SelectionDAG.cpp revision a83385fb7bdb325921d091729d95e2e1f4d49cc1
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Target/MRegisterInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/StringExtras.h"
27#include <iostream>
28#include <set>
29#include <cmath>
30#include <algorithm>
31using namespace llvm;
32
33static bool isCommutativeBinOp(unsigned Opcode) {
34  switch (Opcode) {
35  case ISD::ADD:
36  case ISD::MUL:
37  case ISD::MULHU:
38  case ISD::MULHS:
39  case ISD::FADD:
40  case ISD::FMUL:
41  case ISD::AND:
42  case ISD::OR:
43  case ISD::XOR: return true;
44  default: return false; // FIXME: Need commutative info for user ops!
45  }
46}
47
48// isInvertibleForFree - Return true if there is no cost to emitting the logical
49// inverse of this node.
50static bool isInvertibleForFree(SDOperand N) {
51  if (isa<ConstantSDNode>(N.Val)) return true;
52  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
53    return true;
54  return false;
55}
56
57//===----------------------------------------------------------------------===//
58//                              ConstantFPSDNode Class
59//===----------------------------------------------------------------------===//
60
61/// isExactlyValue - We don't rely on operator== working on double values, as
62/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
63/// As such, this method can be used to do an exact bit-for-bit comparison of
64/// two floating point values.
65bool ConstantFPSDNode::isExactlyValue(double V) const {
66  return DoubleToBits(V) == DoubleToBits(Value);
67}
68
69//===----------------------------------------------------------------------===//
70//                              ISD Namespace
71//===----------------------------------------------------------------------===//
72
73/// isBuildVectorAllOnes - Return true if the specified node is a
74/// BUILD_VECTOR where all of the elements are ~0 or undef.
75bool ISD::isBuildVectorAllOnes(const SDNode *N) {
76  // Look through a bit convert.
77  if (N->getOpcode() == ISD::BIT_CONVERT)
78    N = N->getOperand(0).Val;
79
80  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
81
82  unsigned i = 0, e = N->getNumOperands();
83
84  // Skip over all of the undef values.
85  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
86    ++i;
87
88  // Do not accept an all-undef vector.
89  if (i == e) return false;
90
91  // Do not accept build_vectors that aren't all constants or which have non-~0
92  // elements.
93  SDOperand NotZero = N->getOperand(i);
94  if (isa<ConstantSDNode>(NotZero)) {
95    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
96      return false;
97  } else if (isa<ConstantFPSDNode>(NotZero)) {
98    MVT::ValueType VT = NotZero.getValueType();
99    if (VT== MVT::f64) {
100      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
101          (uint64_t)-1)
102        return false;
103    } else {
104      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
105          (uint32_t)-1)
106        return false;
107    }
108  } else
109    return false;
110
111  // Okay, we have at least one ~0 value, check to see if the rest match or are
112  // undefs.
113  for (++i; i != e; ++i)
114    if (N->getOperand(i) != NotZero &&
115        N->getOperand(i).getOpcode() != ISD::UNDEF)
116      return false;
117  return true;
118}
119
120
121/// isBuildVectorAllZeros - Return true if the specified node is a
122/// BUILD_VECTOR where all of the elements are 0 or undef.
123bool ISD::isBuildVectorAllZeros(const SDNode *N) {
124  // Look through a bit convert.
125  if (N->getOpcode() == ISD::BIT_CONVERT)
126    N = N->getOperand(0).Val;
127
128  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
129
130  unsigned i = 0, e = N->getNumOperands();
131
132  // Skip over all of the undef values.
133  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
134    ++i;
135
136  // Do not accept an all-undef vector.
137  if (i == e) return false;
138
139  // Do not accept build_vectors that aren't all constants or which have non-~0
140  // elements.
141  SDOperand Zero = N->getOperand(i);
142  if (isa<ConstantSDNode>(Zero)) {
143    if (!cast<ConstantSDNode>(Zero)->isNullValue())
144      return false;
145  } else if (isa<ConstantFPSDNode>(Zero)) {
146    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
147      return false;
148  } else
149    return false;
150
151  // Okay, we have at least one ~0 value, check to see if the rest match or are
152  // undefs.
153  for (++i; i != e; ++i)
154    if (N->getOperand(i) != Zero &&
155        N->getOperand(i).getOpcode() != ISD::UNDEF)
156      return false;
157  return true;
158}
159
160/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
161/// when given the operation for (X op Y).
162ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
163  // To perform this operation, we just need to swap the L and G bits of the
164  // operation.
165  unsigned OldL = (Operation >> 2) & 1;
166  unsigned OldG = (Operation >> 1) & 1;
167  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
168                       (OldL << 1) |       // New G bit
169                       (OldG << 2));        // New L bit.
170}
171
172/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
173/// 'op' is a valid SetCC operation.
174ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
175  unsigned Operation = Op;
176  if (isInteger)
177    Operation ^= 7;   // Flip L, G, E bits, but not U.
178  else
179    Operation ^= 15;  // Flip all of the condition bits.
180  if (Operation > ISD::SETTRUE2)
181    Operation &= ~8;     // Don't let N and U bits get set.
182  return ISD::CondCode(Operation);
183}
184
185
186/// isSignedOp - For an integer comparison, return 1 if the comparison is a
187/// signed operation and 2 if the result is an unsigned comparison.  Return zero
188/// if the operation does not depend on the sign of the input (setne and seteq).
189static int isSignedOp(ISD::CondCode Opcode) {
190  switch (Opcode) {
191  default: assert(0 && "Illegal integer setcc operation!");
192  case ISD::SETEQ:
193  case ISD::SETNE: return 0;
194  case ISD::SETLT:
195  case ISD::SETLE:
196  case ISD::SETGT:
197  case ISD::SETGE: return 1;
198  case ISD::SETULT:
199  case ISD::SETULE:
200  case ISD::SETUGT:
201  case ISD::SETUGE: return 2;
202  }
203}
204
205/// getSetCCOrOperation - Return the result of a logical OR between different
206/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
207/// returns SETCC_INVALID if it is not possible to represent the resultant
208/// comparison.
209ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
210                                       bool isInteger) {
211  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
212    // Cannot fold a signed integer setcc with an unsigned integer setcc.
213    return ISD::SETCC_INVALID;
214
215  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
216
217  // If the N and U bits get set then the resultant comparison DOES suddenly
218  // care about orderedness, and is true when ordered.
219  if (Op > ISD::SETTRUE2)
220    Op &= ~16;     // Clear the N bit.
221  return ISD::CondCode(Op);
222}
223
224/// getSetCCAndOperation - Return the result of a logical AND between different
225/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
226/// function returns zero if it is not possible to represent the resultant
227/// comparison.
228ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
229                                        bool isInteger) {
230  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
231    // Cannot fold a signed setcc with an unsigned setcc.
232    return ISD::SETCC_INVALID;
233
234  // Combine all of the condition bits.
235  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
236
237  // Canonicalize illegal integer setcc's.
238  if (isInteger) {
239    switch (Result) {
240    default: break;
241    case ISD::SETUO:   // e.g. SETUGT & SETULT
242      Result = ISD::SETFALSE;
243      break;
244    case ISD::SETUEQ:  // e.g. SETUGE & SETULE
245      Result = ISD::SETEQ;
246      break;
247    }
248  }
249
250  return Result;
251}
252
253const TargetMachine &SelectionDAG::getTarget() const {
254  return TLI.getTargetMachine();
255}
256
257//===----------------------------------------------------------------------===//
258//                              SelectionDAG Class
259//===----------------------------------------------------------------------===//
260
261/// RemoveDeadNodes - This method deletes all unreachable nodes in the
262/// SelectionDAG, including nodes (like loads) that have uses of their token
263/// chain but no other uses and no side effect.  If a node is passed in as an
264/// argument, it is used as the seed for node deletion.
265void SelectionDAG::RemoveDeadNodes(SDNode *N) {
266  // Create a dummy node (which is not added to allnodes), that adds a reference
267  // to the root node, preventing it from being deleted.
268  HandleSDNode Dummy(getRoot());
269
270  bool MadeChange = false;
271
272  // If we have a hint to start from, use it.
273  if (N && N->use_empty()) {
274    DestroyDeadNode(N);
275    MadeChange = true;
276  }
277
278  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
279    if (I->use_empty() && I->getOpcode() != 65535) {
280      // Node is dead, recursively delete newly dead uses.
281      DestroyDeadNode(I);
282      MadeChange = true;
283    }
284
285  // Walk the nodes list, removing the nodes we've marked as dead.
286  if (MadeChange) {
287    for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
288      SDNode *N = I++;
289      if (N->use_empty())
290        AllNodes.erase(N);
291    }
292  }
293
294  // If the root changed (e.g. it was a dead load, update the root).
295  setRoot(Dummy.getValue());
296}
297
298/// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the
299/// graph.  If it is the last user of any of its operands, recursively process
300/// them the same way.
301///
302void SelectionDAG::DestroyDeadNode(SDNode *N) {
303  // Okay, we really are going to delete this node.  First take this out of the
304  // appropriate CSE map.
305  RemoveNodeFromCSEMaps(N);
306
307  // Next, brutally remove the operand list.  This is safe to do, as there are
308  // no cycles in the graph.
309  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
310    SDNode *O = I->Val;
311    O->removeUser(N);
312
313    // Now that we removed this operand, see if there are no uses of it left.
314    if (O->use_empty())
315      DestroyDeadNode(O);
316  }
317  delete[] N->OperandList;
318  N->OperandList = 0;
319  N->NumOperands = 0;
320
321  // Mark the node as dead.
322  N->MorphNodeTo(65535);
323}
324
325void SelectionDAG::DeleteNode(SDNode *N) {
326  assert(N->use_empty() && "Cannot delete a node that is not dead!");
327
328  // First take this out of the appropriate CSE map.
329  RemoveNodeFromCSEMaps(N);
330
331  // Finally, remove uses due to operands of this node, remove from the
332  // AllNodes list, and delete the node.
333  DeleteNodeNotInCSEMaps(N);
334}
335
336void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
337
338  // Remove it from the AllNodes list.
339  AllNodes.remove(N);
340
341  // Drop all of the operands and decrement used nodes use counts.
342  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
343    I->Val->removeUser(N);
344  delete[] N->OperandList;
345  N->OperandList = 0;
346  N->NumOperands = 0;
347
348  delete N;
349}
350
351/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
352/// correspond to it.  This is useful when we're about to delete or repurpose
353/// the node.  We don't want future request for structurally identical nodes
354/// to return N anymore.
355void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
356  bool Erased = false;
357  switch (N->getOpcode()) {
358  case ISD::HANDLENODE: return;  // noop.
359  case ISD::Constant:
360    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
361                                            N->getValueType(0)));
362    break;
363  case ISD::TargetConstant:
364    Erased = TargetConstants.erase(std::make_pair(
365                                    cast<ConstantSDNode>(N)->getValue(),
366                                                  N->getValueType(0)));
367    break;
368  case ISD::ConstantFP: {
369    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
370    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
371    break;
372  }
373  case ISD::TargetConstantFP: {
374    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
375    Erased = TargetConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
376    break;
377  }
378  case ISD::STRING:
379    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
380    break;
381  case ISD::CONDCODE:
382    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
383           "Cond code doesn't exist!");
384    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
385    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
386    break;
387  case ISD::GlobalAddress: {
388    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
389    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
390                                               GN->getOffset()));
391    break;
392  }
393  case ISD::TargetGlobalAddress: {
394    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
395    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
396                                                    GN->getOffset()));
397    break;
398  }
399  case ISD::FrameIndex:
400    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
401    break;
402  case ISD::TargetFrameIndex:
403    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
404    break;
405  case ISD::JumpTable:
406    Erased = JumpTableIndices.erase(cast<JumpTableSDNode>(N)->getIndex());
407    break;
408  case ISD::TargetJumpTable:
409    Erased =
410      TargetJumpTableIndices.erase(cast<JumpTableSDNode>(N)->getIndex());
411    break;
412  case ISD::ConstantPool:
413    Erased = ConstantPoolIndices.
414      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
415                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
416                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
417    break;
418  case ISD::TargetConstantPool:
419    Erased = TargetConstantPoolIndices.
420      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
421                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
422                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
423    break;
424  case ISD::BasicBlock:
425    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
426    break;
427  case ISD::ExternalSymbol:
428    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
429    break;
430  case ISD::TargetExternalSymbol:
431    Erased =
432      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
433    break;
434  case ISD::VALUETYPE:
435    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
436    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
437    break;
438  case ISD::Register:
439    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
440                                           N->getValueType(0)));
441    break;
442  case ISD::SRCVALUE: {
443    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
444    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
445    break;
446  }
447  case ISD::LOAD:
448    Erased = Loads.erase(std::make_pair(N->getOperand(1),
449                                        std::make_pair(N->getOperand(0),
450                                                       N->getValueType(0))));
451    break;
452  default:
453    if (N->getNumValues() == 1) {
454      if (N->getNumOperands() == 0) {
455        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
456                                                 N->getValueType(0)));
457      } else if (N->getNumOperands() == 1) {
458        Erased =
459          UnaryOps.erase(std::make_pair(N->getOpcode(),
460                                        std::make_pair(N->getOperand(0),
461                                                       N->getValueType(0))));
462      } else if (N->getNumOperands() == 2) {
463        Erased =
464          BinaryOps.erase(std::make_pair(N->getOpcode(),
465                                         std::make_pair(N->getOperand(0),
466                                                        N->getOperand(1))));
467      } else {
468        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
469        Erased =
470          OneResultNodes.erase(std::make_pair(N->getOpcode(),
471                                              std::make_pair(N->getValueType(0),
472                                                             Ops)));
473      }
474    } else {
475      // Remove the node from the ArbitraryNodes map.
