SelectionDAG.cpp revision a90c8e690bd9103bb4a5d943f98279a55bf42ad1
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getVal());
346    ID.AddInteger(Ops->getSDValue().getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getAddressingMode());
433    ID.AddInteger(LD->getExtensionType());
434    ID.AddInteger(LD->getMemoryVT().getRawBits());
435    ID.AddInteger(LD->getRawFlags());
436    break;
437  }
438  case ISD::STORE: {
439    const StoreSDNode *ST = cast<StoreSDNode>(N);
440    ID.AddInteger(ST->getAddressingMode());
441    ID.AddInteger(ST->isTruncatingStore());
442    ID.AddInteger(ST->getMemoryVT().getRawBits());
443    ID.AddInteger(ST->getRawFlags());
444    break;
445  }
446  case ISD::ATOMIC_CMP_SWAP:
447  case ISD::ATOMIC_SWAP:
448  case ISD::ATOMIC_LOAD_ADD:
449  case ISD::ATOMIC_LOAD_SUB:
450  case ISD::ATOMIC_LOAD_AND:
451  case ISD::ATOMIC_LOAD_OR:
452  case ISD::ATOMIC_LOAD_XOR:
453  case ISD::ATOMIC_LOAD_NAND:
454  case ISD::ATOMIC_LOAD_MIN:
455  case ISD::ATOMIC_LOAD_MAX:
456  case ISD::ATOMIC_LOAD_UMIN:
457  case ISD::ATOMIC_LOAD_UMAX: {
458    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
459    ID.AddInteger(AT->getRawFlags());
460    break;
461  }
462  } // end switch (N->getOpcode())
463}
464
465/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
466/// data.
467static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
468  AddNodeIDOpcode(ID, N->getOpcode());
469  // Add the return value info.
470  AddNodeIDValueTypes(ID, N->getVTList());
471  // Add the operand info.
472  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
473
474  // Handle SDNode leafs with special info.
475  AddNodeIDCustom(ID, N);
476}
477
478/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
479/// the CSE map that carries both alignment and volatility information.
480///
481static inline unsigned
482encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
483  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
484}
485
486//===----------------------------------------------------------------------===//
487//                              SelectionDAG Class
488//===----------------------------------------------------------------------===//
489
490/// doNotCSE - Return true if CSE should not be performed for this node.
491static bool doNotCSE(SDNode *N) {
492  if (N->getValueType(0) == MVT::Flag)
493    return true; // Never CSE anything that produces a flag.
494
495  switch (N->getOpcode()) {
496  default: break;
497  case ISD::HANDLENODE:
498  case ISD::DBG_LABEL:
499  case ISD::DBG_STOPPOINT:
500  case ISD::EH_LABEL:
501  case ISD::DECLARE:
502    return true;   // Never CSE these nodes.
503  }
504
505  // Check that remaining values produced are not flags.
506  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
507    if (N->getValueType(i) == MVT::Flag)
508      return true; // Never CSE anything that produces a flag.
509
510  return false;
511}
512
513/// RemoveDeadNodes - This method deletes all unreachable nodes in the
514/// SelectionDAG.
515void SelectionDAG::RemoveDeadNodes() {
516  // Create a dummy node (which is not added to allnodes), that adds a reference
517  // to the root node, preventing it from being deleted.
518  HandleSDNode Dummy(getRoot());
519
520  SmallVector<SDNode*, 128> DeadNodes;
521
522  // Add all obviously-dead nodes to the DeadNodes worklist.
523  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
524    if (I->use_empty())
525      DeadNodes.push_back(I);
526
527  RemoveDeadNodes(DeadNodes);
528
529  // If the root changed (e.g. it was a dead load, update the root).
530  setRoot(Dummy.getValue());
531}
532
533/// RemoveDeadNodes - This method deletes the unreachable nodes in the
534/// given list, and any nodes that become unreachable as a result.
535void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
536                                   DAGUpdateListener *UpdateListener) {
537
538  // Process the worklist, deleting the nodes and adding their uses to the
539  // worklist.
540  while (!DeadNodes.empty()) {
541    SDNode *N = DeadNodes.back();
542    DeadNodes.pop_back();
543
544    if (UpdateListener)
545      UpdateListener->NodeDeleted(N, 0);
546
547    // Take the node out of the appropriate CSE map.
548    RemoveNodeFromCSEMaps(N);
549
550    // Next, brutally remove the operand list.  This is safe to do, as there are
551    // no cycles in the graph.
552    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
553      SDNode *Operand = I->getVal();
554      Operand->removeUser(std::distance(N->op_begin(), I), N);
555
556      // Now that we removed this operand, see if there are no uses of it left.
557      if (Operand->use_empty())
558        DeadNodes.push_back(Operand);
559    }
560
561    DeallocateNode(N);
562  }
563}
564
565void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
566  SmallVector<SDNode*, 16> DeadNodes(1, N);
567  RemoveDeadNodes(DeadNodes, UpdateListener);
568}
569
570void SelectionDAG::DeleteNode(SDNode *N) {
571  assert(N->use_empty() && "Cannot delete a node that is not dead!");
572
573  // First take this out of the appropriate CSE map.
574  RemoveNodeFromCSEMaps(N);
575
576  // Finally, remove uses due to operands of this node, remove from the
577  // AllNodes list, and delete the node.
578  DeleteNodeNotInCSEMaps(N);
579}
580
581void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
582  assert(N != AllNodes.begin());
583
584  // Drop all of the operands and decrement used node's use counts.
585  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
586    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
587
588  DeallocateNode(N);
589}
590
591void SelectionDAG::DeallocateNode(SDNode *N) {
592  if (N->OperandsNeedDelete)
593    delete[] N->OperandList;
594
595  // Set the opcode to DELETED_NODE to help catch bugs when node
596  // memory is reallocated.
597  N->NodeType = ISD::DELETED_NODE;
598
599  NodeAllocator.Deallocate(AllNodes.remove(N));
600}
601
602/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
603/// correspond to it.  This is useful when we're about to delete or repurpose
604/// the node.  We don't want future request for structurally identical nodes
605/// to return N anymore.
606bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
607  bool Erased = false;
608  switch (N->getOpcode()) {
609  case ISD::EntryToken:
610    assert(0 && "EntryToken should not be in CSEMaps!");
611    return false;
612  case ISD::HANDLENODE: return false;  // noop.
613  case ISD::CONDCODE:
614    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
615           "Cond code doesn't exist!");
616    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
617    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
618    break;
619  case ISD::ExternalSymbol:
620    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
621    break;
622  case ISD::TargetExternalSymbol:
623    Erased =
624      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::VALUETYPE: {
627    MVT VT = cast<VTSDNode>(N)->getVT();
628    if (VT.isExtended()) {
629      Erased = ExtendedValueTypeNodes.erase(VT);
630    } else {
631      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
632      ValueTypeNodes[VT.getSimpleVT()] = 0;
633    }
634    break;
635  }
636  default:
637    // Remove it from the CSE Map.
638    Erased = CSEMap.RemoveNode(N);
639    break;
640  }
641#ifndef NDEBUG
642  // Verify that the node was actually in one of the CSE maps, unless it has a
643  // flag result (which cannot be CSE'd) or is one of the special cases that are
644  // not subject to CSE.
645  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
646      !N->isMachineOpcode() && !doNotCSE(N)) {
647    N->dump(this);
648    cerr << "\n";
649    assert(0 && "Node is not in map!");
650  }
651#endif
652  return Erased;
653}
654
655/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
656/// has been taken out and modified in some way.  If the specified node already
657/// exists in the CSE maps, do not modify the maps, but return the existing node
658/// instead.  If it doesn't exist, add it and return null.
659///
660SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
661  assert(N->getNumOperands() && "This is a leaf node!");
662
663  if (doNotCSE(N))
664    return 0;
665
666  SDNode *New = CSEMap.GetOrInsertNode(N);
667  if (New != N) return New;  // Node already existed.
668  return 0;
669}
670
671/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
672/// were replaced with those specified.  If this node is never memoized,
673/// return null, otherwise return a pointer to the slot it would take.  If a
674/// node already exists with these operands, the slot will be non-null.
675SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
676                                           void *&InsertPos) {
677  if (doNotCSE(N))
678    return 0;
679
680  SDValue Ops[] = { Op };
681  FoldingSetNodeID ID;
682  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
683  AddNodeIDCustom(ID, N);
684  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
685}
686
687/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
688/// were replaced with those specified.  If this node is never memoized,
689/// return null, otherwise return a pointer to the slot it would take.  If a
690/// node already exists with these operands, the slot will be non-null.
691SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
692                                           SDValue Op1, SDValue Op2,
693                                           void *&InsertPos) {
694  if (doNotCSE(N))
695    return 0;
696
697  SDValue Ops[] = { Op1, Op2 };
698  FoldingSetNodeID ID;
699  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
700  AddNodeIDCustom(ID, N);
701  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
702}
703
704
705/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
706/// were replaced with those specified.  If this node is never memoized,
707/// return null, otherwise return a pointer to the slot it would take.  If a
708/// node already exists with these operands, the slot will be non-null.
709SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
710                                           const SDValue *Ops,unsigned NumOps,
711                                           void *&InsertPos) {
712  if (doNotCSE(N))
713    return 0;
714
715  FoldingSetNodeID ID;
716  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
717  AddNodeIDCustom(ID, N);
718  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
719}
720
721/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
722void SelectionDAG::VerifyNode(SDNode *N) {
723  switch (N->getOpcode()) {
724  default:
725    break;
726  case ISD::BUILD_PAIR: {
727    MVT VT = N->getValueType(0);
728    assert(N->getNumValues() == 1 && "Too many results!");
729    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
730           "Wrong return type!");
731    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
732    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
733           "Mismatched operand types!");
734    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
735           "Wrong operand type!");
736    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
737           "Wrong return type size");
738    break;
739  }
740  case ISD::BUILD_VECTOR: {
741    assert(N->getNumValues() == 1 && "Too many results!");
742    assert(N->getValueType(0).isVector() && "Wrong return type!");
743    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
744           "Wrong number of operands!");
745    // FIXME: Change vector_shuffle to a variadic node with mask elements being
746    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
747    // operand, and it is not always possible to legalize it.  Turning off the
748    // following checks at least makes it possible to legalize most of the time.
749//    MVT EltVT = N->getValueType(0).getVectorElementType();
750//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
751//      assert(I->getSDValue().getValueType() == EltVT &&
752//             "Wrong operand type!");
753    break;
754  }
755  }
756}
757
758/// getMVTAlignment - Compute the default alignment value for the
759/// given type.
760///
761unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
762  const Type *Ty = VT == MVT::iPTR ?
763                   PointerType::get(Type::Int8Ty, 0) :
764                   VT.getTypeForMVT();
765
766  return TLI.getTargetData()->getABITypeAlignment(Ty);
767}
768
769SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
770  : TLI(tli), FLI(fli),
771    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
772    Root(getEntryNode()) {
773  AllNodes.push_back(&EntryNode);
774}
775
776void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
777                        DwarfWriter *dw) {
778  MF = &mf;
779  MMI = mmi;
780  DW = dw;
781}
782
783SelectionDAG::~SelectionDAG() {
784  allnodes_clear();
785}
786
787void SelectionDAG::allnodes_clear() {
788  assert(&*AllNodes.begin() == &EntryNode);
789  AllNodes.remove(AllNodes.begin());
790  while (!AllNodes.empty())
791    DeallocateNode(AllNodes.begin());
792}
793
794void SelectionDAG::clear() {
795  allnodes_clear();
796  OperandAllocator.Reset();
797  CSEMap.clear();
798
799  ExtendedValueTypeNodes.clear();
800  ExternalSymbols.clear();
801  TargetExternalSymbols.clear();
802  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
803            static_cast<CondCodeSDNode*>(0));
804  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
805            static_cast<SDNode*>(0));
806
807  EntryNode.Uses = 0;
808  AllNodes.push_back(&EntryNode);
809  Root = getEntryNode();
810}
811
812SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
813  if (Op.getValueType() == VT) return Op;
814  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
815                                   VT.getSizeInBits());
816  return getNode(ISD::AND, Op.getValueType(), Op,
817                 getConstant(Imm, Op.getValueType()));
818}
819
820/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
821///
822SDValue SelectionDAG::getNOT(SDValue Val, MVT VT) {
823  SDValue NegOne;
824  if (VT.isVector()) {
825    MVT EltVT = VT.getVectorElementType();
826    SDValue NegOneElt = getConstant(EltVT.getIntegerVTBitMask(), EltVT);
827    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
828    NegOne = getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0], NegOnes.size());
829  } else
830    NegOne = getConstant(VT.getIntegerVTBitMask(), VT);
831
832  return getNode(ISD::XOR, VT, Val, NegOne);
833}
834
835SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
836  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
837  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
838}
839
840SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
841  return getConstant(*ConstantInt::get(Val), VT, isT);
842}
843
844SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
845  assert(VT.isInteger() && "Cannot create FP integer constant!");
846
847  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
848  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
849         "APInt size does not match type size!");
850
851  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
852  FoldingSetNodeID ID;
853  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
854  ID.AddPointer(&Val);
855  void *IP = 0;
856  SDNode *N = NULL;
857  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
858    if (!VT.isVector())
859      return SDValue(N, 0);
860  if (!N) {
861    N = NodeAllocator.Allocate<ConstantSDNode>();
862    new (N) ConstantSDNode(isT, &Val, EltVT);
863    CSEMap.InsertNode(N, IP);
864    AllNodes.push_back(N);
865  }
866
867  SDValue Result(N, 0);
868  if (VT.isVector()) {
869    SmallVector<SDValue, 8> Ops;
870    Ops.assign(VT.getVectorNumElements(), Result);
871    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
872  }
873  return Result;
874}
875
876SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
877  return getConstant(Val, TLI.getPointerTy(), isTarget);
878}
879
880
881SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
882  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
883}
884
885SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
886  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
887
888  MVT EltVT =
889    VT.isVector() ? VT.getVectorElementType() : VT;
890
891  // Do the map lookup using the actual bit pattern for the floating point
892  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
893  // we don't have issues with SNANs.
894  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
895  FoldingSetNodeID ID;
896  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
897  ID.AddPointer(&V);
898  void *IP = 0;
899  SDNode *N = NULL;
900  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
901    if (!VT.isVector())
902      return SDValue(N, 0);
903  if (!N) {
904    N = NodeAllocator.Allocate<ConstantFPSDNode>();
905    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
906    CSEMap.InsertNode(N, IP);
907    AllNodes.push_back(N);
908  }
909
910  SDValue Result(N, 0);
911  if (VT.isVector()) {
912    SmallVector<SDValue, 8> Ops;
913    Ops.assign(VT.getVectorNumElements(), Result);
914    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
915  }
916  return Result;
917}
918
919SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
920  MVT EltVT =
921    VT.isVector() ? VT.getVectorElementType() : VT;
922  if (EltVT==MVT::f32)
923    return getConstantFP(APFloat((float)Val), VT, isTarget);
924  else
925    return getConstantFP(APFloat(Val), VT, isTarget);
926}
927
928SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
929                                       MVT VT, int64_t Offset,
930                                       bool isTargetGA) {
931  unsigned Opc;
932
933  // Truncate (with sign-extension) the offset value to the pointer size.
934  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
935  if (BitWidth < 64)
936    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
937
938  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
939  if (!GVar) {
940    // If GV is an alias then use the aliasee for determining thread-localness.
941    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
942      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
943  }
944
945  if (GVar && GVar->isThreadLocal())
946    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
947  else
948    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
949
950  FoldingSetNodeID ID;
951  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
952  ID.AddPointer(GV);
953  ID.AddInteger(Offset);
954  void *IP = 0;
955  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
956   return SDValue(E, 0);
957  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
958  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
959  CSEMap.InsertNode(N, IP);
960  AllNodes.push_back(N);
961  return SDValue(N, 0);
962}
963
964SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
965  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
966  FoldingSetNodeID ID;
967  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
968  ID.AddInteger(FI);
969  void *IP = 0;
970  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
971    return SDValue(E, 0);
972  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
973  new (N) FrameIndexSDNode(FI, VT, isTarget);
974  CSEMap.InsertNode(N, IP);
975  AllNodes.push_back(N);
976  return SDValue(N, 0);
977}
978
979SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
980  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
981  FoldingSetNodeID ID;
982  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
983  ID.AddInteger(JTI);
984  void *IP = 0;
985  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
986    return SDValue(E, 0);
987  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
988  new (N) JumpTableSDNode(JTI, VT, isTarget);
989  CSEMap.InsertNode(N, IP);
990  AllNodes.push_back(N);
991  return SDValue(N, 0);
992}
993
994SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
995                                      unsigned Alignment, int Offset,
996                                      bool isTarget) {
997  if (Alignment == 0)
998    Alignment =
999      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1000  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1001  FoldingSetNodeID ID;
1002  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1003  ID.AddInteger(Alignment);
1004  ID.AddInteger(Offset);
1005  ID.AddPointer(C);
1006  void *IP = 0;
1007  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1008    return SDValue(E, 0);
1009  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1010  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDValue(N, 0);
1014}
1015
1016
1017SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1018                                      unsigned Alignment, int Offset,
1019                                      bool isTarget) {
1020  if (Alignment == 0)
1021    Alignment =
1022      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1023  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1024  FoldingSetNodeID ID;
1025  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1026  ID.AddInteger(Alignment);
1027  ID.AddInteger(Offset);
1028  C->AddSelectionDAGCSEId(ID);
1029  void *IP = 0;
1030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1031    return SDValue(E, 0);
1032  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1033  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1034  CSEMap.InsertNode(N, IP);
1035  AllNodes.push_back(N);
1036  return SDValue(N, 0);
1037}
1038
1039
1040SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1041  FoldingSetNodeID ID;
1042  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1043  ID.AddPointer(MBB);
1044  void *IP = 0;
1045  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1046    return SDValue(E, 0);
1047  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1048  new (N) BasicBlockSDNode(MBB);
1049  CSEMap.InsertNode(N, IP);
1050  AllNodes.push_back(N);
1051  return SDValue(N, 0);
1052}
1053
1054SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1055  FoldingSetNodeID ID;
1056  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1057  ID.AddInteger(Flags.getRawBits());
1058  void *IP = 0;
1059  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1060    return SDValue(E, 0);
1061  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1062  new (N) ARG_FLAGSSDNode(Flags);
1063  CSEMap.InsertNode(N, IP);
1064  AllNodes.push_back(N);
1065  return SDValue(N, 0);
1066}
1067
1068SDValue SelectionDAG::getValueType(MVT VT) {
1069  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1070    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1071
1072  SDNode *&N = VT.isExtended() ?
1073    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1074
1075  if (N) return SDValue(N, 0);
1076  N = NodeAllocator.Allocate<VTSDNode>();
1077  new (N) VTSDNode(VT);
1078  AllNodes.push_back(N);
1079  return SDValue(N, 0);
1080}
1081
1082SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1083  SDNode *&N = ExternalSymbols[Sym];
1084  if (N) return SDValue(N, 0);
1085  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1086  new (N) ExternalSymbolSDNode(false, Sym, VT);
1087  AllNodes.push_back(N);
1088  return SDValue(N, 0);
1089}
1090
1091SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1092  SDNode *&N = TargetExternalSymbols[Sym];
1093  if (N) return SDValue(N, 0);
1094  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1095  new (N) ExternalSymbolSDNode(true, Sym, VT);
1096  AllNodes.push_back(N);
1097  return SDValue(N, 0);
1098}
1099
1100SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1101  if ((unsigned)Cond >= CondCodeNodes.size())
1102    CondCodeNodes.resize(Cond+1);
1103
1104  if (CondCodeNodes[Cond] == 0) {
1105    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1106    new (N) CondCodeSDNode(Cond);
1107    CondCodeNodes[Cond] = N;
1108    AllNodes.push_back(N);
1109  }
1110  return SDValue(CondCodeNodes[Cond], 0);
1111}
1112
1113SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1114                                       SDValue STy, SDValue Rnd, SDValue Sat,
1115                                       ISD::CvtCode Code) {
1116  // If the src and dest types are the same, no conversion is necessary.
