SelectionDAG.cpp revision af21d55aee8d6852fedfd630395a3c7c95df8f12
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include <iostream>
25#include <set>
26#include <cmath>
27#include <algorithm>
28using namespace llvm;
29
30static bool isCommutativeBinOp(unsigned Opcode) {
31  switch (Opcode) {
32  case ISD::ADD:
33  case ISD::MUL:
34  case ISD::FADD:
35  case ISD::FMUL:
36  case ISD::AND:
37  case ISD::OR:
38  case ISD::XOR: return true;
39  default: return false; // FIXME: Need commutative info for user ops!
40  }
41}
42
43static bool isAssociativeBinOp(unsigned Opcode) {
44  switch (Opcode) {
45  case ISD::ADD:
46  case ISD::MUL:
47  case ISD::AND:
48  case ISD::OR:
49  case ISD::XOR: return true;
50  default: return false; // FIXME: Need associative info for user ops!
51  }
52}
53
54// isInvertibleForFree - Return true if there is no cost to emitting the logical
55// inverse of this node.
56static bool isInvertibleForFree(SDOperand N) {
57  if (isa<ConstantSDNode>(N.Val)) return true;
58  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
59    return true;
60  return false;
61}
62
63//===----------------------------------------------------------------------===//
64//                              ConstantFPSDNode Class
65//===----------------------------------------------------------------------===//
66
67/// isExactlyValue - We don't rely on operator== working on double values, as
68/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
69/// As such, this method can be used to do an exact bit-for-bit comparison of
70/// two floating point values.
71bool ConstantFPSDNode::isExactlyValue(double V) const {
72  return DoubleToBits(V) == DoubleToBits(Value);
73}
74
75//===----------------------------------------------------------------------===//
76//                              ISD Class
77//===----------------------------------------------------------------------===//
78
79/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
80/// when given the operation for (X op Y).
81ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
82  // To perform this operation, we just need to swap the L and G bits of the
83  // operation.
84  unsigned OldL = (Operation >> 2) & 1;
85  unsigned OldG = (Operation >> 1) & 1;
86  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
87                       (OldL << 1) |       // New G bit
88                       (OldG << 2));        // New L bit.
89}
90
91/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
92/// 'op' is a valid SetCC operation.
93ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
94  unsigned Operation = Op;
95  if (isInteger)
96    Operation ^= 7;   // Flip L, G, E bits, but not U.
97  else
98    Operation ^= 15;  // Flip all of the condition bits.
99  if (Operation > ISD::SETTRUE2)
100    Operation &= ~8;     // Don't let N and U bits get set.
101  return ISD::CondCode(Operation);
102}
103
104
105/// isSignedOp - For an integer comparison, return 1 if the comparison is a
106/// signed operation and 2 if the result is an unsigned comparison.  Return zero
107/// if the operation does not depend on the sign of the input (setne and seteq).
108static int isSignedOp(ISD::CondCode Opcode) {
109  switch (Opcode) {
110  default: assert(0 && "Illegal integer setcc operation!");
111  case ISD::SETEQ:
112  case ISD::SETNE: return 0;
113  case ISD::SETLT:
114  case ISD::SETLE:
115  case ISD::SETGT:
116  case ISD::SETGE: return 1;
117  case ISD::SETULT:
118  case ISD::SETULE:
119  case ISD::SETUGT:
120  case ISD::SETUGE: return 2;
121  }
122}
123
124/// getSetCCOrOperation - Return the result of a logical OR between different
125/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
126/// returns SETCC_INVALID if it is not possible to represent the resultant
127/// comparison.
128ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
129                                       bool isInteger) {
130  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
131    // Cannot fold a signed integer setcc with an unsigned integer setcc.
132    return ISD::SETCC_INVALID;
133
134  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
135
136  // If the N and U bits get set then the resultant comparison DOES suddenly
137  // care about orderedness, and is true when ordered.
138  if (Op > ISD::SETTRUE2)
139    Op &= ~16;     // Clear the N bit.
140  return ISD::CondCode(Op);
141}
142
143/// getSetCCAndOperation - Return the result of a logical AND between different
144/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
145/// function returns zero if it is not possible to represent the resultant
146/// comparison.
147ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
148                                        bool isInteger) {
149  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
150    // Cannot fold a signed setcc with an unsigned setcc.
151    return ISD::SETCC_INVALID;
152
153  // Combine all of the condition bits.
154  return ISD::CondCode(Op1 & Op2);
155}
156
157const TargetMachine &SelectionDAG::getTarget() const {
158  return TLI.getTargetMachine();
159}
160
161//===----------------------------------------------------------------------===//
162//                              SelectionDAG Class
163//===----------------------------------------------------------------------===//
164
165/// RemoveDeadNodes - This method deletes all unreachable nodes in the
166/// SelectionDAG, including nodes (like loads) that have uses of their token
167/// chain but no other uses and no side effect.  If a node is passed in as an
168/// argument, it is used as the seed for node deletion.
169void SelectionDAG::RemoveDeadNodes(SDNode *N) {
170  std::set<SDNode*> AllNodeSet(AllNodes.begin(), AllNodes.end());
171
172  // Create a dummy node (which is not added to allnodes), that adds a reference
173  // to the root node, preventing it from being deleted.
174  HandleSDNode Dummy(getRoot());
175
176  // If we have a hint to start from, use it.
177  if (N) DeleteNodeIfDead(N, &AllNodeSet);
178
179 Restart:
180  unsigned NumNodes = AllNodeSet.size();
181  for (std::set<SDNode*>::iterator I = AllNodeSet.begin(), E = AllNodeSet.end();
182       I != E; ++I) {
183    // Try to delete this node.
184    DeleteNodeIfDead(*I, &AllNodeSet);
185
186    // If we actually deleted any nodes, do not use invalid iterators in
187    // AllNodeSet.
188    if (AllNodeSet.size() != NumNodes)
189      goto Restart;
190  }
191
192  // Restore AllNodes.
193  if (AllNodes.size() != NumNodes)
194    AllNodes.assign(AllNodeSet.begin(), AllNodeSet.end());
195
196  // If the root changed (e.g. it was a dead load, update the root).
197  setRoot(Dummy.getValue());
198}
199
200
201void SelectionDAG::DeleteNodeIfDead(SDNode *N, void *NodeSet) {
202  if (!N->use_empty())
203    return;
204
205  // Okay, we really are going to delete this node.  First take this out of the
206  // appropriate CSE map.
207  RemoveNodeFromCSEMaps(N);
208
209  // Next, brutally remove the operand list.  This is safe to do, as there are
210  // no cycles in the graph.
211  while (!N->Operands.empty()) {
212    SDNode *O = N->Operands.back().Val;
213    N->Operands.pop_back();
214    O->removeUser(N);
215
216    // Now that we removed this operand, see if there are no uses of it left.
217    DeleteNodeIfDead(O, NodeSet);
218  }
219
220  // Remove the node from the nodes set and delete it.
221  std::set<SDNode*> &AllNodeSet = *(std::set<SDNode*>*)NodeSet;
222  AllNodeSet.erase(N);
223
224  // Now that the node is gone, check to see if any of the operands of this node
225  // are dead now.
226  delete N;
227}
228
229void SelectionDAG::DeleteNode(SDNode *N) {
230  assert(N->use_empty() && "Cannot delete a node that is not dead!");
231
232  // First take this out of the appropriate CSE map.
233  RemoveNodeFromCSEMaps(N);
234
235  // Finally, remove uses due to operands of this node, remove from the
236  // AllNodes list, and delete the node.
237  DeleteNodeNotInCSEMaps(N);
238}
239
240void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
241
242  // Remove it from the AllNodes list.
243  for (std::vector<SDNode*>::iterator I = AllNodes.begin(); ; ++I) {
244    assert(I != AllNodes.end() && "Node not in AllNodes list??");
245    if (*I == N) {
246      // Erase from the vector, which is not ordered.
247      std::swap(*I, AllNodes.back());
248      AllNodes.pop_back();
249      break;
250    }
251  }
252
253  // Drop all of the operands and decrement used nodes use counts.
254  while (!N->Operands.empty()) {
255    SDNode *O = N->Operands.back().Val;
256    N->Operands.pop_back();
257    O->removeUser(N);
258  }
259
260  delete N;
261}
262
263/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
264/// correspond to it.  This is useful when we're about to delete or repurpose
265/// the node.  We don't want future request for structurally identical nodes
266/// to return N anymore.
267void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
268  bool Erased = false;
269  switch (N->getOpcode()) {
270  case ISD::HANDLENODE: return;  // noop.
