SelectionDAG.cpp revision af47b11b959713d70c45bee1922e468adfaeaff0
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringExtras.h"
34#include <algorithm>
35#include <cmath>
36using namespace llvm;
37
38/// makeVTList - Return an instance of the SDVTList struct initialized with the
39/// specified members.
40static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
41  SDVTList Res = {VTs, NumVTs};
42  return Res;
43}
44
45//===----------------------------------------------------------------------===//
46//                              ConstantFPSDNode Class
47//===----------------------------------------------------------------------===//
48
49/// isExactlyValue - We don't rely on operator== working on double values, as
50/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
51/// As such, this method can be used to do an exact bit-for-bit comparison of
52/// two floating point values.
53bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
54  return Value.bitwiseIsEqual(V);
55}
56
57bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
58                                           const APFloat& Val) {
59  // convert modifies in place, so make a copy.
60  APFloat Val2 = APFloat(Val);
61  switch (VT) {
62  default:
63    return false;         // These can't be represented as floating point!
64
65  // FIXME rounding mode needs to be more flexible
66  case MVT::f32:
67    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
68           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
69              APFloat::opOK;
70  case MVT::f64:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           &Val2.getSemantics() == &APFloat::IEEEdouble ||
73           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
74             APFloat::opOK;
75  // TODO: Figure out how to test if we can use a shorter type instead!
76  case MVT::f80:
77  case MVT::f128:
78  case MVT::ppcf128:
79    return true;
80  }
81}
82
83//===----------------------------------------------------------------------===//
84//                              ISD Namespace
85//===----------------------------------------------------------------------===//
86
87/// isBuildVectorAllOnes - Return true if the specified node is a
88/// BUILD_VECTOR where all of the elements are ~0 or undef.
89bool ISD::isBuildVectorAllOnes(const SDNode *N) {
90  // Look through a bit convert.
91  if (N->getOpcode() == ISD::BIT_CONVERT)
92    N = N->getOperand(0).Val;
93
94  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
95
96  unsigned i = 0, e = N->getNumOperands();
97
98  // Skip over all of the undef values.
99  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
100    ++i;
101
102  // Do not accept an all-undef vector.
103  if (i == e) return false;
104
105  // Do not accept build_vectors that aren't all constants or which have non-~0
106  // elements.
107  SDOperand NotZero = N->getOperand(i);
108  if (isa<ConstantSDNode>(NotZero)) {
109    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
110      return false;
111  } else if (isa<ConstantFPSDNode>(NotZero)) {
112    MVT::ValueType VT = NotZero.getValueType();
113    if (VT== MVT::f64) {
114      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
115                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
116        return false;
117    } else {
118      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
119                      getValueAPF().convertToAPInt().getZExtValue() !=
120          (uint32_t)-1)
121        return false;
122    }
123  } else
124    return false;
125
126  // Okay, we have at least one ~0 value, check to see if the rest match or are
127  // undefs.
128  for (++i; i != e; ++i)
129    if (N->getOperand(i) != NotZero &&
130        N->getOperand(i).getOpcode() != ISD::UNDEF)
131      return false;
132  return true;
133}
134
135
136/// isBuildVectorAllZeros - Return true if the specified node is a
137/// BUILD_VECTOR where all of the elements are 0 or undef.
138bool ISD::isBuildVectorAllZeros(const SDNode *N) {
139  // Look through a bit convert.
140  if (N->getOpcode() == ISD::BIT_CONVERT)
141    N = N->getOperand(0).Val;
142
143  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
144
145  unsigned i = 0, e = N->getNumOperands();
146
147  // Skip over all of the undef values.
148  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
149    ++i;
150
151  // Do not accept an all-undef vector.
152  if (i == e) return false;
153
154  // Do not accept build_vectors that aren't all constants or which have non-~0
155  // elements.
156  SDOperand Zero = N->getOperand(i);
157  if (isa<ConstantSDNode>(Zero)) {
158    if (!cast<ConstantSDNode>(Zero)->isNullValue())
159      return false;
160  } else if (isa<ConstantFPSDNode>(Zero)) {
161    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
162      return false;
163  } else
164    return false;
165
166  // Okay, we have at least one ~0 value, check to see if the rest match or are
167  // undefs.
168  for (++i; i != e; ++i)
169    if (N->getOperand(i) != Zero &&
170        N->getOperand(i).getOpcode() != ISD::UNDEF)
171      return false;
172  return true;
173}
174
175/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
176/// when given the operation for (X op Y).
177ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
178  // To perform this operation, we just need to swap the L and G bits of the
179  // operation.
180  unsigned OldL = (Operation >> 2) & 1;
181  unsigned OldG = (Operation >> 1) & 1;
182  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
183                       (OldL << 1) |       // New G bit
184                       (OldG << 2));        // New L bit.
185}
186
187/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
188/// 'op' is a valid SetCC operation.
189ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
190  unsigned Operation = Op;
191  if (isInteger)
192    Operation ^= 7;   // Flip L, G, E bits, but not U.
193  else
194    Operation ^= 15;  // Flip all of the condition bits.
195  if (Operation > ISD::SETTRUE2)
196    Operation &= ~8;     // Don't let N and U bits get set.
197  return ISD::CondCode(Operation);
198}
199
200
201/// isSignedOp - For an integer comparison, return 1 if the comparison is a
202/// signed operation and 2 if the result is an unsigned comparison.  Return zero
203/// if the operation does not depend on the sign of the input (setne and seteq).
204static int isSignedOp(ISD::CondCode Opcode) {
205  switch (Opcode) {
206  default: assert(0 && "Illegal integer setcc operation!");
207  case ISD::SETEQ:
208  case ISD::SETNE: return 0;
209  case ISD::SETLT:
210  case ISD::SETLE:
211  case ISD::SETGT:
212  case ISD::SETGE: return 1;
213  case ISD::SETULT:
214  case ISD::SETULE:
215  case ISD::SETUGT:
216  case ISD::SETUGE: return 2;
217  }
218}
219
220/// getSetCCOrOperation - Return the result of a logical OR between different
221/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
222/// returns SETCC_INVALID if it is not possible to represent the resultant
223/// comparison.
224ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
225                                       bool isInteger) {
226  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
227    // Cannot fold a signed integer setcc with an unsigned integer setcc.
228    return ISD::SETCC_INVALID;
229
230  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
231
232  // If the N and U bits get set then the resultant comparison DOES suddenly
233  // care about orderedness, and is true when ordered.
234  if (Op > ISD::SETTRUE2)
235    Op &= ~16;     // Clear the U bit if the N bit is set.
236
237  // Canonicalize illegal integer setcc's.
238  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
239    Op = ISD::SETNE;
240
241  return ISD::CondCode(Op);
242}
243
244/// getSetCCAndOperation - Return the result of a logical AND between different
245/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
246/// function returns zero if it is not possible to represent the resultant
247/// comparison.
248ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
249                                        bool isInteger) {
250  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
251    // Cannot fold a signed setcc with an unsigned setcc.
252    return ISD::SETCC_INVALID;
253
254  // Combine all of the condition bits.
255  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
256
257  // Canonicalize illegal integer setcc's.
258  if (isInteger) {
259    switch (Result) {
260    default: break;
261    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
262    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
263    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
264    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
265    }
266  }
267
268  return Result;
269}
270
271const TargetMachine &SelectionDAG::getTarget() const {
272  return TLI.getTargetMachine();
273}
274
275//===----------------------------------------------------------------------===//
276//                           SDNode Profile Support
277//===----------------------------------------------------------------------===//
278
279/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
280///
281static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
282  ID.AddInteger(OpC);
283}
284
285/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
286/// solely with their pointer.
287void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
288  ID.AddPointer(VTList.VTs);
289}
290
291/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
292///
293static void AddNodeIDOperands(FoldingSetNodeID &ID,
294                              const SDOperand *Ops, unsigned NumOps) {
295  for (; NumOps; --NumOps, ++Ops) {
296    ID.AddPointer(Ops->Val);
297    ID.AddInteger(Ops->ResNo);
298  }
299}
300
301static void AddNodeIDNode(FoldingSetNodeID &ID,
302                          unsigned short OpC, SDVTList VTList,
303                          const SDOperand *OpList, unsigned N) {
304  AddNodeIDOpcode(ID, OpC);
305  AddNodeIDValueTypes(ID, VTList);
306  AddNodeIDOperands(ID, OpList, N);
307}
308
309/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
310/// data.
311static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
312  AddNodeIDOpcode(ID, N->getOpcode());
313  // Add the return value info.
314  AddNodeIDValueTypes(ID, N->getVTList());
315  // Add the operand info.
316  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
317
318  // Handle SDNode leafs with special info.
319  switch (N->getOpcode()) {
320  default: break;  // Normal nodes don't need extra info.
321  case ISD::TargetConstant:
322  case ISD::Constant:
323    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
324    break;
325  case ISD::TargetConstantFP:
326  case ISD::ConstantFP: {
327    ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
328    break;
329  }
330  case ISD::TargetGlobalAddress:
331  case ISD::GlobalAddress:
332  case ISD::TargetGlobalTLSAddress:
333  case ISD::GlobalTLSAddress: {
334    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
335    ID.AddPointer(GA->getGlobal());
336    ID.AddInteger(GA->getOffset());
337    break;
338  }
339  case ISD::BasicBlock:
340    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
341    break;
342  case ISD::Register:
343    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
344    break;
345  case ISD::SRCVALUE: {
346    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
347    ID.AddPointer(SV->getValue());
348    ID.AddInteger(SV->getOffset());
349    break;
350  }
351  case ISD::FrameIndex:
352  case ISD::TargetFrameIndex:
353    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
354    break;
355  case ISD::JumpTable:
356  case ISD::TargetJumpTable:
357    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
358    break;
359  case ISD::ConstantPool:
360  case ISD::TargetConstantPool: {
361    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
362    ID.AddInteger(CP->getAlignment());
363    ID.AddInteger(CP->getOffset());
364    if (CP->isMachineConstantPoolEntry())
365      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
366    else
367      ID.AddPointer(CP->getConstVal());
368    break;
369  }
370  case ISD::LOAD: {
371    LoadSDNode *LD = cast<LoadSDNode>(N);
372    ID.AddInteger(LD->getAddressingMode());
373    ID.AddInteger(LD->getExtensionType());
374    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
375    ID.AddPointer(LD->getSrcValue());
376    ID.AddInteger(LD->getSrcValueOffset());
377    ID.AddInteger(LD->getAlignment());
378    ID.AddInteger(LD->isVolatile());
379    break;
380  }
381  case ISD::STORE: {
382    StoreSDNode *ST = cast<StoreSDNode>(N);
383    ID.AddInteger(ST->getAddressingMode());
384    ID.AddInteger(ST->isTruncatingStore());
385    ID.AddInteger((unsigned int)(ST->getStoredVT()));
386    ID.AddPointer(ST->getSrcValue());
387    ID.AddInteger(ST->getSrcValueOffset());
388    ID.AddInteger(ST->getAlignment());
389    ID.AddInteger(ST->isVolatile());
390    break;
391  }
392  }
393}
394
395//===----------------------------------------------------------------------===//
396//                              SelectionDAG Class
397//===----------------------------------------------------------------------===//
398
399/// RemoveDeadNodes - This method deletes all unreachable nodes in the
400/// SelectionDAG.
401void SelectionDAG::RemoveDeadNodes() {
402  // Create a dummy node (which is not added to allnodes), that adds a reference
403  // to the root node, preventing it from being deleted.
404  HandleSDNode Dummy(getRoot());
405
406  SmallVector<SDNode*, 128> DeadNodes;
407
408  // Add all obviously-dead nodes to the DeadNodes worklist.
409  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
410    if (I->use_empty())
411      DeadNodes.push_back(I);
412
413  // Process the worklist, deleting the nodes and adding their uses to the
414  // worklist.
415  while (!DeadNodes.empty()) {
416    SDNode *N = DeadNodes.back();
417    DeadNodes.pop_back();
418
419    // Take the node out of the appropriate CSE map.
420    RemoveNodeFromCSEMaps(N);
421
422    // Next, brutally remove the operand list.  This is safe to do, as there are
423    // no cycles in the graph.
424    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
425      SDNode *Operand = I->Val;
426      Operand->removeUser(N);
427
428      // Now that we removed this operand, see if there are no uses of it left.
429      if (Operand->use_empty())
430        DeadNodes.push_back(Operand);
431    }
432    if (N->OperandsNeedDelete)
433      delete[] N->OperandList;
434    N->OperandList = 0;
435    N->NumOperands = 0;
436
437    // Finally, remove N itself.
438    AllNodes.erase(N);
439  }
440
441  // If the root changed (e.g. it was a dead load, update the root).
442  setRoot(Dummy.getValue());
443}
444
445void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
446  SmallVector<SDNode*, 16> DeadNodes;
447  DeadNodes.push_back(N);
448
449  // Process the worklist, deleting the nodes and adding their uses to the
450  // worklist.
451  while (!DeadNodes.empty()) {
452    SDNode *N = DeadNodes.back();
453    DeadNodes.pop_back();
454
455    // Take the node out of the appropriate CSE map.
456    RemoveNodeFromCSEMaps(N);
457
458    // Next, brutally remove the operand list.  This is safe to do, as there are
459    // no cycles in the graph.
460    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
461      SDNode *Operand = I->Val;
462      Operand->removeUser(N);
463
464      // Now that we removed this operand, see if there are no uses of it left.
465      if (Operand->use_empty())
466        DeadNodes.push_back(Operand);
467    }
468    if (N->OperandsNeedDelete)
469      delete[] N->OperandList;
470    N->OperandList = 0;
471    N->NumOperands = 0;
472
473    // Finally, remove N itself.
474    Deleted.push_back(N);
475    AllNodes.erase(N);
476  }
477}
478
479void SelectionDAG::DeleteNode(SDNode *N) {
480  assert(N->use_empty() && "Cannot delete a node that is not dead!");
481
482  // First take this out of the appropriate CSE map.
483  RemoveNodeFromCSEMaps(N);
484
485  // Finally, remove uses due to operands of this node, remove from the
486  // AllNodes list, and delete the node.
487  DeleteNodeNotInCSEMaps(N);
488}
489
490void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
491
492  // Remove it from the AllNodes list.
493  AllNodes.remove(N);
494
495  // Drop all of the operands and decrement used nodes use counts.
496  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
497    I->Val->removeUser(N);
498  if (N->OperandsNeedDelete)
499    delete[] N->OperandList;
500  N->OperandList = 0;
501  N->NumOperands = 0;
502
503  delete N;
504}
505
506/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
507/// correspond to it.  This is useful when we're about to delete or repurpose
508/// the node.  We don't want future request for structurally identical nodes
509/// to return N anymore.
510void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
511  bool Erased = false;
512  switch (N->getOpcode()) {
513  case ISD::HANDLENODE: return;  // noop.
514  case ISD::STRING:
515    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
516    break;
517  case ISD::CONDCODE:
518    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
519           "Cond code doesn't exist!");
520    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
521    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
522    break;
523  case ISD::ExternalSymbol:
524    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
525    break;
526  case ISD::TargetExternalSymbol:
527    Erased =
528      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
529    break;
530  case ISD::VALUETYPE:
531    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
532    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
533    break;
534  default:
535    // Remove it from the CSE Map.
536    Erased = CSEMap.RemoveNode(N);
537    break;
538  }
539#ifndef NDEBUG
540  // Verify that the node was actually in one of the CSE maps, unless it has a
541  // flag result (which cannot be CSE'd) or is one of the special cases that are
542  // not subject to CSE.
