SelectionDAG.cpp revision a8efe28a44996978faa42a387f1a6087a7b942c7
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/System/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f32:     return &APFloat::IEEEsingle;
66  case MVT::f64:     return &APFloat::IEEEdouble;
67  case MVT::f80:     return &APFloat::x87DoubleExtended;
68  case MVT::f128:    return &APFloat::IEEEquad;
69  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70  }
71}
72
73SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74
75//===----------------------------------------------------------------------===//
76//                              ConstantFPSDNode Class
77//===----------------------------------------------------------------------===//
78
79/// isExactlyValue - We don't rely on operator== working on double values, as
80/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81/// As such, this method can be used to do an exact bit-for-bit comparison of
82/// two floating point values.
83bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84  return getValueAPF().bitwiseIsEqual(V);
85}
86
87bool ConstantFPSDNode::isValueValidForType(EVT VT,
88                                           const APFloat& Val) {
89  assert(VT.isFloatingPoint() && "Can only convert between FP types");
90
91  // PPC long double cannot be converted to any other type.
92  if (VT == MVT::ppcf128 ||
93      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94    return false;
95
96  // convert modifies in place, so make a copy.
97  APFloat Val2 = APFloat(Val);
98  bool losesInfo;
99  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100                      &losesInfo);
101  return !losesInfo;
102}
103
104//===----------------------------------------------------------------------===//
105//                              ISD Namespace
106//===----------------------------------------------------------------------===//
107
108/// isBuildVectorAllOnes - Return true if the specified node is a
109/// BUILD_VECTOR where all of the elements are ~0 or undef.
110bool ISD::isBuildVectorAllOnes(const SDNode *N) {
111  // Look through a bit convert.
112  if (N->getOpcode() == ISD::BIT_CONVERT)
113    N = N->getOperand(0).getNode();
114
115  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116
117  unsigned i = 0, e = N->getNumOperands();
118
119  // Skip over all of the undef values.
120  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121    ++i;
122
123  // Do not accept an all-undef vector.
124  if (i == e) return false;
125
126  // Do not accept build_vectors that aren't all constants or which have non-~0
127  // elements.
128  SDValue NotZero = N->getOperand(i);
129  if (isa<ConstantSDNode>(NotZero)) {
130    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131      return false;
132  } else if (isa<ConstantFPSDNode>(NotZero)) {
133    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134                bitcastToAPInt().isAllOnesValue())
135      return false;
136  } else
137    return false;
138
139  // Okay, we have at least one ~0 value, check to see if the rest match or are
140  // undefs.
141  for (++i; i != e; ++i)
142    if (N->getOperand(i) != NotZero &&
143        N->getOperand(i).getOpcode() != ISD::UNDEF)
144      return false;
145  return true;
146}
147
148
149/// isBuildVectorAllZeros - Return true if the specified node is a
150/// BUILD_VECTOR where all of the elements are 0 or undef.
151bool ISD::isBuildVectorAllZeros(const SDNode *N) {
152  // Look through a bit convert.
153  if (N->getOpcode() == ISD::BIT_CONVERT)
154    N = N->getOperand(0).getNode();
155
156  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157
158  unsigned i = 0, e = N->getNumOperands();
159
160  // Skip over all of the undef values.
161  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162    ++i;
163
164  // Do not accept an all-undef vector.
165  if (i == e) return false;
166
167  // Do not accept build_vectors that aren't all constants or which have non-0
168  // elements.
169  SDValue Zero = N->getOperand(i);
170  if (isa<ConstantSDNode>(Zero)) {
171    if (!cast<ConstantSDNode>(Zero)->isNullValue())
172      return false;
173  } else if (isa<ConstantFPSDNode>(Zero)) {
174    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175      return false;
176  } else
177    return false;
178
179  // Okay, we have at least one 0 value, check to see if the rest match or are
180  // undefs.
181  for (++i; i != e; ++i)
182    if (N->getOperand(i) != Zero &&
183        N->getOperand(i).getOpcode() != ISD::UNDEF)
184      return false;
185  return true;
186}
187
188/// isScalarToVector - Return true if the specified node is a
189/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190/// element is not an undef.
191bool ISD::isScalarToVector(const SDNode *N) {
192  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193    return true;
194
195  if (N->getOpcode() != ISD::BUILD_VECTOR)
196    return false;
197  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198    return false;
199  unsigned NumElems = N->getNumOperands();
200  for (unsigned i = 1; i < NumElems; ++i) {
201    SDValue V = N->getOperand(i);
202    if (V.getOpcode() != ISD::UNDEF)
203      return false;
204  }
205  return true;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211  // To perform this operation, we just need to swap the L and G bits of the
212  // operation.
213  unsigned OldL = (Operation >> 2) & 1;
214  unsigned OldG = (Operation >> 1) & 1;
215  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216                       (OldL << 1) |       // New G bit
217                       (OldG << 2));       // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223  unsigned Operation = Op;
224  if (isInteger)
225    Operation ^= 7;   // Flip L, G, E bits, but not U.
226  else
227    Operation ^= 15;  // Flip all of the condition bits.
228
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;  // Don't let N and U bits get set.
231
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: llvm_unreachable("Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return MF->getTarget();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getNode());
343    ID.AddInteger(Ops->getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356/// the NodeID data.
357static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358  switch (N->getOpcode()) {
359  case ISD::TargetExternalSymbol:
360  case ISD::ExternalSymbol:
361    llvm_unreachable("Should only be used on nodes with operands");
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::TargetConstant:
364  case ISD::Constant:
365    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366    break;
367  case ISD::TargetConstantFP:
368  case ISD::ConstantFP: {
369    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370    break;
371  }
372  case ISD::TargetGlobalAddress:
373  case ISD::GlobalAddress:
374  case ISD::TargetGlobalTLSAddress:
375  case ISD::GlobalTLSAddress: {
376    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377    ID.AddPointer(GA->getGlobal());
378    ID.AddInteger(GA->getOffset());
379    ID.AddInteger(GA->getTargetFlags());
380    break;
381  }
382  case ISD::BasicBlock:
383    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384    break;
385  case ISD::Register:
386    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387    break;
388
389  case ISD::SRCVALUE:
390    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391    break;
392  case ISD::FrameIndex:
393  case ISD::TargetFrameIndex:
394    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395    break;
396  case ISD::JumpTable:
397  case ISD::TargetJumpTable:
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    ID.AddInteger(CP->getTargetFlags());
411    break;
412  }
413  case ISD::LOAD: {
414    const LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getMemoryVT().getRawBits());
416    ID.AddInteger(LD->getRawSubclassData());
417    break;
418  }
419  case ISD::STORE: {
420    const StoreSDNode *ST = cast<StoreSDNode>(N);
421    ID.AddInteger(ST->getMemoryVT().getRawBits());
422    ID.AddInteger(ST->getRawSubclassData());
423    break;
424  }
425  case ISD::ATOMIC_CMP_SWAP:
426  case ISD::ATOMIC_SWAP:
427  case ISD::ATOMIC_LOAD_ADD:
428  case ISD::ATOMIC_LOAD_SUB:
429  case ISD::ATOMIC_LOAD_AND:
430  case ISD::ATOMIC_LOAD_OR:
431  case ISD::ATOMIC_LOAD_XOR:
432  case ISD::ATOMIC_LOAD_NAND:
433  case ISD::ATOMIC_LOAD_MIN:
434  case ISD::ATOMIC_LOAD_MAX:
435  case ISD::ATOMIC_LOAD_UMIN:
436  case ISD::ATOMIC_LOAD_UMAX: {
437    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438    ID.AddInteger(AT->getMemoryVT().getRawBits());
439    ID.AddInteger(AT->getRawSubclassData());
440    break;
441  }
442  case ISD::VECTOR_SHUFFLE: {
443    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445         i != e; ++i)
446      ID.AddInteger(SVN->getMaskElt(i));
447    break;
448  }
449  case ISD::TargetBlockAddress:
450  case ISD::BlockAddress: {
451    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453    break;
454  }
455  } // end switch (N->getOpcode())
456}
457
458/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459/// data.
460static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461  AddNodeIDOpcode(ID, N->getOpcode());
462  // Add the return value info.
463  AddNodeIDValueTypes(ID, N->getVTList());
464  // Add the operand info.
465  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466
467  // Handle SDNode leafs with special info.
468  AddNodeIDCustom(ID, N);
469}
470
471/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472/// the CSE map that carries volatility, temporalness, indexing mode, and
473/// extension/truncation information.
474///
475static inline unsigned
476encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477                     bool isNonTemporal) {
478  assert((ConvType & 3) == ConvType &&
479         "ConvType may not require more than 2 bits!");
480  assert((AM & 7) == AM &&
481         "AM may not require more than 3 bits!");
482  return ConvType |
483         (AM << 2) |
484         (isVolatile << 5) |
485         (isNonTemporal << 6);
486}
487
488//===----------------------------------------------------------------------===//
489//                              SelectionDAG Class
490//===----------------------------------------------------------------------===//
491
492/// doNotCSE - Return true if CSE should not be performed for this node.
493static bool doNotCSE(SDNode *N) {
494  if (N->getValueType(0) == MVT::Flag)
495    return true; // Never CSE anything that produces a flag.
496
497  switch (N->getOpcode()) {
498  default: break;
499  case ISD::HANDLENODE:
500  case ISD::EH_LABEL:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.pop_back_val();
541
542    if (UpdateListener)
543      UpdateListener->NodeDeleted(N, 0);
544
545    // Take the node out of the appropriate CSE map.
546    RemoveNodeFromCSEMaps(N);
547
548    // Next, brutally remove the operand list.  This is safe to do, as there are
549    // no cycles in the graph.
550    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551      SDUse &Use = *I++;
552      SDNode *Operand = Use.getNode();
553      Use.set(SDValue());
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  // First take this out of the appropriate CSE map.
571  RemoveNodeFromCSEMaps(N);
572
573  // Finally, remove uses due to operands of this node, remove from the
574  // AllNodes list, and delete the node.
575  DeleteNodeNotInCSEMaps(N);
576}
577
578void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581
582  // Drop all of the operands and decrement used node's use counts.
583  N->DropOperands();
584
585  DeallocateNode(N);
586}
587
588void SelectionDAG::DeallocateNode(SDNode *N) {
589  if (N->OperandsNeedDelete)
590    delete[] N->OperandList;
591
592  // Set the opcode to DELETED_NODE to help catch bugs when node
593  // memory is reallocated.
594  N->NodeType = ISD::DELETED_NODE;
595
596  NodeAllocator.Deallocate(AllNodes.remove(N));
597
598  // Remove the ordering of this node.
599  Ordering->remove(N);
600
601  // And its entry in the debug info table, if any.
602  DbgInfo->remove(N);
603}
604
605/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
606/// correspond to it.  This is useful when we're about to delete or repurpose
607/// the node.  We don't want future request for structurally identical nodes
608/// to return N anymore.
609bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
610  bool Erased = false;
611  switch (N->getOpcode()) {
612  case ISD::EntryToken:
613    llvm_unreachable("EntryToken should not be in CSEMaps!");
614    return false;
615  case ISD::HANDLENODE: return false;  // noop.
616  case ISD::CONDCODE:
617    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618           "Cond code doesn't exist!");
619    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621    break;
622  case ISD::ExternalSymbol:
623    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::TargetExternalSymbol: {
626    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627    Erased = TargetExternalSymbols.erase(
628               std::pair<std::string,unsigned char>(ESN->getSymbol(),
629                                                    ESN->getTargetFlags()));
630    break;
631  }
632  case ISD::VALUETYPE: {
633    EVT VT = cast<VTSDNode>(N)->getVT();
634    if (VT.isExtended()) {
635      Erased = ExtendedValueTypeNodes.erase(VT);
636    } else {
637      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639    }
640    break;
641  }
642  default:
643    // Remove it from the CSE Map.
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
747void SelectionDAG::VerifyNode(SDNode *N) {
748  switch (N->getOpcode()) {
749  default:
750    break;
751  case ISD::BUILD_PAIR: {
752    EVT VT = N->getValueType(0);
753    assert(N->getNumValues() == 1 && "Too many results!");
754    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
755           "Wrong return type!");
756    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
757    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
758           "Mismatched operand types!");
759    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
760           "Wrong operand type!");
761    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
762           "Wrong return type size");
763    break;
764  }
765  case ISD::BUILD_VECTOR: {
766    assert(N->getNumValues() == 1 && "Too many results!");
767    assert(N->getValueType(0).isVector() && "Wrong return type!");
768    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
769           "Wrong number of operands!");
770    EVT EltVT = N->getValueType(0).getVectorElementType();
771    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
772      assert((I->getValueType() == EltVT ||
773             (EltVT.isInteger() && I->getValueType().isInteger() &&
774              EltVT.bitsLE(I->getValueType()))) &&
775            "Wrong operand type!");
776    break;
777  }
778  }
779}
780
781/// getEVTAlignment - Compute the default alignment value for the
782/// given type.
783///
784unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
785  const Type *Ty = VT == MVT::iPTR ?
786                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
787                   VT.getTypeForEVT(*getContext());
788
789  return TLI.getTargetData()->getABITypeAlignment(Ty);
790}
791
792// EntryNode could meaningfully have debug info if we can find it...
793SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
794  : TLI(tli), FLI(fli), DW(0),
795    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
796              getVTList(MVT::Other)),
797    Root(getEntryNode()), Ordering(0) {
798  AllNodes.push_back(&EntryNode);
799  Ordering = new SDNodeOrdering();
800  DbgInfo = new SDDbgInfo();
801}
802
803void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
804                        DwarfWriter *dw) {
805  MF = &mf;
806  MMI = mmi;
807  DW = dw;
808  Context = &mf.getFunction()->getContext();
809}
810
811SelectionDAG::~SelectionDAG() {
812  allnodes_clear();
813  delete Ordering;
814  delete DbgInfo;
815}
816
817void SelectionDAG::allnodes_clear() {
818  assert(&*AllNodes.begin() == &EntryNode);
819  AllNodes.remove(AllNodes.begin());
820  while (!AllNodes.empty())
821    DeallocateNode(AllNodes.begin());
822}
823
824void SelectionDAG::clear() {
825  allnodes_clear();
826  OperandAllocator.Reset();
827  CSEMap.clear();
828
829  ExtendedValueTypeNodes.clear();
830  ExternalSymbols.clear();
831  TargetExternalSymbols.clear();
832  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
833            static_cast<CondCodeSDNode*>(0));
834  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
835            static_cast<SDNode*>(0));
836
837  EntryNode.UseList = 0;
838  AllNodes.push_back(&EntryNode);
839  Root = getEntryNode();
840  delete Ordering;
841  Ordering = new SDNodeOrdering();
842  delete DbgInfo;
843  DbgInfo = new SDDbgInfo();
844}
845
846SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
847  return VT.bitsGT(Op.getValueType()) ?
848    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
849    getNode(ISD::TRUNCATE, DL, VT, Op);
850}
851
852SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
853  return VT.bitsGT(Op.getValueType()) ?
854    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
855    getNode(ISD::TRUNCATE, DL, VT, Op);
856}
857
858SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
859  assert(!VT.isVector() &&
860         "getZeroExtendInReg should use the vector element type instead of "
861         "the vector type!");
862  if (Op.getValueType() == VT) return Op;
863  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
864  APInt Imm = APInt::getLowBitsSet(BitWidth,
865                                   VT.getSizeInBits());
866  return getNode(ISD::AND, DL, Op.getValueType(), Op,
867                 getConstant(Imm, Op.getValueType()));
868}
869
870/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
871///
872SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
873  EVT EltVT = VT.getScalarType();
874  SDValue NegOne =
875    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
876  return getNode(ISD::XOR, DL, VT, Val, NegOne);
877}
878
879SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
880  EVT EltVT = VT.getScalarType();
881  assert((EltVT.getSizeInBits() >= 64 ||
882         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
883         "getConstant with a uint64_t value that doesn't fit in the type!");
884  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
885}
886
887SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
888  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
889}
890
891SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
892  assert(VT.isInteger() && "Cannot create FP integer constant!");
893
894  EVT EltVT = VT.getScalarType();
895  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
896         "APInt size does not match type size!");
897
898  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
899  FoldingSetNodeID ID;
900  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
901  ID.AddPointer(&Val);
902  void *IP = 0;
903  SDNode *N = NULL;
904  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
905    if (!VT.isVector())
906      return SDValue(N, 0);
907
908  if (!N) {
909    N = NodeAllocator.Allocate<ConstantSDNode>();
910    new (N) ConstantSDNode(isT, &Val, EltVT);
911    CSEMap.InsertNode(N, IP);
912    AllNodes.push_back(N);
913  }
914
915  SDValue Result(N, 0);
916  if (VT.isVector()) {
917    SmallVector<SDValue, 8> Ops;
918    Ops.assign(VT.getVectorNumElements(), Result);
919    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
920                     VT, &Ops[0], Ops.size());
921  }
922  return Result;
923}
924
925SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
926  return getConstant(Val, TLI.getPointerTy(), isTarget);
927}
928
929
930SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
931  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
932}
933
934SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
935  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
936
937  EVT EltVT = VT.getScalarType();
938
939  // Do the map lookup using the actual bit pattern for the floating point
940  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
941  // we don't have issues with SNANs.
942  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
943  FoldingSetNodeID ID;
944  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
945  ID.AddPointer(&V);
946  void *IP = 0;
947  SDNode *N = NULL;
948  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
949    if (!VT.isVector())
950      return SDValue(N, 0);
951
952  if (!N) {
953    N = NodeAllocator.Allocate<ConstantFPSDNode>();
954    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
955    CSEMap.InsertNode(N, IP);
956    AllNodes.push_back(N);
957  }
958
959  SDValue Result(N, 0);
960  if (VT.isVector()) {
961    SmallVector<SDValue, 8> Ops;
962    Ops.assign(VT.getVectorNumElements(), Result);
963    // FIXME DebugLoc info might be appropriate here
964    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
965                     VT, &Ops[0], Ops.size());
966  }
967  return Result;
968}
969
970SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
971  EVT EltVT = VT.getScalarType();
972  if (EltVT==MVT::f32)
973    return getConstantFP(APFloat((float)Val), VT, isTarget);
974  else
975    return getConstantFP(APFloat(Val), VT, isTarget);
976}
977
978SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
979                                       EVT VT, int64_t Offset,
980                                       bool isTargetGA,
981                                       unsigned char TargetFlags) {
982  assert((TargetFlags == 0 || isTargetGA) &&
983         "Cannot set target flags on target-independent globals");
984
985  // Truncate (with sign-extension) the offset value to the pointer size.
986  EVT PTy = TLI.getPointerTy();
987  unsigned BitWidth = PTy.getSizeInBits();
988  if (BitWidth < 64)
989    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
990
991  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
992  if (!GVar) {
993    // If GV is an alias then use the aliasee for determining thread-localness.
994    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
995      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
996  }
997
998  unsigned Opc;
999  if (GVar && GVar->isThreadLocal())
1000    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1001  else
1002    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1003
1004  FoldingSetNodeID ID;
1005  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1006  ID.AddPointer(GV);
1007  ID.AddInteger(Offset);
1008  ID.AddInteger(TargetFlags);
1009  void *IP = 0;
1010  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1011    return SDValue(E, 0);
1012
1013  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1014  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1015  CSEMap.InsertNode(N, IP);
1016  AllNodes.push_back(N);
1017  return SDValue(N, 0);
1018}
1019
1020SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1021  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1022  FoldingSetNodeID ID;
1023  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1024  ID.AddInteger(FI);
1025  void *IP = 0;
1026  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1027    return SDValue(E, 0);
1028
1029  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1030  new (N) FrameIndexSDNode(FI, VT, isTarget);
1031  CSEMap.InsertNode(N, IP);
1032  AllNodes.push_back(N);
1033  return SDValue(N, 0);
1034}
1035
1036SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1037                                   unsigned char TargetFlags) {
1038  assert((TargetFlags == 0 || isTarget) &&
1039         "Cannot set target flags on target-independent jump tables");
1040  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1041  FoldingSetNodeID ID;
1042  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1043  ID.AddInteger(JTI);
1044  ID.AddInteger(TargetFlags);
1045  void *IP = 0;
1046  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1047    return SDValue(E, 0);
1048
1049  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1050  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1051  CSEMap.InsertNode(N, IP);
1052  AllNodes.push_back(N);
1053  return SDValue(N, 0);
1054}
1055
1056SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1057                                      unsigned Alignment, int Offset,
1058                                      bool isTarget,
1059                                      unsigned char TargetFlags) {
1060  assert((TargetFlags == 0 || isTarget) &&
1061         "Cannot set target flags on target-independent globals");
1062  if (Alignment == 0)
1063    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1064  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1065  FoldingSetNodeID ID;
1066  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1067  ID.AddInteger(Alignment);
1068  ID.AddInteger(Offset);
1069  ID.AddPointer(C);
1070  ID.AddInteger(TargetFlags);
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDValue(E, 0);
1074
1075  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1076  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1077  CSEMap.InsertNode(N, IP);
1078  AllNodes.push_back(N);
1079  return SDValue(N, 0);
1080}
1081
1082
1083SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1084                                      unsigned Alignment, int Offset,
1085                                      bool isTarget,
1086                                      unsigned char TargetFlags) {
1087  assert((TargetFlags == 0 || isTarget) &&
1088         "Cannot set target flags on target-independent globals");
1089  if (Alignment == 0)
1090    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1091  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1092  FoldingSetNodeID ID;
1093  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1094  ID.AddInteger(Alignment);
1095  ID.AddInteger(Offset);
1096  C->AddSelectionDAGCSEId(ID);
1097  ID.AddInteger(TargetFlags);
1098  void *IP = 0;
1099  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1100    return SDValue(E, 0);
1101
1102  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1103  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1104  CSEMap.InsertNode(N, IP);
1105  AllNodes.push_back(N);
1106  return SDValue(N, 0);
1107}
1108
1109SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1110  FoldingSetNodeID ID;
1111  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1112  ID.AddPointer(MBB);
1113  void *IP = 0;
1114  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1115    return SDValue(E, 0);
1116
1117  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1118  new (N) BasicBlockSDNode(MBB);
1119  CSEMap.InsertNode(N, IP);
1120  AllNodes.push_back(N);
1121  return SDValue(N, 0);
1122}
1123
1124SDValue SelectionDAG::getValueType(EVT VT) {
1125  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1126      ValueTypeNodes.size())
1127    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1128
1129  SDNode *&N = VT.isExtended() ?
1130    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1131
1132  if (N) return SDValue(N, 0);
1133  N = NodeAllocator.Allocate<VTSDNode>();
1134  new (N) VTSDNode(VT);
1135  AllNodes.push_back(N);
1136  return SDValue(N, 0);
1137}
1138
1139SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1140  SDNode *&N = ExternalSymbols[Sym];
1141  if (N) return SDValue(N, 0);
1142  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1143  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1144  AllNodes.push_back(N);
1145  return SDValue(N, 0);
1146}
1147
1148SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1149                                              unsigned char TargetFlags) {
1150  SDNode *&N =
1151    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1152                                                               TargetFlags)];
1153  if (N) return SDValue(N, 0);
1154  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1155  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1156  AllNodes.push_back(N);
1157  return SDValue(N, 0);
1158}
1159
1160SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1161  if ((unsigned)Cond >= CondCodeNodes.size())
1162    CondCodeNodes.resize(Cond+1);
1163
1164  if (CondCodeNodes[Cond] == 0) {
1165    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1166    new (N) CondCodeSDNode(Cond);
1167    CondCodeNodes[Cond] = N;
1168    AllNodes.push_back(N);
1169  }
1170
1171  return SDValue(CondCodeNodes[Cond], 0);
1172}
1173
1174// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1175// the shuffle mask M that point at N1 to point at N2, and indices that point
1176// N2 to point at N1.
