SelectionDAG.cpp revision ab4ed595385d0b9421c0d45c809ec6324cf11f11
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/Support/MathExtras.h"
22#include "llvm/Target/MRegisterInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/ADT/SetVector.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringExtras.h"
30#include <algorithm>
31#include <cmath>
32using namespace llvm;
33
34/// makeVTList - Return an instance of the SDVTList struct initialized with the
35/// specified members.
36static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
37  SDVTList Res = {VTs, NumVTs};
38  return Res;
39}
40
41//===----------------------------------------------------------------------===//
42//                              ConstantFPSDNode Class
43//===----------------------------------------------------------------------===//
44
45/// isExactlyValue - We don't rely on operator== working on double values, as
46/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
47/// As such, this method can be used to do an exact bit-for-bit comparison of
48/// two floating point values.
49bool ConstantFPSDNode::isExactlyValue(double V) const {
50  return DoubleToBits(V) == DoubleToBits(Value);
51}
52
53//===----------------------------------------------------------------------===//
54//                              ISD Namespace
55//===----------------------------------------------------------------------===//
56
57/// isBuildVectorAllOnes - Return true if the specified node is a
58/// BUILD_VECTOR where all of the elements are ~0 or undef.
59bool ISD::isBuildVectorAllOnes(const SDNode *N) {
60  // Look through a bit convert.
61  if (N->getOpcode() == ISD::BIT_CONVERT)
62    N = N->getOperand(0).Val;
63
64  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
65
66  unsigned i = 0, e = N->getNumOperands();
67
68  // Skip over all of the undef values.
69  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
70    ++i;
71
72  // Do not accept an all-undef vector.
73  if (i == e) return false;
74
75  // Do not accept build_vectors that aren't all constants or which have non-~0
76  // elements.
77  SDOperand NotZero = N->getOperand(i);
78  if (isa<ConstantSDNode>(NotZero)) {
79    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
80      return false;
81  } else if (isa<ConstantFPSDNode>(NotZero)) {
82    MVT::ValueType VT = NotZero.getValueType();
83    if (VT== MVT::f64) {
84      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
85          (uint64_t)-1)
86        return false;
87    } else {
88      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
89          (uint32_t)-1)
90        return false;
91    }
92  } else
93    return false;
94
95  // Okay, we have at least one ~0 value, check to see if the rest match or are
96  // undefs.
97  for (++i; i != e; ++i)
98    if (N->getOperand(i) != NotZero &&
99        N->getOperand(i).getOpcode() != ISD::UNDEF)
100      return false;
101  return true;
102}
103
104
105/// isBuildVectorAllZeros - Return true if the specified node is a
106/// BUILD_VECTOR where all of the elements are 0 or undef.
107bool ISD::isBuildVectorAllZeros(const SDNode *N) {
108  // Look through a bit convert.
109  if (N->getOpcode() == ISD::BIT_CONVERT)
110    N = N->getOperand(0).Val;
111
112  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
113
114  unsigned i = 0, e = N->getNumOperands();
115
116  // Skip over all of the undef values.
117  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
118    ++i;
119
120  // Do not accept an all-undef vector.
121  if (i == e) return false;
122
123  // Do not accept build_vectors that aren't all constants or which have non-~0
124  // elements.
125  SDOperand Zero = N->getOperand(i);
126  if (isa<ConstantSDNode>(Zero)) {
127    if (!cast<ConstantSDNode>(Zero)->isNullValue())
128      return false;
129  } else if (isa<ConstantFPSDNode>(Zero)) {
130    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
131      return false;
132  } else
133    return false;
134
135  // Okay, we have at least one ~0 value, check to see if the rest match or are
136  // undefs.
137  for (++i; i != e; ++i)
138    if (N->getOperand(i) != Zero &&
139        N->getOperand(i).getOpcode() != ISD::UNDEF)
140      return false;
141  return true;
142}
143
144/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
145/// when given the operation for (X op Y).
146ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
147  // To perform this operation, we just need to swap the L and G bits of the
148  // operation.
149  unsigned OldL = (Operation >> 2) & 1;
150  unsigned OldG = (Operation >> 1) & 1;
151  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
152                       (OldL << 1) |       // New G bit
153                       (OldG << 2));        // New L bit.
154}
155
156/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
157/// 'op' is a valid SetCC operation.
158ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
159  unsigned Operation = Op;
160  if (isInteger)
161    Operation ^= 7;   // Flip L, G, E bits, but not U.
162  else
163    Operation ^= 15;  // Flip all of the condition bits.
164  if (Operation > ISD::SETTRUE2)
165    Operation &= ~8;     // Don't let N and U bits get set.
166  return ISD::CondCode(Operation);
167}
168
169
170/// isSignedOp - For an integer comparison, return 1 if the comparison is a
171/// signed operation and 2 if the result is an unsigned comparison.  Return zero
172/// if the operation does not depend on the sign of the input (setne and seteq).
173static int isSignedOp(ISD::CondCode Opcode) {
174  switch (Opcode) {
175  default: assert(0 && "Illegal integer setcc operation!");
176  case ISD::SETEQ:
177  case ISD::SETNE: return 0;
178  case ISD::SETLT:
179  case ISD::SETLE:
180  case ISD::SETGT:
181  case ISD::SETGE: return 1;
182  case ISD::SETULT:
183  case ISD::SETULE:
184  case ISD::SETUGT:
185  case ISD::SETUGE: return 2;
186  }
187}
188
189/// getSetCCOrOperation - Return the result of a logical OR between different
190/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
191/// returns SETCC_INVALID if it is not possible to represent the resultant
192/// comparison.
193ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
194                                       bool isInteger) {
195  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
196    // Cannot fold a signed integer setcc with an unsigned integer setcc.
197    return ISD::SETCC_INVALID;
198
199  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
200
201  // If the N and U bits get set then the resultant comparison DOES suddenly
202  // care about orderedness, and is true when ordered.
203  if (Op > ISD::SETTRUE2)
204    Op &= ~16;     // Clear the U bit if the N bit is set.
205
206  // Canonicalize illegal integer setcc's.
207  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
208    Op = ISD::SETNE;
209
210  return ISD::CondCode(Op);
211}
212
213/// getSetCCAndOperation - Return the result of a logical AND between different
214/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
215/// function returns zero if it is not possible to represent the resultant
216/// comparison.
217ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
218                                        bool isInteger) {
219  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
220    // Cannot fold a signed setcc with an unsigned setcc.
221    return ISD::SETCC_INVALID;
222
223  // Combine all of the condition bits.
224  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
225
226  // Canonicalize illegal integer setcc's.
227  if (isInteger) {
228    switch (Result) {
229    default: break;
230    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
231    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
232    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
233    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
234    }
235  }
236
237  return Result;
238}
239
240const TargetMachine &SelectionDAG::getTarget() const {
241  return TLI.getTargetMachine();
242}
243
244//===----------------------------------------------------------------------===//
245//                           SDNode Profile Support
246//===----------------------------------------------------------------------===//
247
248/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
249///
250static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
251  ID.AddInteger(OpC);
252}
253
254/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
255/// solely with their pointer.
256void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
257  ID.AddPointer(VTList.VTs);
258}
259
260/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
261///
262static void AddNodeIDOperands(FoldingSetNodeID &ID,
263                              const SDOperand *Ops, unsigned NumOps) {
264  for (; NumOps; --NumOps, ++Ops) {
265    ID.AddPointer(Ops->Val);
266    ID.AddInteger(Ops->ResNo);
267  }
268}
269
270static void AddNodeIDNode(FoldingSetNodeID &ID,
271                          unsigned short OpC, SDVTList VTList,
272                          const SDOperand *OpList, unsigned N) {
273  AddNodeIDOpcode(ID, OpC);
274  AddNodeIDValueTypes(ID, VTList);
275  AddNodeIDOperands(ID, OpList, N);
276}
277
278/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
279/// data.
280static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
281  AddNodeIDOpcode(ID, N->getOpcode());
282  // Add the return value info.
283  AddNodeIDValueTypes(ID, N->getVTList());
284  // Add the operand info.
285  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
286
287  // Handle SDNode leafs with special info.
288  if (N->getNumOperands() == 0) {
289    switch (N->getOpcode()) {
290    default: break;  // Normal nodes don't need extra info.
291    case ISD::TargetConstant:
292    case ISD::Constant:
293      ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
294      break;
295    case ISD::TargetConstantFP:
296    case ISD::ConstantFP:
297      ID.AddDouble(cast<ConstantFPSDNode>(N)->getValue());
298      break;
299    case ISD::TargetGlobalAddress:
300    case ISD::GlobalAddress: {
301      GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
302      ID.AddPointer(GA->getGlobal());
303      ID.AddInteger(GA->getOffset());
304      break;
305    }
306    case ISD::BasicBlock:
307      ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
308      break;
309    case ISD::Register:
310      ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
311      break;
312    case ISD::SRCVALUE: {
313      SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
314      ID.AddPointer(SV->getValue());
315      ID.AddInteger(SV->getOffset());
316      break;
317    }
318    case ISD::FrameIndex:
319    case ISD::TargetFrameIndex:
320      ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
321      break;
322    case ISD::JumpTable:
323    case ISD::TargetJumpTable:
324      ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
325      break;
326    case ISD::ConstantPool:
327    case ISD::TargetConstantPool: {
328      ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
329      ID.AddInteger(CP->getAlignment());
330      ID.AddInteger(CP->getOffset());
331      if (CP->isMachineConstantPoolEntry())
332        CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
333      else
334        ID.AddPointer(CP->getConstVal());
335      break;
336    }
337    case ISD::LOAD: {
338      LoadSDNode *LD = cast<LoadSDNode>(N);
339      ID.AddInteger(LD->getAddressingMode());
340      ID.AddInteger(LD->getExtensionType());
341      ID.AddInteger(LD->getLoadedVT());
342      ID.AddPointer(LD->getSrcValue());
343      ID.AddInteger(LD->getSrcValueOffset());
344      ID.AddInteger(LD->getAlignment());
345      ID.AddInteger(LD->isVolatile());
346      break;
347    }
348    case ISD::STORE: {
349      StoreSDNode *ST = cast<StoreSDNode>(N);
350      ID.AddInteger(ST->getAddressingMode());
351      ID.AddInteger(ST->isTruncatingStore());
352      ID.AddInteger(ST->getStoredVT());
353      ID.AddPointer(ST->getSrcValue());
354      ID.AddInteger(ST->getSrcValueOffset());
355      ID.AddInteger(ST->getAlignment());
356      ID.AddInteger(ST->isVolatile());
357      break;
358    }
359    }
360  }
361}
362
363//===----------------------------------------------------------------------===//
364//                              SelectionDAG Class
365//===----------------------------------------------------------------------===//
366
367/// RemoveDeadNodes - This method deletes all unreachable nodes in the
368/// SelectionDAG.
369void SelectionDAG::RemoveDeadNodes() {
370  // Create a dummy node (which is not added to allnodes), that adds a reference
371  // to the root node, preventing it from being deleted.
372  HandleSDNode Dummy(getRoot());
373
374  SmallVector<SDNode*, 128> DeadNodes;
375
376  // Add all obviously-dead nodes to the DeadNodes worklist.
377  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
378    if (I->use_empty())
379      DeadNodes.push_back(I);
380
381  // Process the worklist, deleting the nodes and adding their uses to the
382  // worklist.
383  while (!DeadNodes.empty()) {
384    SDNode *N = DeadNodes.back();
385    DeadNodes.pop_back();
386
387    // Take the node out of the appropriate CSE map.
388    RemoveNodeFromCSEMaps(N);
389
390    // Next, brutally remove the operand list.  This is safe to do, as there are
391    // no cycles in the graph.
392    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
393      SDNode *Operand = I->Val;
394      Operand->removeUser(N);
395
396      // Now that we removed this operand, see if there are no uses of it left.
397      if (Operand->use_empty())
398        DeadNodes.push_back(Operand);
399    }
400    if (N->OperandsNeedDelete)
401      delete[] N->OperandList;
402    N->OperandList = 0;
403    N->NumOperands = 0;
404
405    // Finally, remove N itself.