271  case ISD::Constant:
272    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
273                                            N->getValueType(0)));
274    break;
275  case ISD::TargetConstant:
276    Erased = TargetConstants.erase(std::make_pair(
277                                    cast<ConstantSDNode>(N)->getValue(),
278                                                  N->getValueType(0)));
279    break;
280  case ISD::ConstantFP: {
281    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
282    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
283    break;
284  }
285  case ISD::CONDCODE:
286    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
287           "Cond code doesn't exist!");
288    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
289    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
290    break;
291  case ISD::GlobalAddress:
292    Erased = GlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
293    break;
294  case ISD::TargetGlobalAddress:
295    Erased =TargetGlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
296    break;
297  case ISD::FrameIndex:
298    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
299    break;
300  case ISD::TargetFrameIndex:
301    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
302    break;
303  case ISD::ConstantPool:
304    Erased = ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
305    break;
306  case ISD::TargetConstantPool:
307    Erased =TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
308    break;
309  case ISD::BasicBlock:
310    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
311    break;
312  case ISD::ExternalSymbol:
313    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
314    break;
315  case ISD::VALUETYPE:
316    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
317    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
318    break;
319  case ISD::Register:
320    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
321                                           N->getValueType(0)));
322    break;
323  case ISD::SRCVALUE: {
324    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
325    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
326    break;
327  }
328  case ISD::LOAD:
329    Erased = Loads.erase(std::make_pair(N->getOperand(1),
330                                        std::make_pair(N->getOperand(0),
331                                                       N->getValueType(0))));
332    break;
333  default:
334    if (N->getNumValues() == 1) {
335      if (N->getNumOperands() == 0) {
336        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
337                                                 N->getValueType(0)));
338      } else if (N->getNumOperands() == 1) {
339        Erased =
340          UnaryOps.erase(std::make_pair(N->getOpcode(),
341                                        std::make_pair(N->getOperand(0),
342                                                       N->getValueType(0))));
343      } else if (N->getNumOperands() == 2) {
344        Erased =
345          BinaryOps.erase(std::make_pair(N->getOpcode(),
346                                         std::make_pair(N->getOperand(0),
347                                                        N->getOperand(1))));
348      } else {
349        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
350        Erased =
351          OneResultNodes.erase(std::make_pair(N->getOpcode(),
352                                              std::make_pair(N->getValueType(0),
353                                                             Ops)));
354      }
355    } else {
356      // Remove the node from the ArbitraryNodes map.
357      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
358      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
359      Erased =
360        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
361                                            std::make_pair(RV, Ops)));
362    }
363    break;
364  }
365#ifndef NDEBUG
366  // Verify that the node was actually in one of the CSE maps, unless it has a
367  // flag result (which cannot be CSE'd) or is one of the special cases that are
368  // not subject to CSE.
369  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
370      N->getOpcode() != ISD::CALL && N->getOpcode() != ISD::CALLSEQ_START &&
371      N->getOpcode() != ISD::CALLSEQ_END && !N->isTargetOpcode()) {
372
373    N->dump();
374    assert(0 && "Node is not in map!");
375  }
376#endif
377}
378
379/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
380/// has been taken out and modified in some way.  If the specified node already
381/// exists in the CSE maps, do not modify the maps, but return the existing node
382/// instead.  If it doesn't exist, add it and return null.
383///
384SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
385  assert(N->getNumOperands() && "This is a leaf node!");
386  if (N->getOpcode() == ISD::LOAD) {
387    SDNode *&L = Loads[std::make_pair(N->getOperand(1),
388                                      std::make_pair(N->getOperand(0),
389                                                     N->getValueType(0)))];
390    if (L) return L;
391    L = N;
392  } else if (N->getOpcode() == ISD::HANDLENODE) {
393    return 0;  // never add it.
394  } else if (N->getNumOperands() == 1) {
395    SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
396                                         std::make_pair(N->getOperand(0),
397                                                        N->getValueType(0)))];
398    if (U) return U;
399    U = N;
400  } else if (N->getNumOperands() == 2) {
401    SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
402                                          std::make_pair(N->getOperand(0),
403                                                         N->getOperand(1)))];
404    if (B) return B;
405    B = N;
406  } else if (N->getNumValues() == 1) {
407    std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
408    SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
409                                  std::make_pair(N->getValueType(0), Ops))];
410    if (ORN) return ORN;
411    ORN = N;
412  } else {
413    // Remove the node from the ArbitraryNodes map.
414    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
415    std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
416    SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
417                                                std::make_pair(RV, Ops))];
418    if (AN) return AN;
419    AN = N;
420  }
421  return 0;
422
423}
424
425
426
427SelectionDAG::~SelectionDAG() {
428  for (unsigned i = 0, e = AllNodes.size(); i != e; ++i)
429    delete AllNodes[i];
430}
431
432SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
433  if (Op.getValueType() == VT) return Op;
434  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
435  return getNode(ISD::AND, Op.getValueType(), Op,
436                 getConstant(Imm, Op.getValueType()));
437}
438
439SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
440  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
441  // Mask out any bits that are not valid for this constant.
442  if (VT != MVT::i64)
443    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
444
445  SDNode *&N = Constants[std::make_pair(Val, VT)];
446  if (N) return SDOperand(N, 0);
447  N = new ConstantSDNode(false, Val, VT);
448  AllNodes.push_back(N);
449  return SDOperand(N, 0);
450}
451
452SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
453  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
454  // Mask out any bits that are not valid for this constant.
455  if (VT != MVT::i64)
456    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
457
458  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
459  if (N) return SDOperand(N, 0);
460  N = new ConstantSDNode(true, Val, VT);
461  AllNodes.push_back(N);
462  return SDOperand(N, 0);
463}
464
465SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
466  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
467  if (VT == MVT::f32)
468    Val = (float)Val;  // Mask out extra precision.
469
470  // Do the map lookup using the actual bit pattern for the floating point
471  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
472  // we don't have issues with SNANs.
473  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
474  if (N) return SDOperand(N, 0);
475  N = new ConstantFPSDNode(Val, VT);
476  AllNodes.push_back(N);
477  return SDOperand(N, 0);
478}
479
480
481
482SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
483                                         MVT::ValueType VT) {
484  SDNode *&N = GlobalValues[GV];
485  if (N) return SDOperand(N, 0);
486  N = new GlobalAddressSDNode(false, GV, VT);
487  AllNodes.push_back(N);
488  return SDOperand(N, 0);
489}
490
491SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
492                                               MVT::ValueType VT) {
493  SDNode *&N = TargetGlobalValues[GV];
494  if (N) return SDOperand(N, 0);
495  N = new GlobalAddressSDNode(true, GV, VT);
496  AllNodes.push_back(N);
497  return SDOperand(N, 0);
498}
499
500SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
501  SDNode *&N = FrameIndices[FI];
502  if (N) return SDOperand(N, 0);
503  N = new FrameIndexSDNode(FI, VT, false);
504  AllNodes.push_back(N);
505  return SDOperand(N, 0);
506}
507
508SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
509  SDNode *&N = TargetFrameIndices[FI];
510  if (N) return SDOperand(N, 0);
511  N = new FrameIndexSDNode(FI, VT, true);
512  AllNodes.push_back(N);
513  return SDOperand(N, 0);
514}
515
516SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
517  SDNode *&N = ConstantPoolIndices[C];
518  if (N) return SDOperand(N, 0);
519  N = new ConstantPoolSDNode(C, VT, false);
520  AllNodes.push_back(N);
521  return SDOperand(N, 0);
522}
523
524SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
525  SDNode *&N = TargetConstantPoolIndices[C];
526  if (N) return SDOperand(N, 0);
527  N = new ConstantPoolSDNode(C, VT, true);
528  AllNodes.push_back(N);
529  return SDOperand(N, 0);
530}
531
532SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
533  SDNode *&N = BBNodes[MBB];
534  if (N) return SDOperand(N, 0);
535  N = new BasicBlockSDNode(MBB);
536  AllNodes.push_back(N);
537  return SDOperand(N, 0);
538}
539
540SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
541  if ((unsigned)VT >= ValueTypeNodes.size())
542    ValueTypeNodes.resize(VT+1);
543  if (ValueTypeNodes[VT] == 0) {
544    ValueTypeNodes[VT] = new VTSDNode(VT);
545    AllNodes.push_back(ValueTypeNodes[VT]);
546  }
547
548  return SDOperand(ValueTypeNodes[VT], 0);
549}
550
551SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
552  SDNode *&N = ExternalSymbols[Sym];
553  if (N) return SDOperand(N, 0);
554  N = new ExternalSymbolSDNode(Sym, VT);
555  AllNodes.push_back(N);
556  return SDOperand(N, 0);
557}
558
559SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
560  if ((unsigned)Cond >= CondCodeNodes.size())
561    CondCodeNodes.resize(Cond+1);
562
563  if (CondCodeNodes[Cond] == 0) {
564    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
565    AllNodes.push_back(CondCodeNodes[Cond]);
566  }
567  return SDOperand(CondCodeNodes[Cond], 0);
568}
569
570SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
571  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
572  if (!Reg) {
573    Reg = new RegisterSDNode(RegNo, VT);
574    AllNodes.push_back(Reg);
575  }
576  return SDOperand(Reg, 0);
577}
578
579/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
580/// this predicate to simplify operations downstream.  V and Mask are known to
581/// be the same type.