1177static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1178  std::swap(N1, N2);
1179  int NElts = M.size();
1180  for (int i = 0; i != NElts; ++i) {
1181    if (M[i] >= NElts)
1182      M[i] -= NElts;
1183    else if (M[i] >= 0)
1184      M[i] += NElts;
1185  }
1186}
1187
1188SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1189                                       SDValue N2, const int *Mask) {
1190  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1191  assert(VT.isVector() && N1.getValueType().isVector() &&
1192         "Vector Shuffle VTs must be a vectors");
1193  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1194         && "Vector Shuffle VTs must have same element type");
1195
1196  // Canonicalize shuffle undef, undef -> undef
1197  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1198    return getUNDEF(VT);
1199
1200  // Validate that all indices in Mask are within the range of the elements
1201  // input to the shuffle.
1202  unsigned NElts = VT.getVectorNumElements();
1203  SmallVector<int, 8> MaskVec;
1204  for (unsigned i = 0; i != NElts; ++i) {
1205    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1206    MaskVec.push_back(Mask[i]);
1207  }
1208
1209  // Canonicalize shuffle v, v -> v, undef
1210  if (N1 == N2) {
1211    N2 = getUNDEF(VT);
1212    for (unsigned i = 0; i != NElts; ++i)
1213      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1214  }
1215
1216  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1217  if (N1.getOpcode() == ISD::UNDEF)
1218    commuteShuffle(N1, N2, MaskVec);
1219
1220  // Canonicalize all index into lhs, -> shuffle lhs, undef
1221  // Canonicalize all index into rhs, -> shuffle rhs, undef
1222  bool AllLHS = true, AllRHS = true;
1223  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1224  for (unsigned i = 0; i != NElts; ++i) {
1225    if (MaskVec[i] >= (int)NElts) {
1226      if (N2Undef)
1227        MaskVec[i] = -1;
1228      else
1229        AllLHS = false;
1230    } else if (MaskVec[i] >= 0) {
1231      AllRHS = false;
1232    }
1233  }
1234  if (AllLHS && AllRHS)
1235    return getUNDEF(VT);
1236  if (AllLHS && !N2Undef)
1237    N2 = getUNDEF(VT);
1238  if (AllRHS) {
1239    N1 = getUNDEF(VT);
1240    commuteShuffle(N1, N2, MaskVec);
1241  }
1242
1243  // If Identity shuffle, or all shuffle in to undef, return that node.
1244  bool AllUndef = true;
1245  bool Identity = true;
1246  for (unsigned i = 0; i != NElts; ++i) {
1247    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1248    if (MaskVec[i] >= 0) AllUndef = false;
1249  }
1250  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1251    return N1;
1252  if (AllUndef)
1253    return getUNDEF(VT);
1254
1255  FoldingSetNodeID ID;
1256  SDValue Ops[2] = { N1, N2 };
1257  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1258  for (unsigned i = 0; i != NElts; ++i)
1259    ID.AddInteger(MaskVec[i]);
1260
1261  void* IP = 0;
1262  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1263    return SDValue(E, 0);
1264
1265  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1266  // SDNode doesn't have access to it.  This memory will be "leaked" when
1267  // the node is deallocated, but recovered when the NodeAllocator is released.
1268  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1269  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1270
1271  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1272  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1273  CSEMap.InsertNode(N, IP);
1274  AllNodes.push_back(N);
1275  return SDValue(N, 0);
1276}
1277
1278SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1279                                       SDValue Val, SDValue DTy,
1280                                       SDValue STy, SDValue Rnd, SDValue Sat,
1281                                       ISD::CvtCode Code) {
1282  // If the src and dest types are the same and the conversion is between
1283  // integer types of the same sign or two floats, no conversion is necessary.
1284  if (DTy == STy &&
1285      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1286    return Val;
1287
1288  FoldingSetNodeID ID;
1289  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1290  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1291  void* IP = 0;
1292  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1293    return SDValue(E, 0);
1294
1295  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1296  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1297  CSEMap.InsertNode(N, IP);
1298  AllNodes.push_back(N);
1299  return SDValue(N, 0);
1300}
1301
1302SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1303  FoldingSetNodeID ID;
1304  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1305  ID.AddInteger(RegNo);
1306  void *IP = 0;
1307  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1308    return SDValue(E, 0);
1309
1310  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1311  new (N) RegisterSDNode(RegNo, VT);
1312  CSEMap.InsertNode(N, IP);
1313  AllNodes.push_back(N);
1314  return SDValue(N, 0);
1315}
1316
1317SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1318  FoldingSetNodeID ID;
1319  SDValue Ops[] = { Root };
1320  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1321  ID.AddPointer(Label);
1322  void *IP = 0;
1323  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1324    return SDValue(E, 0);
1325
1326  SDNode *N = NodeAllocator.Allocate<EHLabelSDNode>();
1327  new (N) EHLabelSDNode(dl, Root, Label);
1328  CSEMap.InsertNode(N, IP);
1329  AllNodes.push_back(N);
1330  return SDValue(N, 0);
1331}
1332
1333
1334SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1335                                      bool isTarget,
1336                                      unsigned char TargetFlags) {
1337  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1338
1339  FoldingSetNodeID ID;
1340  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1341  ID.AddPointer(BA);
1342  ID.AddInteger(TargetFlags);
1343  void *IP = 0;
1344  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1345    return SDValue(E, 0);
1346
1347  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1348  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1349  CSEMap.InsertNode(N, IP);
1350  AllNodes.push_back(N);
1351  return SDValue(N, 0);
1352}
1353
1354SDValue SelectionDAG::getSrcValue(const Value *V) {
1355  assert((!V || V->getType()->isPointerTy()) &&
1356         "SrcValue is not a pointer?");
1357
1358  FoldingSetNodeID ID;
1359  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1360  ID.AddPointer(V);
1361
1362  void *IP = 0;
1363  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1364    return SDValue(E, 0);
1365
1366  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1367  new (N) SrcValueSDNode(V);
1368  CSEMap.InsertNode(N, IP);
1369  AllNodes.push_back(N);
1370  return SDValue(N, 0);
1371}
1372
1373/// getShiftAmountOperand - Return the specified value casted to
1374/// the target's desired shift amount type.
1375SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1376  EVT OpTy = Op.getValueType();
1377  MVT ShTy = TLI.getShiftAmountTy();
1378  if (OpTy == ShTy || OpTy.isVector()) return Op;
1379
1380  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1381  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1382}
1383
1384/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1385/// specified value type.
1386SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1387  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1388  unsigned ByteSize = VT.getStoreSize();
1389  const Type *Ty = VT.getTypeForEVT(*getContext());
1390  unsigned StackAlign =
1391  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1392
1393  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1394  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1395}
1396
1397/// CreateStackTemporary - Create a stack temporary suitable for holding
1398/// either of the specified value types.
1399SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1400  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1401                            VT2.getStoreSizeInBits())/8;
1402  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1403  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1404  const TargetData *TD = TLI.getTargetData();
1405  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1406                            TD->getPrefTypeAlignment(Ty2));
1407
1408  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1409  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1410  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1411}
1412
1413SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1414                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1415  // These setcc operations always fold.
1416  switch (Cond) {
1417  default: break;
1418  case ISD::SETFALSE:
1419  case ISD::SETFALSE2: return getConstant(0, VT);
1420  case ISD::SETTRUE:
1421  case ISD::SETTRUE2:  return getConstant(1, VT);
1422
1423  case ISD::SETOEQ:
1424  case ISD::SETOGT:
1425  case ISD::SETOGE:
1426  case ISD::SETOLT:
1427  case ISD::SETOLE:
1428  case ISD::SETONE:
1429  case ISD::SETO:
1430  case ISD::SETUO:
1431  case ISD::SETUEQ:
1432  case ISD::SETUNE:
1433    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1434    break;
1435  }
1436
1437  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1438    const APInt &C2 = N2C->getAPIntValue();
1439    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1440      const APInt &C1 = N1C->getAPIntValue();
1441
1442      switch (Cond) {
1443      default: llvm_unreachable("Unknown integer setcc!");
1444      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1445      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1446      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1447      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1448      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1449      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1450      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1451      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1452      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1453      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1454      }
1455    }
1456  }
1457  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1458    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1459      // No compile time operations on this type yet.
1460      if (N1C->getValueType(0) == MVT::ppcf128)
1461        return SDValue();
1462
1463      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1464      switch (Cond) {
1465      default: break;
1466      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1467                          return getUNDEF(VT);
1468                        // fall through
1469      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1470      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1471                          return getUNDEF(VT);
1472                        // fall through
1473      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1474                                           R==APFloat::cmpLessThan, VT);
1475      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1476                          return getUNDEF(VT);
1477                        // fall through
1478      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1479      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1480                          return getUNDEF(VT);
1481                        // fall through
1482      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1483      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1484                          return getUNDEF(VT);
1485                        // fall through
1486      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1487                                           R==APFloat::cmpEqual, VT);
1488      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1489                          return getUNDEF(VT);
1490                        // fall through
1491      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1492                                           R==APFloat::cmpEqual, VT);
1493      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1494      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1495      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1496                                           R==APFloat::cmpEqual, VT);
1497      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1498      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1499                                           R==APFloat::cmpLessThan, VT);
1500      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1501                                           R==APFloat::cmpUnordered, VT);
1502      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1503      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1504      }
1505    } else {
1506      // Ensure that the constant occurs on the RHS.
1507      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1508    }
1509  }
1510
1511  // Could not fold it.
1512  return SDValue();
1513}
1514
1515/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1516/// use this predicate to simplify operations downstream.
1517bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1518  // This predicate is not safe for vector operations.
1519  if (Op.getValueType().isVector())
1520    return false;
1521
1522  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1523  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1524}
1525
1526/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1527/// this predicate to simplify operations downstream.  Mask is known to be zero
1528/// for bits that V cannot have.
1529bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1530                                     unsigned Depth) const {
1531  APInt KnownZero, KnownOne;
1532  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1533  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1534  return (KnownZero & Mask) == Mask;
1535}
1536
1537/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1538/// known to be either zero or one and return them in the KnownZero/KnownOne
1539/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1540/// processing.
1541void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1542                                     APInt &KnownZero, APInt &KnownOne,
1543                                     unsigned Depth) const {
1544  unsigned BitWidth = Mask.getBitWidth();
1545  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1546         "Mask size mismatches value type size!");
1547
1548  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1549  if (Depth == 6 || Mask == 0)
1550    return;  // Limit search depth.
1551
1552  APInt KnownZero2, KnownOne2;
1553
1554  switch (Op.getOpcode()) {
1555  case ISD::Constant:
1556    // We know all of the bits for a constant!
1557    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1558    KnownZero = ~KnownOne & Mask;
1559    return;
1560  case ISD::AND:
1561    // If either the LHS or the RHS are Zero, the result is zero.
1562    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1563    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1564                      KnownZero2, KnownOne2, Depth+1);
1565    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1566    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1567
1568    // Output known-1 bits are only known if set in both the LHS & RHS.
1569    KnownOne &= KnownOne2;
1570    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1571    KnownZero |= KnownZero2;
1572    return;
1573  case ISD::OR:
1574    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1575    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1576                      KnownZero2, KnownOne2, Depth+1);
1577    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1578    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1579
1580    // Output known-0 bits are only known if clear in both the LHS & RHS.
1581    KnownZero &= KnownZero2;
1582    // Output known-1 are known to be set if set in either the LHS | RHS.
1583    KnownOne |= KnownOne2;
1584    return;
1585  case ISD::XOR: {
1586    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1587    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1588    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1589    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1590
1591    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1592    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1593    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1594    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1595    KnownZero = KnownZeroOut;
1596    return;
1597  }
1598  case ISD::MUL: {
1599    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1600    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1601    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1602    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1603    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1604
1605    // If low bits are zero in either operand, output low known-0 bits.
1606    // Also compute a conserative estimate for high known-0 bits.
1607    // More trickiness is possible, but this is sufficient for the
1608    // interesting case of alignment computation.
1609    KnownOne.clear();
1610    unsigned TrailZ = KnownZero.countTrailingOnes() +
1611                      KnownZero2.countTrailingOnes();
1612    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1613                               KnownZero2.countLeadingOnes(),
1614                               BitWidth) - BitWidth;
1615
1616    TrailZ = std::min(TrailZ, BitWidth);
1617    LeadZ = std::min(LeadZ, BitWidth);
1618    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1619                APInt::getHighBitsSet(BitWidth, LeadZ);
1620    KnownZero &= Mask;
1621    return;
1622  }
1623  case ISD::UDIV: {
1624    // For the purposes of computing leading zeros we can conservatively
1625    // treat a udiv as a logical right shift by the power of 2 known to
1626    // be less than the denominator.
1627    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1628    ComputeMaskedBits(Op.getOperand(0),
1629                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1630    unsigned LeadZ = KnownZero2.countLeadingOnes();
1631
1632    KnownOne2.clear();
1633    KnownZero2.clear();
1634    ComputeMaskedBits(Op.getOperand(1),
1635                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1636    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1637    if (RHSUnknownLeadingOnes != BitWidth)
1638      LeadZ = std::min(BitWidth,
1639                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1640
1641    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1642    return;
1643  }
1644  case ISD::SELECT:
1645    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1646    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1647    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1648    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1649
1650    // Only known if known in both the LHS and RHS.
1651    KnownOne &= KnownOne2;
1652    KnownZero &= KnownZero2;
1653    return;
1654  case ISD::SELECT_CC:
1655    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1656    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1657    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1658    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1659
1660    // Only known if known in both the LHS and RHS.
1661    KnownOne &= KnownOne2;
1662    KnownZero &= KnownZero2;
1663    return;
1664  case ISD::SADDO:
1665  case ISD::UADDO:
1666  case ISD::SSUBO:
1667  case ISD::USUBO:
1668  case ISD::SMULO:
1669  case ISD::UMULO:
1670    if (Op.getResNo() != 1)
1671      return;
1672    // The boolean result conforms to getBooleanContents.  Fall through.
1673  case ISD::SETCC:
1674    // If we know the result of a setcc has the top bits zero, use this info.
1675    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1676        BitWidth > 1)
1677      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1678    return;
1679  case ISD::SHL:
1680    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1681    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1682      unsigned ShAmt = SA->getZExtValue();
1683
1684      // If the shift count is an invalid immediate, don't do anything.
1685      if (ShAmt >= BitWidth)
1686        return;
1687
1688      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1689                        KnownZero, KnownOne, Depth+1);
1690      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1691      KnownZero <<= ShAmt;
1692      KnownOne  <<= ShAmt;
1693      // low bits known zero.
1694      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1695    }
1696    return;
1697  case ISD::SRL:
1698    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1699    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1700      unsigned ShAmt = SA->getZExtValue();
1701
1702      // If the shift count is an invalid immediate, don't do anything.
1703      if (ShAmt >= BitWidth)
1704        return;
1705
1706      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1707                        KnownZero, KnownOne, Depth+1);
1708      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1709      KnownZero = KnownZero.lshr(ShAmt);
1710      KnownOne  = KnownOne.lshr(ShAmt);
1711
1712      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1713      KnownZero |= HighBits;  // High bits known zero.
1714    }
1715    return;
1716  case ISD::SRA:
1717    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1718      unsigned ShAmt = SA->getZExtValue();
1719
1720      // If the shift count is an invalid immediate, don't do anything.
1721      if (ShAmt >= BitWidth)
1722        return;
1723
1724      APInt InDemandedMask = (Mask << ShAmt);
1725      // If any of the demanded bits are produced by the sign extension, we also
1726      // demand the input sign bit.
1727      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1728      if (HighBits.getBoolValue())
1729        InDemandedMask |= APInt::getSignBit(BitWidth);
1730
1731      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1732                        Depth+1);
1733      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1734      KnownZero = KnownZero.lshr(ShAmt);
1735      KnownOne  = KnownOne.lshr(ShAmt);
1736
1737      // Handle the sign bits.
1738      APInt SignBit = APInt::getSignBit(BitWidth);
1739      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1740
1741      if (KnownZero.intersects(SignBit)) {
1742        KnownZero |= HighBits;  // New bits are known zero.
1743      } else if (KnownOne.intersects(SignBit)) {
1744        KnownOne  |= HighBits;  // New bits are known one.
1745      }
1746    }
1747    return;
1748  case ISD::SIGN_EXTEND_INREG: {
1749    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1750    unsigned EBits = EVT.getScalarType().getSizeInBits();
1751
1752    // Sign extension.  Compute the demanded bits in the result that are not
1753    // present in the input.
1754    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1755
1756    APInt InSignBit = APInt::getSignBit(EBits);
1757    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1758
1759    // If the sign extended bits are demanded, we know that the sign
1760    // bit is demanded.
1761    InSignBit.zext(BitWidth);
1762    if (NewBits.getBoolValue())
1763      InputDemandedBits |= InSignBit;
1764
1765    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1766                      KnownZero, KnownOne, Depth+1);
1767    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1768
1769    // If the sign bit of the input is known set or clear, then we know the
1770    // top bits of the result.
1771    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1772      KnownZero |= NewBits;
1773      KnownOne  &= ~NewBits;
1774    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1775      KnownOne  |= NewBits;
1776      KnownZero &= ~NewBits;
1777    } else {                              // Input sign bit unknown
1778      KnownZero &= ~NewBits;
1779      KnownOne  &= ~NewBits;
1780    }
1781    return;
1782  }
1783  case ISD::CTTZ:
1784  case ISD::CTLZ:
1785  case ISD::CTPOP: {
1786    unsigned LowBits = Log2_32(BitWidth)+1;
1787    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1788    KnownOne.clear();
1789    return;
1790  }
1791  case ISD::LOAD: {
1792    if (ISD::isZEXTLoad(Op.getNode())) {
1793      LoadSDNode *LD = cast<LoadSDNode>(Op);
1794      EVT VT = LD->getMemoryVT();
1795      unsigned MemBits = VT.getScalarType().getSizeInBits();
1796      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1797    }
1798    return;
1799  }
1800  case ISD::ZERO_EXTEND: {
1801    EVT InVT = Op.getOperand(0).getValueType();
1802    unsigned InBits = InVT.getScalarType().getSizeInBits();
1803    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1804    APInt InMask    = Mask;
1805    InMask.trunc(InBits);
1806    KnownZero.trunc(InBits);
1807    KnownOne.trunc(InBits);
1808    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1809    KnownZero.zext(BitWidth);
1810    KnownOne.zext(BitWidth);
1811    KnownZero |= NewBits;
1812    return;
1813  }
1814  case ISD::SIGN_EXTEND: {
1815    EVT InVT = Op.getOperand(0).getValueType();
1816    unsigned InBits = InVT.getScalarType().getSizeInBits();
1817    APInt InSignBit = APInt::getSignBit(InBits);
1818    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1819    APInt InMask = Mask;
1820    InMask.trunc(InBits);
1821
1822    // If any of the sign extended bits are demanded, we know that the sign
1823    // bit is demanded. Temporarily set this bit in the mask for our callee.
1824    if (NewBits.getBoolValue())
1825      InMask |= InSignBit;
1826
1827    KnownZero.trunc(InBits);
1828    KnownOne.trunc(InBits);
1829    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1830
1831    // Note if the sign bit is known to be zero or one.
1832    bool SignBitKnownZero = KnownZero.isNegative();
1833    bool SignBitKnownOne  = KnownOne.isNegative();
1834    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1835           "Sign bit can't be known to be both zero and one!");
1836
1837    // If the sign bit wasn't actually demanded by our caller, we don't
1838    // want it set in the KnownZero and KnownOne result values. Reset the
1839    // mask and reapply it to the result values.
1840    InMask = Mask;
1841    InMask.trunc(InBits);
1842    KnownZero &= InMask;
1843    KnownOne  &= InMask;
1844
1845    KnownZero.zext(BitWidth);
1846    KnownOne.zext(BitWidth);
1847
1848    // If the sign bit is known zero or one, the top bits match.
1849    if (SignBitKnownZero)
1850      KnownZero |= NewBits;
1851    else if (SignBitKnownOne)
1852      KnownOne  |= NewBits;
1853    return;
1854  }
1855  case ISD::ANY_EXTEND: {
1856    EVT InVT = Op.getOperand(0).getValueType();
1857    unsigned InBits = InVT.getScalarType().getSizeInBits();
1858    APInt InMask = Mask;
1859    InMask.trunc(InBits);
1860    KnownZero.trunc(InBits);
1861    KnownOne.trunc(InBits);
1862    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1863    KnownZero.zext(BitWidth);
1864    KnownOne.zext(BitWidth);
1865    return;
1866  }
1867  case ISD::TRUNCATE: {
1868    EVT InVT = Op.getOperand(0).getValueType();
1869    unsigned InBits = InVT.getScalarType().getSizeInBits();
1870    APInt InMask = Mask;
1871    InMask.zext(InBits);
1872    KnownZero.zext(InBits);
1873    KnownOne.zext(InBits);
1874    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1875    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1876    KnownZero.trunc(BitWidth);
1877    KnownOne.trunc(BitWidth);
1878    break;
1879  }
1880  case ISD::AssertZext: {
1881    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1882    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1883    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1884                      KnownOne, Depth+1);
1885    KnownZero |= (~InMask) & Mask;
1886    return;
1887  }
1888  case ISD::FGETSIGN:
1889    // All bits are zero except the low bit.
1890    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1891    return;
1892
1893  case ISD::SUB: {
1894    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1895      // We know that the top bits of C-X are clear if X contains less bits
1896      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1897      // positive if we can prove that X is >= 0 and < 16.
1898      if (CLHS->getAPIntValue().isNonNegative()) {
1899        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1900        // NLZ can't be BitWidth with no sign bit
1901        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1902        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1903                          Depth+1);
1904
1905        // If all of the MaskV bits are known to be zero, then we know the
1906        // output top bits are zero, because we now know that the output is
1907        // from [0-C].
1908        if ((KnownZero2 & MaskV) == MaskV) {
1909          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1910          // Top bits known zero.
1911          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1912        }
1913      }
1914    }
1915  }
1916  // fall through
1917  case ISD::ADD: {
1918    // Output known-0 bits are known if clear or set in both the low clear bits
1919    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1920    // low 3 bits clear.
1921    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1922    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1923    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1924    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1925
1926    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1927    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1928    KnownZeroOut = std::min(KnownZeroOut,
1929                            KnownZero2.countTrailingOnes());
1930
1931    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1932    return;
1933  }
1934  case ISD::SREM:
1935    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1936      const APInt &RA = Rem->getAPIntValue().abs();
1937      if (RA.isPowerOf2()) {
1938        APInt LowBits = RA - 1;
1939        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1940        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1941
1942        // The low bits of the first operand are unchanged by the srem.
1943        KnownZero = KnownZero2 & LowBits;
1944        KnownOne = KnownOne2 & LowBits;
1945
1946        // If the first operand is non-negative or has all low bits zero, then
1947        // the upper bits are all zero.
1948        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1949          KnownZero |= ~LowBits;
1950
1951        // If the first operand is negative and not all low bits are zero, then
1952        // the upper bits are all one.
1953        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1954          KnownOne |= ~LowBits;
1955
1956        KnownZero &= Mask;
1957        KnownOne &= Mask;
1958
1959        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1960      }
1961    }
1962    return;
1963  case ISD::UREM: {
1964    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1965      const APInt &RA = Rem->getAPIntValue();
1966      if (RA.isPowerOf2()) {
1967        APInt LowBits = (RA - 1);
1968        APInt Mask2 = LowBits & Mask;
1969        KnownZero |= ~LowBits & Mask;
1970        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1971        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1972        break;
1973      }
1974    }
1975
1976    // Since the result is less than or equal to either operand, any leading
1977    // zero bits in either operand must also exist in the result.