476      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
477      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
478      Erased =
479        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
480                                            std::make_pair(RV, Ops)));
481    }
482    break;
483  }
484#ifndef NDEBUG
485  // Verify that the node was actually in one of the CSE maps, unless it has a
486  // flag result (which cannot be CSE'd) or is one of the special cases that are
487  // not subject to CSE.
488  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
489      !N->isTargetOpcode()) {
490    N->dump();
491    assert(0 && "Node is not in map!");
492  }
493#endif
494}
495
496/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
497/// has been taken out and modified in some way.  If the specified node already
498/// exists in the CSE maps, do not modify the maps, but return the existing node
499/// instead.  If it doesn't exist, add it and return null.
500///
501SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
502  assert(N->getNumOperands() && "This is a leaf node!");
503  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
504    return 0;    // Never add these nodes.
505
506  // Check that remaining values produced are not flags.
507  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
508    if (N->getValueType(i) == MVT::Flag)
509      return 0;   // Never CSE anything that produces a flag.
510
511  if (N->getNumValues() == 1) {
512    if (N->getNumOperands() == 1) {
513      SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
514                                           std::make_pair(N->getOperand(0),
515                                                          N->getValueType(0)))];
516      if (U) return U;
517      U = N;
518    } else if (N->getNumOperands() == 2) {
519      SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
520                                            std::make_pair(N->getOperand(0),
521                                                           N->getOperand(1)))];
522      if (B) return B;
523      B = N;
524    } else {
525      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
526      SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
527                                      std::make_pair(N->getValueType(0), Ops))];
528      if (ORN) return ORN;
529      ORN = N;
530    }
531  } else {
532    if (N->getOpcode() == ISD::LOAD) {
533      SDNode *&L = Loads[std::make_pair(N->getOperand(1),
534                                        std::make_pair(N->getOperand(0),
535                                                       N->getValueType(0)))];
536      if (L) return L;
537      L = N;
538    } else {
539      // Remove the node from the ArbitraryNodes map.
540      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
541      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
542      SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
543                                                  std::make_pair(RV, Ops))];
544      if (AN) return AN;
545      AN = N;
546    }
547  }
548  return 0;
549}
550
551/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
552/// were replaced with those specified.  If this node is never memoized,
553/// return null, otherwise return a pointer to the slot it would take.  If a
554/// node already exists with these operands, the slot will be non-null.
555SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op) {
556  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
557    return 0;    // Never add these nodes.
558
559  // Check that remaining values produced are not flags.
560  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
561    if (N->getValueType(i) == MVT::Flag)
562      return 0;   // Never CSE anything that produces a flag.
563
564  if (N->getNumValues() == 1) {
565    return &UnaryOps[std::make_pair(N->getOpcode(),
566                                    std::make_pair(Op, N->getValueType(0)))];
567  } else {
568    // Remove the node from the ArbitraryNodes map.
569    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
570    std::vector<SDOperand> Ops;
571    Ops.push_back(Op);
572    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
573                                          std::make_pair(RV, Ops))];
574  }
575  return 0;
576}
577
578/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
579/// were replaced with those specified.  If this node is never memoized,
580/// return null, otherwise return a pointer to the slot it would take.  If a
581/// node already exists with these operands, the slot will be non-null.
582SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
583                                            SDOperand Op1, SDOperand Op2) {
584  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
585    return 0;    // Never add these nodes.
586
587  // Check that remaining values produced are not flags.
588  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
589    if (N->getValueType(i) == MVT::Flag)
590      return 0;   // Never CSE anything that produces a flag.
591
592  if (N->getNumValues() == 1) {
593    return &BinaryOps[std::make_pair(N->getOpcode(),
594                                     std::make_pair(Op1, Op2))];
595  } else {
596    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
597    std::vector<SDOperand> Ops;
598    Ops.push_back(Op1);
599    Ops.push_back(Op2);
600    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
601                                          std::make_pair(RV, Ops))];
602  }
603  return 0;
604}
605
606
607/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
608/// were replaced with those specified.  If this node is never memoized,
609/// return null, otherwise return a pointer to the slot it would take.  If a
610/// node already exists with these operands, the slot will be non-null.
611SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
612                                            const std::vector<SDOperand> &Ops) {
613  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
614    return 0;    // Never add these nodes.
615
616  // Check that remaining values produced are not flags.
617  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
618    if (N->getValueType(i) == MVT::Flag)
619      return 0;   // Never CSE anything that produces a flag.
620
621  if (N->getNumValues() == 1) {
622    if (N->getNumOperands() == 1) {
623      return &UnaryOps[std::make_pair(N->getOpcode(),
624                                      std::make_pair(Ops[0],
625                                                     N->getValueType(0)))];
626    } else if (N->getNumOperands() == 2) {
627      return &BinaryOps[std::make_pair(N->getOpcode(),
628                                       std::make_pair(Ops[0], Ops[1]))];
629    } else {
630      return &OneResultNodes[std::make_pair(N->getOpcode(),
631                                            std::make_pair(N->getValueType(0),
632                                                           Ops))];
633    }
634  } else {
635    if (N->getOpcode() == ISD::LOAD) {
636      return &Loads[std::make_pair(Ops[1],
637                                   std::make_pair(Ops[0], N->getValueType(0)))];
638    } else {
639      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
640      return &ArbitraryNodes[std::make_pair(N->getOpcode(),
641                                            std::make_pair(RV, Ops))];
642    }
643  }
644  return 0;
645}
646
647
648SelectionDAG::~SelectionDAG() {
649  while (!AllNodes.empty()) {
650    SDNode *N = AllNodes.begin();
651    delete [] N->OperandList;
652    N->OperandList = 0;
653    N->NumOperands = 0;
654    AllNodes.pop_front();
655  }
656}
657
658SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
659  if (Op.getValueType() == VT) return Op;
660  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
661  return getNode(ISD::AND, Op.getValueType(), Op,
662                 getConstant(Imm, Op.getValueType()));
663}
664
665SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
666  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
667  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
668
669  // Mask out any bits that are not valid for this constant.
670  if (VT != MVT::i64)
671    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
672
673  SDNode *&N = Constants[std::make_pair(Val, VT)];
674  if (N) return SDOperand(N, 0);
675  N = new ConstantSDNode(false, Val, VT);
676  AllNodes.push_back(N);
677  return SDOperand(N, 0);
678}
679
680SDOperand SelectionDAG::getString(const std::string &Val) {
681  StringSDNode *&N = StringNodes[Val];
682  if (!N) {
683    N = new StringSDNode(Val);
684    AllNodes.push_back(N);
685  }
686  return SDOperand(N, 0);
687}
688
689SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
690  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
691  // Mask out any bits that are not valid for this constant.
692  if (VT != MVT::i64)
693    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
694
695  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
696  if (N) return SDOperand(N, 0);
697  N = new ConstantSDNode(true, Val, VT);
698  AllNodes.push_back(N);
699  return SDOperand(N, 0);
700}
701
702SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
703  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
704  if (VT == MVT::f32)
705    Val = (float)Val;  // Mask out extra precision.
706
707  // Do the map lookup using the actual bit pattern for the floating point
708  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
709  // we don't have issues with SNANs.
710  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
711  if (N) return SDOperand(N, 0);
712  N = new ConstantFPSDNode(false, Val, VT);
713  AllNodes.push_back(N);
714  return SDOperand(N, 0);
715}
716
717SDOperand SelectionDAG::getTargetConstantFP(double Val, MVT::ValueType VT) {
718  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
719  if (VT == MVT::f32)
720    Val = (float)Val;  // Mask out extra precision.
721
722  // Do the map lookup using the actual bit pattern for the floating point
723  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
724  // we don't have issues with SNANs.
725  SDNode *&N = TargetConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
726  if (N) return SDOperand(N, 0);
727  N = new ConstantFPSDNode(true, Val, VT);
728  AllNodes.push_back(N);
729  return SDOperand(N, 0);
730}
731
732SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
733                                         MVT::ValueType VT, int offset) {
734  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
735  if (N) return SDOperand(N, 0);
736  N = new GlobalAddressSDNode(false, GV, VT, offset);
737  AllNodes.push_back(N);
738  return SDOperand(N, 0);
739}
740
741SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
742                                               MVT::ValueType VT, int offset) {
743  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
744  if (N) return SDOperand(N, 0);
745  N = new GlobalAddressSDNode(true, GV, VT, offset);
746  AllNodes.push_back(N);
747  return SDOperand(N, 0);
748}
749
750SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
751  SDNode *&N = FrameIndices[FI];
752  if (N) return SDOperand(N, 0);
753  N = new FrameIndexSDNode(FI, VT, false);
754  AllNodes.push_back(N);
755  return SDOperand(N, 0);
756}
757
758SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
759  SDNode *&N = TargetFrameIndices[FI];
760  if (N) return SDOperand(N, 0);
761  N = new FrameIndexSDNode(FI, VT, true);
762  AllNodes.push_back(N);
763  return SDOperand(N, 0);
764}
765
766SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT) {
767  SDNode *&N = JumpTableIndices[JTI];
768  if (N) return SDOperand(N, 0);
769  N = new JumpTableSDNode(JTI, VT, false);
770  AllNodes.push_back(N);
771  return SDOperand(N, 0);
772}
773
774SDOperand SelectionDAG::getTargetJumpTable(int JTI, MVT::ValueType VT) {
775  SDNode *&N = TargetJumpTableIndices[JTI];
776  if (N) return SDOperand(N, 0);
777  N = new JumpTableSDNode(JTI, VT, true);
778  AllNodes.push_back(N);
779  return SDOperand(N, 0);
780}
781
782SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
783                                        unsigned Alignment,  int Offset) {
784  SDNode *&N = ConstantPoolIndices[std::make_pair(C,
785                                            std::make_pair(Offset, Alignment))];
786  if (N) return SDOperand(N, 0);
787  N = new ConstantPoolSDNode(false, C, VT, Offset, Alignment);
788  AllNodes.push_back(N);
789  return SDOperand(N, 0);
790}
791
792SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT,
793                                             unsigned Alignment,  int Offset) {
794  SDNode *&N = TargetConstantPoolIndices[std::make_pair(C,
795                                            std::make_pair(Offset, Alignment))];
796  if (N) return SDOperand(N, 0);
797  N = new ConstantPoolSDNode(true, C, VT, Offset, Alignment);
798  AllNodes.push_back(N);
799  return SDOperand(N, 0);
800}
801
802SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
803  SDNode *&N = BBNodes[MBB];
804  if (N) return SDOperand(N, 0);
805  N = new BasicBlockSDNode(MBB);
806  AllNodes.push_back(N);
807  return SDOperand(N, 0);
808}
809
810SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
811  if ((unsigned)VT >= ValueTypeNodes.size())
812    ValueTypeNodes.resize(VT+1);
813  if (ValueTypeNodes[VT] == 0) {
814    ValueTypeNodes[VT] = new VTSDNode(VT);
815    AllNodes.push_back(ValueTypeNodes[VT]);
816  }
817
818  return SDOperand(ValueTypeNodes[VT], 0);
819}
820
821SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
822  SDNode *&N = ExternalSymbols[Sym];
823  if (N) return SDOperand(N, 0);
824  N = new ExternalSymbolSDNode(false, Sym, VT);
825  AllNodes.push_back(N);
826  return SDOperand(N, 0);
827}
828
829SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
830                                                MVT::ValueType VT) {
831  SDNode *&N = TargetExternalSymbols[Sym];
832  if (N) return SDOperand(N, 0);
833  N = new ExternalSymbolSDNode(true, Sym, VT);
834  AllNodes.push_back(N);
835  return SDOperand(N, 0);
836}
837
838SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
839  if ((unsigned)Cond >= CondCodeNodes.size())
840    CondCodeNodes.resize(Cond+1);
841
842  if (CondCodeNodes[Cond] == 0) {
843    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
844    AllNodes.push_back(CondCodeNodes[Cond]);
845  }
846  return SDOperand(CondCodeNodes[Cond], 0);
847}
848
849SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
850  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
851  if (!Reg) {
852    Reg = new RegisterSDNode(RegNo, VT);
853    AllNodes.push_back(Reg);
854  }
855  return SDOperand(Reg, 0);
856}
857
858SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
859                                      SDOperand N2, ISD::CondCode Cond) {
860  // These setcc operations always fold.