582static bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask,
583                              const TargetLowering &TLI) {
584  unsigned SrcBits;
585  if (Mask == 0) return true;
586
587  // If we know the result of a setcc has the top bits zero, use this info.
588  switch (Op.getOpcode()) {
589  case ISD::Constant:
590    return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0;
591
592  case ISD::SETCC:
593    return ((Mask & 1) == 0) &&
594    TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult;
595
596  case ISD::ZEXTLOAD:
597    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
598    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
599  case ISD::ZERO_EXTEND:
600    SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
601    return MaskedValueIsZero(Op.getOperand(0),Mask & ((1ULL << SrcBits)-1),TLI);
602  case ISD::AssertZext:
603    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
604    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
605  case ISD::AND:
606    // If either of the operands has zero bits, the result will too.
607    if (MaskedValueIsZero(Op.getOperand(1), Mask, TLI) ||
608        MaskedValueIsZero(Op.getOperand(0), Mask, TLI))
609      return true;
610
611    // (X & C1) & C2 == 0   iff   C1 & C2 == 0.
612    if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
613      return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask, TLI);
614    return false;
615  case ISD::OR:
616  case ISD::XOR:
617    return MaskedValueIsZero(Op.getOperand(0), Mask, TLI) &&
618           MaskedValueIsZero(Op.getOperand(1), Mask, TLI);
619  case ISD::SELECT:
620    return MaskedValueIsZero(Op.getOperand(1), Mask, TLI) &&
621           MaskedValueIsZero(Op.getOperand(2), Mask, TLI);
622  case ISD::SELECT_CC:
623    return MaskedValueIsZero(Op.getOperand(2), Mask, TLI) &&
624           MaskedValueIsZero(Op.getOperand(3), Mask, TLI);
625  case ISD::SRL:
626    // (ushr X, C1) & C2 == 0   iff  X & (C2 << C1) == 0
627    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
628      uint64_t NewVal = Mask << ShAmt->getValue();
629      SrcBits = MVT::getSizeInBits(Op.getValueType());
630      if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1;
631      return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
632    }
633    return false;
634  case ISD::SHL:
635    // (ushl X, C1) & C2 == 0   iff  X & (C2 >> C1) == 0
636    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
637      uint64_t NewVal = Mask >> ShAmt->getValue();
638      return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
639    }
640    return false;
641  case ISD::ADD:
642    // (add X, Y) & C == 0 iff (X&C)|(Y&C) == 0 and all bits are low bits.
643    if ((Mask&(Mask+1)) == 0) {  // All low bits
644      if (MaskedValueIsZero(Op.getOperand(0), Mask, TLI) &&
645          MaskedValueIsZero(Op.getOperand(1), Mask, TLI)) {
646        std::cerr << "MASK: ";
647        Op.getOperand(0).Val->dump();
648        std::cerr << " - ";
649        Op.getOperand(1).Val->dump();
650        std::cerr << "\n";
651        return true;
652      }
653    }
654    break;
655  case ISD::SUB:
656    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
657      // We know that the top bits of C-X are clear if X contains less bits
658      // than C (i.e. no wrap-around can happen).  For example, 20-X is
659      // positive if we can prove that X is >= 0 and < 16.
660      unsigned Bits = MVT::getSizeInBits(CLHS->getValueType(0));
661      if ((CLHS->getValue() & (1 << (Bits-1))) == 0) {  // sign bit clear
662        unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
663        uint64_t MaskV = (1ULL << (63-NLZ))-1;
664        if (MaskedValueIsZero(Op.getOperand(1), ~MaskV, TLI)) {
665          // High bits are clear this value is known to be >= C.
666          unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
667          if ((Mask & ((1ULL << (64-NLZ2))-1)) == 0)
668            return true;
669        }
670      }
671    }
672    break;
673  case ISD::CTTZ:
674  case ISD::CTLZ:
675  case ISD::CTPOP:
676    // Bit counting instructions can not set the high bits of the result
677    // register.  The max number of bits sets depends on the input.
678    return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0;
679
680    // TODO we could handle some SRA cases here.
681  default: break;
682  }
683
684  return false;
685}
686
687
688
689SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
690                                      SDOperand N2, ISD::CondCode Cond) {
691  // These setcc operations always fold.
692  switch (Cond) {
693  default: break;
694  case ISD::SETFALSE:
695  case ISD::SETFALSE2: return getConstant(0, VT);
696  case ISD::SETTRUE:
697  case ISD::SETTRUE2:  return getConstant(1, VT);
698  }
699
700  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
701    uint64_t C2 = N2C->getValue();
702    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
703      uint64_t C1 = N1C->getValue();
704
705      // Sign extend the operands if required
706      if (ISD::isSignedIntSetCC(Cond)) {
707        C1 = N1C->getSignExtended();
708        C2 = N2C->getSignExtended();
709      }
710
711      switch (Cond) {
712      default: assert(0 && "Unknown integer setcc!");
713      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
714      case ISD::SETNE:  return getConstant(C1 != C2, VT);
715      case ISD::SETULT: return getConstant(C1 <  C2, VT);
716      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
717      case ISD::SETULE: return getConstant(C1 <= C2, VT);
718      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
719      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
720      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
721      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
722      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
723      }
724    } else {
725      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
726      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
727        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
728
729        // If the comparison constant has bits in the upper part, the
730        // zero-extended value could never match.
731        if (C2 & (~0ULL << InSize)) {
732          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
733          switch (Cond) {
734          case ISD::SETUGT:
735          case ISD::SETUGE:
736          case ISD::SETEQ: return getConstant(0, VT);
737          case ISD::SETULT:
738          case ISD::SETULE:
739          case ISD::SETNE: return getConstant(1, VT);
740          case ISD::SETGT:
741          case ISD::SETGE:
742            // True if the sign bit of C2 is set.
743            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
744          case ISD::SETLT:
745          case ISD::SETLE:
746            // True if the sign bit of C2 isn't set.
747            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
748          default:
749            break;
750          }
751        }
752
753        // Otherwise, we can perform the comparison with the low bits.
754        switch (Cond) {
755        case ISD::SETEQ:
756        case ISD::SETNE:
757        case ISD::SETUGT:
758        case ISD::SETUGE:
759        case ISD::SETULT:
760        case ISD::SETULE:
761          return getSetCC(VT, N1.getOperand(0),
762                          getConstant(C2, N1.getOperand(0).getValueType()),
763                          Cond);
764        default:
765          break;   // todo, be more careful with signed comparisons
766        }
767      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
768                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
769        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
770        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
771        MVT::ValueType ExtDstTy = N1.getValueType();
772        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
773
774        // If the extended part has any inconsistent bits, it cannot ever
775        // compare equal.  In other words, they have to be all ones or all
776        // zeros.
777        uint64_t ExtBits =
778          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
779        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
780          return getConstant(Cond == ISD::SETNE, VT);
781
782        // Otherwise, make this a use of a zext.
783        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
784                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
785                        Cond);
786      }
787
788      uint64_t MinVal, MaxVal;
789      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
790      if (ISD::isSignedIntSetCC(Cond)) {
791        MinVal = 1ULL << (OperandBitSize-1);
792        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
793          MaxVal = ~0ULL >> (65-OperandBitSize);
794        else
795          MaxVal = 0;
796      } else {
797        MinVal = 0;
798        MaxVal = ~0ULL >> (64-OperandBitSize);
799      }
800
801      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
802      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
803        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
804        --C2;                                          // X >= C1 --> X > (C1-1)
805        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
806                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
807      }
808
809      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
810        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
811        ++C2;                                          // X <= C1 --> X < (C1+1)
812        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
813                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
814      }
815
816      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
817        return getConstant(0, VT);      // X < MIN --> false
818
819      // Canonicalize setgt X, Min --> setne X, Min
820      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
821        return getSetCC(VT, N1, N2, ISD::SETNE);
822
823      // If we have setult X, 1, turn it into seteq X, 0
824      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
825        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
826                        ISD::SETEQ);
827      // If we have setugt X, Max-1, turn it into seteq X, Max
828      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
829        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
830                        ISD::SETEQ);
831
832      // If we have "setcc X, C1", check to see if we can shrink the immediate
833      // by changing cc.
