_back(VT1);
4943  VTList.push_back(VT2);
4944  VTList.push_back(VT3);
4945  VTList.push_back(VT4);
4946  const MVT *VTs = getNodeValueTypes(VTList);
4947  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4948}
4949SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4950                                    MVT VT2, MVT VT3, MVT VT4,
4951                                    const SDValue *Ops, unsigned NumOps) {
4952  std::vector<MVT> VTList;
4953  VTList.push_back(VT1);
4954  VTList.push_back(VT2);
4955  VTList.push_back(VT3);
4956  VTList.push_back(VT4);
4957  const MVT *VTs = getNodeValueTypes(VTList);
4958  return getNode(~Opcode, dl, VTs, 4, Ops, NumOps).getNode();
4959}
4960
4961SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4962                                    const std::vector<MVT> &ResultTys,
4963                                    const SDValue *Ops, unsigned NumOps) {
4964  const MVT *VTs = getNodeValueTypes(ResultTys);
4965  return getNode(~Opcode, VTs, ResultTys.size(),
4966                 Ops, NumOps).getNode();
4967}
4968SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4969                                    const std::vector<MVT> &ResultTys,
4970                                    const SDValue *Ops, unsigned NumOps) {
4971  const MVT *VTs = getNodeValueTypes(ResultTys);
4972  return getNode(~Opcode, dl, VTs, ResultTys.size(),
4973                 Ops, NumOps).getNode();
4974}
4975
4976/// getNodeIfExists - Get the specified node if it's already available, or
4977/// else return NULL.
4978SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4979                                      const SDValue *Ops, unsigned NumOps) {
4980  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4981    FoldingSetNodeID ID;
4982    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4983    void *IP = 0;
4984    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4985      return E;
4986  }
4987  return NULL;
4988}
4989
4990/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4991/// This can cause recursive merging of nodes in the DAG.
4992///
4993/// This version assumes From has a single result value.
4994///
4995void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4996                                      DAGUpdateListener *UpdateListener) {
4997  SDNode *From = FromN.getNode();
4998  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4999         "Cannot replace with this method!");
5000  assert(From != To.getNode() && "Cannot replace uses of with self");
5001
5002  // Iterate over all the existing uses of From. New uses will be added
5003  // to the beginning of the use list, which we avoid visiting.
5004  // This specifically avoids visiting uses of From that arise while the
5005  // replacement is happening, because any such uses would be the result
5006  // of CSE: If an existing node looks like From after one of its operands
5007  // is replaced by To, we don't want to replace of all its users with To
5008  // too. See PR3018 for more info.
5009  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5010  while (UI != UE) {
5011    SDNode *User = *UI;
5012
5013    // This node is about to morph, remove its old self from the CSE maps.
5014    RemoveNodeFromCSEMaps(User);
5015
5016    // A user can appear in a use list multiple times, and when this
5017    // happens the uses are usually next to each other in the list.
5018    // To help reduce the number of CSE recomputations, process all
5019    // the uses of this user that we can find this way.
5020    do {
5021      SDUse &Use = UI.getUse();
5022      ++UI;
5023      Use.set(To);
5024    } while (UI != UE && *UI == User);
5025
5026    // Now that we have modified User, add it back to the CSE maps.  If it
5027    // already exists there, recursively merge the results together.
5028    AddModifiedNodeToCSEMaps(User, UpdateListener);
5029  }
5030}
5031
5032/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5033/// This can cause recursive merging of nodes in the DAG.
5034///
5035/// This version assumes From/To have matching types and numbers of result
5036/// values.
5037///
5038void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5039                                      DAGUpdateListener *UpdateListener) {
5040  assert(From->getVTList().VTs == To->getVTList().VTs &&
5041         From->getNumValues() == To->getNumValues() &&
5042         "Cannot use this version of ReplaceAllUsesWith!");
5043
5044  // Handle the trivial case.
5045  if (From == To)
5046    return;
5047
5048  // Iterate over just the existing users of From. See the comments in
5049  // the ReplaceAllUsesWith above.
5050  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5051  while (UI != UE) {
5052    SDNode *User = *UI;
5053
5054    // This node is about to morph, remove its old self from the CSE maps.
5055    RemoveNodeFromCSEMaps(User);
5056
5057    // A user can appear in a use list multiple times, and when this
5058    // happens the uses are usually next to each other in the list.
5059    // To help reduce the number of CSE recomputations, process all
5060    // the uses of this user that we can find this way.
5061    do {
5062      SDUse &Use = UI.getUse();
5063      ++UI;
5064      Use.setNode(To);
5065    } while (UI != UE && *UI == User);
5066
5067    // Now that we have modified User, add it back to the CSE maps.  If it
5068    // already exists there, recursively merge the results together.
5069    AddModifiedNodeToCSEMaps(User, UpdateListener);
5070  }
5071}
5072
5073/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5074/// This can cause recursive merging of nodes in the DAG.
5075///
5076/// This version can replace From with any result values.  To must match the
5077/// number and types of values returned by From.