406    AllNodes.erase(N);
407  }
408
409  // If the root changed (e.g. it was a dead load, update the root).
410  setRoot(Dummy.getValue());
411}
412
413void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
414  SmallVector<SDNode*, 16> DeadNodes;
415  DeadNodes.push_back(N);
416
417  // Process the worklist, deleting the nodes and adding their uses to the
418  // worklist.
419  while (!DeadNodes.empty()) {
420    SDNode *N = DeadNodes.back();
421    DeadNodes.pop_back();
422
423    // Take the node out of the appropriate CSE map.
424    RemoveNodeFromCSEMaps(N);
425
426    // Next, brutally remove the operand list.  This is safe to do, as there are
427    // no cycles in the graph.
428    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
429      SDNode *Operand = I->Val;
430      Operand->removeUser(N);
431
432      // Now that we removed this operand, see if there are no uses of it left.
433      if (Operand->use_empty())
434        DeadNodes.push_back(Operand);
435    }
436    if (N->OperandsNeedDelete)
437      delete[] N->OperandList;
438    N->OperandList = 0;
439    N->NumOperands = 0;
440
441    // Finally, remove N itself.
442    Deleted.push_back(N);
443    AllNodes.erase(N);
444  }
445}
446
447void SelectionDAG::DeleteNode(SDNode *N) {
448  assert(N->use_empty() && "Cannot delete a node that is not dead!");
449
450  // First take this out of the appropriate CSE map.
451  RemoveNodeFromCSEMaps(N);
452
453  // Finally, remove uses due to operands of this node, remove from the
454  // AllNodes list, and delete the node.
455  DeleteNodeNotInCSEMaps(N);
456}
457
458void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
459
460  // Remove it from the AllNodes list.
461  AllNodes.remove(N);
462
463  // Drop all of the operands and decrement used nodes use counts.
464  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
465    I->Val->removeUser(N);
466  if (N->OperandsNeedDelete)
467    delete[] N->OperandList;
468  N->OperandList = 0;
469  N->NumOperands = 0;
470
471  delete N;
472}
473
474/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
475/// correspond to it.  This is useful when we're about to delete or repurpose
476/// the node.  We don't want future request for structurally identical nodes
477/// to return N anymore.
478void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
479  bool Erased = false;
480  switch (N->getOpcode()) {
481  case ISD::HANDLENODE: return;  // noop.
482  case ISD::STRING:
483    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
484    break;
485  case ISD::CONDCODE:
486    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
487           "Cond code doesn't exist!");
488    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
489    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
490    break;
491  case ISD::ExternalSymbol:
492    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
493    break;
494  case ISD::TargetExternalSymbol:
495    Erased =
496      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
497    break;
498  case ISD::VALUETYPE:
499    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
500    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
501    break;
502  default:
503    // Remove it from the CSE Map.
504    Erased = CSEMap.RemoveNode(N);
505    break;
506  }
507#ifndef NDEBUG
508  // Verify that the node was actually in one of the CSE maps, unless it has a
509  // flag result (which cannot be CSE'd) or is one of the special cases that are
510  // not subject to CSE.
511  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
512      !N->isTargetOpcode()) {
513    N->dump();
514    cerr << "\n";
515    assert(0 && "Node is not in map!");
516  }
517#endif
518}
519
520/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
521/// has been taken out and modified in some way.  If the specified node already
522/// exists in the CSE maps, do not modify the maps, but return the existing node
523/// instead.  If it doesn't exist, add it and return null.
524///
525SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
526  assert(N->getNumOperands() && "This is a leaf node!");
527  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
528    return 0;    // Never add these nodes.
529
530  // Check that remaining values produced are not flags.
531  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
532    if (N->getValueType(i) == MVT::Flag)
533      return 0;   // Never CSE anything that produces a flag.
534
535  SDNode *New = CSEMap.GetOrInsertNode(N);
536  if (New != N) return New;  // Node already existed.
537  return 0;
538}
539
540/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
541/// were replaced with those specified.  If this node is never memoized,
542/// return null, otherwise return a pointer to the slot it would take.  If a
543/// node already exists with these operands, the slot will be non-null.
544SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
545                                           void *&InsertPos) {
546  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
547    return 0;    // Never add these nodes.
548
549  // Check that remaining values produced are not flags.
550  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
551    if (N->getValueType(i) == MVT::Flag)
552      return 0;   // Never CSE anything that produces a flag.
553
554  SDOperand Ops[] = { Op };
555  FoldingSetNodeID ID;
556  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
557  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
558}
559
560/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
561/// were replaced with those specified.  If this node is never memoized,
562/// return null, otherwise return a pointer to the slot it would take.  If a
563/// node already exists with these operands, the slot will be non-null.
564SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
565                                           SDOperand Op1, SDOperand Op2,
566                                           void *&InsertPos) {
567  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
568    return 0;    // Never add these nodes.
569
570  // Check that remaining values produced are not flags.
571  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
572    if (N->getValueType(i) == MVT::Flag)
573      return 0;   // Never CSE anything that produces a flag.
574
575  SDOperand Ops[] = { Op1, Op2 };
576  FoldingSetNodeID ID;
577  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
578  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
579}
580
581
582/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
583/// were replaced with those specified.  If this node is never memoized,
584/// return null, otherwise return a pointer to the slot it would take.  If a
585/// node already exists with these operands, the slot will be non-null.
586SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
587                                           const SDOperand *Ops,unsigned NumOps,
588                                           void *&InsertPos) {
589  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
590    return 0;    // Never add these nodes.
591
592  // Check that remaining values produced are not flags.
593  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
594    if (N->getValueType(i) == MVT::Flag)
595      return 0;   // Never CSE anything that produces a flag.
596
597  FoldingSetNodeID ID;
598  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), 0, 0);
599
600  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
601    ID.AddInteger(LD->getAddressingMode());
602    ID.AddInteger(LD->getExtensionType());
603    ID.AddInteger(LD->getLoadedVT());
604    ID.AddPointer(LD->getSrcValue());
605    ID.AddInteger(LD->getSrcValueOffset());
606    ID.AddInteger(LD->getAlignment());
607    ID.AddInteger(LD->isVolatile());
608  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
609    ID.AddInteger(ST->getAddressingMode());
610    ID.AddInteger(ST->isTruncatingStore());
611    ID.AddInteger(ST->getStoredVT());
612    ID.AddPointer(ST->getSrcValue());
613    ID.AddInteger(ST->getSrcValueOffset());
614    ID.AddInteger(ST->getAlignment());
615    ID.AddInteger(ST->isVolatile());
616  }
617
618  AddNodeIDOperands(ID, Ops, NumOps);
619  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
620}
621
622
623SelectionDAG::~SelectionDAG() {
624  while (!AllNodes.empty()) {
625    SDNode *N = AllNodes.begin();
626    N->SetNextInBucket(0);
627    if (N->OperandsNeedDelete)
628      delete [] N->OperandList;
629    N->OperandList = 0;
630    N->NumOperands = 0;
631    AllNodes.pop_front();
632  }
633}
634
635SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
636  if (Op.getValueType() == VT) return Op;
637  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
638  return getNode(ISD::AND, Op.getValueType(), Op,
639                 getConstant(Imm, Op.getValueType()));
640}
641
642SDOperand SelectionDAG::getString(const std::string &Val) {
643  StringSDNode *&N = StringNodes[Val];
644  if (!N) {
645    N = new StringSDNode(Val);
646    AllNodes.push_back(N);
647  }
648  return SDOperand(N, 0);
649}
650
651SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
652  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
653  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
654
655  // Mask out any bits that are not valid for this constant.
656  Val &= MVT::getIntVTBitMask(VT);
657
658  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
661  ID.AddInteger(Val);
662  void *IP = 0;
663  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
664    return SDOperand(E, 0);
665  SDNode *N = new ConstantSDNode(isT, Val, VT);
666  CSEMap.InsertNode(N, IP);
667  AllNodes.push_back(N);
668  return SDOperand(N, 0);
669}
670
671
672SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
673                                      bool isTarget) {
674  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
675  if (VT == MVT::f32)
676    Val = (float)Val;  // Mask out extra precision.
677
678  // Do the map lookup using the actual bit pattern for the floating point
679  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
680  // we don't have issues with SNANs.
681  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
682  FoldingSetNodeID ID;
683  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
684  ID.AddDouble(Val);
685  void *IP = 0;
686  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
687    return SDOperand(E, 0);
688  SDNode *N = new ConstantFPSDNode(isTarget, Val, VT);
689  CSEMap.InsertNode(N, IP);
690  AllNodes.push_back(N);
691  return SDOperand(N, 0);
692}
693
694SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
695                                         MVT::ValueType VT, int Offset,
696                                         bool isTargetGA) {
697  unsigned Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
698  FoldingSetNodeID ID;
699  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
700  ID.AddPointer(GV);
701  ID.AddInteger(Offset);
702  void *IP = 0;
703  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
704   return SDOperand(E, 0);
705  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
706  CSEMap.InsertNode(N, IP);
707  AllNodes.push_back(N);
708  return SDOperand(N, 0);
709}
710
711SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
712                                      bool isTarget) {
713  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
714  FoldingSetNodeID ID;
715  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
716  ID.AddInteger(FI);
717  void *IP = 0;
718  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
719    return SDOperand(E, 0);
720  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
721  CSEMap.InsertNode(N, IP);
722  AllNodes.push_back(N);
723  return SDOperand(N, 0);
724}
725
726SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
727  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
728  FoldingSetNodeID ID;
729  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
730  ID.AddInteger(JTI);
731  void *IP = 0;
732  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
733    return SDOperand(E, 0);
734  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
735  CSEMap.InsertNode(N, IP);
736  AllNodes.push_back(N);
737  return SDOperand(N, 0);
738}
739
740SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
741                                        unsigned Alignment, int Offset,
742                                        bool isTarget) {
743  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
744  FoldingSetNodeID ID;
745  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
746  ID.AddInteger(Alignment);
747  ID.AddInteger(Offset);
748  ID.AddPointer(C);
749  void *IP = 0;
750  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
751    return SDOperand(E, 0);
752  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
753  CSEMap.InsertNode(N, IP);
754  AllNodes.push_back(N);
755  return SDOperand(N, 0);
756}
757
758
759SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
760                                        MVT::ValueType VT,
761                                        unsigned Alignment, int Offset,
762                                        bool isTarget) {
763  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
764  FoldingSetNodeID ID;
765  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
766  ID.AddInteger(Alignment);
767  ID.AddInteger(Offset);
768  C->AddSelectionDAGCSEId(ID);
769  void *IP = 0;
770  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
771    return SDOperand(E, 0);
772  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
773  CSEMap.InsertNode(N, IP);
774  AllNodes.push_back(N);
775  return SDOperand(N, 0);
776}
777
778
779SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
780  FoldingSetNodeID ID;
781  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
782  ID.AddPointer(MBB);
783  void *IP = 0;
784  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
785    return SDOperand(E, 0);
786  SDNode *N = new BasicBlockSDNode(MBB);
787  CSEMap.InsertNode(N, IP);
788  AllNodes.push_back(N);
789  return SDOperand(N, 0);
790}
791
792SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
793  if ((unsigned)VT >= ValueTypeNodes.size())
794    ValueTypeNodes.resize(VT+1);
795  if (ValueTypeNodes[VT] == 0) {
796    ValueTypeNodes[VT] = new VTSDNode(VT);
797    AllNodes.push_back(ValueTypeNodes[VT]);
798  }
799
800  return SDOperand(ValueTypeNodes[VT], 0);
801}
802
803SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
804  SDNode *&N = ExternalSymbols[Sym];
805  if (N) return SDOperand(N, 0);
806  N = new ExternalSymbolSDNode(false, Sym, VT);
807  AllNodes.push_back(N);
808  return SDOperand(N, 0);
809}
810
811SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
812                                                MVT::ValueType VT) {
813  SDNode *&N = TargetExternalSymbols[Sym];
814  if (N) return SDOperand(N, 0);
815  N = new ExternalSymbolSDNode(true, Sym, VT);
816  AllNodes.push_back(N);
817  return SDOperand(N, 0);
818}
819
820SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
821  if ((unsigned)Cond >= CondCodeNodes.size())
822    CondCodeNodes.resize(Cond+1);
823
824  if (CondCodeNodes[Cond] == 0) {
825    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
826    AllNodes.push_back(CondCodeNodes[Cond]);
827  }
828  return SDOperand(CondCodeNodes[Cond], 0);
829}
830
831SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
832  FoldingSetNodeID ID;
833  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
834  ID.AddInteger(RegNo);
835  void *IP = 0;
836  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
837    return SDOperand(E, 0);
838  SDNode *N = new RegisterSDNode(RegNo, VT);
839  CSEMap.InsertNode(N, IP);
840  AllNodes.push_back(N);
841  return SDOperand(N, 0);
842}
843
844SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
845  assert((!V || isa<PointerType>(V->getType())) &&
846         "SrcValue is not a pointer?");
847
848  FoldingSetNodeID ID;
849  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
850  ID.AddPointer(V);
851  ID.AddInteger(Offset);
852  void *IP = 0;
853  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
854    return SDOperand(E, 0);
855  SDNode *N = new SrcValueSDNode(V, Offset);
856  CSEMap.InsertNode(N, IP);
857  AllNodes.push_back(N);
858  return SDOperand(N, 0);
859}
860
861SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
862                                  SDOperand N2, ISD::CondCode Cond) {
863  // These setcc operations always fold.
