SelectionDAG.cpp revision b3564aa8367fc38efdab0a812868f6f93b9d883e
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Target/TargetRegisterInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <cmath>
38using namespace llvm;
39
40/// makeVTList - Return an instance of the SDVTList struct initialized with the
41/// specified members.
42static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
43  SDVTList Res = {VTs, NumVTs};
44  return Res;
45}
46
47SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
48
49//===----------------------------------------------------------------------===//
50//                              ConstantFPSDNode Class
51//===----------------------------------------------------------------------===//
52
53/// isExactlyValue - We don't rely on operator== working on double values, as
54/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
55/// As such, this method can be used to do an exact bit-for-bit comparison of
56/// two floating point values.
57bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
58  return Value.bitwiseIsEqual(V);
59}
60
61bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
62                                           const APFloat& Val) {
63  // convert modifies in place, so make a copy.
64  APFloat Val2 = APFloat(Val);
65  switch (VT) {
66  default:
67    return false;         // These can't be represented as floating point!
68
69  // FIXME rounding mode needs to be more flexible
70  case MVT::f32:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
73              APFloat::opOK;
74  case MVT::f64:
75    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
76           &Val2.getSemantics() == &APFloat::IEEEdouble ||
77           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
78             APFloat::opOK;
79  // TODO: Figure out how to test if we can use a shorter type instead!
80  case MVT::f80:
81  case MVT::f128:
82  case MVT::ppcf128:
83    return true;
84  }
85}
86
87//===----------------------------------------------------------------------===//
88//                              ISD Namespace
89//===----------------------------------------------------------------------===//
90
91/// isBuildVectorAllOnes - Return true if the specified node is a
92/// BUILD_VECTOR where all of the elements are ~0 or undef.
93bool ISD::isBuildVectorAllOnes(const SDNode *N) {
94  // Look through a bit convert.
95  if (N->getOpcode() == ISD::BIT_CONVERT)
96    N = N->getOperand(0).Val;
97
98  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
99
100  unsigned i = 0, e = N->getNumOperands();
101
102  // Skip over all of the undef values.
103  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
104    ++i;
105
106  // Do not accept an all-undef vector.
107  if (i == e) return false;
108
109  // Do not accept build_vectors that aren't all constants or which have non-~0
110  // elements.
111  SDOperand NotZero = N->getOperand(i);
112  if (isa<ConstantSDNode>(NotZero)) {
113    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
114      return false;
115  } else if (isa<ConstantFPSDNode>(NotZero)) {
116    MVT::ValueType VT = NotZero.getValueType();
117    if (VT== MVT::f64) {
118      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
120        return false;
121    } else {
122      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
123                      getValueAPF().convertToAPInt().getZExtValue() !=
124          (uint32_t)-1)
125        return false;
126    }
127  } else
128    return false;
129
130  // Okay, we have at least one ~0 value, check to see if the rest match or are
131  // undefs.
132  for (++i; i != e; ++i)
133    if (N->getOperand(i) != NotZero &&
134        N->getOperand(i).getOpcode() != ISD::UNDEF)
135      return false;
136  return true;
137}
138
139
140/// isBuildVectorAllZeros - Return true if the specified node is a
141/// BUILD_VECTOR where all of the elements are 0 or undef.
142bool ISD::isBuildVectorAllZeros(const SDNode *N) {
143  // Look through a bit convert.
144  if (N->getOpcode() == ISD::BIT_CONVERT)
145    N = N->getOperand(0).Val;
146
147  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
148
149  unsigned i = 0, e = N->getNumOperands();
150
151  // Skip over all of the undef values.
152  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
153    ++i;
154
155  // Do not accept an all-undef vector.
156  if (i == e) return false;
157
158  // Do not accept build_vectors that aren't all constants or which have non-~0
159  // elements.
160  SDOperand Zero = N->getOperand(i);
161  if (isa<ConstantSDNode>(Zero)) {
162    if (!cast<ConstantSDNode>(Zero)->isNullValue())
163      return false;
164  } else if (isa<ConstantFPSDNode>(Zero)) {
165    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
166      return false;
167  } else
168    return false;
169
170  // Okay, we have at least one ~0 value, check to see if the rest match or are
171  // undefs.
172  for (++i; i != e; ++i)
173    if (N->getOperand(i) != Zero &&
174        N->getOperand(i).getOpcode() != ISD::UNDEF)
175      return false;
176  return true;
177}
178
179/// isScalarToVector - Return true if the specified node is a
180/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
181/// element is not an undef.
182bool ISD::isScalarToVector(const SDNode *N) {
183  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
184    return true;
185
186  if (N->getOpcode() != ISD::BUILD_VECTOR)
187    return false;
188  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
189    return false;
190  unsigned NumElems = N->getNumOperands();
191  for (unsigned i = 1; i < NumElems; ++i) {
192    SDOperand V = N->getOperand(i);
193    if (V.getOpcode() != ISD::UNDEF)
194      return false;
195  }
196  return true;
197}
198
199
200/// isDebugLabel - Return true if the specified node represents a debug
201/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
202/// is 0).
203bool ISD::isDebugLabel(const SDNode *N) {
204  SDOperand Zero;
205  if (N->getOpcode() == ISD::LABEL)
206    Zero = N->getOperand(2);
207  else if (N->isTargetOpcode() &&
208           N->getTargetOpcode() == TargetInstrInfo::LABEL)
209    // Chain moved to last operand.
210    Zero = N->getOperand(1);
211  else
212    return false;
213  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
214}
215
216/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
217/// when given the operation for (X op Y).
218ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
219  // To perform this operation, we just need to swap the L and G bits of the
220  // operation.
221  unsigned OldL = (Operation >> 2) & 1;
222  unsigned OldG = (Operation >> 1) & 1;
223  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
224                       (OldL << 1) |       // New G bit
225                       (OldG << 2));        // New L bit.
226}
227
228/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
229/// 'op' is a valid SetCC operation.
230ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
231  unsigned Operation = Op;
232  if (isInteger)
233    Operation ^= 7;   // Flip L, G, E bits, but not U.
234  else
235    Operation ^= 15;  // Flip all of the condition bits.
236  if (Operation > ISD::SETTRUE2)
237    Operation &= ~8;     // Don't let N and U bits get set.
238  return ISD::CondCode(Operation);
239}
240
241
242/// isSignedOp - For an integer comparison, return 1 if the comparison is a
243/// signed operation and 2 if the result is an unsigned comparison.  Return zero
244/// if the operation does not depend on the sign of the input (setne and seteq).
245static int isSignedOp(ISD::CondCode Opcode) {
246  switch (Opcode) {
247  default: assert(0 && "Illegal integer setcc operation!");
248  case ISD::SETEQ:
249  case ISD::SETNE: return 0;
250  case ISD::SETLT:
251  case ISD::SETLE:
252  case ISD::SETGT:
253  case ISD::SETGE: return 1;
254  case ISD::SETULT:
255  case ISD::SETULE:
256  case ISD::SETUGT:
257  case ISD::SETUGE: return 2;
258  }
259}
260
261/// getSetCCOrOperation - Return the result of a logical OR between different
262/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
263/// returns SETCC_INVALID if it is not possible to represent the resultant
264/// comparison.
265ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
266                                       bool isInteger) {
267  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
268    // Cannot fold a signed integer setcc with an unsigned integer setcc.
269    return ISD::SETCC_INVALID;
270
271  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
272
273  // If the N and U bits get set then the resultant comparison DOES suddenly
274  // care about orderedness, and is true when ordered.
275  if (Op > ISD::SETTRUE2)
276    Op &= ~16;     // Clear the U bit if the N bit is set.
277
278  // Canonicalize illegal integer setcc's.
279  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
280    Op = ISD::SETNE;
281
282  return ISD::CondCode(Op);
283}
284
285/// getSetCCAndOperation - Return the result of a logical AND between different
286/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
287/// function returns zero if it is not possible to represent the resultant
288/// comparison.
289ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
290                                        bool isInteger) {
291  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
292    // Cannot fold a signed setcc with an unsigned setcc.
293    return ISD::SETCC_INVALID;
294
295  // Combine all of the condition bits.
296  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
297
298  // Canonicalize illegal integer setcc's.
299  if (isInteger) {
300    switch (Result) {
301    default: break;
302    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
303    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
304    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
305    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
306    }
307  }
308
309  return Result;
310}
311
312const TargetMachine &SelectionDAG::getTarget() const {
313  return TLI.getTargetMachine();
314}
315
316//===----------------------------------------------------------------------===//
317//                           SDNode Profile Support
318//===----------------------------------------------------------------------===//
319
320/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
321///
322static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
323  ID.AddInteger(OpC);
324}
325
326/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
327/// solely with their pointer.
328void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
329  ID.AddPointer(VTList.VTs);
330}
331
332/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
333///
334static void AddNodeIDOperands(FoldingSetNodeID &ID,
335                              const SDOperand *Ops, unsigned NumOps) {
336  for (; NumOps; --NumOps, ++Ops) {
337    ID.AddPointer(Ops->Val);
338    ID.AddInteger(Ops->ResNo);
339  }
340}
341
342static void AddNodeIDNode(FoldingSetNodeID &ID,
343                          unsigned short OpC, SDVTList VTList,
344                          const SDOperand *OpList, unsigned N) {
345  AddNodeIDOpcode(ID, OpC);
346  AddNodeIDValueTypes(ID, VTList);
347  AddNodeIDOperands(ID, OpList, N);
348}
349
350/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
351/// data.
352static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
353  AddNodeIDOpcode(ID, N->getOpcode());
354  // Add the return value info.
355  AddNodeIDValueTypes(ID, N->getVTList());
356  // Add the operand info.
357  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
358
359  // Handle SDNode leafs with special info.
360  switch (N->getOpcode()) {
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    break;
379  }
380  case ISD::BasicBlock:
381    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382    break;
383  case ISD::Register:
384    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385    break;
386  case ISD::SRCVALUE:
387    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
388    break;
389  case ISD::MEMOPERAND: {
390    const MemOperand &MO = cast<MemOperandSDNode>(N)->MO;
391    ID.AddPointer(MO.getValue());
392    ID.AddInteger(MO.getFlags());
393    ID.AddInteger(MO.getOffset());
394    ID.AddInteger(MO.getSize());
395    ID.AddInteger(MO.getAlignment());
396    break;
397  }
398  case ISD::FrameIndex:
399  case ISD::TargetFrameIndex:
400    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
401    break;
402  case ISD::JumpTable:
403  case ISD::TargetJumpTable:
404    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
405    break;
406  case ISD::ConstantPool:
407  case ISD::TargetConstantPool: {
408    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
409    ID.AddInteger(CP->getAlignment());
410    ID.AddInteger(CP->getOffset());
411    if (CP->isMachineConstantPoolEntry())
412      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
413    else
414      ID.AddPointer(CP->getConstVal());
415    break;
416  }
417  case ISD::LOAD: {
418    LoadSDNode *LD = cast<LoadSDNode>(N);
419    ID.AddInteger(LD->getAddressingMode());
420    ID.AddInteger(LD->getExtensionType());
421    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
422    ID.AddInteger(LD->getAlignment());
423    ID.AddInteger(LD->isVolatile());
424    break;
425  }
426  case ISD::STORE: {
427    StoreSDNode *ST = cast<StoreSDNode>(N);
428    ID.AddInteger(ST->getAddressingMode());
429    ID.AddInteger(ST->isTruncatingStore());
430    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
431    ID.AddInteger(ST->getAlignment());
432    ID.AddInteger(ST->isVolatile());
433    break;
434  }
435  }
436}
437
438//===----------------------------------------------------------------------===//
439//                              SelectionDAG Class
440//===----------------------------------------------------------------------===//
441
442/// RemoveDeadNodes - This method deletes all unreachable nodes in the
443/// SelectionDAG.