543  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
544      !N->isTargetOpcode()) {
545    N->dump(this);
546    cerr << "\n";
547    assert(0 && "Node is not in map!");
548  }
549#endif
550}
551
552/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
553/// has been taken out and modified in some way.  If the specified node already
554/// exists in the CSE maps, do not modify the maps, but return the existing node
555/// instead.  If it doesn't exist, add it and return null.
556///
557SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
558  assert(N->getNumOperands() && "This is a leaf node!");
559  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
560    return 0;    // Never add these nodes.
561
562  // Check that remaining values produced are not flags.
563  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
564    if (N->getValueType(i) == MVT::Flag)
565      return 0;   // Never CSE anything that produces a flag.
566
567  SDNode *New = CSEMap.GetOrInsertNode(N);
568  if (New != N) return New;  // Node already existed.
569  return 0;
570}
571
572/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
573/// were replaced with those specified.  If this node is never memoized,
574/// return null, otherwise return a pointer to the slot it would take.  If a
575/// node already exists with these operands, the slot will be non-null.
576SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
577                                           void *&InsertPos) {
578  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
579    return 0;    // Never add these nodes.
580
581  // Check that remaining values produced are not flags.
582  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
583    if (N->getValueType(i) == MVT::Flag)
584      return 0;   // Never CSE anything that produces a flag.
585
586  SDOperand Ops[] = { Op };
587  FoldingSetNodeID ID;
588  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
589  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
590}
591
592/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
593/// were replaced with those specified.  If this node is never memoized,
594/// return null, otherwise return a pointer to the slot it would take.  If a
595/// node already exists with these operands, the slot will be non-null.
596SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
597                                           SDOperand Op1, SDOperand Op2,
598                                           void *&InsertPos) {
599  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
600    return 0;    // Never add these nodes.
601
602  // Check that remaining values produced are not flags.
603  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
604    if (N->getValueType(i) == MVT::Flag)
605      return 0;   // Never CSE anything that produces a flag.
606
607  SDOperand Ops[] = { Op1, Op2 };
608  FoldingSetNodeID ID;
609  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
610  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
611}
612
613
614/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
615/// were replaced with those specified.  If this node is never memoized,
616/// return null, otherwise return a pointer to the slot it would take.  If a
617/// node already exists with these operands, the slot will be non-null.
618SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
619                                           const SDOperand *Ops,unsigned NumOps,
620                                           void *&InsertPos) {
621  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
622    return 0;    // Never add these nodes.
623
624  // Check that remaining values produced are not flags.
625  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
626    if (N->getValueType(i) == MVT::Flag)
627      return 0;   // Never CSE anything that produces a flag.
628
629  FoldingSetNodeID ID;
630  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
631
632  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
633    ID.AddInteger(LD->getAddressingMode());
634    ID.AddInteger(LD->getExtensionType());
635    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
636    ID.AddPointer(LD->getSrcValue());
637    ID.AddInteger(LD->getSrcValueOffset());
638    ID.AddInteger(LD->getAlignment());
639    ID.AddInteger(LD->isVolatile());
640  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
641    ID.AddInteger(ST->getAddressingMode());
642    ID.AddInteger(ST->isTruncatingStore());
643    ID.AddInteger((unsigned int)(ST->getStoredVT()));
644    ID.AddPointer(ST->getSrcValue());
645    ID.AddInteger(ST->getSrcValueOffset());
646    ID.AddInteger(ST->getAlignment());
647    ID.AddInteger(ST->isVolatile());
648  }
649
650  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
651}
652
653
654SelectionDAG::~SelectionDAG() {
655  while (!AllNodes.empty()) {
656    SDNode *N = AllNodes.begin();
657    N->SetNextInBucket(0);
658    if (N->OperandsNeedDelete)
659      delete [] N->OperandList;
660    N->OperandList = 0;
661    N->NumOperands = 0;
662    AllNodes.pop_front();
663  }
664}
665
666SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
667  if (Op.getValueType() == VT) return Op;
668  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
669  return getNode(ISD::AND, Op.getValueType(), Op,
670                 getConstant(Imm, Op.getValueType()));
671}
672
673SDOperand SelectionDAG::getString(const std::string &Val) {
674  StringSDNode *&N = StringNodes[Val];
675  if (!N) {
676    N = new StringSDNode(Val);
677    AllNodes.push_back(N);
678  }
679  return SDOperand(N, 0);
680}
681
682SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
683  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
684  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
685
686  // Mask out any bits that are not valid for this constant.
687  Val &= MVT::getIntVTBitMask(VT);
688
689  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
690  FoldingSetNodeID ID;
691  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
692  ID.AddInteger(Val);
693  void *IP = 0;
694  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
695    return SDOperand(E, 0);
696  SDNode *N = new ConstantSDNode(isT, Val, VT);
697  CSEMap.InsertNode(N, IP);
698  AllNodes.push_back(N);
699  return SDOperand(N, 0);
700}
701
702SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
703                                      bool isTarget) {
704  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
705
706  MVT::ValueType EltVT =
707    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
708
709  // Do the map lookup using the actual bit pattern for the floating point
710  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
711  // we don't have issues with SNANs.
712  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
713  FoldingSetNodeID ID;
714  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
715  ID.AddAPFloat(V);
716  void *IP = 0;
717  SDNode *N = NULL;
718  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
719    if (!MVT::isVector(VT))
720      return SDOperand(N, 0);
721  if (!N) {
722    N = new ConstantFPSDNode(isTarget, V, EltVT);
723    CSEMap.InsertNode(N, IP);
724    AllNodes.push_back(N);
725  }
726
727  SDOperand Result(N, 0);
728  if (MVT::isVector(VT)) {
729    SmallVector<SDOperand, 8> Ops;
730    Ops.assign(MVT::getVectorNumElements(VT), Result);
731    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
732  }
733  return Result;
734}
735
736SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
737                                      bool isTarget) {
738  MVT::ValueType EltVT =
739    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
740  if (EltVT==MVT::f32)
741    return getConstantFP(APFloat((float)Val), VT, isTarget);
742  else
743    return getConstantFP(APFloat(Val), VT, isTarget);
744}
745
746SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
747                                         MVT::ValueType VT, int Offset,
748                                         bool isTargetGA) {
749  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
750  unsigned Opc;
751  if (GVar && GVar->isThreadLocal())
752    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
753  else
754    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
755  FoldingSetNodeID ID;
756  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
757  ID.AddPointer(GV);
758  ID.AddInteger(Offset);
759  void *IP = 0;
760  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
761   return SDOperand(E, 0);
762  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
763  CSEMap.InsertNode(N, IP);
764  AllNodes.push_back(N);
765  return SDOperand(N, 0);
766}
767
768SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
769                                      bool isTarget) {
770  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
771  FoldingSetNodeID ID;
772  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
773  ID.AddInteger(FI);
774  void *IP = 0;
775  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
776    return SDOperand(E, 0);
777  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
778  CSEMap.InsertNode(N, IP);
779  AllNodes.push_back(N);
780  return SDOperand(N, 0);
781}
782
783SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
784  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
785  FoldingSetNodeID ID;
786  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
787  ID.AddInteger(JTI);
788  void *IP = 0;
789  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
790    return SDOperand(E, 0);
791  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
792  CSEMap.InsertNode(N, IP);
793  AllNodes.push_back(N);
794  return SDOperand(N, 0);
795}
796
797SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
798                                        unsigned Alignment, int Offset,
799                                        bool isTarget) {
800  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
801  FoldingSetNodeID ID;
802  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
803  ID.AddInteger(Alignment);
804  ID.AddInteger(Offset);
805  ID.AddPointer(C);
806  void *IP = 0;
807  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
808    return SDOperand(E, 0);
809  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
810  CSEMap.InsertNode(N, IP);
811  AllNodes.push_back(N);
812  return SDOperand(N, 0);
813}
814
815
816SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
817                                        MVT::ValueType VT,
818                                        unsigned Alignment, int Offset,
819                                        bool isTarget) {
820  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
821  FoldingSetNodeID ID;
822  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
823  ID.AddInteger(Alignment);
824  ID.AddInteger(Offset);
825  C->AddSelectionDAGCSEId(ID);
826  void *IP = 0;
827  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
828    return SDOperand(E, 0);
829  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
830  CSEMap.InsertNode(N, IP);
831  AllNodes.push_back(N);
832  return SDOperand(N, 0);
833}
834
835
836SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
837  FoldingSetNodeID ID;
838  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
839  ID.AddPointer(MBB);
840  void *IP = 0;
841  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
842    return SDOperand(E, 0);
843  SDNode *N = new BasicBlockSDNode(MBB);
844  CSEMap.InsertNode(N, IP);
845  AllNodes.push_back(N);
846  return SDOperand(N, 0);
847}
848
849SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
850  assert(!MVT::isExtendedVT(VT) && "Expecting a simple value type!");
851  if ((unsigned)VT >= ValueTypeNodes.size())
852    ValueTypeNodes.resize(VT+1);
853  if (ValueTypeNodes[VT] == 0) {
854    ValueTypeNodes[VT] = new VTSDNode(VT);
855    AllNodes.push_back(ValueTypeNodes[VT]);
856  }
857
858  return SDOperand(ValueTypeNodes[VT], 0);
859}
860
861SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
862  SDNode *&N = ExternalSymbols[Sym];
863  if (N) return SDOperand(N, 0);
864  N = new ExternalSymbolSDNode(false, Sym, VT);
865  AllNodes.push_back(N);
866  return SDOperand(N, 0);
867}
868
869SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
870                                                MVT::ValueType VT) {
871  SDNode *&N = TargetExternalSymbols[Sym];
872  if (N) return SDOperand(N, 0);
873  N = new ExternalSymbolSDNode(true, Sym, VT);
874  AllNodes.push_back(N);
875  return SDOperand(N, 0);
876}
877
878SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
879  if ((unsigned)Cond >= CondCodeNodes.size())
880    CondCodeNodes.resize(Cond+1);
881
882  if (CondCodeNodes[Cond] == 0) {
883    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
884    AllNodes.push_back(CondCodeNodes[Cond]);
885  }
886  return SDOperand(CondCodeNodes[Cond], 0);
887}
888
889SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
890  FoldingSetNodeID ID;
891  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
892  ID.AddInteger(RegNo);
893  void *IP = 0;
894  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
895    return SDOperand(E, 0);
896  SDNode *N = new RegisterSDNode(RegNo, VT);
897  CSEMap.InsertNode(N, IP);
898  AllNodes.push_back(N);
899  return SDOperand(N, 0);
900}
901
902SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
903  assert((!V || isa<PointerType>(V->getType())) &&
904         "SrcValue is not a pointer?");
905
906  FoldingSetNodeID ID;
907  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
908  ID.AddPointer(V);
909  ID.AddInteger(Offset);
910  void *IP = 0;
911  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
912    return SDOperand(E, 0);
913  SDNode *N = new SrcValueSDNode(V, Offset);
914  CSEMap.InsertNode(N, IP);
915  AllNodes.push_back(N);
916  return SDOperand(N, 0);
917}
918
919/// CreateStackTemporary - Create a stack temporary, suitable for holding the
920/// specified value type.
921SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
922  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
923  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
924  const Type *Ty = MVT::getTypeForValueType(VT);
925  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
926  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
927  return getFrameIndex(FrameIdx, TLI.getPointerTy());
928}
929
930
931SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
932                                  SDOperand N2, ISD::CondCode Cond) {
933  // These setcc operations always fold.
934  switch (Cond) {
935  default: break;
936  case ISD::SETFALSE:
937  case ISD::SETFALSE2: return getConstant(0, VT);
938  case ISD::SETTRUE:
939  case ISD::SETTRUE2:  return getConstant(1, VT);
940
941  case ISD::SETOEQ:
942  case ISD::SETOGT:
943  case ISD::SETOGE:
944  case ISD::SETOLT:
945  case ISD::SETOLE:
946  case ISD::SETONE:
947  case ISD::SETO:
948  case ISD::SETUO:
949  case ISD::SETUEQ:
950  case ISD::SETUNE:
951    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
952    break;
953  }
954
955  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
956    uint64_t C2 = N2C->getValue();
957    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
958      uint64_t C1 = N1C->getValue();
959
960      // Sign extend the operands if required
961      if (ISD::isSignedIntSetCC(Cond)) {
962        C1 = N1C->getSignExtended();
963        C2 = N2C->getSignExtended();
964      }
965
966      switch (Cond) {
967      default: assert(0 && "Unknown integer setcc!");
968      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
969      case ISD::SETNE:  return getConstant(C1 != C2, VT);
970      case ISD::SETULT: return getConstant(C1 <  C2, VT);
971      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
972      case ISD::SETULE: return getConstant(C1 <= C2, VT);
973      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
974      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
975      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
976      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
977      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
978      }
979    }
980  }
981  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
982    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
983      // No compile time operations on this type yet.
984      if (N1C->getValueType(0) == MVT::ppcf128)
985        return SDOperand();
986
987      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
988      switch (Cond) {
989      default: break;
990      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
991                          return getNode(ISD::UNDEF, VT);
992                        // fall through
993      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
994      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
995                          return getNode(ISD::UNDEF, VT);
996                        // fall through
997      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
998                                           R==APFloat::cmpLessThan, VT);
999      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1000                          return getNode(ISD::UNDEF, VT);
1001                        // fall through
1002      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1003      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1004                          return getNode(ISD::UNDEF, VT);
1005                        // fall through
1006      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1007      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1008                          return getNode(ISD::UNDEF, VT);
1009                        // fall through
1010      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1011                                           R==APFloat::cmpEqual, VT);
1012      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1013                          return getNode(ISD::UNDEF, VT);
1014                        // fall through
1015      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1016                                           R==APFloat::cmpEqual, VT);
1017      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1018      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1019      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1020                                           R==APFloat::cmpEqual, VT);
1021      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1022      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1023                                           R==APFloat::cmpLessThan, VT);
1024      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1025                                           R==APFloat::cmpUnordered, VT);
1026      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1027      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1028      }
1029    } else {
1030      // Ensure that the constant occurs on the RHS.
1031      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1032    }
1033
1034  // Could not fold it.
1035  return SDOperand();
1036}
1037
1038/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1039/// this predicate to simplify operations downstream.  Mask is known to be zero
1040/// for bits that V cannot have.
1041bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1042                                     unsigned Depth) const {
1043  // The masks are not wide enough to represent this type!  Should use APInt.
1044  if (Op.getValueType() == MVT::i128)
1045    return false;
1046
1047  uint64_t KnownZero, KnownOne;
1048  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1049  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1050  return (KnownZero & Mask) == Mask;
1051}
1052
1053/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1054/// known to be either zero or one and return them in the KnownZero/KnownOne
1055/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1056/// processing.
1057void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1058                                     uint64_t &KnownZero, uint64_t &KnownOne,
1059                                     unsigned Depth) const {
1060  KnownZero = KnownOne = 0;   // Don't know anything.
1061  if (Depth == 6 || Mask == 0)
1062    return;  // Limit search depth.
1063
1064  // The masks are not wide enough to represent this type!  Should use APInt.
1065  if (Op.getValueType() == MVT::i128)
1066    return;
1067
1068  uint64_t KnownZero2, KnownOne2;
1069
1070  switch (Op.getOpcode()) {
1071  case ISD::Constant:
1072    // We know all of the bits for a constant!