864  switch (Cond) {
865  default: break;
866  case ISD::SETFALSE:
867  case ISD::SETFALSE2: return getConstant(0, VT);
868  case ISD::SETTRUE:
869  case ISD::SETTRUE2:  return getConstant(1, VT);
870
871  case ISD::SETOEQ:
872  case ISD::SETOGT:
873  case ISD::SETOGE:
874  case ISD::SETOLT:
875  case ISD::SETOLE:
876  case ISD::SETONE:
877  case ISD::SETO:
878  case ISD::SETUO:
879  case ISD::SETUEQ:
880  case ISD::SETUNE:
881    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
882    break;
883  }
884
885  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
886    uint64_t C2 = N2C->getValue();
887    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
888      uint64_t C1 = N1C->getValue();
889
890      // Sign extend the operands if required
891      if (ISD::isSignedIntSetCC(Cond)) {
892        C1 = N1C->getSignExtended();
893        C2 = N2C->getSignExtended();
894      }
895
896      switch (Cond) {
897      default: assert(0 && "Unknown integer setcc!");
898      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
899      case ISD::SETNE:  return getConstant(C1 != C2, VT);
900      case ISD::SETULT: return getConstant(C1 <  C2, VT);
901      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
902      case ISD::SETULE: return getConstant(C1 <= C2, VT);
903      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
904      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
905      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
906      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
907      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
908      }
909    }
910  }
911  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
912    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
913      double C1 = N1C->getValue(), C2 = N2C->getValue();
914
915      switch (Cond) {
916      default: break; // FIXME: Implement the rest of these!
917      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
918      case ISD::SETNE:  return getConstant(C1 != C2, VT);
919      case ISD::SETLT:  return getConstant(C1 < C2, VT);
920      case ISD::SETGT:  return getConstant(C1 > C2, VT);
921      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
922      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
923      }
924    } else {
925      // Ensure that the constant occurs on the RHS.
926      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
927    }
928
929  // Could not fold it.
930  return SDOperand();
931}
932
933
934/// getNode - Gets or creates the specified node.
935///
936SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
937  FoldingSetNodeID ID;
938  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
939  void *IP = 0;
940  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
941    return SDOperand(E, 0);
942  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT), 0, 0);
943  CSEMap.InsertNode(N, IP);
944
945  AllNodes.push_back(N);
946  return SDOperand(N, 0);
947}
948
949SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
950                                SDOperand Operand) {
951  unsigned Tmp1;
952  // Constant fold unary operations with an integer constant operand.
953  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
954    uint64_t Val = C->getValue();
955    switch (Opcode) {
956    default: break;
957    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
958    case ISD::ANY_EXTEND:
959    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
960    case ISD::TRUNCATE:    return getConstant(Val, VT);
961    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
962    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
963    case ISD::BIT_CONVERT:
964      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
965        return getConstantFP(BitsToFloat(Val), VT);
966      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
967        return getConstantFP(BitsToDouble(Val), VT);
968      break;
969    case ISD::BSWAP:
970      switch(VT) {
971      default: assert(0 && "Invalid bswap!"); break;
972      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
973      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
974      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
975      }
976      break;
977    case ISD::CTPOP:
978      switch(VT) {
979      default: assert(0 && "Invalid ctpop!"); break;
980      case MVT::i1: return getConstant(Val != 0, VT);
981      case MVT::i8:
982        Tmp1 = (unsigned)Val & 0xFF;
983        return getConstant(CountPopulation_32(Tmp1), VT);
984      case MVT::i16:
985        Tmp1 = (unsigned)Val & 0xFFFF;
986        return getConstant(CountPopulation_32(Tmp1), VT);
987      case MVT::i32:
988        return getConstant(CountPopulation_32((unsigned)Val), VT);
989      case MVT::i64:
990        return getConstant(CountPopulation_64(Val), VT);
991      }
992    case ISD::CTLZ:
993      switch(VT) {
994      default: assert(0 && "Invalid ctlz!"); break;
995      case MVT::i1: return getConstant(Val == 0, VT);
996      case MVT::i8:
997        Tmp1 = (unsigned)Val & 0xFF;
998        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
999      case MVT::i16:
1000        Tmp1 = (unsigned)Val & 0xFFFF;
1001        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1002      case MVT::i32:
1003        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1004      case MVT::i64:
1005        return getConstant(CountLeadingZeros_64(Val), VT);
1006      }
1007    case ISD::CTTZ:
1008      switch(VT) {
1009      default: assert(0 && "Invalid cttz!"); break;
1010      case MVT::i1: return getConstant(Val == 0, VT);
1011      case MVT::i8:
1012        Tmp1 = (unsigned)Val | 0x100;
1013        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1014      case MVT::i16:
1015        Tmp1 = (unsigned)Val | 0x10000;
1016        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1017      case MVT::i32:
1018        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1019      case MVT::i64:
1020        return getConstant(CountTrailingZeros_64(Val), VT);
1021      }
1022    }
1023  }
1024
1025  // Constant fold unary operations with an floating point constant operand.
1026  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1027    switch (Opcode) {
1028    case ISD::FNEG:
1029      return getConstantFP(-C->getValue(), VT);
1030    case ISD::FABS:
1031      return getConstantFP(fabs(C->getValue()), VT);
1032    case ISD::FP_ROUND:
1033    case ISD::FP_EXTEND:
1034      return getConstantFP(C->getValue(), VT);
1035    case ISD::FP_TO_SINT:
1036      return getConstant((int64_t)C->getValue(), VT);
1037    case ISD::FP_TO_UINT:
1038      return getConstant((uint64_t)C->getValue(), VT);
1039    case ISD::BIT_CONVERT:
1040      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1041        return getConstant(FloatToBits(C->getValue()), VT);
1042      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1043        return getConstant(DoubleToBits(C->getValue()), VT);
1044      break;
1045    }
1046
1047  unsigned OpOpcode = Operand.Val->getOpcode();
1048  switch (Opcode) {
1049  case ISD::TokenFactor:
1050    return Operand;         // Factor of one node?  No factor.
1051  case ISD::SIGN_EXTEND:
1052    if (Operand.getValueType() == VT) return Operand;   // noop extension
1053    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1054    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1055      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1056    break;
1057  case ISD::ZERO_EXTEND:
1058    if (Operand.getValueType() == VT) return Operand;   // noop extension
1059    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1060    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1061      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1062    break;
1063  case ISD::ANY_EXTEND:
1064    if (Operand.getValueType() == VT) return Operand;   // noop extension
1065    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1066    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1067      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1068      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1069    break;
1070  case ISD::TRUNCATE:
1071    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1072    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1073    if (OpOpcode == ISD::TRUNCATE)
1074      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1075    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1076             OpOpcode == ISD::ANY_EXTEND) {
1077      // If the source is smaller than the dest, we still need an extend.
1078      if (Operand.Val->getOperand(0).getValueType() < VT)
1079        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1080      else if (Operand.Val->getOperand(0).getValueType() > VT)
1081        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1082      else
1083        return Operand.Val->getOperand(0);
1084    }
1085    break;
1086  case ISD::BIT_CONVERT:
1087    // Basic sanity checking.
1088    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1089           && "Cannot BIT_CONVERT between types of different sizes!");
1090    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1091    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1092      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1093    if (OpOpcode == ISD::UNDEF)
1094      return getNode(ISD::UNDEF, VT);
1095    break;
1096  case ISD::SCALAR_TO_VECTOR:
1097    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1098           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1099           "Illegal SCALAR_TO_VECTOR node!");
1100    break;
1101  case ISD::FNEG:
1102    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1103      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1104                     Operand.Val->getOperand(0));
1105    if (OpOpcode == ISD::FNEG)  // --X -> X
1106      return Operand.Val->getOperand(0);
1107    break;
1108  case ISD::FABS:
1109    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1110      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1111    break;
1112  }
1113
1114  SDNode *N;
1115  SDVTList VTs = getVTList(VT);
1116  SDOperand Ops[1] = { Operand };
1117  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1118    FoldingSetNodeID ID;
1119    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1120    void *IP = 0;
1121    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1122      return SDOperand(E, 0);
1123    N = new SDNode(Opcode, VTs, Ops, 1);
1124    CSEMap.InsertNode(N, IP);
1125  } else {
1126    N = new SDNode(Opcode, VTs, Ops, 1);
1127  }
1128  AllNodes.push_back(N);
1129  return SDOperand(N, 0);
1130}
1131
1132
1133
1134SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1135                                SDOperand N1, SDOperand N2) {
1136#ifndef NDEBUG
1137  switch (Opcode) {
1138  case ISD::TokenFactor:
1139    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1140           N2.getValueType() == MVT::Other && "Invalid token factor!");
1141    break;
1142  case ISD::AND:
1143  case ISD::OR:
1144  case ISD::XOR:
1145  case ISD::UDIV:
1146  case ISD::UREM:
1147  case ISD::MULHU:
1148  case ISD::MULHS:
1149    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1150    // fall through
1151  case ISD::ADD:
1152  case ISD::SUB:
1153  case ISD::MUL:
1154  case ISD::SDIV:
1155  case ISD::SREM:
1156    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1157    // fall through.