5078void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5079                                      const SDValue *To,
5080                                      DAGUpdateListener *UpdateListener) {
5081  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5082    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5083
5084  // Iterate over just the existing users of From. See the comments in
5085  // the ReplaceAllUsesWith above.
5086  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5087  while (UI != UE) {
5088    SDNode *User = *UI;
5089
5090    // This node is about to morph, remove its old self from the CSE maps.
5091    RemoveNodeFromCSEMaps(User);
5092
5093    // A user can appear in a use list multiple times, and when this
5094    // happens the uses are usually next to each other in the list.
5095    // To help reduce the number of CSE recomputations, process all
5096    // the uses of this user that we can find this way.
5097    do {
5098      SDUse &Use = UI.getUse();
5099      const SDValue &ToOp = To[Use.getResNo()];
5100      ++UI;
5101      Use.set(ToOp);
5102    } while (UI != UE && *UI == User);
5103
5104    // Now that we have modified User, add it back to the CSE maps.  If it
5105    // already exists there, recursively merge the results together.
5106    AddModifiedNodeToCSEMaps(User, UpdateListener);
5107  }
5108}
5109
5110/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5111/// uses of other values produced by From.getNode() alone.  The Deleted
5112/// vector is handled the same way as for ReplaceAllUsesWith.
5113void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5114                                             DAGUpdateListener *UpdateListener){
5115  // Handle the really simple, really trivial case efficiently.
5116  if (From == To) return;
5117
5118  // Handle the simple, trivial, case efficiently.
5119  if (From.getNode()->getNumValues() == 1) {
5120    ReplaceAllUsesWith(From, To, UpdateListener);
5121    return;
5122  }
5123
5124  // Iterate over just the existing users of From. See the comments in
5125  // the ReplaceAllUsesWith above.
5126  SDNode::use_iterator UI = From.getNode()->use_begin(),
5127                       UE = From.getNode()->use_end();
5128  while (UI != UE) {
5129    SDNode *User = *UI;
5130    bool UserRemovedFromCSEMaps = false;
5131
5132    // A user can appear in a use list multiple times, and when this
5133    // happens the uses are usually next to each other in the list.
5134    // To help reduce the number of CSE recomputations, process all
5135    // the uses of this user that we can find this way.
5136    do {
5137      SDUse &Use = UI.getUse();
5138
5139      // Skip uses of different values from the same node.
5140      if (Use.getResNo() != From.getResNo()) {
5141        ++UI;
5142        continue;
5143      }
5144
5145      // If this node hasn't been modified yet, it's still in the CSE maps,
5146      // so remove its old self from the CSE maps.
5147      if (!UserRemovedFromCSEMaps) {
5148        RemoveNodeFromCSEMaps(User);
5149        UserRemovedFromCSEMaps = true;
5150      }
5151
5152      ++UI;
5153      Use.set(To);
5154    } while (UI != UE && *UI == User);
5155
5156    // We are iterating over all uses of the From node, so if a use
5157    // doesn't use the specific value, no changes are made.
5158    if (!UserRemovedFromCSEMaps)
5159      continue;
5160
5161    // Now that we have modified User, add it back to the CSE maps.  If it
5162    // already exists there, recursively merge the results together.
5163    AddModifiedNodeToCSEMaps(User, UpdateListener);
5164  }
5165}
5166
5167namespace {
5168  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5169  /// to record information about a use.
5170  struct UseMemo {
5171    SDNode *User;
5172    unsigned Index;
5173    SDUse *Use;
5174  };
5175
5176  /// operator< - Sort Memos by User.
5177  bool operator<(const UseMemo &L, const UseMemo &R) {
5178    return (intptr_t)L.User < (intptr_t)R.User;
5179  }
5180}
5181
5182/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5183/// uses of other values produced by From.getNode() alone.  The same value
5184/// may appear in both the From and To list.  The Deleted vector is
5185/// handled the same way as for ReplaceAllUsesWith.
5186void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5187                                              const SDValue *To,
5188                                              unsigned Num,
5189                                              DAGUpdateListener *UpdateListener){
5190  // Handle the simple, trivial case efficiently.
5191  if (Num == 1)
5192    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5193
5194  // Read up all the uses and make records of them. This helps
5195  // processing new uses that are introduced during the
5196  // replacement process.
5197  SmallVector<UseMemo, 4> Uses;
5198  for (unsigned i = 0; i != Num; ++i) {
5199    unsigned FromResNo = From[i].getResNo();
5200    SDNode *FromNode = From[i].getNode();
5201    for (SDNode::use_iterator UI = FromNode->use_begin(),
5202         E = FromNode->use_end(); UI != E; ++UI) {
5203      SDUse &Use = UI.getUse();
5204      if (Use.getResNo() == FromResNo) {
5205        UseMemo Memo = { *UI, i, &Use };
5206        Uses.push_back(Memo);
5207      }
5208    }
5209  }
5210
5211  // Sort the uses, so that all the uses from a given User are together.