444void SelectionDAG::RemoveDeadNodes() {
445  // Create a dummy node (which is not added to allnodes), that adds a reference
446  // to the root node, preventing it from being deleted.
447  HandleSDNode Dummy(getRoot());
448
449  SmallVector<SDNode*, 128> DeadNodes;
450
451  // Add all obviously-dead nodes to the DeadNodes worklist.
452  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
453    if (I->use_empty())
454      DeadNodes.push_back(I);
455
456  // Process the worklist, deleting the nodes and adding their uses to the
457  // worklist.
458  while (!DeadNodes.empty()) {
459    SDNode *N = DeadNodes.back();
460    DeadNodes.pop_back();
461
462    // Take the node out of the appropriate CSE map.
463    RemoveNodeFromCSEMaps(N);
464
465    // Next, brutally remove the operand list.  This is safe to do, as there are
466    // no cycles in the graph.
467    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
468      SDNode *Operand = I->Val;
469      Operand->removeUser(N);
470
471      // Now that we removed this operand, see if there are no uses of it left.
472      if (Operand->use_empty())
473        DeadNodes.push_back(Operand);
474    }
475    if (N->OperandsNeedDelete)
476      delete[] N->OperandList;
477    N->OperandList = 0;
478    N->NumOperands = 0;
479
480    // Finally, remove N itself.
481    AllNodes.erase(N);
482  }
483
484  // If the root changed (e.g. it was a dead load, update the root).
485  setRoot(Dummy.getValue());
486}
487
488void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
489  SmallVector<SDNode*, 16> DeadNodes;
490  DeadNodes.push_back(N);
491
492  // Process the worklist, deleting the nodes and adding their uses to the
493  // worklist.
494  while (!DeadNodes.empty()) {
495    SDNode *N = DeadNodes.back();
496    DeadNodes.pop_back();
497
498    if (UpdateListener)
499      UpdateListener->NodeDeleted(N);
500
501    // Take the node out of the appropriate CSE map.
502    RemoveNodeFromCSEMaps(N);
503
504    // Next, brutally remove the operand list.  This is safe to do, as there are
505    // no cycles in the graph.
506    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
507      SDNode *Operand = I->Val;
508      Operand->removeUser(N);
509
510      // Now that we removed this operand, see if there are no uses of it left.
511      if (Operand->use_empty())
512        DeadNodes.push_back(Operand);
513    }
514    if (N->OperandsNeedDelete)
515      delete[] N->OperandList;
516    N->OperandList = 0;
517    N->NumOperands = 0;
518
519    // Finally, remove N itself.
520    AllNodes.erase(N);
521  }
522}
523
524void SelectionDAG::DeleteNode(SDNode *N) {
525  assert(N->use_empty() && "Cannot delete a node that is not dead!");
526
527  // First take this out of the appropriate CSE map.
528  RemoveNodeFromCSEMaps(N);
529
530  // Finally, remove uses due to operands of this node, remove from the
531  // AllNodes list, and delete the node.
532  DeleteNodeNotInCSEMaps(N);
533}
534
535void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
536
537  // Remove it from the AllNodes list.
538  AllNodes.remove(N);
539
540  // Drop all of the operands and decrement used nodes use counts.
541  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
542    I->Val->removeUser(N);
543  if (N->OperandsNeedDelete)
544    delete[] N->OperandList;
545  N->OperandList = 0;
546  N->NumOperands = 0;
547
548  delete N;
549}
550
551/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
552/// correspond to it.  This is useful when we're about to delete or repurpose
553/// the node.  We don't want future request for structurally identical nodes
554/// to return N anymore.
555void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
556  bool Erased = false;
557  switch (N->getOpcode()) {
558  case ISD::HANDLENODE: return;  // noop.
559  case ISD::STRING:
560    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
561    break;
562  case ISD::CONDCODE:
563    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
564           "Cond code doesn't exist!");
565    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
566    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
567    break;
568  case ISD::ExternalSymbol:
569    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
570    break;
571  case ISD::TargetExternalSymbol:
572    Erased =
573      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
574    break;
575  case ISD::VALUETYPE: {
576    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
577    if (MVT::isExtendedVT(VT)) {
578      Erased = ExtendedValueTypeNodes.erase(VT);
579    } else {
580      Erased = ValueTypeNodes[VT] != 0;
581      ValueTypeNodes[VT] = 0;
582    }
583    break;
584  }
585  default:
586    // Remove it from the CSE Map.
587    Erased = CSEMap.RemoveNode(N);
588    break;
589  }
590#ifndef NDEBUG
591  // Verify that the node was actually in one of the CSE maps, unless it has a
592  // flag result (which cannot be CSE'd) or is one of the special cases that are
593  // not subject to CSE.