1073    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1074    KnownZero = ~KnownOne & Mask;
1075    return;
1076  case ISD::AND:
1077    // If either the LHS or the RHS are Zero, the result is zero.
1078    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1079    Mask &= ~KnownZero;
1080    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1081    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1082    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1083
1084    // Output known-1 bits are only known if set in both the LHS & RHS.
1085    KnownOne &= KnownOne2;
1086    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1087    KnownZero |= KnownZero2;
1088    return;
1089  case ISD::OR:
1090    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1091    Mask &= ~KnownOne;
1092    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1093    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1094    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1095
1096    // Output known-0 bits are only known if clear in both the LHS & RHS.
1097    KnownZero &= KnownZero2;
1098    // Output known-1 are known to be set if set in either the LHS | RHS.
1099    KnownOne |= KnownOne2;
1100    return;
1101  case ISD::XOR: {
1102    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1103    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1104    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1105    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1106
1107    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1108    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1109    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1110    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1111    KnownZero = KnownZeroOut;
1112    return;
1113  }
1114  case ISD::SELECT:
1115    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1116    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1117    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1118    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1119
1120    // Only known if known in both the LHS and RHS.
1121    KnownOne &= KnownOne2;
1122    KnownZero &= KnownZero2;
1123    return;
1124  case ISD::SELECT_CC:
1125    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1126    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1127    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1128    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1129
1130    // Only known if known in both the LHS and RHS.
1131    KnownOne &= KnownOne2;
1132    KnownZero &= KnownZero2;
1133    return;
1134  case ISD::SETCC:
1135    // If we know the result of a setcc has the top bits zero, use this info.
1136    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1137      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1138    return;
1139  case ISD::SHL:
1140    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1141    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1142      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1143                        KnownZero, KnownOne, Depth+1);
1144      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1145      KnownZero <<= SA->getValue();
1146      KnownOne  <<= SA->getValue();
1147      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1148    }
1149    return;
1150  case ISD::SRL:
1151    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1152    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1153      MVT::ValueType VT = Op.getValueType();
1154      unsigned ShAmt = SA->getValue();
1155
1156      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1157      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1158                        KnownZero, KnownOne, Depth+1);
1159      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1160      KnownZero &= TypeMask;
1161      KnownOne  &= TypeMask;
1162      KnownZero >>= ShAmt;
1163      KnownOne  >>= ShAmt;
1164
1165      uint64_t HighBits = (1ULL << ShAmt)-1;
1166      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1167      KnownZero |= HighBits;  // High bits known zero.
1168    }
1169    return;
1170  case ISD::SRA:
1171    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1172      MVT::ValueType VT = Op.getValueType();
1173      unsigned ShAmt = SA->getValue();
1174
1175      // Compute the new bits that are at the top now.
1176      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1177
1178      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1179      // If any of the demanded bits are produced by the sign extension, we also
1180      // demand the input sign bit.
1181      uint64_t HighBits = (1ULL << ShAmt)-1;
1182      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1183      if (HighBits & Mask)
1184        InDemandedMask |= MVT::getIntVTSignBit(VT);
1185
1186      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1187                        Depth+1);
1188      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1189      KnownZero &= TypeMask;
1190      KnownOne  &= TypeMask;
1191      KnownZero >>= ShAmt;
1192      KnownOne  >>= ShAmt;
1193
1194      // Handle the sign bits.
1195      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1196      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1197
1198      if (KnownZero & SignBit) {
1199        KnownZero |= HighBits;  // New bits are known zero.
1200      } else if (KnownOne & SignBit) {
1201        KnownOne  |= HighBits;  // New bits are known one.
1202      }
1203    }
1204    return;
1205  case ISD::SIGN_EXTEND_INREG: {
1206    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1207
1208    // Sign extension.  Compute the demanded bits in the result that are not
1209    // present in the input.
1210    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1211
1212    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1213    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1214
1215    // If the sign extended bits are demanded, we know that the sign
1216    // bit is demanded.
1217    if (NewBits)
1218      InputDemandedBits |= InSignBit;
1219
1220    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1221                      KnownZero, KnownOne, Depth+1);
1222    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1223
1224    // If the sign bit of the input is known set or clear, then we know the
1225    // top bits of the result.
1226    if (KnownZero & InSignBit) {          // Input sign bit known clear
1227      KnownZero |= NewBits;
1228      KnownOne  &= ~NewBits;
1229    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1230      KnownOne  |= NewBits;
1231      KnownZero &= ~NewBits;
1232    } else {                              // Input sign bit unknown
1233      KnownZero &= ~NewBits;
1234      KnownOne  &= ~NewBits;
1235    }
1236    return;
1237  }
1238  case ISD::CTTZ:
1239  case ISD::CTLZ:
1240  case ISD::CTPOP: {
1241    MVT::ValueType VT = Op.getValueType();
1242    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1243    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1244    KnownOne  = 0;
1245    return;
1246  }
1247  case ISD::LOAD: {
1248    if (ISD::isZEXTLoad(Op.Val)) {
1249      LoadSDNode *LD = cast<LoadSDNode>(Op);
1250      MVT::ValueType VT = LD->getLoadedVT();
1251      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1252    }
1253    return;
1254  }
1255  case ISD::ZERO_EXTEND: {
1256    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1257    uint64_t NewBits = (~InMask) & Mask;
1258    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1259                      KnownOne, Depth+1);
1260    KnownZero |= NewBits & Mask;
1261    KnownOne  &= ~NewBits;
1262    return;
1263  }
1264  case ISD::SIGN_EXTEND: {
1265    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1266    unsigned InBits    = MVT::getSizeInBits(InVT);
1267    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1268    uint64_t InSignBit = 1ULL << (InBits-1);
1269    uint64_t NewBits   = (~InMask) & Mask;
1270    uint64_t InDemandedBits = Mask & InMask;
1271
1272    // If any of the sign extended bits are demanded, we know that the sign
1273    // bit is demanded.
1274    if (NewBits & Mask)
1275      InDemandedBits |= InSignBit;
1276
1277    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1278                      KnownOne, Depth+1);
1279    // If the sign bit is known zero or one, the  top bits match.
1280    if (KnownZero & InSignBit) {
1281      KnownZero |= NewBits;
1282      KnownOne  &= ~NewBits;
1283    } else if (KnownOne & InSignBit) {
1284      KnownOne  |= NewBits;
1285      KnownZero &= ~NewBits;
1286    } else {   // Otherwise, top bits aren't known.
1287      KnownOne  &= ~NewBits;
1288      KnownZero &= ~NewBits;
1289    }
1290    return;
1291  }
1292  case ISD::ANY_EXTEND: {
1293    MVT::ValueType VT = Op.getOperand(0).getValueType();
1294    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1295                      KnownZero, KnownOne, Depth+1);
1296    return;
1297  }
1298  case ISD::TRUNCATE: {
1299    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1300    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1301    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1302    KnownZero &= OutMask;
1303    KnownOne &= OutMask;
1304    break;
1305  }
1306  case ISD::AssertZext: {
1307    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1308    uint64_t InMask = MVT::getIntVTBitMask(VT);
1309    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1310                      KnownOne, Depth+1);
1311    KnownZero |= (~InMask) & Mask;
1312    return;
1313  }
1314  case ISD::ADD: {
1315    // If either the LHS or the RHS are Zero, the result is zero.
1316    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1317    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1318    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1319    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1320
1321    // Output known-0 bits are known if clear or set in both the low clear bits
1322    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1323    // low 3 bits clear.
1324    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1325                                     CountTrailingZeros_64(~KnownZero2));
1326
1327    KnownZero = (1ULL << KnownZeroOut) - 1;
1328    KnownOne = 0;
1329    return;
1330  }
1331  case ISD::SUB: {
1332    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1333    if (!CLHS) return;
1334
1335    // We know that the top bits of C-X are clear if X contains less bits
1336    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1337    // positive if we can prove that X is >= 0 and < 16.
1338    MVT::ValueType VT = CLHS->getValueType(0);
1339    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1340      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1341      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1342      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1343      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1344
1345      // If all of the MaskV bits are known to be zero, then we know the output
1346      // top bits are zero, because we now know that the output is from [0-C].
1347      if ((KnownZero & MaskV) == MaskV) {
1348        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1349        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1350        KnownOne = 0;   // No one bits known.
1351      } else {
1352        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1353      }
1354    }
1355    return;
1356  }
1357  default:
1358    // Allow the target to implement this method for its nodes.
1359    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1360  case ISD::INTRINSIC_WO_CHAIN:
1361  case ISD::INTRINSIC_W_CHAIN:
1362  case ISD::INTRINSIC_VOID:
1363      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1364    }
1365    return;
1366  }
1367}
1368
1369/// ComputeNumSignBits - Return the number of times the sign bit of the
1370/// register is replicated into the other bits.  We know that at least 1 bit
1371/// is always equal to the sign bit (itself), but other cases can give us
1372/// information.  For example, immediately after an "SRA X, 2", we know that
1373/// the top 3 bits are all equal to each other, so we return 3.
1374unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1375  MVT::ValueType VT = Op.getValueType();
1376  assert(MVT::isInteger(VT) && "Invalid VT!");
1377  unsigned VTBits = MVT::getSizeInBits(VT);
1378  unsigned Tmp, Tmp2;
1379
1380  if (Depth == 6)
1381    return 1;  // Limit search depth.
1382
1383  switch (Op.getOpcode()) {
1384  default: break;
1385  case ISD::AssertSext:
1386    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1387    return VTBits-Tmp+1;
1388  case ISD::AssertZext:
1389    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1390    return VTBits-Tmp;
1391
1392  case ISD::Constant: {
1393    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1394    // If negative, invert the bits, then look at it.
1395    if (Val & MVT::getIntVTSignBit(VT))
1396      Val = ~Val;
1397
1398    // Shift the bits so they are the leading bits in the int64_t.
1399    Val <<= 64-VTBits;
1400
1401    // Return # leading zeros.  We use 'min' here in case Val was zero before
1402    // shifting.  We don't want to return '64' as for an i32 "0".
1403    return std::min(VTBits, CountLeadingZeros_64(Val));
1404  }
1405
1406  case ISD::SIGN_EXTEND:
1407    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1408    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1409
1410  case ISD::SIGN_EXTEND_INREG:
1411    // Max of the input and what this extends.
1412    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1413    Tmp = VTBits-Tmp+1;
1414
1415    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1416    return std::max(Tmp, Tmp2);
1417
1418  case ISD::SRA:
1419    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1420    // SRA X, C   -> adds C sign bits.
1421    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1422      Tmp += C->getValue();
1423      if (Tmp > VTBits) Tmp = VTBits;
1424    }
1425    return Tmp;
1426  case ISD::SHL:
1427    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1428      // shl destroys sign bits.
1429      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1430      if (C->getValue() >= VTBits ||      // Bad shift.
1431          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1432      return Tmp - C->getValue();
1433    }
1434    break;
1435  case ISD::AND:
1436  case ISD::OR:
1437  case ISD::XOR:    // NOT is handled here.
1438    // Logical binary ops preserve the number of sign bits.
1439    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1440    if (Tmp == 1) return 1;  // Early out.
1441    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1442    return std::min(Tmp, Tmp2);
1443
1444  case ISD::SELECT:
1445    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1446    if (Tmp == 1) return 1;  // Early out.
1447    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1448    return std::min(Tmp, Tmp2);
1449
1450  case ISD::SETCC:
1451    // If setcc returns 0/-1, all bits are sign bits.
1452    if (TLI.getSetCCResultContents() ==
1453        TargetLowering::ZeroOrNegativeOneSetCCResult)
1454      return VTBits;
1455    break;
1456  case ISD::ROTL:
1457  case ISD::ROTR:
1458    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1459      unsigned RotAmt = C->getValue() & (VTBits-1);
1460
1461      // Handle rotate right by N like a rotate left by 32-N.
1462      if (Op.getOpcode() == ISD::ROTR)
1463        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1464
1465      // If we aren't rotating out all of the known-in sign bits, return the
1466      // number that are left.  This handles rotl(sext(x), 1) for example.
1467      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1468      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1469    }
1470    break;
1471  case ISD::ADD:
1472    // Add can have at most one carry bit.  Thus we know that the output
1473    // is, at worst, one more bit than the inputs.
1474    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1475    if (Tmp == 1) return 1;  // Early out.
1476
1477    // Special case decrementing a value (ADD X, -1):
1478    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1479      if (CRHS->isAllOnesValue()) {
1480        uint64_t KnownZero, KnownOne;
1481        uint64_t Mask = MVT::getIntVTBitMask(VT);
1482        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1483
1484        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1485        // sign bits set.
1486        if ((KnownZero|1) == Mask)
1487          return VTBits;
1488
1489        // If we are subtracting one from a positive number, there is no carry
1490        // out of the result.
1491        if (KnownZero & MVT::getIntVTSignBit(VT))
1492          return Tmp;
1493      }
1494
1495    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1496    if (Tmp2 == 1) return 1;
1497      return std::min(Tmp, Tmp2)-1;
1498    break;
1499
1500  case ISD::SUB:
1501    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1502    if (Tmp2 == 1) return 1;
1503
1504    // Handle NEG.
1505    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1506      if (CLHS->getValue() == 0) {
1507        uint64_t KnownZero, KnownOne;
1508        uint64_t Mask = MVT::getIntVTBitMask(VT);
1509        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1510        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1511        // sign bits set.
1512        if ((KnownZero|1) == Mask)
1513          return VTBits;
1514
1515        // If the input is known to be positive (the sign bit is known clear),
1516        // the output of the NEG has the same number of sign bits as the input.
1517        if (KnownZero & MVT::getIntVTSignBit(VT))
1518          return Tmp2;
1519
1520        // Otherwise, we treat this like a SUB.
1521      }
1522
1523    // Sub can have at most one carry bit.  Thus we know that the output
1524    // is, at worst, one more bit than the inputs.
1525    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1526    if (Tmp == 1) return 1;  // Early out.
1527      return std::min(Tmp, Tmp2)-1;
1528    break;
1529  case ISD::TRUNCATE:
1530    // FIXME: it's tricky to do anything useful for this, but it is an important
1531    // case for targets like X86.
1532    break;
1533  }
1534
1535  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1536  if (Op.getOpcode() == ISD::LOAD) {
1537    LoadSDNode *LD = cast<LoadSDNode>(Op);
1538    unsigned ExtType = LD->getExtensionType();
1539    switch (ExtType) {
1540    default: break;
1541    case ISD::SEXTLOAD:    // '17' bits known
1542      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1543      return VTBits-Tmp+1;
1544    case ISD::ZEXTLOAD:    // '16' bits known
1545      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1546      return VTBits-Tmp;
1547    }
1548  }
1549
1550  // Allow the target to implement this method for its nodes.
1551  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1552      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1553      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1554      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1555    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1556    if (NumBits > 1) return NumBits;
1557  }
1558
1559  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1560  // use this information.
1561  uint64_t KnownZero, KnownOne;
1562  uint64_t Mask = MVT::getIntVTBitMask(VT);
1563  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1564
1565  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1566  if (KnownZero & SignBit) {        // SignBit is 0
1567    Mask = KnownZero;
1568  } else if (KnownOne & SignBit) {  // SignBit is 1;
1569    Mask = KnownOne;
1570  } else {
1571    // Nothing known.
1572    return 1;
1573  }
1574
1575  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1576  // the number of identical bits in the top of the input value.