1117  if (DTy == STy)
1118    return Val;
1119
1120  FoldingSetNodeID ID;
1121  void* IP = 0;
1122  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1123    return SDValue(E, 0);
1124  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1125  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1126  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1127  CSEMap.InsertNode(N, IP);
1128  AllNodes.push_back(N);
1129  return SDValue(N, 0);
1130}
1131
1132SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1133  FoldingSetNodeID ID;
1134  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1135  ID.AddInteger(RegNo);
1136  void *IP = 0;
1137  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1138    return SDValue(E, 0);
1139  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1140  new (N) RegisterSDNode(RegNo, VT);
1141  CSEMap.InsertNode(N, IP);
1142  AllNodes.push_back(N);
1143  return SDValue(N, 0);
1144}
1145
1146SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1147                                      unsigned Line, unsigned Col,
1148                                      Value *CU) {
1149  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1150  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1151  AllNodes.push_back(N);
1152  return SDValue(N, 0);
1153}
1154
1155SDValue SelectionDAG::getLabel(unsigned Opcode,
1156                               SDValue Root,
1157                               unsigned LabelID) {
1158  FoldingSetNodeID ID;
1159  SDValue Ops[] = { Root };
1160  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1161  ID.AddInteger(LabelID);
1162  void *IP = 0;
1163  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1164    return SDValue(E, 0);
1165  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1166  new (N) LabelSDNode(Opcode, Root, LabelID);
1167  CSEMap.InsertNode(N, IP);
1168  AllNodes.push_back(N);
1169  return SDValue(N, 0);
1170}
1171
1172SDValue SelectionDAG::getSrcValue(const Value *V) {
1173  assert((!V || isa<PointerType>(V->getType())) &&
1174         "SrcValue is not a pointer?");
1175
1176  FoldingSetNodeID ID;
1177  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1178  ID.AddPointer(V);
1179
1180  void *IP = 0;
1181  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1182    return SDValue(E, 0);
1183
1184  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1185  new (N) SrcValueSDNode(V);
1186  CSEMap.InsertNode(N, IP);
1187  AllNodes.push_back(N);
1188  return SDValue(N, 0);
1189}
1190
1191SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1192#ifndef NDEBUG
1193  const Value *v = MO.getValue();
1194  assert((!v || isa<PointerType>(v->getType())) &&
1195         "SrcValue is not a pointer?");
1196#endif
1197
1198  FoldingSetNodeID ID;
1199  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1200  MO.Profile(ID);
1201
1202  void *IP = 0;
1203  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1204    return SDValue(E, 0);
1205
1206  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1207  new (N) MemOperandSDNode(MO);
1208  CSEMap.InsertNode(N, IP);
1209  AllNodes.push_back(N);
1210  return SDValue(N, 0);
1211}
1212
1213/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1214/// specified value type.
1215SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1216  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1217  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1218  const Type *Ty = VT.getTypeForMVT();
1219  unsigned StackAlign =
1220  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1221
1222  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1223  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1224}
1225
1226/// CreateStackTemporary - Create a stack temporary suitable for holding
1227/// either of the specified value types.
1228SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1229  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1230                            VT2.getStoreSizeInBits())/8;
1231  const Type *Ty1 = VT1.getTypeForMVT();
1232  const Type *Ty2 = VT2.getTypeForMVT();
1233  const TargetData *TD = TLI.getTargetData();
1234  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1235                            TD->getPrefTypeAlignment(Ty2));
1236
1237  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1238  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1239  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1240}
1241
1242SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1243                                SDValue N2, ISD::CondCode Cond) {
1244  // These setcc operations always fold.
1245  switch (Cond) {
1246  default: break;
1247  case ISD::SETFALSE:
1248  case ISD::SETFALSE2: return getConstant(0, VT);
1249  case ISD::SETTRUE:
1250  case ISD::SETTRUE2:  return getConstant(1, VT);
1251
1252  case ISD::SETOEQ:
1253  case ISD::SETOGT:
1254  case ISD::SETOGE:
1255  case ISD::SETOLT:
1256  case ISD::SETOLE:
1257  case ISD::SETONE:
1258  case ISD::SETO:
1259  case ISD::SETUO:
1260  case ISD::SETUEQ:
1261  case ISD::SETUNE:
1262    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1263    break;
1264  }
1265
1266  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1267    const APInt &C2 = N2C->getAPIntValue();
1268    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1269      const APInt &C1 = N1C->getAPIntValue();
1270
1271      switch (Cond) {
1272      default: assert(0 && "Unknown integer setcc!");
1273      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1274      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1275      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1276      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1277      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1278      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1279      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1280      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1281      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1282      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1283      }
1284    }
1285  }
1286  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1287    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1288      // No compile time operations on this type yet.
1289      if (N1C->getValueType(0) == MVT::ppcf128)
1290        return SDValue();
1291
1292      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1293      switch (Cond) {
1294      default: break;
1295      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1296                          return getNode(ISD::UNDEF, VT);
1297                        // fall through
1298      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1299      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1300                          return getNode(ISD::UNDEF, VT);
1301                        // fall through
1302      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1303                                           R==APFloat::cmpLessThan, VT);
1304      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1305                          return getNode(ISD::UNDEF, VT);
1306                        // fall through
1307      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1308      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1309                          return getNode(ISD::UNDEF, VT);
1310                        // fall through
1311      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1312      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1313                          return getNode(ISD::UNDEF, VT);
1314                        // fall through
1315      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1316                                           R==APFloat::cmpEqual, VT);
1317      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1318                          return getNode(ISD::UNDEF, VT);
1319                        // fall through
1320      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1321                                           R==APFloat::cmpEqual, VT);
1322      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1323      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1324      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1325                                           R==APFloat::cmpEqual, VT);
1326      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1327      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1328                                           R==APFloat::cmpLessThan, VT);
1329      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1330                                           R==APFloat::cmpUnordered, VT);
1331      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1332      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1333      }
1334    } else {
1335      // Ensure that the constant occurs on the RHS.
1336      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1337    }
1338  }
1339
1340  // Could not fold it.
1341  return SDValue();
1342}
1343
1344/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1345/// use this predicate to simplify operations downstream.
1346bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1347  unsigned BitWidth = Op.getValueSizeInBits();
1348  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1349}
1350
1351/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1352/// this predicate to simplify operations downstream.  Mask is known to be zero
1353/// for bits that V cannot have.
1354bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1355                                     unsigned Depth) const {
1356  APInt KnownZero, KnownOne;
1357  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1358  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1359  return (KnownZero & Mask) == Mask;
1360}
1361
1362/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1363/// known to be either zero or one and return them in the KnownZero/KnownOne
1364/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1365/// processing.
1366void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1367                                     APInt &KnownZero, APInt &KnownOne,
1368                                     unsigned Depth) const {
1369  unsigned BitWidth = Mask.getBitWidth();
1370  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1371         "Mask size mismatches value type size!");
1372
1373  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1374  if (Depth == 6 || Mask == 0)
1375    return;  // Limit search depth.
1376
1377  APInt KnownZero2, KnownOne2;
1378
1379  switch (Op.getOpcode()) {
1380  case ISD::Constant:
1381    // We know all of the bits for a constant!
1382    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1383    KnownZero = ~KnownOne & Mask;
1384    return;
1385  case ISD::AND:
1386    // If either the LHS or the RHS are Zero, the result is zero.
1387    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1388    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1389                      KnownZero2, KnownOne2, Depth+1);
1390    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1391    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1392
1393    // Output known-1 bits are only known if set in both the LHS & RHS.
1394    KnownOne &= KnownOne2;
1395    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1396    KnownZero |= KnownZero2;
1397    return;
1398  case ISD::OR:
1399    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1400    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1401                      KnownZero2, KnownOne2, Depth+1);
1402    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1403    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1404
1405    // Output known-0 bits are only known if clear in both the LHS & RHS.
1406    KnownZero &= KnownZero2;
1407    // Output known-1 are known to be set if set in either the LHS | RHS.
1408    KnownOne |= KnownOne2;
1409    return;
1410  case ISD::XOR: {
1411    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1412    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1413    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1414    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1415
1416    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1417    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1418    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1419    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1420    KnownZero = KnownZeroOut;
1421    return;
1422  }
1423  case ISD::MUL: {
1424    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1425    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1426    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1427    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1428    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1429
1430    // If low bits are zero in either operand, output low known-0 bits.
1431    // Also compute a conserative estimate for high known-0 bits.
1432    // More trickiness is possible, but this is sufficient for the
1433    // interesting case of alignment computation.
1434    KnownOne.clear();
1435    unsigned TrailZ = KnownZero.countTrailingOnes() +
1436                      KnownZero2.countTrailingOnes();
1437    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1438                               KnownZero2.countLeadingOnes(),
1439                               BitWidth) - BitWidth;
1440
1441    TrailZ = std::min(TrailZ, BitWidth);
1442    LeadZ = std::min(LeadZ, BitWidth);
1443    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1444                APInt::getHighBitsSet(BitWidth, LeadZ);
1445    KnownZero &= Mask;
1446    return;
1447  }
1448  case ISD::UDIV: {
1449    // For the purposes of computing leading zeros we can conservatively
1450    // treat a udiv as a logical right shift by the power of 2 known to
1451    // be less than the denominator.
1452    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1453    ComputeMaskedBits(Op.getOperand(0),
1454                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1455    unsigned LeadZ = KnownZero2.countLeadingOnes();
1456
1457    KnownOne2.clear();
1458    KnownZero2.clear();
1459    ComputeMaskedBits(Op.getOperand(1),
1460                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1461    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1462    if (RHSUnknownLeadingOnes != BitWidth)
1463      LeadZ = std::min(BitWidth,
1464                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1465
1466    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1467    return;
1468  }
1469  case ISD::SELECT:
1470    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1471    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1472    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1473    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1474
1475    // Only known if known in both the LHS and RHS.
1476    KnownOne &= KnownOne2;
1477    KnownZero &= KnownZero2;
1478    return;
1479  case ISD::SELECT_CC:
1480    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1481    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1482    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1483    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1484
1485    // Only known if known in both the LHS and RHS.
1486    KnownOne &= KnownOne2;
1487    KnownZero &= KnownZero2;
1488    return;
1489  case ISD::SADDO:
1490  case ISD::UADDO:
1491  case ISD::SSUBO:
1492  case ISD::USUBO:
1493  case ISD::SMULO:
1494  case ISD::UMULO:
1495    if (Op.getResNo() != 1)
1496      return;
1497    // The boolean result conforms to getBooleanContents.  Fall through.
1498  case ISD::SETCC:
1499    // If we know the result of a setcc has the top bits zero, use this info.
1500    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1501        BitWidth > 1)
1502      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1503    return;
1504  case ISD::SHL:
1505    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1506    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1507      unsigned ShAmt = SA->getZExtValue();
1508
1509      // If the shift count is an invalid immediate, don't do anything.
1510      if (ShAmt >= BitWidth)
1511        return;
1512
1513      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1514                        KnownZero, KnownOne, Depth+1);
1515      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1516      KnownZero <<= ShAmt;
1517      KnownOne  <<= ShAmt;
1518      // low bits known zero.
1519      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1520    }
1521    return;
1522  case ISD::SRL:
1523    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1524    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1525      unsigned ShAmt = SA->getZExtValue();
1526
1527      // If the shift count is an invalid immediate, don't do anything.
1528      if (ShAmt >= BitWidth)
1529        return;
1530
1531      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1532                        KnownZero, KnownOne, Depth+1);
1533      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1534      KnownZero = KnownZero.lshr(ShAmt);
1535      KnownOne  = KnownOne.lshr(ShAmt);
1536
1537      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1538      KnownZero |= HighBits;  // High bits known zero.
1539    }
1540    return;
1541  case ISD::SRA:
1542    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1543      unsigned ShAmt = SA->getZExtValue();
1544
1545      // If the shift count is an invalid immediate, don't do anything.
1546      if (ShAmt >= BitWidth)
1547        return;
1548
1549      APInt InDemandedMask = (Mask << ShAmt);
1550      // If any of the demanded bits are produced by the sign extension, we also
1551      // demand the input sign bit.
1552      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1553      if (HighBits.getBoolValue())
1554        InDemandedMask |= APInt::getSignBit(BitWidth);
1555
1556      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1557                        Depth+1);
1558      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1559      KnownZero = KnownZero.lshr(ShAmt);
1560      KnownOne  = KnownOne.lshr(ShAmt);
1561
1562      // Handle the sign bits.
1563      APInt SignBit = APInt::getSignBit(BitWidth);
1564      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1565
1566      if (KnownZero.intersects(SignBit)) {
1567        KnownZero |= HighBits;  // New bits are known zero.
1568      } else if (KnownOne.intersects(SignBit)) {
1569        KnownOne  |= HighBits;  // New bits are known one.
1570      }
1571    }
1572    return;
1573  case ISD::SIGN_EXTEND_INREG: {
1574    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1575    unsigned EBits = EVT.getSizeInBits();
1576
1577    // Sign extension.  Compute the demanded bits in the result that are not
1578    // present in the input.
1579    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1580
1581    APInt InSignBit = APInt::getSignBit(EBits);
1582    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1583
1584    // If the sign extended bits are demanded, we know that the sign
1585    // bit is demanded.
1586    InSignBit.zext(BitWidth);
1587    if (NewBits.getBoolValue())
1588      InputDemandedBits |= InSignBit;
1589
1590    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1591                      KnownZero, KnownOne, Depth+1);
1592    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1593
1594    // If the sign bit of the input is known set or clear, then we know the
1595    // top bits of the result.
1596    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1597      KnownZero |= NewBits;
1598      KnownOne  &= ~NewBits;
1599    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1600      KnownOne  |= NewBits;
1601      KnownZero &= ~NewBits;
1602    } else {                              // Input sign bit unknown
1603      KnownZero &= ~NewBits;
1604      KnownOne  &= ~NewBits;
1605    }
1606    return;
1607  }
1608  case ISD::CTTZ:
1609  case ISD::CTLZ:
1610  case ISD::CTPOP: {
1611    unsigned LowBits = Log2_32(BitWidth)+1;
1612    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1613    KnownOne.clear();
1614    return;
1615  }
1616  case ISD::LOAD: {
1617    if (ISD::isZEXTLoad(Op.getNode())) {
1618      LoadSDNode *LD = cast<LoadSDNode>(Op);
1619      MVT VT = LD->getMemoryVT();
1620      unsigned MemBits = VT.getSizeInBits();
1621      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1622    }
1623    return;
1624  }
1625  case ISD::ZERO_EXTEND: {
1626    MVT InVT = Op.getOperand(0).getValueType();
1627    unsigned InBits = InVT.getSizeInBits();
1628    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1629    APInt InMask    = Mask;
1630    InMask.trunc(InBits);
1631    KnownZero.trunc(InBits);
1632    KnownOne.trunc(InBits);
1633    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1634    KnownZero.zext(BitWidth);
1635    KnownOne.zext(BitWidth);
1636    KnownZero |= NewBits;
1637    return;
1638  }
1639  case ISD::SIGN_EXTEND: {
1640    MVT InVT = Op.getOperand(0).getValueType();
1641    unsigned InBits = InVT.getSizeInBits();
1642    APInt InSignBit = APInt::getSignBit(InBits);
1643    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1644    APInt InMask = Mask;
1645    InMask.trunc(InBits);
1646
1647    // If any of the sign extended bits are demanded, we know that the sign
1648    // bit is demanded. Temporarily set this bit in the mask for our callee.
1649    if (NewBits.getBoolValue())
1650      InMask |= InSignBit;
1651
1652    KnownZero.trunc(InBits);
1653    KnownOne.trunc(InBits);
1654    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1655
1656    // Note if the sign bit is known to be zero or one.
1657    bool SignBitKnownZero = KnownZero.isNegative();
1658    bool SignBitKnownOne  = KnownOne.isNegative();
1659    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1660           "Sign bit can't be known to be both zero and one!");
1661
1662    // If the sign bit wasn't actually demanded by our caller, we don't
1663    // want it set in the KnownZero and KnownOne result values. Reset the
1664    // mask and reapply it to the result values.
1665    InMask = Mask;
1666    InMask.trunc(InBits);
1667    KnownZero &= InMask;
1668    KnownOne  &= InMask;
1669
1670    KnownZero.zext(BitWidth);
1671    KnownOne.zext(BitWidth);
1672
1673    // If the sign bit is known zero or one, the top bits match.
1674    if (SignBitKnownZero)
1675      KnownZero |= NewBits;
1676    else if (SignBitKnownOne)
1677      KnownOne  |= NewBits;
1678    return;
1679  }
1680  case ISD::ANY_EXTEND: {
1681    MVT InVT = Op.getOperand(0).getValueType();
1682    unsigned InBits = InVT.getSizeInBits();
1683    APInt InMask = Mask;
1684    InMask.trunc(InBits);
1685    KnownZero.trunc(InBits);
1686    KnownOne.trunc(InBits);
1687    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1688    KnownZero.zext(BitWidth);
1689    KnownOne.zext(BitWidth);
1690    return;
1691  }
1692  case ISD::TRUNCATE: {
1693    MVT InVT = Op.getOperand(0).getValueType();
1694    unsigned InBits = InVT.getSizeInBits();
1695    APInt InMask = Mask;
1696    InMask.zext(InBits);
1697    KnownZero.zext(InBits);
1698    KnownOne.zext(InBits);
1699    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1700    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1701    KnownZero.trunc(BitWidth);
1702    KnownOne.trunc(BitWidth);
1703    break;
1704  }
1705  case ISD::AssertZext: {
1706    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1707    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1708    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1709                      KnownOne, Depth+1);
1710    KnownZero |= (~InMask) & Mask;
1711    return;
1712  }
1713  case ISD::FGETSIGN:
1714    // All bits are zero except the low bit.
1715    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1716    return;
1717
1718  case ISD::SUB: {
1719    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1720      // We know that the top bits of C-X are clear if X contains less bits
1721      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1722      // positive if we can prove that X is >= 0 and < 16.
1723      if (CLHS->getAPIntValue().isNonNegative()) {
1724        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1725        // NLZ can't be BitWidth with no sign bit
1726        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1727        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1728                          Depth+1);
1729
1730        // If all of the MaskV bits are known to be zero, then we know the
1731        // output top bits are zero, because we now know that the output is
1732        // from [0-C].
1733        if ((KnownZero2 & MaskV) == MaskV) {
1734          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1735          // Top bits known zero.
1736          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1737        }
1738      }
1739    }
1740  }
1741  // fall through
1742  case ISD::ADD: {
1743    // Output known-0 bits are known if clear or set in both the low clear bits
1744    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1745    // low 3 bits clear.
1746    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1747    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1748    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1749    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1750
1751    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1752    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1753    KnownZeroOut = std::min(KnownZeroOut,
1754                            KnownZero2.countTrailingOnes());
1755
1756    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1757    return;
1758  }
1759  case ISD::SREM:
1760    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1761      const APInt &RA = Rem->getAPIntValue();
1762      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1763        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1764        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1765        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1766
1767        // If the sign bit of the first operand is zero, the sign bit of
1768        // the result is zero. If the first operand has no one bits below
1769        // the second operand's single 1 bit, its sign will be zero.
1770        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1771          KnownZero2 |= ~LowBits;
1772
1773        KnownZero |= KnownZero2 & Mask;
1774
1775        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1776      }
1777    }
1778    return;
1779  case ISD::UREM: {
1780    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1781      const APInt &RA = Rem->getAPIntValue();
1782      if (RA.isPowerOf2()) {
1783        APInt LowBits = (RA - 1);
1784        APInt Mask2 = LowBits & Mask;
1785        KnownZero |= ~LowBits & Mask;
1786        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1787        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1788        break;
1789      }
1790    }
1791
1792    // Since the result is less than or equal to either operand, any leading
1793    // zero bits in either operand must also exist in the result.
1794    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1795    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1796                      Depth+1);
1797    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1798                      Depth+1);
1799
1800    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1801                                KnownZero2.countLeadingOnes());
1802    KnownOne.clear();
1803    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1804    return;
1805  }
1806  default:
1807    // Allow the target to implement this method for its nodes.