1158  case ISD::FADD:
1159  case ISD::FSUB:
1160  case ISD::FMUL:
1161  case ISD::FDIV:
1162  case ISD::FREM:
1163    assert(N1.getValueType() == N2.getValueType() &&
1164           N1.getValueType() == VT && "Binary operator types must match!");
1165    break;
1166  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1167    assert(N1.getValueType() == VT &&
1168           MVT::isFloatingPoint(N1.getValueType()) &&
1169           MVT::isFloatingPoint(N2.getValueType()) &&
1170           "Invalid FCOPYSIGN!");
1171    break;
1172  case ISD::SHL:
1173  case ISD::SRA:
1174  case ISD::SRL:
1175  case ISD::ROTL:
1176  case ISD::ROTR:
1177    assert(VT == N1.getValueType() &&
1178           "Shift operators return type must be the same as their first arg");
1179    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1180           VT != MVT::i1 && "Shifts only work on integers");
1181    break;
1182  case ISD::FP_ROUND_INREG: {
1183    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1184    assert(VT == N1.getValueType() && "Not an inreg round!");
1185    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1186           "Cannot FP_ROUND_INREG integer types");
1187    assert(EVT <= VT && "Not rounding down!");
1188    break;
1189  }
1190  case ISD::AssertSext:
1191  case ISD::AssertZext:
1192  case ISD::SIGN_EXTEND_INREG: {
1193    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1194    assert(VT == N1.getValueType() && "Not an inreg extend!");
1195    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1196           "Cannot *_EXTEND_INREG FP types");
1197    assert(EVT <= VT && "Not extending!");
1198  }
1199
1200  default: break;
1201  }
1202#endif
1203
1204  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1205  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1206  if (N1C) {
1207    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1208      int64_t Val = N1C->getValue();
1209      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1210      Val <<= 64-FromBits;
1211      Val >>= 64-FromBits;
1212      return getConstant(Val, VT);
1213    }
1214
1215    if (N2C) {
1216      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1217      switch (Opcode) {
1218      case ISD::ADD: return getConstant(C1 + C2, VT);
1219      case ISD::SUB: return getConstant(C1 - C2, VT);
1220      case ISD::MUL: return getConstant(C1 * C2, VT);
1221      case ISD::UDIV:
1222        if (C2) return getConstant(C1 / C2, VT);
1223        break;
1224      case ISD::UREM :
1225        if (C2) return getConstant(C1 % C2, VT);
1226        break;
1227      case ISD::SDIV :
1228        if (C2) return getConstant(N1C->getSignExtended() /
1229                                   N2C->getSignExtended(), VT);
1230        break;
1231      case ISD::SREM :
1232        if (C2) return getConstant(N1C->getSignExtended() %
1233                                   N2C->getSignExtended(), VT);
1234        break;
1235      case ISD::AND  : return getConstant(C1 & C2, VT);
1236      case ISD::OR   : return getConstant(C1 | C2, VT);
1237      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1238      case ISD::SHL  : return getConstant(C1 << C2, VT);
1239      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1240      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1241      case ISD::ROTL :
1242        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1243                           VT);
1244      case ISD::ROTR :
1245        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1246                           VT);
1247      default: break;
1248      }
1249    } else {      // Cannonicalize constant to RHS if commutative
1250      if (isCommutativeBinOp(Opcode)) {
1251        std::swap(N1C, N2C);
1252        std::swap(N1, N2);
1253      }
1254    }
1255  }
1256
1257  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1258  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1259  if (N1CFP) {
1260    if (N2CFP) {
1261      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1262      switch (Opcode) {
1263      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1264      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1265      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1266      case ISD::FDIV:
1267        if (C2) return getConstantFP(C1 / C2, VT);
1268        break;
1269      case ISD::FREM :
1270        if (C2) return getConstantFP(fmod(C1, C2), VT);
1271        break;
1272      case ISD::FCOPYSIGN: {
1273        union {
1274          double   F;
1275          uint64_t I;
1276        } u1;
1277        union {
1278          double  F;
1279          int64_t I;
1280        } u2;
1281        u1.F = C1;
1282        u2.F = C2;
1283        if (u2.I < 0)  // Sign bit of RHS set?
1284          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1285        else
1286          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1287        return getConstantFP(u1.F, VT);
1288      }
1289      default: break;
1290      }
1291    } else {      // Cannonicalize constant to RHS if commutative
1292      if (isCommutativeBinOp(Opcode)) {
1293        std::swap(N1CFP, N2CFP);
1294        std::swap(N1, N2);
1295      }
1296    }
1297  }
1298
1299  // Canonicalize an UNDEF to the RHS, even over a constant.
1300  if (N1.getOpcode() == ISD::UNDEF) {
1301    if (isCommutativeBinOp(Opcode)) {
1302      std::swap(N1, N2);
1303    } else {
1304      switch (Opcode) {
1305      case ISD::FP_ROUND_INREG:
1306      case ISD::SIGN_EXTEND_INREG:
1307      case ISD::SUB:
1308      case ISD::FSUB:
1309      case ISD::FDIV:
1310      case ISD::FREM:
1311      case ISD::SRA:
1312        return N1;     // fold op(undef, arg2) -> undef
1313      case ISD::UDIV:
1314      case ISD::SDIV:
1315      case ISD::UREM:
1316      case ISD::SREM:
1317      case ISD::SRL:
1318      case ISD::SHL:
1319        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1320      }
1321    }
1322  }
1323
1324  // Fold a bunch of operators when the RHS is undef.
1325  if (N2.getOpcode() == ISD::UNDEF) {
1326    switch (Opcode) {
1327    case ISD::ADD:
1328    case ISD::SUB:
1329    case ISD::FADD:
1330    case ISD::FSUB:
1331    case ISD::FMUL:
1332    case ISD::FDIV:
1333    case ISD::FREM:
1334    case ISD::UDIV:
1335    case ISD::SDIV:
1336    case ISD::UREM:
1337    case ISD::SREM:
1338    case ISD::XOR:
1339      return N2;       // fold op(arg1, undef) -> undef
1340    case ISD::MUL:
1341    case ISD::AND:
1342    case ISD::SRL:
1343    case ISD::SHL:
1344      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1345    case ISD::OR:
1346      return getConstant(MVT::getIntVTBitMask(VT), VT);
1347    case ISD::SRA:
1348      return N1;
1349    }
1350  }
1351
1352  // Fold operations.
1353  switch (Opcode) {
1354  case ISD::AND:
1355    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1356    // worth handling here.
1357    if (N2C && N2C->getValue() == 0)
1358      return N2;
1359    break;
1360  case ISD::OR:
1361  case ISD::XOR:
1362    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1363    // worth handling here.
1364    if (N2C && N2C->getValue() == 0)
1365      return N1;
1366    break;
1367  case ISD::FP_ROUND_INREG:
1368    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1369    break;
1370  case ISD::SIGN_EXTEND_INREG: {
1371    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1372    if (EVT == VT) return N1;  // Not actually extending
1373    break;
1374  }
1375  case ISD::EXTRACT_ELEMENT:
1376    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1377
1378    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
1379    // 64-bit integers into 32-bit parts.  Instead of building the extract of
1380    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
1381    if (N1.getOpcode() == ISD::BUILD_PAIR)
1382      return N1.getOperand(N2C->getValue());
1383
1384    // EXTRACT_ELEMENT of a constant int is also very common.
1385    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
1386      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
1387      return getConstant(C->getValue() >> Shift, VT);
1388    }
1389    break;
1390
1391  // FIXME: figure out how to safely handle things like
1392  // int foo(int x) { return 1 << (x & 255); }
1393  // int bar() { return foo(256); }
1394#if 0
1395  case ISD::SHL:
1396  case ISD::SRL:
1397  case ISD::SRA:
1398    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1399        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1400      return getNode(Opcode, VT, N1, N2.getOperand(0));
1401    else if (N2.getOpcode() == ISD::AND)
1402      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1403        // If the and is only masking out bits that cannot effect the shift,
1404        // eliminate the and.
1405        unsigned NumBits = MVT::getSizeInBits(VT);
1406        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1407          return getNode(Opcode, VT, N1, N2.getOperand(0));
1408      }
1409    break;
1410#endif
1411  }
1412
1413  // Memoize this node if possible.
1414  SDNode *N;
1415  SDVTList VTs = getVTList(VT);
1416  SDOperand Ops[] = { N1, N2 };
1417  if (VT != MVT::Flag) {
1418    FoldingSetNodeID ID;
1419    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
1420    void *IP = 0;
1421    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1422      return SDOperand(E, 0);
1423    N = new SDNode(Opcode, VTs, Ops, 2);
1424    CSEMap.InsertNode(N, IP);
1425  } else {
1426    N = new SDNode(Opcode, VTs, Ops, 2);
1427  }
1428
1429  AllNodes.push_back(N);
1430  return SDOperand(N, 0);
1431}
1432
1433SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1434                                SDOperand N1, SDOperand N2, SDOperand N3) {
1435  // Perform various simplifications.
1436  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1437  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1438  switch (Opcode) {
1439  case ISD::SETCC: {
1440    // Use FoldSetCC to simplify SETCC's.
1441    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1442    if (Simp.Val) return Simp;
1443    break;
1444  }
1445  case ISD::SELECT:
1446    if (N1C)
1447      if (N1C->getValue())
1448        return N2;             // select true, X, Y -> X
1449      else
1450        return N3;             // select false, X, Y -> Y
1451
1452    if (N2 == N3) return N2;   // select C, X, X -> X
1453    break;
1454  case ISD::BRCOND:
1455    if (N2C)
1456      if (N2C->getValue()) // Unconditional branch
1457        return getNode(ISD::BR, MVT::Other, N1, N3);
1458      else
1459        return N1;         // Never-taken branch
1460    break;
1461  case ISD::VECTOR_SHUFFLE:
1462    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1463           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1464           N3.getOpcode() == ISD::BUILD_VECTOR &&
1465           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1466           "Illegal VECTOR_SHUFFLE node!");
1467    break;
1468  }
1469
1470  // Memoize node if it doesn't produce a flag.
1471  SDNode *N;
1472  SDVTList VTs = getVTList(VT);
1473  SDOperand Ops[] = { N1, N2, N3 };
1474  if (VT != MVT::Flag) {
1475    FoldingSetNodeID ID;
1476    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
1477    void *IP = 0;
1478    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1479      return SDOperand(E, 0);
1480    N = new SDNode(Opcode, VTs, Ops, 3);
1481    CSEMap.InsertNode(N, IP);
1482  } else {
1483    N = new SDNode(Opcode, VTs, Ops, 3);
1484  }
1485  AllNodes.push_back(N);
1486  return SDOperand(N, 0);
1487}
1488
1489SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1490                                SDOperand N1, SDOperand N2, SDOperand N3,
1491                                SDOperand N4) {
1492  SDOperand Ops[] = { N1, N2, N3, N4 };
1493  return getNode(Opcode, VT, Ops, 4);
1494}
1495
1496SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1497                                SDOperand N1, SDOperand N2, SDOperand N3,
1498                                SDOperand N4, SDOperand N5) {
1499  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1500  return getNode(Opcode, VT, Ops, 5);
1501}
1502
1503SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1504                                SDOperand Chain, SDOperand Ptr,
1505                                const Value *SV, int SVOffset,
1506                                bool isVolatile) {
1507  // FIXME: Alignment == 1 for now.
1508  unsigned Alignment = 1;
1509  SDVTList VTs = getVTList(VT, MVT::Other);
1510  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1511  SDOperand Ops[] = { Chain, Ptr, Undef };
1512  FoldingSetNodeID ID;
1513  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1514  ID.AddInteger(ISD::UNINDEXED);
1515  ID.AddInteger(ISD::NON_EXTLOAD);
1516  ID.AddInteger(VT);
1517  ID.AddPointer(SV);
1518  ID.AddInteger(SVOffset);
1519  ID.AddInteger(Alignment);
1520  ID.AddInteger(isVolatile);
1521  void *IP = 0;
1522  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1523    return SDOperand(E, 0);
1524  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
1525                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
1526                             isVolatile);
1527  CSEMap.InsertNode(N, IP);
1528  AllNodes.push_back(N);
1529  return SDOperand(N, 0);
1530}
1531
1532SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
1533                                   SDOperand Chain, SDOperand Ptr,
1534                                   const Value *SV,
1535                                   int SVOffset, MVT::ValueType EVT,
1536                                   bool isVolatile) {
1537  // If they are asking for an extending load from/to the same thing, return a
1538  // normal load.
1539  if (VT == EVT)
1540    ExtType = ISD::NON_EXTLOAD;
1541
1542  if (MVT::isVector(VT))
1543    assert(EVT == MVT::getVectorBaseType(VT) && "Invalid vector extload!");
1544  else
1545    assert(EVT < VT && "Should only be an extending load, not truncating!");
1546  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
1547         "Cannot sign/zero extend a FP/Vector load!");
1548  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
1549         "Cannot convert from FP to Int or Int -> FP!");
1550
1551  // FIXME: Alignment == 1 for now.