1577  Mask ^= ~0ULL;
1578  Mask <<= 64-VTBits;
1579  // Return # leading zeros.  We use 'min' here in case Val was zero before
1580  // shifting.  We don't want to return '64' as for an i32 "0".
1581  return std::min(VTBits, CountLeadingZeros_64(Mask));
1582}
1583
1584
1585/// getNode - Gets or creates the specified node.
1586///
1587SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1588  FoldingSetNodeID ID;
1589  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1590  void *IP = 0;
1591  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1592    return SDOperand(E, 0);
1593  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1594  CSEMap.InsertNode(N, IP);
1595
1596  AllNodes.push_back(N);
1597  return SDOperand(N, 0);
1598}
1599
1600SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1601                                SDOperand Operand) {
1602  unsigned Tmp1;
1603  // Constant fold unary operations with an integer constant operand.
1604  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1605    uint64_t Val = C->getValue();
1606    switch (Opcode) {
1607    default: break;
1608    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1609    case ISD::ANY_EXTEND:
1610    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1611    case ISD::TRUNCATE:    return getConstant(Val, VT);
1612    case ISD::UINT_TO_FP:
1613    case ISD::SINT_TO_FP: {
1614      const uint64_t zero[] = {0, 0};
1615      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1616      (void)apf.convertFromZeroExtendedInteger(&Val,
1617                               MVT::getSizeInBits(Operand.getValueType()),
1618                               Opcode==ISD::SINT_TO_FP,
1619                               APFloat::rmNearestTiesToEven);
1620      return getConstantFP(apf, VT);
1621    }
1622    case ISD::BIT_CONVERT:
1623      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1624        return getConstantFP(BitsToFloat(Val), VT);
1625      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1626        return getConstantFP(BitsToDouble(Val), VT);
1627      break;
1628    case ISD::BSWAP:
1629      switch(VT) {
1630      default: assert(0 && "Invalid bswap!"); break;
1631      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1632      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1633      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1634      }
1635      break;
1636    case ISD::CTPOP:
1637      switch(VT) {
1638      default: assert(0 && "Invalid ctpop!"); break;
1639      case MVT::i1: return getConstant(Val != 0, VT);
1640      case MVT::i8:
1641        Tmp1 = (unsigned)Val & 0xFF;
1642        return getConstant(CountPopulation_32(Tmp1), VT);
1643      case MVT::i16:
1644        Tmp1 = (unsigned)Val & 0xFFFF;
1645        return getConstant(CountPopulation_32(Tmp1), VT);
1646      case MVT::i32:
1647        return getConstant(CountPopulation_32((unsigned)Val), VT);
1648      case MVT::i64:
1649        return getConstant(CountPopulation_64(Val), VT);
1650      }
1651    case ISD::CTLZ:
1652      switch(VT) {
1653      default: assert(0 && "Invalid ctlz!"); break;
1654      case MVT::i1: return getConstant(Val == 0, VT);
1655      case MVT::i8:
1656        Tmp1 = (unsigned)Val & 0xFF;
1657        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1658      case MVT::i16:
1659        Tmp1 = (unsigned)Val & 0xFFFF;
1660        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1661      case MVT::i32:
1662        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1663      case MVT::i64:
1664        return getConstant(CountLeadingZeros_64(Val), VT);
1665      }
1666    case ISD::CTTZ:
1667      switch(VT) {
1668      default: assert(0 && "Invalid cttz!"); break;
1669      case MVT::i1: return getConstant(Val == 0, VT);
1670      case MVT::i8:
1671        Tmp1 = (unsigned)Val | 0x100;
1672        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1673      case MVT::i16:
1674        Tmp1 = (unsigned)Val | 0x10000;
1675        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1676      case MVT::i32:
1677        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1678      case MVT::i64:
1679        return getConstant(CountTrailingZeros_64(Val), VT);
1680      }
1681    }
1682  }
1683
1684  // Constant fold unary operations with a floating point constant operand.
1685  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1686    APFloat V = C->getValueAPF();    // make copy
1687    switch (Opcode) {
1688    case ISD::FNEG:
1689      V.changeSign();
1690      return getConstantFP(V, VT);
1691    case ISD::FABS:
1692      V.clearSign();
1693      return getConstantFP(V, VT);
1694    case ISD::FP_ROUND:
1695    case ISD::FP_EXTEND:
1696      // This can return overflow, underflow, or inexact; we don't care.
1697      // FIXME need to be more flexible about rounding mode.
1698      (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1699                       VT==MVT::f64 ? APFloat::IEEEdouble :
1700                       VT==MVT::f80 ? APFloat::x87DoubleExtended :
1701                       VT==MVT::f128 ? APFloat::IEEEquad :
1702                       APFloat::Bogus,
1703                       APFloat::rmNearestTiesToEven);
1704      return getConstantFP(V, VT);
1705    case ISD::FP_TO_SINT:
1706    case ISD::FP_TO_UINT: {
1707      integerPart x;
1708      assert(integerPartWidth >= 64);
1709      // FIXME need to be more flexible about rounding mode.
1710      APFloat::opStatus s = V.convertToInteger(&x, 64U,
1711                            Opcode==ISD::FP_TO_SINT,
1712                            APFloat::rmTowardZero);
1713      if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1714        break;
1715      return getConstant(x, VT);
1716    }
1717    case ISD::BIT_CONVERT:
1718      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1719        return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1720      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1721        return getConstant(V.convertToAPInt().getZExtValue(), VT);
1722      break;
1723    }
1724  }
1725
1726  unsigned OpOpcode = Operand.Val->getOpcode();
1727  switch (Opcode) {
1728  case ISD::TokenFactor:
1729    return Operand;         // Factor of one node?  No factor.
1730  case ISD::FP_ROUND:
1731  case ISD::FP_EXTEND:
1732    assert(MVT::isFloatingPoint(VT) &&
1733           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1734    break;
1735  case ISD::SIGN_EXTEND:
1736    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1737           "Invalid SIGN_EXTEND!");
1738    if (Operand.getValueType() == VT) return Operand;   // noop extension
1739    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1740           && "Invalid sext node, dst < src!");
1741    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1742      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1743    break;
1744  case ISD::ZERO_EXTEND:
1745    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1746           "Invalid ZERO_EXTEND!");
1747    if (Operand.getValueType() == VT) return Operand;   // noop extension
1748    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1749           && "Invalid zext node, dst < src!");
1750    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1751      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1752    break;
1753  case ISD::ANY_EXTEND:
1754    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1755           "Invalid ANY_EXTEND!");
1756    if (Operand.getValueType() == VT) return Operand;   // noop extension
1757    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1758           && "Invalid anyext node, dst < src!");
1759    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1760      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1761      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1762    break;
1763  case ISD::TRUNCATE:
1764    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1765           "Invalid TRUNCATE!");
1766    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1767    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1768           && "Invalid truncate node, src < dst!");
1769    if (OpOpcode == ISD::TRUNCATE)
1770      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1771    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1772             OpOpcode == ISD::ANY_EXTEND) {
1773      // If the source is smaller than the dest, we still need an extend.
1774      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1775          < MVT::getSizeInBits(VT))
1776        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1777      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1778               > MVT::getSizeInBits(VT))
1779        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1780      else
1781        return Operand.Val->getOperand(0);
1782    }
1783    break;
1784  case ISD::BIT_CONVERT:
1785    // Basic sanity checking.
1786    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1787           && "Cannot BIT_CONVERT between types of different sizes!");
1788    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1789    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1790      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1791    if (OpOpcode == ISD::UNDEF)
1792      return getNode(ISD::UNDEF, VT);
1793    break;
1794  case ISD::SCALAR_TO_VECTOR:
1795    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1796           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1797           "Illegal SCALAR_TO_VECTOR node!");
1798    break;
1799  case ISD::FNEG:
1800    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1801      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1802                     Operand.Val->getOperand(0));
1803    if (OpOpcode == ISD::FNEG)  // --X -> X
1804      return Operand.Val->getOperand(0);
1805    break;
1806  case ISD::FABS:
1807    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1808      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1809    break;
1810  }
1811
1812  SDNode *N;
1813  SDVTList VTs = getVTList(VT);
1814  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1815    FoldingSetNodeID ID;
1816    SDOperand Ops[1] = { Operand };
1817    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1818    void *IP = 0;
1819    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1820      return SDOperand(E, 0);
1821    N = new UnarySDNode(Opcode, VTs, Operand);
1822    CSEMap.InsertNode(N, IP);
1823  } else {
1824    N = new UnarySDNode(Opcode, VTs, Operand);
1825  }
1826  AllNodes.push_back(N);
1827  return SDOperand(N, 0);
1828}
1829
1830
1831
1832SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1833                                SDOperand N1, SDOperand N2) {
1834#ifndef NDEBUG
1835  switch (Opcode) {
1836  case ISD::TokenFactor:
1837    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1838           N2.getValueType() == MVT::Other && "Invalid token factor!");
1839    break;
1840  case ISD::AND:
1841  case ISD::OR:
1842  case ISD::XOR:
1843  case ISD::UDIV:
1844  case ISD::UREM:
1845  case ISD::MULHU:
1846  case ISD::MULHS:
1847    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1848    // fall through
1849  case ISD::ADD:
1850  case ISD::SUB:
1851  case ISD::MUL:
1852  case ISD::SDIV:
1853  case ISD::SREM:
1854    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1855    // fall through.
1856  case ISD::FADD:
1857  case ISD::FSUB:
1858  case ISD::FMUL:
1859  case ISD::FDIV:
1860  case ISD::FREM:
1861    assert(N1.getValueType() == N2.getValueType() &&
1862           N1.getValueType() == VT && "Binary operator types must match!");
1863    break;
1864  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1865    assert(N1.getValueType() == VT &&
1866           MVT::isFloatingPoint(N1.getValueType()) &&
1867           MVT::isFloatingPoint(N2.getValueType()) &&
1868           "Invalid FCOPYSIGN!");
1869    break;
1870  case ISD::SHL:
1871  case ISD::SRA:
1872  case ISD::SRL:
1873  case ISD::ROTL:
1874  case ISD::ROTR:
1875    assert(VT == N1.getValueType() &&
1876           "Shift operators return type must be the same as their first arg");
1877    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1878           VT != MVT::i1 && "Shifts only work on integers");
1879    break;
1880  case ISD::FP_ROUND_INREG: {
1881    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1882    assert(VT == N1.getValueType() && "Not an inreg round!");
1883    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1884           "Cannot FP_ROUND_INREG integer types");
1885    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1886           "Not rounding down!");
1887    break;
1888  }
1889  case ISD::AssertSext:
1890  case ISD::AssertZext:
1891  case ISD::SIGN_EXTEND_INREG: {
1892    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1893    assert(VT == N1.getValueType() && "Not an inreg extend!");
1894    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1895           "Cannot *_EXTEND_INREG FP types");
1896    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1897           "Not extending!");
1898  }
1899
1900  default: break;
1901  }
1902#endif
1903
1904  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1905  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1906  if (N1C) {
1907    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1908      int64_t Val = N1C->getValue();
1909      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1910      Val <<= 64-FromBits;
1911      Val >>= 64-FromBits;
1912      return getConstant(Val, VT);
1913    }
1914
1915    if (N2C) {
1916      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1917      switch (Opcode) {
1918      case ISD::ADD: return getConstant(C1 + C2, VT);
1919      case ISD::SUB: return getConstant(C1 - C2, VT);
1920      case ISD::MUL: return getConstant(C1 * C2, VT);
1921      case ISD::UDIV:
1922        if (C2) return getConstant(C1 / C2, VT);
1923        break;
1924      case ISD::UREM :
1925        if (C2) return getConstant(C1 % C2, VT);
1926        break;
1927      case ISD::SDIV :
1928        if (C2) return getConstant(N1C->getSignExtended() /
1929                                   N2C->getSignExtended(), VT);
1930        break;
1931      case ISD::SREM :
1932        if (C2) return getConstant(N1C->getSignExtended() %
1933                                   N2C->getSignExtended(), VT);
1934        break;
1935      case ISD::AND  : return getConstant(C1 & C2, VT);
1936      case ISD::OR   : return getConstant(C1 | C2, VT);
1937      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1938      case ISD::SHL  : return getConstant(C1 << C2, VT);
1939      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1940      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1941      case ISD::ROTL :
1942        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1943                           VT);
1944      case ISD::ROTR :
1945        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1946                           VT);
1947      default: break;
1948      }
1949    } else {      // Cannonicalize constant to RHS if commutative
1950      if (isCommutativeBinOp(Opcode)) {
1951        std::swap(N1C, N2C);
1952        std::swap(N1, N2);
1953      }
1954    }
1955  }
1956
1957  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1958  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1959  if (N1CFP) {
1960    if (N2CFP) {
1961      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
1962      APFloat::opStatus s;
1963      switch (Opcode) {
1964      case ISD::FADD:
1965        s = V1.add(V2, APFloat::rmNearestTiesToEven);
1966        if (s!=APFloat::opInvalidOp)
1967          return getConstantFP(V1, VT);
1968        break;
1969      case ISD::FSUB:
1970        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
1971        if (s!=APFloat::opInvalidOp)
1972          return getConstantFP(V1, VT);
1973        break;
1974      case ISD::FMUL:
1975        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
1976        if (s!=APFloat::opInvalidOp)
1977          return getConstantFP(V1, VT);
1978        break;
1979      case ISD::FDIV:
1980        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
1981        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1982          return getConstantFP(V1, VT);
1983        break;
1984      case ISD::FREM :
1985        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
1986        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1987          return getConstantFP(V1, VT);
1988        break;
1989      case ISD::FCOPYSIGN:
1990        V1.copySign(V2);
1991        return getConstantFP(V1, VT);
1992      default: break;
1993      }
1994    } else {      // Cannonicalize constant to RHS if commutative
1995      if (isCommutativeBinOp(Opcode)) {
1996        std::swap(N1CFP, N2CFP);
1997        std::swap(N1, N2);
1998      }
1999    }
2000  }
2001
2002  // Canonicalize an UNDEF to the RHS, even over a constant.
2003  if (N1.getOpcode() == ISD::UNDEF) {
2004    if (isCommutativeBinOp(Opcode)) {
2005      std::swap(N1, N2);
2006    } else {
2007      switch (Opcode) {
2008      case ISD::FP_ROUND_INREG:
2009      case ISD::SIGN_EXTEND_INREG:
2010      case ISD::SUB:
2011      case ISD::FSUB:
2012      case ISD::FDIV:
2013      case ISD::FREM:
2014      case ISD::SRA:
2015        return N1;     // fold op(undef, arg2) -> undef
2016      case ISD::UDIV:
2017      case ISD::SDIV:
2018      case ISD::UREM:
2019      case ISD::SREM:
2020      case ISD::SRL:
2021      case ISD::SHL:
2022        if (!MVT::isVector(VT))
2023          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2024        // For vectors, we can't easily build an all zero vector, just return
2025        // the LHS.
2026        return N2;
2027      }
2028    }
2029  }
2030
2031  // Fold a bunch of operators when the RHS is undef.