594  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
595      !N->isTargetOpcode()) {
596    N->dump(this);
597    cerr << "\n";
598    assert(0 && "Node is not in map!");
599  }
600#endif
601}
602
603/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
604/// has been taken out and modified in some way.  If the specified node already
605/// exists in the CSE maps, do not modify the maps, but return the existing node
606/// instead.  If it doesn't exist, add it and return null.
607///
608SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
609  assert(N->getNumOperands() && "This is a leaf node!");
610  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
611    return 0;    // Never add these nodes.
612
613  // Check that remaining values produced are not flags.
614  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
615    if (N->getValueType(i) == MVT::Flag)
616      return 0;   // Never CSE anything that produces a flag.
617
618  SDNode *New = CSEMap.GetOrInsertNode(N);
619  if (New != N) return New;  // Node already existed.
620  return 0;
621}
622
623/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
624/// were replaced with those specified.  If this node is never memoized,
625/// return null, otherwise return a pointer to the slot it would take.  If a
626/// node already exists with these operands, the slot will be non-null.
627SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
628                                           void *&InsertPos) {
629  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
630    return 0;    // Never add these nodes.
631
632  // Check that remaining values produced are not flags.
633  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
634    if (N->getValueType(i) == MVT::Flag)
635      return 0;   // Never CSE anything that produces a flag.
636
637  SDOperand Ops[] = { Op };
638  FoldingSetNodeID ID;
639  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
640  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
641}
642
643/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
644/// were replaced with those specified.  If this node is never memoized,
645/// return null, otherwise return a pointer to the slot it would take.  If a
646/// node already exists with these operands, the slot will be non-null.
647SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
648                                           SDOperand Op1, SDOperand Op2,
649                                           void *&InsertPos) {
650  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
651    return 0;    // Never add these nodes.
652
653  // Check that remaining values produced are not flags.
654  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
655    if (N->getValueType(i) == MVT::Flag)
656      return 0;   // Never CSE anything that produces a flag.
657
658  SDOperand Ops[] = { Op1, Op2 };
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
661  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
662}
663
664
665/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
666/// were replaced with those specified.  If this node is never memoized,
667/// return null, otherwise return a pointer to the slot it would take.  If a
668/// node already exists with these operands, the slot will be non-null.
669SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
670                                           const SDOperand *Ops,unsigned NumOps,
671                                           void *&InsertPos) {
672  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
673    return 0;    // Never add these nodes.
674
675  // Check that remaining values produced are not flags.
676  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
677    if (N->getValueType(i) == MVT::Flag)
678      return 0;   // Never CSE anything that produces a flag.
679
680  FoldingSetNodeID ID;
681  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
682
683  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
684    ID.AddInteger(LD->getAddressingMode());
685    ID.AddInteger(LD->getExtensionType());
686    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
687    ID.AddInteger(LD->getAlignment());
688    ID.AddInteger(LD->isVolatile());
689  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
690    ID.AddInteger(ST->getAddressingMode());
691    ID.AddInteger(ST->isTruncatingStore());
692    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
693    ID.AddInteger(ST->getAlignment());
694    ID.AddInteger(ST->isVolatile());
695  }
696
697  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
698}
699
700
701SelectionDAG::~SelectionDAG() {
702  while (!AllNodes.empty()) {
703    SDNode *N = AllNodes.begin();
704    N->SetNextInBucket(0);
705    if (N->OperandsNeedDelete)
706      delete [] N->OperandList;
707    N->OperandList = 0;
708    N->NumOperands = 0;
709    AllNodes.pop_front();
710  }
711}
712
713SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
714  if (Op.getValueType() == VT) return Op;
715  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
716  return getNode(ISD::AND, Op.getValueType(), Op,
717                 getConstant(Imm, Op.getValueType()));
718}
719
720SDOperand SelectionDAG::getString(const std::string &Val) {
721  StringSDNode *&N = StringNodes[Val];
722  if (!N) {
723    N = new StringSDNode(Val);
724    AllNodes.push_back(N);
725  }
726  return SDOperand(N, 0);
727}
728
729SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
730  MVT::ValueType EltVT =
731    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
732
733  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
734}
735
736SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
737  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
738
739  MVT::ValueType EltVT =
740    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
741
742  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
743         "APInt size does not match type size!");
744
745  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
746  FoldingSetNodeID ID;
747  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
748  ID.Add(Val);
749  void *IP = 0;
750  SDNode *N = NULL;
751  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
752    if (!MVT::isVector(VT))
753      return SDOperand(N, 0);
754  if (!N) {
755    N = new ConstantSDNode(isT, Val, EltVT);
756    CSEMap.InsertNode(N, IP);
757    AllNodes.push_back(N);
758  }
759
760  SDOperand Result(N, 0);
761  if (MVT::isVector(VT)) {
762    SmallVector<SDOperand, 8> Ops;
763    Ops.assign(MVT::getVectorNumElements(VT), Result);
764    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
765  }
766  return Result;
767}
768
769SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
770  return getConstant(Val, TLI.getPointerTy(), isTarget);
771}
772
773
774SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
775                                      bool isTarget) {
776  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
777
778  MVT::ValueType EltVT =
779    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
780
781  // Do the map lookup using the actual bit pattern for the floating point
782  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
783  // we don't have issues with SNANs.