1978    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1979    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1980                      Depth+1);
1981    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1982                      Depth+1);
1983
1984    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1985                                KnownZero2.countLeadingOnes());
1986    KnownOne.clear();
1987    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1988    return;
1989  }
1990  default:
1991    // Allow the target to implement this method for its nodes.
1992    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1993  case ISD::INTRINSIC_WO_CHAIN:
1994  case ISD::INTRINSIC_W_CHAIN:
1995  case ISD::INTRINSIC_VOID:
1996      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1997                                         Depth);
1998    }
1999    return;
2000  }
2001}
2002
2003/// ComputeNumSignBits - Return the number of times the sign bit of the
2004/// register is replicated into the other bits.  We know that at least 1 bit
2005/// is always equal to the sign bit (itself), but other cases can give us
2006/// information.  For example, immediately after an "SRA X, 2", we know that
2007/// the top 3 bits are all equal to each other, so we return 3.
2008unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2009  EVT VT = Op.getValueType();
2010  assert(VT.isInteger() && "Invalid VT!");
2011  unsigned VTBits = VT.getScalarType().getSizeInBits();
2012  unsigned Tmp, Tmp2;
2013  unsigned FirstAnswer = 1;
2014
2015  if (Depth == 6)
2016    return 1;  // Limit search depth.
2017
2018  switch (Op.getOpcode()) {
2019  default: break;
2020  case ISD::AssertSext:
2021    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2022    return VTBits-Tmp+1;
2023  case ISD::AssertZext:
2024    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2025    return VTBits-Tmp;
2026
2027  case ISD::Constant: {
2028    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2029    // If negative, return # leading ones.
2030    if (Val.isNegative())
2031      return Val.countLeadingOnes();
2032
2033    // Return # leading zeros.
2034    return Val.countLeadingZeros();
2035  }
2036
2037  case ISD::SIGN_EXTEND:
2038    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2039    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2040
2041  case ISD::SIGN_EXTEND_INREG:
2042    // Max of the input and what this extends.
2043    Tmp =
2044      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2045    Tmp = VTBits-Tmp+1;
2046
2047    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2048    return std::max(Tmp, Tmp2);
2049
2050  case ISD::SRA:
2051    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2052    // SRA X, C   -> adds C sign bits.
2053    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2054      Tmp += C->getZExtValue();
2055      if (Tmp > VTBits) Tmp = VTBits;
2056    }
2057    return Tmp;
2058  case ISD::SHL:
2059    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2060      // shl destroys sign bits.
2061      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2062      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2063          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2064      return Tmp - C->getZExtValue();
2065    }
2066    break;
2067  case ISD::AND:
2068  case ISD::OR:
2069  case ISD::XOR:    // NOT is handled here.
2070    // Logical binary ops preserve the number of sign bits at the worst.
2071    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2072    if (Tmp != 1) {
2073      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2074      FirstAnswer = std::min(Tmp, Tmp2);
2075      // We computed what we know about the sign bits as our first
2076      // answer. Now proceed to the generic code that uses
2077      // ComputeMaskedBits, and pick whichever answer is better.
2078    }
2079    break;
2080
2081  case ISD::SELECT:
2082    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2083    if (Tmp == 1) return 1;  // Early out.
2084    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2085    return std::min(Tmp, Tmp2);
2086
2087  case ISD::SADDO:
2088  case ISD::UADDO:
2089  case ISD::SSUBO:
2090  case ISD::USUBO:
2091  case ISD::SMULO:
2092  case ISD::UMULO:
2093    if (Op.getResNo() != 1)
2094      break;
2095    // The boolean result conforms to getBooleanContents.  Fall through.
2096  case ISD::SETCC:
2097    // If setcc returns 0/-1, all bits are sign bits.
2098    if (TLI.getBooleanContents() ==
2099        TargetLowering::ZeroOrNegativeOneBooleanContent)
2100      return VTBits;
2101    break;
2102  case ISD::ROTL:
2103  case ISD::ROTR:
2104    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2105      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2106
2107      // Handle rotate right by N like a rotate left by 32-N.
2108      if (Op.getOpcode() == ISD::ROTR)
2109        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2110
2111      // If we aren't rotating out all of the known-in sign bits, return the
2112      // number that are left.  This handles rotl(sext(x), 1) for example.
2113      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2114      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2115    }
2116    break;
2117  case ISD::ADD:
2118    // Add can have at most one carry bit.  Thus we know that the output
2119    // is, at worst, one more bit than the inputs.
2120    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2121    if (Tmp == 1) return 1;  // Early out.
2122
2123    // Special case decrementing a value (ADD X, -1):
2124    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2125      if (CRHS->isAllOnesValue()) {
2126        APInt KnownZero, KnownOne;
2127        APInt Mask = APInt::getAllOnesValue(VTBits);
2128        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2129
2130        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2131        // sign bits set.
2132        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2133          return VTBits;
2134
2135        // If we are subtracting one from a positive number, there is no carry
2136        // out of the result.
2137        if (KnownZero.isNegative())
2138          return Tmp;
2139      }
2140
2141    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2142    if (Tmp2 == 1) return 1;
2143      return std::min(Tmp, Tmp2)-1;
2144    break;
2145
2146  case ISD::SUB:
2147    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2148    if (Tmp2 == 1) return 1;
2149
2150    // Handle NEG.
2151    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2152      if (CLHS->isNullValue()) {
2153        APInt KnownZero, KnownOne;
2154        APInt Mask = APInt::getAllOnesValue(VTBits);
2155        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2156        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2157        // sign bits set.
2158        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2159          return VTBits;
2160
2161        // If the input is known to be positive (the sign bit is known clear),
2162        // the output of the NEG has the same number of sign bits as the input.
2163        if (KnownZero.isNegative())
2164          return Tmp2;
2165
2166        // Otherwise, we treat this like a SUB.
2167      }
2168
2169    // Sub can have at most one carry bit.  Thus we know that the output
2170    // is, at worst, one more bit than the inputs.
2171    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2172    if (Tmp == 1) return 1;  // Early out.
2173      return std::min(Tmp, Tmp2)-1;
2174    break;
2175  case ISD::TRUNCATE:
2176    // FIXME: it's tricky to do anything useful for this, but it is an important
2177    // case for targets like X86.
2178    break;
2179  }
2180
2181  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2182  if (Op.getOpcode() == ISD::LOAD) {
2183    LoadSDNode *LD = cast<LoadSDNode>(Op);
2184    unsigned ExtType = LD->getExtensionType();
2185    switch (ExtType) {
2186    default: break;
2187    case ISD::SEXTLOAD:    // '17' bits known
2188      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2189      return VTBits-Tmp+1;
2190    case ISD::ZEXTLOAD:    // '16' bits known
2191      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2192      return VTBits-Tmp;
2193    }
2194  }
2195
2196  // Allow the target to implement this method for its nodes.
2197  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2198      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2199      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2200      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2201    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2202    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2203  }
2204
2205  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2206  // use this information.
2207  APInt KnownZero, KnownOne;
2208  APInt Mask = APInt::getAllOnesValue(VTBits);
2209  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2210
2211  if (KnownZero.isNegative()) {        // sign bit is 0
2212    Mask = KnownZero;
2213  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2214    Mask = KnownOne;
2215  } else {
2216    // Nothing known.
2217    return FirstAnswer;
2218  }
2219
2220  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2221  // the number of identical bits in the top of the input value.
2222  Mask = ~Mask;
2223  Mask <<= Mask.getBitWidth()-VTBits;
2224  // Return # leading zeros.  We use 'min' here in case Val was zero before
2225  // shifting.  We don't want to return '64' as for an i32 "0".
2226  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2227}
2228
2229bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2230  // If we're told that NaNs won't happen, assume they won't.
2231  if (FiniteOnlyFPMath())
2232    return true;
2233
2234  // If the value is a constant, we can obviously see if it is a NaN or not.
2235  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2236    return !C->getValueAPF().isNaN();
2237
2238  // TODO: Recognize more cases here.
2239
2240  return false;
2241}
2242
2243bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2244  // If the value is a constant, we can obviously see if it is a zero or not.
2245  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2246    return !C->isZero();
2247
2248  // TODO: Recognize more cases here.
2249
2250  return false;
2251}
2252
2253bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2254  // Check the obvious case.
2255  if (A == B) return true;
2256
2257  // For for negative and positive zero.
2258  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2259    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2260      if (CA->isZero() && CB->isZero()) return true;
2261
2262  // Otherwise they may not be equal.
2263  return false;
2264}
2265
2266bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2267  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2268  if (!GA) return false;
2269  if (GA->getOffset() != 0) return false;
2270  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2271  if (!GV) return false;
2272  MachineModuleInfo *MMI = getMachineModuleInfo();
2273  return MMI && MMI->hasDebugInfo();
2274}
2275
2276
2277/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2278/// element of the result of the vector shuffle.
2279SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2280                                          unsigned i) {
2281  EVT VT = N->getValueType(0);
2282  DebugLoc dl = N->getDebugLoc();
2283  if (N->getMaskElt(i) < 0)
2284    return getUNDEF(VT.getVectorElementType());
2285  unsigned Index = N->getMaskElt(i);
2286  unsigned NumElems = VT.getVectorNumElements();
2287  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2288  Index %= NumElems;
2289
2290  if (V.getOpcode() == ISD::BIT_CONVERT) {
2291    V = V.getOperand(0);
2292    EVT VVT = V.getValueType();
2293    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2294      return SDValue();
2295  }
2296  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2297    return (Index == 0) ? V.getOperand(0)
2298                      : getUNDEF(VT.getVectorElementType());
2299  if (V.getOpcode() == ISD::BUILD_VECTOR)
2300    return V.getOperand(Index);
2301  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2302    return getShuffleScalarElt(SVN, Index);
2303  return SDValue();
2304}
2305
2306
2307/// getNode - Gets or creates the specified node.
2308///
2309SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2310  FoldingSetNodeID ID;
2311  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2312  void *IP = 0;
2313  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2314    return SDValue(E, 0);
2315
2316  SDNode *N = NodeAllocator.Allocate<SDNode>();
2317  new (N) SDNode(Opcode, DL, getVTList(VT));
2318  CSEMap.InsertNode(N, IP);
2319
2320  AllNodes.push_back(N);
2321#ifndef NDEBUG
2322  VerifyNode(N);
2323#endif
2324  return SDValue(N, 0);
2325}
2326
2327SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2328                              EVT VT, SDValue Operand) {
2329  // Constant fold unary operations with an integer constant operand.
2330  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2331    const APInt &Val = C->getAPIntValue();
2332    unsigned BitWidth = VT.getSizeInBits();
2333    switch (Opcode) {
2334    default: break;
2335    case ISD::SIGN_EXTEND:
2336      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2337    case ISD::ANY_EXTEND:
2338    case ISD::ZERO_EXTEND:
2339    case ISD::TRUNCATE:
2340      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2341    case ISD::UINT_TO_FP:
2342    case ISD::SINT_TO_FP: {
2343      const uint64_t zero[] = {0, 0};
2344      // No compile time operations on this type.
2345      if (VT==MVT::ppcf128)
2346        break;
2347      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2348      (void)apf.convertFromAPInt(Val,
2349                                 Opcode==ISD::SINT_TO_FP,
2350                                 APFloat::rmNearestTiesToEven);
2351      return getConstantFP(apf, VT);
2352    }
2353    case ISD::BIT_CONVERT:
2354      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2355        return getConstantFP(Val.bitsToFloat(), VT);
2356      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2357        return getConstantFP(Val.bitsToDouble(), VT);
2358      break;
2359    case ISD::BSWAP:
2360      return getConstant(Val.byteSwap(), VT);
2361    case ISD::CTPOP:
2362      return getConstant(Val.countPopulation(), VT);
2363    case ISD::CTLZ:
2364      return getConstant(Val.countLeadingZeros(), VT);
2365    case ISD::CTTZ:
2366      return getConstant(Val.countTrailingZeros(), VT);
2367    }
2368  }
2369
2370  // Constant fold unary operations with a floating point constant operand.
2371  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2372    APFloat V = C->getValueAPF();    // make copy
2373    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2374      switch (Opcode) {
2375      case ISD::FNEG:
2376        V.changeSign();
2377        return getConstantFP(V, VT);
2378      case ISD::FABS:
2379        V.clearSign();
2380        return getConstantFP(V, VT);
2381      case ISD::FP_ROUND:
2382      case ISD::FP_EXTEND: {
2383        bool ignored;
2384        // This can return overflow, underflow, or inexact; we don't care.
2385        // FIXME need to be more flexible about rounding mode.
2386        (void)V.convert(*EVTToAPFloatSemantics(VT),
2387                        APFloat::rmNearestTiesToEven, &ignored);
2388        return getConstantFP(V, VT);
2389      }
2390      case ISD::FP_TO_SINT:
2391      case ISD::FP_TO_UINT: {
2392        integerPart x[2];
2393        bool ignored;
2394        assert(integerPartWidth >= 64);
2395        // FIXME need to be more flexible about rounding mode.
2396        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2397                              Opcode==ISD::FP_TO_SINT,
2398                              APFloat::rmTowardZero, &ignored);
2399        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2400          break;
2401        APInt api(VT.getSizeInBits(), 2, x);
2402        return getConstant(api, VT);
2403      }
2404      case ISD::BIT_CONVERT:
2405        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2406          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2407        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2408          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2409        break;
2410      }
2411    }
2412  }
2413
2414  unsigned OpOpcode = Operand.getNode()->getOpcode();
2415  switch (Opcode) {
2416  case ISD::TokenFactor:
2417  case ISD::MERGE_VALUES:
2418  case ISD::CONCAT_VECTORS:
2419    return Operand;         // Factor, merge or concat of one node?  No need.
2420  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2421  case ISD::FP_EXTEND:
2422    assert(VT.isFloatingPoint() &&
2423           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2424    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2425    assert((!VT.isVector() ||
2426            VT.getVectorNumElements() ==
2427            Operand.getValueType().getVectorNumElements()) &&
2428           "Vector element count mismatch!");
2429    if (Operand.getOpcode() == ISD::UNDEF)
2430      return getUNDEF(VT);
2431    break;
2432  case ISD::SIGN_EXTEND:
2433    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2434           "Invalid SIGN_EXTEND!");
2435    if (Operand.getValueType() == VT) return Operand;   // noop extension
2436    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2437           "Invalid sext node, dst < src!");
2438    assert((!VT.isVector() ||
2439            VT.getVectorNumElements() ==
2440            Operand.getValueType().getVectorNumElements()) &&
2441           "Vector element count mismatch!");
2442    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2443      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2444    break;
2445  case ISD::ZERO_EXTEND:
2446    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2447           "Invalid ZERO_EXTEND!");
2448    if (Operand.getValueType() == VT) return Operand;   // noop extension
2449    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2450           "Invalid zext node, dst < src!");
2451    assert((!VT.isVector() ||
2452            VT.getVectorNumElements() ==
2453            Operand.getValueType().getVectorNumElements()) &&
2454           "Vector element count mismatch!");
2455    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2456      return getNode(ISD::ZERO_EXTEND, DL, VT,
2457                     Operand.getNode()->getOperand(0));
2458    break;
2459  case ISD::ANY_EXTEND:
2460    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2461           "Invalid ANY_EXTEND!");
2462    if (Operand.getValueType() == VT) return Operand;   // noop extension
2463    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2464           "Invalid anyext node, dst < src!");
2465    assert((!VT.isVector() ||
2466            VT.getVectorNumElements() ==
2467            Operand.getValueType().getVectorNumElements()) &&
2468           "Vector element count mismatch!");
2469    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2470      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2471      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2472    break;
2473  case ISD::TRUNCATE:
2474    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2475           "Invalid TRUNCATE!");
2476    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2477    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2478           "Invalid truncate node, src < dst!");
2479    assert((!VT.isVector() ||
2480            VT.getVectorNumElements() ==
2481            Operand.getValueType().getVectorNumElements()) &&
2482           "Vector element count mismatch!");
2483    if (OpOpcode == ISD::TRUNCATE)
2484      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2485    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2486             OpOpcode == ISD::ANY_EXTEND) {
2487      // If the source is smaller than the dest, we still need an extend.
2488      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2489            .bitsLT(VT.getScalarType()))
2490        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2491      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2492        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2493      else
2494        return Operand.getNode()->getOperand(0);
2495    }
2496    break;
2497  case ISD::BIT_CONVERT:
2498    // Basic sanity checking.
2499    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2500           && "Cannot BIT_CONVERT between types of different sizes!");
2501    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2502    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2503      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2504    if (OpOpcode == ISD::UNDEF)
2505      return getUNDEF(VT);
2506    break;
2507  case ISD::SCALAR_TO_VECTOR:
2508    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2509           (VT.getVectorElementType() == Operand.getValueType() ||
2510            (VT.getVectorElementType().isInteger() &&
2511             Operand.getValueType().isInteger() &&
2512             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2513           "Illegal SCALAR_TO_VECTOR node!");
2514    if (OpOpcode == ISD::UNDEF)
2515      return getUNDEF(VT);
2516    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2517    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2518        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2519        Operand.getConstantOperandVal(1) == 0 &&
2520        Operand.getOperand(0).getValueType() == VT)
2521      return Operand.getOperand(0);
2522    break;
2523  case ISD::FNEG:
2524    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2525    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2526      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2527                     Operand.getNode()->getOperand(0));
2528    if (OpOpcode == ISD::FNEG)  // --X -> X
2529      return Operand.getNode()->getOperand(0);
2530    break;
2531  case ISD::FABS:
2532    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2533      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2534    break;
2535  }
2536
2537  SDNode *N;
2538  SDVTList VTs = getVTList(VT);
2539  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2540    FoldingSetNodeID ID;
2541    SDValue Ops[1] = { Operand };
2542    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2543    void *IP = 0;
2544    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2545      return SDValue(E, 0);
2546
2547    N = NodeAllocator.Allocate<UnarySDNode>();
2548    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2549    CSEMap.InsertNode(N, IP);
2550  } else {
2551    N = NodeAllocator.Allocate<UnarySDNode>();
2552    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2553  }
2554
2555  AllNodes.push_back(N);
2556#ifndef NDEBUG
2557  VerifyNode(N);
2558#endif
2559  return SDValue(N, 0);
2560}
2561
2562SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2563                                             EVT VT,
2564                                             ConstantSDNode *Cst1,
2565                                             ConstantSDNode *Cst2) {
2566  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2567
2568  switch (Opcode) {
2569  case ISD::ADD:  return getConstant(C1 + C2, VT);
2570  case ISD::SUB:  return getConstant(C1 - C2, VT);
2571  case ISD::MUL:  return getConstant(C1 * C2, VT);
2572  case ISD::UDIV:
2573    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2574    break;
2575  case ISD::UREM:
2576    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2577    break;
2578  case ISD::SDIV:
2579    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2580    break;
2581  case ISD::SREM:
2582    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2583    break;
2584  case ISD::AND:  return getConstant(C1 & C2, VT);
2585  case ISD::OR:   return getConstant(C1 | C2, VT);
2586  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2587  case ISD::SHL:  return getConstant(C1 << C2, VT);
2588  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2589  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2590  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2591  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2592  default: break;
2593  }
2594
2595  return SDValue();
2596}
2597
2598SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2599                              SDValue N1, SDValue N2) {
2600  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2601  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2602  switch (Opcode) {
2603  default: break;
2604  case ISD::TokenFactor:
2605    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2606           N2.getValueType() == MVT::Other && "Invalid token factor!");
2607    // Fold trivial token factors.
2608    if (N1.getOpcode() == ISD::EntryToken) return N2;
2609    if (N2.getOpcode() == ISD::EntryToken) return N1;
2610    if (N1 == N2) return N1;
2611    break;
2612  case ISD::CONCAT_VECTORS:
2613    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2614    // one big BUILD_VECTOR.
2615    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2616        N2.getOpcode() == ISD::BUILD_VECTOR) {
2617      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2618      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2619      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2620    }
2621    break;
2622  case ISD::AND:
2623    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2624           N1.getValueType() == VT && "Binary operator types must match!");
2625    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2626    // worth handling here.
2627    if (N2C && N2C->isNullValue())
2628      return N2;
2629    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2630      return N1;
2631    break;
2632  case ISD::OR:
2633  case ISD::XOR:
2634  case ISD::ADD:
2635  case ISD::SUB:
2636    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2637           N1.getValueType() == VT && "Binary operator types must match!");
2638    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2639    // it's worth handling here.
2640    if (N2C && N2C->isNullValue())
2641      return N1;
2642    break;
2643  case ISD::UDIV:
2644  case ISD::UREM:
2645  case ISD::MULHU:
2646  case ISD::MULHS:
2647  case ISD::MUL:
2648  case ISD::SDIV:
2649  case ISD::SREM:
2650    assert(VT.isInteger() && "This operator does not apply to FP types!");
2651    // fall through
2652  case ISD::FADD:
2653  case ISD::FSUB:
2654  case ISD::FMUL:
2655  case ISD::FDIV:
2656  case ISD::FREM:
2657    if (UnsafeFPMath) {
2658      if (Opcode == ISD::FADD) {
2659        // 0+x --> x
2660        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2661          if (CFP->getValueAPF().isZero())
2662            return N2;
2663        // x+0 --> x
2664        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2665          if (CFP->getValueAPF().isZero())
2666            return N1;
2667      } else if (Opcode == ISD::FSUB) {
2668        // x-0 --> x
2669        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2670          if (CFP->getValueAPF().isZero())
2671            return N1;
2672      }
2673    }
2674    assert(N1.getValueType() == N2.getValueType() &&
2675           N1.getValueType() == VT && "Binary operator types must match!");
2676    break;
2677  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2678    assert(N1.getValueType() == VT &&
2679           N1.getValueType().isFloatingPoint() &&
2680           N2.getValueType().isFloatingPoint() &&
2681           "Invalid FCOPYSIGN!");
2682    break;
2683  case ISD::SHL:
2684  case ISD::SRA:
2685  case ISD::SRL:
2686  case ISD::ROTL:
2687  case ISD::ROTR:
2688    assert(VT == N1.getValueType() &&
2689           "Shift operators return type must be the same as their first arg");
2690    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2691           "Shifts only work on integers");
2692
2693    // Always fold shifts of i1 values so the code generator doesn't need to
2694    // handle them.  Since we know the size of the shift has to be less than the
2695    // size of the value, the shift/rotate count is guaranteed to be zero.
2696    if (VT == MVT::i1)
2697      return N1;
2698    if (N2C && N2C->isNullValue())
2699      return N1;
2700    break;
2701  case ISD::FP_ROUND_INREG: {
2702    EVT EVT = cast<VTSDNode>(N2)->getVT();
2703    assert(VT == N1.getValueType() && "Not an inreg round!");
2704    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2705           "Cannot FP_ROUND_INREG integer types");
2706    assert(EVT.isVector() == VT.isVector() &&
2707           "FP_ROUND_INREG type should be vector iff the operand "
2708           "type is vector!");
2709    assert((!EVT.isVector() ||
2710            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2711           "Vector element counts must match in FP_ROUND_INREG");
2712    assert(EVT.bitsLE(VT) && "Not rounding down!");
2713    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2714    break;
2715  }
2716  case ISD::FP_ROUND:
2717    assert(VT.isFloatingPoint() &&
2718           N1.getValueType().isFloatingPoint() &&
2719           VT.bitsLE(N1.getValueType()) &&
2720           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2721    if (N1.getValueType() == VT) return N1;  // noop conversion.