1808    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1809  case ISD::INTRINSIC_WO_CHAIN:
1810  case ISD::INTRINSIC_W_CHAIN:
1811  case ISD::INTRINSIC_VOID:
1812      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1813    }
1814    return;
1815  }
1816}
1817
1818/// ComputeNumSignBits - Return the number of times the sign bit of the
1819/// register is replicated into the other bits.  We know that at least 1 bit
1820/// is always equal to the sign bit (itself), but other cases can give us
1821/// information.  For example, immediately after an "SRA X, 2", we know that
1822/// the top 3 bits are all equal to each other, so we return 3.
1823unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1824  MVT VT = Op.getValueType();
1825  assert(VT.isInteger() && "Invalid VT!");
1826  unsigned VTBits = VT.getSizeInBits();
1827  unsigned Tmp, Tmp2;
1828  unsigned FirstAnswer = 1;
1829
1830  if (Depth == 6)
1831    return 1;  // Limit search depth.
1832
1833  switch (Op.getOpcode()) {
1834  default: break;
1835  case ISD::AssertSext:
1836    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1837    return VTBits-Tmp+1;
1838  case ISD::AssertZext:
1839    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1840    return VTBits-Tmp;
1841
1842  case ISD::Constant: {
1843    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1844    // If negative, return # leading ones.
1845    if (Val.isNegative())
1846      return Val.countLeadingOnes();
1847
1848    // Return # leading zeros.
1849    return Val.countLeadingZeros();
1850  }
1851
1852  case ISD::SIGN_EXTEND:
1853    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1854    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1855
1856  case ISD::SIGN_EXTEND_INREG:
1857    // Max of the input and what this extends.
1858    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1859    Tmp = VTBits-Tmp+1;
1860
1861    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1862    return std::max(Tmp, Tmp2);
1863
1864  case ISD::SRA:
1865    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1866    // SRA X, C   -> adds C sign bits.
1867    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1868      Tmp += C->getZExtValue();
1869      if (Tmp > VTBits) Tmp = VTBits;
1870    }
1871    return Tmp;
1872  case ISD::SHL:
1873    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1874      // shl destroys sign bits.
1875      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1876      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1877          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1878      return Tmp - C->getZExtValue();
1879    }
1880    break;
1881  case ISD::AND:
1882  case ISD::OR:
1883  case ISD::XOR:    // NOT is handled here.
1884    // Logical binary ops preserve the number of sign bits at the worst.
1885    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1886    if (Tmp != 1) {
1887      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1888      FirstAnswer = std::min(Tmp, Tmp2);
1889      // We computed what we know about the sign bits as our first
1890      // answer. Now proceed to the generic code that uses
1891      // ComputeMaskedBits, and pick whichever answer is better.
1892    }
1893    break;
1894
1895  case ISD::SELECT:
1896    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1897    if (Tmp == 1) return 1;  // Early out.
1898    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1899    return std::min(Tmp, Tmp2);
1900
1901  case ISD::SADDO:
1902  case ISD::UADDO:
1903  case ISD::SSUBO:
1904  case ISD::USUBO:
1905  case ISD::SMULO:
1906  case ISD::UMULO:
1907    if (Op.getResNo() != 1)
1908      break;
1909    // The boolean result conforms to getBooleanContents.  Fall through.
1910  case ISD::SETCC:
1911    // If setcc returns 0/-1, all bits are sign bits.
1912    if (TLI.getBooleanContents() ==
1913        TargetLowering::ZeroOrNegativeOneBooleanContent)
1914      return VTBits;
1915    break;
1916  case ISD::ROTL:
1917  case ISD::ROTR:
1918    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1919      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1920
1921      // Handle rotate right by N like a rotate left by 32-N.
1922      if (Op.getOpcode() == ISD::ROTR)
1923        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1924
1925      // If we aren't rotating out all of the known-in sign bits, return the
1926      // number that are left.  This handles rotl(sext(x), 1) for example.
1927      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1928      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1929    }
1930    break;
1931  case ISD::ADD:
1932    // Add can have at most one carry bit.  Thus we know that the output
1933    // is, at worst, one more bit than the inputs.
1934    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1935    if (Tmp == 1) return 1;  // Early out.
1936
1937    // Special case decrementing a value (ADD X, -1):
1938    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1939      if (CRHS->isAllOnesValue()) {
1940        APInt KnownZero, KnownOne;
1941        APInt Mask = APInt::getAllOnesValue(VTBits);
1942        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1943
1944        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1945        // sign bits set.
1946        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1947          return VTBits;
1948
1949        // If we are subtracting one from a positive number, there is no carry
1950        // out of the result.
1951        if (KnownZero.isNegative())
1952          return Tmp;
1953      }
1954
1955    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1956    if (Tmp2 == 1) return 1;
1957      return std::min(Tmp, Tmp2)-1;
1958    break;
1959
1960  case ISD::SUB:
1961    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1962    if (Tmp2 == 1) return 1;
1963
1964    // Handle NEG.
1965    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1966      if (CLHS->isNullValue()) {
1967        APInt KnownZero, KnownOne;
1968        APInt Mask = APInt::getAllOnesValue(VTBits);
1969        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1970        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1971        // sign bits set.
1972        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1973          return VTBits;
1974
1975        // If the input is known to be positive (the sign bit is known clear),
1976        // the output of the NEG has the same number of sign bits as the input.
1977        if (KnownZero.isNegative())
1978          return Tmp2;
1979
1980        // Otherwise, we treat this like a SUB.
1981      }
1982
1983    // Sub can have at most one carry bit.  Thus we know that the output
1984    // is, at worst, one more bit than the inputs.
1985    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1986    if (Tmp == 1) return 1;  // Early out.
1987      return std::min(Tmp, Tmp2)-1;
1988    break;
1989  case ISD::TRUNCATE:
1990    // FIXME: it's tricky to do anything useful for this, but it is an important
1991    // case for targets like X86.
1992    break;
1993  }
1994
1995  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1996  if (Op.getOpcode() == ISD::LOAD) {
1997    LoadSDNode *LD = cast<LoadSDNode>(Op);
1998    unsigned ExtType = LD->getExtensionType();
1999    switch (ExtType) {
2000    default: break;
2001    case ISD::SEXTLOAD:    // '17' bits known
2002      Tmp = LD->getMemoryVT().getSizeInBits();
2003      return VTBits-Tmp+1;
2004    case ISD::ZEXTLOAD:    // '16' bits known
2005      Tmp = LD->getMemoryVT().getSizeInBits();
2006      return VTBits-Tmp;
2007    }
2008  }
2009
2010  // Allow the target to implement this method for its nodes.
2011  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2012      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2013      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2014      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2015    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2016    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2017  }
2018
2019  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2020  // use this information.
2021  APInt KnownZero, KnownOne;
2022  APInt Mask = APInt::getAllOnesValue(VTBits);
2023  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2024
2025  if (KnownZero.isNegative()) {        // sign bit is 0
2026    Mask = KnownZero;
2027  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2028    Mask = KnownOne;
2029  } else {
2030    // Nothing known.
2031    return FirstAnswer;
2032  }
2033
2034  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2035  // the number of identical bits in the top of the input value.
2036  Mask = ~Mask;
2037  Mask <<= Mask.getBitWidth()-VTBits;
2038  // Return # leading zeros.  We use 'min' here in case Val was zero before
2039  // shifting.  We don't want to return '64' as for an i32 "0".
2040  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2041}
2042
2043
2044bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2045  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2046  if (!GA) return false;
2047  if (GA->getOffset() != 0) return false;
2048  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2049  if (!GV) return false;
2050  MachineModuleInfo *MMI = getMachineModuleInfo();
2051  return MMI && MMI->hasDebugInfo();
2052}
2053
2054
2055/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2056/// element of the result of the vector shuffle.
2057SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2058  MVT VT = N->getValueType(0);
2059  SDValue PermMask = N->getOperand(2);
2060  SDValue Idx = PermMask.getOperand(i);
2061  if (Idx.getOpcode() == ISD::UNDEF)
2062    return getNode(ISD::UNDEF, VT.getVectorElementType());
2063  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2064  unsigned NumElems = PermMask.getNumOperands();
2065  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2066  Index %= NumElems;
2067
2068  if (V.getOpcode() == ISD::BIT_CONVERT) {
2069    V = V.getOperand(0);
2070    MVT VVT = V.getValueType();
2071    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2072      return SDValue();
2073  }
2074  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2075    return (Index == 0) ? V.getOperand(0)
2076                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2077  if (V.getOpcode() == ISD::BUILD_VECTOR)
2078    return V.getOperand(Index);
2079  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2080    return getShuffleScalarElt(V.getNode(), Index);
2081  return SDValue();
2082}
2083
2084
2085/// getNode - Gets or creates the specified node.
2086///
2087SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2088  FoldingSetNodeID ID;
2089  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2090  void *IP = 0;
2091  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2092    return SDValue(E, 0);
2093  SDNode *N = NodeAllocator.Allocate<SDNode>();
2094  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2095  CSEMap.InsertNode(N, IP);
2096
2097  AllNodes.push_back(N);
2098#ifndef NDEBUG
2099  VerifyNode(N);
2100#endif
2101  return SDValue(N, 0);
2102}
2103
2104SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2105  // Constant fold unary operations with an integer constant operand.
2106  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2107    const APInt &Val = C->getAPIntValue();
2108    unsigned BitWidth = VT.getSizeInBits();
2109    switch (Opcode) {
2110    default: break;
2111    case ISD::SIGN_EXTEND:
2112      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2113    case ISD::ANY_EXTEND:
2114    case ISD::ZERO_EXTEND:
2115    case ISD::TRUNCATE:
2116      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2117    case ISD::UINT_TO_FP:
2118    case ISD::SINT_TO_FP: {
2119      const uint64_t zero[] = {0, 0};
2120      // No compile time operations on this type.
2121      if (VT==MVT::ppcf128)
2122        break;
2123      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2124      (void)apf.convertFromAPInt(Val,
2125                                 Opcode==ISD::SINT_TO_FP,
2126                                 APFloat::rmNearestTiesToEven);
2127      return getConstantFP(apf, VT);
2128    }
2129    case ISD::BIT_CONVERT:
2130      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2131        return getConstantFP(Val.bitsToFloat(), VT);
2132      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2133        return getConstantFP(Val.bitsToDouble(), VT);
2134      break;
2135    case ISD::BSWAP:
2136      return getConstant(Val.byteSwap(), VT);
2137    case ISD::CTPOP:
2138      return getConstant(Val.countPopulation(), VT);
2139    case ISD::CTLZ:
2140      return getConstant(Val.countLeadingZeros(), VT);
2141    case ISD::CTTZ:
2142      return getConstant(Val.countTrailingZeros(), VT);
2143    }
2144  }
2145
2146  // Constant fold unary operations with a floating point constant operand.
2147  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2148    APFloat V = C->getValueAPF();    // make copy
2149    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2150      switch (Opcode) {
2151      case ISD::FNEG:
2152        V.changeSign();
2153        return getConstantFP(V, VT);
2154      case ISD::FABS:
2155        V.clearSign();
2156        return getConstantFP(V, VT);
2157      case ISD::FP_ROUND:
2158      case ISD::FP_EXTEND: {
2159        bool ignored;
2160        // This can return overflow, underflow, or inexact; we don't care.
2161        // FIXME need to be more flexible about rounding mode.
2162        (void)V.convert(*MVTToAPFloatSemantics(VT),
2163                        APFloat::rmNearestTiesToEven, &ignored);
2164        return getConstantFP(V, VT);
2165      }
2166      case ISD::FP_TO_SINT:
2167      case ISD::FP_TO_UINT: {
2168        integerPart x;
2169        bool ignored;
2170        assert(integerPartWidth >= 64);
2171        // FIXME need to be more flexible about rounding mode.
2172        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2173                              Opcode==ISD::FP_TO_SINT,
2174                              APFloat::rmTowardZero, &ignored);
2175        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2176          break;
2177        return getConstant(x, VT);
2178      }
2179      case ISD::BIT_CONVERT:
2180        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2181          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2182        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2183          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2184        break;
2185      }
2186    }
2187  }
2188
2189  unsigned OpOpcode = Operand.getNode()->getOpcode();
2190  switch (Opcode) {
2191  case ISD::TokenFactor:
2192  case ISD::MERGE_VALUES:
2193  case ISD::CONCAT_VECTORS:
2194    return Operand;         // Factor, merge or concat of one node?  No need.
2195  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2196  case ISD::FP_EXTEND:
2197    assert(VT.isFloatingPoint() &&
2198           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2199    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2200    if (Operand.getOpcode() == ISD::UNDEF)
2201      return getNode(ISD::UNDEF, VT);
2202    break;
2203  case ISD::SIGN_EXTEND:
2204    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2205           "Invalid SIGN_EXTEND!");
2206    if (Operand.getValueType() == VT) return Operand;   // noop extension
2207    assert(Operand.getValueType().bitsLT(VT)
2208           && "Invalid sext node, dst < src!");
2209    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2210      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2211    break;
2212  case ISD::ZERO_EXTEND:
2213    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2214           "Invalid ZERO_EXTEND!");
2215    if (Operand.getValueType() == VT) return Operand;   // noop extension
2216    assert(Operand.getValueType().bitsLT(VT)
2217           && "Invalid zext node, dst < src!");
2218    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2219      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2220    break;
2221  case ISD::ANY_EXTEND:
2222    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2223           "Invalid ANY_EXTEND!");
2224    if (Operand.getValueType() == VT) return Operand;   // noop extension
2225    assert(Operand.getValueType().bitsLT(VT)
2226           && "Invalid anyext node, dst < src!");
2227    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2228      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2229      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2230    break;
2231  case ISD::TRUNCATE:
2232    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2233           "Invalid TRUNCATE!");
2234    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2235    assert(Operand.getValueType().bitsGT(VT)
2236           && "Invalid truncate node, src < dst!");
2237    if (OpOpcode == ISD::TRUNCATE)
2238      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2239    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2240             OpOpcode == ISD::ANY_EXTEND) {
2241      // If the source is smaller than the dest, we still need an extend.
2242      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2243        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2244      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2245        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2246      else
2247        return Operand.getNode()->getOperand(0);
2248    }
2249    break;
2250  case ISD::BIT_CONVERT:
2251    // Basic sanity checking.
2252    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2253           && "Cannot BIT_CONVERT between types of different sizes!");
2254    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2255    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2256      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2257    if (OpOpcode == ISD::UNDEF)
2258      return getNode(ISD::UNDEF, VT);
2259    break;
2260  case ISD::SCALAR_TO_VECTOR:
2261    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2262           VT.getVectorElementType() == Operand.getValueType() &&
2263           "Illegal SCALAR_TO_VECTOR node!");
2264    if (OpOpcode == ISD::UNDEF)
2265      return getNode(ISD::UNDEF, VT);
2266    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2267    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2268        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2269        Operand.getConstantOperandVal(1) == 0 &&
2270        Operand.getOperand(0).getValueType() == VT)
2271      return Operand.getOperand(0);
2272    break;
2273  case ISD::FNEG:
2274    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2275      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2276                     Operand.getNode()->getOperand(0));
2277    if (OpOpcode == ISD::FNEG)  // --X -> X
2278      return Operand.getNode()->getOperand(0);
2279    break;
2280  case ISD::FABS:
2281    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2282      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2283    break;
2284  }
2285
2286  SDNode *N;
2287  SDVTList VTs = getVTList(VT);
2288  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2289    FoldingSetNodeID ID;
2290    SDValue Ops[1] = { Operand };
2291    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2292    void *IP = 0;
2293    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2294      return SDValue(E, 0);
2295    N = NodeAllocator.Allocate<UnarySDNode>();
2296    new (N) UnarySDNode(Opcode, VTs, Operand);
2297    CSEMap.InsertNode(N, IP);
2298  } else {
2299    N = NodeAllocator.Allocate<UnarySDNode>();
2300    new (N) UnarySDNode(Opcode, VTs, Operand);
2301  }
2302
2303  AllNodes.push_back(N);
2304#ifndef NDEBUG
2305  VerifyNode(N);
2306#endif
2307  return SDValue(N, 0);
2308}
2309
2310SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2311                                             MVT VT,
2312                                             ConstantSDNode *Cst1,
2313                                             ConstantSDNode *Cst2) {
2314  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2315
2316  switch (Opcode) {
2317  case ISD::ADD:  return getConstant(C1 + C2, VT);
2318  case ISD::SUB:  return getConstant(C1 - C2, VT);
2319  case ISD::MUL:  return getConstant(C1 * C2, VT);
2320  case ISD::UDIV:
2321    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2322    break;
2323  case ISD::UREM:
2324    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2325    break;
2326  case ISD::SDIV:
2327    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2328    break;
2329  case ISD::SREM:
2330    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2331    break;
2332  case ISD::AND:  return getConstant(C1 & C2, VT);
2333  case ISD::OR:   return getConstant(C1 | C2, VT);
2334  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2335  case ISD::SHL:  return getConstant(C1 << C2, VT);
2336  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2337  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2338  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2339  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2340  default: break;
2341  }
2342
2343  return SDValue();
2344}
2345
2346SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2347                              SDValue N1, SDValue N2) {
2348  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2349  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2350  switch (Opcode) {
2351  default: break;
2352  case ISD::TokenFactor:
2353    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2354           N2.getValueType() == MVT::Other && "Invalid token factor!");
2355    // Fold trivial token factors.
2356    if (N1.getOpcode() == ISD::EntryToken) return N2;
2357    if (N2.getOpcode() == ISD::EntryToken) return N1;
2358    if (N1 == N2) return N1;
2359    break;
2360  case ISD::CONCAT_VECTORS:
2361    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2362    // one big BUILD_VECTOR.
2363    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2364        N2.getOpcode() == ISD::BUILD_VECTOR) {
2365      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2366      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2367      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2368    }
2369    break;
2370  case ISD::AND:
2371    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2372           N1.getValueType() == VT && "Binary operator types must match!");
2373    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2374    // worth handling here.
2375    if (N2C && N2C->isNullValue())
2376      return N2;
2377    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2378      return N1;
2379    break;
2380  case ISD::OR:
2381  case ISD::XOR:
2382  case ISD::ADD:
2383  case ISD::SUB:
2384    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2385           N1.getValueType() == VT && "Binary operator types must match!");
2386    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2387    // it's worth handling here.
2388    if (N2C && N2C->isNullValue())
2389      return N1;
2390    break;
2391  case ISD::UDIV:
2392  case ISD::UREM:
2393  case ISD::MULHU:
2394  case ISD::MULHS:
2395  case ISD::MUL:
2396  case ISD::SDIV:
2397  case ISD::SREM:
2398    assert(VT.isInteger() && "This operator does not apply to FP types!");
2399    // fall through
2400  case ISD::FADD:
2401  case ISD::FSUB:
2402  case ISD::FMUL:
2403  case ISD::FDIV:
2404  case ISD::FREM:
2405    if (UnsafeFPMath) {
2406      if (Opcode == ISD::FADD) {
2407        // 0+x --> x
2408        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2409          if (CFP->getValueAPF().isZero())
2410            return N2;
2411        // x+0 --> x
2412        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2413          if (CFP->getValueAPF().isZero())
2414            return N1;
2415      } else if (Opcode == ISD::FSUB) {
2416        // x-0 --> x
2417        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2418          if (CFP->getValueAPF().isZero())
2419            return N1;
2420      }
2421    }
2422    assert(N1.getValueType() == N2.getValueType() &&
2423           N1.getValueType() == VT && "Binary operator types must match!");
2424    break;
2425  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2426    assert(N1.getValueType() == VT &&
2427           N1.getValueType().isFloatingPoint() &&
2428           N2.getValueType().isFloatingPoint() &&
2429           "Invalid FCOPYSIGN!");
2430    break;
2431  case ISD::SHL:
2432  case ISD::SRA:
2433  case ISD::SRL:
2434  case ISD::ROTL:
2435  case ISD::ROTR:
2436    assert(VT == N1.getValueType() &&
2437           "Shift operators return type must be the same as their first arg");
2438    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2439           "Shifts only work on integers");
2440    assert((N2.getValueType() == TLI.getShiftAmountTy() ||
2441            (N2.getValueType().isVector() && N2.getValueType().isInteger())) &&
2442           "Wrong type for shift amount");
2443
2444    // Always fold shifts of i1 values so the code generator doesn't need to
2445    // handle them.  Since we know the size of the shift has to be less than the
2446    // size of the value, the shift/rotate count is guaranteed to be zero.