834
835      // SETUGT X, SINTMAX  -> SETLT X, 0
836      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
837          C2 == (~0ULL >> (65-OperandBitSize)))
838        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
839
840      // FIXME: Implement the rest of these.
841
842
843      // Fold bit comparisons when we can.
844      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
845          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
846        if (ConstantSDNode *AndRHS =
847                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
848          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
849            // Perform the xform if the AND RHS is a single bit.
850            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
851              return getNode(ISD::SRL, VT, N1,
852                             getConstant(Log2_64(AndRHS->getValue()),
853                                                   TLI.getShiftAmountTy()));
854            }
855          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
856            // (X & 8) == 8  -->  (X & 8) >> 3
857            // Perform the xform if C2 is a single bit.
858            if ((C2 & (C2-1)) == 0) {
859              return getNode(ISD::SRL, VT, N1,
860                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
861            }
862          }
863        }
864    }
865  } else if (isa<ConstantSDNode>(N1.Val)) {
866      // Ensure that the constant occurs on the RHS.
867    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
868  }
869
870  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
871    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
872      double C1 = N1C->getValue(), C2 = N2C->getValue();
873
874      switch (Cond) {
875      default: break; // FIXME: Implement the rest of these!
876      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
877      case ISD::SETNE:  return getConstant(C1 != C2, VT);
878      case ISD::SETLT:  return getConstant(C1 < C2, VT);
879      case ISD::SETGT:  return getConstant(C1 > C2, VT);
880      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
881      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
882      }
883    } else {
884      // Ensure that the constant occurs on the RHS.
885      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
886    }
887
888  // Could not fold it.
889  return SDOperand();
890}
891
892SDOperand SelectionDAG::SimplifySelectCC(SDOperand N1, SDOperand N2,
893                                         SDOperand N3, SDOperand N4,
894                                         ISD::CondCode CC) {
895  MVT::ValueType VT = N3.getValueType();
896  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
897  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
898  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
899  ConstantSDNode *N4C = dyn_cast<ConstantSDNode>(N4.Val);
900
901  // Check to see if we can simplify the select into an fabs node
902  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2)) {
903    // Allow either -0.0 or 0.0
904    if (CFP->getValue() == 0.0) {
905      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
906      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
907          N1 == N3 && N4.getOpcode() == ISD::FNEG &&
908          N1 == N4.getOperand(0))
909        return getNode(ISD::FABS, VT, N1);
910
911      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
912      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
913          N1 == N4 && N3.getOpcode() == ISD::FNEG &&
914          N3.getOperand(0) == N4)
915        return getNode(ISD::FABS, VT, N4);
916    }
917  }
918
919  // check to see if we're select_cc'ing a select_cc.
920  // this allows us to turn:
921  // select_cc set[eq,ne] (select_cc cc, lhs, rhs, 1, 0), 0, true, false ->
922  // select_cc cc, lhs, rhs, true, false
923  if ((N1C && N1C->isNullValue() && N2.getOpcode() == ISD::SELECT_CC) ||
924      (N2C && N2C->isNullValue() && N1.getOpcode() == ISD::SELECT_CC) &&
925      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
926    SDOperand SCC = N1C ? N2 : N1;
927    ConstantSDNode *SCCT = dyn_cast<ConstantSDNode>(SCC.getOperand(2));
928    ConstantSDNode *SCCF = dyn_cast<ConstantSDNode>(SCC.getOperand(3));
929    if (SCCT && SCCF && SCCF->isNullValue() && SCCT->getValue() == 1ULL) {
930      if (CC == ISD::SETEQ) std::swap(N3, N4);
931      return getNode(ISD::SELECT_CC, N3.getValueType(), SCC.getOperand(0),
932                     SCC.getOperand(1), N3, N4, SCC.getOperand(4));
933    }
934  }
935
936  // Check to see if we can perform the "gzip trick", transforming
937  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
938  if (N2C && N2C->isNullValue() && N4C && N4C->isNullValue() &&
939      MVT::isInteger(N1.getValueType()) &&
940      MVT::isInteger(N3.getValueType()) && CC == ISD::SETLT) {
941    MVT::ValueType XType = N1.getValueType();
942    MVT::ValueType AType = N3.getValueType();
943    if (XType >= AType) {
944      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
945      // single-bit constant.  FIXME: remove once the dag combiner
946      // exists.
947      if (N3C && ((N3C->getValue() & (N3C->getValue()-1)) == 0)) {
948        unsigned ShCtV = Log2_64(N3C->getValue());
949        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
950        SDOperand ShCt = getConstant(ShCtV, TLI.getShiftAmountTy());
951        SDOperand Shift = getNode(ISD::SRL, XType, N1, ShCt);
952        if (XType > AType)
953          Shift = getNode(ISD::TRUNCATE, AType, Shift);
954        return getNode(ISD::AND, AType, Shift, N3);
955      }
956      SDOperand Shift = getNode(ISD::SRA, XType, N1,
957                                getConstant(MVT::getSizeInBits(XType)-1,
958                                            TLI.getShiftAmountTy()));
959      if (XType > AType)
960        Shift = getNode(ISD::TRUNCATE, AType, Shift);
961      return getNode(ISD::AND, AType, Shift, N3);
962    }
963  }
964
965  // Check to see if this is the equivalent of setcc
966  if (N4C && N4C->isNullValue() && N3C && (N3C->getValue() == 1ULL)) {
967    MVT::ValueType XType = N1.getValueType();
968    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
969      SDOperand Res = getSetCC(TLI.getSetCCResultTy(), N1, N2, CC);
970      if (Res.getValueType() != VT)
971        Res = getNode(ISD::ZERO_EXTEND, VT, Res);
972      return Res;
973    }
974
975    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
976    if (N2C && N2C->isNullValue() && CC == ISD::SETEQ &&
977        TLI.isOperationLegal(ISD::CTLZ, XType)) {
978      SDOperand Ctlz = getNode(ISD::CTLZ, XType, N1);
979      return getNode(ISD::SRL, XType, Ctlz,
980                     getConstant(Log2_32(MVT::getSizeInBits(XType)),
981                                 TLI.getShiftAmountTy()));
982    }
983    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
984    if (N2C && N2C->isNullValue() && CC == ISD::SETGT) {
985      SDOperand NegN1 = getNode(ISD::SUB, XType, getConstant(0, XType), N1);
986      SDOperand NotN1 = getNode(ISD::XOR, XType, N1, getConstant(~0ULL, XType));
987      return getNode(ISD::SRL, XType, getNode(ISD::AND, XType, NegN1, NotN1),
988                     getConstant(MVT::getSizeInBits(XType)-1,
989                                 TLI.getShiftAmountTy()));
990    }
991    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
992    if (N2C && N2C->isAllOnesValue() && CC == ISD::SETGT) {
993      SDOperand Sign = getNode(ISD::SRL, XType, N1,
994                               getConstant(MVT::getSizeInBits(XType)-1,
995                                           TLI.getShiftAmountTy()));
996      return getNode(ISD::XOR, XType, Sign, getConstant(1, XType));
997    }
998  }
999
1000  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
1001  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
1002  if (N2C && N2C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
1003      N1 == N4 && N3.getOpcode() == ISD::SUB && N1 == N3.getOperand(1)) {
1004    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
1005      MVT::ValueType XType = N1.getValueType();
1006      if (SubC->isNullValue() && MVT::isInteger(XType)) {
1007        SDOperand Shift = getNode(ISD::SRA, XType, N1,
1008                                  getConstant(MVT::getSizeInBits(XType)-1,
1009                                              TLI.getShiftAmountTy()));
1010        return getNode(ISD::XOR, XType, getNode(ISD::ADD, XType, N1, Shift),
1011                       Shift);
1012      }
1013    }
1014  }
1015
1016  // Could not fold it.
1017  return SDOperand();
1018}
1019
1020/// getNode - Gets or creates the specified node.