1552  unsigned Alignment = 1;
1553  SDVTList VTs = getVTList(VT, MVT::Other);
1554  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1555  SDOperand Ops[] = { Chain, Ptr, Undef };
1556  FoldingSetNodeID ID;
1557  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1558  ID.AddInteger(ISD::UNINDEXED);
1559  ID.AddInteger(ExtType);
1560  ID.AddInteger(EVT);
1561  ID.AddPointer(SV);
1562  ID.AddInteger(SVOffset);
1563  ID.AddInteger(Alignment);
1564  ID.AddInteger(isVolatile);
1565  void *IP = 0;
1566  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1567    return SDOperand(E, 0);
1568  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
1569                             SV, SVOffset, Alignment, isVolatile);
1570  CSEMap.InsertNode(N, IP);
1571  AllNodes.push_back(N);
1572  return SDOperand(N, 0);
1573}
1574
1575SDOperand
1576SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
1577                             SDOperand Offset, ISD::MemIndexedMode AM) {
1578  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
1579  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
1580         "Load is already a indexed load!");
1581  MVT::ValueType VT = OrigLoad.getValueType();
1582  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
1583  SDOperand Ops[] = { LD->getChain(), Base, Offset };
1584  FoldingSetNodeID ID;
1585  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1586  ID.AddInteger(AM);
1587  ID.AddInteger(LD->getExtensionType());
1588  ID.AddInteger(LD->getLoadedVT());
1589  ID.AddPointer(LD->getSrcValue());
1590  ID.AddInteger(LD->getSrcValueOffset());
1591  ID.AddInteger(LD->getAlignment());
1592  ID.AddInteger(LD->isVolatile());
1593  void *IP = 0;
1594  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1595    return SDOperand(E, 0);
1596  SDNode *N = new LoadSDNode(Ops, VTs, AM,
1597                             LD->getExtensionType(), LD->getLoadedVT(),
1598                             LD->getSrcValue(), LD->getSrcValueOffset(),
1599                             LD->getAlignment(), LD->isVolatile());
1600  CSEMap.InsertNode(N, IP);
1601  AllNodes.push_back(N);
1602  return SDOperand(N, 0);
1603}
1604
1605SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1606                                   SDOperand Chain, SDOperand Ptr,
1607                                   SDOperand SV) {
1608  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1609                      getValueType(EVT) };
1610  return getNode(ISD::VLOAD, getVTList(MVT::Vector, MVT::Other), Ops, 5);
1611}
1612
1613SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
1614                                 SDOperand Ptr, const Value *SV, int SVOffset,
1615                                 bool isVolatile) {
1616  MVT::ValueType VT = Val.getValueType();
1617
1618  // FIXME: Alignment == 1 for now.
1619  unsigned Alignment = 1;
1620  SDVTList VTs = getVTList(MVT::Other);
1621  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1622  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
1623  FoldingSetNodeID ID;
1624  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1625  ID.AddInteger(ISD::UNINDEXED);
1626  ID.AddInteger(false);
1627  ID.AddInteger(VT);
1628  ID.AddPointer(SV);
1629  ID.AddInteger(SVOffset);
1630  ID.AddInteger(Alignment);
1631  ID.AddInteger(isVolatile);
1632  void *IP = 0;
1633  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1634    return SDOperand(E, 0);
1635  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
1636                              VT, SV, SVOffset, Alignment, isVolatile);
1637  CSEMap.InsertNode(N, IP);
1638  AllNodes.push_back(N);
1639  return SDOperand(N, 0);
1640}
1641
1642SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
1643                                      SDOperand Ptr, const Value *SV,
1644                                      int SVOffset, MVT::ValueType SVT,
1645                                      bool isVolatile) {
1646  MVT::ValueType VT = Val.getValueType();
1647  bool isTrunc = VT != SVT;
1648
1649  assert(VT > SVT && "Not a truncation?");
1650  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
1651         "Can't do FP-INT conversion!");
1652
1653  // FIXME: Alignment == 1 for now.
1654  unsigned Alignment = 1;
1655  SDVTList VTs = getVTList(MVT::Other);
1656  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1657  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
1658  FoldingSetNodeID ID;
1659  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1660  ID.AddInteger(ISD::UNINDEXED);
1661  ID.AddInteger(isTrunc);
1662  ID.AddInteger(SVT);
1663  ID.AddPointer(SV);
1664  ID.AddInteger(SVOffset);
1665  ID.AddInteger(Alignment);
1666  ID.AddInteger(isVolatile);
1667  void *IP = 0;
1668  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1669    return SDOperand(E, 0);
1670  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
1671                              SVT, SV, SVOffset, Alignment, isVolatile);
1672  CSEMap.InsertNode(N, IP);
1673  AllNodes.push_back(N);
1674  return SDOperand(N, 0);
1675}
1676
1677SDOperand
1678SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
1679                              SDOperand Offset, ISD::MemIndexedMode AM) {
1680  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
1681  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
1682         "Store is already a indexed store!");
1683  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
1684  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
1685  FoldingSetNodeID ID;
1686  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1687  ID.AddInteger(AM);
1688  ID.AddInteger(ST->isTruncatingStore());
1689  ID.AddInteger(ST->getStoredVT());
1690  ID.AddPointer(ST->getSrcValue());
1691  ID.AddInteger(ST->getSrcValueOffset());
1692  ID.AddInteger(ST->getAlignment());
1693  ID.AddInteger(ST->isVolatile());
1694  void *IP = 0;
1695  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1696    return SDOperand(E, 0);
1697  SDNode *N = new StoreSDNode(Ops, VTs, AM,
1698                              ST->isTruncatingStore(), ST->getStoredVT(),
1699                              ST->getSrcValue(), ST->getSrcValueOffset(),
1700                              ST->getAlignment(), ST->isVolatile());
1701  CSEMap.InsertNode(N, IP);
1702  AllNodes.push_back(N);
1703  return SDOperand(N, 0);
1704}
1705
1706SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1707                                 SDOperand Chain, SDOperand Ptr,
1708                                 SDOperand SV) {
1709  SDOperand Ops[] = { Chain, Ptr, SV };
1710  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
1711}
1712
1713SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1714                                const SDOperand *Ops, unsigned NumOps) {
1715  switch (NumOps) {
1716  case 0: return getNode(Opcode, VT);
1717  case 1: return getNode(Opcode, VT, Ops[0]);
1718  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1719  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1720  default: break;
1721  }
1722
1723  switch (Opcode) {
1724  default: break;
1725  case ISD::SELECT_CC: {
1726    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1727    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1728           "LHS and RHS of condition must have same type!");
1729    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1730           "True and False arms of SelectCC must have same type!");
1731    assert(Ops[2].getValueType() == VT &&
1732           "select_cc node must be of same type as true and false value!");
1733    break;
1734  }
1735  case ISD::BR_CC: {
1736    assert(NumOps == 5 && "BR_CC takes 5 operands!");
1737    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1738           "LHS/RHS of comparison should match types!");
1739    break;
1740  }
1741  }
1742
1743  // Memoize nodes.
1744  SDNode *N;
1745  SDVTList VTs = getVTList(VT);
1746  if (VT != MVT::Flag) {
1747    FoldingSetNodeID ID;
1748    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
1749    void *IP = 0;
1750    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1751      return SDOperand(E, 0);
1752    N = new SDNode(Opcode, VTs, Ops, NumOps);
1753    CSEMap.InsertNode(N, IP);
1754  } else {
1755    N = new SDNode(Opcode, VTs, Ops, NumOps);
1756  }
1757  AllNodes.push_back(N);
1758  return SDOperand(N, 0);
1759}
1760
1761SDOperand SelectionDAG::getNode(unsigned Opcode,
1762                                std::vector<MVT::ValueType> &ResultTys,
1763                                const SDOperand *Ops, unsigned NumOps) {
1764  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
1765                 Ops, NumOps);
1766}
1767
1768SDOperand SelectionDAG::getNode(unsigned Opcode,
1769                                const MVT::ValueType *VTs, unsigned NumVTs,
1770                                const SDOperand *Ops, unsigned NumOps) {
1771  if (NumVTs == 1)
1772    return getNode(Opcode, VTs[0], Ops, NumOps);
1773  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
1774}
1775
1776SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
1777                                const SDOperand *Ops, unsigned NumOps) {
1778  if (VTList.NumVTs == 1)
1779    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
1780
1781  switch (Opcode) {
1782  // FIXME: figure out how to safely handle things like
1783  // int foo(int x) { return 1 << (x & 255); }
1784  // int bar() { return foo(256); }
1785#if 0
1786  case ISD::SRA_PARTS:
1787  case ISD::SRL_PARTS:
1788  case ISD::SHL_PARTS:
1789    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1790        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1791      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1792    else if (N3.getOpcode() == ISD::AND)
1793      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1794        // If the and is only masking out bits that cannot effect the shift,
1795        // eliminate the and.
1796        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1797        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1798          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1799      }
1800    break;
1801#endif
1802  }
1803
1804  // Memoize the node unless it returns a flag.
1805  SDNode *N;
1806  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
1807    FoldingSetNodeID ID;
1808    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
1809    void *IP = 0;
1810    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1811      return SDOperand(E, 0);
1812    N = new SDNode(Opcode, VTList, Ops, NumOps);
1813    CSEMap.InsertNode(N, IP);
1814  } else {
1815    N = new SDNode(Opcode, VTList, Ops, NumOps);
1816  }
1817  AllNodes.push_back(N);
1818  return SDOperand(N, 0);
1819}
1820
1821SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
1822  return makeVTList(SDNode::getValueTypeList(VT), 1);
1823}
1824
1825SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
1826  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1827       E = VTList.end(); I != E; ++I) {
1828    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1829      return makeVTList(&(*I)[0], 2);
1830  }
1831  std::vector<MVT::ValueType> V;
1832  V.push_back(VT1);
1833  V.push_back(VT2);
1834  VTList.push_front(V);
1835  return makeVTList(&(*VTList.begin())[0], 2);
1836}
1837SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
1838                                 MVT::ValueType VT3) {
1839  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1840       E = VTList.end(); I != E; ++I) {
1841    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
1842        (*I)[2] == VT3)
1843      return makeVTList(&(*I)[0], 3);
1844  }
1845  std::vector<MVT::ValueType> V;
1846  V.push_back(VT1);
1847  V.push_back(VT2);
1848  V.push_back(VT3);
1849  VTList.push_front(V);
1850  return makeVTList(&(*VTList.begin())[0], 3);
1851}
1852
1853SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
1854  switch (NumVTs) {
1855    case 0: assert(0 && "Cannot have nodes without results!");
1856    case 1: return makeVTList(SDNode::getValueTypeList(VTs[0]), 1);
1857    case 2: return getVTList(VTs[0], VTs[1]);
1858    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
1859    default: break;
1860  }
1861
1862  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1863       E = VTList.end(); I != E; ++I) {
1864    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
1865
1866    bool NoMatch = false;
1867    for (unsigned i = 2; i != NumVTs; ++i)
1868      if (VTs[i] != (*I)[i]) {
1869        NoMatch = true;
1870        break;
1871      }
1872    if (!NoMatch)
1873      return makeVTList(&*I->begin(), NumVTs);
1874  }
1875
1876  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
1877  return makeVTList(&*VTList.begin()->begin(), NumVTs);
1878}
1879
1880
1881/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1882/// specified operands.  If the resultant node already exists in the DAG,
1883/// this does not modify the specified node, instead it returns the node that
1884/// already exists.  If the resultant node does not exist in the DAG, the
1885/// input node is returned.  As a degenerate case, if you specify the same
1886/// input operands as the node already has, the input node is returned.
1887SDOperand SelectionDAG::
1888UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1889  SDNode *N = InN.Val;
1890  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1891
1892  // Check to see if there is no change.
1893  if (Op == N->getOperand(0)) return InN;
1894
1895  // See if the modified node already exists.
1896  void *InsertPos = 0;
1897  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1898    return SDOperand(Existing, InN.ResNo);
1899
1900  // Nope it doesn't.  Remove the node from it's current place in the maps.