2447    if (VT == MVT::i1)
2448      return N1;
2449    break;
2450  case ISD::FP_ROUND_INREG: {
2451    MVT EVT = cast<VTSDNode>(N2)->getVT();
2452    assert(VT == N1.getValueType() && "Not an inreg round!");
2453    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2454           "Cannot FP_ROUND_INREG integer types");
2455    assert(EVT.bitsLE(VT) && "Not rounding down!");
2456    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2457    break;
2458  }
2459  case ISD::FP_ROUND:
2460    assert(VT.isFloatingPoint() &&
2461           N1.getValueType().isFloatingPoint() &&
2462           VT.bitsLE(N1.getValueType()) &&
2463           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2464    if (N1.getValueType() == VT) return N1;  // noop conversion.
2465    break;
2466  case ISD::AssertSext:
2467  case ISD::AssertZext: {
2468    MVT EVT = cast<VTSDNode>(N2)->getVT();
2469    assert(VT == N1.getValueType() && "Not an inreg extend!");
2470    assert(VT.isInteger() && EVT.isInteger() &&
2471           "Cannot *_EXTEND_INREG FP types");
2472    assert(EVT.bitsLE(VT) && "Not extending!");
2473    if (VT == EVT) return N1; // noop assertion.
2474    break;
2475  }
2476  case ISD::SIGN_EXTEND_INREG: {
2477    MVT EVT = cast<VTSDNode>(N2)->getVT();
2478    assert(VT == N1.getValueType() && "Not an inreg extend!");
2479    assert(VT.isInteger() && EVT.isInteger() &&
2480           "Cannot *_EXTEND_INREG FP types");
2481    assert(EVT.bitsLE(VT) && "Not extending!");
2482    if (EVT == VT) return N1;  // Not actually extending
2483
2484    if (N1C) {
2485      APInt Val = N1C->getAPIntValue();
2486      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2487      Val <<= Val.getBitWidth()-FromBits;
2488      Val = Val.ashr(Val.getBitWidth()-FromBits);
2489      return getConstant(Val, VT);
2490    }
2491    break;
2492  }
2493  case ISD::EXTRACT_VECTOR_ELT:
2494    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2495    if (N1.getOpcode() == ISD::UNDEF)
2496      return getNode(ISD::UNDEF, VT);
2497
2498    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2499    // expanding copies of large vectors from registers.
2500    if (N2C &&
2501        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2502        N1.getNumOperands() > 0) {
2503      unsigned Factor =
2504        N1.getOperand(0).getValueType().getVectorNumElements();
2505      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2506                     N1.getOperand(N2C->getZExtValue() / Factor),
2507                     getConstant(N2C->getZExtValue() % Factor,
2508                                 N2.getValueType()));
2509    }
2510
2511    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2512    // expanding large vector constants.
2513    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2514      return N1.getOperand(N2C->getZExtValue());
2515
2516    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2517    // operations are lowered to scalars.
2518    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2519      if (N1.getOperand(2) == N2)
2520        return N1.getOperand(1);
2521      else
2522        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2523    }
2524    break;
2525  case ISD::EXTRACT_ELEMENT:
2526    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2527    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2528           (N1.getValueType().isInteger() == VT.isInteger()) &&
2529           "Wrong types for EXTRACT_ELEMENT!");
2530
2531    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2532    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2533    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2534    if (N1.getOpcode() == ISD::BUILD_PAIR)
2535      return N1.getOperand(N2C->getZExtValue());
2536
2537    // EXTRACT_ELEMENT of a constant int is also very common.
2538    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2539      unsigned ElementSize = VT.getSizeInBits();
2540      unsigned Shift = ElementSize * N2C->getZExtValue();
2541      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2542      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2543    }
2544    break;
2545  case ISD::EXTRACT_SUBVECTOR:
2546    if (N1.getValueType() == VT) // Trivial extraction.
2547      return N1;
2548    break;
2549  }
2550
2551  if (N1C) {
2552    if (N2C) {
2553      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2554      if (SV.getNode()) return SV;
2555    } else {      // Cannonicalize constant to RHS if commutative
2556      if (isCommutativeBinOp(Opcode)) {
2557        std::swap(N1C, N2C);
2558        std::swap(N1, N2);
2559      }
2560    }
2561  }
2562
2563  // Constant fold FP operations.
2564  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2565  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2566  if (N1CFP) {
2567    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2568      // Cannonicalize constant to RHS if commutative
2569      std::swap(N1CFP, N2CFP);
2570      std::swap(N1, N2);
2571    } else if (N2CFP && VT != MVT::ppcf128) {
2572      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2573      APFloat::opStatus s;
2574      switch (Opcode) {
2575      case ISD::FADD:
2576        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2577        if (s != APFloat::opInvalidOp)
2578          return getConstantFP(V1, VT);
2579        break;
2580      case ISD::FSUB:
2581        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2582        if (s!=APFloat::opInvalidOp)
2583          return getConstantFP(V1, VT);
2584        break;
2585      case ISD::FMUL:
2586        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2587        if (s!=APFloat::opInvalidOp)
2588          return getConstantFP(V1, VT);
2589        break;
2590      case ISD::FDIV:
2591        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2592        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2593          return getConstantFP(V1, VT);
2594        break;
2595      case ISD::FREM :
2596        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2597        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2598          return getConstantFP(V1, VT);
2599        break;
2600      case ISD::FCOPYSIGN:
2601        V1.copySign(V2);
2602        return getConstantFP(V1, VT);
2603      default: break;
2604      }
2605    }
2606  }
2607
2608  // Canonicalize an UNDEF to the RHS, even over a constant.
2609  if (N1.getOpcode() == ISD::UNDEF) {
2610    if (isCommutativeBinOp(Opcode)) {
2611      std::swap(N1, N2);
2612    } else {
2613      switch (Opcode) {
2614      case ISD::FP_ROUND_INREG:
2615      case ISD::SIGN_EXTEND_INREG:
2616      case ISD::SUB:
2617      case ISD::FSUB:
2618      case ISD::FDIV:
2619      case ISD::FREM:
2620      case ISD::SRA:
2621        return N1;     // fold op(undef, arg2) -> undef
2622      case ISD::UDIV:
2623      case ISD::SDIV:
2624      case ISD::UREM:
2625      case ISD::SREM:
2626      case ISD::SRL:
2627      case ISD::SHL:
2628        if (!VT.isVector())
2629          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2630        // For vectors, we can't easily build an all zero vector, just return
2631        // the LHS.
2632        return N2;
2633      }
2634    }
2635  }
2636
2637  // Fold a bunch of operators when the RHS is undef.
2638  if (N2.getOpcode() == ISD::UNDEF) {
2639    switch (Opcode) {
2640    case ISD::XOR:
2641      if (N1.getOpcode() == ISD::UNDEF)
2642        // Handle undef ^ undef -> 0 special case. This is a common
2643        // idiom (misuse).
2644        return getConstant(0, VT);
2645      // fallthrough
2646    case ISD::ADD:
2647    case ISD::ADDC:
2648    case ISD::ADDE:
2649    case ISD::SUB:
2650    case ISD::FADD:
2651    case ISD::FSUB:
2652    case ISD::FMUL:
2653    case ISD::FDIV:
2654    case ISD::FREM:
2655    case ISD::UDIV:
2656    case ISD::SDIV:
2657    case ISD::UREM:
2658    case ISD::SREM:
2659      return N2;       // fold op(arg1, undef) -> undef
2660    case ISD::MUL:
2661    case ISD::AND:
2662    case ISD::SRL:
2663    case ISD::SHL:
2664      if (!VT.isVector())
2665        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2666      // For vectors, we can't easily build an all zero vector, just return
2667      // the LHS.
2668      return N1;
2669    case ISD::OR:
2670      if (!VT.isVector())
2671        return getConstant(VT.getIntegerVTBitMask(), VT);
2672      // For vectors, we can't easily build an all one vector, just return
2673      // the LHS.
2674      return N1;
2675    case ISD::SRA:
2676      return N1;
2677    }
2678  }
2679
2680  // Memoize this node if possible.
2681  SDNode *N;
2682  SDVTList VTs = getVTList(VT);
2683  if (VT != MVT::Flag) {
2684    SDValue Ops[] = { N1, N2 };
2685    FoldingSetNodeID ID;
2686    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2687    void *IP = 0;
2688    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2689      return SDValue(E, 0);
2690    N = NodeAllocator.Allocate<BinarySDNode>();
2691    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2692    CSEMap.InsertNode(N, IP);
2693  } else {
2694    N = NodeAllocator.Allocate<BinarySDNode>();
2695    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2696  }
2697
2698  AllNodes.push_back(N);
2699#ifndef NDEBUG
2700  VerifyNode(N);
2701#endif
2702  return SDValue(N, 0);
2703}
2704
2705SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2706                              SDValue N1, SDValue N2, SDValue N3) {
2707  // Perform various simplifications.
2708  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2709  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2710  switch (Opcode) {
2711  case ISD::CONCAT_VECTORS:
2712    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2713    // one big BUILD_VECTOR.
2714    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2715        N2.getOpcode() == ISD::BUILD_VECTOR &&
2716        N3.getOpcode() == ISD::BUILD_VECTOR) {
2717      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2718      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2719      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2720      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2721    }
2722    break;
2723  case ISD::SETCC: {
2724    // Use FoldSetCC to simplify SETCC's.
2725    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2726    if (Simp.getNode()) return Simp;
2727    break;
2728  }
2729  case ISD::SELECT:
2730    if (N1C) {
2731     if (N1C->getZExtValue())
2732        return N2;             // select true, X, Y -> X
2733      else
2734        return N3;             // select false, X, Y -> Y
2735    }
2736
2737    if (N2 == N3) return N2;   // select C, X, X -> X
2738    break;
2739  case ISD::BRCOND:
2740    if (N2C) {
2741      if (N2C->getZExtValue()) // Unconditional branch
2742        return getNode(ISD::BR, MVT::Other, N1, N3);
2743      else
2744        return N1;         // Never-taken branch
2745    }
2746    break;
2747  case ISD::VECTOR_SHUFFLE:
2748    assert(N1.getValueType() == N2.getValueType() &&
2749           N1.getValueType().isVector() &&
2750           VT.isVector() && N3.getValueType().isVector() &&
2751           N3.getOpcode() == ISD::BUILD_VECTOR &&
2752           VT.getVectorNumElements() == N3.getNumOperands() &&
2753           "Illegal VECTOR_SHUFFLE node!");
2754    break;
2755  case ISD::BIT_CONVERT:
2756    // Fold bit_convert nodes from a type to themselves.
2757    if (N1.getValueType() == VT)
2758      return N1;
2759    break;
2760  }
2761
2762  // Memoize node if it doesn't produce a flag.
2763  SDNode *N;
2764  SDVTList VTs = getVTList(VT);
2765  if (VT != MVT::Flag) {
2766    SDValue Ops[] = { N1, N2, N3 };
2767    FoldingSetNodeID ID;
2768    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2769    void *IP = 0;
2770    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2771      return SDValue(E, 0);
2772    N = NodeAllocator.Allocate<TernarySDNode>();
2773    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2774    CSEMap.InsertNode(N, IP);
2775  } else {
2776    N = NodeAllocator.Allocate<TernarySDNode>();
2777    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2778  }
2779  AllNodes.push_back(N);
2780#ifndef NDEBUG
2781  VerifyNode(N);
2782#endif
2783  return SDValue(N, 0);
2784}
2785
2786SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2787                              SDValue N1, SDValue N2, SDValue N3,
2788                              SDValue N4) {
2789  SDValue Ops[] = { N1, N2, N3, N4 };
2790  return getNode(Opcode, VT, Ops, 4);
2791}
2792
2793SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2794                              SDValue N1, SDValue N2, SDValue N3,
2795                              SDValue N4, SDValue N5) {
2796  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2797  return getNode(Opcode, VT, Ops, 5);
2798}
2799
2800/// getMemsetValue - Vectorized representation of the memset value
2801/// operand.
2802static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2803  unsigned NumBits = VT.isVector() ?
2804    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2805  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2806    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2807    unsigned Shift = 8;
2808    for (unsigned i = NumBits; i > 8; i >>= 1) {
2809      Val = (Val << Shift) | Val;
2810      Shift <<= 1;
2811    }
2812    if (VT.isInteger())
2813      return DAG.getConstant(Val, VT);
2814    return DAG.getConstantFP(APFloat(Val), VT);
2815  }
2816
2817  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2818  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2819  unsigned Shift = 8;
2820  for (unsigned i = NumBits; i > 8; i >>= 1) {
2821    Value = DAG.getNode(ISD::OR, VT,
2822                        DAG.getNode(ISD::SHL, VT, Value,
2823                                    DAG.getConstant(Shift,
2824                                                    TLI.getShiftAmountTy())),
2825                        Value);
2826    Shift <<= 1;
2827  }
2828
2829  return Value;
2830}
2831
2832/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2833/// used when a memcpy is turned into a memset when the source is a constant
2834/// string ptr.
2835static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2836                                    const TargetLowering &TLI,
2837                                    std::string &Str, unsigned Offset) {
2838  // Handle vector with all elements zero.
2839  if (Str.empty()) {
2840    if (VT.isInteger())
2841      return DAG.getConstant(0, VT);
2842    unsigned NumElts = VT.getVectorNumElements();
2843    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2844    return DAG.getNode(ISD::BIT_CONVERT, VT,
2845                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2846  }
2847
2848  assert(!VT.isVector() && "Can't handle vector type here!");
2849  unsigned NumBits = VT.getSizeInBits();
2850  unsigned MSB = NumBits / 8;
2851  uint64_t Val = 0;
2852  if (TLI.isLittleEndian())
2853    Offset = Offset + MSB - 1;
2854  for (unsigned i = 0; i != MSB; ++i) {
2855    Val = (Val << 8) | (unsigned char)Str[Offset];
2856    Offset += TLI.isLittleEndian() ? -1 : 1;
2857  }
2858  return DAG.getConstant(Val, VT);
2859}
2860
2861/// getMemBasePlusOffset - Returns base and offset node for the
2862///
2863static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2864                                      SelectionDAG &DAG) {
2865  MVT VT = Base.getValueType();
2866  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2867}
2868
2869/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2870///
2871static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2872  unsigned SrcDelta = 0;
2873  GlobalAddressSDNode *G = NULL;
2874  if (Src.getOpcode() == ISD::GlobalAddress)
2875    G = cast<GlobalAddressSDNode>(Src);
2876  else if (Src.getOpcode() == ISD::ADD &&
2877           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2878           Src.getOperand(1).getOpcode() == ISD::Constant) {
2879    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2880    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2881  }
2882  if (!G)
2883    return false;
2884
2885  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2886  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2887    return true;
2888
2889  return false;
2890}
2891
2892/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2893/// to replace the memset / memcpy is below the threshold. It also returns the
2894/// types of the sequence of memory ops to perform memset / memcpy.
2895static
2896bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2897                              SDValue Dst, SDValue Src,
2898                              unsigned Limit, uint64_t Size, unsigned &Align,
2899                              std::string &Str, bool &isSrcStr,
2900                              SelectionDAG &DAG,
2901                              const TargetLowering &TLI) {
2902  isSrcStr = isMemSrcFromString(Src, Str);
2903  bool isSrcConst = isa<ConstantSDNode>(Src);
2904  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2905  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2906  if (VT != MVT::iAny) {
2907    unsigned NewAlign = (unsigned)
2908      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2909    // If source is a string constant, this will require an unaligned load.
2910    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2911      if (Dst.getOpcode() != ISD::FrameIndex) {
2912        // Can't change destination alignment. It requires a unaligned store.
2913        if (AllowUnalign)
2914          VT = MVT::iAny;
2915      } else {
2916        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2917        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2918        if (MFI->isFixedObjectIndex(FI)) {
2919          // Can't change destination alignment. It requires a unaligned store.
2920          if (AllowUnalign)
2921            VT = MVT::iAny;
2922        } else {
2923          // Give the stack frame object a larger alignment if needed.
2924          if (MFI->getObjectAlignment(FI) < NewAlign)
2925            MFI->setObjectAlignment(FI, NewAlign);
2926          Align = NewAlign;
2927        }
2928      }
2929    }
2930  }
2931
2932  if (VT == MVT::iAny) {
2933    if (AllowUnalign) {
2934      VT = MVT::i64;
2935    } else {
2936      switch (Align & 7) {
2937      case 0:  VT = MVT::i64; break;
2938      case 4:  VT = MVT::i32; break;
2939      case 2:  VT = MVT::i16; break;
2940      default: VT = MVT::i8;  break;
2941      }
2942    }
2943
2944    MVT LVT = MVT::i64;
2945    while (!TLI.isTypeLegal(LVT))
2946      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2947    assert(LVT.isInteger());
2948
2949    if (VT.bitsGT(LVT))
2950      VT = LVT;
2951  }
2952
2953  unsigned NumMemOps = 0;
2954  while (Size != 0) {
2955    unsigned VTSize = VT.getSizeInBits() / 8;
2956    while (VTSize > Size) {
2957      // For now, only use non-vector load / store's for the left-over pieces.
2958      if (VT.isVector()) {
2959        VT = MVT::i64;
2960        while (!TLI.isTypeLegal(VT))
2961          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2962        VTSize = VT.getSizeInBits() / 8;
2963      } else {
2964        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2965        VTSize >>= 1;
2966      }
2967    }
2968
2969    if (++NumMemOps > Limit)
2970      return false;
2971    MemOps.push_back(VT);
2972    Size -= VTSize;
2973  }
2974
2975  return true;
2976}
2977
2978static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2979                                         SDValue Chain, SDValue Dst,
2980                                         SDValue Src, uint64_t Size,
2981                                         unsigned Align, bool AlwaysInline,
2982                                         const Value *DstSV, uint64_t DstSVOff,
2983                                         const Value *SrcSV, uint64_t SrcSVOff){
2984  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2985
2986  // Expand memcpy to a series of load and store ops if the size operand falls
2987  // below a certain threshold.
2988  std::vector<MVT> MemOps;
2989  uint64_t Limit = -1ULL;
2990  if (!AlwaysInline)
2991    Limit = TLI.getMaxStoresPerMemcpy();
2992  unsigned DstAlign = Align;  // Destination alignment can change.
2993  std::string Str;
2994  bool CopyFromStr;
2995  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2996                                Str, CopyFromStr, DAG, TLI))
2997    return SDValue();
2998
2999
3000  bool isZeroStr = CopyFromStr && Str.empty();
3001  SmallVector<SDValue, 8> OutChains;
3002  unsigned NumMemOps = MemOps.size();
3003  uint64_t SrcOff = 0, DstOff = 0;
3004  for (unsigned i = 0; i < NumMemOps; i++) {
3005    MVT VT = MemOps[i];
3006    unsigned VTSize = VT.getSizeInBits() / 8;
3007    SDValue Value, Store;
3008
3009    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3010      // It's unlikely a store of a vector immediate can be done in a single
3011      // instruction. It would require a load from a constantpool first.
3012      // We also handle store a vector with all zero's.
3013      // FIXME: Handle other cases where store of vector immediate is done in
3014      // a single instruction.
3015      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3016      Store = DAG.getStore(Chain, Value,
3017                           getMemBasePlusOffset(Dst, DstOff, DAG),
3018                           DstSV, DstSVOff + DstOff, false, DstAlign);
3019    } else {
3020      Value = DAG.getLoad(VT, Chain,
3021                          getMemBasePlusOffset(Src, SrcOff, DAG),
3022                          SrcSV, SrcSVOff + SrcOff, false, Align);
3023      Store = DAG.getStore(Chain, Value,
3024                           getMemBasePlusOffset(Dst, DstOff, DAG),
3025                           DstSV, DstSVOff + DstOff, false, DstAlign);
3026    }
3027    OutChains.push_back(Store);
3028    SrcOff += VTSize;
3029    DstOff += VTSize;
3030  }
3031
3032  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3033                     &OutChains[0], OutChains.size());
3034}
3035
3036static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3037                                          SDValue Chain, SDValue Dst,
3038                                          SDValue Src, uint64_t Size,
3039                                          unsigned Align, bool AlwaysInline,
3040                                          const Value *DstSV, uint64_t DstSVOff,
3041                                          const Value *SrcSV, uint64_t SrcSVOff){
3042  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3043
3044  // Expand memmove to a series of load and store ops if the size operand falls
3045  // below a certain threshold.