1021///
1022SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1023  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
1024  if (!N) {
1025    N = new SDNode(Opcode, VT);
1026    AllNodes.push_back(N);
1027  }
1028  return SDOperand(N, 0);
1029}
1030
1031SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1032                                SDOperand Operand) {
1033  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1034    uint64_t Val = C->getValue();
1035    switch (Opcode) {
1036    default: break;
1037    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1038    case ISD::ANY_EXTEND:
1039    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1040    case ISD::TRUNCATE:    return getConstant(Val, VT);
1041    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1042    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1043    }
1044  }
1045
1046  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1047    switch (Opcode) {
1048    case ISD::FNEG:
1049      return getConstantFP(-C->getValue(), VT);
1050    case ISD::FP_ROUND:
1051    case ISD::FP_EXTEND:
1052      return getConstantFP(C->getValue(), VT);
1053    case ISD::FP_TO_SINT:
1054      return getConstant((int64_t)C->getValue(), VT);
1055    case ISD::FP_TO_UINT:
1056      return getConstant((uint64_t)C->getValue(), VT);
1057    }
1058
1059  unsigned OpOpcode = Operand.Val->getOpcode();
1060  switch (Opcode) {
1061  case ISD::TokenFactor:
1062    return Operand;         // Factor of one node?  No factor.
1063  case ISD::SIGN_EXTEND:
1064    if (Operand.getValueType() == VT) return Operand;   // noop extension
1065    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1066      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1067    break;
1068  case ISD::ZERO_EXTEND:
1069    if (Operand.getValueType() == VT) return Operand;   // noop extension
1070    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1071      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1072    break;
1073  case ISD::ANY_EXTEND:
1074    if (Operand.getValueType() == VT) return Operand;   // noop extension
1075    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1076      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1077      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1078    break;
1079  case ISD::TRUNCATE:
1080    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1081    if (OpOpcode == ISD::TRUNCATE)
1082      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1083    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1084             OpOpcode == ISD::ANY_EXTEND) {
1085      // If the source is smaller than the dest, we still need an extend.
1086      if (Operand.Val->getOperand(0).getValueType() < VT)
1087        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1088      else if (Operand.Val->getOperand(0).getValueType() > VT)
1089        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1090      else
1091        return Operand.Val->getOperand(0);
1092    }
1093    break;
1094  case ISD::FNEG:
1095    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1096      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1097                     Operand.Val->getOperand(0));
1098    if (OpOpcode == ISD::FNEG)  // --X -> X
1099      return Operand.Val->getOperand(0);
1100    break;
1101  case ISD::FABS:
1102    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1103      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1104    break;
1105  }
1106
1107  SDNode *N;
1108  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1109    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1110    if (E) return SDOperand(E, 0);
1111    E = N = new SDNode(Opcode, Operand);
1112  } else {
1113    N = new SDNode(Opcode, Operand);
1114  }
1115  N->setValueTypes(VT);
1116  AllNodes.push_back(N);
1117  return SDOperand(N, 0);
1118}
1119
1120
1121
1122SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1123                                SDOperand N1, SDOperand N2) {
1124#ifndef NDEBUG
1125  switch (Opcode) {
1126  case ISD::TokenFactor:
1127    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1128           N2.getValueType() == MVT::Other && "Invalid token factor!");
1129    break;
1130  case ISD::AND:
1131  case ISD::OR:
1132  case ISD::XOR:
1133  case ISD::UDIV:
1134  case ISD::UREM:
1135  case ISD::MULHU:
1136  case ISD::MULHS:
1137    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1138    // fall through
1139  case ISD::ADD:
1140  case ISD::SUB:
1141  case ISD::MUL:
1142  case ISD::SDIV:
1143  case ISD::SREM:
1144    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1145    // fall through.
1146  case ISD::FADD:
1147  case ISD::FSUB:
1148  case ISD::FMUL:
1149  case ISD::FDIV:
1150  case ISD::FREM:
1151    assert(N1.getValueType() == N2.getValueType() &&
1152           N1.getValueType() == VT && "Binary operator types must match!");
1153    break;
1154
1155  case ISD::SHL:
1156  case ISD::SRA:
1157  case ISD::SRL:
1158    assert(VT == N1.getValueType() &&
1159           "Shift operators return type must be the same as their first arg");
1160    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1161           VT != MVT::i1 && "Shifts only work on integers");
1162    break;
1163  case ISD::FP_ROUND_INREG: {
1164    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1165    assert(VT == N1.getValueType() && "Not an inreg round!");
1166    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1167           "Cannot FP_ROUND_INREG integer types");
1168    assert(EVT <= VT && "Not rounding down!");
1169    break;
1170  }
1171  case ISD::AssertSext:
1172  case ISD::AssertZext:
1173  case ISD::SIGN_EXTEND_INREG: {
1174    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1175    assert(VT == N1.getValueType() && "Not an inreg extend!");
1176    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1177           "Cannot *_EXTEND_INREG FP types");
1178    assert(EVT <= VT && "Not extending!");
1179  }
1180
1181  default: break;
1182  }
1183#endif
1184
1185  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1186  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1187  if (N1C) {
1188    if (N2C) {
1189      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1190      switch (Opcode) {
1191      case ISD::ADD: return getConstant(C1 + C2, VT);
1192      case ISD::SUB: return getConstant(C1 - C2, VT);
1193      case ISD::MUL: return getConstant(C1 * C2, VT);
1194      case ISD::UDIV:
1195        if (C2) return getConstant(C1 / C2, VT);
1196        break;
1197      case ISD::UREM :
1198        if (C2) return getConstant(C1 % C2, VT);
1199        break;
1200      case ISD::SDIV :
1201        if (C2) return getConstant(N1C->getSignExtended() /
1202                                   N2C->getSignExtended(), VT);
1203        break;
1204      case ISD::SREM :
1205        if (C2) return getConstant(N1C->getSignExtended() %
1206                                   N2C->getSignExtended(), VT);
1207        break;
1208      case ISD::AND  : return getConstant(C1 & C2, VT);
1209      case ISD::OR   : return getConstant(C1 | C2, VT);
1210      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1211      case ISD::SHL  : return getConstant(C1 << C2, VT);
1212      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1213      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1214      default: break;
1215      }
1216    } else {      // Cannonicalize constant to RHS if commutative
1217      if (isCommutativeBinOp(Opcode)) {
1218        std::swap(N1C, N2C);
1219        std::swap(N1, N2);
1220      }
1221    }
1222  }
1223
1224  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1225  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1226  if (N1CFP) {
1227    if (N2CFP) {
1228      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1229      switch (Opcode) {
1230      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1231      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1232      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1233      case ISD::FDIV:
1234        if (C2) return getConstantFP(C1 / C2, VT);
1235        break;
1236      case ISD::FREM :
1237        if (C2) return getConstantFP(fmod(C1, C2), VT);
1238        break;
1239      default: break;
1240      }
1241    } else {      // Cannonicalize constant to RHS if commutative
1242      if (isCommutativeBinOp(Opcode)) {
1243        std::swap(N1CFP, N2CFP);
1244        std::swap(N1, N2);
1245      }
1246    }
1247  }
1248
1249  // Finally, fold operations that do not require constants.
1250  switch (Opcode) {
1251  case ISD::FP_ROUND_INREG:
1252    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1253    break;
1254  case ISD::SIGN_EXTEND_INREG: {
1255    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1256    if (EVT == VT) return N1;  // Not actually extending
1257    break;
1258  }
1259
1260  // FIXME: figure out how to safely handle things like
1261  // int foo(int x) { return 1 << (x & 255); }
1262  // int bar() { return foo(256); }
1263#if 0
1264  case ISD::SHL:
1265  case ISD::SRL:
1266  case ISD::SRA:
1267    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1268        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1269      return getNode(Opcode, VT, N1, N2.getOperand(0));
1270    else if (N2.getOpcode() == ISD::AND)
1271      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1272        // If the and is only masking out bits that cannot effect the shift,
1273        // eliminate the and.
1274        unsigned NumBits = MVT::getSizeInBits(VT);
1275        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1276          return getNode(Opcode, VT, N1, N2.getOperand(0));
1277      }
1278    break;
1279#endif
1280  }
1281
1282  // Memoize this node if possible.
1283  SDNode *N;
1284  if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
1285      VT != MVT::Flag) {
1286    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1287    if (BON) return SDOperand(BON, 0);
1288
1289    BON = N = new SDNode(Opcode, N1, N2);
1290  } else {
1291    N = new SDNode(Opcode, N1, N2);
1292  }
1293
1294  N->setValueTypes(VT);
1295  AllNodes.push_back(N);
1296  return SDOperand(N, 0);
1297}
1298
1299// setAdjCallChain - This method changes the token chain of an
1300// CALLSEQ_START/END node to be the specified operand.
1301void SDNode::setAdjCallChain(SDOperand N) {
1302  assert(N.getValueType() == MVT::Other);
1303  assert((getOpcode() == ISD::CALLSEQ_START ||
1304          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1305
1306  Operands[0].Val->removeUser(this);
1307  Operands[0] = N;
1308  N.Val->Uses.push_back(this);
1309}
1310
1311
1312
1313SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1314                                SDOperand Chain, SDOperand Ptr,
1315                                SDOperand SV) {
1316  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1317  if (N) return SDOperand(N, 0);
1318  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1319
1320  // Loads have a token chain.