1901  if (InsertPos)
1902    RemoveNodeFromCSEMaps(N);
1903
1904  // Now we update the operands.
1905  N->OperandList[0].Val->removeUser(N);
1906  Op.Val->addUser(N);
1907  N->OperandList[0] = Op;
1908
1909  // If this gets put into a CSE map, add it.
1910  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1911  return InN;
1912}
1913
1914SDOperand SelectionDAG::
1915UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1916  SDNode *N = InN.Val;
1917  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1918
1919  // Check to see if there is no change.
1920  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1921    return InN;   // No operands changed, just return the input node.
1922
1923  // See if the modified node already exists.
1924  void *InsertPos = 0;
1925  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
1926    return SDOperand(Existing, InN.ResNo);
1927
1928  // Nope it doesn't.  Remove the node from it's current place in the maps.
1929  if (InsertPos)
1930    RemoveNodeFromCSEMaps(N);
1931
1932  // Now we update the operands.
1933  if (N->OperandList[0] != Op1) {
1934    N->OperandList[0].Val->removeUser(N);
1935    Op1.Val->addUser(N);
1936    N->OperandList[0] = Op1;
1937  }
1938  if (N->OperandList[1] != Op2) {
1939    N->OperandList[1].Val->removeUser(N);
1940    Op2.Val->addUser(N);
1941    N->OperandList[1] = Op2;
1942  }
1943
1944  // If this gets put into a CSE map, add it.
1945  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1946  return InN;
1947}
1948
1949SDOperand SelectionDAG::
1950UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1951  SDOperand Ops[] = { Op1, Op2, Op3 };
1952  return UpdateNodeOperands(N, Ops, 3);
1953}
1954
1955SDOperand SelectionDAG::
1956UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1957                   SDOperand Op3, SDOperand Op4) {
1958  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
1959  return UpdateNodeOperands(N, Ops, 4);
1960}
1961
1962SDOperand SelectionDAG::
1963UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1964                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1965  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
1966  return UpdateNodeOperands(N, Ops, 5);
1967}
1968
1969
1970SDOperand SelectionDAG::
1971UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
1972  SDNode *N = InN.Val;
1973  assert(N->getNumOperands() == NumOps &&
1974         "Update with wrong number of operands");
1975
1976  // Check to see if there is no change.
1977  bool AnyChange = false;
1978  for (unsigned i = 0; i != NumOps; ++i) {
1979    if (Ops[i] != N->getOperand(i)) {
1980      AnyChange = true;
1981      break;
1982    }
1983  }
1984
1985  // No operands changed, just return the input node.
1986  if (!AnyChange) return InN;
1987
1988  // See if the modified node already exists.
1989  void *InsertPos = 0;
1990  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
1991    return SDOperand(Existing, InN.ResNo);
1992
1993  // Nope it doesn't.  Remove the node from it's current place in the maps.
1994  if (InsertPos)
1995    RemoveNodeFromCSEMaps(N);
1996
1997  // Now we update the operands.
1998  for (unsigned i = 0; i != NumOps; ++i) {
1999    if (N->OperandList[i] != Ops[i]) {
2000      N->OperandList[i].Val->removeUser(N);
2001      Ops[i].Val->addUser(N);
2002      N->OperandList[i] = Ops[i];
2003    }
2004  }
2005
2006  // If this gets put into a CSE map, add it.
2007  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2008  return InN;
2009}
2010
2011
2012/// MorphNodeTo - This frees the operands of the current node, resets the
2013/// opcode, types, and operands to the specified value.  This should only be
2014/// used by the SelectionDAG class.
2015void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2016                         const SDOperand *Ops, unsigned NumOps) {
2017  NodeType = Opc;
2018  ValueList = L.VTs;
2019  NumValues = L.NumVTs;
2020
2021  // Clear the operands list, updating used nodes to remove this from their
2022  // use list.
2023  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2024    I->Val->removeUser(this);
2025
2026  // If NumOps is larger than the # of operands we currently have, reallocate
2027  // the operand list.
2028  if (NumOps > NumOperands) {
2029    if (OperandsNeedDelete)
2030      delete [] OperandList;
2031    OperandList = new SDOperand[NumOps];
2032    OperandsNeedDelete = true;
2033  }
2034
2035  // Assign the new operands.
2036  NumOperands = NumOps;
2037
2038  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2039    OperandList[i] = Ops[i];
2040    SDNode *N = OperandList[i].Val;
2041    N->Uses.push_back(this);
2042  }
2043}
2044
2045/// SelectNodeTo - These are used for target selectors to *mutate* the
2046/// specified node to have the specified return type, Target opcode, and
2047/// operands.  Note that target opcodes are stored as
2048/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2049///
2050/// Note that SelectNodeTo returns the resultant node.  If there is already a
2051/// node of the specified opcode and operands, it returns that node instead of
2052/// the current one.
2053SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2054                                   MVT::ValueType VT) {
2055  SDVTList VTs = getVTList(VT);
2056  FoldingSetNodeID ID;
2057  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2058  void *IP = 0;
2059  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2060    return ON;
2061
2062  RemoveNodeFromCSEMaps(N);
2063
2064  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2065
2066  CSEMap.InsertNode(N, IP);
2067  return N;
2068}
2069
2070SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2071                                   MVT::ValueType VT, SDOperand Op1) {
2072  // If an identical node already exists, use it.
2073  SDVTList VTs = getVTList(VT);
2074  SDOperand Ops[] = { Op1 };
2075
2076  FoldingSetNodeID ID;
2077  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2078  void *IP = 0;
2079  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2080    return ON;
2081
2082  RemoveNodeFromCSEMaps(N);
2083  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2084  CSEMap.InsertNode(N, IP);
2085  return N;
2086}
2087
2088SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2089                                   MVT::ValueType VT, SDOperand Op1,
2090                                   SDOperand Op2) {
2091  // If an identical node already exists, use it.
2092  SDVTList VTs = getVTList(VT);
2093  SDOperand Ops[] = { Op1, Op2 };
2094
2095  FoldingSetNodeID ID;
2096  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2097  void *IP = 0;
2098  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2099    return ON;
2100
2101  RemoveNodeFromCSEMaps(N);
2102
2103  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2104
2105  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2106  return N;
2107}
2108
2109SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2110                                   MVT::ValueType VT, SDOperand Op1,
2111                                   SDOperand Op2, SDOperand Op3) {
2112  // If an identical node already exists, use it.
2113  SDVTList VTs = getVTList(VT);
2114  SDOperand Ops[] = { Op1, Op2, Op3 };
2115  FoldingSetNodeID ID;
2116  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2117  void *IP = 0;
2118  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2119    return ON;
2120
2121  RemoveNodeFromCSEMaps(N);
2122
2123  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2124
2125  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2126  return N;
2127}
2128
2129SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2130                                   MVT::ValueType VT, const SDOperand *Ops,
2131                                   unsigned NumOps) {
2132  // If an identical node already exists, use it.
2133  SDVTList VTs = getVTList(VT);
2134  FoldingSetNodeID ID;
2135  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2136  void *IP = 0;
2137  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2138    return ON;
2139
2140  RemoveNodeFromCSEMaps(N);
2141  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2142
2143  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2144  return N;
2145}
2146
2147SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2148                                   MVT::ValueType VT1, MVT::ValueType VT2,
2149                                   SDOperand Op1, SDOperand Op2) {
2150  SDVTList VTs = getVTList(VT1, VT2);
2151  FoldingSetNodeID ID;
2152  SDOperand Ops[] = { Op1, Op2 };
2153  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2154  void *IP = 0;
2155  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2156    return ON;
2157
2158  RemoveNodeFromCSEMaps(N);
2159  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2160  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2161  return N;
2162}
2163
2164SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2165                                   MVT::ValueType VT1, MVT::ValueType VT2,
2166                                   SDOperand Op1, SDOperand Op2,
2167                                   SDOperand Op3) {
2168  // If an identical node already exists, use it.
2169  SDVTList VTs = getVTList(VT1, VT2);
2170  SDOperand Ops[] = { Op1, Op2, Op3 };
2171  FoldingSetNodeID ID;
2172  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2173  void *IP = 0;
2174  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2175    return ON;
2176
2177  RemoveNodeFromCSEMaps(N);
2178
2179  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2180  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2181  return N;
2182}
2183
2184
2185/// getTargetNode - These are used for target selectors to create a new node
2186/// with specified return type(s), target opcode, and operands.
2187///
2188/// Note that getTargetNode returns the resultant node.  If there is already a
2189/// node of the specified opcode and operands, it returns that node instead of
2190/// the current one.
2191SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2192  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2193}
2194SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2195                                    SDOperand Op1) {
2196  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2197}
2198SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2199                                    SDOperand Op1, SDOperand Op2) {
2200  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2201}
2202SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2203                                    SDOperand Op1, SDOperand Op2,
2204                                    SDOperand Op3) {
2205  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2206}
2207SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2208                                    const SDOperand *Ops, unsigned NumOps) {
2209  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2210}
2211SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2212                                    MVT::ValueType VT2, SDOperand Op1) {
2213  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2214  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2215}
2216SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2217                                    MVT::ValueType VT2, SDOperand Op1,
2218                                    SDOperand Op2) {
2219  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2220  SDOperand Ops[] = { Op1, Op2 };
2221  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2222}
2223SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2224                                    MVT::ValueType VT2, SDOperand Op1,
2225                                    SDOperand Op2, SDOperand Op3) {
2226  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2227  SDOperand Ops[] = { Op1, Op2, Op3 };
2228  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2229}
2230SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2231                                    MVT::ValueType VT2,
2232                                    const SDOperand *Ops, unsigned NumOps) {
2233  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2234  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2235}
2236SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2237                                    MVT::ValueType VT2, MVT::ValueType VT3,
2238                                    SDOperand Op1, SDOperand Op2) {
2239  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2240  SDOperand Ops[] = { Op1, Op2 };
2241  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2242}
2243SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2244                                    MVT::ValueType VT2, MVT::ValueType VT3,
2245                                    const SDOperand *Ops, unsigned NumOps) {
2246  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2247  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2248}
2249
2250/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2251/// This can cause recursive merging of nodes in the DAG.
2252///
2253/// This version assumes From/To have a single result value.
2254///
2255void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2256                                      std::vector<SDNode*> *Deleted) {
2257  SDNode *From = FromN.Val, *To = ToN.Val;
2258  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2259         "Cannot replace with this method!");
2260  assert(From != To && "Cannot replace uses of with self");
2261
2262  while (!From->use_empty()) {
2263    // Process users until they are all gone.
2264    SDNode *U = *From->use_begin();
2265
2266    // This node is about to morph, remove its old self from the CSE maps.
2267    RemoveNodeFromCSEMaps(U);
2268
2269    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2270         I != E; ++I)
2271      if (I->Val == From) {
2272        From->removeUser(U);
2273        I->Val = To;
2274        To->addUser(U);
2275      }
2276
2277    // Now that we have modified U, add it back to the CSE maps.  If it already
2278    // exists there, recursively merge the results together.
2279    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2280      ReplaceAllUsesWith(U, Existing, Deleted);
2281      // U is now dead.
2282      if (Deleted) Deleted->push_back(U);
2283      DeleteNodeNotInCSEMaps(U);
2284    }
2285  }
2286}
2287
2288/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2289/// This can cause recursive merging of nodes in the DAG.
2290///
2291/// This version assumes From/To have matching types and numbers of result
2292/// values.
2293///
2294void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2295                                      std::vector<SDNode*> *Deleted) {
2296  assert(From != To && "Cannot replace uses of with self");
2297  assert(From->getNumValues() == To->getNumValues() &&
2298         "Cannot use this version of ReplaceAllUsesWith!");
2299  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2300    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2301    return;
2302  }
2303
2304  while (!From->use_empty()) {
2305    // Process users until they are all gone.
2306    SDNode *U = *From->use_begin();
2307
2308    // This node is about to morph, remove its old self from the CSE maps.