5212  std::sort(Uses.begin(), Uses.end());
5213
5214  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5215       UseIndex != UseIndexEnd; ) {
5216    // We know that this user uses some value of From.  If it is the right
5217    // value, update it.
5218    SDNode *User = Uses[UseIndex].User;
5219
5220    // This node is about to morph, remove its old self from the CSE maps.
5221    RemoveNodeFromCSEMaps(User);
5222
5223    // The Uses array is sorted, so all the uses for a given User
5224    // are next to each other in the list.
5225    // To help reduce the number of CSE recomputations, process all
5226    // the uses of this user that we can find this way.
5227    do {
5228      unsigned i = Uses[UseIndex].Index;
5229      SDUse &Use = *Uses[UseIndex].Use;
5230      ++UseIndex;
5231
5232      Use.set(To[i]);
5233    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5234
5235    // Now that we have modified User, add it back to the CSE maps.  If it
5236    // already exists there, recursively merge the results together.
5237    AddModifiedNodeToCSEMaps(User, UpdateListener);
5238  }
5239}
5240
5241/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5242/// based on their topological order. It returns the maximum id and a vector
5243/// of the SDNodes* in assigned order by reference.
5244unsigned SelectionDAG::AssignTopologicalOrder() {
5245
5246  unsigned DAGSize = 0;
5247
5248  // SortedPos tracks the progress of the algorithm. Nodes before it are
5249  // sorted, nodes after it are unsorted. When the algorithm completes
5250  // it is at the end of the list.
5251  allnodes_iterator SortedPos = allnodes_begin();
5252
5253  // Visit all the nodes. Move nodes with no operands to the front of
5254  // the list immediately. Annotate nodes that do have operands with their
5255  // operand count. Before we do this, the Node Id fields of the nodes
5256  // may contain arbitrary values. After, the Node Id fields for nodes
5257  // before SortedPos will contain the topological sort index, and the
5258  // Node Id fields for nodes At SortedPos and after will contain the
5259  // count of outstanding operands.
5260  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5261    SDNode *N = I++;
5262    unsigned Degree = N->getNumOperands();
5263    if (Degree == 0) {
5264      // A node with no uses, add it to the result array immediately.
5265      N->setNodeId(DAGSize++);
5266      allnodes_iterator Q = N;
5267      if (Q != SortedPos)
5268        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5269      ++SortedPos;
5270    } else {
5271      // Temporarily use the Node Id as scratch space for the degree count.
5272      N->setNodeId(Degree);
5273    }
5274  }
5275
5276  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5277  // such that by the time the end is reached all nodes will be sorted.
5278  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5279    SDNode *N = I;
5280    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5281         UI != UE; ++UI) {
5282      SDNode *P = *UI;
5283      unsigned Degree = P->getNodeId();
5284      --Degree;
5285      if (Degree == 0) {
5286        // All of P's operands are sorted, so P may sorted now.
5287        P->setNodeId(DAGSize++);
5288        if (P != SortedPos)
5289          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5290        ++SortedPos;
5291      } else {
5292        // Update P's outstanding operand count.
5293        P->setNodeId(Degree);
5294      }
5295    }
5296  }
5297
5298  assert(SortedPos == AllNodes.end() &&
5299         "Topological sort incomplete!");
5300  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5301         "First node in topological sort is not the entry token!");
5302  assert(AllNodes.front().getNodeId() == 0 &&
5303         "First node in topological sort has non-zero id!");
5304  assert(AllNodes.front().getNumOperands() == 0 &&
5305         "First node in topological sort has operands!");
5306  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5307         "Last node in topologic sort has unexpected id!");
5308  assert(AllNodes.back().use_empty() &&
5309         "Last node in topologic sort has users!");
5310  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5311  return DAGSize;
5312}
5313
5314
5315
5316//===----------------------------------------------------------------------===//
5317//                              SDNode Class
5318//===----------------------------------------------------------------------===//
5319
5320HandleSDNode::~HandleSDNode() {
5321  DropOperands();
5322}
5323
5324GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
5325                                         MVT VT, int64_t o)
5326  : SDNode(isa<GlobalVariable>(GA) &&
5327           cast<GlobalVariable>(GA)->isThreadLocal() ?
5328           // Thread Local
5329           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
5330           // Non Thread Local
5331           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
5332           getSDVTList(VT)), Offset(o) {
5333  TheGlobal = const_cast<GlobalValue*>(GA);
5334}
5335
5336MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
5337                     const Value *srcValue, int SVO,
5338                     unsigned alignment, bool vol)
5339 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
5340  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
5341  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5342  assert(getAlignment() == alignment && "Alignment representation error!");
5343  assert(isVolatile() == vol && "Volatile representation error!");
5344}
5345
5346MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
5347                     unsigned NumOps, MVT memvt, const Value *srcValue,
5348                     int SVO, unsigned alignment, bool vol)
5349   : SDNode(Opc, VTs, Ops, NumOps),
5350     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
5351  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
5352  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5353  assert(getAlignment() == alignment && "Alignment representation error!");
5354  assert(isVolatile() == vol && "Volatile representation error!");
5355}
5356
5357MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
5358                     const Value *srcValue, int SVO,
5359                     unsigned alignment, bool vol)
5360 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
5361  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
5362  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5363  assert(getAlignment() == alignment && "Alignment representation error!");
5364  assert(isVolatile() == vol && "Volatile representation error!");
5365}
5366
5367MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5368                     const SDValue *Ops,
5369                     unsigned NumOps, MVT memvt, const Value *srcValue,
5370                     int SVO, unsigned alignment, bool vol)
5371   : SDNode(Opc, dl, VTs, Ops, NumOps),
5372     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
5373  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
5374  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5375  assert(getAlignment() == alignment && "Alignment representation error!");
5376  assert(isVolatile() == vol && "Volatile representation error!");
5377}
5378
5379/// getMemOperand - Return a MachineMemOperand object describing the memory
5380/// reference performed by this memory reference.