1321  N->setValueTypes(VT, MVT::Other);
1322  AllNodes.push_back(N);
1323  return SDOperand(N, 0);
1324}
1325
1326
1327SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1328                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1329                                   MVT::ValueType EVT) {
1330  std::vector<SDOperand> Ops;
1331  Ops.reserve(4);
1332  Ops.push_back(Chain);
1333  Ops.push_back(Ptr);
1334  Ops.push_back(SV);
1335  Ops.push_back(getValueType(EVT));
1336  std::vector<MVT::ValueType> VTs;
1337  VTs.reserve(2);
1338  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1339  return getNode(Opcode, VTs, Ops);
1340}
1341
1342SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1343                                SDOperand N1, SDOperand N2, SDOperand N3) {
1344  // Perform various simplifications.
1345  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1346  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1347  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1348  switch (Opcode) {
1349  case ISD::SETCC: {
1350    // Use SimplifySetCC  to simplify SETCC's.
1351    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1352    if (Simp.Val) return Simp;
1353    break;
1354  }
1355  case ISD::SELECT:
1356    if (N1C)
1357      if (N1C->getValue())
1358        return N2;             // select true, X, Y -> X
1359      else
1360        return N3;             // select false, X, Y -> Y
1361
1362    if (N2 == N3) return N2;   // select C, X, X -> X
1363    break;
1364  case ISD::BRCOND:
1365    if (N2C)
1366      if (N2C->getValue()) // Unconditional branch
1367        return getNode(ISD::BR, MVT::Other, N1, N3);
1368      else
1369        return N1;         // Never-taken branch
1370    break;
1371  }
1372
1373  std::vector<SDOperand> Ops;
1374  Ops.reserve(3);
1375  Ops.push_back(N1);
1376  Ops.push_back(N2);
1377  Ops.push_back(N3);
1378
1379  // Memoize node if it doesn't produce a flag.
1380  SDNode *N;
1381  if (VT != MVT::Flag) {
1382    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1383    if (E) return SDOperand(E, 0);
1384    E = N = new SDNode(Opcode, N1, N2, N3);
1385  } else {
1386    N = new SDNode(Opcode, N1, N2, N3);
1387  }
1388  N->setValueTypes(VT);
1389  AllNodes.push_back(N);
1390  return SDOperand(N, 0);
1391}
1392
1393SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1394                                SDOperand N1, SDOperand N2, SDOperand N3,
1395                                SDOperand N4) {
1396  std::vector<SDOperand> Ops;
1397  Ops.reserve(4);
1398  Ops.push_back(N1);
1399  Ops.push_back(N2);
1400  Ops.push_back(N3);
1401  Ops.push_back(N4);
1402  return getNode(Opcode, VT, Ops);
1403}
1404
1405SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1406                                SDOperand N1, SDOperand N2, SDOperand N3,
1407                                SDOperand N4, SDOperand N5) {
1408  std::vector<SDOperand> Ops;
1409  Ops.reserve(5);
1410  Ops.push_back(N1);
1411  Ops.push_back(N2);
1412  Ops.push_back(N3);
1413  Ops.push_back(N4);
1414  Ops.push_back(N5);
1415  return getNode(Opcode, VT, Ops);
1416}
1417
1418
1419SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1420  assert((!V || isa<PointerType>(V->getType())) &&
1421         "SrcValue is not a pointer?");
1422  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1423  if (N) return SDOperand(N, 0);
1424
1425  N = new SrcValueSDNode(V, Offset);
1426  AllNodes.push_back(N);
1427  return SDOperand(N, 0);
1428}
1429
1430SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1431                                std::vector<SDOperand> &Ops) {
1432  switch (Ops.size()) {
1433  case 0: return getNode(Opcode, VT);
1434  case 1: return getNode(Opcode, VT, Ops[0]);
1435  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1436  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1437  default: break;
1438  }
1439
1440  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1441  switch (Opcode) {
1442  default: break;
1443  case ISD::BRCONDTWOWAY:
1444    if (N1C)
1445      if (N1C->getValue()) // Unconditional branch to true dest.
1446        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1447      else                 // Unconditional branch to false dest.
1448        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1449    break;
1450  case ISD::BRTWOWAY_CC:
1451    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1452    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1453           "LHS and RHS of comparison must have same type!");
1454    break;
1455  case ISD::TRUNCSTORE: {
1456    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1457    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1458#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1459    // If this is a truncating store of a constant, convert to the desired type
1460    // and store it instead.
1461    if (isa<Constant>(Ops[0])) {
1462      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1463      if (isa<Constant>(Op))
1464        N1 = Op;
1465    }
1466    // Also for ConstantFP?
1467#endif
1468    if (Ops[0].getValueType() == EVT)       // Normal store?
1469      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1470    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1471    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1472           "Can't do FP-INT conversion!");
1473    break;
1474  }
1475  case ISD::SELECT_CC: {
1476    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1477    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1478           "LHS and RHS of condition must have same type!");
1479    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1480           "True and False arms of SelectCC must have same type!");
1481    assert(Ops[2].getValueType() == VT &&
1482           "select_cc node must be of same type as true and false value!");
1483    SDOperand Simp = SimplifySelectCC(Ops[0], Ops[1], Ops[2], Ops[3],
1484                                      cast<CondCodeSDNode>(Ops[4])->get());
1485    if (Simp.Val) return Simp;
1486    break;
1487  }
1488  case ISD::BR_CC: {
1489    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1490    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1491           "LHS/RHS of comparison should match types!");
1492    break;
1493  }
1494  }
1495
1496  // Memoize nodes.
1497  SDNode *N;
1498  if (VT != MVT::Flag) {
1499    SDNode *&E =
1500      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1501    if (E) return SDOperand(E, 0);
1502    E = N = new SDNode(Opcode, Ops);
1503  } else {
1504    N = new SDNode(Opcode, Ops);
1505  }
1506  N->setValueTypes(VT);
1507  AllNodes.push_back(N);
1508  return SDOperand(N, 0);
1509}
1510
1511SDOperand SelectionDAG::getNode(unsigned Opcode,
1512                                std::vector<MVT::ValueType> &ResultTys,
1513                                std::vector<SDOperand> &Ops) {
1514  if (ResultTys.size() == 1)
1515    return getNode(Opcode, ResultTys[0], Ops);
1516
1517  switch (Opcode) {
1518  case ISD::EXTLOAD:
1519  case ISD::SEXTLOAD:
1520  case ISD::ZEXTLOAD: {
1521    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1522    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1523    // If they are asking for an extending load from/to the same thing, return a
1524    // normal load.
1525    if (ResultTys[0] == EVT)
1526      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1527    assert(EVT < ResultTys[0] &&
1528           "Should only be an extending load, not truncating!");
1529    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1530           "Cannot sign/zero extend a FP load!");
1531    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1532           "Cannot convert from FP to Int or Int -> FP!");
1533    break;
1534  }
1535
1536  // FIXME: figure out how to safely handle things like
1537  // int foo(int x) { return 1 << (x & 255); }
1538  // int bar() { return foo(256); }
1539#if 0
1540  case ISD::SRA_PARTS:
1541  case ISD::SRL_PARTS:
1542  case ISD::SHL_PARTS:
1543    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1544        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1545      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1546    else if (N3.getOpcode() == ISD::AND)
1547      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1548        // If the and is only masking out bits that cannot effect the shift,
1549        // eliminate the and.
1550        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1551        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1552          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1553      }
1554    break;
1555#endif
1556  }
1557
1558  // Memoize the node unless it returns a flag.