784  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
785  FoldingSetNodeID ID;
786  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
787  ID.Add(V);
788  void *IP = 0;
789  SDNode *N = NULL;
790  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
791    if (!MVT::isVector(VT))
792      return SDOperand(N, 0);
793  if (!N) {
794    N = new ConstantFPSDNode(isTarget, V, EltVT);
795    CSEMap.InsertNode(N, IP);
796    AllNodes.push_back(N);
797  }
798
799  SDOperand Result(N, 0);
800  if (MVT::isVector(VT)) {
801    SmallVector<SDOperand, 8> Ops;
802    Ops.assign(MVT::getVectorNumElements(VT), Result);
803    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
804  }
805  return Result;
806}
807
808SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
809                                      bool isTarget) {
810  MVT::ValueType EltVT =
811    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
812  if (EltVT==MVT::f32)
813    return getConstantFP(APFloat((float)Val), VT, isTarget);
814  else
815    return getConstantFP(APFloat(Val), VT, isTarget);
816}
817
818SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
819                                         MVT::ValueType VT, int Offset,
820                                         bool isTargetGA) {
821  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
822  unsigned Opc;
823  if (GVar && GVar->isThreadLocal())
824    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
825  else
826    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
827  FoldingSetNodeID ID;
828  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
829  ID.AddPointer(GV);
830  ID.AddInteger(Offset);
831  void *IP = 0;
832  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
833   return SDOperand(E, 0);
834  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
835  CSEMap.InsertNode(N, IP);
836  AllNodes.push_back(N);
837  return SDOperand(N, 0);
838}
839
840SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
841                                      bool isTarget) {
842  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
843  FoldingSetNodeID ID;
844  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
845  ID.AddInteger(FI);
846  void *IP = 0;
847  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
848    return SDOperand(E, 0);
849  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
850  CSEMap.InsertNode(N, IP);
851  AllNodes.push_back(N);
852  return SDOperand(N, 0);
853}
854
855SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
856  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
857  FoldingSetNodeID ID;
858  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
859  ID.AddInteger(JTI);
860  void *IP = 0;
861  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
862    return SDOperand(E, 0);
863  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
864  CSEMap.InsertNode(N, IP);
865  AllNodes.push_back(N);
866  return SDOperand(N, 0);
867}
868
869SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
870                                        unsigned Alignment, int Offset,
871                                        bool isTarget) {
872  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
873  FoldingSetNodeID ID;
874  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
875  ID.AddInteger(Alignment);
876  ID.AddInteger(Offset);
877  ID.AddPointer(C);
878  void *IP = 0;
879  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
880    return SDOperand(E, 0);
881  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
882  CSEMap.InsertNode(N, IP);
883  AllNodes.push_back(N);
884  return SDOperand(N, 0);
885}
886
887
888SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
889                                        MVT::ValueType VT,
890                                        unsigned Alignment, int Offset,
891                                        bool isTarget) {
892  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
893  FoldingSetNodeID ID;
894  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
895  ID.AddInteger(Alignment);
896  ID.AddInteger(Offset);
897  C->AddSelectionDAGCSEId(ID);
898  void *IP = 0;
899  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
900    return SDOperand(E, 0);
901  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
902  CSEMap.InsertNode(N, IP);
903  AllNodes.push_back(N);
904  return SDOperand(N, 0);
905}
906
907
908SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
909  FoldingSetNodeID ID;
910  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
911  ID.AddPointer(MBB);
912  void *IP = 0;
913  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
914    return SDOperand(E, 0);
915  SDNode *N = new BasicBlockSDNode(MBB);
916  CSEMap.InsertNode(N, IP);
917  AllNodes.push_back(N);
918  return SDOperand(N, 0);
919}
920
921SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
922  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
923    ValueTypeNodes.resize(VT+1);
924
925  SDNode *&N = MVT::isExtendedVT(VT) ?
926    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
927
928  if (N) return SDOperand(N, 0);
929  N = new VTSDNode(VT);
930  AllNodes.push_back(N);
931  return SDOperand(N, 0);
932}
933
934SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
935  SDNode *&N = ExternalSymbols[Sym];
936  if (N) return SDOperand(N, 0);
937  N = new ExternalSymbolSDNode(false, Sym, VT);
938  AllNodes.push_back(N);
939  return SDOperand(N, 0);
940}
941
942SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
943                                                MVT::ValueType VT) {
944  SDNode *&N = TargetExternalSymbols[Sym];
945  if (N) return SDOperand(N, 0);
946  N = new ExternalSymbolSDNode(true, Sym, VT);
947  AllNodes.push_back(N);
948  return SDOperand(N, 0);
949}
950
951SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
952  if ((unsigned)Cond >= CondCodeNodes.size())
953    CondCodeNodes.resize(Cond+1);
954
955  if (CondCodeNodes[Cond] == 0) {
956    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
957    AllNodes.push_back(CondCodeNodes[Cond]);
958  }
959  return SDOperand(CondCodeNodes[Cond], 0);
960}
961
962SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
963  FoldingSetNodeID ID;
964  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
965  ID.AddInteger(RegNo);
966  void *IP = 0;
967  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
968    return SDOperand(E, 0);
969  SDNode *N = new RegisterSDNode(RegNo, VT);
970  CSEMap.InsertNode(N, IP);
971  AllNodes.push_back(N);
972  return SDOperand(N, 0);
973}
974
975SDOperand SelectionDAG::getSrcValue(const Value *V) {
976  assert((!V || isa<PointerType>(V->getType())) &&
977         "SrcValue is not a pointer?");
978
979  FoldingSetNodeID ID;
980  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
981  ID.AddPointer(V);
982
983  void *IP = 0;
984  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
985    return SDOperand(E, 0);
986
987  SDNode *N = new SrcValueSDNode(V);
988  CSEMap.InsertNode(N, IP);
989  AllNodes.push_back(N);
990  return SDOperand(N, 0);
991}
992
993SDOperand SelectionDAG::getMemOperand(const MemOperand &MO) {
994  const Value *v = MO.getValue();
995  assert((!v || isa<PointerType>(v->getType())) &&
996         "SrcValue is not a pointer?");
997
998  FoldingSetNodeID ID;
999  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1000  ID.AddPointer(v);
1001  ID.AddInteger(MO.getFlags());
1002  ID.AddInteger(MO.getOffset());
1003  ID.AddInteger(MO.getSize());
1004  ID.AddInteger(MO.getAlignment());
1005
1006  void *IP = 0;
1007  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1008    return SDOperand(E, 0);
1009
1010  SDNode *N = new MemOperandSDNode(MO);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDOperand(N, 0);
1014}
1015
1016/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1017/// specified value type.