5381MachineMemOperand MemSDNode::getMemOperand() const {
5382  int Flags = 0;
5383  if (isa<LoadSDNode>(this))
5384    Flags = MachineMemOperand::MOLoad;
5385  else if (isa<StoreSDNode>(this))
5386    Flags = MachineMemOperand::MOStore;
5387  else if (isa<AtomicSDNode>(this)) {
5388    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
5389  }
5390  else {
5391    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
5392    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
5393    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
5394    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
5395  }
5396
5397  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
5398  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
5399
5400  // Check if the memory reference references a frame index
5401  const FrameIndexSDNode *FI =
5402  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
5403  if (!getSrcValue() && FI)
5404    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
5405                             Flags, 0, Size, getAlignment());
5406  else
5407    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
5408                             Size, getAlignment());
5409}
5410
5411/// Profile - Gather unique data for the node.
5412///
5413void SDNode::Profile(FoldingSetNodeID &ID) const {
5414  AddNodeIDNode(ID, this);
5415}
5416
5417/// getValueTypeList - Return a pointer to the specified value type.
5418///
5419const MVT *SDNode::getValueTypeList(MVT VT) {
5420  if (VT.isExtended()) {
5421    static std::set<MVT, MVT::compareRawBits> EVTs;
5422    return &(*EVTs.insert(VT).first);
5423  } else {
5424    static MVT VTs[MVT::LAST_VALUETYPE];
5425    VTs[VT.getSimpleVT()] = VT;
5426    return &VTs[VT.getSimpleVT()];
5427  }
5428}
5429
5430/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5431/// indicated value.  This method ignores uses of other values defined by this
5432/// operation.
5433bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5434  assert(Value < getNumValues() && "Bad value!");
5435
5436  // TODO: Only iterate over uses of a given value of the node
5437  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5438    if (UI.getUse().getResNo() == Value) {
5439      if (NUses == 0)
5440        return false;
5441      --NUses;
5442    }
5443  }
5444
5445  // Found exactly the right number of uses?
5446  return NUses == 0;
5447}
5448
5449
5450/// hasAnyUseOfValue - Return true if there are any use of the indicated
5451/// value. This method ignores uses of other values defined by this operation.
5452bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5453  assert(Value < getNumValues() && "Bad value!");
5454
5455  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5456    if (UI.getUse().getResNo() == Value)
5457      return true;
5458
5459  return false;
5460}
5461
5462
5463/// isOnlyUserOf - Return true if this node is the only use of N.
5464///
5465bool SDNode::isOnlyUserOf(SDNode *N) const {
5466  bool Seen = false;
5467  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5468    SDNode *User = *I;
5469    if (User == this)
5470      Seen = true;
5471    else
5472      return false;
5473  }
5474
5475  return Seen;
5476}
5477
5478/// isOperand - Return true if this node is an operand of N.
5479///
5480bool SDValue::isOperandOf(SDNode *N) const {
5481  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5482    if (*this == N->getOperand(i))
5483      return true;
5484  return false;
5485}
5486
5487bool SDNode::isOperandOf(SDNode *N) const {
5488  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5489    if (this == N->OperandList[i].getNode())
5490      return true;
5491  return false;
5492}
5493
5494/// reachesChainWithoutSideEffects - Return true if this operand (which must
5495/// be a chain) reaches the specified operand without crossing any
5496/// side-effecting instructions.  In practice, this looks through token
5497/// factors and non-volatile loads.  In order to remain efficient, this only
5498/// looks a couple of nodes in, it does not do an exhaustive search.
5499bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5500                                               unsigned Depth) const {
5501  if (*this == Dest) return true;
5502
5503  // Don't search too deeply, we just want to be able to see through
5504  // TokenFactor's etc.
5505  if (Depth == 0) return false;
5506
5507  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5508  // of the operands of the TF reach dest, then we can do the xform.
5509  if (getOpcode() == ISD::TokenFactor) {
5510    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5511      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5512        return true;
5513    return false;
5514  }
5515
5516  // Loads don't have side effects, look through them.