2722    break;
2723  case ISD::AssertSext:
2724  case ISD::AssertZext: {
2725    EVT EVT = cast<VTSDNode>(N2)->getVT();
2726    assert(VT == N1.getValueType() && "Not an inreg extend!");
2727    assert(VT.isInteger() && EVT.isInteger() &&
2728           "Cannot *_EXTEND_INREG FP types");
2729    assert(!EVT.isVector() &&
2730           "AssertSExt/AssertZExt type should be the vector element type "
2731           "rather than the vector type!");
2732    assert(EVT.bitsLE(VT) && "Not extending!");
2733    if (VT == EVT) return N1; // noop assertion.
2734    break;
2735  }
2736  case ISD::SIGN_EXTEND_INREG: {
2737    EVT EVT = cast<VTSDNode>(N2)->getVT();
2738    assert(VT == N1.getValueType() && "Not an inreg extend!");
2739    assert(VT.isInteger() && EVT.isInteger() &&
2740           "Cannot *_EXTEND_INREG FP types");
2741    assert(EVT.isVector() == VT.isVector() &&
2742           "SIGN_EXTEND_INREG type should be vector iff the operand "
2743           "type is vector!");
2744    assert((!EVT.isVector() ||
2745            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2746           "Vector element counts must match in SIGN_EXTEND_INREG");
2747    assert(EVT.bitsLE(VT) && "Not extending!");
2748    if (EVT == VT) return N1;  // Not actually extending
2749
2750    if (N1C) {
2751      APInt Val = N1C->getAPIntValue();
2752      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2753      Val <<= Val.getBitWidth()-FromBits;
2754      Val = Val.ashr(Val.getBitWidth()-FromBits);
2755      return getConstant(Val, VT);
2756    }
2757    break;
2758  }
2759  case ISD::EXTRACT_VECTOR_ELT:
2760    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2761    if (N1.getOpcode() == ISD::UNDEF)
2762      return getUNDEF(VT);
2763
2764    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2765    // expanding copies of large vectors from registers.
2766    if (N2C &&
2767        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2768        N1.getNumOperands() > 0) {
2769      unsigned Factor =
2770        N1.getOperand(0).getValueType().getVectorNumElements();
2771      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2772                     N1.getOperand(N2C->getZExtValue() / Factor),
2773                     getConstant(N2C->getZExtValue() % Factor,
2774                                 N2.getValueType()));
2775    }
2776
2777    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2778    // expanding large vector constants.
2779    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2780      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2781      EVT VEltTy = N1.getValueType().getVectorElementType();
2782      if (Elt.getValueType() != VEltTy) {
2783        // If the vector element type is not legal, the BUILD_VECTOR operands
2784        // are promoted and implicitly truncated.  Make that explicit here.
2785        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2786      }
2787      if (VT != VEltTy) {
2788        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2789        // result is implicitly extended.
2790        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2791      }
2792      return Elt;
2793    }
2794
2795    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2796    // operations are lowered to scalars.
2797    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2798      // If the indices are the same, return the inserted element else
2799      // if the indices are known different, extract the element from
2800      // the original vector.
2801      if (N1.getOperand(2) == N2) {
2802        if (VT == N1.getOperand(1).getValueType())
2803          return N1.getOperand(1);
2804        else
2805          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2806      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2807                 isa<ConstantSDNode>(N2))
2808        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2809    }
2810    break;
2811  case ISD::EXTRACT_ELEMENT:
2812    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2813    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2814           (N1.getValueType().isInteger() == VT.isInteger()) &&
2815           "Wrong types for EXTRACT_ELEMENT!");
2816
2817    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2818    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2819    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2820    if (N1.getOpcode() == ISD::BUILD_PAIR)
2821      return N1.getOperand(N2C->getZExtValue());
2822
2823    // EXTRACT_ELEMENT of a constant int is also very common.
2824    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2825      unsigned ElementSize = VT.getSizeInBits();
2826      unsigned Shift = ElementSize * N2C->getZExtValue();
2827      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2828      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2829    }
2830    break;
2831  case ISD::EXTRACT_SUBVECTOR:
2832    if (N1.getValueType() == VT) // Trivial extraction.
2833      return N1;
2834    break;
2835  }
2836
2837  if (N1C) {
2838    if (N2C) {
2839      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2840      if (SV.getNode()) return SV;
2841    } else {      // Cannonicalize constant to RHS if commutative
2842      if (isCommutativeBinOp(Opcode)) {
2843        std::swap(N1C, N2C);
2844        std::swap(N1, N2);
2845      }
2846    }
2847  }
2848
2849  // Constant fold FP operations.
2850  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2851  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2852  if (N1CFP) {
2853    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2854      // Cannonicalize constant to RHS if commutative
2855      std::swap(N1CFP, N2CFP);
2856      std::swap(N1, N2);
2857    } else if (N2CFP && VT != MVT::ppcf128) {
2858      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2859      APFloat::opStatus s;
2860      switch (Opcode) {
2861      case ISD::FADD:
2862        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2863        if (s != APFloat::opInvalidOp)
2864          return getConstantFP(V1, VT);
2865        break;
2866      case ISD::FSUB:
2867        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2868        if (s!=APFloat::opInvalidOp)
2869          return getConstantFP(V1, VT);
2870        break;
2871      case ISD::FMUL:
2872        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2873        if (s!=APFloat::opInvalidOp)
2874          return getConstantFP(V1, VT);
2875        break;
2876      case ISD::FDIV:
2877        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2878        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2879          return getConstantFP(V1, VT);
2880        break;
2881      case ISD::FREM :
2882        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2883        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2884          return getConstantFP(V1, VT);
2885        break;
2886      case ISD::FCOPYSIGN:
2887        V1.copySign(V2);
2888        return getConstantFP(V1, VT);
2889      default: break;
2890      }
2891    }
2892  }
2893
2894  // Canonicalize an UNDEF to the RHS, even over a constant.
2895  if (N1.getOpcode() == ISD::UNDEF) {
2896    if (isCommutativeBinOp(Opcode)) {
2897      std::swap(N1, N2);
2898    } else {
2899      switch (Opcode) {
2900      case ISD::FP_ROUND_INREG:
2901      case ISD::SIGN_EXTEND_INREG:
2902      case ISD::SUB:
2903      case ISD::FSUB:
2904      case ISD::FDIV:
2905      case ISD::FREM:
2906      case ISD::SRA:
2907        return N1;     // fold op(undef, arg2) -> undef
2908      case ISD::UDIV:
2909      case ISD::SDIV:
2910      case ISD::UREM:
2911      case ISD::SREM:
2912      case ISD::SRL:
2913      case ISD::SHL:
2914        if (!VT.isVector())
2915          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2916        // For vectors, we can't easily build an all zero vector, just return
2917        // the LHS.
2918        return N2;
2919      }
2920    }
2921  }
2922
2923  // Fold a bunch of operators when the RHS is undef.
2924  if (N2.getOpcode() == ISD::UNDEF) {
2925    switch (Opcode) {
2926    case ISD::XOR:
2927      if (N1.getOpcode() == ISD::UNDEF)
2928        // Handle undef ^ undef -> 0 special case. This is a common
2929        // idiom (misuse).
2930        return getConstant(0, VT);
2931      // fallthrough
2932    case ISD::ADD:
2933    case ISD::ADDC:
2934    case ISD::ADDE:
2935    case ISD::SUB:
2936    case ISD::UDIV:
2937    case ISD::SDIV:
2938    case ISD::UREM:
2939    case ISD::SREM:
2940      return N2;       // fold op(arg1, undef) -> undef
2941    case ISD::FADD:
2942    case ISD::FSUB:
2943    case ISD::FMUL:
2944    case ISD::FDIV:
2945    case ISD::FREM:
2946      if (UnsafeFPMath)
2947        return N2;
2948      break;
2949    case ISD::MUL:
2950    case ISD::AND:
2951    case ISD::SRL:
2952    case ISD::SHL:
2953      if (!VT.isVector())
2954        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2955      // For vectors, we can't easily build an all zero vector, just return
2956      // the LHS.
2957      return N1;
2958    case ISD::OR:
2959      if (!VT.isVector())
2960        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2961      // For vectors, we can't easily build an all one vector, just return
2962      // the LHS.
2963      return N1;
2964    case ISD::SRA:
2965      return N1;
2966    }
2967  }
2968
2969  // Memoize this node if possible.
2970  SDNode *N;
2971  SDVTList VTs = getVTList(VT);
2972  if (VT != MVT::Flag) {
2973    SDValue Ops[] = { N1, N2 };
2974    FoldingSetNodeID ID;
2975    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2976    void *IP = 0;
2977    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2978      return SDValue(E, 0);
2979
2980    N = NodeAllocator.Allocate<BinarySDNode>();
2981    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2982    CSEMap.InsertNode(N, IP);
2983  } else {
2984    N = NodeAllocator.Allocate<BinarySDNode>();
2985    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2986  }
2987
2988  AllNodes.push_back(N);
2989#ifndef NDEBUG
2990  VerifyNode(N);
2991#endif
2992  return SDValue(N, 0);
2993}
2994
2995SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2996                              SDValue N1, SDValue N2, SDValue N3) {
2997  // Perform various simplifications.
2998  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2999  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
3000  switch (Opcode) {
3001  case ISD::CONCAT_VECTORS:
3002    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3003    // one big BUILD_VECTOR.
3004    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3005        N2.getOpcode() == ISD::BUILD_VECTOR &&
3006        N3.getOpcode() == ISD::BUILD_VECTOR) {
3007      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3008      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3009      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3010      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3011    }
3012    break;
3013  case ISD::SETCC: {
3014    // Use FoldSetCC to simplify SETCC's.
3015    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3016    if (Simp.getNode()) return Simp;
3017    break;
3018  }
3019  case ISD::SELECT:
3020    if (N1C) {
3021     if (N1C->getZExtValue())
3022        return N2;             // select true, X, Y -> X
3023      else
3024        return N3;             // select false, X, Y -> Y
3025    }
3026
3027    if (N2 == N3) return N2;   // select C, X, X -> X
3028    break;
3029  case ISD::BRCOND:
3030    if (N2C) {
3031      if (N2C->getZExtValue()) // Unconditional branch
3032        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3033      else
3034        return N1;         // Never-taken branch
3035    }
3036    break;
3037  case ISD::VECTOR_SHUFFLE:
3038    llvm_unreachable("should use getVectorShuffle constructor!");
3039    break;
3040  case ISD::BIT_CONVERT:
3041    // Fold bit_convert nodes from a type to themselves.
3042    if (N1.getValueType() == VT)
3043      return N1;
3044    break;
3045  }
3046
3047  // Memoize node if it doesn't produce a flag.
3048  SDNode *N;
3049  SDVTList VTs = getVTList(VT);
3050  if (VT != MVT::Flag) {
3051    SDValue Ops[] = { N1, N2, N3 };
3052    FoldingSetNodeID ID;
3053    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3054    void *IP = 0;
3055    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3056      return SDValue(E, 0);
3057
3058    N = NodeAllocator.Allocate<TernarySDNode>();
3059    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3060    CSEMap.InsertNode(N, IP);
3061  } else {
3062    N = NodeAllocator.Allocate<TernarySDNode>();
3063    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3064  }
3065
3066  AllNodes.push_back(N);
3067#ifndef NDEBUG
3068  VerifyNode(N);
3069#endif
3070  return SDValue(N, 0);
3071}
3072
3073SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3074                              SDValue N1, SDValue N2, SDValue N3,
3075                              SDValue N4) {
3076  SDValue Ops[] = { N1, N2, N3, N4 };
3077  return getNode(Opcode, DL, VT, Ops, 4);
3078}
3079
3080SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3081                              SDValue N1, SDValue N2, SDValue N3,
3082                              SDValue N4, SDValue N5) {
3083  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3084  return getNode(Opcode, DL, VT, Ops, 5);
3085}
3086
3087/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3088/// the incoming stack arguments to be loaded from the stack.
3089SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3090  SmallVector<SDValue, 8> ArgChains;
3091
3092  // Include the original chain at the beginning of the list. When this is
3093  // used by target LowerCall hooks, this helps legalize find the
3094  // CALLSEQ_BEGIN node.
3095  ArgChains.push_back(Chain);
3096
3097  // Add a chain value for each stack argument.
3098  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3099       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3100    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3101      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3102        if (FI->getIndex() < 0)
3103          ArgChains.push_back(SDValue(L, 1));
3104
3105  // Build a tokenfactor for all the chains.
3106  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3107                 &ArgChains[0], ArgChains.size());
3108}
3109
3110/// getMemsetValue - Vectorized representation of the memset value
3111/// operand.
3112static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3113                              DebugLoc dl) {
3114  unsigned NumBits = VT.getScalarType().getSizeInBits();
3115  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3116    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3117    unsigned Shift = 8;
3118    for (unsigned i = NumBits; i > 8; i >>= 1) {
3119      Val = (Val << Shift) | Val;
3120      Shift <<= 1;
3121    }
3122    if (VT.isInteger())
3123      return DAG.getConstant(Val, VT);
3124    return DAG.getConstantFP(APFloat(Val), VT);
3125  }
3126
3127  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3128  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3129  unsigned Shift = 8;
3130  for (unsigned i = NumBits; i > 8; i >>= 1) {
3131    Value = DAG.getNode(ISD::OR, dl, VT,
3132                        DAG.getNode(ISD::SHL, dl, VT, Value,
3133                                    DAG.getConstant(Shift,
3134                                                    TLI.getShiftAmountTy())),
3135                        Value);
3136    Shift <<= 1;
3137  }
3138
3139  return Value;
3140}
3141
3142/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3143/// used when a memcpy is turned into a memset when the source is a constant
3144/// string ptr.
3145static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3146                                  const TargetLowering &TLI,
3147                                  std::string &Str, unsigned Offset) {
3148  // Handle vector with all elements zero.
3149  if (Str.empty()) {
3150    if (VT.isInteger())
3151      return DAG.getConstant(0, VT);
3152    unsigned NumElts = VT.getVectorNumElements();
3153    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3154    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3155                       DAG.getConstant(0,
3156                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3157  }
3158
3159  assert(!VT.isVector() && "Can't handle vector type here!");
3160  unsigned NumBits = VT.getSizeInBits();
3161  unsigned MSB = NumBits / 8;
3162  uint64_t Val = 0;
3163  if (TLI.isLittleEndian())
3164    Offset = Offset + MSB - 1;
3165  for (unsigned i = 0; i != MSB; ++i) {
3166    Val = (Val << 8) | (unsigned char)Str[Offset];
3167    Offset += TLI.isLittleEndian() ? -1 : 1;
3168  }
3169  return DAG.getConstant(Val, VT);
3170}
3171
3172/// getMemBasePlusOffset - Returns base and offset node for the
3173///
3174static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3175                                      SelectionDAG &DAG) {
3176  EVT VT = Base.getValueType();
3177  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3178                     VT, Base, DAG.getConstant(Offset, VT));
3179}
3180
3181/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3182///
3183static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3184  unsigned SrcDelta = 0;
3185  GlobalAddressSDNode *G = NULL;
3186  if (Src.getOpcode() == ISD::GlobalAddress)
3187    G = cast<GlobalAddressSDNode>(Src);
3188  else if (Src.getOpcode() == ISD::ADD &&
3189           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3190           Src.getOperand(1).getOpcode() == ISD::Constant) {
3191    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3192    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3193  }
3194  if (!G)
3195    return false;
3196
3197  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3198  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3199    return true;
3200
3201  return false;
3202}
3203
3204/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3205/// to replace the memset / memcpy is below the threshold. It also returns the
3206/// types of the sequence of memory ops to perform memset / memcpy.
3207static
3208bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3209                              SDValue Dst, SDValue Src,
3210                              unsigned Limit, uint64_t Size, unsigned &Align,
3211                              std::string &Str, bool &isSrcStr,
3212                              SelectionDAG &DAG,
3213                              const TargetLowering &TLI) {
3214  isSrcStr = isMemSrcFromString(Src, Str);
3215  bool isSrcConst = isa<ConstantSDNode>(Src);
3216  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3217  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3218  if (VT != MVT::Other) {
3219    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3220    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3221    // If source is a string constant, this will require an unaligned load.
3222    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3223      if (Dst.getOpcode() != ISD::FrameIndex) {
3224        // Can't change destination alignment. It requires a unaligned store.
3225        if (AllowUnalign)
3226          VT = MVT::Other;
3227      } else {
3228        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3229        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3230        if (MFI->isFixedObjectIndex(FI)) {
3231          // Can't change destination alignment. It requires a unaligned store.
3232          if (AllowUnalign)
3233            VT = MVT::Other;
3234        } else {
3235          // Give the stack frame object a larger alignment if needed.
3236          if (MFI->getObjectAlignment(FI) < NewAlign)
3237            MFI->setObjectAlignment(FI, NewAlign);
3238          Align = NewAlign;
3239        }
3240      }
3241    }
3242  }
3243
3244  if (VT == MVT::Other) {
3245    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3246      VT = MVT::i64;
3247    } else {
3248      switch (Align & 7) {
3249      case 0:  VT = MVT::i64; break;
3250      case 4:  VT = MVT::i32; break;
3251      case 2:  VT = MVT::i16; break;
3252      default: VT = MVT::i8;  break;
3253      }
3254    }
3255
3256    MVT LVT = MVT::i64;
3257    while (!TLI.isTypeLegal(LVT))
3258      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3259    assert(LVT.isInteger());
3260
3261    if (VT.bitsGT(LVT))
3262      VT = LVT;
3263  }
3264
3265  unsigned NumMemOps = 0;
3266  while (Size != 0) {
3267    unsigned VTSize = VT.getSizeInBits() / 8;
3268    while (VTSize > Size) {
3269      // For now, only use non-vector load / store's for the left-over pieces.
3270      if (VT.isVector()) {
3271        VT = MVT::i64;
3272        while (!TLI.isTypeLegal(VT))
3273          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3274        VTSize = VT.getSizeInBits() / 8;
3275      } else {
3276        // This can result in a type that is not legal on the target, e.g.
3277        // 1 or 2 bytes on PPC.
3278        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3279        VTSize >>= 1;
3280      }
3281    }
3282
3283    if (++NumMemOps > Limit)
3284      return false;
3285    MemOps.push_back(VT);
3286    Size -= VTSize;
3287  }
3288
3289  return true;
3290}
3291
3292static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3293                                         SDValue Chain, SDValue Dst,
3294                                         SDValue Src, uint64_t Size,
3295                                         unsigned Align, bool AlwaysInline,
3296                                         const Value *DstSV, uint64_t DstSVOff,
3297                                         const Value *SrcSV, uint64_t SrcSVOff){
3298  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3299
3300  // Expand memcpy to a series of load and store ops if the size operand falls
3301  // below a certain threshold.
3302  std::vector<EVT> MemOps;
3303  uint64_t Limit = -1ULL;
3304  if (!AlwaysInline)
3305    Limit = TLI.getMaxStoresPerMemcpy();
3306  unsigned DstAlign = Align;  // Destination alignment can change.
3307  std::string Str;
3308  bool CopyFromStr;
3309  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3310                                Str, CopyFromStr, DAG, TLI))
3311    return SDValue();
3312
3313
3314  bool isZeroStr = CopyFromStr && Str.empty();
3315  SmallVector<SDValue, 8> OutChains;
3316  unsigned NumMemOps = MemOps.size();
3317  uint64_t SrcOff = 0, DstOff = 0;
3318  for (unsigned i = 0; i != NumMemOps; ++i) {
3319    EVT VT = MemOps[i];
3320    unsigned VTSize = VT.getSizeInBits() / 8;
3321    SDValue Value, Store;
3322
3323    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3324      // It's unlikely a store of a vector immediate can be done in a single
3325      // instruction. It would require a load from a constantpool first.
3326      // We also handle store a vector with all zero's.
3327      // FIXME: Handle other cases where store of vector immediate is done in
3328      // a single instruction.
3329      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3330      Store = DAG.getStore(Chain, dl, Value,
3331                           getMemBasePlusOffset(Dst, DstOff, DAG),
3332                           DstSV, DstSVOff + DstOff, false, false, DstAlign);
3333    } else {
3334      // The type might not be legal for the target.  This should only happen
3335      // if the type is smaller than a legal type, as on PPC, so the right
3336      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3337      // to Load/Store if NVT==VT.
3338      // FIXME does the case above also need this?
3339      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3340      assert(NVT.bitsGE(VT));
3341      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3342                             getMemBasePlusOffset(Src, SrcOff, DAG),
3343                             SrcSV, SrcSVOff + SrcOff, VT, false, false, Align);
3344      Store = DAG.getTruncStore(Chain, dl, Value,
3345                                getMemBasePlusOffset(Dst, DstOff, DAG),
3346                                DstSV, DstSVOff + DstOff, VT, false, false,
3347                                DstAlign);
3348    }
3349    OutChains.push_back(Store);
3350    SrcOff += VTSize;
3351    DstOff += VTSize;
3352  }
3353
3354  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3355                     &OutChains[0], OutChains.size());
3356}
3357
3358static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3359                                          SDValue Chain, SDValue Dst,
3360                                          SDValue Src, uint64_t Size,
3361                                          unsigned Align, bool AlwaysInline,
3362                                          const Value *DstSV, uint64_t DstSVOff,
3363                                          const Value *SrcSV, uint64_t SrcSVOff){
3364  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3365
3366  // Expand memmove to a series of load and store ops if the size operand falls
3367  // below a certain threshold.
3368  std::vector<EVT> MemOps;
3369  uint64_t Limit = -1ULL;
3370  if (!AlwaysInline)
3371    Limit = TLI.getMaxStoresPerMemmove();
3372  unsigned DstAlign = Align;  // Destination alignment can change.
3373  std::string Str;
3374  bool CopyFromStr;
3375  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3376                                Str, CopyFromStr, DAG, TLI))
3377    return SDValue();
3378
3379  uint64_t SrcOff = 0, DstOff = 0;
3380
3381  SmallVector<SDValue, 8> LoadValues;
3382  SmallVector<SDValue, 8> LoadChains;
3383  SmallVector<SDValue, 8> OutChains;
3384  unsigned NumMemOps = MemOps.size();
3385  for (unsigned i = 0; i < NumMemOps; i++) {
3386    EVT VT = MemOps[i];
3387    unsigned VTSize = VT.getSizeInBits() / 8;
3388    SDValue Value, Store;
3389
3390    Value = DAG.getLoad(VT, dl, Chain,
3391                        getMemBasePlusOffset(Src, SrcOff, DAG),
3392                        SrcSV, SrcSVOff + SrcOff, false, false, Align);
3393    LoadValues.push_back(Value);
3394    LoadChains.push_back(Value.getValue(1));
3395    SrcOff += VTSize;
3396  }
3397  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3398                      &LoadChains[0], LoadChains.size());
3399  OutChains.clear();
3400  for (unsigned i = 0; i < NumMemOps; i++) {
3401    EVT VT = MemOps[i];
3402    unsigned VTSize = VT.getSizeInBits() / 8;
3403    SDValue Value, Store;
3404
3405    Store = DAG.getStore(Chain, dl, LoadValues[i],
3406                         getMemBasePlusOffset(Dst, DstOff, DAG),
3407                         DstSV, DstSVOff + DstOff, false, false, DstAlign);
3408    OutChains.push_back(Store);
3409    DstOff += VTSize;
3410  }
3411
3412  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3413                     &OutChains[0], OutChains.size());
3414}
3415
3416static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3417                                 SDValue Chain, SDValue Dst,
3418                                 SDValue Src, uint64_t Size,
3419                                 unsigned Align,
3420                                 const Value *DstSV, uint64_t DstSVOff) {
3421  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3422
3423  // Expand memset to a series of load/store ops if the size operand
3424  // falls below a certain threshold.