861  switch (Cond) {
862  default: break;
863  case ISD::SETFALSE:
864  case ISD::SETFALSE2: return getConstant(0, VT);
865  case ISD::SETTRUE:
866  case ISD::SETTRUE2:  return getConstant(1, VT);
867
868  case ISD::SETOEQ:
869  case ISD::SETOGT:
870  case ISD::SETOGE:
871  case ISD::SETOLT:
872  case ISD::SETOLE:
873  case ISD::SETONE:
874  case ISD::SETO:
875  case ISD::SETUO:
876  case ISD::SETUEQ:
877  case ISD::SETUNE:
878    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
879    break;
880  }
881
882  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
883    uint64_t C2 = N2C->getValue();
884    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
885      uint64_t C1 = N1C->getValue();
886
887      // Sign extend the operands if required
888      if (ISD::isSignedIntSetCC(Cond)) {
889        C1 = N1C->getSignExtended();
890        C2 = N2C->getSignExtended();
891      }
892
893      switch (Cond) {
894      default: assert(0 && "Unknown integer setcc!");
895      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
896      case ISD::SETNE:  return getConstant(C1 != C2, VT);
897      case ISD::SETULT: return getConstant(C1 <  C2, VT);
898      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
899      case ISD::SETULE: return getConstant(C1 <= C2, VT);
900      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
901      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
902      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
903      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
904      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
905      }
906    } else {
907      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
908      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
909        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
910
911        // If the comparison constant has bits in the upper part, the
912        // zero-extended value could never match.
913        if (C2 & (~0ULL << InSize)) {
914          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
915          switch (Cond) {
916          case ISD::SETUGT:
917          case ISD::SETUGE:
918          case ISD::SETEQ: return getConstant(0, VT);
919          case ISD::SETULT:
920          case ISD::SETULE:
921          case ISD::SETNE: return getConstant(1, VT);
922          case ISD::SETGT:
923          case ISD::SETGE:
924            // True if the sign bit of C2 is set.
925            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
926          case ISD::SETLT:
927          case ISD::SETLE:
928            // True if the sign bit of C2 isn't set.
929            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
930          default:
931            break;
932          }
933        }
934
935        // Otherwise, we can perform the comparison with the low bits.
936        switch (Cond) {
937        case ISD::SETEQ:
938        case ISD::SETNE:
939        case ISD::SETUGT:
940        case ISD::SETUGE:
941        case ISD::SETULT:
942        case ISD::SETULE:
943          return getSetCC(VT, N1.getOperand(0),
944                          getConstant(C2, N1.getOperand(0).getValueType()),
945                          Cond);
946        default:
947          break;   // todo, be more careful with signed comparisons
948        }
949      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
950                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
951        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
952        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
953        MVT::ValueType ExtDstTy = N1.getValueType();
954        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
955
956        // If the extended part has any inconsistent bits, it cannot ever
957        // compare equal.  In other words, they have to be all ones or all
958        // zeros.
959        uint64_t ExtBits =
960          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
961        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
962          return getConstant(Cond == ISD::SETNE, VT);
963
964        // Otherwise, make this a use of a zext.
965        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
966                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
967                        Cond);
968      }
969
970      uint64_t MinVal, MaxVal;
971      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
972      if (ISD::isSignedIntSetCC(Cond)) {
973        MinVal = 1ULL << (OperandBitSize-1);
974        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
975          MaxVal = ~0ULL >> (65-OperandBitSize);
976        else
977          MaxVal = 0;
978      } else {
979        MinVal = 0;
980        MaxVal = ~0ULL >> (64-OperandBitSize);
981      }
982
983      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
984      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
985        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
986        --C2;                                          // X >= C1 --> X > (C1-1)
987        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
988                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
989      }
990
991      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
992        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
993        ++C2;                                          // X <= C1 --> X < (C1+1)
994        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
995                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
996      }
997
998      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
999        return getConstant(0, VT);      // X < MIN --> false
1000
1001      // Canonicalize setgt X, Min --> setne X, Min
1002      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
1003        return getSetCC(VT, N1, N2, ISD::SETNE);
1004
1005      // If we have setult X, 1, turn it into seteq X, 0
1006      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
1007        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
1008                        ISD::SETEQ);
1009      // If we have setugt X, Max-1, turn it into seteq X, Max
1010      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
1011        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
1012                        ISD::SETEQ);
1013
1014      // If we have "setcc X, C1", check to see if we can shrink the immediate
1015      // by changing cc.
1016
1017      // SETUGT X, SINTMAX  -> SETLT X, 0
1018      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1019          C2 == (~0ULL >> (65-OperandBitSize)))
1020        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
1021
1022      // FIXME: Implement the rest of these.
1023
1024
1025      // Fold bit comparisons when we can.
1026      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1027          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
1028        if (ConstantSDNode *AndRHS =
1029                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1030          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1031            // Perform the xform if the AND RHS is a single bit.
1032            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
1033              return getNode(ISD::SRL, VT, N1,
1034                             getConstant(Log2_64(AndRHS->getValue()),
1035                                                   TLI.getShiftAmountTy()));
1036            }
1037          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
1038            // (X & 8) == 8  -->  (X & 8) >> 3
1039            // Perform the xform if C2 is a single bit.
1040            if ((C2 & (C2-1)) == 0) {
1041              return getNode(ISD::SRL, VT, N1,
1042                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
1043            }
1044          }
1045        }
1046    }
1047  } else if (isa<ConstantSDNode>(N1.Val)) {
1048      // Ensure that the constant occurs on the RHS.
1049    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1050  }
1051
1052  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
1053    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1054      double C1 = N1C->getValue(), C2 = N2C->getValue();
1055
1056      switch (Cond) {
1057      default: break; // FIXME: Implement the rest of these!
1058      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1059      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1060      case ISD::SETLT:  return getConstant(C1 < C2, VT);
1061      case ISD::SETGT:  return getConstant(C1 > C2, VT);
1062      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
1063      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
1064      }
1065    } else {
1066      // Ensure that the constant occurs on the RHS.
1067      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1068    }
1069
1070  // Could not fold it.
1071  return SDOperand();
1072}
1073
1074/// getNode - Gets or creates the specified node.
1075///
1076SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1077  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
1078  if (!N) {
1079    N = new SDNode(Opcode, VT);
1080    AllNodes.push_back(N);
1081  }
1082  return SDOperand(N, 0);
1083}
1084
1085SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1086                                SDOperand Operand) {
1087  unsigned Tmp1;
1088  // Constant fold unary operations with an integer constant operand.
1089  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1090    uint64_t Val = C->getValue();
1091    switch (Opcode) {
1092    default: break;
1093    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1094    case ISD::ANY_EXTEND:
1095    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1096    case ISD::TRUNCATE:    return getConstant(Val, VT);
1097    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1098    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1099    case ISD::BIT_CONVERT:
1100      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1101        return getConstantFP(BitsToFloat(Val), VT);
1102      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1103        return getConstantFP(BitsToDouble(Val), VT);
1104      break;
1105    case ISD::BSWAP:
1106      switch(VT) {
1107      default: assert(0 && "Invalid bswap!"); break;
1108      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1109      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1110      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1111      }
1112      break;
1113    case ISD::CTPOP:
1114      switch(VT) {
1115      default: assert(0 && "Invalid ctpop!"); break;
1116      case MVT::i1: return getConstant(Val != 0, VT);
1117      case MVT::i8:
1118        Tmp1 = (unsigned)Val & 0xFF;
1119        return getConstant(CountPopulation_32(Tmp1), VT);
1120      case MVT::i16:
1121        Tmp1 = (unsigned)Val & 0xFFFF;
1122        return getConstant(CountPopulation_32(Tmp1), VT);
1123      case MVT::i32:
1124        return getConstant(CountPopulation_32((unsigned)Val), VT);
1125      case MVT::i64:
1126        return getConstant(CountPopulation_64(Val), VT);
1127      }
1128    case ISD::CTLZ:
1129      switch(VT) {
1130      default: assert(0 && "Invalid ctlz!"); break;
1131      case MVT::i1: return getConstant(Val == 0, VT);
1132      case MVT::i8:
1133        Tmp1 = (unsigned)Val & 0xFF;
1134        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1135      case MVT::i16:
1136        Tmp1 = (unsigned)Val & 0xFFFF;
1137        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1138      case MVT::i32:
1139        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1140      case MVT::i64:
1141        return getConstant(CountLeadingZeros_64(Val), VT);
1142      }
1143    case ISD::CTTZ:
1144      switch(VT) {
1145      default: assert(0 && "Invalid cttz!"); break;
1146      case MVT::i1: return getConstant(Val == 0, VT);
1147      case MVT::i8:
1148        Tmp1 = (unsigned)Val | 0x100;
1149        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1150      case MVT::i16:
1151        Tmp1 = (unsigned)Val | 0x10000;
1152        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1153      case MVT::i32:
1154        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1155      case MVT::i64:
1156        return getConstant(CountTrailingZeros_64(Val), VT);
1157      }
1158    }
1159  }
1160
1161  // Constant fold unary operations with an floating point constant operand.
1162  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1163    switch (Opcode) {
1164    case ISD::FNEG:
1165      return getConstantFP(-C->getValue(), VT);
1166    case ISD::FABS:
1167      return getConstantFP(fabs(C->getValue()), VT);
1168    case ISD::FP_ROUND:
1169    case ISD::FP_EXTEND:
1170      return getConstantFP(C->getValue(), VT);
1171    case ISD::FP_TO_SINT:
1172      return getConstant((int64_t)C->getValue(), VT);
1173    case ISD::FP_TO_UINT:
1174      return getConstant((uint64_t)C->getValue(), VT);
1175    case ISD::BIT_CONVERT:
1176      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1177        return getConstant(FloatToBits(C->getValue()), VT);
1178      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1179        return getConstant(DoubleToBits(C->getValue()), VT);
1180      break;
1181    }
1182
1183  unsigned OpOpcode = Operand.Val->getOpcode();
1184  switch (Opcode) {
1185  case ISD::TokenFactor:
1186    return Operand;         // Factor of one node?  No factor.
1187  case ISD::SIGN_EXTEND:
1188    if (Operand.getValueType() == VT) return Operand;   // noop extension
1189    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1190    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1191      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1192    break;
1193  case ISD::ZERO_EXTEND:
1194    if (Operand.getValueType() == VT) return Operand;   // noop extension
1195    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1196    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1197      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1198    break;
1199  case ISD::ANY_EXTEND:
1200    if (Operand.getValueType() == VT) return Operand;   // noop extension
1201    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1202    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1203      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1204      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1205    break;
1206  case ISD::TRUNCATE:
1207    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1208    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1209    if (OpOpcode == ISD::TRUNCATE)
1210      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1211    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1212             OpOpcode == ISD::ANY_EXTEND) {
1213      // If the source is smaller than the dest, we still need an extend.
1214      if (Operand.Val->getOperand(0).getValueType() < VT)
1215        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1216      else if (Operand.Val->getOperand(0).getValueType() > VT)
1217        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1218      else
1219        return Operand.Val->getOperand(0);
1220    }
1221    break;
1222  case ISD::BIT_CONVERT:
1223    // Basic sanity checking.