5517  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5518    if (!Ld->isVolatile())
5519      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5520  }
5521  return false;
5522}
5523
5524
5525static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5526                            SmallPtrSet<SDNode *, 32> &Visited) {
5527  if (found || !Visited.insert(N))
5528    return;
5529
5530  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5531    SDNode *Op = N->getOperand(i).getNode();
5532    if (Op == P) {
5533      found = true;
5534      return;
5535    }
5536    findPredecessor(Op, P, found, Visited);
5537  }
5538}
5539
5540/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5541/// is either an operand of N or it can be reached by recursively traversing
5542/// up the operands.
5543/// NOTE: this is an expensive method. Use it carefully.
5544bool SDNode::isPredecessorOf(SDNode *N) const {
5545  SmallPtrSet<SDNode *, 32> Visited;
5546  bool found = false;
5547  findPredecessor(N, this, found, Visited);
5548  return found;
5549}
5550
5551uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5552  assert(Num < NumOperands && "Invalid child # of SDNode!");
5553  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5554}
5555
5556std::string SDNode::getOperationName(const SelectionDAG *G) const {
5557  switch (getOpcode()) {
5558  default:
5559    if (getOpcode() < ISD::BUILTIN_OP_END)
5560      return "<<Unknown DAG Node>>";
5561    if (isMachineOpcode()) {
5562      if (G)
5563        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5564          if (getMachineOpcode() < TII->getNumOpcodes())
5565            return TII->get(getMachineOpcode()).getName();
5566      return "<<Unknown Machine Node>>";
5567    }
5568    if (G) {
5569      const TargetLowering &TLI = G->getTargetLoweringInfo();
5570      const char *Name = TLI.getTargetNodeName(getOpcode());
5571      if (Name) return Name;
5572      return "<<Unknown Target Node>>";
5573    }
5574    return "<<Unknown Node>>";
5575
5576#ifndef NDEBUG
5577  case ISD::DELETED_NODE:
5578    return "<<Deleted Node!>>";
5579#endif
5580  case ISD::PREFETCH:      return "Prefetch";
5581  case ISD::MEMBARRIER:    return "MemBarrier";
5582  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5583  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5584  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5585  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5586  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5587  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5588  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5589  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5590  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5591  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5592  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5593  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5594  case ISD::PCMARKER:      return "PCMarker";
5595  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5596  case ISD::SRCVALUE:      return "SrcValue";
5597  case ISD::MEMOPERAND:    return "MemOperand";
5598  case ISD::EntryToken:    return "EntryToken";
5599  case ISD::TokenFactor:   return "TokenFactor";
5600  case ISD::AssertSext:    return "AssertSext";
5601  case ISD::AssertZext:    return "AssertZext";
5602
5603  case ISD::BasicBlock:    return "BasicBlock";
5604  case ISD::ARG_FLAGS:     return "ArgFlags";
5605  case ISD::VALUETYPE:     return "ValueType";
5606  case ISD::Register:      return "Register";
5607
5608  case ISD::Constant:      return "Constant";
5609  case ISD::ConstantFP:    return "ConstantFP";
5610  case ISD::GlobalAddress: return "GlobalAddress";
5611  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5612  case ISD::FrameIndex:    return "FrameIndex";
5613  case ISD::JumpTable:     return "JumpTable";
5614  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5615  case ISD::RETURNADDR: return "RETURNADDR";
5616  case ISD::FRAMEADDR: return "FRAMEADDR";
5617  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5618  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5619  case ISD::EHSELECTION: return "EHSELECTION";
5620  case ISD::EH_RETURN: return "EH_RETURN";
5621  case ISD::ConstantPool:  return "ConstantPool";
5622  case ISD::ExternalSymbol: return "ExternalSymbol";
5623  case ISD::INTRINSIC_WO_CHAIN: {
5624    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5625    return Intrinsic::getName((Intrinsic::ID)IID);
5626  }
5627  case ISD::INTRINSIC_VOID:
5628  case ISD::INTRINSIC_W_CHAIN: {
5629    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5630    return Intrinsic::getName((Intrinsic::ID)IID);
5631  }
5632
5633  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5634  case ISD::TargetConstant: return "TargetConstant";
5635  case ISD::TargetConstantFP:return "TargetConstantFP";
5636  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5637  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5638  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5639  case ISD::TargetJumpTable:  return "TargetJumpTable";