2309    RemoveNodeFromCSEMaps(U);
2310
2311    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2312         I != E; ++I)
2313      if (I->Val == From) {
2314        From->removeUser(U);
2315        I->Val = To;
2316        To->addUser(U);
2317      }
2318
2319    // Now that we have modified U, add it back to the CSE maps.  If it already
2320    // exists there, recursively merge the results together.
2321    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2322      ReplaceAllUsesWith(U, Existing, Deleted);
2323      // U is now dead.
2324      if (Deleted) Deleted->push_back(U);
2325      DeleteNodeNotInCSEMaps(U);
2326    }
2327  }
2328}
2329
2330/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2331/// This can cause recursive merging of nodes in the DAG.
2332///
2333/// This version can replace From with any result values.  To must match the
2334/// number and types of values returned by From.
2335void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2336                                      const SDOperand *To,
2337                                      std::vector<SDNode*> *Deleted) {
2338  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
2339    // Degenerate case handled above.
2340    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2341    return;
2342  }
2343
2344  while (!From->use_empty()) {
2345    // Process users until they are all gone.
2346    SDNode *U = *From->use_begin();
2347
2348    // This node is about to morph, remove its old self from the CSE maps.
2349    RemoveNodeFromCSEMaps(U);
2350
2351    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2352         I != E; ++I)
2353      if (I->Val == From) {
2354        const SDOperand &ToOp = To[I->ResNo];
2355        From->removeUser(U);
2356        *I = ToOp;
2357        ToOp.Val->addUser(U);
2358      }
2359
2360    // Now that we have modified U, add it back to the CSE maps.  If it already
2361    // exists there, recursively merge the results together.
2362    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2363      ReplaceAllUsesWith(U, Existing, Deleted);
2364      // U is now dead.
2365      if (Deleted) Deleted->push_back(U);
2366      DeleteNodeNotInCSEMaps(U);
2367    }
2368  }
2369}
2370
2371/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2372/// uses of other values produced by From.Val alone.  The Deleted vector is
2373/// handled the same was as for ReplaceAllUsesWith.
2374void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2375                                             std::vector<SDNode*> &Deleted) {
2376  assert(From != To && "Cannot replace a value with itself");
2377  // Handle the simple, trivial, case efficiently.
2378  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2379    ReplaceAllUsesWith(From, To, &Deleted);
2380    return;
2381  }
2382
2383  // Get all of the users of From.Val.  We want these in a nice,
2384  // deterministically ordered and uniqued set, so we use a SmallSetVector.
2385  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
2386
2387  while (!Users.empty()) {
2388    // We know that this user uses some value of From.  If it is the right
2389    // value, update it.
2390    SDNode *User = Users.back();
2391    Users.pop_back();
2392
2393    for (SDOperand *Op = User->OperandList,
2394         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2395      if (*Op == From) {
2396        // Okay, we know this user needs to be updated.  Remove its old self
2397        // from the CSE maps.
2398        RemoveNodeFromCSEMaps(User);
2399
2400        // Update all operands that match "From".
2401        for (; Op != E; ++Op) {
2402          if (*Op == From) {
2403            From.Val->removeUser(User);
2404            *Op = To;
2405            To.Val->addUser(User);
2406          }
2407        }
2408
2409        // Now that we have modified User, add it back to the CSE maps.  If it
2410        // already exists there, recursively merge the results together.
2411        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2412          unsigned NumDeleted = Deleted.size();
2413          ReplaceAllUsesWith(User, Existing, &Deleted);
2414
2415          // User is now dead.
2416          Deleted.push_back(User);
2417          DeleteNodeNotInCSEMaps(User);
2418
2419          // We have to be careful here, because ReplaceAllUsesWith could have
2420          // deleted a user of From, which means there may be dangling pointers
2421          // in the "Users" setvector.  Scan over the deleted node pointers and
2422          // remove them from the setvector.
2423          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2424            Users.remove(Deleted[i]);
2425        }
2426        break;   // Exit the operand scanning loop.
2427      }
2428    }
2429  }
2430}
2431
2432
2433/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2434/// their allnodes order. It returns the maximum id.
2435unsigned SelectionDAG::AssignNodeIds() {
2436  unsigned Id = 0;
2437  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2438    SDNode *N = I;
2439    N->setNodeId(Id++);
2440  }
2441  return Id;
2442}
2443
2444/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2445/// based on their topological order. It returns the maximum id and a vector
2446/// of the SDNodes* in assigned order by reference.
2447unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2448  unsigned DAGSize = AllNodes.size();
2449  std::vector<unsigned> InDegree(DAGSize);
2450  std::vector<SDNode*> Sources;
2451
2452  // Use a two pass approach to avoid using a std::map which is slow.
2453  unsigned Id = 0;
2454  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2455    SDNode *N = I;
2456    N->setNodeId(Id++);
2457    unsigned Degree = N->use_size();
2458    InDegree[N->getNodeId()] = Degree;
2459    if (Degree == 0)
2460      Sources.push_back(N);
2461  }
2462
2463  TopOrder.clear();
2464  while (!Sources.empty()) {
2465    SDNode *N = Sources.back();
2466    Sources.pop_back();
2467    TopOrder.push_back(N);
2468    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2469      SDNode *P = I->Val;
2470      unsigned Degree = --InDegree[P->getNodeId()];
2471      if (Degree == 0)
2472        Sources.push_back(P);
2473    }
2474  }
2475
2476  // Second pass, assign the actual topological order as node ids.
2477  Id = 0;
2478  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2479       TI != TE; ++TI)
2480    (*TI)->setNodeId(Id++);
2481
2482  return Id;
2483}
2484
2485
2486
2487//===----------------------------------------------------------------------===//
2488//                              SDNode Class
2489//===----------------------------------------------------------------------===//
2490
2491// Out-of-line virtual method to give class a home.
2492void SDNode::ANCHOR() {}
2493void HandleSDNode::ANCHOR() {}
2494void StringSDNode::ANCHOR() {}
2495void ConstantSDNode::ANCHOR() {}
2496void ConstantFPSDNode::ANCHOR() {}
2497void GlobalAddressSDNode::ANCHOR() {}
2498void FrameIndexSDNode::ANCHOR() {}
2499void JumpTableSDNode::ANCHOR() {}
2500void ConstantPoolSDNode::ANCHOR() {}
2501void BasicBlockSDNode::ANCHOR() {}
2502void SrcValueSDNode::ANCHOR() {}
2503void RegisterSDNode::ANCHOR() {}
2504void ExternalSymbolSDNode::ANCHOR() {}
2505void CondCodeSDNode::ANCHOR() {}
2506void VTSDNode::ANCHOR() {}
2507void LoadSDNode::ANCHOR() {}
2508void StoreSDNode::ANCHOR() {}
2509
2510HandleSDNode::~HandleSDNode() {
2511  SDVTList VTs = { 0, 0 };
2512  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
2513}
2514
2515
2516/// Profile - Gather unique data for the node.
2517///
2518void SDNode::Profile(FoldingSetNodeID &ID) {
2519  AddNodeIDNode(ID, this);
2520}
2521
2522/// getValueTypeList - Return a pointer to the specified value type.
2523///
2524MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2525  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2526  VTs[VT] = VT;
2527  return &VTs[VT];
2528}
2529
2530/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2531/// indicated value.  This method ignores uses of other values defined by this
2532/// operation.
2533bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2534  assert(Value < getNumValues() && "Bad value!");
2535
2536  // If there is only one value, this is easy.
2537  if (getNumValues() == 1)
2538    return use_size() == NUses;
2539  if (Uses.size() < NUses) return false;
2540
2541  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2542
2543  SmallPtrSet<SDNode*, 32> UsersHandled;
2544
2545  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
2546    SDNode *User = *UI;
2547    if (User->getNumOperands() == 1 ||
2548        UsersHandled.insert(User))     // First time we've seen this?
2549      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2550        if (User->getOperand(i) == TheValue) {
2551          if (NUses == 0)
2552            return false;   // too many uses
2553          --NUses;
2554        }
2555  }
2556
2557  // Found exactly the right number of uses?
2558  return NUses == 0;
2559}
2560
2561
2562/// isOnlyUse - Return true if this node is the only use of N.
2563///
2564bool SDNode::isOnlyUse(SDNode *N) const {
2565  bool Seen = false;
2566  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2567    SDNode *User = *I;
2568    if (User == this)
2569      Seen = true;
2570    else
2571      return false;
2572  }
2573
2574  return Seen;
2575}
2576
2577/// isOperand - Return true if this node is an operand of N.
2578///
2579bool SDOperand::isOperand(SDNode *N) const {
2580  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2581    if (*this == N->getOperand(i))
2582      return true;
2583  return false;
2584}
2585
2586bool SDNode::isOperand(SDNode *N) const {
2587  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2588    if (this == N->OperandList[i].Val)
2589      return true;
2590  return false;
2591}
2592
2593static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
2594                            SmallPtrSet<SDNode *, 32> &Visited) {
2595  if (found || !Visited.insert(N))
2596    return;
2597
2598  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
2599    SDNode *Op = N->getOperand(i).Val;
2600    if (Op == P) {
2601      found = true;
2602      return;
2603    }
2604    findPredecessor(Op, P, found, Visited);
2605  }
2606}
2607
2608/// isPredecessor - Return true if this node is a predecessor of N. This node
2609/// is either an operand of N or it can be reached by recursively traversing
2610/// up the operands.
2611/// NOTE: this is an expensive method. Use it carefully.