1224    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1225           && "Cannot BIT_CONVERT between two different types!");
1226    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1227    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1228      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1229    if (OpOpcode == ISD::UNDEF)
1230      return getNode(ISD::UNDEF, VT);
1231    break;
1232  case ISD::SCALAR_TO_VECTOR:
1233    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1234           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1235           "Illegal SCALAR_TO_VECTOR node!");
1236    break;
1237  case ISD::FNEG:
1238    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1239      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1240                     Operand.Val->getOperand(0));
1241    if (OpOpcode == ISD::FNEG)  // --X -> X
1242      return Operand.Val->getOperand(0);
1243    break;
1244  case ISD::FABS:
1245    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1246      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1247    break;
1248  }
1249
1250  SDNode *N;
1251  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1252    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1253    if (E) return SDOperand(E, 0);
1254    E = N = new SDNode(Opcode, Operand);
1255  } else {
1256    N = new SDNode(Opcode, Operand);
1257  }
1258  N->setValueTypes(VT);
1259  AllNodes.push_back(N);
1260  return SDOperand(N, 0);
1261}
1262
1263
1264
1265SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1266                                SDOperand N1, SDOperand N2) {
1267#ifndef NDEBUG
1268  switch (Opcode) {
1269  case ISD::TokenFactor:
1270    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1271           N2.getValueType() == MVT::Other && "Invalid token factor!");
1272    break;
1273  case ISD::AND:
1274  case ISD::OR:
1275  case ISD::XOR:
1276  case ISD::UDIV:
1277  case ISD::UREM:
1278  case ISD::MULHU:
1279  case ISD::MULHS:
1280    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1281    // fall through
1282  case ISD::ADD:
1283  case ISD::SUB:
1284  case ISD::MUL:
1285  case ISD::SDIV:
1286  case ISD::SREM:
1287    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1288    // fall through.
1289  case ISD::FADD:
1290  case ISD::FSUB:
1291  case ISD::FMUL:
1292  case ISD::FDIV:
1293  case ISD::FREM:
1294    assert(N1.getValueType() == N2.getValueType() &&
1295           N1.getValueType() == VT && "Binary operator types must match!");
1296    break;
1297  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1298    assert(N1.getValueType() == VT &&
1299           MVT::isFloatingPoint(N1.getValueType()) &&
1300           MVT::isFloatingPoint(N2.getValueType()) &&
1301           "Invalid FCOPYSIGN!");
1302    break;
1303  case ISD::SHL:
1304  case ISD::SRA:
1305  case ISD::SRL:
1306  case ISD::ROTL:
1307  case ISD::ROTR:
1308    assert(VT == N1.getValueType() &&
1309           "Shift operators return type must be the same as their first arg");
1310    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1311           VT != MVT::i1 && "Shifts only work on integers");
1312    break;
1313  case ISD::FP_ROUND_INREG: {
1314    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1315    assert(VT == N1.getValueType() && "Not an inreg round!");
1316    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1317           "Cannot FP_ROUND_INREG integer types");
1318    assert(EVT <= VT && "Not rounding down!");
1319    break;
1320  }
1321  case ISD::AssertSext:
1322  case ISD::AssertZext:
1323  case ISD::SIGN_EXTEND_INREG: {
1324    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1325    assert(VT == N1.getValueType() && "Not an inreg extend!");
1326    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1327           "Cannot *_EXTEND_INREG FP types");
1328    assert(EVT <= VT && "Not extending!");
1329  }
1330
1331  default: break;
1332  }
1333#endif
1334
1335  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1336  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1337  if (N1C) {
1338    if (N2C) {
1339      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1340      switch (Opcode) {
1341      case ISD::ADD: return getConstant(C1 + C2, VT);
1342      case ISD::SUB: return getConstant(C1 - C2, VT);
1343      case ISD::MUL: return getConstant(C1 * C2, VT);
1344      case ISD::UDIV:
1345        if (C2) return getConstant(C1 / C2, VT);
1346        break;
1347      case ISD::UREM :
1348        if (C2) return getConstant(C1 % C2, VT);
1349        break;
1350      case ISD::SDIV :
1351        if (C2) return getConstant(N1C->getSignExtended() /
1352                                   N2C->getSignExtended(), VT);
1353        break;
1354      case ISD::SREM :
1355        if (C2) return getConstant(N1C->getSignExtended() %
1356                                   N2C->getSignExtended(), VT);
1357        break;
1358      case ISD::AND  : return getConstant(C1 & C2, VT);
1359      case ISD::OR   : return getConstant(C1 | C2, VT);
1360      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1361      case ISD::SHL  : return getConstant(C1 << C2, VT);
1362      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1363      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1364      case ISD::ROTL :
1365        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1366                           VT);
1367      case ISD::ROTR :
1368        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1369                           VT);
1370      default: break;
1371      }
1372    } else {      // Cannonicalize constant to RHS if commutative
1373      if (isCommutativeBinOp(Opcode)) {
1374        std::swap(N1C, N2C);
1375        std::swap(N1, N2);
1376      }
1377    }
1378  }
1379
1380  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1381  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1382  if (N1CFP) {
1383    if (N2CFP) {
1384      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1385      switch (Opcode) {
1386      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1387      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1388      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1389      case ISD::FDIV:
1390        if (C2) return getConstantFP(C1 / C2, VT);
1391        break;
1392      case ISD::FREM :
1393        if (C2) return getConstantFP(fmod(C1, C2), VT);
1394        break;
1395      case ISD::FCOPYSIGN: {
1396        union {
1397          double   F;
1398          uint64_t I;
1399        } u1;
1400        union {
1401          double  F;
1402          int64_t I;
1403        } u2;
1404        u1.F = C1;
1405        u2.F = C2;
1406        if (u2.I < 0)  // Sign bit of RHS set?
1407          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1408        else
1409          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1410        return getConstantFP(u1.F, VT);
1411      }
1412      default: break;
1413      }
1414    } else {      // Cannonicalize constant to RHS if commutative
1415      if (isCommutativeBinOp(Opcode)) {
1416        std::swap(N1CFP, N2CFP);
1417        std::swap(N1, N2);
1418      }
1419    }
1420  }
1421
1422  // Canonicalize an UNDEF to the RHS, even over a constant.
1423  if (N1.getOpcode() == ISD::UNDEF) {
1424    if (isCommutativeBinOp(Opcode)) {
1425      std::swap(N1, N2);
1426    } else {
1427      switch (Opcode) {
1428      case ISD::FP_ROUND_INREG:
1429      case ISD::SIGN_EXTEND_INREG:
1430      case ISD::SUB:
1431      case ISD::FSUB:
1432      case ISD::FDIV:
1433      case ISD::FREM:
1434        return N1;     // fold op(undef, arg2) -> undef
1435      case ISD::UDIV:
1436      case ISD::SDIV:
1437      case ISD::UREM:
1438      case ISD::SREM:
1439        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1440      }
1441    }
1442  }
1443
1444  // Fold a bunch of operators that
1445  if (N2.getOpcode() == ISD::UNDEF) {
1446    switch (Opcode) {
1447    case ISD::ADD:
1448    case ISD::SUB:
1449    case ISD::FADD:
1450    case ISD::FSUB:
1451    case ISD::FMUL:
1452    case ISD::FDIV:
1453    case ISD::FREM:
1454    case ISD::UDIV:
1455    case ISD::SDIV:
1456    case ISD::UREM:
1457    case ISD::SREM:
1458    case ISD::XOR:
1459      return N2;       // fold op(arg1, undef) -> undef
1460    case ISD::MUL:
1461    case ISD::AND:
1462      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1463    case ISD::OR:
1464      return getConstant(MVT::getIntVTBitMask(VT), VT);
1465    }
1466  }
1467
1468  // Finally, fold operations that do not require constants.
1469  switch (Opcode) {
1470  case ISD::FP_ROUND_INREG:
1471    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1472    break;
1473  case ISD::SIGN_EXTEND_INREG: {
1474    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1475    if (EVT == VT) return N1;  // Not actually extending
1476    break;
1477  }
1478
1479  // FIXME: figure out how to safely handle things like
1480  // int foo(int x) { return 1 << (x & 255); }
1481  // int bar() { return foo(256); }
1482#if 0
1483  case ISD::SHL:
1484  case ISD::SRL:
1485  case ISD::SRA:
1486    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1487        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1488      return getNode(Opcode, VT, N1, N2.getOperand(0));
1489    else if (N2.getOpcode() == ISD::AND)
1490      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1491        // If the and is only masking out bits that cannot effect the shift,
1492        // eliminate the and.
1493        unsigned NumBits = MVT::getSizeInBits(VT);
1494        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1495          return getNode(Opcode, VT, N1, N2.getOperand(0));
1496      }
1497    break;
1498#endif
1499  }
1500
1501  // Memoize this node if possible.
1502  SDNode *N;
1503  if (VT != MVT::Flag) {
1504    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1505    if (BON) return SDOperand(BON, 0);
1506
1507    BON = N = new SDNode(Opcode, N1, N2);
1508  } else {
1509    N = new SDNode(Opcode, N1, N2);
1510  }
1511
1512  N->setValueTypes(VT);
1513  AllNodes.push_back(N);
1514  return SDOperand(N, 0);
1515}
1516
1517SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1518                                SDOperand N1, SDOperand N2, SDOperand N3) {
1519  // Perform various simplifications.
1520  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1521  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1522  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1523  switch (Opcode) {
1524  case ISD::SETCC: {
1525    // Use SimplifySetCC  to simplify SETCC's.
1526    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1527    if (Simp.Val) return Simp;
1528    break;
1529  }
1530  case ISD::SELECT:
1531    if (N1C)
1532      if (N1C->getValue())
1533        return N2;             // select true, X, Y -> X
1534      else
1535        return N3;             // select false, X, Y -> Y
1536
1537    if (N2 == N3) return N2;   // select C, X, X -> X
1538    break;
1539  case ISD::BRCOND:
1540    if (N2C)
1541      if (N2C->getValue()) // Unconditional branch
1542        return getNode(ISD::BR, MVT::Other, N1, N3);
1543      else
1544        return N1;         // Never-taken branch
1545    break;
1546  case ISD::VECTOR_SHUFFLE:
1547    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1548           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1549           N3.getOpcode() == ISD::BUILD_VECTOR &&
1550           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1551           "Illegal VECTOR_SHUFFLE node!");
1552    break;
1553  }
1554
1555  std::vector<SDOperand> Ops;
1556  Ops.reserve(3);
1557  Ops.push_back(N1);
1558  Ops.push_back(N2);
1559  Ops.push_back(N3);
1560
1561  // Memoize node if it doesn't produce a flag.
1562  SDNode *N;
1563  if (VT != MVT::Flag) {
1564    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1565    if (E) return SDOperand(E, 0);
1566    E = N = new SDNode(Opcode, N1, N2, N3);
1567  } else {
1568    N = new SDNode(Opcode, N1, N2, N3);
1569  }
1570  N->setValueTypes(VT);
1571  AllNodes.push_back(N);
1572  return SDOperand(N, 0);
1573}
1574
1575SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1576                                SDOperand N1, SDOperand N2, SDOperand N3,
1577                                SDOperand N4) {
1578  std::vector<SDOperand> Ops;
1579  Ops.reserve(4);
1580  Ops.push_back(N1);
1581  Ops.push_back(N2);
1582  Ops.push_back(N3);
1583  Ops.push_back(N4);
1584  return getNode(Opcode, VT, Ops);
1585}
1586
1587SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1588                                SDOperand N1, SDOperand N2, SDOperand N3,
1589                                SDOperand N4, SDOperand N5) {
1590  std::vector<SDOperand> Ops;
1591  Ops.reserve(5);
1592  Ops.push_back(N1);
1593  Ops.push_back(N2);
1594  Ops.push_back(N3);
1595  Ops.push_back(N4);
1596  Ops.push_back(N5);
1597  return getNode(Opcode, VT, Ops);
1598}
1599
1600SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1601                                SDOperand Chain, SDOperand Ptr,
1602                                SDOperand SV) {
1603  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1604  if (N) return SDOperand(N, 0);
1605  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1606
1607  // Loads have a token chain.