3425  std::vector<EVT> MemOps;
3426  std::string Str;
3427  bool CopyFromStr;
3428  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3429                                Size, Align, Str, CopyFromStr, DAG, TLI))
3430    return SDValue();
3431
3432  SmallVector<SDValue, 8> OutChains;
3433  uint64_t DstOff = 0;
3434
3435  unsigned NumMemOps = MemOps.size();
3436  for (unsigned i = 0; i < NumMemOps; i++) {
3437    EVT VT = MemOps[i];
3438    unsigned VTSize = VT.getSizeInBits() / 8;
3439    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3440    SDValue Store = DAG.getStore(Chain, dl, Value,
3441                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3442                                 DstSV, DstSVOff + DstOff, false, false, 0);
3443    OutChains.push_back(Store);
3444    DstOff += VTSize;
3445  }
3446
3447  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3448                     &OutChains[0], OutChains.size());
3449}
3450
3451SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3452                                SDValue Src, SDValue Size,
3453                                unsigned Align, bool AlwaysInline,
3454                                const Value *DstSV, uint64_t DstSVOff,
3455                                const Value *SrcSV, uint64_t SrcSVOff) {
3456
3457  // Check to see if we should lower the memcpy to loads and stores first.
3458  // For cases within the target-specified limits, this is the best choice.
3459  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3460  if (ConstantSize) {
3461    // Memcpy with size zero? Just return the original chain.
3462    if (ConstantSize->isNullValue())
3463      return Chain;
3464
3465    SDValue Result =
3466      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3467                              ConstantSize->getZExtValue(),
3468                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3469    if (Result.getNode())
3470      return Result;
3471  }
3472
3473  // Then check to see if we should lower the memcpy with target-specific
3474  // code. If the target chooses to do this, this is the next best.
3475  SDValue Result =
3476    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3477                                AlwaysInline,
3478                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3479  if (Result.getNode())
3480    return Result;
3481
3482  // If we really need inline code and the target declined to provide it,
3483  // use a (potentially long) sequence of loads and stores.
3484  if (AlwaysInline) {
3485    assert(ConstantSize && "AlwaysInline requires a constant size!");
3486    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3487                                   ConstantSize->getZExtValue(), Align, true,
3488                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3489  }
3490
3491  // Emit a library call.
3492  TargetLowering::ArgListTy Args;
3493  TargetLowering::ArgListEntry Entry;
3494  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3495  Entry.Node = Dst; Args.push_back(Entry);
3496  Entry.Node = Src; Args.push_back(Entry);
3497  Entry.Node = Size; Args.push_back(Entry);
3498  // FIXME: pass in DebugLoc
3499  std::pair<SDValue,SDValue> CallResult =
3500    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3501                    false, false, false, false, 0,
3502                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3503                    /*isReturnValueUsed=*/false,
3504                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3505                                      TLI.getPointerTy()),
3506                    Args, *this, dl);
3507  return CallResult.second;
3508}
3509
3510SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3511                                 SDValue Src, SDValue Size,
3512                                 unsigned Align,
3513                                 const Value *DstSV, uint64_t DstSVOff,
3514                                 const Value *SrcSV, uint64_t SrcSVOff) {
3515
3516  // Check to see if we should lower the memmove to loads and stores first.
3517  // For cases within the target-specified limits, this is the best choice.
3518  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3519  if (ConstantSize) {
3520    // Memmove with size zero? Just return the original chain.
3521    if (ConstantSize->isNullValue())
3522      return Chain;
3523
3524    SDValue Result =
3525      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3526                               ConstantSize->getZExtValue(),
3527                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3528    if (Result.getNode())
3529      return Result;
3530  }
3531
3532  // Then check to see if we should lower the memmove with target-specific
3533  // code. If the target chooses to do this, this is the next best.
3534  SDValue Result =
3535    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3536                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3537  if (Result.getNode())
3538    return Result;
3539
3540  // Emit a library call.
3541  TargetLowering::ArgListTy Args;
3542  TargetLowering::ArgListEntry Entry;
3543  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3544  Entry.Node = Dst; Args.push_back(Entry);
3545  Entry.Node = Src; Args.push_back(Entry);
3546  Entry.Node = Size; Args.push_back(Entry);
3547  // FIXME:  pass in DebugLoc
3548  std::pair<SDValue,SDValue> CallResult =
3549    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3550                    false, false, false, false, 0,
3551                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3552                    /*isReturnValueUsed=*/false,
3553                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3554                                      TLI.getPointerTy()),
3555                    Args, *this, dl);
3556  return CallResult.second;
3557}
3558
3559SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3560                                SDValue Src, SDValue Size,
3561                                unsigned Align,
3562                                const Value *DstSV, uint64_t DstSVOff) {
3563
3564  // Check to see if we should lower the memset to stores first.
3565  // For cases within the target-specified limits, this is the best choice.
3566  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3567  if (ConstantSize) {
3568    // Memset with size zero? Just return the original chain.
3569    if (ConstantSize->isNullValue())
3570      return Chain;
3571
3572    SDValue Result =
3573      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3574                      Align, DstSV, DstSVOff);
3575    if (Result.getNode())
3576      return Result;
3577  }
3578
3579  // Then check to see if we should lower the memset with target-specific
3580  // code. If the target chooses to do this, this is the next best.
3581  SDValue Result =
3582    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3583                                DstSV, DstSVOff);
3584  if (Result.getNode())
3585    return Result;
3586
3587  // Emit a library call.
3588  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3589  TargetLowering::ArgListTy Args;
3590  TargetLowering::ArgListEntry Entry;
3591  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3592  Args.push_back(Entry);
3593  // Extend or truncate the argument to be an i32 value for the call.
3594  if (Src.getValueType().bitsGT(MVT::i32))
3595    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3596  else
3597    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3598  Entry.Node = Src;
3599  Entry.Ty = Type::getInt32Ty(*getContext());
3600  Entry.isSExt = true;
3601  Args.push_back(Entry);
3602  Entry.Node = Size;
3603  Entry.Ty = IntPtrTy;
3604  Entry.isSExt = false;
3605  Args.push_back(Entry);
3606  // FIXME: pass in DebugLoc
3607  std::pair<SDValue,SDValue> CallResult =
3608    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3609                    false, false, false, false, 0,
3610                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3611                    /*isReturnValueUsed=*/false,
3612                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3613                                      TLI.getPointerTy()),
3614                    Args, *this, dl);
3615  return CallResult.second;
3616}
3617
3618SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3619                                SDValue Chain,
3620                                SDValue Ptr, SDValue Cmp,
3621                                SDValue Swp, const Value* PtrVal,
3622                                unsigned Alignment) {
3623  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3624    Alignment = getEVTAlignment(MemVT);
3625
3626  // Check if the memory reference references a frame index
3627  if (!PtrVal)
3628    if (const FrameIndexSDNode *FI =
3629          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3630      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3631
3632  MachineFunction &MF = getMachineFunction();
3633  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3634
3635  // For now, atomics are considered to be volatile always.
3636  Flags |= MachineMemOperand::MOVolatile;
3637
3638  MachineMemOperand *MMO =
3639    MF.getMachineMemOperand(PtrVal, Flags, 0,
3640                            MemVT.getStoreSize(), Alignment);
3641
3642  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3643}
3644
3645SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3646                                SDValue Chain,
3647                                SDValue Ptr, SDValue Cmp,
3648                                SDValue Swp, MachineMemOperand *MMO) {
3649  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3650  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3651
3652  EVT VT = Cmp.getValueType();
3653
3654  SDVTList VTs = getVTList(VT, MVT::Other);
3655  FoldingSetNodeID ID;
3656  ID.AddInteger(MemVT.getRawBits());
3657  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3658  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3659  void* IP = 0;
3660  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3661    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3662    return SDValue(E, 0);
3663  }
3664  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3665  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3666  CSEMap.InsertNode(N, IP);
3667  AllNodes.push_back(N);
3668  return SDValue(N, 0);
3669}
3670
3671SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3672                                SDValue Chain,
3673                                SDValue Ptr, SDValue Val,
3674                                const Value* PtrVal,
3675                                unsigned Alignment) {
3676  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3677    Alignment = getEVTAlignment(MemVT);
3678
3679  // Check if the memory reference references a frame index
3680  if (!PtrVal)
3681    if (const FrameIndexSDNode *FI =
3682          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3683      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3684
3685  MachineFunction &MF = getMachineFunction();
3686  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3687
3688  // For now, atomics are considered to be volatile always.
3689  Flags |= MachineMemOperand::MOVolatile;
3690
3691  MachineMemOperand *MMO =
3692    MF.getMachineMemOperand(PtrVal, Flags, 0,
3693                            MemVT.getStoreSize(), Alignment);
3694
3695  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3696}
3697
3698SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3699                                SDValue Chain,
3700                                SDValue Ptr, SDValue Val,
3701                                MachineMemOperand *MMO) {
3702  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3703          Opcode == ISD::ATOMIC_LOAD_SUB ||
3704          Opcode == ISD::ATOMIC_LOAD_AND ||
3705          Opcode == ISD::ATOMIC_LOAD_OR ||
3706          Opcode == ISD::ATOMIC_LOAD_XOR ||
3707          Opcode == ISD::ATOMIC_LOAD_NAND ||
3708          Opcode == ISD::ATOMIC_LOAD_MIN ||
3709          Opcode == ISD::ATOMIC_LOAD_MAX ||
3710          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3711          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3712          Opcode == ISD::ATOMIC_SWAP) &&
3713         "Invalid Atomic Op");
3714
3715  EVT VT = Val.getValueType();
3716
3717  SDVTList VTs = getVTList(VT, MVT::Other);
3718  FoldingSetNodeID ID;
3719  ID.AddInteger(MemVT.getRawBits());
3720  SDValue Ops[] = {Chain, Ptr, Val};
3721  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3722  void* IP = 0;
3723  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3724    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3725    return SDValue(E, 0);
3726  }
3727  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3728  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3729  CSEMap.InsertNode(N, IP);
3730  AllNodes.push_back(N);
3731  return SDValue(N, 0);
3732}
3733
3734/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3735/// Allowed to return something different (and simpler) if Simplify is true.
3736SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3737                                     DebugLoc dl) {
3738  if (NumOps == 1)
3739    return Ops[0];
3740
3741  SmallVector<EVT, 4> VTs;
3742  VTs.reserve(NumOps);
3743  for (unsigned i = 0; i < NumOps; ++i)
3744    VTs.push_back(Ops[i].getValueType());
3745  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3746                 Ops, NumOps);
3747}
3748
3749SDValue
3750SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3751                                  const EVT *VTs, unsigned NumVTs,
3752                                  const SDValue *Ops, unsigned NumOps,
3753                                  EVT MemVT, const Value *srcValue, int SVOff,
3754                                  unsigned Align, bool Vol,
3755                                  bool ReadMem, bool WriteMem) {
3756  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3757                             MemVT, srcValue, SVOff, Align, Vol,
3758                             ReadMem, WriteMem);
3759}
3760
3761SDValue
3762SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3763                                  const SDValue *Ops, unsigned NumOps,
3764                                  EVT MemVT, const Value *srcValue, int SVOff,
3765                                  unsigned Align, bool Vol,
3766                                  bool ReadMem, bool WriteMem) {
3767  if (Align == 0)  // Ensure that codegen never sees alignment 0
3768    Align = getEVTAlignment(MemVT);
3769
3770  MachineFunction &MF = getMachineFunction();
3771  unsigned Flags = 0;
3772  if (WriteMem)
3773    Flags |= MachineMemOperand::MOStore;
3774  if (ReadMem)
3775    Flags |= MachineMemOperand::MOLoad;
3776  if (Vol)
3777    Flags |= MachineMemOperand::MOVolatile;
3778  MachineMemOperand *MMO =
3779    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3780                            MemVT.getStoreSize(), Align);
3781
3782  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3783}
3784
3785SDValue
3786SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3787                                  const SDValue *Ops, unsigned NumOps,
3788                                  EVT MemVT, MachineMemOperand *MMO) {
3789  assert((Opcode == ISD::INTRINSIC_VOID ||
3790          Opcode == ISD::INTRINSIC_W_CHAIN ||
3791          (Opcode <= INT_MAX &&
3792           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3793         "Opcode is not a memory-accessing opcode!");
3794
3795  // Memoize the node unless it returns a flag.
3796  MemIntrinsicSDNode *N;
3797  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3798    FoldingSetNodeID ID;
3799    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3800    void *IP = 0;
3801    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3802      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3803      return SDValue(E, 0);
3804    }
3805
3806    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3807    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3808    CSEMap.InsertNode(N, IP);
3809  } else {
3810    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3811    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3812  }
3813  AllNodes.push_back(N);
3814  return SDValue(N, 0);
3815}
3816
3817SDValue
3818SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3819                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3820                      SDValue Ptr, SDValue Offset,
3821                      const Value *SV, int SVOffset, EVT MemVT,
3822                      bool isVolatile, bool isNonTemporal,
3823                      unsigned Alignment) {
3824  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3825    Alignment = getEVTAlignment(VT);
3826
3827  // Check if the memory reference references a frame index
3828  if (!SV)
3829    if (const FrameIndexSDNode *FI =
3830          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3831      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3832
3833  MachineFunction &MF = getMachineFunction();
3834  unsigned Flags = MachineMemOperand::MOLoad;
3835  if (isVolatile)
3836    Flags |= MachineMemOperand::MOVolatile;
3837  if (isNonTemporal)
3838    Flags |= MachineMemOperand::MONonTemporal;
3839  MachineMemOperand *MMO =
3840    MF.getMachineMemOperand(SV, Flags, SVOffset,
3841                            MemVT.getStoreSize(), Alignment);
3842  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3843}
3844
3845SDValue
3846SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3847                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3848                      SDValue Ptr, SDValue Offset, EVT MemVT,
3849                      MachineMemOperand *MMO) {
3850  if (VT == MemVT) {
3851    ExtType = ISD::NON_EXTLOAD;
3852  } else if (ExtType == ISD::NON_EXTLOAD) {
3853    assert(VT == MemVT && "Non-extending load from different memory type!");
3854  } else {
3855    // Extending load.
3856    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3857           "Should only be an extending load, not truncating!");
3858    assert(VT.isInteger() == MemVT.isInteger() &&
3859           "Cannot convert from FP to Int or Int -> FP!");
3860    assert(VT.isVector() == MemVT.isVector() &&
3861           "Cannot use trunc store to convert to or from a vector!");
3862    assert((!VT.isVector() ||
3863            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3864           "Cannot use trunc store to change the number of vector elements!");
3865  }
3866
3867  bool Indexed = AM != ISD::UNINDEXED;
3868  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3869         "Unindexed load with an offset!");
3870
3871  SDVTList VTs = Indexed ?
3872    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3873  SDValue Ops[] = { Chain, Ptr, Offset };
3874  FoldingSetNodeID ID;
3875  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3876  ID.AddInteger(MemVT.getRawBits());
3877  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3878                                     MMO->isNonTemporal()));
3879  void *IP = 0;
3880  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3881    cast<LoadSDNode>(E)->refineAlignment(MMO);
3882    return SDValue(E, 0);
3883  }
3884  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3885  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3886  CSEMap.InsertNode(N, IP);
3887  AllNodes.push_back(N);
3888  return SDValue(N, 0);
3889}
3890
3891SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3892                              SDValue Chain, SDValue Ptr,
3893                              const Value *SV, int SVOffset,
3894                              bool isVolatile, bool isNonTemporal,
3895                              unsigned Alignment) {
3896  SDValue Undef = getUNDEF(Ptr.getValueType());
3897  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3898                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3899}
3900
3901SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3902                                 SDValue Chain, SDValue Ptr,
3903                                 const Value *SV,
3904                                 int SVOffset, EVT MemVT,
3905                                 bool isVolatile, bool isNonTemporal,
3906                                 unsigned Alignment) {
3907  SDValue Undef = getUNDEF(Ptr.getValueType());
3908  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3909                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3910}
3911
3912SDValue
3913SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3914                             SDValue Offset, ISD::MemIndexedMode AM) {
3915  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3916  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3917         "Load is already a indexed load!");
3918  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3919                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3920                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3921                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3922}
3923
3924SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3925                               SDValue Ptr, const Value *SV, int SVOffset,
3926                               bool isVolatile, bool isNonTemporal,
3927                               unsigned Alignment) {
3928  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3929    Alignment = getEVTAlignment(Val.getValueType());
3930
3931  // Check if the memory reference references a frame index
3932  if (!SV)
3933    if (const FrameIndexSDNode *FI =
3934          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3935      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3936
3937  MachineFunction &MF = getMachineFunction();
3938  unsigned Flags = MachineMemOperand::MOStore;
3939  if (isVolatile)
3940    Flags |= MachineMemOperand::MOVolatile;
3941  if (isNonTemporal)
3942    Flags |= MachineMemOperand::MONonTemporal;
3943  MachineMemOperand *MMO =
3944    MF.getMachineMemOperand(SV, Flags, SVOffset,
3945                            Val.getValueType().getStoreSize(), Alignment);
3946
3947  return getStore(Chain, dl, Val, Ptr, MMO);
3948}
3949
3950SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3951                               SDValue Ptr, MachineMemOperand *MMO) {
3952  EVT VT = Val.getValueType();
3953  SDVTList VTs = getVTList(MVT::Other);
3954  SDValue Undef = getUNDEF(Ptr.getValueType());
3955  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3956  FoldingSetNodeID ID;
3957  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3958  ID.AddInteger(VT.getRawBits());
3959  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
3960                                     MMO->isNonTemporal()));
3961  void *IP = 0;
3962  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3963    cast<StoreSDNode>(E)->refineAlignment(MMO);
3964    return SDValue(E, 0);
3965  }
3966  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3967  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3968  CSEMap.InsertNode(N, IP);
3969  AllNodes.push_back(N);
3970  return SDValue(N, 0);
3971}
3972
3973SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3974                                    SDValue Ptr, const Value *SV,
3975                                    int SVOffset, EVT SVT,
3976                                    bool isVolatile, bool isNonTemporal,
3977                                    unsigned Alignment) {
3978  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3979    Alignment = getEVTAlignment(SVT);
3980
3981  // Check if the memory reference references a frame index
3982  if (!SV)
3983    if (const FrameIndexSDNode *FI =
3984          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3985      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3986
3987  MachineFunction &MF = getMachineFunction();
3988  unsigned Flags = MachineMemOperand::MOStore;
3989  if (isVolatile)
3990    Flags |= MachineMemOperand::MOVolatile;
3991  if (isNonTemporal)
3992    Flags |= MachineMemOperand::MONonTemporal;
3993  MachineMemOperand *MMO =
3994    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3995
3996  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3997}
3998
3999SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4000                                    SDValue Ptr, EVT SVT,
4001                                    MachineMemOperand *MMO) {
4002  EVT VT = Val.getValueType();
4003
4004  if (VT == SVT)
4005    return getStore(Chain, dl, Val, Ptr, MMO);
4006
4007  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4008         "Should only be a truncating store, not extending!");
4009  assert(VT.isInteger() == SVT.isInteger() &&
4010         "Can't do FP-INT conversion!");
4011  assert(VT.isVector() == SVT.isVector() &&
4012         "Cannot use trunc store to convert to or from a vector!");
4013  assert((!VT.isVector() ||
4014          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4015         "Cannot use trunc store to change the number of vector elements!");
4016
4017  SDVTList VTs = getVTList(MVT::Other);
4018  SDValue Undef = getUNDEF(Ptr.getValueType());
4019  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4020  FoldingSetNodeID ID;
4021  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4022  ID.AddInteger(SVT.getRawBits());
4023  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4024                                     MMO->isNonTemporal()));
4025  void *IP = 0;
4026  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4027    cast<StoreSDNode>(E)->refineAlignment(MMO);
4028    return SDValue(E, 0);
4029  }
4030  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4031  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
4032  CSEMap.InsertNode(N, IP);
4033  AllNodes.push_back(N);
4034  return SDValue(N, 0);
4035}
4036
4037SDValue
4038SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4039                              SDValue Offset, ISD::MemIndexedMode AM) {
4040  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4041  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4042         "Store is already a indexed store!");
4043  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4044  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4045  FoldingSetNodeID ID;
4046  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4047  ID.AddInteger(ST->getMemoryVT().getRawBits());
4048  ID.AddInteger(ST->getRawSubclassData());
4049  void *IP = 0;
4050  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4051    return SDValue(E, 0);
4052
4053  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4054  new (N) StoreSDNode(Ops, dl, VTs, AM,
4055                      ST->isTruncatingStore(), ST->getMemoryVT(),
4056                      ST->getMemOperand());
4057  CSEMap.InsertNode(N, IP);
4058  AllNodes.push_back(N);
4059  return SDValue(N, 0);
4060}
4061
4062SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4063                               SDValue Chain, SDValue Ptr,
4064                               SDValue SV) {
4065  SDValue Ops[] = { Chain, Ptr, SV };
4066  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4067}
4068
4069SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4070                              const SDUse *Ops, unsigned NumOps) {
4071  switch (NumOps) {
4072  case 0: return getNode(Opcode, DL, VT);
4073  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4074  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4075  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4076  default: break;
4077  }
4078
4079  // Copy from an SDUse array into an SDValue array for use with
4080  // the regular getNode logic.
4081  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4082  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4083}
4084
4085SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4086                              const SDValue *Ops, unsigned NumOps) {
4087  switch (NumOps) {
4088  case 0: return getNode(Opcode, DL, VT);
4089  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4090  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4091  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4092  default: break;
4093  }
4094
4095  switch (Opcode) {
4096  default: break;
4097  case ISD::SELECT_CC: {
4098    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4099    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4100           "LHS and RHS of condition must have same type!");
4101    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4102           "True and False arms of SelectCC must have same type!");
4103    assert(Ops[2].getValueType() == VT &&
4104           "select_cc node must be of same type as true and false value!");
4105    break;
4106  }
4107  case ISD::BR_CC: {
4108    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4109    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4110           "LHS/RHS of comparison should match types!");
4111    break;
4112  }
4113  }
4114
4115  // Memoize nodes.
4116  SDNode *N;
4117  SDVTList VTs = getVTList(VT);
4118
4119  if (VT != MVT::Flag) {
4120    FoldingSetNodeID ID;
4121    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4122    void *IP = 0;
4123
4124    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4125      return SDValue(E, 0);
4126
4127    N = NodeAllocator.Allocate<SDNode>();
4128    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4129    CSEMap.InsertNode(N, IP);
4130  } else {
4131    N = NodeAllocator.Allocate<SDNode>();
4132    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4133  }
4134
4135  AllNodes.push_back(N);
4136#ifndef NDEBUG
4137  VerifyNode(N);
4138#endif
4139  return SDValue(N, 0);
4140}
4141
4142SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4143                              const std::vector<EVT> &ResultTys,
4144                              const SDValue *Ops, unsigned NumOps) {
4145  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4146                 Ops, NumOps);
4147}
4148
4149SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4150                              const EVT *VTs, unsigned NumVTs,
4151                              const SDValue *Ops, unsigned NumOps) {
4152  if (NumVTs == 1)
4153    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4154  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4155}
4156
4157SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4158                              const SDValue *Ops, unsigned NumOps) {
4159  if (VTList.NumVTs == 1)
4160    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4161
4162#if 0
4163  switch (Opcode) {
4164  // FIXME: figure out how to safely handle things like
4165  // int foo(int x) { return 1 << (x & 255); }
4166  // int bar() { return foo(256); }
4167  case ISD::SRA_PARTS:
4168  case ISD::SRL_PARTS:
4169  case ISD::SHL_PARTS:
4170    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4171        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4172      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4173    else if (N3.getOpcode() == ISD::AND)
4174      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4175        // If the and is only masking out bits that cannot effect the shift,
4176        // eliminate the and.