2032  if (N2.getOpcode() == ISD::UNDEF) {
2033    switch (Opcode) {
2034    case ISD::ADD:
2035    case ISD::ADDC:
2036    case ISD::ADDE:
2037    case ISD::SUB:
2038    case ISD::FADD:
2039    case ISD::FSUB:
2040    case ISD::FMUL:
2041    case ISD::FDIV:
2042    case ISD::FREM:
2043    case ISD::UDIV:
2044    case ISD::SDIV:
2045    case ISD::UREM:
2046    case ISD::SREM:
2047    case ISD::XOR:
2048      return N2;       // fold op(arg1, undef) -> undef
2049    case ISD::MUL:
2050    case ISD::AND:
2051    case ISD::SRL:
2052    case ISD::SHL:
2053      if (!MVT::isVector(VT))
2054        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2055      // For vectors, we can't easily build an all zero vector, just return
2056      // the LHS.
2057      return N1;
2058    case ISD::OR:
2059      if (!MVT::isVector(VT))
2060        return getConstant(MVT::getIntVTBitMask(VT), VT);
2061      // For vectors, we can't easily build an all one vector, just return
2062      // the LHS.
2063      return N1;
2064    case ISD::SRA:
2065      return N1;
2066    }
2067  }
2068
2069  // Fold operations.
2070  switch (Opcode) {
2071  case ISD::TokenFactor:
2072    // Fold trivial token factors.
2073    if (N1.getOpcode() == ISD::EntryToken) return N2;
2074    if (N2.getOpcode() == ISD::EntryToken) return N1;
2075    break;
2076
2077  case ISD::AND:
2078    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2079    // worth handling here.
2080    if (N2C && N2C->getValue() == 0)
2081      return N2;
2082    break;
2083  case ISD::OR:
2084  case ISD::XOR:
2085    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2086    // worth handling here.
2087    if (N2C && N2C->getValue() == 0)
2088      return N1;
2089    break;
2090  case ISD::FP_ROUND_INREG:
2091    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2092    break;
2093  case ISD::SIGN_EXTEND_INREG: {
2094    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2095    if (EVT == VT) return N1;  // Not actually extending
2096    break;
2097  }
2098  case ISD::EXTRACT_VECTOR_ELT:
2099    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2100
2101    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2102    // expanding copies of large vectors from registers.
2103    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2104        N1.getNumOperands() > 0) {
2105      unsigned Factor =
2106        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2107      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2108                     N1.getOperand(N2C->getValue() / Factor),
2109                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2110    }
2111
2112    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2113    // expanding large vector constants.
2114    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2115      return N1.getOperand(N2C->getValue());
2116
2117    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2118    // operations are lowered to scalars.
2119    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2120      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2121        if (IEC == N2C)
2122          return N1.getOperand(1);
2123        else
2124          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2125      }
2126    break;
2127  case ISD::EXTRACT_ELEMENT:
2128    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2129
2130    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2131    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2132    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2133    if (N1.getOpcode() == ISD::BUILD_PAIR)
2134      return N1.getOperand(N2C->getValue());
2135
2136    // EXTRACT_ELEMENT of a constant int is also very common.
2137    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2138      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2139      return getConstant(C->getValue() >> Shift, VT);
2140    }
2141    break;
2142
2143  // FIXME: figure out how to safely handle things like
2144  // int foo(int x) { return 1 << (x & 255); }
2145  // int bar() { return foo(256); }
2146#if 0
2147  case ISD::SHL:
2148  case ISD::SRL:
2149  case ISD::SRA:
2150    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2151        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2152      return getNode(Opcode, VT, N1, N2.getOperand(0));
2153    else if (N2.getOpcode() == ISD::AND)
2154      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2155        // If the and is only masking out bits that cannot effect the shift,
2156        // eliminate the and.
2157        unsigned NumBits = MVT::getSizeInBits(VT);
2158        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2159          return getNode(Opcode, VT, N1, N2.getOperand(0));
2160      }
2161    break;
2162#endif
2163  }
2164
2165  // Memoize this node if possible.
2166  SDNode *N;
2167  SDVTList VTs = getVTList(VT);
2168  if (VT != MVT::Flag) {
2169    SDOperand Ops[] = { N1, N2 };
2170    FoldingSetNodeID ID;
2171    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2172    void *IP = 0;
2173    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2174      return SDOperand(E, 0);
2175    N = new BinarySDNode(Opcode, VTs, N1, N2);
2176    CSEMap.InsertNode(N, IP);
2177  } else {
2178    N = new BinarySDNode(Opcode, VTs, N1, N2);
2179  }
2180
2181  AllNodes.push_back(N);
2182  return SDOperand(N, 0);
2183}
2184
2185SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2186                                SDOperand N1, SDOperand N2, SDOperand N3) {
2187  // Perform various simplifications.
2188  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2189  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2190  switch (Opcode) {
2191  case ISD::SETCC: {
2192    // Use FoldSetCC to simplify SETCC's.
2193    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2194    if (Simp.Val) return Simp;
2195    break;
2196  }
2197  case ISD::SELECT:
2198    if (N1C)
2199      if (N1C->getValue())
2200        return N2;             // select true, X, Y -> X
2201      else
2202        return N3;             // select false, X, Y -> Y
2203
2204    if (N2 == N3) return N2;   // select C, X, X -> X
2205    break;
2206  case ISD::BRCOND:
2207    if (N2C)
2208      if (N2C->getValue()) // Unconditional branch
2209        return getNode(ISD::BR, MVT::Other, N1, N3);
2210      else
2211        return N1;         // Never-taken branch
2212    break;
2213  case ISD::VECTOR_SHUFFLE:
2214    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2215           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2216           N3.getOpcode() == ISD::BUILD_VECTOR &&
2217           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2218           "Illegal VECTOR_SHUFFLE node!");
2219    break;
2220  case ISD::BIT_CONVERT:
2221    // Fold bit_convert nodes from a type to themselves.
2222    if (N1.getValueType() == VT)
2223      return N1;
2224    break;
2225  }
2226
2227  // Memoize node if it doesn't produce a flag.
2228  SDNode *N;
2229  SDVTList VTs = getVTList(VT);
2230  if (VT != MVT::Flag) {
2231    SDOperand Ops[] = { N1, N2, N3 };
2232    FoldingSetNodeID ID;
2233    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2234    void *IP = 0;
2235    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2236      return SDOperand(E, 0);
2237    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2238    CSEMap.InsertNode(N, IP);
2239  } else {
2240    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2241  }
2242  AllNodes.push_back(N);
2243  return SDOperand(N, 0);
2244}
2245
2246SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2247                                SDOperand N1, SDOperand N2, SDOperand N3,
2248                                SDOperand N4) {
2249  SDOperand Ops[] = { N1, N2, N3, N4 };
2250  return getNode(Opcode, VT, Ops, 4);
2251}
2252
2253SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2254                                SDOperand N1, SDOperand N2, SDOperand N3,
2255                                SDOperand N4, SDOperand N5) {
2256  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2257  return getNode(Opcode, VT, Ops, 5);
2258}
2259
2260SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2261                                SDOperand Chain, SDOperand Ptr,
2262                                const Value *SV, int SVOffset,
2263                                bool isVolatile, unsigned Alignment) {
2264  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2265    const Type *Ty = 0;
2266    if (VT != MVT::iPTR) {
2267      Ty = MVT::getTypeForValueType(VT);
2268    } else if (SV) {
2269      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2270      assert(PT && "Value for load must be a pointer");
2271      Ty = PT->getElementType();
2272    }
2273    assert(Ty && "Could not get type information for load");
2274    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2275  }
2276  SDVTList VTs = getVTList(VT, MVT::Other);
2277  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2278  SDOperand Ops[] = { Chain, Ptr, Undef };
2279  FoldingSetNodeID ID;
2280  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2281  ID.AddInteger(ISD::UNINDEXED);
2282  ID.AddInteger(ISD::NON_EXTLOAD);
2283  ID.AddInteger((unsigned int)VT);
2284  ID.AddPointer(SV);
2285  ID.AddInteger(SVOffset);
2286  ID.AddInteger(Alignment);
2287  ID.AddInteger(isVolatile);
2288  void *IP = 0;
2289  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2290    return SDOperand(E, 0);
2291  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2292                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2293                             isVolatile);
2294  CSEMap.InsertNode(N, IP);
2295  AllNodes.push_back(N);
2296  return SDOperand(N, 0);
2297}
2298
2299SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2300                                   SDOperand Chain, SDOperand Ptr,
2301                                   const Value *SV,
2302                                   int SVOffset, MVT::ValueType EVT,
2303                                   bool isVolatile, unsigned Alignment) {
2304  // If they are asking for an extending load from/to the same thing, return a
2305  // normal load.
2306  if (VT == EVT)
2307    ExtType = ISD::NON_EXTLOAD;
2308
2309  if (MVT::isVector(VT))
2310    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2311  else
2312    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2313           "Should only be an extending load, not truncating!");
2314  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2315         "Cannot sign/zero extend a FP/Vector load!");
2316  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2317         "Cannot convert from FP to Int or Int -> FP!");
2318
2319  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2320    const Type *Ty = 0;
2321    if (VT != MVT::iPTR) {
2322      Ty = MVT::getTypeForValueType(VT);
2323    } else if (SV) {
2324      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2325      assert(PT && "Value for load must be a pointer");
2326      Ty = PT->getElementType();
2327    }
2328    assert(Ty && "Could not get type information for load");
2329    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2330  }
2331  SDVTList VTs = getVTList(VT, MVT::Other);
2332  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2333  SDOperand Ops[] = { Chain, Ptr, Undef };
2334  FoldingSetNodeID ID;
2335  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2336  ID.AddInteger(ISD::UNINDEXED);
2337  ID.AddInteger(ExtType);
2338  ID.AddInteger((unsigned int)EVT);
2339  ID.AddPointer(SV);
2340  ID.AddInteger(SVOffset);
2341  ID.AddInteger(Alignment);
2342  ID.AddInteger(isVolatile);
2343  void *IP = 0;
2344  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2345    return SDOperand(E, 0);
2346  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2347                             SV, SVOffset, Alignment, isVolatile);
2348  CSEMap.InsertNode(N, IP);
2349  AllNodes.push_back(N);
2350  return SDOperand(N, 0);
2351}
2352
2353SDOperand
2354SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2355                             SDOperand Offset, ISD::MemIndexedMode AM) {
2356  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2357  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2358         "Load is already a indexed load!");
2359  MVT::ValueType VT = OrigLoad.getValueType();
2360  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2361  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2362  FoldingSetNodeID ID;
2363  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2364  ID.AddInteger(AM);
2365  ID.AddInteger(LD->getExtensionType());
2366  ID.AddInteger((unsigned int)(LD->getLoadedVT()));
2367  ID.AddPointer(LD->getSrcValue());
2368  ID.AddInteger(LD->getSrcValueOffset());
2369  ID.AddInteger(LD->getAlignment());
2370  ID.AddInteger(LD->isVolatile());
2371  void *IP = 0;
2372  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2373    return SDOperand(E, 0);
2374  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2375                             LD->getExtensionType(), LD->getLoadedVT(),
2376                             LD->getSrcValue(), LD->getSrcValueOffset(),
2377                             LD->getAlignment(), LD->isVolatile());
2378  CSEMap.InsertNode(N, IP);
2379  AllNodes.push_back(N);
2380  return SDOperand(N, 0);
2381}
2382
2383SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2384                                 SDOperand Ptr, const Value *SV, int SVOffset,
2385                                 bool isVolatile, unsigned Alignment) {
2386  MVT::ValueType VT = Val.getValueType();
2387
2388  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2389    const Type *Ty = 0;
2390    if (VT != MVT::iPTR) {
2391      Ty = MVT::getTypeForValueType(VT);
2392    } else if (SV) {
2393      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2394      assert(PT && "Value for store must be a pointer");
2395      Ty = PT->getElementType();
2396    }
2397    assert(Ty && "Could not get type information for store");
2398    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2399  }
2400  SDVTList VTs = getVTList(MVT::Other);
2401  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2402  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2403  FoldingSetNodeID ID;
2404  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2405  ID.AddInteger(ISD::UNINDEXED);
2406  ID.AddInteger(false);
2407  ID.AddInteger((unsigned int)VT);
2408  ID.AddPointer(SV);
2409  ID.AddInteger(SVOffset);
2410  ID.AddInteger(Alignment);
2411  ID.AddInteger(isVolatile);
2412  void *IP = 0;
2413  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2414    return SDOperand(E, 0);
2415  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2416                              VT, SV, SVOffset, Alignment, isVolatile);
2417  CSEMap.InsertNode(N, IP);
2418  AllNodes.push_back(N);
2419  return SDOperand(N, 0);
2420}
2421
2422SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2423                                      SDOperand Ptr, const Value *SV,
2424                                      int SVOffset, MVT::ValueType SVT,
2425                                      bool isVolatile, unsigned Alignment) {
2426  MVT::ValueType VT = Val.getValueType();
2427  bool isTrunc = VT != SVT;
2428
2429  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2430         "Not a truncation?");
2431  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2432         "Can't do FP-INT conversion!");
2433
2434  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2435    const Type *Ty = 0;
2436    if (VT != MVT::iPTR) {
2437      Ty = MVT::getTypeForValueType(VT);
2438    } else if (SV) {
2439      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2440      assert(PT && "Value for store must be a pointer");
2441      Ty = PT->getElementType();
2442    }
2443    assert(Ty && "Could not get type information for store");
2444    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2445  }
2446  SDVTList VTs = getVTList(MVT::Other);
2447  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2448  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2449  FoldingSetNodeID ID;
2450  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2451  ID.AddInteger(ISD::UNINDEXED);
2452  ID.AddInteger(isTrunc);
2453  ID.AddInteger((unsigned int)SVT);
2454  ID.AddPointer(SV);
2455  ID.AddInteger(SVOffset);
2456  ID.AddInteger(Alignment);
2457  ID.AddInteger(isVolatile);
2458  void *IP = 0;
2459  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2460    return SDOperand(E, 0);
2461  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2462                              SVT, SV, SVOffset, Alignment, isVolatile);
2463  CSEMap.InsertNode(N, IP);
2464  AllNodes.push_back(N);
2465  return SDOperand(N, 0);
2466}
2467
2468SDOperand
2469SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2470                              SDOperand Offset, ISD::MemIndexedMode AM) {
2471  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2472  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2473         "Store is already a indexed store!");
2474  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2475  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2476  FoldingSetNodeID ID;
2477  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2478  ID.AddInteger(AM);
2479  ID.AddInteger(ST->isTruncatingStore());
2480  ID.AddInteger((unsigned int)(ST->getStoredVT()));
2481  ID.AddPointer(ST->getSrcValue());
2482  ID.AddInteger(ST->getSrcValueOffset());
2483  ID.AddInteger(ST->getAlignment());
2484  ID.AddInteger(ST->isVolatile());
2485  void *IP = 0;
2486  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2487    return SDOperand(E, 0);
2488  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2489                              ST->isTruncatingStore(), ST->getStoredVT(),
2490                              ST->getSrcValue(), ST->getSrcValueOffset(),
2491                              ST->getAlignment(), ST->isVolatile());
2492  CSEMap.InsertNode(N, IP);
2493  AllNodes.push_back(N);
2494  return SDOperand(N, 0);
2495}
2496
2497SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2498                                 SDOperand Chain, SDOperand Ptr,
2499                                 SDOperand SV) {
2500  SDOperand Ops[] = { Chain, Ptr, SV };
2501  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2502}
2503
2504SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2505                                const SDOperand *Ops, unsigned NumOps) {
2506  switch (NumOps) {
2507  case 0: return getNode(Opcode, VT);
2508  case 1: return getNode(Opcode, VT, Ops[0]);
2509  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2510  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2511  default: break;
2512  }
2513
2514  switch (Opcode) {
2515  default: break;
2516  case ISD::SELECT_CC: {
2517    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2518    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2519           "LHS and RHS of condition must have same type!");
2520    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2521           "True and False arms of SelectCC must have same type!");
2522    assert(Ops[2].getValueType() == VT &&
2523           "select_cc node must be of same type as true and false value!");
2524    break;
2525  }
2526  case ISD::BR_CC: {
2527    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2528    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2529           "LHS/RHS of comparison should match types!");
2530    break;
2531  }
2532  }
2533
2534  // Memoize nodes.