1018SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1019  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1020  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1021  const Type *Ty = MVT::getTypeForValueType(VT);
1022  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1023  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1024  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1025}
1026
1027
1028SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1029                                  SDOperand N2, ISD::CondCode Cond) {
1030  // These setcc operations always fold.
1031  switch (Cond) {
1032  default: break;
1033  case ISD::SETFALSE:
1034  case ISD::SETFALSE2: return getConstant(0, VT);
1035  case ISD::SETTRUE:
1036  case ISD::SETTRUE2:  return getConstant(1, VT);
1037
1038  case ISD::SETOEQ:
1039  case ISD::SETOGT:
1040  case ISD::SETOGE:
1041  case ISD::SETOLT:
1042  case ISD::SETOLE:
1043  case ISD::SETONE:
1044  case ISD::SETO:
1045  case ISD::SETUO:
1046  case ISD::SETUEQ:
1047  case ISD::SETUNE:
1048    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1049    break;
1050  }
1051
1052  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1053    uint64_t C2 = N2C->getValue();
1054    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1055      uint64_t C1 = N1C->getValue();
1056
1057      // Sign extend the operands if required
1058      if (ISD::isSignedIntSetCC(Cond)) {
1059        C1 = N1C->getSignExtended();
1060        C2 = N2C->getSignExtended();
1061      }
1062
1063      switch (Cond) {
1064      default: assert(0 && "Unknown integer setcc!");
1065      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1066      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1067      case ISD::SETULT: return getConstant(C1 <  C2, VT);
1068      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
1069      case ISD::SETULE: return getConstant(C1 <= C2, VT);
1070      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
1071      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
1072      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
1073      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
1074      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
1075      }
1076    }
1077  }
1078  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1079    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1080      // No compile time operations on this type yet.
1081      if (N1C->getValueType(0) == MVT::ppcf128)
1082        return SDOperand();
1083
1084      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1085      switch (Cond) {
1086      default: break;
1087      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1088                          return getNode(ISD::UNDEF, VT);
1089                        // fall through
1090      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1091      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1092                          return getNode(ISD::UNDEF, VT);
1093                        // fall through
1094      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1095                                           R==APFloat::cmpLessThan, VT);
1096      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1097                          return getNode(ISD::UNDEF, VT);
1098                        // fall through
1099      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1100      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1101                          return getNode(ISD::UNDEF, VT);
1102                        // fall through
1103      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1104      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1105                          return getNode(ISD::UNDEF, VT);
1106                        // fall through
1107      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1108                                           R==APFloat::cmpEqual, VT);
1109      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1110                          return getNode(ISD::UNDEF, VT);
1111                        // fall through
1112      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1113                                           R==APFloat::cmpEqual, VT);
1114      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1115      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1116      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1117                                           R==APFloat::cmpEqual, VT);
1118      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1119      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1120                                           R==APFloat::cmpLessThan, VT);
1121      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1122                                           R==APFloat::cmpUnordered, VT);
1123      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1124      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1125      }
1126    } else {
1127      // Ensure that the constant occurs on the RHS.
1128      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1129    }
1130  }
1131
1132  // Could not fold it.
1133  return SDOperand();
1134}
1135
1136/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1137/// use this predicate to simplify operations downstream.
1138bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1139  unsigned BitWidth = Op.getValueSizeInBits();
1140  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1141}
1142
1143/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1144/// this predicate to simplify operations downstream.  Mask is known to be zero
1145/// for bits that V cannot have.
1146bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1147                                     unsigned Depth) const {
1148  APInt KnownZero, KnownOne;
1149  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1150  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1151  return (KnownZero & Mask) == Mask;
1152}
1153
1154/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1155/// known to be either zero or one and return them in the KnownZero/KnownOne
1156/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1157/// processing.
1158void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1159                                     APInt &KnownZero, APInt &KnownOne,
1160                                     unsigned Depth) const {
1161  unsigned BitWidth = Mask.getBitWidth();
1162  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1163         "Mask size mismatches value type size!");
1164
1165  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1166  if (Depth == 6 || Mask == 0)
1167    return;  // Limit search depth.
1168
1169  APInt KnownZero2, KnownOne2;
1170
1171  switch (Op.getOpcode()) {
1172  case ISD::Constant:
1173    // We know all of the bits for a constant!
1174    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1175    KnownZero = ~KnownOne & Mask;
1176    return;
1177  case ISD::AND:
1178    // If either the LHS or the RHS are Zero, the result is zero.
1179    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1180    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1181                      KnownZero2, KnownOne2, Depth+1);
1182    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1183    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1184
1185    // Output known-1 bits are only known if set in both the LHS & RHS.
1186    KnownOne &= KnownOne2;
1187    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1188    KnownZero |= KnownZero2;
1189    return;
1190  case ISD::OR:
1191    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1192    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1193                      KnownZero2, KnownOne2, Depth+1);
1194    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1195    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1196
1197    // Output known-0 bits are only known if clear in both the LHS & RHS.