5640  case ISD::TargetConstantPool:  return "TargetConstantPool";
5641  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5642
5643  case ISD::CopyToReg:     return "CopyToReg";
5644  case ISD::CopyFromReg:   return "CopyFromReg";
5645  case ISD::UNDEF:         return "undef";
5646  case ISD::MERGE_VALUES:  return "merge_values";
5647  case ISD::INLINEASM:     return "inlineasm";
5648  case ISD::DBG_LABEL:     return "dbg_label";
5649  case ISD::EH_LABEL:      return "eh_label";
5650  case ISD::DECLARE:       return "declare";
5651  case ISD::HANDLENODE:    return "handlenode";
5652  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5653  case ISD::CALL:          return "call";
5654
5655  // Unary operators
5656  case ISD::FABS:   return "fabs";
5657  case ISD::FNEG:   return "fneg";
5658  case ISD::FSQRT:  return "fsqrt";
5659  case ISD::FSIN:   return "fsin";
5660  case ISD::FCOS:   return "fcos";
5661  case ISD::FPOWI:  return "fpowi";
5662  case ISD::FPOW:   return "fpow";
5663  case ISD::FTRUNC: return "ftrunc";
5664  case ISD::FFLOOR: return "ffloor";
5665  case ISD::FCEIL:  return "fceil";
5666  case ISD::FRINT:  return "frint";
5667  case ISD::FNEARBYINT: return "fnearbyint";
5668
5669  // Binary operators
5670  case ISD::ADD:    return "add";
5671  case ISD::SUB:    return "sub";
5672  case ISD::MUL:    return "mul";
5673  case ISD::MULHU:  return "mulhu";
5674  case ISD::MULHS:  return "mulhs";
5675  case ISD::SDIV:   return "sdiv";
5676  case ISD::UDIV:   return "udiv";
5677  case ISD::SREM:   return "srem";
5678  case ISD::UREM:   return "urem";
5679  case ISD::SMUL_LOHI:  return "smul_lohi";
5680  case ISD::UMUL_LOHI:  return "umul_lohi";
5681  case ISD::SDIVREM:    return "sdivrem";
5682  case ISD::UDIVREM:    return "udivrem";
5683  case ISD::AND:    return "and";
5684  case ISD::OR:     return "or";
5685  case ISD::XOR:    return "xor";
5686  case ISD::SHL:    return "shl";
5687  case ISD::SRA:    return "sra";
5688  case ISD::SRL:    return "srl";
5689  case ISD::ROTL:   return "rotl";
5690  case ISD::ROTR:   return "rotr";
5691  case ISD::FADD:   return "fadd";
5692  case ISD::FSUB:   return "fsub";
5693  case ISD::FMUL:   return "fmul";
5694  case ISD::FDIV:   return "fdiv";
5695  case ISD::FREM:   return "frem";
5696  case ISD::FCOPYSIGN: return "fcopysign";
5697  case ISD::FGETSIGN:  return "fgetsign";
5698
5699  case ISD::SETCC:       return "setcc";
5700  case ISD::VSETCC:      return "vsetcc";
5701  case ISD::SELECT:      return "select";
5702  case ISD::SELECT_CC:   return "select_cc";
5703  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5704  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5705  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5706  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5707  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5708  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5709  case ISD::CARRY_FALSE:         return "carry_false";
5710  case ISD::ADDC:        return "addc";
5711  case ISD::ADDE:        return "adde";
5712  case ISD::SADDO:       return "saddo";
5713  case ISD::UADDO:       return "uaddo";
5714  case ISD::SSUBO:       return "ssubo";
5715  case ISD::USUBO:       return "usubo";
5716  case ISD::SMULO:       return "smulo";
5717  case ISD::UMULO:       return "umulo";
5718  case ISD::SUBC:        return "subc";
5719  case ISD::SUBE:        return "sube";
5720  case ISD::SHL_PARTS:   return "shl_parts";
5721  case ISD::SRA_PARTS:   return "sra_parts";
5722  case ISD::SRL_PARTS:   return "srl_parts";
5723
5724  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5725  case ISD::INSERT_SUBREG:      return "insert_subreg";
5726
5727  // Conversion operators.
5728  case ISD::SIGN_EXTEND: return "sign_extend";
5729  case ISD::ZERO_EXTEND: return "zero_extend";
5730  case ISD::ANY_EXTEND:  return "any_extend";
5731  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5732  case ISD::TRUNCATE:    return "truncate";
5733  case ISD::FP_ROUND:    return "fp_round";
5734  case ISD::FLT_ROUNDS_: return "flt_rounds";
5735  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5736  case ISD::FP_EXTEND:   return "fp_extend";
5737
5738  case ISD::SINT_TO_FP:  return "sint_to_fp";
5739  case ISD::UINT_TO_FP:  return "uint_to_fp";
5740  case ISD::FP_TO_SINT:  return "fp_to_sint";
5741  case ISD::FP_TO_UINT:  return "fp_to_uint";
5742  case ISD::BIT_CONVERT: return "bit_convert";
5743
5744  case ISD::CONVERT_RNDSAT: {
5745    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5746    default: assert(0 && "Unknown cvt code!");
5747    case ISD::CVT_FF:  return "cvt_ff";
5748    case ISD::CVT_FS:  return "cvt_fs";
5749    case ISD::CVT_FU:  return "cvt_fu";
5750    case ISD::CVT_SF:  return "cvt_sf";
5751    case ISD::CVT_UF:  return "cvt_uf";
5752    case ISD::CVT_SS:  return "cvt_ss";
5753    case ISD::CVT_SU:  return "cvt_su";
5754    case ISD::CVT_US:  return "cvt_us";
5755    case ISD::CVT_UU:  return "cvt_uu";
5756    }
5757  }
5758
5759    // Control flow instructions
5760  case ISD::BR:      return "br";
5761  case ISD::BRIND:   return "brind";
5762  case ISD::BR_JT:   return "br_jt";