2535  SDNode *N;
2536  SDVTList VTs = getVTList(VT);
2537  if (VT != MVT::Flag) {
2538    FoldingSetNodeID ID;
2539    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2540    void *IP = 0;
2541    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2542      return SDOperand(E, 0);
2543    N = new SDNode(Opcode, VTs, Ops, NumOps);
2544    CSEMap.InsertNode(N, IP);
2545  } else {
2546    N = new SDNode(Opcode, VTs, Ops, NumOps);
2547  }
2548  AllNodes.push_back(N);
2549  return SDOperand(N, 0);
2550}
2551
2552SDOperand SelectionDAG::getNode(unsigned Opcode,
2553                                std::vector<MVT::ValueType> &ResultTys,
2554                                const SDOperand *Ops, unsigned NumOps) {
2555  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2556                 Ops, NumOps);
2557}
2558
2559SDOperand SelectionDAG::getNode(unsigned Opcode,
2560                                const MVT::ValueType *VTs, unsigned NumVTs,
2561                                const SDOperand *Ops, unsigned NumOps) {
2562  if (NumVTs == 1)
2563    return getNode(Opcode, VTs[0], Ops, NumOps);
2564  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2565}
2566
2567SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2568                                const SDOperand *Ops, unsigned NumOps) {
2569  if (VTList.NumVTs == 1)
2570    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2571
2572  switch (Opcode) {
2573  // FIXME: figure out how to safely handle things like
2574  // int foo(int x) { return 1 << (x & 255); }
2575  // int bar() { return foo(256); }
2576#if 0
2577  case ISD::SRA_PARTS:
2578  case ISD::SRL_PARTS:
2579  case ISD::SHL_PARTS:
2580    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2581        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2582      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2583    else if (N3.getOpcode() == ISD::AND)
2584      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2585        // If the and is only masking out bits that cannot effect the shift,
2586        // eliminate the and.
2587        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2588        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2589          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2590      }
2591    break;
2592#endif
2593  }
2594
2595  // Memoize the node unless it returns a flag.
2596  SDNode *N;
2597  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2598    FoldingSetNodeID ID;
2599    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2600    void *IP = 0;
2601    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2602      return SDOperand(E, 0);
2603    if (NumOps == 1)
2604      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2605    else if (NumOps == 2)
2606      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2607    else if (NumOps == 3)
2608      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2609    else
2610      N = new SDNode(Opcode, VTList, Ops, NumOps);
2611    CSEMap.InsertNode(N, IP);
2612  } else {
2613    if (NumOps == 1)
2614      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2615    else if (NumOps == 2)
2616      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2617    else if (NumOps == 3)
2618      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2619    else
2620      N = new SDNode(Opcode, VTList, Ops, NumOps);
2621  }
2622  AllNodes.push_back(N);
2623  return SDOperand(N, 0);
2624}
2625
2626SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2627  return getNode(Opcode, VTList, 0, 0);
2628}
2629
2630SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2631                                SDOperand N1) {
2632  SDOperand Ops[] = { N1 };
2633  return getNode(Opcode, VTList, Ops, 1);
2634}
2635
2636SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2637                                SDOperand N1, SDOperand N2) {
2638  SDOperand Ops[] = { N1, N2 };
2639  return getNode(Opcode, VTList, Ops, 2);
2640}
2641
2642SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2643                                SDOperand N1, SDOperand N2, SDOperand N3) {
2644  SDOperand Ops[] = { N1, N2, N3 };
2645  return getNode(Opcode, VTList, Ops, 3);
2646}
2647
2648SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2649                                SDOperand N1, SDOperand N2, SDOperand N3,
2650                                SDOperand N4) {
2651  SDOperand Ops[] = { N1, N2, N3, N4 };
2652  return getNode(Opcode, VTList, Ops, 4);
2653}
2654
2655SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2656                                SDOperand N1, SDOperand N2, SDOperand N3,
2657                                SDOperand N4, SDOperand N5) {
2658  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2659  return getNode(Opcode, VTList, Ops, 5);
2660}
2661
2662SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2663  return makeVTList(SDNode::getValueTypeList(VT), 1);
2664}
2665
2666SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2667  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2668       E = VTList.end(); I != E; ++I) {
2669    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2670      return makeVTList(&(*I)[0], 2);
2671  }
2672  std::vector<MVT::ValueType> V;
2673  V.push_back(VT1);
2674  V.push_back(VT2);
2675  VTList.push_front(V);
2676  return makeVTList(&(*VTList.begin())[0], 2);
2677}
2678SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2679                                 MVT::ValueType VT3) {
2680  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2681       E = VTList.end(); I != E; ++I) {
2682    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2683        (*I)[2] == VT3)
2684      return makeVTList(&(*I)[0], 3);
2685  }
2686  std::vector<MVT::ValueType> V;
2687  V.push_back(VT1);
2688  V.push_back(VT2);
2689  V.push_back(VT3);
2690  VTList.push_front(V);
2691  return makeVTList(&(*VTList.begin())[0], 3);
2692}
2693
2694SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2695  switch (NumVTs) {
2696    case 0: assert(0 && "Cannot have nodes without results!");
2697    case 1: return getVTList(VTs[0]);
2698    case 2: return getVTList(VTs[0], VTs[1]);
2699    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2700    default: break;
2701  }
2702
2703  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2704       E = VTList.end(); I != E; ++I) {
2705    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2706
2707    bool NoMatch = false;
2708    for (unsigned i = 2; i != NumVTs; ++i)
2709      if (VTs[i] != (*I)[i]) {
2710        NoMatch = true;
2711        break;
2712      }
2713    if (!NoMatch)
2714      return makeVTList(&*I->begin(), NumVTs);
2715  }
2716
2717  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2718  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2719}
2720
2721
2722/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2723/// specified operands.  If the resultant node already exists in the DAG,
2724/// this does not modify the specified node, instead it returns the node that
2725/// already exists.  If the resultant node does not exist in the DAG, the
2726/// input node is returned.  As a degenerate case, if you specify the same
2727/// input operands as the node already has, the input node is returned.
2728SDOperand SelectionDAG::
2729UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2730  SDNode *N = InN.Val;
2731  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2732
2733  // Check to see if there is no change.
2734  if (Op == N->getOperand(0)) return InN;
2735
2736  // See if the modified node already exists.
2737  void *InsertPos = 0;
2738  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2739    return SDOperand(Existing, InN.ResNo);
2740
2741  // Nope it doesn't.  Remove the node from it's current place in the maps.
2742  if (InsertPos)
2743    RemoveNodeFromCSEMaps(N);
2744
2745  // Now we update the operands.
2746  N->OperandList[0].Val->removeUser(N);
2747  Op.Val->addUser(N);
2748  N->OperandList[0] = Op;
2749
2750  // If this gets put into a CSE map, add it.
2751  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2752  return InN;
2753}
2754
2755SDOperand SelectionDAG::
2756UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2757  SDNode *N = InN.Val;
2758  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2759
2760  // Check to see if there is no change.
2761  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2762    return InN;   // No operands changed, just return the input node.
2763
2764  // See if the modified node already exists.
2765  void *InsertPos = 0;
2766  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2767    return SDOperand(Existing, InN.ResNo);
2768
2769  // Nope it doesn't.  Remove the node from it's current place in the maps.
2770  if (InsertPos)
2771    RemoveNodeFromCSEMaps(N);
2772
2773  // Now we update the operands.
2774  if (N->OperandList[0] != Op1) {
2775    N->OperandList[0].Val->removeUser(N);
2776    Op1.Val->addUser(N);
2777    N->OperandList[0] = Op1;
2778  }
2779  if (N->OperandList[1] != Op2) {
2780    N->OperandList[1].Val->removeUser(N);
2781    Op2.Val->addUser(N);
2782    N->OperandList[1] = Op2;
2783  }
2784
2785  // If this gets put into a CSE map, add it.
2786  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2787  return InN;
2788}
2789
2790SDOperand SelectionDAG::
2791UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2792  SDOperand Ops[] = { Op1, Op2, Op3 };
2793  return UpdateNodeOperands(N, Ops, 3);
2794}
2795
2796SDOperand SelectionDAG::
2797UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2798                   SDOperand Op3, SDOperand Op4) {
2799  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2800  return UpdateNodeOperands(N, Ops, 4);
2801}
2802
2803SDOperand SelectionDAG::
2804UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2805                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2806  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2807  return UpdateNodeOperands(N, Ops, 5);
2808}
2809
2810
2811SDOperand SelectionDAG::
2812UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2813  SDNode *N = InN.Val;
2814  assert(N->getNumOperands() == NumOps &&
2815         "Update with wrong number of operands");
2816
2817  // Check to see if there is no change.
2818  bool AnyChange = false;
2819  for (unsigned i = 0; i != NumOps; ++i) {
2820    if (Ops[i] != N->getOperand(i)) {
2821      AnyChange = true;
2822      break;
2823    }
2824  }
2825
2826  // No operands changed, just return the input node.
2827  if (!AnyChange) return InN;
2828
2829  // See if the modified node already exists.
2830  void *InsertPos = 0;
2831  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2832    return SDOperand(Existing, InN.ResNo);
2833
2834  // Nope it doesn't.  Remove the node from it's current place in the maps.
2835  if (InsertPos)
2836    RemoveNodeFromCSEMaps(N);
2837
2838  // Now we update the operands.
2839  for (unsigned i = 0; i != NumOps; ++i) {
2840    if (N->OperandList[i] != Ops[i]) {
2841      N->OperandList[i].Val->removeUser(N);
2842      Ops[i].Val->addUser(N);
2843      N->OperandList[i] = Ops[i];
2844    }
2845  }
2846
2847  // If this gets put into a CSE map, add it.
2848  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2849  return InN;
2850}
2851
2852
2853/// MorphNodeTo - This frees the operands of the current node, resets the
2854/// opcode, types, and operands to the specified value.  This should only be
2855/// used by the SelectionDAG class.
2856void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2857                         const SDOperand *Ops, unsigned NumOps) {
2858  NodeType = Opc;
2859  ValueList = L.VTs;
2860  NumValues = L.NumVTs;
2861
2862  // Clear the operands list, updating used nodes to remove this from their
2863  // use list.
2864  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2865    I->Val->removeUser(this);
2866
2867  // If NumOps is larger than the # of operands we currently have, reallocate
2868  // the operand list.
2869  if (NumOps > NumOperands) {
2870    if (OperandsNeedDelete)
2871      delete [] OperandList;
2872    OperandList = new SDOperand[NumOps];
2873    OperandsNeedDelete = true;
2874  }
2875
2876  // Assign the new operands.
2877  NumOperands = NumOps;
2878
2879  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2880    OperandList[i] = Ops[i];
2881    SDNode *N = OperandList[i].Val;
2882    N->Uses.push_back(this);
2883  }
2884}
2885
2886/// SelectNodeTo - These are used for target selectors to *mutate* the
2887/// specified node to have the specified return type, Target opcode, and
2888/// operands.  Note that target opcodes are stored as
2889/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2890///
2891/// Note that SelectNodeTo returns the resultant node.  If there is already a
2892/// node of the specified opcode and operands, it returns that node instead of
2893/// the current one.
2894SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2895                                   MVT::ValueType VT) {
2896  SDVTList VTs = getVTList(VT);
2897  FoldingSetNodeID ID;
2898  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2899  void *IP = 0;
2900  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2901    return ON;
2902
2903  RemoveNodeFromCSEMaps(N);
2904
2905  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2906
2907  CSEMap.InsertNode(N, IP);
2908  return N;
2909}
2910
2911SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2912                                   MVT::ValueType VT, SDOperand Op1) {
2913  // If an identical node already exists, use it.
2914  SDVTList VTs = getVTList(VT);
2915  SDOperand Ops[] = { Op1 };
2916
2917  FoldingSetNodeID ID;
2918  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2919  void *IP = 0;
2920  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2921    return ON;
2922
2923  RemoveNodeFromCSEMaps(N);
2924  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2925  CSEMap.InsertNode(N, IP);
2926  return N;
2927}
2928
2929SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2930                                   MVT::ValueType VT, SDOperand Op1,
2931                                   SDOperand Op2) {
2932  // If an identical node already exists, use it.
2933  SDVTList VTs = getVTList(VT);
2934  SDOperand Ops[] = { Op1, Op2 };
2935
2936  FoldingSetNodeID ID;
2937  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2938  void *IP = 0;
2939  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2940    return ON;
2941
2942  RemoveNodeFromCSEMaps(N);
2943
2944  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2945
2946  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2947  return N;
2948}
2949
2950SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2951                                   MVT::ValueType VT, SDOperand Op1,
2952                                   SDOperand Op2, SDOperand Op3) {
2953  // If an identical node already exists, use it.
2954  SDVTList VTs = getVTList(VT);
2955  SDOperand Ops[] = { Op1, Op2, Op3 };
2956  FoldingSetNodeID ID;
2957  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2958  void *IP = 0;
2959  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2960    return ON;
2961
2962  RemoveNodeFromCSEMaps(N);
2963
2964  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2965
2966  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2967  return N;
2968}
2969
2970SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2971                                   MVT::ValueType VT, const SDOperand *Ops,
2972                                   unsigned NumOps) {
2973  // If an identical node already exists, use it.
2974  SDVTList VTs = getVTList(VT);
2975  FoldingSetNodeID ID;
2976  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2977  void *IP = 0;
2978  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2979    return ON;
2980
2981  RemoveNodeFromCSEMaps(N);
2982  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2983
2984  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2985  return N;
2986}
2987
2988SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2989                                   MVT::ValueType VT1, MVT::ValueType VT2,
2990                                   SDOperand Op1, SDOperand Op2) {
2991  SDVTList VTs = getVTList(VT1, VT2);
2992  FoldingSetNodeID ID;
2993  SDOperand Ops[] = { Op1, Op2 };
2994  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2995  void *IP = 0;
2996  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2997    return ON;
2998
2999  RemoveNodeFromCSEMaps(N);
3000  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3001  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3002  return N;
3003}
3004
3005SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3006                                   MVT::ValueType VT1, MVT::ValueType VT2,
3007                                   SDOperand Op1, SDOperand Op2,
3008                                   SDOperand Op3) {
3009  // If an identical node already exists, use it.
3010  SDVTList VTs = getVTList(VT1, VT2);
3011  SDOperand Ops[] = { Op1, Op2, Op3 };
3012  FoldingSetNodeID ID;
3013  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3014  void *IP = 0;
3015  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3016    return ON;
3017
3018  RemoveNodeFromCSEMaps(N);
3019
3020  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3021  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3022  return N;
3023}
3024
3025
3026/// getTargetNode - These are used for target selectors to create a new node
3027/// with specified return type(s), target opcode, and operands.
3028///
3029/// Note that getTargetNode returns the resultant node.  If there is already a
3030/// node of the specified opcode and operands, it returns that node instead of
3031/// the current one.