1198    KnownZero &= KnownZero2;
1199    // Output known-1 are known to be set if set in either the LHS | RHS.
1200    KnownOne |= KnownOne2;
1201    return;
1202  case ISD::XOR: {
1203    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1204    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1205    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1206    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1207
1208    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1209    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1210    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1211    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1212    KnownZero = KnownZeroOut;
1213    return;
1214  }
1215  case ISD::SELECT:
1216    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1217    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1218    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1219    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1220
1221    // Only known if known in both the LHS and RHS.
1222    KnownOne &= KnownOne2;
1223    KnownZero &= KnownZero2;
1224    return;
1225  case ISD::SELECT_CC:
1226    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1227    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1228    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1229    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1230
1231    // Only known if known in both the LHS and RHS.
1232    KnownOne &= KnownOne2;
1233    KnownZero &= KnownZero2;
1234    return;
1235  case ISD::SETCC:
1236    // If we know the result of a setcc has the top bits zero, use this info.
1237    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1238        BitWidth > 1)
1239      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1240    return;
1241  case ISD::SHL:
1242    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1243    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1244      unsigned ShAmt = SA->getValue();
1245
1246      // If the shift count is an invalid immediate, don't do anything.
1247      if (ShAmt >= BitWidth)
1248        return;
1249
1250      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1251                        KnownZero, KnownOne, Depth+1);
1252      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1253      KnownZero <<= ShAmt;
1254      KnownOne  <<= ShAmt;
1255      // low bits known zero.
1256      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1257    }
1258    return;
1259  case ISD::SRL:
1260    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1261    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1262      unsigned ShAmt = SA->getValue();
1263
1264      // If the shift count is an invalid immediate, don't do anything.
1265      if (ShAmt >= BitWidth)
1266        return;
1267
1268      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1269                        KnownZero, KnownOne, Depth+1);
1270      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1271      KnownZero = KnownZero.lshr(ShAmt);
1272      KnownOne  = KnownOne.lshr(ShAmt);
1273
1274      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1275      KnownZero |= HighBits;  // High bits known zero.
1276    }
1277    return;
1278  case ISD::SRA:
1279    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1280      unsigned ShAmt = SA->getValue();
1281
1282      // If the shift count is an invalid immediate, don't do anything.
1283      if (ShAmt >= BitWidth)
1284        return;
1285
1286      APInt InDemandedMask = (Mask << ShAmt);
1287      // If any of the demanded bits are produced by the sign extension, we also
1288      // demand the input sign bit.
1289      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1290      if (HighBits.getBoolValue())
1291        InDemandedMask |= APInt::getSignBit(BitWidth);
1292
1293      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1294                        Depth+1);
1295      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1296      KnownZero = KnownZero.lshr(ShAmt);
1297      KnownOne  = KnownOne.lshr(ShAmt);
1298
1299      // Handle the sign bits.
1300      APInt SignBit = APInt::getSignBit(BitWidth);
1301      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1302
1303      if (KnownZero.intersects(SignBit)) {
1304        KnownZero |= HighBits;  // New bits are known zero.
1305      } else if (KnownOne.intersects(SignBit)) {
1306        KnownOne  |= HighBits;  // New bits are known one.
1307      }
1308    }
1309    return;
1310  case ISD::SIGN_EXTEND_INREG: {
1311    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1312    unsigned EBits = MVT::getSizeInBits(EVT);
1313
1314    // Sign extension.  Compute the demanded bits in the result that are not
1315    // present in the input.
1316    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1317
1318    APInt InSignBit = APInt::getSignBit(EBits);
1319    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1320
1321    // If the sign extended bits are demanded, we know that the sign
1322    // bit is demanded.
1323    InSignBit.zext(BitWidth);
1324    if (NewBits.getBoolValue())
1325      InputDemandedBits |= InSignBit;
1326
1327    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1328                      KnownZero, KnownOne, Depth+1);
1329    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1330
1331    // If the sign bit of the input is known set or clear, then we know the
1332    // top bits of the result.
1333    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1334      KnownZero |= NewBits;
1335      KnownOne  &= ~NewBits;
1336    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1337      KnownOne  |= NewBits;
1338      KnownZero &= ~NewBits;
1339    } else {                              // Input sign bit unknown
1340      KnownZero &= ~NewBits;
1341      KnownOne  &= ~NewBits;
1342    }
1343    return;
1344  }
1345  case ISD::CTTZ:
1346  case ISD::CTLZ:
1347  case ISD::CTPOP: {
1348    unsigned LowBits = Log2_32(BitWidth)+1;
1349    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1350    KnownOne  = APInt(BitWidth, 0);
1351    return;
1352  }
1353  case ISD::LOAD: {
1354    if (ISD::isZEXTLoad(Op.Val)) {
1355      LoadSDNode *LD = cast<LoadSDNode>(Op);
1356      MVT::ValueType VT = LD->getMemoryVT();
1357      unsigned MemBits = MVT::getSizeInBits(VT);
1358      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1359    }
1360    return;
1361  }
1362  case ISD::ZERO_EXTEND: {
1363    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1364    unsigned InBits = MVT::getSizeInBits(InVT);
1365    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1366    APInt InMask    = Mask;
1367    InMask.trunc(InBits);
1368    KnownZero.trunc(InBits);
1369    KnownOne.trunc(InBits);
1370    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1371    KnownZero.zext(BitWidth);
1372    KnownOne.zext(BitWidth);
1373    KnownZero |= NewBits;
1374    return;
1375  }
1376  case ISD::SIGN_EXTEND: {
1377    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1378    unsigned InBits = MVT::getSizeInBits(InVT);
1379    APInt InSignBit = APInt::getSignBit(InBits);
1380    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1381    APInt InMask = Mask;
1382    InMask.trunc(InBits);
1383
1384    // If any of the sign extended bits are demanded, we know that the sign
1385    // bit is demanded. Temporarily set this bit in the mask for our callee.