5763  case ISD::BRCOND:  return "brcond";
5764  case ISD::BR_CC:   return "br_cc";
5765  case ISD::RET:     return "ret";
5766  case ISD::CALLSEQ_START:  return "callseq_start";
5767  case ISD::CALLSEQ_END:    return "callseq_end";
5768
5769    // Other operators
5770  case ISD::LOAD:               return "load";
5771  case ISD::STORE:              return "store";
5772  case ISD::VAARG:              return "vaarg";
5773  case ISD::VACOPY:             return "vacopy";
5774  case ISD::VAEND:              return "vaend";
5775  case ISD::VASTART:            return "vastart";
5776  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5777  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5778  case ISD::BUILD_PAIR:         return "build_pair";
5779  case ISD::STACKSAVE:          return "stacksave";
5780  case ISD::STACKRESTORE:       return "stackrestore";
5781  case ISD::TRAP:               return "trap";
5782
5783  // Bit manipulation
5784  case ISD::BSWAP:   return "bswap";
5785  case ISD::CTPOP:   return "ctpop";
5786  case ISD::CTTZ:    return "cttz";
5787  case ISD::CTLZ:    return "ctlz";
5788
5789  // Debug info
5790  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5791  case ISD::DEBUG_LOC: return "debug_loc";
5792
5793  // Trampolines
5794  case ISD::TRAMPOLINE: return "trampoline";
5795
5796  case ISD::CONDCODE:
5797    switch (cast<CondCodeSDNode>(this)->get()) {
5798    default: assert(0 && "Unknown setcc condition!");
5799    case ISD::SETOEQ:  return "setoeq";
5800    case ISD::SETOGT:  return "setogt";
5801    case ISD::SETOGE:  return "setoge";
5802    case ISD::SETOLT:  return "setolt";
5803    case ISD::SETOLE:  return "setole";
5804    case ISD::SETONE:  return "setone";
5805
5806    case ISD::SETO:    return "seto";
5807    case ISD::SETUO:   return "setuo";
5808    case ISD::SETUEQ:  return "setue";
5809    case ISD::SETUGT:  return "setugt";
5810    case ISD::SETUGE:  return "setuge";
5811    case ISD::SETULT:  return "setult";
5812    case ISD::SETULE:  return "setule";
5813    case ISD::SETUNE:  return "setune";
5814
5815    case ISD::SETEQ:   return "seteq";
5816    case ISD::SETGT:   return "setgt";
5817    case ISD::SETGE:   return "setge";
5818    case ISD::SETLT:   return "setlt";
5819    case ISD::SETLE:   return "setle";
5820    case ISD::SETNE:   return "setne";
5821    }
5822  }
5823}
5824
5825const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5826  switch (AM) {
5827  default:
5828    return "";
5829  case ISD::PRE_INC:
5830    return "<pre-inc>";
5831  case ISD::PRE_DEC:
5832    return "<pre-dec>";
5833  case ISD::POST_INC:
5834    return "<post-inc>";
5835  case ISD::POST_DEC:
5836    return "<post-dec>";
5837  }
5838}
5839
5840std::string ISD::ArgFlagsTy::getArgFlagsString() {
5841  std::string S = "< ";
5842
5843  if (isZExt())
5844    S += "zext ";
5845  if (isSExt())
5846    S += "sext ";
5847  if (isInReg())
5848    S += "inreg ";
5849  if (isSRet())
5850    S += "sret ";
5851  if (isByVal())
5852    S += "byval ";
5853  if (isNest())
5854    S += "nest ";
5855  if (getByValAlign())
5856    S += "byval-align:" + utostr(getByValAlign()) + " ";
5857  if (getOrigAlign())
5858    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5859  if (getByValSize())
5860    S += "byval-size:" + utostr(getByValSize()) + " ";
5861  return S + ">";
5862}
5863
5864void SDNode::dump() const { dump(0); }
5865void SDNode::dump(const SelectionDAG *G) const {
5866  print(errs(), G);
5867  errs().flush();
5868}
5869
5870void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5871  OS << (void*)this << ": ";
5872
5873  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5874    if (i) OS << ",";
5875    if (getValueType(i) == MVT::Other)
5876      OS << "ch";
5877    else
5878      OS << getValueType(i).getMVTString();
5879  }
5880  OS << " = " << getOperationName(G);
5881
5882  OS << " ";
5883  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5884    if (i) OS << ", ";
5885    OS << (void*)getOperand(i).getNode();
5886    if (unsigned RN = getOperand(i).getResNo())
5887      OS << ":" << RN;
5888  }
5889
5890  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5891    SDNode *Mask = getOperand(2).getNode();
5892    OS << "<";
5893    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5894      if (i) OS << ",";
5895      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5896        OS << "u";
5897      else
5898        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5899    }
5900    OS << ">";
5901  }
5902
5903  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5904    OS << '<' << CSDN->getAPIntValue() << '>';
5905  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5906    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5907      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5908    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5909      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5910    else {
5911      OS << "<APFloat(";
5912      CSDN->getValueAPF().bitcastToAPInt().dump();
5913      OS << ")>";
5914    }
5915  } else if (const GlobalAddressSDNode *GADN =