1608  setNodeValueTypes(N, VT, MVT::Other);
1609  AllNodes.push_back(N);
1610  return SDOperand(N, 0);
1611}
1612
1613SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1614                                   SDOperand Chain, SDOperand Ptr,
1615                                   SDOperand SV) {
1616  std::vector<SDOperand> Ops;
1617  Ops.reserve(5);
1618  Ops.push_back(Chain);
1619  Ops.push_back(Ptr);
1620  Ops.push_back(SV);
1621  Ops.push_back(getConstant(Count, MVT::i32));
1622  Ops.push_back(getValueType(EVT));
1623  std::vector<MVT::ValueType> VTs;
1624  VTs.reserve(2);
1625  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1626  return getNode(ISD::VLOAD, VTs, Ops);
1627}
1628
1629SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1630                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1631                                   MVT::ValueType EVT) {
1632  std::vector<SDOperand> Ops;
1633  Ops.reserve(4);
1634  Ops.push_back(Chain);
1635  Ops.push_back(Ptr);
1636  Ops.push_back(SV);
1637  Ops.push_back(getValueType(EVT));
1638  std::vector<MVT::ValueType> VTs;
1639  VTs.reserve(2);
1640  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1641  return getNode(Opcode, VTs, Ops);
1642}
1643
1644SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1645  assert((!V || isa<PointerType>(V->getType())) &&
1646         "SrcValue is not a pointer?");
1647  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1648  if (N) return SDOperand(N, 0);
1649
1650  N = new SrcValueSDNode(V, Offset);
1651  AllNodes.push_back(N);
1652  return SDOperand(N, 0);
1653}
1654
1655SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1656                                 SDOperand Chain, SDOperand Ptr,
1657                                 SDOperand SV) {
1658  std::vector<SDOperand> Ops;
1659  Ops.reserve(3);
1660  Ops.push_back(Chain);
1661  Ops.push_back(Ptr);
1662  Ops.push_back(SV);
1663  std::vector<MVT::ValueType> VTs;
1664  VTs.reserve(2);
1665  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1666  return getNode(ISD::VAARG, VTs, Ops);
1667}
1668
1669SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1670                                std::vector<SDOperand> &Ops) {
1671  switch (Ops.size()) {
1672  case 0: return getNode(Opcode, VT);
1673  case 1: return getNode(Opcode, VT, Ops[0]);
1674  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1675  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1676  default: break;
1677  }
1678
1679  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1680  switch (Opcode) {
1681  default: break;
1682  case ISD::TRUNCSTORE: {
1683    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1684    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1685#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1686    // If this is a truncating store of a constant, convert to the desired type
1687    // and store it instead.
1688    if (isa<Constant>(Ops[0])) {
1689      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1690      if (isa<Constant>(Op))
1691        N1 = Op;
1692    }
1693    // Also for ConstantFP?
1694#endif
1695    if (Ops[0].getValueType() == EVT)       // Normal store?
1696      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1697    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1698    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1699           "Can't do FP-INT conversion!");
1700    break;
1701  }
1702  case ISD::SELECT_CC: {
1703    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1704    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1705           "LHS and RHS of condition must have same type!");
1706    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1707           "True and False arms of SelectCC must have same type!");
1708    assert(Ops[2].getValueType() == VT &&
1709           "select_cc node must be of same type as true and false value!");
1710    break;
1711  }
1712  case ISD::BR_CC: {
1713    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1714    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1715           "LHS/RHS of comparison should match types!");
1716    break;
1717  }
1718  }
1719
1720  // Memoize nodes.
1721  SDNode *N;
1722  if (VT != MVT::Flag) {
1723    SDNode *&E =
1724      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1725    if (E) return SDOperand(E, 0);
1726    E = N = new SDNode(Opcode, Ops);
1727  } else {
1728    N = new SDNode(Opcode, Ops);
1729  }
1730  N->setValueTypes(VT);
1731  AllNodes.push_back(N);
1732  return SDOperand(N, 0);
1733}
1734
1735SDOperand SelectionDAG::getNode(unsigned Opcode,
1736                                std::vector<MVT::ValueType> &ResultTys,
1737                                std::vector<SDOperand> &Ops) {
1738  if (ResultTys.size() == 1)
1739    return getNode(Opcode, ResultTys[0], Ops);
1740
1741  switch (Opcode) {
1742  case ISD::EXTLOAD:
1743  case ISD::SEXTLOAD:
1744  case ISD::ZEXTLOAD: {
1745    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1746    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1747    // If they are asking for an extending load from/to the same thing, return a
1748    // normal load.
1749    if (ResultTys[0] == EVT)
1750      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1751    if (MVT::isVector(ResultTys[0])) {
1752      assert(EVT == MVT::getVectorBaseType(ResultTys[0]) &&
1753             "Invalid vector extload!");
1754    } else {
1755      assert(EVT < ResultTys[0] &&
1756             "Should only be an extending load, not truncating!");
1757    }
1758    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1759           "Cannot sign/zero extend a FP/Vector load!");
1760    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1761           "Cannot convert from FP to Int or Int -> FP!");
1762    break;
1763  }
1764
1765  // FIXME: figure out how to safely handle things like
1766  // int foo(int x) { return 1 << (x & 255); }
1767  // int bar() { return foo(256); }
1768#if 0
1769  case ISD::SRA_PARTS:
1770  case ISD::SRL_PARTS:
1771  case ISD::SHL_PARTS:
1772    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1773        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1774      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1775    else if (N3.getOpcode() == ISD::AND)
1776      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1777        // If the and is only masking out bits that cannot effect the shift,
1778        // eliminate the and.
1779        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1780        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1781          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1782      }
1783    break;
1784#endif
1785  }
1786
1787  // Memoize the node unless it returns a flag.
1788  SDNode *N;
1789  if (ResultTys.back() != MVT::Flag) {
1790    SDNode *&E =
1791      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1792    if (E) return SDOperand(E, 0);
1793    E = N = new SDNode(Opcode, Ops);
1794  } else {
1795    N = new SDNode(Opcode, Ops);
1796  }
1797  setNodeValueTypes(N, ResultTys);
1798  AllNodes.push_back(N);
1799  return SDOperand(N, 0);
1800}
1801
1802void SelectionDAG::setNodeValueTypes(SDNode *N,
1803                                     std::vector<MVT::ValueType> &RetVals) {
1804  switch (RetVals.size()) {
1805  case 0: return;
1806  case 1: N->setValueTypes(RetVals[0]); return;
1807  case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
1808  default: break;
1809  }
1810
1811  std::list<std::vector<MVT::ValueType> >::iterator I =
1812    std::find(VTList.begin(), VTList.end(), RetVals);
1813  if (I == VTList.end()) {
1814    VTList.push_front(RetVals);
1815    I = VTList.begin();
1816  }
1817
1818  N->setValueTypes(&(*I)[0], I->size());
1819}
1820
1821void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
1822                                     MVT::ValueType VT2) {
1823  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1824       E = VTList.end(); I != E; ++I) {
1825    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
1826      N->setValueTypes(&(*I)[0], 2);
1827      return;
1828    }
1829  }
1830  std::vector<MVT::ValueType> V;
1831  V.push_back(VT1);
1832  V.push_back(VT2);
1833  VTList.push_front(V);
1834  N->setValueTypes(&(*VTList.begin())[0], 2);
1835}
1836
1837/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1838/// specified operands.  If the resultant node already exists in the DAG,
1839/// this does not modify the specified node, instead it returns the node that
1840/// already exists.  If the resultant node does not exist in the DAG, the
1841/// input node is returned.  As a degenerate case, if you specify the same
1842/// input operands as the node already has, the input node is returned.
1843SDOperand SelectionDAG::
1844UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1845  SDNode *N = InN.Val;
1846  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1847
1848  // Check to see if there is no change.
1849  if (Op == N->getOperand(0)) return InN;
1850
1851  // See if the modified node already exists.
1852  SDNode **NewSlot = FindModifiedNodeSlot(N, Op);
1853  if (NewSlot && *NewSlot)
1854    return SDOperand(*NewSlot, InN.ResNo);
1855
1856  // Nope it doesn't.  Remove the node from it's current place in the maps.
1857  if (NewSlot)
1858    RemoveNodeFromCSEMaps(N);
1859
1860  // Now we update the operands.
1861  N->OperandList[0].Val->removeUser(N);
1862  Op.Val->addUser(N);
1863  N->OperandList[0] = Op;
1864
1865  // If this gets put into a CSE map, add it.
1866  if (NewSlot) *NewSlot = N;
1867  return InN;
1868}
1869
1870SDOperand SelectionDAG::
1871UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1872  SDNode *N = InN.Val;
1873  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1874
1875  // Check to see if there is no change.
1876  bool AnyChange = false;
1877  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1878    return InN;   // No operands changed, just return the input node.
1879
1880  // See if the modified node already exists.
1881  SDNode **NewSlot = FindModifiedNodeSlot(N, Op1, Op2);
1882  if (NewSlot && *NewSlot)
1883    return SDOperand(*NewSlot, InN.ResNo);
1884
1885  // Nope it doesn't.  Remove the node from it's current place in the maps.
1886  if (NewSlot)
1887    RemoveNodeFromCSEMaps(N);
1888
1889  // Now we update the operands.
1890  if (N->OperandList[0] != Op1) {
1891    N->OperandList[0].Val->removeUser(N);
1892    Op1.Val->addUser(N);
1893    N->OperandList[0] = Op1;
1894  }
1895  if (N->OperandList[1] != Op2) {
1896    N->OperandList[1].Val->removeUser(N);
1897    Op2.Val->addUser(N);
1898    N->OperandList[1] = Op2;
1899  }
1900
1901  // If this gets put into a CSE map, add it.
1902  if (NewSlot) *NewSlot = N;
1903  return InN;
1904}
1905
1906SDOperand SelectionDAG::
1907UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1908  std::vector<SDOperand> Ops;
1909  Ops.push_back(Op1);
1910  Ops.push_back(Op2);
1911  Ops.push_back(Op3);
1912  return UpdateNodeOperands(N, Ops);
1913}
1914
1915SDOperand SelectionDAG::
1916UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1917                   SDOperand Op3, SDOperand Op4) {
1918  std::vector<SDOperand> Ops;
1919  Ops.push_back(Op1);
1920  Ops.push_back(Op2);
1921  Ops.push_back(Op3);
1922  Ops.push_back(Op4);
1923  return UpdateNodeOperands(N, Ops);
1924}
1925
1926SDOperand SelectionDAG::
1927UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1928                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1929  std::vector<SDOperand> Ops;
1930  Ops.push_back(Op1);
1931  Ops.push_back(Op2);
1932  Ops.push_back(Op3);
1933  Ops.push_back(Op4);
1934  Ops.push_back(Op5);
1935  return UpdateNodeOperands(N, Ops);
1936}
1937
1938
1939SDOperand SelectionDAG::
1940UpdateNodeOperands(SDOperand InN, const std::vector<SDOperand> &Ops) {
1941  SDNode *N = InN.Val;
1942  assert(N->getNumOperands() == Ops.size() &&
1943         "Update with wrong number of operands");
1944
1945  // Check to see if there is no change.
1946  unsigned NumOps = Ops.size();
1947  bool AnyChange = false;
1948  for (unsigned i = 0; i != NumOps; ++i) {
1949    if (Ops[i] != N->getOperand(i)) {
1950      AnyChange = true;
1951      break;
1952    }
1953  }
1954
1955  // No operands changed, just return the input node.
1956  if (!AnyChange) return InN;
1957
1958  // See if the modified node already exists.
1959  SDNode **NewSlot = FindModifiedNodeSlot(N, Ops);
1960  if (NewSlot && *NewSlot)
1961    return SDOperand(*NewSlot, InN.ResNo);
1962
1963  // Nope it doesn't.  Remove the node from it's current place in the maps.
1964  if (NewSlot)
1965    RemoveNodeFromCSEMaps(N);
1966
1967  // Now we update the operands.
1968  for (unsigned i = 0; i != NumOps; ++i) {
1969    if (N->OperandList[i] != Ops[i]) {
1970      N->OperandList[i].Val->removeUser(N);
1971      Ops[i].Val->addUser(N);
1972      N->OperandList[i] = Ops[i];
1973    }
1974  }
1975
1976  // If this gets put into a CSE map, add it.
1977  if (NewSlot) *NewSlot = N;
1978  return InN;
1979}
1980
1981
1982
1983
1984/// SelectNodeTo - These are used for target selectors to *mutate* the
1985/// specified node to have the specified return type, Target opcode, and
1986/// operands.  Note that target opcodes are stored as
1987/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1988///
1989/// Note that SelectNodeTo returns the resultant node.  If there is already a
1990/// node of the specified opcode and operands, it returns that node instead of
1991/// the current one.
1992SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1993                                     MVT::ValueType VT) {
1994  // If an identical node already exists, use it.
1995  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1996  if (ON) return SDOperand(ON, 0);
1997
1998  RemoveNodeFromCSEMaps(N);
1999
2000  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2001  N->setValueTypes(VT);
2002
2003  ON = N;   // Memoize the new node.
2004  return SDOperand(N, 0);
2005}
2006
2007SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2008                                     MVT::ValueType VT, SDOperand Op1) {
2009  // If an identical node already exists, use it.