3046  std::vector<MVT> MemOps;
3047  uint64_t Limit = -1ULL;
3048  if (!AlwaysInline)
3049    Limit = TLI.getMaxStoresPerMemmove();
3050  unsigned DstAlign = Align;  // Destination alignment can change.
3051  std::string Str;
3052  bool CopyFromStr;
3053  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3054                                Str, CopyFromStr, DAG, TLI))
3055    return SDValue();
3056
3057  uint64_t SrcOff = 0, DstOff = 0;
3058
3059  SmallVector<SDValue, 8> LoadValues;
3060  SmallVector<SDValue, 8> LoadChains;
3061  SmallVector<SDValue, 8> OutChains;
3062  unsigned NumMemOps = MemOps.size();
3063  for (unsigned i = 0; i < NumMemOps; i++) {
3064    MVT VT = MemOps[i];
3065    unsigned VTSize = VT.getSizeInBits() / 8;
3066    SDValue Value, Store;
3067
3068    Value = DAG.getLoad(VT, Chain,
3069                        getMemBasePlusOffset(Src, SrcOff, DAG),
3070                        SrcSV, SrcSVOff + SrcOff, false, Align);
3071    LoadValues.push_back(Value);
3072    LoadChains.push_back(Value.getValue(1));
3073    SrcOff += VTSize;
3074  }
3075  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3076                      &LoadChains[0], LoadChains.size());
3077  OutChains.clear();
3078  for (unsigned i = 0; i < NumMemOps; i++) {
3079    MVT VT = MemOps[i];
3080    unsigned VTSize = VT.getSizeInBits() / 8;
3081    SDValue Value, Store;
3082
3083    Store = DAG.getStore(Chain, LoadValues[i],
3084                         getMemBasePlusOffset(Dst, DstOff, DAG),
3085                         DstSV, DstSVOff + DstOff, false, DstAlign);
3086    OutChains.push_back(Store);
3087    DstOff += VTSize;
3088  }
3089
3090  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3091                     &OutChains[0], OutChains.size());
3092}
3093
3094static SDValue getMemsetStores(SelectionDAG &DAG,
3095                                 SDValue Chain, SDValue Dst,
3096                                 SDValue Src, uint64_t Size,
3097                                 unsigned Align,
3098                                 const Value *DstSV, uint64_t DstSVOff) {
3099  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3100
3101  // Expand memset to a series of load/store ops if the size operand
3102  // falls below a certain threshold.
3103  std::vector<MVT> MemOps;
3104  std::string Str;
3105  bool CopyFromStr;
3106  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3107                                Size, Align, Str, CopyFromStr, DAG, TLI))
3108    return SDValue();
3109
3110  SmallVector<SDValue, 8> OutChains;
3111  uint64_t DstOff = 0;
3112
3113  unsigned NumMemOps = MemOps.size();
3114  for (unsigned i = 0; i < NumMemOps; i++) {
3115    MVT VT = MemOps[i];
3116    unsigned VTSize = VT.getSizeInBits() / 8;
3117    SDValue Value = getMemsetValue(Src, VT, DAG);
3118    SDValue Store = DAG.getStore(Chain, Value,
3119                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3120                                 DstSV, DstSVOff + DstOff);
3121    OutChains.push_back(Store);
3122    DstOff += VTSize;
3123  }
3124
3125  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3126                     &OutChains[0], OutChains.size());
3127}
3128
3129SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3130                                SDValue Src, SDValue Size,
3131                                unsigned Align, bool AlwaysInline,
3132                                const Value *DstSV, uint64_t DstSVOff,
3133                                const Value *SrcSV, uint64_t SrcSVOff) {
3134
3135  // Check to see if we should lower the memcpy to loads and stores first.
3136  // For cases within the target-specified limits, this is the best choice.
3137  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3138  if (ConstantSize) {
3139    // Memcpy with size zero? Just return the original chain.
3140    if (ConstantSize->isNullValue())
3141      return Chain;
3142
3143    SDValue Result =
3144      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3145                              ConstantSize->getZExtValue(),
3146                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3147    if (Result.getNode())
3148      return Result;
3149  }
3150
3151  // Then check to see if we should lower the memcpy with target-specific
3152  // code. If the target chooses to do this, this is the next best.
3153  SDValue Result =
3154    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3155                                AlwaysInline,
3156                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3157  if (Result.getNode())
3158    return Result;
3159
3160  // If we really need inline code and the target declined to provide it,
3161  // use a (potentially long) sequence of loads and stores.
3162  if (AlwaysInline) {
3163    assert(ConstantSize && "AlwaysInline requires a constant size!");
3164    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3165                                   ConstantSize->getZExtValue(), Align, true,
3166                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3167  }
3168
3169  // Emit a library call.
3170  TargetLowering::ArgListTy Args;
3171  TargetLowering::ArgListEntry Entry;
3172  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3173  Entry.Node = Dst; Args.push_back(Entry);
3174  Entry.Node = Src; Args.push_back(Entry);
3175  Entry.Node = Size; Args.push_back(Entry);
3176  std::pair<SDValue,SDValue> CallResult =
3177    TLI.LowerCallTo(Chain, Type::VoidTy,
3178                    false, false, false, false, CallingConv::C, false,
3179                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3180                    Args, *this);
3181  return CallResult.second;
3182}
3183
3184SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3185                                 SDValue Src, SDValue Size,
3186                                 unsigned Align,
3187                                 const Value *DstSV, uint64_t DstSVOff,
3188                                 const Value *SrcSV, uint64_t SrcSVOff) {
3189
3190  // Check to see if we should lower the memmove to loads and stores first.
3191  // For cases within the target-specified limits, this is the best choice.
3192  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3193  if (ConstantSize) {
3194    // Memmove with size zero? Just return the original chain.
3195    if (ConstantSize->isNullValue())
3196      return Chain;
3197
3198    SDValue Result =
3199      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3200                               ConstantSize->getZExtValue(),
3201                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3202    if (Result.getNode())
3203      return Result;
3204  }
3205
3206  // Then check to see if we should lower the memmove with target-specific
3207  // code. If the target chooses to do this, this is the next best.
3208  SDValue Result =
3209    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3210                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3211  if (Result.getNode())
3212    return Result;
3213
3214  // Emit a library call.
3215  TargetLowering::ArgListTy Args;
3216  TargetLowering::ArgListEntry Entry;
3217  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3218  Entry.Node = Dst; Args.push_back(Entry);
3219  Entry.Node = Src; Args.push_back(Entry);
3220  Entry.Node = Size; Args.push_back(Entry);
3221  std::pair<SDValue,SDValue> CallResult =
3222    TLI.LowerCallTo(Chain, Type::VoidTy,
3223                    false, false, false, false, CallingConv::C, false,
3224                    getExternalSymbol("memmove", TLI.getPointerTy()),
3225                    Args, *this);
3226  return CallResult.second;
3227}
3228
3229SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3230                                SDValue Src, SDValue Size,
3231                                unsigned Align,
3232                                const Value *DstSV, uint64_t DstSVOff) {
3233
3234  // Check to see if we should lower the memset to stores first.
3235  // For cases within the target-specified limits, this is the best choice.
3236  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3237  if (ConstantSize) {
3238    // Memset with size zero? Just return the original chain.
3239    if (ConstantSize->isNullValue())
3240      return Chain;
3241
3242    SDValue Result =
3243      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3244                      Align, DstSV, DstSVOff);
3245    if (Result.getNode())
3246      return Result;
3247  }
3248
3249  // Then check to see if we should lower the memset with target-specific
3250  // code. If the target chooses to do this, this is the next best.
3251  SDValue Result =
3252    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3253                                DstSV, DstSVOff);
3254  if (Result.getNode())
3255    return Result;
3256
3257  // Emit a library call.
3258  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3259  TargetLowering::ArgListTy Args;
3260  TargetLowering::ArgListEntry Entry;
3261  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3262  Args.push_back(Entry);
3263  // Extend or truncate the argument to be an i32 value for the call.
3264  if (Src.getValueType().bitsGT(MVT::i32))
3265    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3266  else
3267    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3268  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3269  Args.push_back(Entry);
3270  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3271  Args.push_back(Entry);
3272  std::pair<SDValue,SDValue> CallResult =
3273    TLI.LowerCallTo(Chain, Type::VoidTy,
3274                    false, false, false, false, CallingConv::C, false,
3275                    getExternalSymbol("memset", TLI.getPointerTy()),
3276                    Args, *this);
3277  return CallResult.second;
3278}
3279
3280SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3281                                SDValue Chain,
3282                                SDValue Ptr, SDValue Cmp,
3283                                SDValue Swp, const Value* PtrVal,
3284                                unsigned Alignment) {
3285  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3286  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3287
3288  MVT VT = Cmp.getValueType();
3289
3290  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3291    Alignment = getMVTAlignment(MemVT);
3292
3293  SDVTList VTs = getVTList(VT, MVT::Other);
3294  FoldingSetNodeID ID;
3295  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3296  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3297  void* IP = 0;
3298  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3299    return SDValue(E, 0);
3300  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3301  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3302                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3303  CSEMap.InsertNode(N, IP);
3304  AllNodes.push_back(N);
3305  return SDValue(N, 0);
3306}
3307
3308SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3309                                SDValue Chain,
3310                                SDValue Ptr, SDValue Val,
3311                                const Value* PtrVal,
3312                                unsigned Alignment) {
3313  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3314          Opcode == ISD::ATOMIC_LOAD_SUB ||
3315          Opcode == ISD::ATOMIC_LOAD_AND ||
3316          Opcode == ISD::ATOMIC_LOAD_OR ||
3317          Opcode == ISD::ATOMIC_LOAD_XOR ||
3318          Opcode == ISD::ATOMIC_LOAD_NAND ||
3319          Opcode == ISD::ATOMIC_LOAD_MIN ||
3320          Opcode == ISD::ATOMIC_LOAD_MAX ||
3321          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3322          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3323          Opcode == ISD::ATOMIC_SWAP) &&
3324         "Invalid Atomic Op");
3325
3326  MVT VT = Val.getValueType();
3327
3328  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3329    Alignment = getMVTAlignment(MemVT);
3330
3331  SDVTList VTs = getVTList(VT, MVT::Other);
3332  FoldingSetNodeID ID;
3333  SDValue Ops[] = {Chain, Ptr, Val};
3334  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3335  void* IP = 0;
3336  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3337    return SDValue(E, 0);
3338  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3339  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3340                       Chain, Ptr, Val, PtrVal, Alignment);
3341  CSEMap.InsertNode(N, IP);
3342  AllNodes.push_back(N);
3343  return SDValue(N, 0);
3344}
3345
3346/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3347/// Allowed to return something different (and simpler) if Simplify is true.
3348SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3349  if (NumOps == 1)
3350    return Ops[0];
3351
3352  SmallVector<MVT, 4> VTs;
3353  VTs.reserve(NumOps);
3354  for (unsigned i = 0; i < NumOps; ++i)
3355    VTs.push_back(Ops[i].getValueType());
3356  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3357}
3358
3359SDValue
3360SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3361                                  const MVT *VTs, unsigned NumVTs,
3362                                  const SDValue *Ops, unsigned NumOps,
3363                                  MVT MemVT, const Value *srcValue, int SVOff,
3364                                  unsigned Align, bool Vol,
3365                                  bool ReadMem, bool WriteMem) {
3366  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3367                             MemVT, srcValue, SVOff, Align, Vol,
3368                             ReadMem, WriteMem);
3369}
3370
3371SDValue
3372SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3373                                  const SDValue *Ops, unsigned NumOps,
3374                                  MVT MemVT, const Value *srcValue, int SVOff,
3375                                  unsigned Align, bool Vol,
3376                                  bool ReadMem, bool WriteMem) {
3377  // Memoize the node unless it returns a flag.
3378  MemIntrinsicSDNode *N;
3379  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3380    FoldingSetNodeID ID;
3381    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3382    void *IP = 0;
3383    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3384      return SDValue(E, 0);
3385
3386    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3387    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3388                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3389    CSEMap.InsertNode(N, IP);
3390  } else {
3391    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3392    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3393                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3394  }
3395  AllNodes.push_back(N);
3396  return SDValue(N, 0);
3397}
3398
3399SDValue
3400SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3401                      bool IsInreg, SDVTList VTs,
3402                      const SDValue *Operands, unsigned NumOperands) {
3403  // Do not include isTailCall in the folding set profile.
3404  FoldingSetNodeID ID;
3405  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3406  ID.AddInteger(CallingConv);
3407  ID.AddInteger(IsVarArgs);
3408  void *IP = 0;
3409  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3410    // Instead of including isTailCall in the folding set, we just
3411    // set the flag of the existing node.
3412    if (!IsTailCall)
3413      cast<CallSDNode>(E)->setNotTailCall();
3414    return SDValue(E, 0);
3415  }
3416  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3417  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3418                     VTs, Operands, NumOperands);
3419  CSEMap.InsertNode(N, IP);
3420  AllNodes.push_back(N);
3421  return SDValue(N, 0);
3422}
3423
3424SDValue
3425SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3426                      MVT VT, SDValue Chain,
3427                      SDValue Ptr, SDValue Offset,
3428                      const Value *SV, int SVOffset, MVT EVT,
3429                      bool isVolatile, unsigned Alignment) {
3430  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3431    Alignment = getMVTAlignment(VT);
3432
3433  if (VT == EVT) {
3434    ExtType = ISD::NON_EXTLOAD;
3435  } else if (ExtType == ISD::NON_EXTLOAD) {
3436    assert(VT == EVT && "Non-extending load from different memory type!");
3437  } else {
3438    // Extending load.
3439    if (VT.isVector())
3440      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3441             "Invalid vector extload!");
3442    else
3443      assert(EVT.bitsLT(VT) &&
3444             "Should only be an extending load, not truncating!");
3445    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3446           "Cannot sign/zero extend a FP/Vector load!");
3447    assert(VT.isInteger() == EVT.isInteger() &&
3448           "Cannot convert from FP to Int or Int -> FP!");
3449  }
3450
3451  bool Indexed = AM != ISD::UNINDEXED;
3452  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3453         "Unindexed load with an offset!");
3454
3455  SDVTList VTs = Indexed ?
3456    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3457  SDValue Ops[] = { Chain, Ptr, Offset };
3458  FoldingSetNodeID ID;
3459  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3460  ID.AddInteger(AM);
3461  ID.AddInteger(ExtType);
3462  ID.AddInteger(EVT.getRawBits());
3463  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3464  void *IP = 0;
3465  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3466    return SDValue(E, 0);
3467  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3468  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3469                     Alignment, isVolatile);
3470  CSEMap.InsertNode(N, IP);
3471  AllNodes.push_back(N);
3472  return SDValue(N, 0);
3473}
3474
3475SDValue SelectionDAG::getLoad(MVT VT,
3476                              SDValue Chain, SDValue Ptr,
3477                              const Value *SV, int SVOffset,
3478                              bool isVolatile, unsigned Alignment) {
3479  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3480  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3481                 SV, SVOffset, VT, isVolatile, Alignment);
3482}
3483
3484SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3485                                 SDValue Chain, SDValue Ptr,
3486                                 const Value *SV,
3487                                 int SVOffset, MVT EVT,
3488                                 bool isVolatile, unsigned Alignment) {
3489  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3490  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3491                 SV, SVOffset, EVT, isVolatile, Alignment);
3492}
3493
3494SDValue
3495SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3496                             SDValue Offset, ISD::MemIndexedMode AM) {
3497  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3498  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3499         "Load is already a indexed load!");
3500  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3501                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3502                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3503                 LD->isVolatile(), LD->getAlignment());
3504}
3505
3506SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3507                               SDValue Ptr, const Value *SV, int SVOffset,
3508                               bool isVolatile, unsigned Alignment) {
3509  MVT VT = Val.getValueType();
3510
3511  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3512    Alignment = getMVTAlignment(VT);
3513
3514  SDVTList VTs = getVTList(MVT::Other);
3515  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3516  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3517  FoldingSetNodeID ID;
3518  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3519  ID.AddInteger(ISD::UNINDEXED);
3520  ID.AddInteger(false);
3521  ID.AddInteger(VT.getRawBits());
3522  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3523  void *IP = 0;
3524  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3525    return SDValue(E, 0);
3526  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3527  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3528                      VT, SV, SVOffset, Alignment, isVolatile);
3529  CSEMap.InsertNode(N, IP);
3530  AllNodes.push_back(N);
3531  return SDValue(N, 0);
3532}
3533
3534SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3535                                    SDValue Ptr, const Value *SV,
3536                                    int SVOffset, MVT SVT,
3537                                    bool isVolatile, unsigned Alignment) {
3538  MVT VT = Val.getValueType();
3539
3540  if (VT == SVT)
3541    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3542
3543  assert(VT.bitsGT(SVT) && "Not a truncation?");
3544  assert(VT.isInteger() == SVT.isInteger() &&
3545         "Can't do FP-INT conversion!");
3546
3547  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3548    Alignment = getMVTAlignment(VT);
3549
3550  SDVTList VTs = getVTList(MVT::Other);
3551  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3552  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3553  FoldingSetNodeID ID;
3554  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3555  ID.AddInteger(ISD::UNINDEXED);
3556  ID.AddInteger(1);
3557  ID.AddInteger(SVT.getRawBits());
3558  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3559  void *IP = 0;
3560  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3561    return SDValue(E, 0);
3562  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3563  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3564                      SVT, SV, SVOffset, Alignment, isVolatile);
3565  CSEMap.InsertNode(N, IP);
3566  AllNodes.push_back(N);
3567  return SDValue(N, 0);
3568}
3569
3570SDValue
3571SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3572                              SDValue Offset, ISD::MemIndexedMode AM) {
3573  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3574  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3575         "Store is already a indexed store!");
3576  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3577  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3578  FoldingSetNodeID ID;
3579  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3580  ID.AddInteger(AM);
3581  ID.AddInteger(ST->isTruncatingStore());
3582  ID.AddInteger(ST->getMemoryVT().getRawBits());
3583  ID.AddInteger(ST->getRawFlags());
3584  void *IP = 0;
3585  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3586    return SDValue(E, 0);
3587  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3588  new (N) StoreSDNode(Ops, VTs, AM,
3589                      ST->isTruncatingStore(), ST->getMemoryVT(),
3590                      ST->getSrcValue(), ST->getSrcValueOffset(),
3591                      ST->getAlignment(), ST->isVolatile());
3592  CSEMap.InsertNode(N, IP);
3593  AllNodes.push_back(N);
3594  return SDValue(N, 0);
3595}
3596
3597SDValue SelectionDAG::getVAArg(MVT VT,
3598                               SDValue Chain, SDValue Ptr,
3599                               SDValue SV) {
3600  SDValue Ops[] = { Chain, Ptr, SV };
3601  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3602}
3603
3604SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3605                              const SDUse *Ops, unsigned NumOps) {
3606  switch (NumOps) {
3607  case 0: return getNode(Opcode, VT);
3608  case 1: return getNode(Opcode, VT, Ops[0]);
3609  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3610  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3611  default: break;
3612  }
3613
3614  // Copy from an SDUse array into an SDValue array for use with
3615  // the regular getNode logic.
3616  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3617  return getNode(Opcode, VT, &NewOps[0], NumOps);
3618}
3619
3620SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3621                              const SDValue *Ops, unsigned NumOps) {
3622  switch (NumOps) {
3623  case 0: return getNode(Opcode, VT);
3624  case 1: return getNode(Opcode, VT, Ops[0]);
3625  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3626  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3627  default: break;
3628  }
3629
3630  switch (Opcode) {
3631  default: break;
3632  case ISD::SELECT_CC: {
3633    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3634    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3635           "LHS and RHS of condition must have same type!");
3636    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3637           "True and False arms of SelectCC must have same type!");
3638    assert(Ops[2].getValueType() == VT &&
3639           "select_cc node must be of same type as true and false value!");
3640    break;
3641  }
3642  case ISD::BR_CC: {
3643    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3644    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3645           "LHS/RHS of comparison should match types!");
3646    break;
3647  }
3648  }
3649
3650  // Memoize nodes.