4177        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4178        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4179          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4180      }
4181    break;
4182  }
4183#endif
4184
4185  // Memoize the node unless it returns a flag.
4186  SDNode *N;
4187  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4188    FoldingSetNodeID ID;
4189    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4190    void *IP = 0;
4191    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4192      return SDValue(E, 0);
4193
4194    if (NumOps == 1) {
4195      N = NodeAllocator.Allocate<UnarySDNode>();
4196      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4197    } else if (NumOps == 2) {
4198      N = NodeAllocator.Allocate<BinarySDNode>();
4199      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4200    } else if (NumOps == 3) {
4201      N = NodeAllocator.Allocate<TernarySDNode>();
4202      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4203    } else {
4204      N = NodeAllocator.Allocate<SDNode>();
4205      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4206    }
4207    CSEMap.InsertNode(N, IP);
4208  } else {
4209    if (NumOps == 1) {
4210      N = NodeAllocator.Allocate<UnarySDNode>();
4211      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4212    } else if (NumOps == 2) {
4213      N = NodeAllocator.Allocate<BinarySDNode>();
4214      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4215    } else if (NumOps == 3) {
4216      N = NodeAllocator.Allocate<TernarySDNode>();
4217      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4218    } else {
4219      N = NodeAllocator.Allocate<SDNode>();
4220      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4221    }
4222  }
4223  AllNodes.push_back(N);
4224#ifndef NDEBUG
4225  VerifyNode(N);
4226#endif
4227  return SDValue(N, 0);
4228}
4229
4230SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4231  return getNode(Opcode, DL, VTList, 0, 0);
4232}
4233
4234SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4235                              SDValue N1) {
4236  SDValue Ops[] = { N1 };
4237  return getNode(Opcode, DL, VTList, Ops, 1);
4238}
4239
4240SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4241                              SDValue N1, SDValue N2) {
4242  SDValue Ops[] = { N1, N2 };
4243  return getNode(Opcode, DL, VTList, Ops, 2);
4244}
4245
4246SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4247                              SDValue N1, SDValue N2, SDValue N3) {
4248  SDValue Ops[] = { N1, N2, N3 };
4249  return getNode(Opcode, DL, VTList, Ops, 3);
4250}
4251
4252SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4253                              SDValue N1, SDValue N2, SDValue N3,
4254                              SDValue N4) {
4255  SDValue Ops[] = { N1, N2, N3, N4 };
4256  return getNode(Opcode, DL, VTList, Ops, 4);
4257}
4258
4259SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4260                              SDValue N1, SDValue N2, SDValue N3,
4261                              SDValue N4, SDValue N5) {
4262  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4263  return getNode(Opcode, DL, VTList, Ops, 5);
4264}
4265
4266SDVTList SelectionDAG::getVTList(EVT VT) {
4267  return makeVTList(SDNode::getValueTypeList(VT), 1);
4268}
4269
4270SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4271  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4272       E = VTList.rend(); I != E; ++I)
4273    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4274      return *I;
4275
4276  EVT *Array = Allocator.Allocate<EVT>(2);
4277  Array[0] = VT1;
4278  Array[1] = VT2;
4279  SDVTList Result = makeVTList(Array, 2);
4280  VTList.push_back(Result);
4281  return Result;
4282}
4283
4284SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4285  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4286       E = VTList.rend(); I != E; ++I)
4287    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4288                          I->VTs[2] == VT3)
4289      return *I;
4290
4291  EVT *Array = Allocator.Allocate<EVT>(3);
4292  Array[0] = VT1;
4293  Array[1] = VT2;
4294  Array[2] = VT3;
4295  SDVTList Result = makeVTList(Array, 3);
4296  VTList.push_back(Result);
4297  return Result;
4298}
4299
4300SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4301  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4302       E = VTList.rend(); I != E; ++I)
4303    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4304                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4305      return *I;
4306
4307  EVT *Array = Allocator.Allocate<EVT>(4);
4308  Array[0] = VT1;
4309  Array[1] = VT2;
4310  Array[2] = VT3;
4311  Array[3] = VT4;
4312  SDVTList Result = makeVTList(Array, 4);
4313  VTList.push_back(Result);
4314  return Result;
4315}
4316
4317SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4318  switch (NumVTs) {
4319    case 0: llvm_unreachable("Cannot have nodes without results!");
4320    case 1: return getVTList(VTs[0]);
4321    case 2: return getVTList(VTs[0], VTs[1]);
4322    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4323    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4324    default: break;
4325  }
4326
4327  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4328       E = VTList.rend(); I != E; ++I) {
4329    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4330      continue;
4331
4332    bool NoMatch = false;
4333    for (unsigned i = 2; i != NumVTs; ++i)
4334      if (VTs[i] != I->VTs[i]) {
4335        NoMatch = true;
4336        break;
4337      }
4338    if (!NoMatch)
4339      return *I;
4340  }
4341
4342  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4343  std::copy(VTs, VTs+NumVTs, Array);
4344  SDVTList Result = makeVTList(Array, NumVTs);
4345  VTList.push_back(Result);
4346  return Result;
4347}
4348
4349
4350/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4351/// specified operands.  If the resultant node already exists in the DAG,
4352/// this does not modify the specified node, instead it returns the node that
4353/// already exists.  If the resultant node does not exist in the DAG, the
4354/// input node is returned.  As a degenerate case, if you specify the same
4355/// input operands as the node already has, the input node is returned.
4356SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4357  SDNode *N = InN.getNode();
4358  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4359
4360  // Check to see if there is no change.
4361  if (Op == N->getOperand(0)) return InN;
4362
4363  // See if the modified node already exists.
4364  void *InsertPos = 0;
4365  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4366    return SDValue(Existing, InN.getResNo());
4367
4368  // Nope it doesn't.  Remove the node from its current place in the maps.
4369  if (InsertPos)
4370    if (!RemoveNodeFromCSEMaps(N))
4371      InsertPos = 0;
4372
4373  // Now we update the operands.
4374  N->OperandList[0].set(Op);
4375
4376  // If this gets put into a CSE map, add it.
4377  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4378  return InN;
4379}
4380
4381SDValue SelectionDAG::
4382UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4383  SDNode *N = InN.getNode();
4384  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4385
4386  // Check to see if there is no change.
4387  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4388    return InN;   // No operands changed, just return the input node.
4389
4390  // See if the modified node already exists.
4391  void *InsertPos = 0;
4392  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4393    return SDValue(Existing, InN.getResNo());
4394
4395  // Nope it doesn't.  Remove the node from its current place in the maps.
4396  if (InsertPos)
4397    if (!RemoveNodeFromCSEMaps(N))
4398      InsertPos = 0;
4399
4400  // Now we update the operands.
4401  if (N->OperandList[0] != Op1)
4402    N->OperandList[0].set(Op1);
4403  if (N->OperandList[1] != Op2)
4404    N->OperandList[1].set(Op2);
4405
4406  // If this gets put into a CSE map, add it.
4407  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4408  return InN;
4409}
4410
4411SDValue SelectionDAG::
4412UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4413  SDValue Ops[] = { Op1, Op2, Op3 };
4414  return UpdateNodeOperands(N, Ops, 3);
4415}
4416
4417SDValue SelectionDAG::
4418UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4419                   SDValue Op3, SDValue Op4) {
4420  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4421  return UpdateNodeOperands(N, Ops, 4);
4422}
4423
4424SDValue SelectionDAG::
4425UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4426                   SDValue Op3, SDValue Op4, SDValue Op5) {
4427  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4428  return UpdateNodeOperands(N, Ops, 5);
4429}
4430
4431SDValue SelectionDAG::
4432UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4433  SDNode *N = InN.getNode();
4434  assert(N->getNumOperands() == NumOps &&
4435         "Update with wrong number of operands");
4436
4437  // Check to see if there is no change.
4438  bool AnyChange = false;
4439  for (unsigned i = 0; i != NumOps; ++i) {
4440    if (Ops[i] != N->getOperand(i)) {
4441      AnyChange = true;
4442      break;
4443    }
4444  }
4445
4446  // No operands changed, just return the input node.
4447  if (!AnyChange) return InN;
4448
4449  // See if the modified node already exists.
4450  void *InsertPos = 0;
4451  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4452    return SDValue(Existing, InN.getResNo());
4453
4454  // Nope it doesn't.  Remove the node from its current place in the maps.
4455  if (InsertPos)
4456    if (!RemoveNodeFromCSEMaps(N))
4457      InsertPos = 0;
4458
4459  // Now we update the operands.
4460  for (unsigned i = 0; i != NumOps; ++i)
4461    if (N->OperandList[i] != Ops[i])
4462      N->OperandList[i].set(Ops[i]);
4463
4464  // If this gets put into a CSE map, add it.
4465  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4466  return InN;
4467}
4468
4469/// DropOperands - Release the operands and set this node to have
4470/// zero operands.
4471void SDNode::DropOperands() {
4472  // Unlike the code in MorphNodeTo that does this, we don't need to
4473  // watch for dead nodes here.
4474  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4475    SDUse &Use = *I++;
4476    Use.set(SDValue());
4477  }
4478}
4479
4480/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4481/// machine opcode.
4482///
4483SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4484                                   EVT VT) {
4485  SDVTList VTs = getVTList(VT);
4486  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4487}
4488
4489SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4490                                   EVT VT, SDValue Op1) {
4491  SDVTList VTs = getVTList(VT);
4492  SDValue Ops[] = { Op1 };
4493  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4494}
4495
4496SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4497                                   EVT VT, SDValue Op1,
4498                                   SDValue Op2) {
4499  SDVTList VTs = getVTList(VT);
4500  SDValue Ops[] = { Op1, Op2 };
4501  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4502}
4503
4504SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4505                                   EVT VT, SDValue Op1,
4506                                   SDValue Op2, SDValue Op3) {
4507  SDVTList VTs = getVTList(VT);
4508  SDValue Ops[] = { Op1, Op2, Op3 };
4509  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4510}
4511
4512SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4513                                   EVT VT, const SDValue *Ops,
4514                                   unsigned NumOps) {
4515  SDVTList VTs = getVTList(VT);
4516  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4517}
4518
4519SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4520                                   EVT VT1, EVT VT2, const SDValue *Ops,
4521                                   unsigned NumOps) {
4522  SDVTList VTs = getVTList(VT1, VT2);
4523  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4524}
4525
4526SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4527                                   EVT VT1, EVT VT2) {
4528  SDVTList VTs = getVTList(VT1, VT2);
4529  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4530}
4531
4532SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4533                                   EVT VT1, EVT VT2, EVT VT3,
4534                                   const SDValue *Ops, unsigned NumOps) {
4535  SDVTList VTs = getVTList(VT1, VT2, VT3);
4536  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4537}
4538
4539SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4540                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4541                                   const SDValue *Ops, unsigned NumOps) {
4542  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4543  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4544}
4545
4546SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4547                                   EVT VT1, EVT VT2,
4548                                   SDValue Op1) {
4549  SDVTList VTs = getVTList(VT1, VT2);
4550  SDValue Ops[] = { Op1 };
4551  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4552}
4553
4554SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4555                                   EVT VT1, EVT VT2,
4556                                   SDValue Op1, SDValue Op2) {
4557  SDVTList VTs = getVTList(VT1, VT2);
4558  SDValue Ops[] = { Op1, Op2 };
4559  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4560}
4561
4562SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4563                                   EVT VT1, EVT VT2,
4564                                   SDValue Op1, SDValue Op2,
4565                                   SDValue Op3) {
4566  SDVTList VTs = getVTList(VT1, VT2);
4567  SDValue Ops[] = { Op1, Op2, Op3 };
4568  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4569}
4570
4571SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4572                                   EVT VT1, EVT VT2, EVT VT3,
4573                                   SDValue Op1, SDValue Op2,
4574                                   SDValue Op3) {
4575  SDVTList VTs = getVTList(VT1, VT2, VT3);
4576  SDValue Ops[] = { Op1, Op2, Op3 };
4577  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4578}
4579
4580SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4581                                   SDVTList VTs, const SDValue *Ops,
4582                                   unsigned NumOps) {
4583  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4584  // Reset the NodeID to -1.
4585  N->setNodeId(-1);
4586  return N;
4587}
4588
4589/// MorphNodeTo - This *mutates* the specified node to have the specified
4590/// return type, opcode, and operands.
4591///
4592/// Note that MorphNodeTo returns the resultant node.  If there is already a
4593/// node of the specified opcode and operands, it returns that node instead of
4594/// the current one.  Note that the DebugLoc need not be the same.
4595///
4596/// Using MorphNodeTo is faster than creating a new node and swapping it in
4597/// with ReplaceAllUsesWith both because it often avoids allocating a new
4598/// node, and because it doesn't require CSE recalculation for any of
4599/// the node's users.
4600///
4601SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4602                                  SDVTList VTs, const SDValue *Ops,
4603                                  unsigned NumOps) {
4604  // If an identical node already exists, use it.
4605  void *IP = 0;
4606  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4607    FoldingSetNodeID ID;
4608    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4609    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4610      return ON;
4611  }
4612
4613  if (!RemoveNodeFromCSEMaps(N))
4614    IP = 0;
4615
4616  // Start the morphing.
4617  N->NodeType = Opc;
4618  N->ValueList = VTs.VTs;
4619  N->NumValues = VTs.NumVTs;
4620
4621  // Clear the operands list, updating used nodes to remove this from their
4622  // use list.  Keep track of any operands that become dead as a result.
4623  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4624  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4625    SDUse &Use = *I++;
4626    SDNode *Used = Use.getNode();
4627    Use.set(SDValue());
4628    if (Used->use_empty())
4629      DeadNodeSet.insert(Used);
4630  }
4631
4632  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4633    // Initialize the memory references information.
4634    MN->setMemRefs(0, 0);
4635    // If NumOps is larger than the # of operands we can have in a
4636    // MachineSDNode, reallocate the operand list.
4637    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4638      if (MN->OperandsNeedDelete)
4639        delete[] MN->OperandList;
4640      if (NumOps > array_lengthof(MN->LocalOperands))
4641        // We're creating a final node that will live unmorphed for the
4642        // remainder of the current SelectionDAG iteration, so we can allocate
4643        // the operands directly out of a pool with no recycling metadata.
4644        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4645                        Ops, NumOps);
4646      else
4647        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4648      MN->OperandsNeedDelete = false;
4649    } else
4650      MN->InitOperands(MN->OperandList, Ops, NumOps);
4651  } else {
4652    // If NumOps is larger than the # of operands we currently have, reallocate
4653    // the operand list.
4654    if (NumOps > N->NumOperands) {
4655      if (N->OperandsNeedDelete)
4656        delete[] N->OperandList;
4657      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4658      N->OperandsNeedDelete = true;
4659    } else
4660      N->InitOperands(N->OperandList, Ops, NumOps);
4661  }
4662
4663  // Delete any nodes that are still dead after adding the uses for the
4664  // new operands.
4665  if (!DeadNodeSet.empty()) {
4666    SmallVector<SDNode *, 16> DeadNodes;
4667    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4668         E = DeadNodeSet.end(); I != E; ++I)
4669      if ((*I)->use_empty())
4670        DeadNodes.push_back(*I);
4671    RemoveDeadNodes(DeadNodes);
4672  }
4673
4674  if (IP)
4675    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4676  return N;
4677}
4678
4679
4680/// getMachineNode - These are used for target selectors to create a new node
4681/// with specified return type(s), MachineInstr opcode, and operands.
4682///
4683/// Note that getMachineNode returns the resultant node.  If there is already a
4684/// node of the specified opcode and operands, it returns that node instead of
4685/// the current one.
4686MachineSDNode *
4687SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4688  SDVTList VTs = getVTList(VT);
4689  return getMachineNode(Opcode, dl, VTs, 0, 0);
4690}
4691
4692MachineSDNode *
4693SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4694  SDVTList VTs = getVTList(VT);
4695  SDValue Ops[] = { Op1 };
4696  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4697}
4698
4699MachineSDNode *
4700SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4701                             SDValue Op1, SDValue Op2) {
4702  SDVTList VTs = getVTList(VT);
4703  SDValue Ops[] = { Op1, Op2 };
4704  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4705}
4706
4707MachineSDNode *
4708SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4709                             SDValue Op1, SDValue Op2, SDValue Op3) {
4710  SDVTList VTs = getVTList(VT);
4711  SDValue Ops[] = { Op1, Op2, Op3 };
4712  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4713}
4714
4715MachineSDNode *
4716SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4717                             const SDValue *Ops, unsigned NumOps) {
4718  SDVTList VTs = getVTList(VT);
4719  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4720}
4721
4722MachineSDNode *
4723SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4724  SDVTList VTs = getVTList(VT1, VT2);
4725  return getMachineNode(Opcode, dl, VTs, 0, 0);
4726}
4727
4728MachineSDNode *
4729SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4730                             EVT VT1, EVT VT2, SDValue Op1) {
4731  SDVTList VTs = getVTList(VT1, VT2);
4732  SDValue Ops[] = { Op1 };
4733  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4734}
4735
4736MachineSDNode *
4737SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4738                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4739  SDVTList VTs = getVTList(VT1, VT2);
4740  SDValue Ops[] = { Op1, Op2 };
4741  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4742}
4743
4744MachineSDNode *
4745SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4746                             EVT VT1, EVT VT2, SDValue Op1,
4747                             SDValue Op2, SDValue Op3) {
4748  SDVTList VTs = getVTList(VT1, VT2);
4749  SDValue Ops[] = { Op1, Op2, Op3 };
4750  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4751}
4752
4753MachineSDNode *
4754SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4755                             EVT VT1, EVT VT2,
4756                             const SDValue *Ops, unsigned NumOps) {
4757  SDVTList VTs = getVTList(VT1, VT2);
4758  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4759}
4760
4761MachineSDNode *
4762SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4763                             EVT VT1, EVT VT2, EVT VT3,
4764                             SDValue Op1, SDValue Op2) {
4765  SDVTList VTs = getVTList(VT1, VT2, VT3);
4766  SDValue Ops[] = { Op1, Op2 };
4767  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4768}
4769
4770MachineSDNode *
4771SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4772                             EVT VT1, EVT VT2, EVT VT3,
4773                             SDValue Op1, SDValue Op2, SDValue Op3) {
4774  SDVTList VTs = getVTList(VT1, VT2, VT3);
4775  SDValue Ops[] = { Op1, Op2, Op3 };
4776  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4777}
4778
4779MachineSDNode *
4780SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4781                             EVT VT1, EVT VT2, EVT VT3,
4782                             const SDValue *Ops, unsigned NumOps) {
4783  SDVTList VTs = getVTList(VT1, VT2, VT3);
4784  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4785}
4786
4787MachineSDNode *
4788SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4789                             EVT VT2, EVT VT3, EVT VT4,
4790                             const SDValue *Ops, unsigned NumOps) {
4791  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4792  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4793}
4794
4795MachineSDNode *
4796SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4797                             const std::vector<EVT> &ResultTys,
4798                             const SDValue *Ops, unsigned NumOps) {
4799  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4800  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4801}
4802
4803MachineSDNode *
4804SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4805                             const SDValue *Ops, unsigned NumOps) {
4806  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4807  MachineSDNode *N;
4808  void *IP;
4809
4810  if (DoCSE) {
4811    FoldingSetNodeID ID;
4812    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4813    IP = 0;
4814    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4815      return cast<MachineSDNode>(E);
4816  }
4817
4818  // Allocate a new MachineSDNode.
4819  N = NodeAllocator.Allocate<MachineSDNode>();
4820  new (N) MachineSDNode(~Opcode, DL, VTs);
4821
4822  // Initialize the operands list.
4823  if (NumOps > array_lengthof(N->LocalOperands))
4824    // We're creating a final node that will live unmorphed for the
4825    // remainder of the current SelectionDAG iteration, so we can allocate
4826    // the operands directly out of a pool with no recycling metadata.
4827    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4828                    Ops, NumOps);
4829  else
4830    N->InitOperands(N->LocalOperands, Ops, NumOps);
4831  N->OperandsNeedDelete = false;
4832
4833  if (DoCSE)
4834    CSEMap.InsertNode(N, IP);
4835
4836  AllNodes.push_back(N);
4837#ifndef NDEBUG
4838  VerifyNode(N);
4839#endif
4840  return N;
4841}
4842
4843/// getTargetExtractSubreg - A convenience function for creating
4844/// TargetOpcode::EXTRACT_SUBREG nodes.
4845SDValue
4846SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4847                                     SDValue Operand) {
4848  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4849  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4850                                  VT, Operand, SRIdxVal);
4851  return SDValue(Subreg, 0);
4852}
4853
4854/// getTargetInsertSubreg - A convenience function for creating
4855/// TargetOpcode::INSERT_SUBREG nodes.
4856SDValue
4857SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4858                                    SDValue Operand, SDValue Subreg) {
4859  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4860  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4861                                  VT, Operand, Subreg, SRIdxVal);
4862  return SDValue(Result, 0);
4863}
4864
4865/// getNodeIfExists - Get the specified node if it's already available, or
4866/// else return NULL.
4867SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4868                                      const SDValue *Ops, unsigned NumOps) {
4869  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4870    FoldingSetNodeID ID;
4871    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4872    void *IP = 0;
4873    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4874      return E;
4875  }
4876  return NULL;
4877}
4878
4879namespace {
4880
4881/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4882/// pointed to by a use iterator is deleted, increment the use iterator
4883/// so that it doesn't dangle.
4884///
4885/// This class also manages a "downlink" DAGUpdateListener, to forward
4886/// messages to ReplaceAllUsesWith's callers.
4887///
4888class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4889  SelectionDAG::DAGUpdateListener *DownLink;
4890  SDNode::use_iterator &UI;
4891  SDNode::use_iterator &UE;
4892
4893  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4894    // Increment the iterator as needed.
4895    while (UI != UE && N == *UI)
4896      ++UI;
4897
4898    // Then forward the message.
4899    if (DownLink) DownLink->NodeDeleted(N, E);
4900  }
4901
4902  virtual void NodeUpdated(SDNode *N) {
4903    // Just forward the message.
4904    if (DownLink) DownLink->NodeUpdated(N);
4905  }
4906
4907public:
4908  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4909                     SDNode::use_iterator &ui,
4910                     SDNode::use_iterator &ue)
4911    : DownLink(dl), UI(ui), UE(ue) {}
4912};
4913
4914}
4915
4916/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4917/// This can cause recursive merging of nodes in the DAG.
4918///
4919/// This version assumes From has a single result value.
4920///
4921void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4922                                      DAGUpdateListener *UpdateListener) {
4923  SDNode *From = FromN.getNode();
4924  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4925         "Cannot replace with this method!");
4926  assert(From != To.getNode() && "Cannot replace uses of with self");
4927
4928  // Iterate over all the existing uses of From. New uses will be added
4929  // to the beginning of the use list, which we avoid visiting.
4930  // This specifically avoids visiting uses of From that arise while the
4931  // replacement is happening, because any such uses would be the result
4932  // of CSE: If an existing node looks like From after one of its operands
4933  // is replaced by To, we don't want to replace of all its users with To
4934  // too. See PR3018 for more info.
4935  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4936  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4937  while (UI != UE) {
4938    SDNode *User = *UI;
4939
4940    // This node is about to morph, remove its old self from the CSE maps.
4941    RemoveNodeFromCSEMaps(User);
4942
4943    // A user can appear in a use list multiple times, and when this
4944    // happens the uses are usually next to each other in the list.
4945    // To help reduce the number of CSE recomputations, process all
4946    // the uses of this user that we can find this way.