3032SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3033  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3034}
3035SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3036                                    SDOperand Op1) {
3037  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3038}
3039SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3040                                    SDOperand Op1, SDOperand Op2) {
3041  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3042}
3043SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3044                                    SDOperand Op1, SDOperand Op2,
3045                                    SDOperand Op3) {
3046  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3047}
3048SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3049                                    const SDOperand *Ops, unsigned NumOps) {
3050  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3051}
3052SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3053                                    MVT::ValueType VT2) {
3054  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3055  SDOperand Op;
3056  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3057}
3058SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3059                                    MVT::ValueType VT2, SDOperand Op1) {
3060  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3061  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3062}
3063SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3064                                    MVT::ValueType VT2, SDOperand Op1,
3065                                    SDOperand Op2) {
3066  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3067  SDOperand Ops[] = { Op1, Op2 };
3068  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3069}
3070SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3071                                    MVT::ValueType VT2, SDOperand Op1,
3072                                    SDOperand Op2, SDOperand Op3) {
3073  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3074  SDOperand Ops[] = { Op1, Op2, Op3 };
3075  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3076}
3077SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3078                                    MVT::ValueType VT2,
3079                                    const SDOperand *Ops, unsigned NumOps) {
3080  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3081  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3082}
3083SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3084                                    MVT::ValueType VT2, MVT::ValueType VT3,
3085                                    SDOperand Op1, SDOperand Op2) {
3086  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3087  SDOperand Ops[] = { Op1, Op2 };
3088  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3089}
3090SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3091                                    MVT::ValueType VT2, MVT::ValueType VT3,
3092                                    SDOperand Op1, SDOperand Op2,
3093                                    SDOperand Op3) {
3094  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3095  SDOperand Ops[] = { Op1, Op2, Op3 };
3096  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3097}
3098SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3099                                    MVT::ValueType VT2, MVT::ValueType VT3,
3100                                    const SDOperand *Ops, unsigned NumOps) {
3101  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3102  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3103}
3104SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3105                                    MVT::ValueType VT2, MVT::ValueType VT3,
3106                                    MVT::ValueType VT4,
3107                                    const SDOperand *Ops, unsigned NumOps) {
3108  std::vector<MVT::ValueType> VTList;
3109  VTList.push_back(VT1);
3110  VTList.push_back(VT2);
3111  VTList.push_back(VT3);
3112  VTList.push_back(VT4);
3113  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3114  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3115}
3116SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3117                                    std::vector<MVT::ValueType> &ResultTys,
3118                                    const SDOperand *Ops, unsigned NumOps) {
3119  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3120  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3121                 Ops, NumOps).Val;
3122}
3123
3124/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3125/// This can cause recursive merging of nodes in the DAG.
3126///
3127/// This version assumes From/To have a single result value.
3128///
3129void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3130                                      std::vector<SDNode*> *Deleted) {
3131  SDNode *From = FromN.Val, *To = ToN.Val;
3132  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3133         "Cannot replace with this method!");
3134  assert(From != To && "Cannot replace uses of with self");
3135
3136  while (!From->use_empty()) {
3137    // Process users until they are all gone.
3138    SDNode *U = *From->use_begin();
3139
3140    // This node is about to morph, remove its old self from the CSE maps.
3141    RemoveNodeFromCSEMaps(U);
3142
3143    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3144         I != E; ++I)
3145      if (I->Val == From) {
3146        From->removeUser(U);
3147        I->Val = To;
3148        To->addUser(U);
3149      }
3150
3151    // Now that we have modified U, add it back to the CSE maps.  If it already
3152    // exists there, recursively merge the results together.
3153    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3154      ReplaceAllUsesWith(U, Existing, Deleted);
3155      // U is now dead.
3156      if (Deleted) Deleted->push_back(U);
3157      DeleteNodeNotInCSEMaps(U);
3158    }
3159  }
3160}
3161
3162/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3163/// This can cause recursive merging of nodes in the DAG.
3164///
3165/// This version assumes From/To have matching types and numbers of result
3166/// values.
3167///
3168void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3169                                      std::vector<SDNode*> *Deleted) {
3170  assert(From != To && "Cannot replace uses of with self");
3171  assert(From->getNumValues() == To->getNumValues() &&
3172         "Cannot use this version of ReplaceAllUsesWith!");
3173  if (From->getNumValues() == 1) {  // If possible, use the faster version.
3174    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3175    return;
3176  }
3177
3178  while (!From->use_empty()) {
3179    // Process users until they are all gone.
3180    SDNode *U = *From->use_begin();
3181
3182    // This node is about to morph, remove its old self from the CSE maps.
3183    RemoveNodeFromCSEMaps(U);
3184
3185    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3186         I != E; ++I)
3187      if (I->Val == From) {
3188        From->removeUser(U);
3189        I->Val = To;
3190        To->addUser(U);
3191      }
3192
3193    // Now that we have modified U, add it back to the CSE maps.  If it already
3194    // exists there, recursively merge the results together.
3195    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3196      ReplaceAllUsesWith(U, Existing, Deleted);
3197      // U is now dead.
3198      if (Deleted) Deleted->push_back(U);
3199      DeleteNodeNotInCSEMaps(U);
3200    }
3201  }
3202}
3203
3204/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3205/// This can cause recursive merging of nodes in the DAG.
3206///
3207/// This version can replace From with any result values.  To must match the
3208/// number and types of values returned by From.
3209void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3210                                      const SDOperand *To,
3211                                      std::vector<SDNode*> *Deleted) {
3212  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3213    // Degenerate case handled above.
3214    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3215    return;
3216  }
3217
3218  while (!From->use_empty()) {
3219    // Process users until they are all gone.
3220    SDNode *U = *From->use_begin();
3221
3222    // This node is about to morph, remove its old self from the CSE maps.
3223    RemoveNodeFromCSEMaps(U);
3224
3225    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3226         I != E; ++I)
3227      if (I->Val == From) {
3228        const SDOperand &ToOp = To[I->ResNo];
3229        From->removeUser(U);
3230        *I = ToOp;
3231        ToOp.Val->addUser(U);
3232      }
3233
3234    // Now that we have modified U, add it back to the CSE maps.  If it already
3235    // exists there, recursively merge the results together.
3236    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3237      ReplaceAllUsesWith(U, Existing, Deleted);
3238      // U is now dead.
3239      if (Deleted) Deleted->push_back(U);
3240      DeleteNodeNotInCSEMaps(U);
3241    }
3242  }
3243}
3244
3245/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3246/// uses of other values produced by From.Val alone.  The Deleted vector is
3247/// handled the same was as for ReplaceAllUsesWith.
3248void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3249                                             std::vector<SDNode*> *Deleted) {
3250  assert(From != To && "Cannot replace a value with itself");
3251  // Handle the simple, trivial, case efficiently.
3252  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3253    ReplaceAllUsesWith(From, To, Deleted);
3254    return;
3255  }
3256
3257  // Get all of the users of From.Val.  We want these in a nice,
3258  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3259  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3260
3261  std::vector<SDNode*> LocalDeletionVector;
3262
3263  // Pick a deletion vector to use.  If the user specified one, use theirs,
3264  // otherwise use a local one.
3265  std::vector<SDNode*> *DeleteVector = Deleted ? Deleted : &LocalDeletionVector;
3266  while (!Users.empty()) {
3267    // We know that this user uses some value of From.  If it is the right
3268    // value, update it.
3269    SDNode *User = Users.back();
3270    Users.pop_back();
3271
3272    // Scan for an operand that matches From.
3273    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3274    for (; Op != E; ++Op)
3275      if (*Op == From) break;
3276
3277    // If there are no matches, the user must use some other result of From.
3278    if (Op == E) continue;
3279
3280    // Okay, we know this user needs to be updated.  Remove its old self
3281    // from the CSE maps.
3282    RemoveNodeFromCSEMaps(User);
3283
3284    // Update all operands that match "From".
3285    for (; Op != E; ++Op) {
3286      if (*Op == From) {
3287        From.Val->removeUser(User);
3288        *Op = To;
3289        To.Val->addUser(User);
3290      }
3291    }
3292
3293    // Now that we have modified User, add it back to the CSE maps.  If it
3294    // already exists there, recursively merge the results together.
3295    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3296    if (!Existing) continue;  // Continue on to next user.
3297
3298    // If there was already an existing matching node, use ReplaceAllUsesWith
3299    // to replace the dead one with the existing one.  However, this can cause
3300    // recursive merging of other unrelated nodes down the line.  The merging
3301    // can cause deletion of nodes that used the old value.  In this case,
3302    // we have to be certain to remove them from the Users set.
3303    unsigned NumDeleted = DeleteVector->size();
3304    ReplaceAllUsesWith(User, Existing, DeleteVector);
3305
3306    // User is now dead.
3307    DeleteVector->push_back(User);
3308    DeleteNodeNotInCSEMaps(User);
3309
3310    // We have to be careful here, because ReplaceAllUsesWith could have
3311    // deleted a user of From, which means there may be dangling pointers
3312    // in the "Users" setvector.  Scan over the deleted node pointers and
3313    // remove them from the setvector.
3314    for (unsigned i = NumDeleted, e = DeleteVector->size(); i != e; ++i)
3315      Users.remove((*DeleteVector)[i]);
3316
3317    // If the user doesn't need the set of deleted elements, don't retain them
3318    // to the next loop iteration.
3319    if (Deleted == 0)
3320      LocalDeletionVector.clear();
3321  }
3322}
3323
3324
3325/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3326/// their allnodes order. It returns the maximum id.
3327unsigned SelectionDAG::AssignNodeIds() {
3328  unsigned Id = 0;
3329  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3330    SDNode *N = I;
3331    N->setNodeId(Id++);
3332  }
3333  return Id;
3334}
3335
3336/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3337/// based on their topological order. It returns the maximum id and a vector
3338/// of the SDNodes* in assigned order by reference.
3339unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3340  unsigned DAGSize = AllNodes.size();
3341  std::vector<unsigned> InDegree(DAGSize);
3342  std::vector<SDNode*> Sources;
3343
3344  // Use a two pass approach to avoid using a std::map which is slow.
3345  unsigned Id = 0;
3346  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3347    SDNode *N = I;
3348    N->setNodeId(Id++);
3349    unsigned Degree = N->use_size();
3350    InDegree[N->getNodeId()] = Degree;
3351    if (Degree == 0)
3352      Sources.push_back(N);
3353  }
3354
3355  TopOrder.clear();
3356  while (!Sources.empty()) {
3357    SDNode *N = Sources.back();
3358    Sources.pop_back();
3359    TopOrder.push_back(N);
3360    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3361      SDNode *P = I->Val;
3362      unsigned Degree = --InDegree[P->getNodeId()];
3363      if (Degree == 0)
3364        Sources.push_back(P);
3365    }
3366  }
3367
3368  // Second pass, assign the actual topological order as node ids.
3369  Id = 0;
3370  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3371       TI != TE; ++TI)
3372    (*TI)->setNodeId(Id++);
3373
3374  return Id;
3375}
3376
3377
3378
3379//===----------------------------------------------------------------------===//
3380//                              SDNode Class
3381//===----------------------------------------------------------------------===//
3382
3383// Out-of-line virtual method to give class a home.
3384void SDNode::ANCHOR() {}
3385void UnarySDNode::ANCHOR() {}
3386void BinarySDNode::ANCHOR() {}
3387void TernarySDNode::ANCHOR() {}
3388void HandleSDNode::ANCHOR() {}
3389void StringSDNode::ANCHOR() {}
3390void ConstantSDNode::ANCHOR() {}
3391void ConstantFPSDNode::ANCHOR() {}
3392void GlobalAddressSDNode::ANCHOR() {}
3393void FrameIndexSDNode::ANCHOR() {}
3394void JumpTableSDNode::ANCHOR() {}
3395void ConstantPoolSDNode::ANCHOR() {}
3396void BasicBlockSDNode::ANCHOR() {}
3397void SrcValueSDNode::ANCHOR() {}
3398void RegisterSDNode::ANCHOR() {}
3399void ExternalSymbolSDNode::ANCHOR() {}
3400void CondCodeSDNode::ANCHOR() {}
3401void VTSDNode::ANCHOR() {}
3402void LoadSDNode::ANCHOR() {}
3403void StoreSDNode::ANCHOR() {}
3404
3405HandleSDNode::~HandleSDNode() {
3406  SDVTList VTs = { 0, 0 };
3407  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3408}
3409
3410GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3411                                         MVT::ValueType VT, int o)
3412  : SDNode(isa<GlobalVariable>(GA) &&
3413           cast<GlobalVariable>(GA)->isThreadLocal() ?
3414           // Thread Local
3415           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3416           // Non Thread Local
3417           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3418           getSDVTList(VT)), Offset(o) {
3419  TheGlobal = const_cast<GlobalValue*>(GA);
3420}
3421
3422/// Profile - Gather unique data for the node.
3423///
3424void SDNode::Profile(FoldingSetNodeID &ID) {
3425  AddNodeIDNode(ID, this);
3426}
3427
3428/// getValueTypeList - Return a pointer to the specified value type.
3429///
3430MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3431  if (MVT::isExtendedVT(VT)) {
3432    static std::set<MVT::ValueType> EVTs;
3433    return (MVT::ValueType *)&(*EVTs.insert(VT).first);
3434  } else {
3435    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3436    VTs[VT] = VT;
3437    return &VTs[VT];
3438  }
3439}
3440
3441/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3442/// indicated value.  This method ignores uses of other values defined by this
3443/// operation.
3444bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3445  assert(Value < getNumValues() && "Bad value!");
3446
3447  // If there is only one value, this is easy.
3448  if (getNumValues() == 1)
3449    return use_size() == NUses;
3450  if (use_size() < NUses) return false;
3451
3452  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3453
3454  SmallPtrSet<SDNode*, 32> UsersHandled;
3455
3456  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3457    SDNode *User = *UI;
3458    if (User->getNumOperands() == 1 ||
3459        UsersHandled.insert(User))     // First time we've seen this?
3460      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3461        if (User->getOperand(i) == TheValue) {
3462          if (NUses == 0)
3463            return false;   // too many uses
3464          --NUses;
3465        }
3466  }
3467
3468  // Found exactly the right number of uses?
3469  return NUses == 0;
3470}
3471
3472
3473/// hasAnyUseOfValue - Return true if there are any use of the indicated
3474/// value. This method ignores uses of other values defined by this operation.
3475bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3476  assert(Value < getNumValues() && "Bad value!");
3477
3478  if (use_size() == 0) return false;
3479
3480  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3481
3482  SmallPtrSet<SDNode*, 32> UsersHandled;
3483
3484  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3485    SDNode *User = *UI;
3486    if (User->getNumOperands() == 1 ||
3487        UsersHandled.insert(User))     // First time we've seen this?
3488      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3489        if (User->getOperand(i) == TheValue) {
3490          return true;
3491        }
3492  }
3493
3494  return false;
3495}
3496
3497
3498/// isOnlyUse - Return true if this node is the only use of N.
3499///
3500bool SDNode::isOnlyUse(SDNode *N) const {
3501  bool Seen = false;
3502  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3503    SDNode *User = *I;
3504    if (User == this)
3505      Seen = true;
3506    else
3507      return false;
3508  }
3509
3510  return Seen;
3511}
3512
3513/// isOperand - Return true if this node is an operand of N.