2010  SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2011                                        std::make_pair(Op1, VT))];
2012  if (ON) return SDOperand(ON, 0);
2013
2014  RemoveNodeFromCSEMaps(N);
2015  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2016  N->setValueTypes(VT);
2017  N->setOperands(Op1);
2018
2019  ON = N;   // Memoize the new node.
2020  return SDOperand(N, 0);
2021}
2022
2023SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2024                                     MVT::ValueType VT, SDOperand Op1,
2025                                     SDOperand Op2) {
2026  // If an identical node already exists, use it.
2027  SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2028                                         std::make_pair(Op1, Op2))];
2029  if (ON) return SDOperand(ON, 0);
2030
2031  RemoveNodeFromCSEMaps(N);
2032  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2033  N->setValueTypes(VT);
2034  N->setOperands(Op1, Op2);
2035
2036  ON = N;   // Memoize the new node.
2037  return SDOperand(N, 0);
2038}
2039
2040SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2041                                     MVT::ValueType VT, SDOperand Op1,
2042                                     SDOperand Op2, SDOperand Op3) {
2043  // If an identical node already exists, use it.
2044  std::vector<SDOperand> OpList;
2045  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2046  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2047                                              std::make_pair(VT, OpList))];
2048  if (ON) return SDOperand(ON, 0);
2049
2050  RemoveNodeFromCSEMaps(N);
2051  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2052  N->setValueTypes(VT);
2053  N->setOperands(Op1, Op2, Op3);
2054
2055  ON = N;   // Memoize the new node.
2056  return SDOperand(N, 0);
2057}
2058
2059SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2060                                     MVT::ValueType VT, SDOperand Op1,
2061                                     SDOperand Op2, SDOperand Op3,
2062                                     SDOperand Op4) {
2063  // If an identical node already exists, use it.
2064  std::vector<SDOperand> OpList;
2065  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2066  OpList.push_back(Op4);
2067  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2068                                              std::make_pair(VT, OpList))];
2069  if (ON) return SDOperand(ON, 0);
2070
2071  RemoveNodeFromCSEMaps(N);
2072  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2073  N->setValueTypes(VT);
2074  N->setOperands(Op1, Op2, Op3, Op4);
2075
2076  ON = N;   // Memoize the new node.
2077  return SDOperand(N, 0);
2078}
2079
2080SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2081                                     MVT::ValueType VT, SDOperand Op1,
2082                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2083                                     SDOperand Op5) {
2084  // If an identical node already exists, use it.
2085  std::vector<SDOperand> OpList;
2086  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2087  OpList.push_back(Op4); OpList.push_back(Op5);
2088  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2089                                              std::make_pair(VT, OpList))];
2090  if (ON) return SDOperand(ON, 0);
2091
2092  RemoveNodeFromCSEMaps(N);
2093  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2094  N->setValueTypes(VT);
2095  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2096
2097  ON = N;   // Memoize the new node.
2098  return SDOperand(N, 0);
2099}
2100
2101SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2102                                     MVT::ValueType VT, SDOperand Op1,
2103                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2104                                     SDOperand Op5, SDOperand Op6) {
2105  // If an identical node already exists, use it.
2106  std::vector<SDOperand> OpList;
2107  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2108  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
2109  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2110                                              std::make_pair(VT, OpList))];
2111  if (ON) return SDOperand(ON, 0);
2112
2113  RemoveNodeFromCSEMaps(N);
2114  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2115  N->setValueTypes(VT);
2116  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
2117
2118  ON = N;   // Memoize the new node.
2119  return SDOperand(N, 0);
2120}
2121
2122SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2123                                     MVT::ValueType VT, SDOperand Op1,
2124                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2125                                     SDOperand Op5, SDOperand Op6,
2126				     SDOperand Op7) {
2127  // If an identical node already exists, use it.
2128  std::vector<SDOperand> OpList;
2129  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2130  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
2131  OpList.push_back(Op7);
2132  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2133                                              std::make_pair(VT, OpList))];
2134  if (ON) return SDOperand(ON, 0);
2135
2136  RemoveNodeFromCSEMaps(N);
2137  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2138  N->setValueTypes(VT);
2139  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
2140
2141  ON = N;   // Memoize the new node.
2142  return SDOperand(N, 0);
2143}
2144SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2145                                     MVT::ValueType VT, SDOperand Op1,
2146                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2147                                     SDOperand Op5, SDOperand Op6,
2148				     SDOperand Op7, SDOperand Op8) {
2149  // If an identical node already exists, use it.
2150  std::vector<SDOperand> OpList;
2151  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2152  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
2153  OpList.push_back(Op7); OpList.push_back(Op8);
2154  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2155                                              std::make_pair(VT, OpList))];
2156  if (ON) return SDOperand(ON, 0);
2157
2158  RemoveNodeFromCSEMaps(N);
2159  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2160  N->setValueTypes(VT);
2161  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
2162
2163  ON = N;   // Memoize the new node.
2164  return SDOperand(N, 0);
2165}
2166
2167SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2168                                     MVT::ValueType VT1, MVT::ValueType VT2,
2169                                     SDOperand Op1, SDOperand Op2) {
2170  // If an identical node already exists, use it.
2171  std::vector<SDOperand> OpList;
2172  OpList.push_back(Op1); OpList.push_back(Op2);
2173  std::vector<MVT::ValueType> VTList;
2174  VTList.push_back(VT1); VTList.push_back(VT2);
2175  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2176                                              std::make_pair(VTList, OpList))];
2177  if (ON) return SDOperand(ON, 0);
2178
2179  RemoveNodeFromCSEMaps(N);
2180  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2181  setNodeValueTypes(N, VT1, VT2);
2182  N->setOperands(Op1, Op2);
2183
2184  ON = N;   // Memoize the new node.
2185  return SDOperand(N, 0);
2186}
2187
2188SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2189                                     MVT::ValueType VT1, MVT::ValueType VT2,
2190                                     SDOperand Op1, SDOperand Op2,
2191                                     SDOperand Op3) {
2192  // If an identical node already exists, use it.
2193  std::vector<SDOperand> OpList;
2194  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2195  std::vector<MVT::ValueType> VTList;
2196  VTList.push_back(VT1); VTList.push_back(VT2);
2197  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2198                                              std::make_pair(VTList, OpList))];
2199  if (ON) return SDOperand(ON, 0);
2200
2201  RemoveNodeFromCSEMaps(N);
2202  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2203  setNodeValueTypes(N, VT1, VT2);
2204  N->setOperands(Op1, Op2, Op3);
2205
2206  ON = N;   // Memoize the new node.
2207  return SDOperand(N, 0);
2208}
2209
2210SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2211                                     MVT::ValueType VT1, MVT::ValueType VT2,
2212                                     SDOperand Op1, SDOperand Op2,
2213                                     SDOperand Op3, SDOperand Op4) {
2214  // If an identical node already exists, use it.
2215  std::vector<SDOperand> OpList;
2216  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2217  OpList.push_back(Op4);
2218  std::vector<MVT::ValueType> VTList;
2219  VTList.push_back(VT1); VTList.push_back(VT2);
2220  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2221                                              std::make_pair(VTList, OpList))];
2222  if (ON) return SDOperand(ON, 0);
2223
2224  RemoveNodeFromCSEMaps(N);
2225  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2226  setNodeValueTypes(N, VT1, VT2);
2227  N->setOperands(Op1, Op2, Op3, Op4);
2228
2229  ON = N;   // Memoize the new node.
2230  return SDOperand(N, 0);
2231}
2232
2233SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2234                                     MVT::ValueType VT1, MVT::ValueType VT2,
2235                                     SDOperand Op1, SDOperand Op2,
2236                                     SDOperand Op3, SDOperand Op4,
2237                                     SDOperand Op5) {
2238  // If an identical node already exists, use it.
2239  std::vector<SDOperand> OpList;
2240  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2241  OpList.push_back(Op4); OpList.push_back(Op5);
2242  std::vector<MVT::ValueType> VTList;
2243  VTList.push_back(VT1); VTList.push_back(VT2);
2244  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2245                                              std::make_pair(VTList, OpList))];
2246  if (ON) return SDOperand(ON, 0);
2247
2248  RemoveNodeFromCSEMaps(N);
2249  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2250  setNodeValueTypes(N, VT1, VT2);
2251  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2252
2253  ON = N;   // Memoize the new node.
2254  return SDOperand(N, 0);
2255}
2256
2257/// getTargetNode - These are used for target selectors to create a new node
2258/// with specified return type(s), target opcode, and operands.
2259///
2260/// Note that getTargetNode returns the resultant node.  If there is already a
2261/// node of the specified opcode and operands, it returns that node instead of
2262/// the current one.