4947    do {
4948      SDUse &Use = UI.getUse();
4949      ++UI;
4950      Use.set(To);
4951    } while (UI != UE && *UI == User);
4952
4953    // Now that we have modified User, add it back to the CSE maps.  If it
4954    // already exists there, recursively merge the results together.
4955    AddModifiedNodeToCSEMaps(User, &Listener);
4956  }
4957}
4958
4959/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4960/// This can cause recursive merging of nodes in the DAG.
4961///
4962/// This version assumes that for each value of From, there is a
4963/// corresponding value in To in the same position with the same type.
4964///
4965void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4966                                      DAGUpdateListener *UpdateListener) {
4967#ifndef NDEBUG
4968  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4969    assert((!From->hasAnyUseOfValue(i) ||
4970            From->getValueType(i) == To->getValueType(i)) &&
4971           "Cannot use this version of ReplaceAllUsesWith!");
4972#endif
4973
4974  // Handle the trivial case.
4975  if (From == To)
4976    return;
4977
4978  // Iterate over just the existing users of From. See the comments in
4979  // the ReplaceAllUsesWith above.
4980  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4981  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4982  while (UI != UE) {
4983    SDNode *User = *UI;
4984
4985    // This node is about to morph, remove its old self from the CSE maps.
4986    RemoveNodeFromCSEMaps(User);
4987
4988    // A user can appear in a use list multiple times, and when this
4989    // happens the uses are usually next to each other in the list.
4990    // To help reduce the number of CSE recomputations, process all
4991    // the uses of this user that we can find this way.
4992    do {
4993      SDUse &Use = UI.getUse();
4994      ++UI;
4995      Use.setNode(To);
4996    } while (UI != UE && *UI == User);
4997
4998    // Now that we have modified User, add it back to the CSE maps.  If it
4999    // already exists there, recursively merge the results together.
5000    AddModifiedNodeToCSEMaps(User, &Listener);
5001  }
5002}
5003
5004/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5005/// This can cause recursive merging of nodes in the DAG.
5006///
5007/// This version can replace From with any result values.  To must match the
5008/// number and types of values returned by From.
5009void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5010                                      const SDValue *To,
5011                                      DAGUpdateListener *UpdateListener) {
5012  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5013    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5014
5015  // Iterate over just the existing users of From. See the comments in
5016  // the ReplaceAllUsesWith above.
5017  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5018  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5019  while (UI != UE) {
5020    SDNode *User = *UI;
5021
5022    // This node is about to morph, remove its old self from the CSE maps.
5023    RemoveNodeFromCSEMaps(User);
5024
5025    // A user can appear in a use list multiple times, and when this
5026    // happens the uses are usually next to each other in the list.
5027    // To help reduce the number of CSE recomputations, process all
5028    // the uses of this user that we can find this way.
5029    do {
5030      SDUse &Use = UI.getUse();
5031      const SDValue &ToOp = To[Use.getResNo()];
5032      ++UI;
5033      Use.set(ToOp);
5034    } while (UI != UE && *UI == User);
5035
5036    // Now that we have modified User, add it back to the CSE maps.  If it
5037    // already exists there, recursively merge the results together.
5038    AddModifiedNodeToCSEMaps(User, &Listener);
5039  }
5040}
5041
5042/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5043/// uses of other values produced by From.getNode() alone.  The Deleted
5044/// vector is handled the same way as for ReplaceAllUsesWith.
5045void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5046                                             DAGUpdateListener *UpdateListener){
5047  // Handle the really simple, really trivial case efficiently.
5048  if (From == To) return;
5049
5050  // Handle the simple, trivial, case efficiently.
5051  if (From.getNode()->getNumValues() == 1) {
5052    ReplaceAllUsesWith(From, To, UpdateListener);
5053    return;
5054  }
5055
5056  // Iterate over just the existing users of From. See the comments in
5057  // the ReplaceAllUsesWith above.
5058  SDNode::use_iterator UI = From.getNode()->use_begin(),
5059                       UE = From.getNode()->use_end();
5060  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5061  while (UI != UE) {
5062    SDNode *User = *UI;
5063    bool UserRemovedFromCSEMaps = false;
5064
5065    // A user can appear in a use list multiple times, and when this
5066    // happens the uses are usually next to each other in the list.
5067    // To help reduce the number of CSE recomputations, process all
5068    // the uses of this user that we can find this way.
5069    do {
5070      SDUse &Use = UI.getUse();
5071
5072      // Skip uses of different values from the same node.
5073      if (Use.getResNo() != From.getResNo()) {
5074        ++UI;
5075        continue;
5076      }
5077
5078      // If this node hasn't been modified yet, it's still in the CSE maps,
5079      // so remove its old self from the CSE maps.
5080      if (!UserRemovedFromCSEMaps) {
5081        RemoveNodeFromCSEMaps(User);
5082        UserRemovedFromCSEMaps = true;
5083      }
5084
5085      ++UI;
5086      Use.set(To);
5087    } while (UI != UE && *UI == User);
5088
5089    // We are iterating over all uses of the From node, so if a use
5090    // doesn't use the specific value, no changes are made.
5091    if (!UserRemovedFromCSEMaps)
5092      continue;
5093
5094    // Now that we have modified User, add it back to the CSE maps.  If it
5095    // already exists there, recursively merge the results together.
5096    AddModifiedNodeToCSEMaps(User, &Listener);
5097  }
5098}
5099
5100namespace {
5101  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5102  /// to record information about a use.
5103  struct UseMemo {
5104    SDNode *User;
5105    unsigned Index;
5106    SDUse *Use;
5107  };
5108
5109  /// operator< - Sort Memos by User.
5110  bool operator<(const UseMemo &L, const UseMemo &R) {
5111    return (intptr_t)L.User < (intptr_t)R.User;
5112  }
5113}
5114
5115/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5116/// uses of other values produced by From.getNode() alone.  The same value
5117/// may appear in both the From and To list.  The Deleted vector is
5118/// handled the same way as for ReplaceAllUsesWith.
5119void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5120                                              const SDValue *To,
5121                                              unsigned Num,
5122                                              DAGUpdateListener *UpdateListener){
5123  // Handle the simple, trivial case efficiently.
5124  if (Num == 1)
5125    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5126
5127  // Read up all the uses and make records of them. This helps
5128  // processing new uses that are introduced during the
5129  // replacement process.
5130  SmallVector<UseMemo, 4> Uses;
5131  for (unsigned i = 0; i != Num; ++i) {
5132    unsigned FromResNo = From[i].getResNo();
5133    SDNode *FromNode = From[i].getNode();
5134    for (SDNode::use_iterator UI = FromNode->use_begin(),
5135         E = FromNode->use_end(); UI != E; ++UI) {
5136      SDUse &Use = UI.getUse();
5137      if (Use.getResNo() == FromResNo) {
5138        UseMemo Memo = { *UI, i, &Use };
5139        Uses.push_back(Memo);
5140      }
5141    }
5142  }
5143
5144  // Sort the uses, so that all the uses from a given User are together.
5145  std::sort(Uses.begin(), Uses.end());
5146
5147  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5148       UseIndex != UseIndexEnd; ) {
5149    // We know that this user uses some value of From.  If it is the right
5150    // value, update it.
5151    SDNode *User = Uses[UseIndex].User;
5152
5153    // This node is about to morph, remove its old self from the CSE maps.
5154    RemoveNodeFromCSEMaps(User);
5155
5156    // The Uses array is sorted, so all the uses for a given User
5157    // are next to each other in the list.
5158    // To help reduce the number of CSE recomputations, process all
5159    // the uses of this user that we can find this way.
5160    do {
5161      unsigned i = Uses[UseIndex].Index;
5162      SDUse &Use = *Uses[UseIndex].Use;
5163      ++UseIndex;
5164
5165      Use.set(To[i]);
5166    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5167
5168    // Now that we have modified User, add it back to the CSE maps.  If it
5169    // already exists there, recursively merge the results together.
5170    AddModifiedNodeToCSEMaps(User, UpdateListener);
5171  }
5172}
5173
5174/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5175/// based on their topological order. It returns the maximum id and a vector
5176/// of the SDNodes* in assigned order by reference.
5177unsigned SelectionDAG::AssignTopologicalOrder() {
5178
5179  unsigned DAGSize = 0;
5180
5181  // SortedPos tracks the progress of the algorithm. Nodes before it are
5182  // sorted, nodes after it are unsorted. When the algorithm completes
5183  // it is at the end of the list.
5184  allnodes_iterator SortedPos = allnodes_begin();
5185
5186  // Visit all the nodes. Move nodes with no operands to the front of
5187  // the list immediately. Annotate nodes that do have operands with their
5188  // operand count. Before we do this, the Node Id fields of the nodes
5189  // may contain arbitrary values. After, the Node Id fields for nodes
5190  // before SortedPos will contain the topological sort index, and the
5191  // Node Id fields for nodes At SortedPos and after will contain the
5192  // count of outstanding operands.
5193  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5194    SDNode *N = I++;
5195    checkForCycles(N);
5196    unsigned Degree = N->getNumOperands();
5197    if (Degree == 0) {
5198      // A node with no uses, add it to the result array immediately.
5199      N->setNodeId(DAGSize++);
5200      allnodes_iterator Q = N;
5201      if (Q != SortedPos)
5202        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5203      assert(SortedPos != AllNodes.end() && "Overran node list");
5204      ++SortedPos;
5205    } else {
5206      // Temporarily use the Node Id as scratch space for the degree count.
5207      N->setNodeId(Degree);
5208    }
5209  }
5210
5211  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5212  // such that by the time the end is reached all nodes will be sorted.
5213  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5214    SDNode *N = I;
5215    checkForCycles(N);
5216    // N is in sorted position, so all its uses have one less operand
5217    // that needs to be sorted.
5218    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5219         UI != UE; ++UI) {
5220      SDNode *P = *UI;
5221      unsigned Degree = P->getNodeId();
5222      assert(Degree != 0 && "Invalid node degree");
5223      --Degree;
5224      if (Degree == 0) {
5225        // All of P's operands are sorted, so P may sorted now.
5226        P->setNodeId(DAGSize++);
5227        if (P != SortedPos)
5228          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5229        assert(SortedPos != AllNodes.end() && "Overran node list");
5230        ++SortedPos;
5231      } else {
5232        // Update P's outstanding operand count.
5233        P->setNodeId(Degree);
5234      }
5235    }
5236    if (I == SortedPos) {
5237#ifndef NDEBUG
5238      SDNode *S = ++I;
5239      dbgs() << "Overran sorted position:\n";
5240      S->dumprFull();
5241#endif
5242      llvm_unreachable(0);
5243    }
5244  }
5245
5246  assert(SortedPos == AllNodes.end() &&
5247         "Topological sort incomplete!");
5248  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5249         "First node in topological sort is not the entry token!");
5250  assert(AllNodes.front().getNodeId() == 0 &&
5251         "First node in topological sort has non-zero id!");
5252  assert(AllNodes.front().getNumOperands() == 0 &&
5253         "First node in topological sort has operands!");
5254  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5255         "Last node in topologic sort has unexpected id!");
5256  assert(AllNodes.back().use_empty() &&
5257         "Last node in topologic sort has users!");
5258  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5259  return DAGSize;
5260}
5261
5262/// AssignOrdering - Assign an order to the SDNode.
5263void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5264  assert(SD && "Trying to assign an order to a null node!");
5265  Ordering->add(SD, Order);
5266}
5267
5268/// GetOrdering - Get the order for the SDNode.
5269unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5270  assert(SD && "Trying to get the order of a null node!");
5271  return Ordering->getOrder(SD);
5272}
5273
5274/// AssignDbgInfo - Assign debug info to the SDNode.
5275void SelectionDAG::AssignDbgInfo(SDNode* SD, SDDbgValue* db) {
5276  assert(SD && "Trying to assign dbg info to a null node!");
5277  DbgInfo->add(SD, db);
5278  SD->setHasDebugValue(true);
5279}
5280
5281/// RememberDbgInfo - Remember debug info which is not assigned to an SDNode.
5282void SelectionDAG::RememberDbgInfo(SDDbgValue* db) {
5283  DbgInfo->add(db);
5284}
5285
5286/// GetDbgInfo - Get the debug info, if any, for the SDNode.
5287SDDbgValue* SelectionDAG::GetDbgInfo(const SDNode *SD) {
5288  assert(SD && "Trying to get the order of a null node!");
5289  if (SD->getHasDebugValue())
5290    return DbgInfo->getSDDbgValue(SD);
5291  return 0;
5292}
5293
5294//===----------------------------------------------------------------------===//
5295//                              SDNode Class
5296//===----------------------------------------------------------------------===//
5297
5298HandleSDNode::~HandleSDNode() {
5299  DropOperands();
5300}
5301
5302GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5303                                         EVT VT, int64_t o, unsigned char TF)
5304  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5305    Offset(o), TargetFlags(TF) {
5306  TheGlobal = const_cast<GlobalValue*>(GA);
5307}
5308
5309MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5310                     MachineMemOperand *mmo)
5311 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5312  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5313                                      MMO->isNonTemporal());
5314  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5315  assert(isNonTemporal() == MMO->isNonTemporal() &&
5316         "Non-temporal encoding error!");
5317  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5318}
5319
5320MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5321                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5322                     MachineMemOperand *mmo)
5323   : SDNode(Opc, dl, VTs, Ops, NumOps),
5324     MemoryVT(memvt), MMO(mmo) {
5325  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5326                                      MMO->isNonTemporal());
5327  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5328  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5329}
5330
5331/// Profile - Gather unique data for the node.
5332///
5333void SDNode::Profile(FoldingSetNodeID &ID) const {
5334  AddNodeIDNode(ID, this);
5335}
5336
5337namespace {
5338  struct EVTArray {
5339    std::vector<EVT> VTs;
5340
5341    EVTArray() {
5342      VTs.reserve(MVT::LAST_VALUETYPE);
5343      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5344        VTs.push_back(MVT((MVT::SimpleValueType)i));
5345    }
5346  };
5347}
5348
5349static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5350static ManagedStatic<EVTArray> SimpleVTArray;
5351static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5352
5353/// getValueTypeList - Return a pointer to the specified value type.
5354///
5355const EVT *SDNode::getValueTypeList(EVT VT) {
5356  if (VT.isExtended()) {
5357    sys::SmartScopedLock<true> Lock(*VTMutex);
5358    return &(*EVTs->insert(VT).first);
5359  } else {
5360    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5361  }
5362}
5363
5364/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5365/// indicated value.  This method ignores uses of other values defined by this
5366/// operation.
5367bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5368  assert(Value < getNumValues() && "Bad value!");
5369
5370  // TODO: Only iterate over uses of a given value of the node
5371  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5372    if (UI.getUse().getResNo() == Value) {
5373      if (NUses == 0)
5374        return false;
5375      --NUses;
5376    }
5377  }
5378
5379  // Found exactly the right number of uses?
5380  return NUses == 0;
5381}
5382
5383
5384/// hasAnyUseOfValue - Return true if there are any use of the indicated
5385/// value. This method ignores uses of other values defined by this operation.
5386bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5387  assert(Value < getNumValues() && "Bad value!");
5388
5389  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5390    if (UI.getUse().getResNo() == Value)
5391      return true;
5392
5393  return false;
5394}
5395
5396
5397/// isOnlyUserOf - Return true if this node is the only use of N.
5398///
5399bool SDNode::isOnlyUserOf(SDNode *N) const {
5400  bool Seen = false;
5401  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5402    SDNode *User = *I;
5403    if (User == this)
5404      Seen = true;
5405    else
5406      return false;
5407  }
5408
5409  return Seen;
5410}
5411
5412/// isOperand - Return true if this node is an operand of N.
5413///
5414bool SDValue::isOperandOf(SDNode *N) const {
5415  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5416    if (*this == N->getOperand(i))
5417      return true;
5418  return false;
5419}
5420
5421bool SDNode::isOperandOf(SDNode *N) const {
5422  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5423    if (this == N->OperandList[i].getNode())
5424      return true;
5425  return false;
5426}
5427
5428/// reachesChainWithoutSideEffects - Return true if this operand (which must
5429/// be a chain) reaches the specified operand without crossing any
5430/// side-effecting instructions.  In practice, this looks through token
5431/// factors and non-volatile loads.  In order to remain efficient, this only
5432/// looks a couple of nodes in, it does not do an exhaustive search.
5433bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5434                                               unsigned Depth) const {
5435  if (*this == Dest) return true;
5436
5437  // Don't search too deeply, we just want to be able to see through
5438  // TokenFactor's etc.
5439  if (Depth == 0) return false;
5440
5441  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5442  // of the operands of the TF reach dest, then we can do the xform.
5443  if (getOpcode() == ISD::TokenFactor) {
5444    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5445      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5446        return true;
5447    return false;
5448  }
5449
5450  // Loads don't have side effects, look through them.
5451  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5452    if (!Ld->isVolatile())
5453      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5454  }
5455  return false;
5456}
5457
5458/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5459/// is either an operand of N or it can be reached by traversing up the operands.
5460/// NOTE: this is an expensive method. Use it carefully.
5461bool SDNode::isPredecessorOf(SDNode *N) const {
5462  SmallPtrSet<SDNode *, 32> Visited;
5463  SmallVector<SDNode *, 16> Worklist;
5464  Worklist.push_back(N);
5465
5466  do {
5467    N = Worklist.pop_back_val();
5468    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5469      SDNode *Op = N->getOperand(i).getNode();
5470      if (Op == this)
5471        return true;
5472      if (Visited.insert(Op))
5473        Worklist.push_back(Op);
5474    }
5475  } while (!Worklist.empty());
5476
5477  return false;
5478}
5479
5480uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5481  assert(Num < NumOperands && "Invalid child # of SDNode!");
5482  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5483}
5484
5485std::string SDNode::getOperationName(const SelectionDAG *G) const {
5486  switch (getOpcode()) {
5487  default:
5488    if (getOpcode() < ISD::BUILTIN_OP_END)
5489      return "<<Unknown DAG Node>>";
5490    if (isMachineOpcode()) {
5491      if (G)
5492        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5493          if (getMachineOpcode() < TII->getNumOpcodes())
5494            return TII->get(getMachineOpcode()).getName();
5495      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5496    }
5497    if (G) {
5498      const TargetLowering &TLI = G->getTargetLoweringInfo();
5499      const char *Name = TLI.getTargetNodeName(getOpcode());
5500      if (Name) return Name;
5501      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5502    }
5503    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5504
5505#ifndef NDEBUG
5506  case ISD::DELETED_NODE:
5507    return "<<Deleted Node!>>";
5508#endif
5509  case ISD::PREFETCH:      return "Prefetch";
5510  case ISD::MEMBARRIER:    return "MemBarrier";
5511  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5512  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5513  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5514  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5515  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5516  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5517  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5518  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5519  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5520  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5521  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5522  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5523  case ISD::PCMARKER:      return "PCMarker";
5524  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5525  case ISD::SRCVALUE:      return "SrcValue";
5526  case ISD::EntryToken:    return "EntryToken";
5527  case ISD::TokenFactor:   return "TokenFactor";
5528  case ISD::AssertSext:    return "AssertSext";
5529  case ISD::AssertZext:    return "AssertZext";
5530
5531  case ISD::BasicBlock:    return "BasicBlock";
5532  case ISD::VALUETYPE:     return "ValueType";
5533  case ISD::Register:      return "Register";
5534
5535  case ISD::Constant:      return "Constant";
5536  case ISD::ConstantFP:    return "ConstantFP";
5537  case ISD::GlobalAddress: return "GlobalAddress";
5538  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5539  case ISD::FrameIndex:    return "FrameIndex";
5540  case ISD::JumpTable:     return "JumpTable";
5541  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5542  case ISD::RETURNADDR: return "RETURNADDR";
5543  case ISD::FRAMEADDR: return "FRAMEADDR";
5544  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5545  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5546  case ISD::LSDAADDR: return "LSDAADDR";
5547  case ISD::EHSELECTION: return "EHSELECTION";
5548  case ISD::EH_RETURN: return "EH_RETURN";
5549  case ISD::ConstantPool:  return "ConstantPool";
5550  case ISD::ExternalSymbol: return "ExternalSymbol";
5551  case ISD::BlockAddress:  return "BlockAddress";
5552  case ISD::INTRINSIC_WO_CHAIN:
5553  case ISD::INTRINSIC_VOID:
5554  case ISD::INTRINSIC_W_CHAIN: {
5555    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5556    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5557    if (IID < Intrinsic::num_intrinsics)
5558      return Intrinsic::getName((Intrinsic::ID)IID);
5559    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5560      return TII->getName(IID);
5561    llvm_unreachable("Invalid intrinsic ID");
5562  }
5563
5564  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5565  case ISD::TargetConstant: return "TargetConstant";
5566  case ISD::TargetConstantFP:return "TargetConstantFP";
5567  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5568  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5569  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5570  case ISD::TargetJumpTable:  return "TargetJumpTable";
5571  case ISD::TargetConstantPool:  return "TargetConstantPool";
5572  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5573  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5574
5575  case ISD::CopyToReg:     return "CopyToReg";
5576  case ISD::CopyFromReg:   return "CopyFromReg";
5577  case ISD::UNDEF:         return "undef";
5578  case ISD::MERGE_VALUES:  return "merge_values";
5579  case ISD::INLINEASM:     return "inlineasm";
5580  case ISD::EH_LABEL:      return "eh_label";
5581  case ISD::HANDLENODE:    return "handlenode";
5582
5583  // Unary operators
5584  case ISD::FABS:   return "fabs";
5585  case ISD::FNEG:   return "fneg";
5586  case ISD::FSQRT:  return "fsqrt";
5587  case ISD::FSIN:   return "fsin";
5588  case ISD::FCOS:   return "fcos";
5589  case ISD::FPOWI:  return "fpowi";
5590  case ISD::FPOW:   return "fpow";
5591  case ISD::FTRUNC: return "ftrunc";
5592  case ISD::FFLOOR: return "ffloor";
5593  case ISD::FCEIL:  return "fceil";
5594  case ISD::FRINT:  return "frint";
5595  case ISD::FNEARBYINT: return "fnearbyint";
5596
5597  // Binary operators
5598  case ISD::ADD:    return "add";
5599  case ISD::SUB:    return "sub";
5600  case ISD::MUL:    return "mul";
5601  case ISD::MULHU:  return "mulhu";
5602  case ISD::MULHS:  return "mulhs";
5603  case ISD::SDIV:   return "sdiv";
5604  case ISD::UDIV:   return "udiv";
5605  case ISD::SREM:   return "srem";
5606  case ISD::UREM:   return "urem";
5607  case ISD::SMUL_LOHI:  return "smul_lohi";
5608  case ISD::UMUL_LOHI:  return "umul_lohi";
5609  case ISD::SDIVREM:    return "sdivrem";
5610  case ISD::UDIVREM:    return "udivrem";
5611  case ISD::AND:    return "and";
5612  case ISD::OR:     return "or";
5613  case ISD::XOR:    return "xor";
5614  case ISD::SHL:    return "shl";
5615  case ISD::SRA:    return "sra";
5616  case ISD::SRL:    return "srl";
5617  case ISD::ROTL:   return "rotl";
5618  case ISD::ROTR:   return "rotr";
5619  case ISD::FADD:   return "fadd";
5620  case ISD::FSUB:   return "fsub";
5621  case ISD::FMUL:   return "fmul";
5622  case ISD::FDIV:   return "fdiv";
5623  case ISD::FREM:   return "frem";
5624  case ISD::FCOPYSIGN: return "fcopysign";
5625  case ISD::FGETSIGN:  return "fgetsign";
5626
5627  case ISD::SETCC:       return "setcc";
5628  case ISD::VSETCC:      return "vsetcc";
5629  case ISD::SELECT:      return "select";
5630  case ISD::SELECT_CC:   return "select_cc";
5631  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5632  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5633  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5634  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5635  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5636  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5637  case ISD::CARRY_FALSE:         return "carry_false";
5638  case ISD::ADDC:        return "addc";
5639  case ISD::ADDE:        return "adde";
5640  case ISD::SADDO:       return "saddo";
5641  case ISD::UADDO:       return "uaddo";
5642  case ISD::SSUBO:       return "ssubo";
5643  case ISD::USUBO:       return "usubo";
5644  case ISD::SMULO:       return "smulo";
5645  case ISD::UMULO:       return "umulo";
5646  case ISD::SUBC:        return "subc";
5647  case ISD::SUBE:        return "sube";
5648  case ISD::SHL_PARTS:   return "shl_parts";
5649  case ISD::SRA_PARTS:   return "sra_parts";
5650  case ISD::SRL_PARTS:   return "srl_parts";
5651
5652  // Conversion operators.