5916             dyn_cast<GlobalAddressSDNode>(this)) {
5917    int64_t offset = GADN->getOffset();
5918    OS << '<';
5919    WriteAsOperand(OS, GADN->getGlobal());
5920    OS << '>';
5921    if (offset > 0)
5922      OS << " + " << offset;
5923    else
5924      OS << " " << offset;
5925  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5926    OS << "<" << FIDN->getIndex() << ">";
5927  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5928    OS << "<" << JTDN->getIndex() << ">";
5929  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5930    int offset = CP->getOffset();
5931    if (CP->isMachineConstantPoolEntry())
5932      OS << "<" << *CP->getMachineCPVal() << ">";
5933    else
5934      OS << "<" << *CP->getConstVal() << ">";
5935    if (offset > 0)
5936      OS << " + " << offset;
5937    else
5938      OS << " " << offset;
5939  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5940    OS << "<";
5941    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5942    if (LBB)
5943      OS << LBB->getName() << " ";
5944    OS << (const void*)BBDN->getBasicBlock() << ">";
5945  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5946    if (G && R->getReg() &&
5947        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5948      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5949    } else {
5950      OS << " #" << R->getReg();
5951    }
5952  } else if (const ExternalSymbolSDNode *ES =
5953             dyn_cast<ExternalSymbolSDNode>(this)) {
5954    OS << "'" << ES->getSymbol() << "'";
5955  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5956    if (M->getValue())
5957      OS << "<" << M->getValue() << ">";
5958    else
5959      OS << "<null>";
5960  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5961    if (M->MO.getValue())
5962      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5963    else
5964      OS << "<null:" << M->MO.getOffset() << ">";
5965  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5966    OS << N->getArgFlags().getArgFlagsString();
5967  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5968    OS << ":" << N->getVT().getMVTString();
5969  }
5970  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5971    const Value *SrcValue = LD->getSrcValue();
5972    int SrcOffset = LD->getSrcValueOffset();
5973    OS << " <";
5974    if (SrcValue)
5975      OS << SrcValue;
5976    else
5977      OS << "null";
5978    OS << ":" << SrcOffset << ">";
5979
5980    bool doExt = true;
5981    switch (LD->getExtensionType()) {
5982    default: doExt = false; break;
5983    case ISD::EXTLOAD: OS << " <anyext "; break;
5984    case ISD::SEXTLOAD: OS << " <sext "; break;
5985    case ISD::ZEXTLOAD: OS << " <zext "; break;
5986    }
5987    if (doExt)
5988      OS << LD->getMemoryVT().getMVTString() << ">";
5989
5990    const char *AM = getIndexedModeName(LD->getAddressingMode());
5991    if (*AM)
5992      OS << " " << AM;
5993    if (LD->isVolatile())
5994      OS << " <volatile>";
5995    OS << " alignment=" << LD->getAlignment();
5996  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5997    const Value *SrcValue = ST->getSrcValue();
5998    int SrcOffset = ST->getSrcValueOffset();
5999    OS << " <";
6000    if (SrcValue)
6001      OS << SrcValue;
6002    else
6003      OS << "null";
6004    OS << ":" << SrcOffset << ">";
6005
6006    if (ST->isTruncatingStore())
6007      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
6008
6009    const char *AM = getIndexedModeName(ST->getAddressingMode());
6010    if (*AM)
6011      OS << " " << AM;
6012    if (ST->isVolatile())
6013      OS << " <volatile>";
6014    OS << " alignment=" << ST->getAlignment();
6015  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
6016    const Value *SrcValue = AT->getSrcValue();
6017    int SrcOffset = AT->getSrcValueOffset();
6018    OS << " <";
6019    if (SrcValue)
6020      OS << SrcValue;
6021    else
6022      OS << "null";
6023    OS << ":" << SrcOffset << ">";
6024    if (AT->isVolatile())
6025      OS << " <volatile>";
6026    OS << " alignment=" << AT->getAlignment();
6027  }
6028}
6029
6030static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6031  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6032    if (N->getOperand(i).getNode()->hasOneUse())
6033      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6034    else
6035      cerr << "\n" << std::string(indent+2, ' ')
6036           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6037
6038
6039  cerr << "\n" << std::string(indent, ' ');
6040  N->dump(G);
6041}
6042
6043void SelectionDAG::dump() const {
6044  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
6045
6046  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6047       I != E; ++I) {
6048    const SDNode *N = I;
6049    if (!N->hasOneUse() && N != getRoot().getNode())
6050      DumpNodes(N, 2, this);
6051  }
6052
6053  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6054
6055  cerr << "\n\n";
6056}
6057
6058const Type *ConstantPoolSDNode::getType() const {
6059  if (isMachineConstantPoolEntry())
6060    return Val.MachineCPVal->getType();
6061  return Val.ConstVal->getType();
6062}
6063