2263SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2264  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2265}
2266SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2267                                    SDOperand Op1) {
2268  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2269}
2270SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2271                                    SDOperand Op1, SDOperand Op2) {
2272  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2273}
2274SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2275                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2276  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2277}
2278SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2279                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2280                                    SDOperand Op4) {
2281  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4).Val;
2282}
2283SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2284                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2285                                    SDOperand Op4, SDOperand Op5) {
2286  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4, Op5).Val;
2287}
2288SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2289                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2290                                    SDOperand Op4, SDOperand Op5, SDOperand Op6) {
2291  std::vector<SDOperand> Ops;
2292  Ops.reserve(6);
2293  Ops.push_back(Op1);
2294  Ops.push_back(Op2);
2295  Ops.push_back(Op3);
2296  Ops.push_back(Op4);
2297  Ops.push_back(Op5);
2298  Ops.push_back(Op6);
2299  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2300}
2301SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2302                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2303                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2304                                    SDOperand Op7) {
2305  std::vector<SDOperand> Ops;
2306  Ops.reserve(7);
2307  Ops.push_back(Op1);
2308  Ops.push_back(Op2);
2309  Ops.push_back(Op3);
2310  Ops.push_back(Op4);
2311  Ops.push_back(Op5);
2312  Ops.push_back(Op6);
2313  Ops.push_back(Op7);
2314  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2315}
2316SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2317                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2318                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2319                                    SDOperand Op7, SDOperand Op8) {
2320  std::vector<SDOperand> Ops;
2321  Ops.reserve(8);
2322  Ops.push_back(Op1);
2323  Ops.push_back(Op2);
2324  Ops.push_back(Op3);
2325  Ops.push_back(Op4);
2326  Ops.push_back(Op5);
2327  Ops.push_back(Op6);
2328  Ops.push_back(Op7);
2329  Ops.push_back(Op8);
2330  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2331}
2332SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2333                                    std::vector<SDOperand> &Ops) {
2334  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2335}
2336SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2337                                    MVT::ValueType VT2, SDOperand Op1) {
2338  std::vector<MVT::ValueType> ResultTys;
2339  ResultTys.push_back(VT1);
2340  ResultTys.push_back(VT2);
2341  std::vector<SDOperand> Ops;
2342  Ops.push_back(Op1);
2343  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2344}
2345SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2346                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2) {
2347  std::vector<MVT::ValueType> ResultTys;
2348  ResultTys.push_back(VT1);
2349  ResultTys.push_back(VT2);
2350  std::vector<SDOperand> Ops;
2351  Ops.push_back(Op1);
2352  Ops.push_back(Op2);
2353  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2354}
2355SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2356                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2357                                    SDOperand Op3) {
2358  std::vector<MVT::ValueType> ResultTys;
2359  ResultTys.push_back(VT1);
2360  ResultTys.push_back(VT2);
2361  std::vector<SDOperand> Ops;
2362  Ops.push_back(Op1);
2363  Ops.push_back(Op2);
2364  Ops.push_back(Op3);
2365  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2366}
2367SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2368                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2369                                    SDOperand Op3, SDOperand Op4) {
2370  std::vector<MVT::ValueType> ResultTys;
2371  ResultTys.push_back(VT1);
2372  ResultTys.push_back(VT2);
2373  std::vector<SDOperand> Ops;
2374  Ops.push_back(Op1);
2375  Ops.push_back(Op2);
2376  Ops.push_back(Op3);
2377  Ops.push_back(Op4);
2378  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2379}
2380SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2381                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2382                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2383  std::vector<MVT::ValueType> ResultTys;
2384  ResultTys.push_back(VT1);
2385  ResultTys.push_back(VT2);
2386  std::vector<SDOperand> Ops;
2387  Ops.push_back(Op1);
2388  Ops.push_back(Op2);
2389  Ops.push_back(Op3);
2390  Ops.push_back(Op4);
2391  Ops.push_back(Op5);
2392  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2393}
2394SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2395                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2396                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2397                                    SDOperand Op6) {
2398  std::vector<MVT::ValueType> ResultTys;
2399  ResultTys.push_back(VT1);
2400  ResultTys.push_back(VT2);
2401  std::vector<SDOperand> Ops;
2402  Ops.push_back(Op1);
2403  Ops.push_back(Op2);
2404  Ops.push_back(Op3);
2405  Ops.push_back(Op4);
2406  Ops.push_back(Op5);
2407  Ops.push_back(Op6);
2408  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2409}
2410SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2411                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2412                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2413                                    SDOperand Op6, SDOperand Op7) {
2414  std::vector<MVT::ValueType> ResultTys;
2415  ResultTys.push_back(VT1);
2416  ResultTys.push_back(VT2);
2417  std::vector<SDOperand> Ops;
2418  Ops.push_back(Op1);
2419  Ops.push_back(Op2);
2420  Ops.push_back(Op3);
2421  Ops.push_back(Op4);
2422  Ops.push_back(Op5);
2423  Ops.push_back(Op6);
2424  Ops.push_back(Op7);
2425  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2426}
2427SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2428                                    MVT::ValueType VT2, MVT::ValueType VT3,
2429                                    SDOperand Op1, SDOperand Op2) {
2430  std::vector<MVT::ValueType> ResultTys;
2431  ResultTys.push_back(VT1);
2432  ResultTys.push_back(VT2);
2433  ResultTys.push_back(VT3);
2434  std::vector<SDOperand> Ops;
2435  Ops.push_back(Op1);
2436  Ops.push_back(Op2);
2437  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2438}
2439SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2440                                    MVT::ValueType VT2, MVT::ValueType VT3,
2441                                    SDOperand Op1, SDOperand Op2,
2442                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2443  std::vector<MVT::ValueType> ResultTys;
2444  ResultTys.push_back(VT1);
2445  ResultTys.push_back(VT2);
2446  ResultTys.push_back(VT3);
2447  std::vector<SDOperand> Ops;
2448  Ops.push_back(Op1);
2449  Ops.push_back(Op2);
2450  Ops.push_back(Op3);
2451  Ops.push_back(Op4);
2452  Ops.push_back(Op5);
2453  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2454}
2455SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2456                                    MVT::ValueType VT2, MVT::ValueType VT3,
2457                                    SDOperand Op1, SDOperand Op2,
2458                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2459                                    SDOperand Op6) {
2460  std::vector<MVT::ValueType> ResultTys;
2461  ResultTys.push_back(VT1);
2462  ResultTys.push_back(VT2);
2463  ResultTys.push_back(VT3);
2464  std::vector<SDOperand> Ops;
2465  Ops.push_back(Op1);
2466  Ops.push_back(Op2);
2467  Ops.push_back(Op3);
2468  Ops.push_back(Op4);
2469  Ops.push_back(Op5);
2470  Ops.push_back(Op6);
2471  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2472}
2473SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2474                                    MVT::ValueType VT2, MVT::ValueType VT3,
2475                                    SDOperand Op1, SDOperand Op2,
2476                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2477                                    SDOperand Op6, SDOperand Op7) {
2478  std::vector<MVT::ValueType> ResultTys;
2479  ResultTys.push_back(VT1);
2480  ResultTys.push_back(VT2);
2481  ResultTys.push_back(VT3);
2482  std::vector<SDOperand> Ops;
2483  Ops.push_back(Op1);
2484  Ops.push_back(Op2);
2485  Ops.push_back(Op3);
2486  Ops.push_back(Op4);
2487  Ops.push_back(Op5);
2488  Ops.push_back(Op6);
2489  Ops.push_back(Op7);
2490  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2491}
2492SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2493                                    MVT::ValueType VT2, std::vector<SDOperand> &Ops) {
2494  std::vector<MVT::ValueType> ResultTys;
2495  ResultTys.push_back(VT1);
2496  ResultTys.push_back(VT2);
2497  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2498}
2499
2500// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2501/// This can cause recursive merging of nodes in the DAG.
2502///
2503/// This version assumes From/To have a single result value.
2504///
2505void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2506                                      std::vector<SDNode*> *Deleted) {
2507  SDNode *From = FromN.Val, *To = ToN.Val;
2508  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2509         "Cannot replace with this method!");
2510  assert(From != To && "Cannot replace uses of with self");
2511
2512  while (!From->use_empty()) {
2513    // Process users until they are all gone.
2514    SDNode *U = *From->use_begin();
2515
2516    // This node is about to morph, remove its old self from the CSE maps.
2517    RemoveNodeFromCSEMaps(U);
2518
2519    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2520         I != E; ++I)
2521      if (I->Val == From) {
2522        From->removeUser(U);
2523        I->Val = To;
2524        To->addUser(U);
2525      }
2526
2527    // Now that we have modified U, add it back to the CSE maps.  If it already
2528    // exists there, recursively merge the results together.
2529    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2530      ReplaceAllUsesWith(U, Existing, Deleted);
2531      // U is now dead.
2532      if (Deleted) Deleted->push_back(U);
2533      DeleteNodeNotInCSEMaps(U);
2534    }
2535  }
2536}
2537
2538/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2539/// This can cause recursive merging of nodes in the DAG.
2540///
2541/// This version assumes From/To have matching types and numbers of result
2542/// values.
2543///
2544void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2545                                      std::vector<SDNode*> *Deleted) {
2546  assert(From != To && "Cannot replace uses of with self");
2547  assert(From->getNumValues() == To->getNumValues() &&
2548         "Cannot use this version of ReplaceAllUsesWith!");
2549  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2550    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2551    return;
2552  }
2553
2554  while (!From->use_empty()) {
2555    // Process users until they are all gone.
2556    SDNode *U = *From->use_begin();
2557
2558    // This node is about to morph, remove its old self from the CSE maps.
2559    RemoveNodeFromCSEMaps(U);
2560
2561    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2562         I != E; ++I)
2563      if (I->Val == From) {
2564        From->removeUser(U);
2565        I->Val = To;
2566        To->addUser(U);
2567      }
2568
2569    // Now that we have modified U, add it back to the CSE maps.  If it already
2570    // exists there, recursively merge the results together.
2571    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2572      ReplaceAllUsesWith(U, Existing, Deleted);
2573      // U is now dead.
2574      if (Deleted) Deleted->push_back(U);
2575      DeleteNodeNotInCSEMaps(U);
2576    }
2577  }
2578}
2579
2580/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2581/// This can cause recursive merging of nodes in the DAG.
2582///
2583/// This version can replace From with any result values.  To must match the
2584/// number and types of values returned by From.
2585void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2586                                      const std::vector<SDOperand> &To,
2587                                      std::vector<SDNode*> *Deleted) {
2588  assert(From->getNumValues() == To.size() &&
2589         "Incorrect number of values to replace with!");
2590  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2591    // Degenerate case handled above.
2592    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2593    return;
2594  }
2595
2596  while (!From->use_empty()) {
2597    // Process users until they are all gone.
2598    SDNode *U = *From->use_begin();
2599
2600    // This node is about to morph, remove its old self from the CSE maps.
2601    RemoveNodeFromCSEMaps(U);
2602
2603    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2604         I != E; ++I)
2605      if (I->Val == From) {
2606        const SDOperand &ToOp = To[I->ResNo];
2607        From->removeUser(U);
2608        *I = ToOp;
2609        ToOp.Val->addUser(U);
2610      }
2611
2612    // Now that we have modified U, add it back to the CSE maps.  If it already
2613    // exists there, recursively merge the results together.
2614    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2615      ReplaceAllUsesWith(U, Existing, Deleted);
2616      // U is now dead.
2617      if (Deleted) Deleted->push_back(U);
2618      DeleteNodeNotInCSEMaps(U);
2619    }
2620  }
2621}
2622
2623/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2624/// uses of other values produced by From.Val alone.  The Deleted vector is
2625/// handled the same was as for ReplaceAllUsesWith.
2626void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2627                                             std::vector<SDNode*> &Deleted) {
2628  assert(From != To && "Cannot replace a value with itself");
2629  // Handle the simple, trivial, case efficiently.
2630  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2631    ReplaceAllUsesWith(From, To, &Deleted);
2632    return;
2633  }
2634
2635  // Get all of the users in a nice, deterministically ordered, uniqued set.
2636  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2637
2638  while (!Users.empty()) {
2639    // We know that this user uses some value of From.  If it is the right
2640    // value, update it.
2641    SDNode *User = Users.back();
2642    Users.pop_back();
2643
2644    for (SDOperand *Op = User->OperandList,
2645         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2646      if (*Op == From) {
2647        // Okay, we know this user needs to be updated.  Remove its old self
2648        // from the CSE maps.
2649        RemoveNodeFromCSEMaps(User);
2650
2651        // Update all operands that match "From".
2652        for (; Op != E; ++Op) {
2653          if (*Op == From) {
2654            From.Val->removeUser(User);
2655            *Op = To;
2656            To.Val->addUser(User);
2657          }
2658        }
2659
2660        // Now that we have modified User, add it back to the CSE maps.  If it
2661        // already exists there, recursively merge the results together.
2662        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2663          unsigned NumDeleted = Deleted.size();
2664          ReplaceAllUsesWith(User, Existing, &Deleted);
2665
2666          // User is now dead.
2667          Deleted.push_back(User);
2668          DeleteNodeNotInCSEMaps(User);
2669
2670          // We have to be careful here, because ReplaceAllUsesWith could have
2671          // deleted a user of From, which means there may be dangling pointers
2672          // in the "Users" setvector.  Scan over the deleted node pointers and
2673          // remove them from the setvector.
2674          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2675            Users.remove(Deleted[i]);
2676        }
2677        break;   // Exit the operand scanning loop.
2678      }
2679    }
2680  }
2681}
2682
2683
2684//===----------------------------------------------------------------------===//
2685//                              SDNode Class
2686//===----------------------------------------------------------------------===//
2687
2688
2689/// getValueTypeList - Return a pointer to the specified value type.
2690///
2691MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2692  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2693  VTs[VT] = VT;
2694  return &VTs[VT];
2695}
2696
2697/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2698/// indicated value.  This method ignores uses of other values defined by this
2699/// operation.
2700bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2701  assert(Value < getNumValues() && "Bad value!");
2702
2703  // If there is only one value, this is easy.
2704  if (getNumValues() == 1)
2705    return use_size() == NUses;
2706  if (Uses.size() < NUses) return false;
2707
2708  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2709
2710  std::set<SDNode*> UsersHandled;
2711
2712  for (std::vector<SDNode*>::const_iterator UI = Uses.begin(), E = Uses.end();
2713       UI != E; ++UI) {
2714    SDNode *User = *UI;
2715    if (User->getNumOperands() == 1 ||
2716        UsersHandled.insert(User).second)     // First time we've seen this?
2717      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2718        if (User->getOperand(i) == TheValue) {
2719          if (NUses == 0)
2720            return false;   // too many uses
2721          --NUses;
2722        }
2723  }
2724
2725  // Found exactly the right number of uses?
2726  return NUses == 0;
2727}
2728
2729
2730// isOnlyUse - Return true if this node is the only use of N.
2731bool SDNode::isOnlyUse(SDNode *N) const {
2732  bool Seen = false;
2733  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2734    SDNode *User = *I;
2735    if (User == this)
2736      Seen = true;
2737    else
2738      return false;
2739  }
2740
2741  return Seen;
2742}
2743
2744// isOperand - Return true if this node is an operand of N.