3651  SDNode *N;
3652  SDVTList VTs = getVTList(VT);
3653  if (VT != MVT::Flag) {
3654    FoldingSetNodeID ID;
3655    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3656    void *IP = 0;
3657    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3658      return SDValue(E, 0);
3659    N = NodeAllocator.Allocate<SDNode>();
3660    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3661    CSEMap.InsertNode(N, IP);
3662  } else {
3663    N = NodeAllocator.Allocate<SDNode>();
3664    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3665  }
3666  AllNodes.push_back(N);
3667#ifndef NDEBUG
3668  VerifyNode(N);
3669#endif
3670  return SDValue(N, 0);
3671}
3672
3673SDValue SelectionDAG::getNode(unsigned Opcode,
3674                              const std::vector<MVT> &ResultTys,
3675                              const SDValue *Ops, unsigned NumOps) {
3676  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3677                 Ops, NumOps);
3678}
3679
3680SDValue SelectionDAG::getNode(unsigned Opcode,
3681                              const MVT *VTs, unsigned NumVTs,
3682                              const SDValue *Ops, unsigned NumOps) {
3683  if (NumVTs == 1)
3684    return getNode(Opcode, VTs[0], Ops, NumOps);
3685  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3686}
3687
3688SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3689                              const SDValue *Ops, unsigned NumOps) {
3690  if (VTList.NumVTs == 1)
3691    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3692
3693  switch (Opcode) {
3694  // FIXME: figure out how to safely handle things like
3695  // int foo(int x) { return 1 << (x & 255); }
3696  // int bar() { return foo(256); }
3697#if 0
3698  case ISD::SRA_PARTS:
3699  case ISD::SRL_PARTS:
3700  case ISD::SHL_PARTS:
3701    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3702        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3703      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3704    else if (N3.getOpcode() == ISD::AND)
3705      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3706        // If the and is only masking out bits that cannot effect the shift,
3707        // eliminate the and.
3708        unsigned NumBits = VT.getSizeInBits()*2;
3709        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3710          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3711      }
3712    break;
3713#endif
3714  }
3715
3716  // Memoize the node unless it returns a flag.
3717  SDNode *N;
3718  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3719    FoldingSetNodeID ID;
3720    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3721    void *IP = 0;
3722    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3723      return SDValue(E, 0);
3724    if (NumOps == 1) {
3725      N = NodeAllocator.Allocate<UnarySDNode>();
3726      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3727    } else if (NumOps == 2) {
3728      N = NodeAllocator.Allocate<BinarySDNode>();
3729      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3730    } else if (NumOps == 3) {
3731      N = NodeAllocator.Allocate<TernarySDNode>();
3732      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3733    } else {
3734      N = NodeAllocator.Allocate<SDNode>();
3735      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3736    }
3737    CSEMap.InsertNode(N, IP);
3738  } else {
3739    if (NumOps == 1) {
3740      N = NodeAllocator.Allocate<UnarySDNode>();
3741      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3742    } else if (NumOps == 2) {
3743      N = NodeAllocator.Allocate<BinarySDNode>();
3744      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3745    } else if (NumOps == 3) {
3746      N = NodeAllocator.Allocate<TernarySDNode>();
3747      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3748    } else {
3749      N = NodeAllocator.Allocate<SDNode>();
3750      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3751    }
3752  }
3753  AllNodes.push_back(N);
3754#ifndef NDEBUG
3755  VerifyNode(N);
3756#endif
3757  return SDValue(N, 0);
3758}
3759
3760SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3761  return getNode(Opcode, VTList, 0, 0);
3762}
3763
3764SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3765                                SDValue N1) {
3766  SDValue Ops[] = { N1 };
3767  return getNode(Opcode, VTList, Ops, 1);
3768}
3769
3770SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3771                              SDValue N1, SDValue N2) {
3772  SDValue Ops[] = { N1, N2 };
3773  return getNode(Opcode, VTList, Ops, 2);
3774}
3775
3776SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3777                              SDValue N1, SDValue N2, SDValue N3) {
3778  SDValue Ops[] = { N1, N2, N3 };
3779  return getNode(Opcode, VTList, Ops, 3);
3780}
3781
3782SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3783                              SDValue N1, SDValue N2, SDValue N3,
3784                              SDValue N4) {
3785  SDValue Ops[] = { N1, N2, N3, N4 };
3786  return getNode(Opcode, VTList, Ops, 4);
3787}
3788
3789SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3790                              SDValue N1, SDValue N2, SDValue N3,
3791                              SDValue N4, SDValue N5) {
3792  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3793  return getNode(Opcode, VTList, Ops, 5);
3794}
3795
3796SDVTList SelectionDAG::getVTList(MVT VT) {
3797  return makeVTList(SDNode::getValueTypeList(VT), 1);
3798}
3799
3800SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3801  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3802       E = VTList.rend(); I != E; ++I)
3803    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3804      return *I;
3805
3806  MVT *Array = Allocator.Allocate<MVT>(2);
3807  Array[0] = VT1;
3808  Array[1] = VT2;
3809  SDVTList Result = makeVTList(Array, 2);
3810  VTList.push_back(Result);
3811  return Result;
3812}
3813
3814SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3815  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3816       E = VTList.rend(); I != E; ++I)
3817    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3818                          I->VTs[2] == VT3)
3819      return *I;
3820
3821  MVT *Array = Allocator.Allocate<MVT>(3);
3822  Array[0] = VT1;
3823  Array[1] = VT2;
3824  Array[2] = VT3;
3825  SDVTList Result = makeVTList(Array, 3);
3826  VTList.push_back(Result);
3827  return Result;
3828}
3829
3830SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3831  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3832       E = VTList.rend(); I != E; ++I)
3833    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3834                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3835      return *I;
3836
3837  MVT *Array = Allocator.Allocate<MVT>(3);
3838  Array[0] = VT1;
3839  Array[1] = VT2;
3840  Array[2] = VT3;
3841  Array[3] = VT4;
3842  SDVTList Result = makeVTList(Array, 4);
3843  VTList.push_back(Result);
3844  return Result;
3845}
3846
3847SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3848  switch (NumVTs) {
3849    case 0: assert(0 && "Cannot have nodes without results!");
3850    case 1: return getVTList(VTs[0]);
3851    case 2: return getVTList(VTs[0], VTs[1]);
3852    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3853    default: break;
3854  }
3855
3856  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3857       E = VTList.rend(); I != E; ++I) {
3858    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3859      continue;
3860
3861    bool NoMatch = false;
3862    for (unsigned i = 2; i != NumVTs; ++i)
3863      if (VTs[i] != I->VTs[i]) {
3864        NoMatch = true;
3865        break;
3866      }
3867    if (!NoMatch)
3868      return *I;
3869  }
3870
3871  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3872  std::copy(VTs, VTs+NumVTs, Array);
3873  SDVTList Result = makeVTList(Array, NumVTs);
3874  VTList.push_back(Result);
3875  return Result;
3876}
3877
3878
3879/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3880/// specified operands.  If the resultant node already exists in the DAG,
3881/// this does not modify the specified node, instead it returns the node that
3882/// already exists.  If the resultant node does not exist in the DAG, the
3883/// input node is returned.  As a degenerate case, if you specify the same
3884/// input operands as the node already has, the input node is returned.
3885SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3886  SDNode *N = InN.getNode();
3887  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3888
3889  // Check to see if there is no change.
3890  if (Op == N->getOperand(0)) return InN;
3891
3892  // See if the modified node already exists.
3893  void *InsertPos = 0;
3894  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3895    return SDValue(Existing, InN.getResNo());
3896
3897  // Nope it doesn't.  Remove the node from its current place in the maps.
3898  if (InsertPos)
3899    if (!RemoveNodeFromCSEMaps(N))
3900      InsertPos = 0;
3901
3902  // Now we update the operands.
3903  N->OperandList[0].getVal()->removeUser(0, N);
3904  N->OperandList[0] = Op;
3905  N->OperandList[0].setUser(N);
3906  Op.getNode()->addUser(0, N);
3907
3908  // If this gets put into a CSE map, add it.
3909  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3910  return InN;
3911}
3912
3913SDValue SelectionDAG::
3914UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3915  SDNode *N = InN.getNode();
3916  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3917
3918  // Check to see if there is no change.
3919  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3920    return InN;   // No operands changed, just return the input node.
3921
3922  // See if the modified node already exists.
3923  void *InsertPos = 0;
3924  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3925    return SDValue(Existing, InN.getResNo());
3926
3927  // Nope it doesn't.  Remove the node from its current place in the maps.
3928  if (InsertPos)
3929    if (!RemoveNodeFromCSEMaps(N))
3930      InsertPos = 0;
3931
3932  // Now we update the operands.
3933  if (N->OperandList[0] != Op1) {
3934    N->OperandList[0].getVal()->removeUser(0, N);
3935    N->OperandList[0] = Op1;
3936    N->OperandList[0].setUser(N);
3937    Op1.getNode()->addUser(0, N);
3938  }
3939  if (N->OperandList[1] != Op2) {
3940    N->OperandList[1].getVal()->removeUser(1, N);
3941    N->OperandList[1] = Op2;
3942    N->OperandList[1].setUser(N);
3943    Op2.getNode()->addUser(1, N);
3944  }
3945
3946  // If this gets put into a CSE map, add it.
3947  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3948  return InN;
3949}
3950
3951SDValue SelectionDAG::
3952UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3953  SDValue Ops[] = { Op1, Op2, Op3 };
3954  return UpdateNodeOperands(N, Ops, 3);
3955}
3956
3957SDValue SelectionDAG::
3958UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3959                   SDValue Op3, SDValue Op4) {
3960  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3961  return UpdateNodeOperands(N, Ops, 4);
3962}
3963
3964SDValue SelectionDAG::
3965UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3966                   SDValue Op3, SDValue Op4, SDValue Op5) {
3967  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3968  return UpdateNodeOperands(N, Ops, 5);
3969}
3970
3971SDValue SelectionDAG::
3972UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3973  SDNode *N = InN.getNode();
3974  assert(N->getNumOperands() == NumOps &&
3975         "Update with wrong number of operands");
3976
3977  // Check to see if there is no change.
3978  bool AnyChange = false;
3979  for (unsigned i = 0; i != NumOps; ++i) {
3980    if (Ops[i] != N->getOperand(i)) {
3981      AnyChange = true;
3982      break;
3983    }
3984  }
3985
3986  // No operands changed, just return the input node.
3987  if (!AnyChange) return InN;
3988
3989  // See if the modified node already exists.
3990  void *InsertPos = 0;
3991  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3992    return SDValue(Existing, InN.getResNo());
3993
3994  // Nope it doesn't.  Remove the node from its current place in the maps.
3995  if (InsertPos)
3996    if (!RemoveNodeFromCSEMaps(N))
3997      InsertPos = 0;
3998
3999  // Now we update the operands.
4000  for (unsigned i = 0; i != NumOps; ++i) {
4001    if (N->OperandList[i] != Ops[i]) {
4002      N->OperandList[i].getVal()->removeUser(i, N);
4003      N->OperandList[i] = Ops[i];
4004      N->OperandList[i].setUser(N);
4005      Ops[i].getNode()->addUser(i, N);
4006    }
4007  }
4008
4009  // If this gets put into a CSE map, add it.
4010  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4011  return InN;
4012}
4013
4014/// DropOperands - Release the operands and set this node to have
4015/// zero operands.
4016void SDNode::DropOperands() {
4017  // Unlike the code in MorphNodeTo that does this, we don't need to
4018  // watch for dead nodes here.
4019  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
4020    I->getVal()->removeUser(std::distance(op_begin(), I), this);
4021
4022  NumOperands = 0;
4023}
4024
4025/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4026/// machine opcode.
4027///
4028SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4029                                   MVT VT) {
4030  SDVTList VTs = getVTList(VT);
4031  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4032}
4033
4034SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4035                                   MVT VT, SDValue Op1) {
4036  SDVTList VTs = getVTList(VT);
4037  SDValue Ops[] = { Op1 };
4038  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4039}
4040
4041SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4042                                   MVT VT, SDValue Op1,
4043                                   SDValue Op2) {
4044  SDVTList VTs = getVTList(VT);
4045  SDValue Ops[] = { Op1, Op2 };
4046  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4047}
4048
4049SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4050                                   MVT VT, SDValue Op1,
4051                                   SDValue Op2, SDValue Op3) {
4052  SDVTList VTs = getVTList(VT);
4053  SDValue Ops[] = { Op1, Op2, Op3 };
4054  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4055}
4056
4057SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4058                                   MVT VT, const SDValue *Ops,
4059                                   unsigned NumOps) {
4060  SDVTList VTs = getVTList(VT);
4061  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4062}
4063
4064SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4065                                   MVT VT1, MVT VT2, const SDValue *Ops,
4066                                   unsigned NumOps) {
4067  SDVTList VTs = getVTList(VT1, VT2);
4068  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4069}
4070
4071SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4072                                   MVT VT1, MVT VT2) {
4073  SDVTList VTs = getVTList(VT1, VT2);
4074  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4075}
4076
4077SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4078                                   MVT VT1, MVT VT2, MVT VT3,
4079                                   const SDValue *Ops, unsigned NumOps) {
4080  SDVTList VTs = getVTList(VT1, VT2, VT3);
4081  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4082}
4083
4084SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4085                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4086                                   const SDValue *Ops, unsigned NumOps) {
4087  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4088  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4089}
4090
4091SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4092                                   MVT VT1, MVT VT2,
4093                                   SDValue Op1) {
4094  SDVTList VTs = getVTList(VT1, VT2);
4095  SDValue Ops[] = { Op1 };
4096  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4097}
4098
4099SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4100                                   MVT VT1, MVT VT2,
4101                                   SDValue Op1, SDValue Op2) {
4102  SDVTList VTs = getVTList(VT1, VT2);
4103  SDValue Ops[] = { Op1, Op2 };
4104  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4105}
4106
4107SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4108                                   MVT VT1, MVT VT2,
4109                                   SDValue Op1, SDValue Op2,
4110                                   SDValue Op3) {
4111  SDVTList VTs = getVTList(VT1, VT2);
4112  SDValue Ops[] = { Op1, Op2, Op3 };
4113  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4114}
4115
4116SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4117                                   MVT VT1, MVT VT2, MVT VT3,
4118                                   SDValue Op1, SDValue Op2,
4119                                   SDValue Op3) {
4120  SDVTList VTs = getVTList(VT1, VT2, VT3);
4121  SDValue Ops[] = { Op1, Op2, Op3 };
4122  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4123}
4124
4125SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4126                                   SDVTList VTs, const SDValue *Ops,
4127                                   unsigned NumOps) {
4128  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4129}
4130
4131SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4132                                  MVT VT) {
4133  SDVTList VTs = getVTList(VT);
4134  return MorphNodeTo(N, Opc, VTs, 0, 0);
4135}
4136
4137SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4138                                  MVT VT, SDValue Op1) {
4139  SDVTList VTs = getVTList(VT);
4140  SDValue Ops[] = { Op1 };
4141  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4142}
4143
4144SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4145                                  MVT VT, SDValue Op1,
4146                                  SDValue Op2) {
4147  SDVTList VTs = getVTList(VT);
4148  SDValue Ops[] = { Op1, Op2 };
4149  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4150}
4151
4152SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4153                                  MVT VT, SDValue Op1,
4154                                  SDValue Op2, SDValue Op3) {
4155  SDVTList VTs = getVTList(VT);
4156  SDValue Ops[] = { Op1, Op2, Op3 };
4157  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4158}
4159
4160SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4161                                  MVT VT, const SDValue *Ops,
4162                                  unsigned NumOps) {
4163  SDVTList VTs = getVTList(VT);
4164  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4165}
4166
4167SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4168                                  MVT VT1, MVT VT2, const SDValue *Ops,
4169                                  unsigned NumOps) {
4170  SDVTList VTs = getVTList(VT1, VT2);
4171  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4172}
4173
4174SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4175                                  MVT VT1, MVT VT2) {
4176  SDVTList VTs = getVTList(VT1, VT2);
4177  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4178}
4179
4180SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4181                                  MVT VT1, MVT VT2, MVT VT3,
4182                                  const SDValue *Ops, unsigned NumOps) {
4183  SDVTList VTs = getVTList(VT1, VT2, VT3);
4184  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4185}
4186
4187SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4188                                  MVT VT1, MVT VT2,
4189                                  SDValue Op1) {
4190  SDVTList VTs = getVTList(VT1, VT2);
4191  SDValue Ops[] = { Op1 };
4192  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4193}
4194
4195SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4196                                  MVT VT1, MVT VT2,
4197                                  SDValue Op1, SDValue Op2) {
4198  SDVTList VTs = getVTList(VT1, VT2);
4199  SDValue Ops[] = { Op1, Op2 };
4200  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4201}
4202
4203SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4204                                  MVT VT1, MVT VT2,
4205                                  SDValue Op1, SDValue Op2,
4206                                  SDValue Op3) {
4207  SDVTList VTs = getVTList(VT1, VT2);
4208  SDValue Ops[] = { Op1, Op2, Op3 };
4209  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4210}
4211
4212/// MorphNodeTo - These *mutate* the specified node to have the specified
4213/// return type, opcode, and operands.
4214///
4215/// Note that MorphNodeTo returns the resultant node.  If there is already a
4216/// node of the specified opcode and operands, it returns that node instead of
4217/// the current one.
4218///
4219/// Using MorphNodeTo is faster than creating a new node and swapping it in
4220/// with ReplaceAllUsesWith both because it often avoids allocating a new
4221/// node, and because it doesn't require CSE recalculation for any of
4222/// the node's users.
4223///
4224SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4225                                  SDVTList VTs, const SDValue *Ops,
4226                                  unsigned NumOps) {
4227  // If an identical node already exists, use it.
4228  void *IP = 0;
4229  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4230    FoldingSetNodeID ID;
4231    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4232    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4233      return ON;
4234  }
4235
4236  if (!RemoveNodeFromCSEMaps(N))
4237    IP = 0;
4238
4239  // Start the morphing.
4240  N->NodeType = Opc;
4241  N->ValueList = VTs.VTs;
4242  N->NumValues = VTs.NumVTs;
4243
4244  // Clear the operands list, updating used nodes to remove this from their
4245  // use list.  Keep track of any operands that become dead as a result.
4246  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4247  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4248       I != E; ++I) {
4249    SDNode *Used = I->getVal();
4250    Used->removeUser(std::distance(B, I), N);
4251    if (Used->use_empty())
4252      DeadNodeSet.insert(Used);
4253  }
4254
4255  // If NumOps is larger than the # of operands we currently have, reallocate
4256  // the operand list.
4257  if (NumOps > N->NumOperands) {
4258    if (N->OperandsNeedDelete)
4259      delete[] N->OperandList;
4260
4261    if (N->isMachineOpcode()) {
4262      // We're creating a final node that will live unmorphed for the
4263      // remainder of the current SelectionDAG iteration, so we can allocate
4264      // the operands directly out of a pool with no recycling metadata.
4265      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4266      N->OperandsNeedDelete = false;
4267    } else {
4268      N->OperandList = new SDUse[NumOps];
4269      N->OperandsNeedDelete = true;
4270    }
4271  }
4272
4273  // Assign the new operands.
4274  N->NumOperands = NumOps;
4275  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4276    N->OperandList[i] = Ops[i];
4277    N->OperandList[i].setUser(N);
4278    SDNode *ToUse = N->OperandList[i].getVal();
4279    ToUse->addUser(i, N);
4280  }
4281
4282  // Delete any nodes that are still dead after adding the uses for the
4283  // new operands.
4284  SmallVector<SDNode *, 16> DeadNodes;
4285  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4286       E = DeadNodeSet.end(); I != E; ++I)
4287    if ((*I)->use_empty())
4288      DeadNodes.push_back(*I);
4289  RemoveDeadNodes(DeadNodes);
4290
4291  if (IP)
4292    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4293  return N;
4294}
4295
4296
4297/// getTargetNode - These are used for target selectors to create a new node
4298/// with specified return type(s), target opcode, and operands.