5653  case ISD::SIGN_EXTEND: return "sign_extend";
5654  case ISD::ZERO_EXTEND: return "zero_extend";
5655  case ISD::ANY_EXTEND:  return "any_extend";
5656  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5657  case ISD::TRUNCATE:    return "truncate";
5658  case ISD::FP_ROUND:    return "fp_round";
5659  case ISD::FLT_ROUNDS_: return "flt_rounds";
5660  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5661  case ISD::FP_EXTEND:   return "fp_extend";
5662
5663  case ISD::SINT_TO_FP:  return "sint_to_fp";
5664  case ISD::UINT_TO_FP:  return "uint_to_fp";
5665  case ISD::FP_TO_SINT:  return "fp_to_sint";
5666  case ISD::FP_TO_UINT:  return "fp_to_uint";
5667  case ISD::BIT_CONVERT: return "bit_convert";
5668  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5669  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5670
5671  case ISD::CONVERT_RNDSAT: {
5672    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5673    default: llvm_unreachable("Unknown cvt code!");
5674    case ISD::CVT_FF:  return "cvt_ff";
5675    case ISD::CVT_FS:  return "cvt_fs";
5676    case ISD::CVT_FU:  return "cvt_fu";
5677    case ISD::CVT_SF:  return "cvt_sf";
5678    case ISD::CVT_UF:  return "cvt_uf";
5679    case ISD::CVT_SS:  return "cvt_ss";
5680    case ISD::CVT_SU:  return "cvt_su";
5681    case ISD::CVT_US:  return "cvt_us";
5682    case ISD::CVT_UU:  return "cvt_uu";
5683    }
5684  }
5685
5686    // Control flow instructions
5687  case ISD::BR:      return "br";
5688  case ISD::BRIND:   return "brind";
5689  case ISD::BR_JT:   return "br_jt";
5690  case ISD::BRCOND:  return "brcond";
5691  case ISD::BR_CC:   return "br_cc";
5692  case ISD::CALLSEQ_START:  return "callseq_start";
5693  case ISD::CALLSEQ_END:    return "callseq_end";
5694
5695    // Other operators
5696  case ISD::LOAD:               return "load";
5697  case ISD::STORE:              return "store";
5698  case ISD::VAARG:              return "vaarg";
5699  case ISD::VACOPY:             return "vacopy";
5700  case ISD::VAEND:              return "vaend";
5701  case ISD::VASTART:            return "vastart";
5702  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5703  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5704  case ISD::BUILD_PAIR:         return "build_pair";
5705  case ISD::STACKSAVE:          return "stacksave";
5706  case ISD::STACKRESTORE:       return "stackrestore";
5707  case ISD::TRAP:               return "trap";
5708
5709  // Bit manipulation
5710  case ISD::BSWAP:   return "bswap";
5711  case ISD::CTPOP:   return "ctpop";
5712  case ISD::CTTZ:    return "cttz";
5713  case ISD::CTLZ:    return "ctlz";
5714
5715  // Trampolines
5716  case ISD::TRAMPOLINE: return "trampoline";
5717
5718  case ISD::CONDCODE:
5719    switch (cast<CondCodeSDNode>(this)->get()) {
5720    default: llvm_unreachable("Unknown setcc condition!");
5721    case ISD::SETOEQ:  return "setoeq";
5722    case ISD::SETOGT:  return "setogt";
5723    case ISD::SETOGE:  return "setoge";
5724    case ISD::SETOLT:  return "setolt";
5725    case ISD::SETOLE:  return "setole";
5726    case ISD::SETONE:  return "setone";
5727
5728    case ISD::SETO:    return "seto";
5729    case ISD::SETUO:   return "setuo";
5730    case ISD::SETUEQ:  return "setue";
5731    case ISD::SETUGT:  return "setugt";
5732    case ISD::SETUGE:  return "setuge";
5733    case ISD::SETULT:  return "setult";
5734    case ISD::SETULE:  return "setule";
5735    case ISD::SETUNE:  return "setune";
5736
5737    case ISD::SETEQ:   return "seteq";
5738    case ISD::SETGT:   return "setgt";
5739    case ISD::SETGE:   return "setge";
5740    case ISD::SETLT:   return "setlt";
5741    case ISD::SETLE:   return "setle";
5742    case ISD::SETNE:   return "setne";
5743    }
5744  }
5745}
5746
5747const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5748  switch (AM) {
5749  default:
5750    return "";
5751  case ISD::PRE_INC:
5752    return "<pre-inc>";
5753  case ISD::PRE_DEC:
5754    return "<pre-dec>";
5755  case ISD::POST_INC:
5756    return "<post-inc>";
5757  case ISD::POST_DEC:
5758    return "<post-dec>";
5759  }
5760}
5761
5762std::string ISD::ArgFlagsTy::getArgFlagsString() {
5763  std::string S = "< ";
5764
5765  if (isZExt())
5766    S += "zext ";
5767  if (isSExt())
5768    S += "sext ";
5769  if (isInReg())
5770    S += "inreg ";
5771  if (isSRet())
5772    S += "sret ";
5773  if (isByVal())
5774    S += "byval ";
5775  if (isNest())
5776    S += "nest ";
5777  if (getByValAlign())
5778    S += "byval-align:" + utostr(getByValAlign()) + " ";
5779  if (getOrigAlign())
5780    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5781  if (getByValSize())
5782    S += "byval-size:" + utostr(getByValSize()) + " ";
5783  return S + ">";
5784}
5785
5786void SDNode::dump() const { dump(0); }
5787void SDNode::dump(const SelectionDAG *G) const {
5788  print(dbgs(), G);
5789}
5790
5791void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5792  OS << (void*)this << ": ";
5793
5794  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5795    if (i) OS << ",";
5796    if (getValueType(i) == MVT::Other)
5797      OS << "ch";
5798    else
5799      OS << getValueType(i).getEVTString();
5800  }
5801  OS << " = " << getOperationName(G);
5802}
5803
5804void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5805  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5806    if (!MN->memoperands_empty()) {
5807      OS << "<";
5808      OS << "Mem:";
5809      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5810           e = MN->memoperands_end(); i != e; ++i) {
5811        OS << **i;
5812        if (next(i) != e)
5813          OS << " ";
5814      }
5815      OS << ">";
5816    }
5817  } else if (const ShuffleVectorSDNode *SVN =
5818               dyn_cast<ShuffleVectorSDNode>(this)) {
5819    OS << "<";
5820    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5821      int Idx = SVN->getMaskElt(i);
5822      if (i) OS << ",";
5823      if (Idx < 0)
5824        OS << "u";
5825      else
5826        OS << Idx;
5827    }
5828    OS << ">";
5829  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5830    OS << '<' << CSDN->getAPIntValue() << '>';
5831  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5832    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5833      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5834    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5835      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5836    else {
5837      OS << "<APFloat(";
5838      CSDN->getValueAPF().bitcastToAPInt().dump();
5839      OS << ")>";
5840    }
5841  } else if (const GlobalAddressSDNode *GADN =
5842             dyn_cast<GlobalAddressSDNode>(this)) {
5843    int64_t offset = GADN->getOffset();
5844    OS << '<';
5845    WriteAsOperand(OS, GADN->getGlobal());
5846    OS << '>';
5847    if (offset > 0)
5848      OS << " + " << offset;
5849    else
5850      OS << " " << offset;
5851    if (unsigned int TF = GADN->getTargetFlags())
5852      OS << " [TF=" << TF << ']';
5853  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5854    OS << "<" << FIDN->getIndex() << ">";
5855  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5856    OS << "<" << JTDN->getIndex() << ">";
5857    if (unsigned int TF = JTDN->getTargetFlags())
5858      OS << " [TF=" << TF << ']';
5859  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5860    int offset = CP->getOffset();
5861    if (CP->isMachineConstantPoolEntry())
5862      OS << "<" << *CP->getMachineCPVal() << ">";
5863    else
5864      OS << "<" << *CP->getConstVal() << ">";
5865    if (offset > 0)
5866      OS << " + " << offset;
5867    else
5868      OS << " " << offset;
5869    if (unsigned int TF = CP->getTargetFlags())
5870      OS << " [TF=" << TF << ']';
5871  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5872    OS << "<";
5873    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5874    if (LBB)
5875      OS << LBB->getName() << " ";
5876    OS << (const void*)BBDN->getBasicBlock() << ">";
5877  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5878    if (G && R->getReg() &&
5879        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5880      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5881    } else {
5882      OS << " %reg" << R->getReg();
5883    }
5884  } else if (const ExternalSymbolSDNode *ES =
5885             dyn_cast<ExternalSymbolSDNode>(this)) {
5886    OS << "'" << ES->getSymbol() << "'";
5887    if (unsigned int TF = ES->getTargetFlags())
5888      OS << " [TF=" << TF << ']';
5889  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5890    if (M->getValue())
5891      OS << "<" << M->getValue() << ">";
5892    else
5893      OS << "<null>";
5894  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5895    OS << ":" << N->getVT().getEVTString();
5896  }
5897  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5898    OS << "<" << *LD->getMemOperand();
5899
5900    bool doExt = true;
5901    switch (LD->getExtensionType()) {
5902    default: doExt = false; break;
5903    case ISD::EXTLOAD: OS << ", anyext"; break;
5904    case ISD::SEXTLOAD: OS << ", sext"; break;
5905    case ISD::ZEXTLOAD: OS << ", zext"; break;
5906    }
5907    if (doExt)
5908      OS << " from " << LD->getMemoryVT().getEVTString();
5909
5910    const char *AM = getIndexedModeName(LD->getAddressingMode());
5911    if (*AM)
5912      OS << ", " << AM;
5913
5914    OS << ">";
5915  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5916    OS << "<" << *ST->getMemOperand();
5917
5918    if (ST->isTruncatingStore())
5919      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5920
5921    const char *AM = getIndexedModeName(ST->getAddressingMode());
5922    if (*AM)
5923      OS << ", " << AM;
5924
5925    OS << ">";
5926  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5927    OS << "<" << *M->getMemOperand() << ">";
5928  } else if (const BlockAddressSDNode *BA =
5929               dyn_cast<BlockAddressSDNode>(this)) {
5930    OS << "<";
5931    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5932    OS << ", ";
5933    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5934    OS << ">";
5935    if (unsigned int TF = BA->getTargetFlags())
5936      OS << " [TF=" << TF << ']';
5937  }
5938
5939  if (G)
5940    if (unsigned Order = G->GetOrdering(this))
5941      OS << " [ORD=" << Order << ']';
5942
5943  if (getNodeId() != -1)
5944    OS << " [ID=" << getNodeId() << ']';
5945}
5946
5947void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5948  print_types(OS, G);
5949  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5950    if (i) OS << ", "; else OS << " ";
5951    OS << (void*)getOperand(i).getNode();
5952    if (unsigned RN = getOperand(i).getResNo())
5953      OS << ":" << RN;
5954  }
5955  print_details(OS, G);
5956}
5957
5958static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5959                                  const SelectionDAG *G, unsigned depth,
5960                                  unsigned indent)
5961{
5962  if (depth == 0)
5963    return;
5964
5965  OS.indent(indent);
5966
5967  N->print(OS, G);
5968
5969  if (depth < 1)
5970    return;
5971
5972  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5973    OS << '\n';
5974    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
5975  }
5976}
5977
5978void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
5979                            unsigned depth) const {
5980  printrWithDepthHelper(OS, this, G, depth, 0);
5981}
5982
5983void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
5984  // Don't print impossibly deep things.
5985  printrWithDepth(OS, G, 100);
5986}
5987
5988void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
5989  printrWithDepth(dbgs(), G, depth);
5990}
5991
5992void SDNode::dumprFull(const SelectionDAG *G) const {
5993  // Don't print impossibly deep things.
5994  dumprWithDepth(G, 100);
5995}
5996
5997static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5998  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5999    if (N->getOperand(i).getNode()->hasOneUse())
6000      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6001    else
6002      dbgs() << "\n" << std::string(indent+2, ' ')
6003           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6004
6005
6006  dbgs() << "\n";
6007  dbgs().indent(indent);
6008  N->dump(G);
6009}
6010
6011SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6012  assert(N->getNumValues() == 1 &&
6013         "Can't unroll a vector with multiple results!");
6014
6015  EVT VT = N->getValueType(0);
6016  unsigned NE = VT.getVectorNumElements();
6017  EVT EltVT = VT.getVectorElementType();
6018  DebugLoc dl = N->getDebugLoc();
6019
6020  SmallVector<SDValue, 8> Scalars;
6021  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6022
6023  // If ResNE is 0, fully unroll the vector op.
6024  if (ResNE == 0)
6025    ResNE = NE;
6026  else if (NE > ResNE)
6027    NE = ResNE;
6028
6029  unsigned i;
6030  for (i= 0; i != NE; ++i) {
6031    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6032      SDValue Operand = N->getOperand(j);
6033      EVT OperandVT = Operand.getValueType();
6034      if (OperandVT.isVector()) {
6035        // A vector operand; extract a single element.
6036        EVT OperandEltVT = OperandVT.getVectorElementType();
6037        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6038                              OperandEltVT,
6039                              Operand,
6040                              getConstant(i, MVT::i32));
6041      } else {
6042        // A scalar operand; just use it as is.
6043        Operands[j] = Operand;
6044      }
6045    }
6046
6047    switch (N->getOpcode()) {
6048    default:
6049      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6050                                &Operands[0], Operands.size()));
6051      break;
6052    case ISD::SHL:
6053    case ISD::SRA:
6054    case ISD::SRL:
6055    case ISD::ROTL:
6056    case ISD::ROTR:
6057      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6058                                getShiftAmountOperand(Operands[1])));
6059      break;
6060    case ISD::SIGN_EXTEND_INREG:
6061    case ISD::FP_ROUND_INREG: {
6062      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6063      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6064                                Operands[0],
6065                                getValueType(ExtVT)));
6066    }
6067    }
6068  }
6069
6070  for (; i < ResNE; ++i)
6071    Scalars.push_back(getUNDEF(EltVT));
6072
6073  return getNode(ISD::BUILD_VECTOR, dl,
6074                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6075                 &Scalars[0], Scalars.size());
6076}
6077
6078
6079/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6080/// location that is 'Dist' units away from the location that the 'Base' load
6081/// is loading from.
6082bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6083                                     unsigned Bytes, int Dist) const {
6084  if (LD->getChain() != Base->getChain())
6085    return false;
6086  EVT VT = LD->getValueType(0);
6087  if (VT.getSizeInBits() / 8 != Bytes)
6088    return false;
6089
6090  SDValue Loc = LD->getOperand(1);
6091  SDValue BaseLoc = Base->getOperand(1);
6092  if (Loc.getOpcode() == ISD::FrameIndex) {
6093    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6094      return false;
6095    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6096    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6097    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6098    int FS  = MFI->getObjectSize(FI);
6099    int BFS = MFI->getObjectSize(BFI);
6100    if (FS != BFS || FS != (int)Bytes) return false;
6101    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6102  }
6103  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6104    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6105    if (V && (V->getSExtValue() == Dist*Bytes))
6106      return true;
6107  }
6108
6109  GlobalValue *GV1 = NULL;
6110  GlobalValue *GV2 = NULL;
6111  int64_t Offset1 = 0;
6112  int64_t Offset2 = 0;
6113  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6114  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6115  if (isGA1 && isGA2 && GV1 == GV2)
6116    return Offset1 == (Offset2 + Dist*Bytes);
6117  return false;
6118}
6119
6120
6121/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6122/// it cannot be inferred.
6123unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6124  // If this is a GlobalAddress + cst, return the alignment.
6125  GlobalValue *GV;
6126  int64_t GVOffset = 0;
6127  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
6128    return MinAlign(GV->getAlignment(), GVOffset);
6129
6130  // If this is a direct reference to a stack slot, use information about the
6131  // stack slot's alignment.
6132  int FrameIdx = 1 << 31;
6133  int64_t FrameOffset = 0;
6134  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6135    FrameIdx = FI->getIndex();
6136  } else if (Ptr.getOpcode() == ISD::ADD &&
6137             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6138             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6139    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6140    FrameOffset = Ptr.getConstantOperandVal(1);
6141  }
6142
6143  if (FrameIdx != (1 << 31)) {
6144    // FIXME: Handle FI+CST.
6145    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6146    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6147                                    FrameOffset);
6148    if (MFI.isFixedObjectIndex(FrameIdx)) {
6149      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6150
6151      // The alignment of the frame index can be determined from its offset from
6152      // the incoming frame position.  If the frame object is at offset 32 and
6153      // the stack is guaranteed to be 16-byte aligned, then we know that the
6154      // object is 16-byte aligned.
6155      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6156      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6157
6158      // Finally, the frame object itself may have a known alignment.  Factor
6159      // the alignment + offset into a new alignment.  For example, if we know
6160      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6161      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6162      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6163      return std::max(Align, FIInfoAlign);
6164    }
6165    return FIInfoAlign;
6166  }
6167
6168  return 0;
6169}
6170
6171void SelectionDAG::dump() const {
6172  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6173
6174  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6175       I != E; ++I) {
6176    const SDNode *N = I;
6177    if (!N->hasOneUse() && N != getRoot().getNode())
6178      DumpNodes(N, 2, this);
6179  }
6180
6181  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6182
6183  dbgs() << "\n\n";
6184}
6185
6186void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6187  print_types(OS, G);
6188  print_details(OS, G);
6189}
6190
6191typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6192static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6193                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6194  if (!once.insert(N))          // If we've been here before, return now.
6195    return;
6196
6197  // Dump the current SDNode, but don't end the line yet.
6198  OS << std::string(indent, ' ');
6199  N->printr(OS, G);
6200
6201  // Having printed this SDNode, walk the children:
6202  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6203    const SDNode *child = N->getOperand(i).getNode();
6204
6205    if (i) OS << ",";
6206    OS << " ";
6207
6208    if (child->getNumOperands() == 0) {
6209      // This child has no grandchildren; print it inline right here.
6210      child->printr(OS, G);
6211      once.insert(child);
6212    } else {         // Just the address. FIXME: also print the child's opcode.
6213      OS << (void*)child;
6214      if (unsigned RN = N->getOperand(i).getResNo())
6215        OS << ":" << RN;
6216    }
6217  }
6218
6219  OS << "\n";
6220
6221  // Dump children that have grandchildren on their own line(s).
6222  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6223    const SDNode *child = N->getOperand(i).getNode();
6224    DumpNodesr(OS, child, indent+2, G, once);
6225  }
6226}
6227
6228void SDNode::dumpr() const {
6229  VisitedSDNodeSet once;
6230  DumpNodesr(dbgs(), this, 0, 0, once);
6231}
6232
6233void SDNode::dumpr(const SelectionDAG *G) const {
6234  VisitedSDNodeSet once;
6235  DumpNodesr(dbgs(), this, 0, G, once);
6236}
6237
6238
6239// getAddressSpace - Return the address space this GlobalAddress belongs to.
6240unsigned GlobalAddressSDNode::getAddressSpace() const {
6241  return getGlobal()->getType()->getAddressSpace();
6242}
6243
6244
6245const Type *ConstantPoolSDNode::getType() const {
6246  if (isMachineConstantPoolEntry())
6247    return Val.MachineCPVal->getType();
6248  return Val.ConstVal->getType();
6249}
6250
6251bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6252                                        APInt &SplatUndef,
6253                                        unsigned &SplatBitSize,
6254                                        bool &HasAnyUndefs,
6255                                        unsigned MinSplatBits,
6256                                        bool isBigEndian) {
6257  EVT VT = getValueType(0);
6258  assert(VT.isVector() && "Expected a vector type");
6259  unsigned sz = VT.getSizeInBits();
6260  if (MinSplatBits > sz)
6261    return false;
6262
6263  SplatValue = APInt(sz, 0);
6264  SplatUndef = APInt(sz, 0);
6265
6266  // Get the bits.  Bits with undefined values (when the corresponding element
6267  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6268  // in SplatValue.  If any of the values are not constant, give up and return
6269  // false.
6270  unsigned int nOps = getNumOperands();
6271  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6272  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6273
6274  for (unsigned j = 0; j < nOps; ++j) {
6275    unsigned i = isBigEndian ? nOps-1-j : j;
6276    SDValue OpVal = getOperand(i);
6277    unsigned BitPos = j * EltBitSize;
6278
6279    if (OpVal.getOpcode() == ISD::UNDEF)
6280      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6281    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6282      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6283                     zextOrTrunc(sz) << BitPos);
6284    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6285      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6286     else
6287      return false;
6288  }
6289
6290  // The build_vector is all constants or undefs.  Find the smallest element
6291  // size that splats the vector.
6292
6293  HasAnyUndefs = (SplatUndef != 0);
6294  while (sz > 8) {
6295
6296    unsigned HalfSize = sz / 2;
6297    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6298    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6299    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6300    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6301
6302    // If the two halves do not match (ignoring undef bits), stop here.
6303    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6304        MinSplatBits > HalfSize)
6305      break;
6306
6307    SplatValue = HighValue | LowValue;
6308    SplatUndef = HighUndef & LowUndef;
6309
6310    sz = HalfSize;
6311  }
6312
6313  SplatBitSize = sz;
6314  return true;
6315}
6316
6317bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6318  // Find the first non-undef value in the shuffle mask.
6319  unsigned i, e;
6320  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6321    /* search */;
6322
6323  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6324
6325  // Make sure all remaining elements are either undef or the same as the first
6326  // non-undef value.
6327  for (int Idx = Mask[i]; i != e; ++i)
6328    if (Mask[i] >= 0 && Mask[i] != Idx)
6329      return false;
6330  return true;
6331}
6332
6333#ifdef XDEBUG
6334static void checkForCyclesHelper(const SDNode *N,
6335                                 SmallPtrSet<const SDNode*, 32> &Visited,
6336                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6337  // If this node has already been checked, don't check it again.
6338  if (Checked.count(N))
6339    return;
6340
6341  // If a node has already been visited on this depth-first walk, reject it as
6342  // a cycle.
6343  if (!Visited.insert(N)) {
6344    dbgs() << "Offending node:\n";
6345    N->dumprFull();
6346    errs() << "Detected cycle in SelectionDAG\n";
6347    abort();
6348  }
6349
6350  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6351    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6352
6353  Checked.insert(N);
6354  Visited.erase(N);
6355}
6356#endif
6357
6358void llvm::checkForCycles(const llvm::SDNode *N) {
6359#ifdef XDEBUG
6360  assert(N && "Checking nonexistant SDNode");
6361  SmallPtrSet<const SDNode*, 32> visited;
6362  SmallPtrSet<const SDNode*, 32> checked;
6363  checkForCyclesHelper(N, visited, checked);
6364#endif
6365}
6366
6367void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6368  checkForCycles(DAG->getRoot().getNode());
6369}
6370