1559  SDNode *N;
1560  if (ResultTys.back() != MVT::Flag) {
1561    SDNode *&E =
1562      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1563    if (E) return SDOperand(E, 0);
1564    E = N = new SDNode(Opcode, Ops);
1565  } else {
1566    N = new SDNode(Opcode, Ops);
1567  }
1568  N->setValueTypes(ResultTys);
1569  AllNodes.push_back(N);
1570  return SDOperand(N, 0);
1571}
1572
1573
1574/// SelectNodeTo - These are used for target selectors to *mutate* the
1575/// specified node to have the specified return type, Target opcode, and
1576/// operands.  Note that target opcodes are stored as
1577/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1578void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1579                                MVT::ValueType VT) {
1580  RemoveNodeFromCSEMaps(N);
1581  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1582  N->setValueTypes(VT);
1583}
1584void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1585                                MVT::ValueType VT, SDOperand Op1) {
1586  RemoveNodeFromCSEMaps(N);
1587  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1588  N->setValueTypes(VT);
1589  N->setOperands(Op1);
1590}
1591void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1592                                MVT::ValueType VT, SDOperand Op1,
1593                                SDOperand Op2) {
1594  RemoveNodeFromCSEMaps(N);
1595  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1596  N->setValueTypes(VT);
1597  N->setOperands(Op1, Op2);
1598}
1599void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1600                                MVT::ValueType VT1, MVT::ValueType VT2,
1601                                SDOperand Op1, SDOperand Op2) {
1602  RemoveNodeFromCSEMaps(N);
1603  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1604  N->setValueTypes(VT1, VT2);
1605  N->setOperands(Op1, Op2);
1606}
1607void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1608                                MVT::ValueType VT, SDOperand Op1,
1609                                SDOperand Op2, SDOperand Op3) {
1610  RemoveNodeFromCSEMaps(N);
1611  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1612  N->setValueTypes(VT);
1613  N->setOperands(Op1, Op2, Op3);
1614}
1615void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1616                                MVT::ValueType VT1, MVT::ValueType VT2,
1617                                SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1618  RemoveNodeFromCSEMaps(N);
1619  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1620  N->setValueTypes(VT1, VT2);
1621  N->setOperands(Op1, Op2, Op3);
1622}
1623
1624void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1625                                MVT::ValueType VT, SDOperand Op1,
1626                                SDOperand Op2, SDOperand Op3, SDOperand Op4) {
1627  RemoveNodeFromCSEMaps(N);
1628  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1629  N->setValueTypes(VT);
1630  N->setOperands(Op1, Op2, Op3, Op4);
1631}
1632void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1633                                MVT::ValueType VT, SDOperand Op1,
1634                                SDOperand Op2, SDOperand Op3, SDOperand Op4,
1635                                SDOperand Op5) {
1636  RemoveNodeFromCSEMaps(N);
1637  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1638  N->setValueTypes(VT);
1639  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1640}
1641
1642/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1643/// This can cause recursive merging of nodes in the DAG.
1644///
1645/// This version assumes From/To have a single result value.
1646///
1647void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
1648                                      std::vector<SDNode*> *Deleted) {
1649  SDNode *From = FromN.Val, *To = ToN.Val;
1650  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
1651         "Cannot replace with this method!");
1652  assert(From != To && "Cannot replace uses of with self");
1653
1654  while (!From->use_empty()) {
1655    // Process users until they are all gone.
1656    SDNode *U = *From->use_begin();
1657
1658    // This node is about to morph, remove its old self from the CSE maps.
1659    RemoveNodeFromCSEMaps(U);
1660
1661    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
1662      if (U->getOperand(i).Val == From) {
1663        From->removeUser(U);
1664        U->Operands[i].Val = To;
1665        To->addUser(U);
1666      }
1667
1668    // Now that we have modified U, add it back to the CSE maps.  If it already
1669    // exists there, recursively merge the results together.
1670    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
1671      ReplaceAllUsesWith(U, Existing, Deleted);
1672      // U is now dead.
1673      if (Deleted) Deleted->push_back(U);
1674      DeleteNodeNotInCSEMaps(U);
1675    }
1676  }
1677}
1678
1679/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1680/// This can cause recursive merging of nodes in the DAG.
1681///
1682/// This version assumes From/To have matching types and numbers of result
1683/// values.
1684///
1685void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
1686                                      std::vector<SDNode*> *Deleted) {
1687  assert(From != To && "Cannot replace uses of with self");
1688  assert(From->getNumValues() == To->getNumValues() &&
1689         "Cannot use this version of ReplaceAllUsesWith!");
1690  if (From->getNumValues() == 1) {  // If possible, use the faster version.
1691    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
1692    return;
1693  }
1694
1695  while (!From->use_empty()) {
1696    // Process users until they are all gone.
1697    SDNode *U = *From->use_begin();
1698
1699    // This node is about to morph, remove its old self from the CSE maps.
1700    RemoveNodeFromCSEMaps(U);
1701
1702    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
1703      if (U->getOperand(i).Val == From) {
1704        From->removeUser(U);
1705        U->Operands[i].Val = To;
1706        To->addUser(U);
1707      }
1708
1709    // Now that we have modified U, add it back to the CSE maps.  If it already
1710    // exists there, recursively merge the results together.
1711    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
1712      ReplaceAllUsesWith(U, Existing, Deleted);
1713      // U is now dead.
1714      if (Deleted) Deleted->push_back(U);
1715      DeleteNodeNotInCSEMaps(U);
1716    }
1717  }
1718}
1719
1720/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1721/// This can cause recursive merging of nodes in the DAG.
1722///
1723/// This version can replace From with any result values.  To must match the
1724/// number and types of values returned by From.
1725void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
1726                                      const std::vector<SDOperand> &To,
1727                                      std::vector<SDNode*> *Deleted) {
1728  assert(From->getNumValues() == To.size() &&
1729         "Incorrect number of values to replace with!");
1730  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
1731    // Degenerate case handled above.
1732    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
1733    return;
1734  }
1735
1736  while (!From->use_empty()) {
1737    // Process users until they are all gone.
1738    SDNode *U = *From->use_begin();
1739
1740    // This node is about to morph, remove its old self from the CSE maps.
1741    RemoveNodeFromCSEMaps(U);
1742
1743    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
1744      if (U->getOperand(i).Val == From) {
1745        const SDOperand &ToOp = To[U->getOperand(i).ResNo];
1746        From->removeUser(U);
1747        U->Operands[i] = ToOp;
1748        ToOp.Val->addUser(U);
1749      }
1750
1751    // Now that we have modified U, add it back to the CSE maps.  If it already
1752    // exists there, recursively merge the results together.
1753    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
1754      ReplaceAllUsesWith(U, Existing, Deleted);
1755      // U is now dead.
1756      if (Deleted) Deleted->push_back(U);
1757      DeleteNodeNotInCSEMaps(U);
1758    }
1759  }
1760}
1761
1762
1763//===----------------------------------------------------------------------===//
1764//                              SDNode Class
1765//===----------------------------------------------------------------------===//
1766
1767/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1768/// indicated value.  This method ignores uses of other values defined by this
1769/// operation.
1770bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
1771  assert(Value < getNumValues() && "Bad value!");
1772
1773  // If there is only one value, this is easy.
1774  if (getNumValues() == 1)
1775    return use_size() == NUses;
1776  if (Uses.size() < NUses) return false;
1777
1778  SDOperand TheValue(this, Value);
1779
1780  std::set<SDNode*> UsersHandled;
1781
1782  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
1783       UI != E; ++UI) {
1784    SDNode *User = *UI;
1785    if (User->getNumOperands() == 1 ||
1786        UsersHandled.insert(User).second)     // First time we've seen this?
1787      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
1788        if (User->getOperand(i) == TheValue) {
1789          if (NUses == 0)
1790            return false;   // too many uses
1791          --NUses;
1792        }
1793  }
1794
1795  // Found exactly the right number of uses?