4299///
4300/// Note that getTargetNode returns the resultant node.  If there is already a
4301/// node of the specified opcode and operands, it returns that node instead of
4302/// the current one.
4303SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4304  return getNode(~Opcode, VT).getNode();
4305}
4306SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4307  return getNode(~Opcode, VT, Op1).getNode();
4308}
4309SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4310                                    SDValue Op1, SDValue Op2) {
4311  return getNode(~Opcode, VT, Op1, Op2).getNode();
4312}
4313SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4314                                    SDValue Op1, SDValue Op2,
4315                                    SDValue Op3) {
4316  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4317}
4318SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4319                                    const SDValue *Ops, unsigned NumOps) {
4320  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4321}
4322SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4323  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4324  SDValue Op;
4325  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4326}
4327SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4328                                    MVT VT2, SDValue Op1) {
4329  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4330  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4331}
4332SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4333                                    MVT VT2, SDValue Op1,
4334                                    SDValue Op2) {
4335  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4336  SDValue Ops[] = { Op1, Op2 };
4337  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4338}
4339SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4340                                    MVT VT2, SDValue Op1,
4341                                    SDValue Op2, SDValue Op3) {
4342  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4343  SDValue Ops[] = { Op1, Op2, Op3 };
4344  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4345}
4346SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4347                                    const SDValue *Ops, unsigned NumOps) {
4348  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4349  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4350}
4351SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4352                                    SDValue Op1, SDValue Op2) {
4353  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4354  SDValue Ops[] = { Op1, Op2 };
4355  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4356}
4357SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4358                                    SDValue Op1, SDValue Op2,
4359                                    SDValue Op3) {
4360  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4361  SDValue Ops[] = { Op1, Op2, Op3 };
4362  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4363}
4364SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4365                                    const SDValue *Ops, unsigned NumOps) {
4366  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4367  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4368}
4369SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4370                                    MVT VT2, MVT VT3, MVT VT4,
4371                                    const SDValue *Ops, unsigned NumOps) {
4372  std::vector<MVT> VTList;
4373  VTList.push_back(VT1);
4374  VTList.push_back(VT2);
4375  VTList.push_back(VT3);
4376  VTList.push_back(VT4);
4377  const MVT *VTs = getNodeValueTypes(VTList);
4378  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4379}
4380SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4381                                    const std::vector<MVT> &ResultTys,
4382                                    const SDValue *Ops, unsigned NumOps) {
4383  const MVT *VTs = getNodeValueTypes(ResultTys);
4384  return getNode(~Opcode, VTs, ResultTys.size(),
4385                 Ops, NumOps).getNode();
4386}
4387
4388/// getNodeIfExists - Get the specified node if it's already available, or
4389/// else return NULL.
4390SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4391                                      const SDValue *Ops, unsigned NumOps) {
4392  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4393    FoldingSetNodeID ID;
4394    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4395    void *IP = 0;
4396    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4397      return E;
4398  }
4399  return NULL;
4400}
4401
4402
4403/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4404/// This can cause recursive merging of nodes in the DAG.
4405///
4406/// This version assumes From has a single result value.
4407///
4408void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4409                                      DAGUpdateListener *UpdateListener) {
4410  SDNode *From = FromN.getNode();
4411  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4412         "Cannot replace with this method!");
4413  assert(From != To.getNode() && "Cannot replace uses of with self");
4414
4415  // Iterate over all the existing uses of From. This specifically avoids
4416  // visiting any new uses of From that arise while the replacement is
4417  // happening, because any such uses would be the result of CSE: If an
4418  // existing node looks like From after one of its operands is replaced
4419  // by To, we don't want to replace of all its users with To too.
4420  // See PR3018 for more info.
4421  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4422  while (UI != UE) {
4423    SDNode *U = *UI;
4424    do ++UI; while (UI != UE && *UI == U);
4425
4426    // This node is about to morph, remove its old self from the CSE maps.
4427    RemoveNodeFromCSEMaps(U);
4428    int operandNum = 0;
4429    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4430         I != E; ++I, ++operandNum)
4431      if (I->getVal() == From) {
4432        From->removeUser(operandNum, U);
4433        *I = To;
4434        I->setUser(U);
4435        To.getNode()->addUser(operandNum, U);
4436      }
4437
4438    // Now that we have modified U, add it back to the CSE maps.  If it already
4439    // exists there, recursively merge the results together.
4440    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4441      ReplaceAllUsesWith(U, Existing, UpdateListener);
4442      // U is now dead.  Inform the listener if it exists and delete it.
4443      if (UpdateListener)
4444        UpdateListener->NodeDeleted(U, Existing);
4445      DeleteNodeNotInCSEMaps(U);
4446    } else {
4447      // If the node doesn't already exist, we updated it.  Inform a listener if
4448      // it exists.
4449      if (UpdateListener)
4450        UpdateListener->NodeUpdated(U);
4451    }
4452  }
4453}
4454
4455/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4456/// This can cause recursive merging of nodes in the DAG.
4457///
4458/// This version assumes From/To have matching types and numbers of result
4459/// values.
4460///
4461void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4462                                      DAGUpdateListener *UpdateListener) {
4463  assert(From->getVTList().VTs == To->getVTList().VTs &&
4464         From->getNumValues() == To->getNumValues() &&
4465         "Cannot use this version of ReplaceAllUsesWith!");
4466
4467  // Handle the trivial case.
4468  if (From == To)
4469    return;
4470
4471  // Iterate over just the existing users of From. See the comments in
4472  // the ReplaceAllUsesWith above.
4473  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4474  while (UI != UE) {
4475    SDNode *U = *UI;
4476    do ++UI; while (UI != UE && *UI == U);
4477
4478    // This node is about to morph, remove its old self from the CSE maps.
4479    RemoveNodeFromCSEMaps(U);
4480    int operandNum = 0;
4481    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4482         I != E; ++I, ++operandNum)
4483      if (I->getVal() == From) {
4484        From->removeUser(operandNum, U);
4485        I->getSDValue().setNode(To);
4486        To->addUser(operandNum, U);
4487      }
4488
4489    // Now that we have modified U, add it back to the CSE maps.  If it already
4490    // exists there, recursively merge the results together.
4491    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4492      ReplaceAllUsesWith(U, Existing, UpdateListener);
4493      // U is now dead.  Inform the listener if it exists and delete it.
4494      if (UpdateListener)
4495        UpdateListener->NodeDeleted(U, Existing);
4496      DeleteNodeNotInCSEMaps(U);
4497    } else {
4498      // If the node doesn't already exist, we updated it.  Inform a listener if
4499      // it exists.
4500      if (UpdateListener)
4501        UpdateListener->NodeUpdated(U);
4502    }
4503  }
4504}
4505
4506/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4507/// This can cause recursive merging of nodes in the DAG.
4508///
4509/// This version can replace From with any result values.  To must match the
4510/// number and types of values returned by From.
4511void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4512                                      const SDValue *To,
4513                                      DAGUpdateListener *UpdateListener) {
4514  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4515    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4516
4517  // Iterate over just the existing users of From. See the comments in
4518  // the ReplaceAllUsesWith above.
4519  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4520  while (UI != UE) {
4521    SDNode *U = *UI;
4522    do ++UI; while (UI != UE && *UI == U);
4523
4524    // This node is about to morph, remove its old self from the CSE maps.
4525    RemoveNodeFromCSEMaps(U);
4526    int operandNum = 0;
4527    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4528         I != E; ++I, ++operandNum)
4529      if (I->getVal() == From) {
4530        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4531        From->removeUser(operandNum, U);
4532        *I = ToOp;
4533        I->setUser(U);
4534        ToOp.getNode()->addUser(operandNum, U);
4535      }
4536
4537    // Now that we have modified U, add it back to the CSE maps.  If it already
4538    // exists there, recursively merge the results together.
4539    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4540      ReplaceAllUsesWith(U, Existing, UpdateListener);
4541      // U is now dead.  Inform the listener if it exists and delete it.
4542      if (UpdateListener)
4543        UpdateListener->NodeDeleted(U, Existing);
4544      DeleteNodeNotInCSEMaps(U);
4545    } else {
4546      // If the node doesn't already exist, we updated it.  Inform a listener if
4547      // it exists.
4548      if (UpdateListener)
4549        UpdateListener->NodeUpdated(U);
4550    }
4551  }
4552}
4553
4554/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4555/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4556/// handled the same way as for ReplaceAllUsesWith.
4557void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4558                                             DAGUpdateListener *UpdateListener){
4559  // Handle the really simple, really trivial case efficiently.
4560  if (From == To) return;
4561
4562  // Handle the simple, trivial, case efficiently.
4563  if (From.getNode()->getNumValues() == 1) {
4564    ReplaceAllUsesWith(From, To, UpdateListener);
4565    return;
4566  }
4567
4568  // Get all of the users of From.getNode().  We want these in a nice,
4569  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4570  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4571
4572  while (!Users.empty()) {
4573    // We know that this user uses some value of From.  If it is the right
4574    // value, update it.
4575    SDNode *User = Users.back();
4576    Users.pop_back();
4577
4578    // Scan for an operand that matches From.
4579    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4580    for (; Op != E; ++Op)
4581      if (*Op == From) break;
4582
4583    // If there are no matches, the user must use some other result of From.
4584    if (Op == E) continue;
4585
4586    // Okay, we know this user needs to be updated.  Remove its old self
4587    // from the CSE maps.
4588    RemoveNodeFromCSEMaps(User);
4589
4590    // Update all operands that match "From" in case there are multiple uses.
4591    for (; Op != E; ++Op) {
4592      if (*Op == From) {
4593        From.getNode()->removeUser(Op-User->op_begin(), User);
4594        *Op = To;
4595        Op->setUser(User);
4596        To.getNode()->addUser(Op-User->op_begin(), User);
4597      }
4598    }
4599
4600    // Now that we have modified User, add it back to the CSE maps.  If it
4601    // already exists there, recursively merge the results together.
4602    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4603    if (!Existing) {
4604      if (UpdateListener) UpdateListener->NodeUpdated(User);
4605      continue;  // Continue on to next user.
4606    }
4607
4608    // If there was already an existing matching node, use ReplaceAllUsesWith
4609    // to replace the dead one with the existing one.  This can cause
4610    // recursive merging of other unrelated nodes down the line.
4611    ReplaceAllUsesWith(User, Existing, UpdateListener);
4612
4613    // User is now dead.  Notify a listener if present.
4614    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4615    DeleteNodeNotInCSEMaps(User);
4616  }
4617}
4618
4619/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4620/// uses of other values produced by From.getVal() alone.  The same value may
4621/// appear in both the From and To list.  The Deleted vector is
4622/// handled the same way as for ReplaceAllUsesWith.
4623void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4624                                              const SDValue *To,
4625                                              unsigned Num,
4626                                              DAGUpdateListener *UpdateListener){
4627  // Handle the simple, trivial case efficiently.
4628  if (Num == 1)
4629    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4630
4631  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4632  for (unsigned i = 0; i != Num; ++i)
4633    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4634         E = From[i].getNode()->use_end(); UI != E; ++UI)
4635      Users.push_back(std::make_pair(*UI, i));
4636
4637  while (!Users.empty()) {
4638    // We know that this user uses some value of From.  If it is the right
4639    // value, update it.
4640    SDNode *User = Users.back().first;
4641    unsigned i = Users.back().second;
4642    Users.pop_back();
4643
4644    // Scan for an operand that matches From.
4645    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4646    for (; Op != E; ++Op)
4647      if (*Op == From[i]) break;
4648
4649    // If there are no matches, the user must use some other result of From.
4650    if (Op == E) continue;
4651
4652    // Okay, we know this user needs to be updated.  Remove its old self
4653    // from the CSE maps.
4654    RemoveNodeFromCSEMaps(User);
4655
4656    // Update all operands that match "From" in case there are multiple uses.
4657    for (; Op != E; ++Op) {
4658      if (*Op == From[i]) {
4659        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4660        *Op = To[i];
4661        Op->setUser(User);
4662        To[i].getNode()->addUser(Op-User->op_begin(), User);
4663      }
4664    }
4665
4666    // Now that we have modified User, add it back to the CSE maps.  If it
4667    // already exists there, recursively merge the results together.
4668    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4669    if (!Existing) {
4670      if (UpdateListener) UpdateListener->NodeUpdated(User);
4671      continue;  // Continue on to next user.
4672    }
4673
4674    // If there was already an existing matching node, use ReplaceAllUsesWith
4675    // to replace the dead one with the existing one.  This can cause
4676    // recursive merging of other unrelated nodes down the line.
4677    ReplaceAllUsesWith(User, Existing, UpdateListener);
4678
4679    // User is now dead.  Notify a listener if present.
4680    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4681    DeleteNodeNotInCSEMaps(User);
4682  }
4683}
4684
4685/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4686/// based on their topological order. It returns the maximum id and a vector
4687/// of the SDNodes* in assigned order by reference.
4688unsigned SelectionDAG::AssignTopologicalOrder() {
4689
4690  unsigned DAGSize = 0;
4691
4692  // SortedPos tracks the progress of the algorithm. Nodes before it are
4693  // sorted, nodes after it are unsorted. When the algorithm completes
4694  // it is at the end of the list.
4695  allnodes_iterator SortedPos = allnodes_begin();
4696
4697  // Visit all the nodes. Move nodes with no operands to the front of
4698  // the list immediately. Annotate nodes that do have operands with their
4699  // operand count. Before we do this, the Node Id fields of the nodes
4700  // may contain arbitrary values. After, the Node Id fields for nodes
4701  // before SortedPos will contain the topological sort index, and the
4702  // Node Id fields for nodes At SortedPos and after will contain the
4703  // count of outstanding operands.
4704  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4705    SDNode *N = I++;
4706    unsigned Degree = N->getNumOperands();
4707    if (Degree == 0) {
4708      // A node with no uses, add it to the result array immediately.
4709      N->setNodeId(DAGSize++);
4710      allnodes_iterator Q = N;
4711      if (Q != SortedPos)
4712        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4713      ++SortedPos;
4714    } else {
4715      // Temporarily use the Node Id as scratch space for the degree count.
4716      N->setNodeId(Degree);
4717    }
4718  }
4719
4720  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4721  // such that by the time the end is reached all nodes will be sorted.
4722  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4723    SDNode *N = I;
4724    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4725         UI != UE; ++UI) {
4726      SDNode *P = *UI;
4727      unsigned Degree = P->getNodeId();
4728      --Degree;
4729      if (Degree == 0) {
4730        // All of P's operands are sorted, so P may sorted now.
4731        P->setNodeId(DAGSize++);
4732        if (P != SortedPos)
4733          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4734        ++SortedPos;
4735      } else {
4736        // Update P's outstanding operand count.
4737        P->setNodeId(Degree);
4738      }
4739    }
4740  }
4741
4742  assert(SortedPos == AllNodes.end() &&
4743         "Topological sort incomplete!");
4744  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4745         "First node in topological sort is not the entry token!");
4746  assert(AllNodes.front().getNodeId() == 0 &&
4747         "First node in topological sort has non-zero id!");
4748  assert(AllNodes.front().getNumOperands() == 0 &&
4749         "First node in topological sort has operands!");
4750  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4751         "Last node in topologic sort has unexpected id!");
4752  assert(AllNodes.back().use_empty() &&
4753         "Last node in topologic sort has users!");
4754  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4755  return DAGSize;
4756}
4757
4758
4759
4760//===----------------------------------------------------------------------===//
4761//                              SDNode Class
4762//===----------------------------------------------------------------------===//
4763
4764HandleSDNode::~HandleSDNode() {
4765  DropOperands();
4766}
4767
4768GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4769                                         MVT VT, int64_t o)
4770  : SDNode(isa<GlobalVariable>(GA) &&
4771           cast<GlobalVariable>(GA)->isThreadLocal() ?
4772           // Thread Local
4773           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4774           // Non Thread Local
4775           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4776           getSDVTList(VT)), Offset(o) {
4777  TheGlobal = const_cast<GlobalValue*>(GA);
4778}
4779
4780MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4781                     const Value *srcValue, int SVO,
4782                     unsigned alignment, bool vol)
4783 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4784   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4785
4786  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4787  assert(getAlignment() == alignment && "Alignment representation error!");
4788  assert(isVolatile() == vol && "Volatile representation error!");
4789}
4790
4791MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4792                     unsigned NumOps, MVT memvt, const Value *srcValue,
4793                     int SVO, unsigned alignment, bool vol)
4794   : SDNode(Opc, VTs, Ops, NumOps),
4795     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4796     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4797  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4798  assert(getAlignment() == alignment && "Alignment representation error!");
4799  assert(isVolatile() == vol && "Volatile representation error!");
4800}
4801
4802/// getMemOperand - Return a MachineMemOperand object describing the memory
4803/// reference performed by this memory reference.
4804MachineMemOperand MemSDNode::getMemOperand() const {
4805  int Flags = 0;
4806  if (isa<LoadSDNode>(this))
4807    Flags = MachineMemOperand::MOLoad;
4808  else if (isa<StoreSDNode>(this))
4809    Flags = MachineMemOperand::MOStore;
4810  else if (isa<AtomicSDNode>(this)) {
4811    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4812  }
4813  else {
4814    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4815    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4816    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4817    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4818  }
4819
4820  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4821  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4822
4823  // Check if the memory reference references a frame index
4824  const FrameIndexSDNode *FI =
4825  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4826  if (!getSrcValue() && FI)
4827    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4828                             Flags, 0, Size, getAlignment());
4829  else
4830    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4831                             Size, getAlignment());
4832}
4833
4834/// Profile - Gather unique data for the node.
4835///
4836void SDNode::Profile(FoldingSetNodeID &ID) const {
4837  AddNodeIDNode(ID, this);
4838}
4839
4840/// getValueTypeList - Return a pointer to the specified value type.
4841///
4842const MVT *SDNode::getValueTypeList(MVT VT) {
4843  if (VT.isExtended()) {
4844    static std::set<MVT, MVT::compareRawBits> EVTs;
4845    return &(*EVTs.insert(VT).first);
4846  } else {
4847    static MVT VTs[MVT::LAST_VALUETYPE];
4848    VTs[VT.getSimpleVT()] = VT;
4849    return &VTs[VT.getSimpleVT()];
4850  }
4851}
4852
4853/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4854/// indicated value.  This method ignores uses of other values defined by this
4855/// operation.
4856bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4857  assert(Value < getNumValues() && "Bad value!");
4858
4859  // TODO: Only iterate over uses of a given value of the node
4860  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4861    if (UI.getUse().getSDValue().getResNo() == Value) {
4862      if (NUses == 0)
4863        return false;
4864      --NUses;
4865    }
4866  }
4867
4868  // Found exactly the right number of uses?
4869  return NUses == 0;
4870}
4871
4872
4873/// hasAnyUseOfValue - Return true if there are any use of the indicated
4874/// value. This method ignores uses of other values defined by this operation.
4875bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4876  assert(Value < getNumValues() && "Bad value!");
4877
4878  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4879    if (UI.getUse().getSDValue().getResNo() == Value)
4880      return true;
4881
4882  return false;
4883}
4884
4885
4886/// isOnlyUserOf - Return true if this node is the only use of N.
4887///
4888bool SDNode::isOnlyUserOf(SDNode *N) const {
4889  bool Seen = false;
4890  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4891    SDNode *User = *I;
4892    if (User == this)
4893      Seen = true;
4894    else
4895      return false;
4896  }
4897
4898  return Seen;
4899}
4900
4901/// isOperand - Return true if this node is an operand of N.
4902///
4903bool SDValue::isOperandOf(SDNode *N) const {
4904  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4905    if (*this == N->getOperand(i))
4906      return true;
4907  return false;
4908}
4909
4910bool SDNode::isOperandOf(SDNode *N) const {
4911  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4912    if (this == N->OperandList[i].getVal())
4913      return true;
4914  return false;
4915}
4916
4917/// reachesChainWithoutSideEffects - Return true if this operand (which must
4918/// be a chain) reaches the specified operand without crossing any
4919/// side-effecting instructions.  In practice, this looks through token
4920/// factors and non-volatile loads.  In order to remain efficient, this only
4921/// looks a couple of nodes in, it does not do an exhaustive search.