2612bool SDNode::isPredecessor(SDNode *N) const {
2613  SmallPtrSet<SDNode *, 32> Visited;
2614  bool found = false;
2615  findPredecessor(N, this, found, Visited);
2616  return found;
2617}
2618
2619uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
2620  assert(Num < NumOperands && "Invalid child # of SDNode!");
2621  return cast<ConstantSDNode>(OperandList[Num])->getValue();
2622}
2623
2624const char *SDNode::getOperationName(const SelectionDAG *G) const {
2625  switch (getOpcode()) {
2626  default:
2627    if (getOpcode() < ISD::BUILTIN_OP_END)
2628      return "<<Unknown DAG Node>>";
2629    else {
2630      if (G) {
2631        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2632          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2633            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2634
2635        TargetLowering &TLI = G->getTargetLoweringInfo();
2636        const char *Name =
2637          TLI.getTargetNodeName(getOpcode());
2638        if (Name) return Name;
2639      }
2640
2641      return "<<Unknown Target Node>>";
2642    }
2643
2644  case ISD::PCMARKER:      return "PCMarker";
2645  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2646  case ISD::SRCVALUE:      return "SrcValue";
2647  case ISD::EntryToken:    return "EntryToken";
2648  case ISD::TokenFactor:   return "TokenFactor";
2649  case ISD::AssertSext:    return "AssertSext";
2650  case ISD::AssertZext:    return "AssertZext";
2651
2652  case ISD::STRING:        return "String";
2653  case ISD::BasicBlock:    return "BasicBlock";
2654  case ISD::VALUETYPE:     return "ValueType";
2655  case ISD::Register:      return "Register";
2656
2657  case ISD::Constant:      return "Constant";
2658  case ISD::ConstantFP:    return "ConstantFP";
2659  case ISD::GlobalAddress: return "GlobalAddress";
2660  case ISD::FrameIndex:    return "FrameIndex";
2661  case ISD::JumpTable:     return "JumpTable";
2662  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
2663  case ISD::RETURNADDR: return "RETURNADDR";
2664  case ISD::FRAMEADDR: return "FRAMEADDR";
2665  case ISD::ConstantPool:  return "ConstantPool";
2666  case ISD::ExternalSymbol: return "ExternalSymbol";
2667  case ISD::INTRINSIC_WO_CHAIN: {
2668    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2669    return Intrinsic::getName((Intrinsic::ID)IID);
2670  }
2671  case ISD::INTRINSIC_VOID:
2672  case ISD::INTRINSIC_W_CHAIN: {
2673    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2674    return Intrinsic::getName((Intrinsic::ID)IID);
2675  }
2676
2677  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2678  case ISD::TargetConstant: return "TargetConstant";
2679  case ISD::TargetConstantFP:return "TargetConstantFP";
2680  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2681  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2682  case ISD::TargetJumpTable:  return "TargetJumpTable";
2683  case ISD::TargetConstantPool:  return "TargetConstantPool";
2684  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2685
2686  case ISD::CopyToReg:     return "CopyToReg";
2687  case ISD::CopyFromReg:   return "CopyFromReg";
2688  case ISD::UNDEF:         return "undef";
2689  case ISD::MERGE_VALUES:  return "mergevalues";
2690  case ISD::INLINEASM:     return "inlineasm";
2691  case ISD::LABEL:         return "label";
2692  case ISD::HANDLENODE:    return "handlenode";
2693  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2694  case ISD::CALL:          return "call";
2695
2696  // Unary operators
2697  case ISD::FABS:   return "fabs";
2698  case ISD::FNEG:   return "fneg";
2699  case ISD::FSQRT:  return "fsqrt";
2700  case ISD::FSIN:   return "fsin";
2701  case ISD::FCOS:   return "fcos";
2702  case ISD::FPOWI:  return "fpowi";
2703
2704  // Binary operators
2705  case ISD::ADD:    return "add";
2706  case ISD::SUB:    return "sub";
2707  case ISD::MUL:    return "mul";
2708  case ISD::MULHU:  return "mulhu";
2709  case ISD::MULHS:  return "mulhs";
2710  case ISD::SDIV:   return "sdiv";
2711  case ISD::UDIV:   return "udiv";
2712  case ISD::SREM:   return "srem";
2713  case ISD::UREM:   return "urem";
2714  case ISD::AND:    return "and";
2715  case ISD::OR:     return "or";
2716  case ISD::XOR:    return "xor";
2717  case ISD::SHL:    return "shl";
2718  case ISD::SRA:    return "sra";
2719  case ISD::SRL:    return "srl";
2720  case ISD::ROTL:   return "rotl";
2721  case ISD::ROTR:   return "rotr";
2722  case ISD::FADD:   return "fadd";
2723  case ISD::FSUB:   return "fsub";
2724  case ISD::FMUL:   return "fmul";
2725  case ISD::FDIV:   return "fdiv";
2726  case ISD::FREM:   return "frem";
2727  case ISD::FCOPYSIGN: return "fcopysign";
2728  case ISD::VADD:   return "vadd";
2729  case ISD::VSUB:   return "vsub";
2730  case ISD::VMUL:   return "vmul";
2731  case ISD::VSDIV:  return "vsdiv";
2732  case ISD::VUDIV:  return "vudiv";
2733  case ISD::VAND:   return "vand";
2734  case ISD::VOR:    return "vor";
2735  case ISD::VXOR:   return "vxor";
2736
2737  case ISD::SETCC:       return "setcc";
2738  case ISD::SELECT:      return "select";
2739  case ISD::SELECT_CC:   return "select_cc";
2740  case ISD::VSELECT:     return "vselect";
2741  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2742  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2743  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2744  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2745  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2746  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2747  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2748  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2749  case ISD::VBIT_CONVERT:        return "vbit_convert";
2750  case ISD::ADDC:        return "addc";
2751  case ISD::ADDE:        return "adde";
2752  case ISD::SUBC:        return "subc";
2753  case ISD::SUBE:        return "sube";
2754  case ISD::SHL_PARTS:   return "shl_parts";
2755  case ISD::SRA_PARTS:   return "sra_parts";
2756  case ISD::SRL_PARTS:   return "srl_parts";
2757
2758  // Conversion operators.
2759  case ISD::SIGN_EXTEND: return "sign_extend";
2760  case ISD::ZERO_EXTEND: return "zero_extend";
2761  case ISD::ANY_EXTEND:  return "any_extend";
2762  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2763  case ISD::TRUNCATE:    return "truncate";
2764  case ISD::FP_ROUND:    return "fp_round";
2765  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2766  case ISD::FP_EXTEND:   return "fp_extend";
2767
2768  case ISD::SINT_TO_FP:  return "sint_to_fp";
2769  case ISD::UINT_TO_FP:  return "uint_to_fp";
2770  case ISD::FP_TO_SINT:  return "fp_to_sint";
2771  case ISD::FP_TO_UINT:  return "fp_to_uint";
2772  case ISD::BIT_CONVERT: return "bit_convert";
2773
2774    // Control flow instructions
2775  case ISD::BR:      return "br";
2776  case ISD::BRIND:   return "brind";
2777  case ISD::BR_JT:   return "br_jt";
2778  case ISD::BRCOND:  return "brcond";
2779  case ISD::BR_CC:   return "br_cc";
2780  case ISD::RET:     return "ret";
2781  case ISD::CALLSEQ_START:  return "callseq_start";
2782  case ISD::CALLSEQ_END:    return "callseq_end";
2783
2784    // Other operators
2785  case ISD::LOAD:               return "load";
2786  case ISD::STORE:              return "store";
2787  case ISD::VLOAD:              return "vload";
2788  case ISD::VAARG:              return "vaarg";
2789  case ISD::VACOPY:             return "vacopy";
2790  case ISD::VAEND:              return "vaend";
2791  case ISD::VASTART:            return "vastart";
2792  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2793  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2794  case ISD::BUILD_PAIR:         return "build_pair";
2795  case ISD::STACKSAVE:          return "stacksave";
2796  case ISD::STACKRESTORE:       return "stackrestore";
2797
2798  // Block memory operations.
2799  case ISD::MEMSET:  return "memset";
2800  case ISD::MEMCPY:  return "memcpy";
2801  case ISD::MEMMOVE: return "memmove";
2802
2803  // Bit manipulation
2804  case ISD::BSWAP:   return "bswap";
2805  case ISD::CTPOP:   return "ctpop";
2806  case ISD::CTTZ:    return "cttz";
2807  case ISD::CTLZ:    return "ctlz";
2808
2809  // Debug info
2810  case ISD::LOCATION: return "location";
2811  case ISD::DEBUG_LOC: return "debug_loc";
2812
2813  case ISD::CONDCODE:
2814    switch (cast<CondCodeSDNode>(this)->get()) {
2815    default: assert(0 && "Unknown setcc condition!");
2816    case ISD::SETOEQ:  return "setoeq";
2817    case ISD::SETOGT:  return "setogt";
2818    case ISD::SETOGE:  return "setoge";
2819    case ISD::SETOLT:  return "setolt";
2820    case ISD::SETOLE:  return "setole";
2821    case ISD::SETONE:  return "setone";
2822
2823    case ISD::SETO:    return "seto";
2824    case ISD::SETUO:   return "setuo";
2825    case ISD::SETUEQ:  return "setue";
2826    case ISD::SETUGT:  return "setugt";
2827    case ISD::SETUGE:  return "setuge";
2828    case ISD::SETULT:  return "setult";
2829    case ISD::SETULE:  return "setule";
2830    case ISD::SETUNE:  return "setune";
2831
2832    case ISD::SETEQ:   return "seteq";
2833    case ISD::SETGT:   return "setgt";
2834    case ISD::SETGE:   return "setge";
2835    case ISD::SETLT:   return "setlt";
2836    case ISD::SETLE:   return "setle";
2837    case ISD::SETNE:   return "setne";
2838    }
2839  }
2840}
2841
2842const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
2843  switch (AM) {
2844  default:
2845    return "";
2846  case ISD::PRE_INC:
2847    return "<pre-inc>";
2848  case ISD::PRE_DEC:
2849    return "<pre-dec>";
2850  case ISD::POST_INC:
2851    return "<post-inc>";
2852  case ISD::POST_DEC:
2853    return "<post-dec>";
2854  }
2855}
2856
2857void SDNode::dump() const { dump(0); }
2858void SDNode::dump(const SelectionDAG *G) const {
2859  cerr << (void*)this << ": ";
2860
2861  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2862    if (i) cerr << ",";
2863    if (getValueType(i) == MVT::Other)
2864      cerr << "ch";
2865    else
2866      cerr << MVT::getValueTypeString(getValueType(i));
2867  }
2868  cerr << " = " << getOperationName(G);
2869
2870  cerr << " ";
2871  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2872    if (i) cerr << ", ";
2873    cerr << (void*)getOperand(i).Val;
2874    if (unsigned RN = getOperand(i).ResNo)
2875      cerr << ":" << RN;
2876  }
2877
2878  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2879    cerr << "<" << CSDN->getValue() << ">";
2880  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2881    cerr << "<" << CSDN->getValue() << ">";
2882  } else if (const GlobalAddressSDNode *GADN =
2883             dyn_cast<GlobalAddressSDNode>(this)) {
2884    int offset = GADN->getOffset();
2885    cerr << "<";
2886    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
2887    if (offset > 0)
2888      cerr << " + " << offset;
2889    else
2890      cerr << " " << offset;
2891  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2892    cerr << "<" << FIDN->getIndex() << ">";
2893  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
2894    cerr << "<" << JTDN->getIndex() << ">";
2895  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2896    int offset = CP->getOffset();
2897    if (CP->isMachineConstantPoolEntry())
2898      cerr << "<" << *CP->getMachineCPVal() << ">";
2899    else
2900      cerr << "<" << *CP->getConstVal() << ">";
2901    if (offset > 0)
2902      cerr << " + " << offset;
2903    else
2904      cerr << " " << offset;
2905  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2906    cerr << "<";
2907    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2908    if (LBB)
2909      cerr << LBB->getName() << " ";
2910    cerr << (const void*)BBDN->getBasicBlock() << ">";
2911  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2912    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2913      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2914    } else {
2915      cerr << " #" << R->getReg();
2916    }
2917  } else if (const ExternalSymbolSDNode *ES =
2918             dyn_cast<ExternalSymbolSDNode>(this)) {
2919    cerr << "'" << ES->getSymbol() << "'";
2920  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2921    if (M->getValue())
2922      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2923    else
2924      cerr << "<null:" << M->getOffset() << ">";
2925  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2926    cerr << ":" << getValueTypeString(N->getVT());
2927  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
2928    bool doExt = true;
2929    switch (LD->getExtensionType()) {
2930    default: doExt = false; break;
2931    case ISD::EXTLOAD:
2932      cerr << " <anyext ";
2933      break;
2934    case ISD::SEXTLOAD:
2935      cerr << " <sext ";
2936      break;
2937    case ISD::ZEXTLOAD:
2938      cerr << " <zext ";
2939      break;
2940    }
2941    if (doExt)
2942      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
2943
2944    const char *AM = getIndexedModeName(LD->getAddressingMode());
2945    if (AM != "")
2946      cerr << " " << AM;
2947  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
2948    if (ST->isTruncatingStore())
2949      cerr << " <trunc "
2950           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
2951
2952    const char *AM = getIndexedModeName(ST->getAddressingMode());
2953    if (AM != "")
2954      cerr << " " << AM;
2955  }
2956}
2957
2958static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2959  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2960    if (N->getOperand(i).Val->hasOneUse())
2961      DumpNodes(N->getOperand(i).Val, indent+2, G);
2962    else
2963      cerr << "\n" << std::string(indent+2, ' ')
2964           << (void*)N->getOperand(i).Val << ": <multiple use>";
2965
2966
2967  cerr << "\n" << std::string(indent, ' ');
2968  N->dump(G);
2969}
2970
2971void SelectionDAG::dump() const {
2972  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2973  std::vector<const SDNode*> Nodes;
2974  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2975       I != E; ++I)
2976    Nodes.push_back(I);
2977
2978  std::sort(Nodes.begin(), Nodes.end());
2979
2980  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2981    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2982      DumpNodes(Nodes[i], 2, this);
2983  }
2984
2985  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
2986
2987  cerr << "\n\n";
2988}
2989
2990const Type *ConstantPoolSDNode::getType() const {
2991  if (isMachineConstantPoolEntry())
2992    return Val.MachineCPVal->getType();
2993  return Val.ConstVal->getType();
2994}
2995