1796  return NUses == 0;
1797}
1798
1799
1800const char *SDNode::getOperationName(const SelectionDAG *G) const {
1801  switch (getOpcode()) {
1802  default:
1803    if (getOpcode() < ISD::BUILTIN_OP_END)
1804      return "<<Unknown DAG Node>>";
1805    else {
1806      if (G)
1807        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
1808          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
1809            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
1810      return "<<Unknown Target Node>>";
1811    }
1812
1813  case ISD::PCMARKER:      return "PCMarker";
1814  case ISD::SRCVALUE:      return "SrcValue";
1815  case ISD::VALUETYPE:     return "ValueType";
1816  case ISD::EntryToken:    return "EntryToken";
1817  case ISD::TokenFactor:   return "TokenFactor";
1818  case ISD::AssertSext:    return "AssertSext";
1819  case ISD::AssertZext:    return "AssertZext";
1820  case ISD::Constant:      return "Constant";
1821  case ISD::TargetConstant: return "TargetConstant";
1822  case ISD::ConstantFP:    return "ConstantFP";
1823  case ISD::GlobalAddress: return "GlobalAddress";
1824  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
1825  case ISD::FrameIndex:    return "FrameIndex";
1826  case ISD::TargetFrameIndex: return "TargetFrameIndex";
1827  case ISD::BasicBlock:    return "BasicBlock";
1828  case ISD::Register:      return "Register";
1829  case ISD::ExternalSymbol: return "ExternalSymbol";
1830  case ISD::ConstantPool:  return "ConstantPool";
1831  case ISD::TargetConstantPool:  return "TargetConstantPool";
1832  case ISD::CopyToReg:     return "CopyToReg";
1833  case ISD::CopyFromReg:   return "CopyFromReg";
1834  case ISD::ImplicitDef:   return "ImplicitDef";
1835  case ISD::UNDEF:         return "undef";
1836
1837  // Unary operators
1838  case ISD::FABS:   return "fabs";
1839  case ISD::FNEG:   return "fneg";
1840  case ISD::FSQRT:  return "fsqrt";
1841  case ISD::FSIN:   return "fsin";
1842  case ISD::FCOS:   return "fcos";
1843
1844  // Binary operators
1845  case ISD::ADD:    return "add";
1846  case ISD::SUB:    return "sub";
1847  case ISD::MUL:    return "mul";
1848  case ISD::MULHU:  return "mulhu";
1849  case ISD::MULHS:  return "mulhs";
1850  case ISD::SDIV:   return "sdiv";
1851  case ISD::UDIV:   return "udiv";
1852  case ISD::SREM:   return "srem";
1853  case ISD::UREM:   return "urem";
1854  case ISD::AND:    return "and";
1855  case ISD::OR:     return "or";
1856  case ISD::XOR:    return "xor";
1857  case ISD::SHL:    return "shl";
1858  case ISD::SRA:    return "sra";
1859  case ISD::SRL:    return "srl";
1860  case ISD::FADD:   return "fadd";
1861  case ISD::FSUB:   return "fsub";
1862  case ISD::FMUL:   return "fmul";
1863  case ISD::FDIV:   return "fdiv";
1864  case ISD::FREM:   return "frem";
1865
1866  case ISD::SETCC:       return "setcc";
1867  case ISD::SELECT:      return "select";
1868  case ISD::SELECT_CC:   return "select_cc";
1869  case ISD::ADD_PARTS:   return "add_parts";
1870  case ISD::SUB_PARTS:   return "sub_parts";
1871  case ISD::SHL_PARTS:   return "shl_parts";
1872  case ISD::SRA_PARTS:   return "sra_parts";
1873  case ISD::SRL_PARTS:   return "srl_parts";
1874
1875  // Conversion operators.
1876  case ISD::SIGN_EXTEND: return "sign_extend";
1877  case ISD::ZERO_EXTEND: return "zero_extend";
1878  case ISD::ANY_EXTEND:  return "any_extend";
1879  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
1880  case ISD::TRUNCATE:    return "truncate";
1881  case ISD::FP_ROUND:    return "fp_round";
1882  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
1883  case ISD::FP_EXTEND:   return "fp_extend";
1884
1885  case ISD::SINT_TO_FP:  return "sint_to_fp";
1886  case ISD::UINT_TO_FP:  return "uint_to_fp";
1887  case ISD::FP_TO_SINT:  return "fp_to_sint";
1888  case ISD::FP_TO_UINT:  return "fp_to_uint";
1889
1890    // Control flow instructions
1891  case ISD::BR:      return "br";
1892  case ISD::BRCOND:  return "brcond";
1893  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
1894  case ISD::BR_CC:  return "br_cc";
1895  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
1896  case ISD::RET:     return "ret";
1897  case ISD::CALL:    return "call";
1898  case ISD::TAILCALL:return "tailcall";
1899  case ISD::CALLSEQ_START:  return "callseq_start";
1900  case ISD::CALLSEQ_END:    return "callseq_end";
1901
1902    // Other operators
1903  case ISD::LOAD:    return "load";
1904  case ISD::STORE:   return "store";
1905  case ISD::EXTLOAD:    return "extload";
1906  case ISD::SEXTLOAD:   return "sextload";
1907  case ISD::ZEXTLOAD:   return "zextload";
1908  case ISD::TRUNCSTORE: return "truncstore";
1909
1910  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
1911  case ISD::EXTRACT_ELEMENT: return "extract_element";
1912  case ISD::BUILD_PAIR: return "build_pair";
1913  case ISD::MEMSET:  return "memset";
1914  case ISD::MEMCPY:  return "memcpy";
1915  case ISD::MEMMOVE: return "memmove";
1916
1917  // Bit counting
1918  case ISD::CTPOP:   return "ctpop";
1919  case ISD::CTTZ:    return "cttz";
1920  case ISD::CTLZ:    return "ctlz";
1921
1922  // IO Intrinsics
1923  case ISD::READPORT: return "readport";
1924  case ISD::WRITEPORT: return "writeport";
1925  case ISD::READIO: return "readio";
1926  case ISD::WRITEIO: return "writeio";
1927
1928  case ISD::CONDCODE:
1929    switch (cast<CondCodeSDNode>(this)->get()) {
1930    default: assert(0 && "Unknown setcc condition!");
1931    case ISD::SETOEQ:  return "setoeq";
1932    case ISD::SETOGT:  return "setogt";
1933    case ISD::SETOGE:  return "setoge";
1934    case ISD::SETOLT:  return "setolt";
1935    case ISD::SETOLE:  return "setole";
1936    case ISD::SETONE:  return "setone";
1937
1938    case ISD::SETO:    return "seto";
1939    case ISD::SETUO:   return "setuo";
1940    case ISD::SETUEQ:  return "setue";
1941    case ISD::SETUGT:  return "setugt";
1942    case ISD::SETUGE:  return "setuge";
1943    case ISD::SETULT:  return "setult";
1944    case ISD::SETULE:  return "setule";
1945    case ISD::SETUNE:  return "setune";
1946
1947    case ISD::SETEQ:   return "seteq";
1948    case ISD::SETGT:   return "setgt";
1949    case ISD::SETGE:   return "setge";
1950    case ISD::SETLT:   return "setlt";
1951    case ISD::SETLE:   return "setle";
1952    case ISD::SETNE:   return "setne";
1953    }
1954  }
1955}
1956
1957void SDNode::dump() const { dump(0); }
1958void SDNode::dump(const SelectionDAG *G) const {
1959  std::cerr << (void*)this << ": ";
1960
1961  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
1962    if (i) std::cerr << ",";
1963    if (getValueType(i) == MVT::Other)
1964      std::cerr << "ch";
1965    else
1966      std::cerr << MVT::getValueTypeString(getValueType(i));
1967  }
1968  std::cerr << " = " << getOperationName(G);
1969
1970  std::cerr << " ";
1971  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1972    if (i) std::cerr << ", ";
1973    std::cerr << (void*)getOperand(i).Val;
1974    if (unsigned RN = getOperand(i).ResNo)
1975      std::cerr << ":" << RN;
1976  }
1977
1978  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
1979    std::cerr << "<" << CSDN->getValue() << ">";
1980  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
1981    std::cerr << "<" << CSDN->getValue() << ">";
1982  } else if (const GlobalAddressSDNode *GADN =
1983             dyn_cast<GlobalAddressSDNode>(this)) {
1984    std::cerr << "<";
1985    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
1986  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
1987    std::cerr << "<" << FIDN->getIndex() << ">";
1988  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
1989    std::cerr << "<" << *CP->get() << ">";
1990  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
1991    std::cerr << "<";
1992    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
1993    if (LBB)
1994      std::cerr << LBB->getName() << " ";
1995    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
1996  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
1997    if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) {
1998      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
1999    } else {
2000      std::cerr << " #" << R->getReg();
2001    }
2002  } else if (const ExternalSymbolSDNode *ES =
2003             dyn_cast<ExternalSymbolSDNode>(this)) {
2004    std::cerr << "'" << ES->getSymbol() << "'";
2005  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2006    if (M->getValue())
2007      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2008    else
2009      std::cerr << "<null:" << M->getOffset() << ">";
2010  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2011    std::cerr << ":" << getValueTypeString(N->getVT());
2012  }
2013}
2014
2015static void DumpNodes(SDNode *N, unsigned indent, const SelectionDAG *G) {
2016  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2017    if (N->getOperand(i).Val->hasOneUse())
2018      DumpNodes(N->getOperand(i).Val, indent+2, G);
2019    else
2020      std::cerr << "\n" << std::string(indent+2, ' ')
2021                << (void*)N->getOperand(i).Val << ": <multiple use>";
2022
2023
2024  std::cerr << "\n" << std::string(indent, ' ');
2025  N->dump(G);
2026}
2027
2028void SelectionDAG::dump() const {
2029  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2030  std::vector<SDNode*> Nodes(AllNodes);
2031  std::sort(Nodes.begin(), Nodes.end());
2032
2033  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2034    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2035      DumpNodes(Nodes[i], 2, this);
2036  }
2037
2038  DumpNodes(getRoot().Val, 2, this);
2039
2040  std::cerr << "\n\n";
2041}
2042
2043