4922bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4923                                               unsigned Depth) const {
4924  if (*this == Dest) return true;
4925
4926  // Don't search too deeply, we just want to be able to see through
4927  // TokenFactor's etc.
4928  if (Depth == 0) return false;
4929
4930  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4931  // of the operands of the TF reach dest, then we can do the xform.
4932  if (getOpcode() == ISD::TokenFactor) {
4933    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4934      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4935        return true;
4936    return false;
4937  }
4938
4939  // Loads don't have side effects, look through them.
4940  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4941    if (!Ld->isVolatile())
4942      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4943  }
4944  return false;
4945}
4946
4947
4948static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4949                            SmallPtrSet<SDNode *, 32> &Visited) {
4950  if (found || !Visited.insert(N))
4951    return;
4952
4953  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4954    SDNode *Op = N->getOperand(i).getNode();
4955    if (Op == P) {
4956      found = true;
4957      return;
4958    }
4959    findPredecessor(Op, P, found, Visited);
4960  }
4961}
4962
4963/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4964/// is either an operand of N or it can be reached by recursively traversing
4965/// up the operands.
4966/// NOTE: this is an expensive method. Use it carefully.
4967bool SDNode::isPredecessorOf(SDNode *N) const {
4968  SmallPtrSet<SDNode *, 32> Visited;
4969  bool found = false;
4970  findPredecessor(N, this, found, Visited);
4971  return found;
4972}
4973
4974uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4975  assert(Num < NumOperands && "Invalid child # of SDNode!");
4976  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4977}
4978
4979std::string SDNode::getOperationName(const SelectionDAG *G) const {
4980  switch (getOpcode()) {
4981  default:
4982    if (getOpcode() < ISD::BUILTIN_OP_END)
4983      return "<<Unknown DAG Node>>";
4984    if (isMachineOpcode()) {
4985      if (G)
4986        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4987          if (getMachineOpcode() < TII->getNumOpcodes())
4988            return TII->get(getMachineOpcode()).getName();
4989      return "<<Unknown Machine Node>>";
4990    }
4991    if (G) {
4992      const TargetLowering &TLI = G->getTargetLoweringInfo();
4993      const char *Name = TLI.getTargetNodeName(getOpcode());
4994      if (Name) return Name;
4995      return "<<Unknown Target Node>>";
4996    }
4997    return "<<Unknown Node>>";
4998
4999#ifndef NDEBUG
5000  case ISD::DELETED_NODE:
5001    return "<<Deleted Node!>>";
5002#endif
5003  case ISD::PREFETCH:      return "Prefetch";
5004  case ISD::MEMBARRIER:    return "MemBarrier";
5005  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5006  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5007  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5008  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5009  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5010  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5011  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5012  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5013  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5014  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5015  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5016  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5017  case ISD::PCMARKER:      return "PCMarker";
5018  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5019  case ISD::SRCVALUE:      return "SrcValue";
5020  case ISD::MEMOPERAND:    return "MemOperand";
5021  case ISD::EntryToken:    return "EntryToken";
5022  case ISD::TokenFactor:   return "TokenFactor";
5023  case ISD::AssertSext:    return "AssertSext";
5024  case ISD::AssertZext:    return "AssertZext";
5025
5026  case ISD::BasicBlock:    return "BasicBlock";
5027  case ISD::ARG_FLAGS:     return "ArgFlags";
5028  case ISD::VALUETYPE:     return "ValueType";
5029  case ISD::Register:      return "Register";
5030
5031  case ISD::Constant:      return "Constant";
5032  case ISD::ConstantFP:    return "ConstantFP";
5033  case ISD::GlobalAddress: return "GlobalAddress";
5034  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5035  case ISD::FrameIndex:    return "FrameIndex";
5036  case ISD::JumpTable:     return "JumpTable";
5037  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5038  case ISD::RETURNADDR: return "RETURNADDR";
5039  case ISD::FRAMEADDR: return "FRAMEADDR";
5040  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5041  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5042  case ISD::EHSELECTION: return "EHSELECTION";
5043  case ISD::EH_RETURN: return "EH_RETURN";
5044  case ISD::ConstantPool:  return "ConstantPool";
5045  case ISD::ExternalSymbol: return "ExternalSymbol";
5046  case ISD::INTRINSIC_WO_CHAIN: {
5047    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5048    return Intrinsic::getName((Intrinsic::ID)IID);
5049  }
5050  case ISD::INTRINSIC_VOID:
5051  case ISD::INTRINSIC_W_CHAIN: {
5052    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5053    return Intrinsic::getName((Intrinsic::ID)IID);
5054  }
5055
5056  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5057  case ISD::TargetConstant: return "TargetConstant";
5058  case ISD::TargetConstantFP:return "TargetConstantFP";
5059  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5060  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5061  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5062  case ISD::TargetJumpTable:  return "TargetJumpTable";
5063  case ISD::TargetConstantPool:  return "TargetConstantPool";
5064  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5065
5066  case ISD::CopyToReg:     return "CopyToReg";
5067  case ISD::CopyFromReg:   return "CopyFromReg";
5068  case ISD::UNDEF:         return "undef";
5069  case ISD::MERGE_VALUES:  return "merge_values";
5070  case ISD::INLINEASM:     return "inlineasm";
5071  case ISD::DBG_LABEL:     return "dbg_label";
5072  case ISD::EH_LABEL:      return "eh_label";
5073  case ISD::DECLARE:       return "declare";
5074  case ISD::HANDLENODE:    return "handlenode";
5075  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5076  case ISD::CALL:          return "call";
5077
5078  // Unary operators
5079  case ISD::FABS:   return "fabs";
5080  case ISD::FNEG:   return "fneg";
5081  case ISD::FSQRT:  return "fsqrt";
5082  case ISD::FSIN:   return "fsin";
5083  case ISD::FCOS:   return "fcos";
5084  case ISD::FPOWI:  return "fpowi";
5085  case ISD::FPOW:   return "fpow";
5086  case ISD::FTRUNC: return "ftrunc";
5087  case ISD::FFLOOR: return "ffloor";
5088  case ISD::FCEIL:  return "fceil";
5089  case ISD::FRINT:  return "frint";
5090  case ISD::FNEARBYINT: return "fnearbyint";
5091
5092  // Binary operators
5093  case ISD::ADD:    return "add";
5094  case ISD::SUB:    return "sub";
5095  case ISD::MUL:    return "mul";
5096  case ISD::MULHU:  return "mulhu";
5097  case ISD::MULHS:  return "mulhs";
5098  case ISD::SDIV:   return "sdiv";
5099  case ISD::UDIV:   return "udiv";
5100  case ISD::SREM:   return "srem";
5101  case ISD::UREM:   return "urem";
5102  case ISD::SMUL_LOHI:  return "smul_lohi";
5103  case ISD::UMUL_LOHI:  return "umul_lohi";
5104  case ISD::SDIVREM:    return "sdivrem";
5105  case ISD::UDIVREM:    return "udivrem";
5106  case ISD::AND:    return "and";
5107  case ISD::OR:     return "or";
5108  case ISD::XOR:    return "xor";
5109  case ISD::SHL:    return "shl";
5110  case ISD::SRA:    return "sra";
5111  case ISD::SRL:    return "srl";
5112  case ISD::ROTL:   return "rotl";
5113  case ISD::ROTR:   return "rotr";
5114  case ISD::FADD:   return "fadd";
5115  case ISD::FSUB:   return "fsub";
5116  case ISD::FMUL:   return "fmul";
5117  case ISD::FDIV:   return "fdiv";
5118  case ISD::FREM:   return "frem";
5119  case ISD::FCOPYSIGN: return "fcopysign";
5120  case ISD::FGETSIGN:  return "fgetsign";
5121
5122  case ISD::SETCC:       return "setcc";
5123  case ISD::VSETCC:      return "vsetcc";
5124  case ISD::SELECT:      return "select";
5125  case ISD::SELECT_CC:   return "select_cc";
5126  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5127  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5128  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5129  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5130  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5131  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5132  case ISD::CARRY_FALSE:         return "carry_false";
5133  case ISD::ADDC:        return "addc";
5134  case ISD::ADDE:        return "adde";
5135  case ISD::SADDO:       return "saddo";
5136  case ISD::UADDO:       return "uaddo";
5137  case ISD::SSUBO:       return "ssubo";
5138  case ISD::USUBO:       return "usubo";
5139  case ISD::SMULO:       return "smulo";
5140  case ISD::UMULO:       return "umulo";
5141  case ISD::SUBC:        return "subc";
5142  case ISD::SUBE:        return "sube";
5143  case ISD::SHL_PARTS:   return "shl_parts";
5144  case ISD::SRA_PARTS:   return "sra_parts";
5145  case ISD::SRL_PARTS:   return "srl_parts";
5146
5147  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5148  case ISD::INSERT_SUBREG:      return "insert_subreg";
5149
5150  // Conversion operators.
5151  case ISD::SIGN_EXTEND: return "sign_extend";
5152  case ISD::ZERO_EXTEND: return "zero_extend";
5153  case ISD::ANY_EXTEND:  return "any_extend";
5154  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5155  case ISD::TRUNCATE:    return "truncate";
5156  case ISD::FP_ROUND:    return "fp_round";
5157  case ISD::FLT_ROUNDS_: return "flt_rounds";
5158  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5159  case ISD::FP_EXTEND:   return "fp_extend";
5160
5161  case ISD::SINT_TO_FP:  return "sint_to_fp";
5162  case ISD::UINT_TO_FP:  return "uint_to_fp";
5163  case ISD::FP_TO_SINT:  return "fp_to_sint";
5164  case ISD::FP_TO_UINT:  return "fp_to_uint";
5165  case ISD::BIT_CONVERT: return "bit_convert";
5166
5167  case ISD::CONVERT_RNDSAT: {
5168    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5169    default: assert(0 && "Unknown cvt code!");
5170    case ISD::CVT_FF:  return "cvt_ff";
5171    case ISD::CVT_FS:  return "cvt_fs";
5172    case ISD::CVT_FU:  return "cvt_fu";
5173    case ISD::CVT_SF:  return "cvt_sf";
5174    case ISD::CVT_UF:  return "cvt_uf";
5175    case ISD::CVT_SS:  return "cvt_ss";
5176    case ISD::CVT_SU:  return "cvt_su";
5177    case ISD::CVT_US:  return "cvt_us";
5178    case ISD::CVT_UU:  return "cvt_uu";
5179    }
5180  }
5181
5182    // Control flow instructions
5183  case ISD::BR:      return "br";
5184  case ISD::BRIND:   return "brind";
5185  case ISD::BR_JT:   return "br_jt";
5186  case ISD::BRCOND:  return "brcond";
5187  case ISD::BR_CC:   return "br_cc";
5188  case ISD::RET:     return "ret";
5189  case ISD::CALLSEQ_START:  return "callseq_start";
5190  case ISD::CALLSEQ_END:    return "callseq_end";
5191
5192    // Other operators
5193  case ISD::LOAD:               return "load";
5194  case ISD::STORE:              return "store";
5195  case ISD::VAARG:              return "vaarg";
5196  case ISD::VACOPY:             return "vacopy";
5197  case ISD::VAEND:              return "vaend";
5198  case ISD::VASTART:            return "vastart";
5199  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5200  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5201  case ISD::BUILD_PAIR:         return "build_pair";
5202  case ISD::STACKSAVE:          return "stacksave";
5203  case ISD::STACKRESTORE:       return "stackrestore";
5204  case ISD::TRAP:               return "trap";
5205
5206  // Bit manipulation
5207  case ISD::BSWAP:   return "bswap";
5208  case ISD::CTPOP:   return "ctpop";
5209  case ISD::CTTZ:    return "cttz";
5210  case ISD::CTLZ:    return "ctlz";
5211
5212  // Debug info
5213  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5214  case ISD::DEBUG_LOC: return "debug_loc";
5215
5216  // Trampolines
5217  case ISD::TRAMPOLINE: return "trampoline";
5218
5219  case ISD::CONDCODE:
5220    switch (cast<CondCodeSDNode>(this)->get()) {
5221    default: assert(0 && "Unknown setcc condition!");
5222    case ISD::SETOEQ:  return "setoeq";
5223    case ISD::SETOGT:  return "setogt";
5224    case ISD::SETOGE:  return "setoge";
5225    case ISD::SETOLT:  return "setolt";
5226    case ISD::SETOLE:  return "setole";
5227    case ISD::SETONE:  return "setone";
5228
5229    case ISD::SETO:    return "seto";
5230    case ISD::SETUO:   return "setuo";
5231    case ISD::SETUEQ:  return "setue";
5232    case ISD::SETUGT:  return "setugt";
5233    case ISD::SETUGE:  return "setuge";
5234    case ISD::SETULT:  return "setult";
5235    case ISD::SETULE:  return "setule";
5236    case ISD::SETUNE:  return "setune";
5237
5238    case ISD::SETEQ:   return "seteq";
5239    case ISD::SETGT:   return "setgt";
5240    case ISD::SETGE:   return "setge";
5241    case ISD::SETLT:   return "setlt";
5242    case ISD::SETLE:   return "setle";
5243    case ISD::SETNE:   return "setne";
5244    }
5245  }
5246}
5247
5248const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5249  switch (AM) {
5250  default:
5251    return "";
5252  case ISD::PRE_INC:
5253    return "<pre-inc>";
5254  case ISD::PRE_DEC:
5255    return "<pre-dec>";
5256  case ISD::POST_INC:
5257    return "<post-inc>";
5258  case ISD::POST_DEC:
5259    return "<post-dec>";
5260  }
5261}
5262
5263std::string ISD::ArgFlagsTy::getArgFlagsString() {
5264  std::string S = "< ";
5265
5266  if (isZExt())
5267    S += "zext ";
5268  if (isSExt())
5269    S += "sext ";
5270  if (isInReg())
5271    S += "inreg ";
5272  if (isSRet())
5273    S += "sret ";
5274  if (isByVal())
5275    S += "byval ";
5276  if (isNest())
5277    S += "nest ";
5278  if (getByValAlign())
5279    S += "byval-align:" + utostr(getByValAlign()) + " ";
5280  if (getOrigAlign())
5281    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5282  if (getByValSize())
5283    S += "byval-size:" + utostr(getByValSize()) + " ";
5284  return S + ">";
5285}
5286
5287void SDNode::dump() const { dump(0); }
5288void SDNode::dump(const SelectionDAG *G) const {
5289  print(errs(), G);
5290  errs().flush();
5291}
5292
5293void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5294  OS << (void*)this << ": ";
5295
5296  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5297    if (i) OS << ",";
5298    if (getValueType(i) == MVT::Other)
5299      OS << "ch";
5300    else
5301      OS << getValueType(i).getMVTString();
5302  }
5303  OS << " = " << getOperationName(G);
5304
5305  OS << " ";
5306  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5307    if (i) OS << ", ";
5308    OS << (void*)getOperand(i).getNode();
5309    if (unsigned RN = getOperand(i).getResNo())
5310      OS << ":" << RN;
5311  }
5312
5313  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5314    SDNode *Mask = getOperand(2).getNode();
5315    OS << "<";
5316    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5317      if (i) OS << ",";
5318      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5319        OS << "u";
5320      else
5321        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5322    }
5323    OS << ">";
5324  }
5325
5326  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5327    OS << '<' << CSDN->getAPIntValue() << '>';
5328  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5329    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5330      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5331    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5332      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5333    else {
5334      OS << "<APFloat(";
5335      CSDN->getValueAPF().bitcastToAPInt().dump();
5336      OS << ")>";
5337    }
5338  } else if (const GlobalAddressSDNode *GADN =
5339             dyn_cast<GlobalAddressSDNode>(this)) {
5340    int64_t offset = GADN->getOffset();
5341    OS << '<';
5342    WriteAsOperand(OS, GADN->getGlobal());
5343    OS << '>';
5344    if (offset > 0)
5345      OS << " + " << offset;
5346    else
5347      OS << " " << offset;
5348  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5349    OS << "<" << FIDN->getIndex() << ">";
5350  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5351    OS << "<" << JTDN->getIndex() << ">";
5352  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5353    int offset = CP->getOffset();
5354    if (CP->isMachineConstantPoolEntry())
5355      OS << "<" << *CP->getMachineCPVal() << ">";
5356    else
5357      OS << "<" << *CP->getConstVal() << ">";
5358    if (offset > 0)
5359      OS << " + " << offset;
5360    else
5361      OS << " " << offset;
5362  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5363    OS << "<";
5364    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5365    if (LBB)
5366      OS << LBB->getName() << " ";
5367    OS << (const void*)BBDN->getBasicBlock() << ">";
5368  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5369    if (G && R->getReg() &&
5370        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5371      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5372    } else {
5373      OS << " #" << R->getReg();
5374    }
5375  } else if (const ExternalSymbolSDNode *ES =
5376             dyn_cast<ExternalSymbolSDNode>(this)) {
5377    OS << "'" << ES->getSymbol() << "'";
5378  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5379    if (M->getValue())
5380      OS << "<" << M->getValue() << ">";
5381    else
5382      OS << "<null>";
5383  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5384    if (M->MO.getValue())
5385      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5386    else
5387      OS << "<null:" << M->MO.getOffset() << ">";
5388  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5389    OS << N->getArgFlags().getArgFlagsString();
5390  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5391    OS << ":" << N->getVT().getMVTString();
5392  }
5393  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5394    const Value *SrcValue = LD->getSrcValue();
5395    int SrcOffset = LD->getSrcValueOffset();
5396    OS << " <";
5397    if (SrcValue)
5398      OS << SrcValue;
5399    else
5400      OS << "null";
5401    OS << ":" << SrcOffset << ">";
5402
5403    bool doExt = true;
5404    switch (LD->getExtensionType()) {
5405    default: doExt = false; break;
5406    case ISD::EXTLOAD: OS << " <anyext "; break;
5407    case ISD::SEXTLOAD: OS << " <sext "; break;
5408    case ISD::ZEXTLOAD: OS << " <zext "; break;
5409    }
5410    if (doExt)
5411      OS << LD->getMemoryVT().getMVTString() << ">";
5412
5413    const char *AM = getIndexedModeName(LD->getAddressingMode());
5414    if (*AM)
5415      OS << " " << AM;
5416    if (LD->isVolatile())
5417      OS << " <volatile>";
5418    OS << " alignment=" << LD->getAlignment();
5419  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5420    const Value *SrcValue = ST->getSrcValue();
5421    int SrcOffset = ST->getSrcValueOffset();
5422    OS << " <";
5423    if (SrcValue)
5424      OS << SrcValue;
5425    else
5426      OS << "null";
5427    OS << ":" << SrcOffset << ">";
5428
5429    if (ST->isTruncatingStore())
5430      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5431
5432    const char *AM = getIndexedModeName(ST->getAddressingMode());
5433    if (*AM)
5434      OS << " " << AM;
5435    if (ST->isVolatile())
5436      OS << " <volatile>";
5437    OS << " alignment=" << ST->getAlignment();
5438  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5439    const Value *SrcValue = AT->getSrcValue();
5440    int SrcOffset = AT->getSrcValueOffset();
5441    OS << " <";
5442    if (SrcValue)
5443      OS << SrcValue;
5444    else
5445      OS << "null";
5446    OS << ":" << SrcOffset << ">";
5447    if (AT->isVolatile())
5448      OS << " <volatile>";
5449    OS << " alignment=" << AT->getAlignment();
5450  }
5451}
5452
5453static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5454  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5455    if (N->getOperand(i).getNode()->hasOneUse())
5456      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5457    else
5458      cerr << "\n" << std::string(indent+2, ' ')
5459           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5460
5461
5462  cerr << "\n" << std::string(indent, ' ');
5463  N->dump(G);
5464}
5465
5466void SelectionDAG::dump() const {
5467  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5468
5469  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5470       I != E; ++I) {
5471    const SDNode *N = I;
5472    if (!N->hasOneUse() && N != getRoot().getNode())
5473      DumpNodes(N, 2, this);
5474  }
5475
5476  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5477
5478  cerr << "\n\n";
5479}
5480
5481const Type *ConstantPoolSDNode::getType() const {
5482  if (isMachineConstantPoolEntry())
5483    return Val.MachineCPVal->getType();
5484  return Val.ConstVal->getType();
5485}
5486