2745bool SDOperand::isOperand(SDNode *N) const {
2746  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2747    if (*this == N->getOperand(i))
2748      return true;
2749  return false;
2750}
2751
2752bool SDNode::isOperand(SDNode *N) const {
2753  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2754    if (this == N->OperandList[i].Val)
2755      return true;
2756  return false;
2757}
2758
2759const char *SDNode::getOperationName(const SelectionDAG *G) const {
2760  switch (getOpcode()) {
2761  default:
2762    if (getOpcode() < ISD::BUILTIN_OP_END)
2763      return "<<Unknown DAG Node>>";
2764    else {
2765      if (G) {
2766        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2767          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2768            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2769
2770        TargetLowering &TLI = G->getTargetLoweringInfo();
2771        const char *Name =
2772          TLI.getTargetNodeName(getOpcode());
2773        if (Name) return Name;
2774      }
2775
2776      return "<<Unknown Target Node>>";
2777    }
2778
2779  case ISD::PCMARKER:      return "PCMarker";
2780  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2781  case ISD::SRCVALUE:      return "SrcValue";
2782  case ISD::EntryToken:    return "EntryToken";
2783  case ISD::TokenFactor:   return "TokenFactor";
2784  case ISD::AssertSext:    return "AssertSext";
2785  case ISD::AssertZext:    return "AssertZext";
2786
2787  case ISD::STRING:        return "String";
2788  case ISD::BasicBlock:    return "BasicBlock";
2789  case ISD::VALUETYPE:     return "ValueType";
2790  case ISD::Register:      return "Register";
2791
2792  case ISD::Constant:      return "Constant";
2793  case ISD::ConstantFP:    return "ConstantFP";
2794  case ISD::GlobalAddress: return "GlobalAddress";
2795  case ISD::FrameIndex:    return "FrameIndex";
2796  case ISD::JumpTable:     return "JumpTable";
2797  case ISD::ConstantPool:  return "ConstantPool";
2798  case ISD::ExternalSymbol: return "ExternalSymbol";
2799  case ISD::INTRINSIC_WO_CHAIN: {
2800    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2801    return Intrinsic::getName((Intrinsic::ID)IID);
2802  }
2803  case ISD::INTRINSIC_VOID:
2804  case ISD::INTRINSIC_W_CHAIN: {
2805    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2806    return Intrinsic::getName((Intrinsic::ID)IID);
2807  }
2808
2809  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2810  case ISD::TargetConstant: return "TargetConstant";
2811  case ISD::TargetConstantFP:return "TargetConstantFP";
2812  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2813  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2814  case ISD::TargetJumpTable:  return "TargetJumpTable";
2815  case ISD::TargetConstantPool:  return "TargetConstantPool";
2816  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2817
2818  case ISD::CopyToReg:     return "CopyToReg";
2819  case ISD::CopyFromReg:   return "CopyFromReg";
2820  case ISD::UNDEF:         return "undef";
2821  case ISD::MERGE_VALUES:  return "mergevalues";
2822  case ISD::INLINEASM:     return "inlineasm";
2823  case ISD::HANDLENODE:    return "handlenode";
2824  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2825
2826  // Unary operators
2827  case ISD::FABS:   return "fabs";
2828  case ISD::FNEG:   return "fneg";
2829  case ISD::FSQRT:  return "fsqrt";
2830  case ISD::FSIN:   return "fsin";
2831  case ISD::FCOS:   return "fcos";
2832
2833  // Binary operators
2834  case ISD::ADD:    return "add";
2835  case ISD::SUB:    return "sub";
2836  case ISD::MUL:    return "mul";
2837  case ISD::MULHU:  return "mulhu";
2838  case ISD::MULHS:  return "mulhs";
2839  case ISD::SDIV:   return "sdiv";
2840  case ISD::UDIV:   return "udiv";
2841  case ISD::SREM:   return "srem";
2842  case ISD::UREM:   return "urem";
2843  case ISD::AND:    return "and";
2844  case ISD::OR:     return "or";
2845  case ISD::XOR:    return "xor";
2846  case ISD::SHL:    return "shl";
2847  case ISD::SRA:    return "sra";
2848  case ISD::SRL:    return "srl";
2849  case ISD::ROTL:   return "rotl";
2850  case ISD::ROTR:   return "rotr";
2851  case ISD::FADD:   return "fadd";
2852  case ISD::FSUB:   return "fsub";
2853  case ISD::FMUL:   return "fmul";
2854  case ISD::FDIV:   return "fdiv";
2855  case ISD::FREM:   return "frem";
2856  case ISD::FCOPYSIGN: return "fcopysign";
2857  case ISD::VADD:   return "vadd";
2858  case ISD::VSUB:   return "vsub";
2859  case ISD::VMUL:   return "vmul";
2860  case ISD::VSDIV:  return "vsdiv";
2861  case ISD::VUDIV:  return "vudiv";
2862  case ISD::VAND:   return "vand";
2863  case ISD::VOR:    return "vor";
2864  case ISD::VXOR:   return "vxor";
2865
2866  case ISD::SETCC:       return "setcc";
2867  case ISD::SELECT:      return "select";
2868  case ISD::SELECT_CC:   return "select_cc";
2869  case ISD::VSELECT:     return "vselect";
2870  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2871  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2872  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2873  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2874  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2875  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2876  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2877  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2878  case ISD::VBIT_CONVERT:        return "vbit_convert";
2879  case ISD::ADDC:        return "addc";
2880  case ISD::ADDE:        return "adde";
2881  case ISD::SUBC:        return "subc";
2882  case ISD::SUBE:        return "sube";
2883  case ISD::SHL_PARTS:   return "shl_parts";
2884  case ISD::SRA_PARTS:   return "sra_parts";
2885  case ISD::SRL_PARTS:   return "srl_parts";
2886
2887  // Conversion operators.
2888  case ISD::SIGN_EXTEND: return "sign_extend";
2889  case ISD::ZERO_EXTEND: return "zero_extend";
2890  case ISD::ANY_EXTEND:  return "any_extend";
2891  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2892  case ISD::TRUNCATE:    return "truncate";
2893  case ISD::FP_ROUND:    return "fp_round";
2894  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2895  case ISD::FP_EXTEND:   return "fp_extend";
2896
2897  case ISD::SINT_TO_FP:  return "sint_to_fp";
2898  case ISD::UINT_TO_FP:  return "uint_to_fp";
2899  case ISD::FP_TO_SINT:  return "fp_to_sint";
2900  case ISD::FP_TO_UINT:  return "fp_to_uint";
2901  case ISD::BIT_CONVERT: return "bit_convert";
2902
2903    // Control flow instructions
2904  case ISD::BR:      return "br";
2905  case ISD::BRIND:   return "brind";
2906  case ISD::BRCOND:  return "brcond";
2907  case ISD::BR_CC:   return "br_cc";
2908  case ISD::RET:     return "ret";
2909  case ISD::CALLSEQ_START:  return "callseq_start";
2910  case ISD::CALLSEQ_END:    return "callseq_end";
2911
2912    // Other operators
2913  case ISD::LOAD:               return "load";
2914  case ISD::STORE:              return "store";
2915  case ISD::VLOAD:              return "vload";
2916  case ISD::EXTLOAD:            return "extload";
2917  case ISD::SEXTLOAD:           return "sextload";
2918  case ISD::ZEXTLOAD:           return "zextload";
2919  case ISD::TRUNCSTORE:         return "truncstore";
2920  case ISD::VAARG:              return "vaarg";
2921  case ISD::VACOPY:             return "vacopy";
2922  case ISD::VAEND:              return "vaend";
2923  case ISD::VASTART:            return "vastart";
2924  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2925  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2926  case ISD::BUILD_PAIR:         return "build_pair";
2927  case ISD::STACKSAVE:          return "stacksave";
2928  case ISD::STACKRESTORE:       return "stackrestore";
2929
2930  // Block memory operations.
2931  case ISD::MEMSET:  return "memset";
2932  case ISD::MEMCPY:  return "memcpy";
2933  case ISD::MEMMOVE: return "memmove";
2934
2935  // Bit manipulation
2936  case ISD::BSWAP:   return "bswap";
2937  case ISD::CTPOP:   return "ctpop";
2938  case ISD::CTTZ:    return "cttz";
2939  case ISD::CTLZ:    return "ctlz";
2940
2941  // Debug info
2942  case ISD::LOCATION: return "location";
2943  case ISD::DEBUG_LOC: return "debug_loc";
2944  case ISD::DEBUG_LABEL: return "debug_label";
2945
2946  case ISD::CONDCODE:
2947    switch (cast<CondCodeSDNode>(this)->get()) {
2948    default: assert(0 && "Unknown setcc condition!");
2949    case ISD::SETOEQ:  return "setoeq";
2950    case ISD::SETOGT:  return "setogt";
2951    case ISD::SETOGE:  return "setoge";
2952    case ISD::SETOLT:  return "setolt";
2953    case ISD::SETOLE:  return "setole";
2954    case ISD::SETONE:  return "setone";
2955
2956    case ISD::SETO:    return "seto";
2957    case ISD::SETUO:   return "setuo";
2958    case ISD::SETUEQ:  return "setue";
2959    case ISD::SETUGT:  return "setugt";
2960    case ISD::SETUGE:  return "setuge";
2961    case ISD::SETULT:  return "setult";
2962    case ISD::SETULE:  return "setule";
2963    case ISD::SETUNE:  return "setune";
2964
2965    case ISD::SETEQ:   return "seteq";
2966    case ISD::SETGT:   return "setgt";
2967    case ISD::SETGE:   return "setge";
2968    case ISD::SETLT:   return "setlt";
2969    case ISD::SETLE:   return "setle";
2970    case ISD::SETNE:   return "setne";
2971    }
2972  }
2973}
2974
2975void SDNode::dump() const { dump(0); }
2976void SDNode::dump(const SelectionDAG *G) const {
2977  std::cerr << (void*)this << ": ";
2978
2979  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2980    if (i) std::cerr << ",";
2981    if (getValueType(i) == MVT::Other)
2982      std::cerr << "ch";
2983    else
2984      std::cerr << MVT::getValueTypeString(getValueType(i));
2985  }
2986  std::cerr << " = " << getOperationName(G);
2987
2988  std::cerr << " ";
2989  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2990    if (i) std::cerr << ", ";
2991    std::cerr << (void*)getOperand(i).Val;
2992    if (unsigned RN = getOperand(i).ResNo)
2993      std::cerr << ":" << RN;
2994  }
2995
2996  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2997    std::cerr << "<" << CSDN->getValue() << ">";
2998  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2999    std::cerr << "<" << CSDN->getValue() << ">";
3000  } else if (const GlobalAddressSDNode *GADN =
3001             dyn_cast<GlobalAddressSDNode>(this)) {
3002    int offset = GADN->getOffset();
3003    std::cerr << "<";
3004    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
3005    if (offset > 0)
3006      std::cerr << " + " << offset;
3007    else
3008      std::cerr << " " << offset;
3009  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3010    std::cerr << "<" << FIDN->getIndex() << ">";
3011  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3012    int offset = CP->getOffset();
3013    std::cerr << "<" << *CP->get() << ">";
3014    if (offset > 0)
3015      std::cerr << " + " << offset;
3016    else
3017      std::cerr << " " << offset;
3018  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3019    std::cerr << "<";
3020    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3021    if (LBB)
3022      std::cerr << LBB->getName() << " ";
3023    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
3024  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3025    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3026      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3027    } else {
3028      std::cerr << " #" << R->getReg();
3029    }
3030  } else if (const ExternalSymbolSDNode *ES =
3031             dyn_cast<ExternalSymbolSDNode>(this)) {
3032    std::cerr << "'" << ES->getSymbol() << "'";
3033  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3034    if (M->getValue())
3035      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3036    else
3037      std::cerr << "<null:" << M->getOffset() << ">";
3038  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3039    std::cerr << ":" << getValueTypeString(N->getVT());
3040  }
3041}
3042
3043static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3044  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3045    if (N->getOperand(i).Val->hasOneUse())
3046      DumpNodes(N->getOperand(i).Val, indent+2, G);
3047    else
3048      std::cerr << "\n" << std::string(indent+2, ' ')
3049                << (void*)N->getOperand(i).Val << ": <multiple use>";
3050
3051
3052  std::cerr << "\n" << std::string(indent, ' ');
3053  N->dump(G);
3054}
3055
3056void SelectionDAG::dump() const {
3057  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3058  std::vector<const SDNode*> Nodes;
3059  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3060       I != E; ++I)
3061    Nodes.push_back(I);
3062
3063  std::sort(Nodes.begin(), Nodes.end());
3064
3065  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3066    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3067      DumpNodes(Nodes[i], 2, this);
3068  }
3069
3070  DumpNodes(getRoot().Val, 2, this);
3071
3072  std::cerr << "\n\n";
3073}
3074
3075/// InsertISelMapEntry - A helper function to insert a key / element pair
3076/// into a SDOperand to SDOperand map. This is added to avoid the map
3077/// insertion operator from being inlined.
3078void SelectionDAG::InsertISelMapEntry(std::map<SDOperand, SDOperand> &Map,
3079                                      SDNode *Key, unsigned KeyResNo,
3080                                      SDNode *Element, unsigned ElementResNo) {
3081  Map.insert(std::make_pair(SDOperand(Key, KeyResNo),
3082                            SDOperand(Element, ElementResNo)));
3083}
3084