3514///
3515bool SDOperand::isOperand(SDNode *N) const {
3516  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3517    if (*this == N->getOperand(i))
3518      return true;
3519  return false;
3520}
3521
3522bool SDNode::isOperand(SDNode *N) const {
3523  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3524    if (this == N->OperandList[i].Val)
3525      return true;
3526  return false;
3527}
3528
3529static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3530                            SmallPtrSet<SDNode *, 32> &Visited) {
3531  if (found || !Visited.insert(N))
3532    return;
3533
3534  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3535    SDNode *Op = N->getOperand(i).Val;
3536    if (Op == P) {
3537      found = true;
3538      return;
3539    }
3540    findPredecessor(Op, P, found, Visited);
3541  }
3542}
3543
3544/// isPredecessor - Return true if this node is a predecessor of N. This node
3545/// is either an operand of N or it can be reached by recursively traversing
3546/// up the operands.
3547/// NOTE: this is an expensive method. Use it carefully.
3548bool SDNode::isPredecessor(SDNode *N) const {
3549  SmallPtrSet<SDNode *, 32> Visited;
3550  bool found = false;
3551  findPredecessor(N, this, found, Visited);
3552  return found;
3553}
3554
3555uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3556  assert(Num < NumOperands && "Invalid child # of SDNode!");
3557  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3558}
3559
3560std::string SDNode::getOperationName(const SelectionDAG *G) const {
3561  switch (getOpcode()) {
3562  default:
3563    if (getOpcode() < ISD::BUILTIN_OP_END)
3564      return "<<Unknown DAG Node>>";
3565    else {
3566      if (G) {
3567        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3568          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3569            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3570
3571        TargetLowering &TLI = G->getTargetLoweringInfo();
3572        const char *Name =
3573          TLI.getTargetNodeName(getOpcode());
3574        if (Name) return Name;
3575      }
3576
3577      return "<<Unknown Target Node>>";
3578    }
3579
3580  case ISD::PCMARKER:      return "PCMarker";
3581  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3582  case ISD::SRCVALUE:      return "SrcValue";
3583  case ISD::EntryToken:    return "EntryToken";
3584  case ISD::TokenFactor:   return "TokenFactor";
3585  case ISD::AssertSext:    return "AssertSext";
3586  case ISD::AssertZext:    return "AssertZext";
3587
3588  case ISD::STRING:        return "String";
3589  case ISD::BasicBlock:    return "BasicBlock";
3590  case ISD::VALUETYPE:     return "ValueType";
3591  case ISD::Register:      return "Register";
3592
3593  case ISD::Constant:      return "Constant";
3594  case ISD::ConstantFP:    return "ConstantFP";
3595  case ISD::GlobalAddress: return "GlobalAddress";
3596  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3597  case ISD::FrameIndex:    return "FrameIndex";
3598  case ISD::JumpTable:     return "JumpTable";
3599  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3600  case ISD::RETURNADDR: return "RETURNADDR";
3601  case ISD::FRAMEADDR: return "FRAMEADDR";
3602  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3603  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3604  case ISD::EHSELECTION: return "EHSELECTION";
3605  case ISD::EH_RETURN: return "EH_RETURN";
3606  case ISD::ConstantPool:  return "ConstantPool";
3607  case ISD::ExternalSymbol: return "ExternalSymbol";
3608  case ISD::INTRINSIC_WO_CHAIN: {
3609    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3610    return Intrinsic::getName((Intrinsic::ID)IID);
3611  }
3612  case ISD::INTRINSIC_VOID:
3613  case ISD::INTRINSIC_W_CHAIN: {
3614    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3615    return Intrinsic::getName((Intrinsic::ID)IID);
3616  }
3617
3618  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3619  case ISD::TargetConstant: return "TargetConstant";
3620  case ISD::TargetConstantFP:return "TargetConstantFP";
3621  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3622  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3623  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3624  case ISD::TargetJumpTable:  return "TargetJumpTable";
3625  case ISD::TargetConstantPool:  return "TargetConstantPool";
3626  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3627
3628  case ISD::CopyToReg:     return "CopyToReg";
3629  case ISD::CopyFromReg:   return "CopyFromReg";
3630  case ISD::UNDEF:         return "undef";
3631  case ISD::MERGE_VALUES:  return "merge_values";
3632  case ISD::INLINEASM:     return "inlineasm";
3633  case ISD::LABEL:         return "label";
3634  case ISD::HANDLENODE:    return "handlenode";
3635  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3636  case ISD::CALL:          return "call";
3637
3638  // Unary operators
3639  case ISD::FABS:   return "fabs";
3640  case ISD::FNEG:   return "fneg";
3641  case ISD::FSQRT:  return "fsqrt";
3642  case ISD::FSIN:   return "fsin";
3643  case ISD::FCOS:   return "fcos";
3644  case ISD::FPOWI:  return "fpowi";
3645  case ISD::FPOW:   return "fpow";
3646
3647  // Binary operators
3648  case ISD::ADD:    return "add";
3649  case ISD::SUB:    return "sub";
3650  case ISD::MUL:    return "mul";
3651  case ISD::MULHU:  return "mulhu";
3652  case ISD::MULHS:  return "mulhs";
3653  case ISD::SDIV:   return "sdiv";
3654  case ISD::UDIV:   return "udiv";
3655  case ISD::SREM:   return "srem";
3656  case ISD::UREM:   return "urem";
3657  case ISD::SMUL_LOHI:  return "smul_lohi";
3658  case ISD::UMUL_LOHI:  return "umul_lohi";
3659  case ISD::SDIVREM:    return "sdivrem";
3660  case ISD::UDIVREM:    return "divrem";
3661  case ISD::AND:    return "and";
3662  case ISD::OR:     return "or";
3663  case ISD::XOR:    return "xor";
3664  case ISD::SHL:    return "shl";
3665  case ISD::SRA:    return "sra";
3666  case ISD::SRL:    return "srl";
3667  case ISD::ROTL:   return "rotl";
3668  case ISD::ROTR:   return "rotr";
3669  case ISD::FADD:   return "fadd";
3670  case ISD::FSUB:   return "fsub";
3671  case ISD::FMUL:   return "fmul";
3672  case ISD::FDIV:   return "fdiv";
3673  case ISD::FREM:   return "frem";
3674  case ISD::FCOPYSIGN: return "fcopysign";
3675
3676  case ISD::SETCC:       return "setcc";
3677  case ISD::SELECT:      return "select";
3678  case ISD::SELECT_CC:   return "select_cc";
3679  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3680  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3681  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3682  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3683  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3684  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3685  case ISD::CARRY_FALSE:         return "carry_false";
3686  case ISD::ADDC:        return "addc";
3687  case ISD::ADDE:        return "adde";
3688  case ISD::SUBC:        return "subc";
3689  case ISD::SUBE:        return "sube";
3690  case ISD::SHL_PARTS:   return "shl_parts";
3691  case ISD::SRA_PARTS:   return "sra_parts";
3692  case ISD::SRL_PARTS:   return "srl_parts";
3693
3694  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3695  case ISD::INSERT_SUBREG:      return "insert_subreg";
3696
3697  // Conversion operators.
3698  case ISD::SIGN_EXTEND: return "sign_extend";
3699  case ISD::ZERO_EXTEND: return "zero_extend";
3700  case ISD::ANY_EXTEND:  return "any_extend";
3701  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3702  case ISD::TRUNCATE:    return "truncate";
3703  case ISD::FP_ROUND:    return "fp_round";
3704  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3705  case ISD::FP_EXTEND:   return "fp_extend";
3706
3707  case ISD::SINT_TO_FP:  return "sint_to_fp";
3708  case ISD::UINT_TO_FP:  return "uint_to_fp";
3709  case ISD::FP_TO_SINT:  return "fp_to_sint";
3710  case ISD::FP_TO_UINT:  return "fp_to_uint";
3711  case ISD::BIT_CONVERT: return "bit_convert";
3712
3713    // Control flow instructions
3714  case ISD::BR:      return "br";
3715  case ISD::BRIND:   return "brind";
3716  case ISD::BR_JT:   return "br_jt";
3717  case ISD::BRCOND:  return "brcond";
3718  case ISD::BR_CC:   return "br_cc";
3719  case ISD::RET:     return "ret";
3720  case ISD::CALLSEQ_START:  return "callseq_start";
3721  case ISD::CALLSEQ_END:    return "callseq_end";
3722
3723    // Other operators
3724  case ISD::LOAD:               return "load";
3725  case ISD::STORE:              return "store";
3726  case ISD::VAARG:              return "vaarg";
3727  case ISD::VACOPY:             return "vacopy";
3728  case ISD::VAEND:              return "vaend";
3729  case ISD::VASTART:            return "vastart";
3730  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3731  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3732  case ISD::BUILD_PAIR:         return "build_pair";
3733  case ISD::STACKSAVE:          return "stacksave";
3734  case ISD::STACKRESTORE:       return "stackrestore";
3735
3736  // Block memory operations.
3737  case ISD::MEMSET:  return "memset";
3738  case ISD::MEMCPY:  return "memcpy";
3739  case ISD::MEMMOVE: return "memmove";
3740
3741  // Bit manipulation
3742  case ISD::BSWAP:   return "bswap";
3743  case ISD::CTPOP:   return "ctpop";
3744  case ISD::CTTZ:    return "cttz";
3745  case ISD::CTLZ:    return "ctlz";
3746
3747  // Debug info
3748  case ISD::LOCATION: return "location";
3749  case ISD::DEBUG_LOC: return "debug_loc";
3750
3751  // Trampolines
3752  case ISD::TRAMPOLINE: return "trampoline";
3753
3754  case ISD::CONDCODE:
3755    switch (cast<CondCodeSDNode>(this)->get()) {
3756    default: assert(0 && "Unknown setcc condition!");
3757    case ISD::SETOEQ:  return "setoeq";
3758    case ISD::SETOGT:  return "setogt";
3759    case ISD::SETOGE:  return "setoge";
3760    case ISD::SETOLT:  return "setolt";
3761    case ISD::SETOLE:  return "setole";
3762    case ISD::SETONE:  return "setone";
3763
3764    case ISD::SETO:    return "seto";
3765    case ISD::SETUO:   return "setuo";
3766    case ISD::SETUEQ:  return "setue";
3767    case ISD::SETUGT:  return "setugt";
3768    case ISD::SETUGE:  return "setuge";
3769    case ISD::SETULT:  return "setult";
3770    case ISD::SETULE:  return "setule";
3771    case ISD::SETUNE:  return "setune";
3772
3773    case ISD::SETEQ:   return "seteq";
3774    case ISD::SETGT:   return "setgt";
3775    case ISD::SETGE:   return "setge";
3776    case ISD::SETLT:   return "setlt";
3777    case ISD::SETLE:   return "setle";
3778    case ISD::SETNE:   return "setne";
3779    }
3780  }
3781}
3782
3783const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3784  switch (AM) {
3785  default:
3786    return "";
3787  case ISD::PRE_INC:
3788    return "<pre-inc>";
3789  case ISD::PRE_DEC:
3790    return "<pre-dec>";
3791  case ISD::POST_INC:
3792    return "<post-inc>";
3793  case ISD::POST_DEC:
3794    return "<post-dec>";
3795  }
3796}
3797
3798void SDNode::dump() const { dump(0); }
3799void SDNode::dump(const SelectionDAG *G) const {
3800  cerr << (void*)this << ": ";
3801
3802  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3803    if (i) cerr << ",";
3804    if (getValueType(i) == MVT::Other)
3805      cerr << "ch";
3806    else
3807      cerr << MVT::getValueTypeString(getValueType(i));
3808  }
3809  cerr << " = " << getOperationName(G);
3810
3811  cerr << " ";
3812  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3813    if (i) cerr << ", ";
3814    cerr << (void*)getOperand(i).Val;
3815    if (unsigned RN = getOperand(i).ResNo)
3816      cerr << ":" << RN;
3817  }
3818
3819  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3820    cerr << "<" << CSDN->getValue() << ">";
3821  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3822    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3823      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3824    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3825      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3826    else {
3827      cerr << "<APFloat(";
3828      CSDN->getValueAPF().convertToAPInt().dump();
3829      cerr << ")>";
3830    }
3831  } else if (const GlobalAddressSDNode *GADN =
3832             dyn_cast<GlobalAddressSDNode>(this)) {
3833    int offset = GADN->getOffset();
3834    cerr << "<";
3835    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3836    if (offset > 0)
3837      cerr << " + " << offset;
3838    else
3839      cerr << " " << offset;
3840  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3841    cerr << "<" << FIDN->getIndex() << ">";
3842  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3843    cerr << "<" << JTDN->getIndex() << ">";
3844  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3845    int offset = CP->getOffset();
3846    if (CP->isMachineConstantPoolEntry())
3847      cerr << "<" << *CP->getMachineCPVal() << ">";
3848    else
3849      cerr << "<" << *CP->getConstVal() << ">";
3850    if (offset > 0)
3851      cerr << " + " << offset;
3852    else
3853      cerr << " " << offset;
3854  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3855    cerr << "<";
3856    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3857    if (LBB)
3858      cerr << LBB->getName() << " ";
3859    cerr << (const void*)BBDN->getBasicBlock() << ">";
3860  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3861    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3862      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3863    } else {
3864      cerr << " #" << R->getReg();
3865    }
3866  } else if (const ExternalSymbolSDNode *ES =
3867             dyn_cast<ExternalSymbolSDNode>(this)) {
3868    cerr << "'" << ES->getSymbol() << "'";
3869  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3870    if (M->getValue())
3871      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3872    else
3873      cerr << "<null:" << M->getOffset() << ">";
3874  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3875    cerr << ":" << MVT::getValueTypeString(N->getVT());
3876  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3877    bool doExt = true;
3878    switch (LD->getExtensionType()) {
3879    default: doExt = false; break;
3880    case ISD::EXTLOAD:
3881      cerr << " <anyext ";
3882      break;
3883    case ISD::SEXTLOAD:
3884      cerr << " <sext ";
3885      break;
3886    case ISD::ZEXTLOAD:
3887      cerr << " <zext ";
3888      break;
3889    }
3890    if (doExt)
3891      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3892
3893    const char *AM = getIndexedModeName(LD->getAddressingMode());
3894    if (*AM)
3895      cerr << " " << AM;
3896  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3897    if (ST->isTruncatingStore())
3898      cerr << " <trunc "
3899           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3900
3901    const char *AM = getIndexedModeName(ST->getAddressingMode());
3902    if (*AM)
3903      cerr << " " << AM;
3904  }
3905}
3906
3907static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3908  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3909    if (N->getOperand(i).Val->hasOneUse())
3910      DumpNodes(N->getOperand(i).Val, indent+2, G);
3911    else
3912      cerr << "\n" << std::string(indent+2, ' ')
3913           << (void*)N->getOperand(i).Val << ": <multiple use>";
3914
3915
3916  cerr << "\n" << std::string(indent, ' ');
3917  N->dump(G);
3918}
3919
3920void SelectionDAG::dump() const {
3921  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3922  std::vector<const SDNode*> Nodes;
3923  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3924       I != E; ++I)
3925    Nodes.push_back(I);
3926
3927  std::sort(Nodes.begin(), Nodes.end());
3928
3929  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3930    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3931      DumpNodes(Nodes[i], 2, this);
3932  }
3933
3934  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3935
3936  cerr << "\n\n";
3937}
3938
3939const Type *ConstantPoolSDNode::getType() const {
3940  if (isMachineConstantPoolEntry())
3941    return Val.MachineCPVal->getType();
3942  return Val.ConstVal->getType();
3943}
3944