1386    if (NewBits.getBoolValue())
1387      InMask |= InSignBit;
1388
1389    KnownZero.trunc(InBits);
1390    KnownOne.trunc(InBits);
1391    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1392
1393    // Note if the sign bit is known to be zero or one.
1394    bool SignBitKnownZero = KnownZero.isNegative();
1395    bool SignBitKnownOne  = KnownOne.isNegative();
1396    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1397           "Sign bit can't be known to be both zero and one!");
1398
1399    // If the sign bit wasn't actually demanded by our caller, we don't
1400    // want it set in the KnownZero and KnownOne result values. Reset the
1401    // mask and reapply it to the result values.
1402    InMask = Mask;
1403    InMask.trunc(InBits);
1404    KnownZero &= InMask;
1405    KnownOne  &= InMask;
1406
1407    KnownZero.zext(BitWidth);
1408    KnownOne.zext(BitWidth);
1409
1410    // If the sign bit is known zero or one, the top bits match.
1411    if (SignBitKnownZero)
1412      KnownZero |= NewBits;
1413    else if (SignBitKnownOne)
1414      KnownOne  |= NewBits;
1415    return;
1416  }
1417  case ISD::ANY_EXTEND: {
1418    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1419    unsigned InBits = MVT::getSizeInBits(InVT);
1420    APInt InMask = Mask;
1421    InMask.trunc(InBits);
1422    KnownZero.trunc(InBits);
1423    KnownOne.trunc(InBits);
1424    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1425    KnownZero.zext(BitWidth);
1426    KnownOne.zext(BitWidth);
1427    return;
1428  }
1429  case ISD::TRUNCATE: {
1430    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1431    unsigned InBits = MVT::getSizeInBits(InVT);
1432    APInt InMask = Mask;
1433    InMask.zext(InBits);
1434    KnownZero.zext(InBits);
1435    KnownOne.zext(InBits);
1436    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1437    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1438    KnownZero.trunc(BitWidth);
1439    KnownOne.trunc(BitWidth);
1440    break;
1441  }
1442  case ISD::AssertZext: {
1443    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1444    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1445    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1446                      KnownOne, Depth+1);
1447    KnownZero |= (~InMask) & Mask;
1448    return;
1449  }
1450  case ISD::FGETSIGN:
1451    // All bits are zero except the low bit.
1452    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1453    return;
1454
1455  case ISD::ADD: {
1456    // If either the LHS or the RHS are Zero, the result is zero.
1457    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1458    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1459    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1460    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1461
1462    // Output known-0 bits are known if clear or set in both the low clear bits
1463    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1464    // low 3 bits clear.
1465    unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
1466                                     KnownZero2.countTrailingOnes());
1467
1468    KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1469    KnownOne = APInt(BitWidth, 0);
1470    return;
1471  }
1472  case ISD::SUB: {
1473    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1474    if (!CLHS) return;
1475
1476    // We know that the top bits of C-X are clear if X contains less bits
1477    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1478    // positive if we can prove that X is >= 0 and < 16.
1479    if (CLHS->getAPIntValue().isNonNegative()) {
1480      unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1481      // NLZ can't be BitWidth with no sign bit
1482      APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1483      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1484
1485      // If all of the MaskV bits are known to be zero, then we know the output
1486      // top bits are zero, because we now know that the output is from [0-C].
1487      if ((KnownZero & MaskV) == MaskV) {
1488        unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1489        // Top bits known zero.
1490        KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1491        KnownOne = APInt(BitWidth, 0);   // No one bits known.
1492      } else {
1493        KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
1494      }
1495    }
1496    return;
1497  }
1498  default:
1499    // Allow the target to implement this method for its nodes.
1500    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1501  case ISD::INTRINSIC_WO_CHAIN:
1502  case ISD::INTRINSIC_W_CHAIN:
1503  case ISD::INTRINSIC_VOID:
1504      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1505    }
1506    return;
1507  }
1508}
1509
1510/// ComputeNumSignBits - Return the number of times the sign bit of the
1511/// register is replicated into the other bits.  We know that at least 1 bit
1512/// is always equal to the sign bit (itself), but other cases can give us
1513/// information.  For example, immediately after an "SRA X, 2", we know that
1514/// the top 3 bits are all equal to each other, so we return 3.
1515unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1516  MVT::ValueType VT = Op.getValueType();
1517  assert(MVT::isInteger(VT) && "Invalid VT!");
1518  unsigned VTBits = MVT::getSizeInBits(VT);
1519  unsigned Tmp, Tmp2;
1520
1521  if (Depth == 6)
1522    return 1;  // Limit search depth.
1523
1524  switch (Op.getOpcode()) {
1525  default: break;
1526  case ISD::AssertSext:
1527    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1528    return VTBits-Tmp+1;
1529  case ISD::AssertZext:
1530    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1531    return VTBits-Tmp;
1532
1533  case ISD::Constant: {
1534    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1535    // If negative, invert the bits, then look at it.
1536    if (Val & MVT::getIntVTSignBit(VT))
1537      Val = ~Val;
1538
1539    // Shift the bits so they are the leading bits in the int64_t.
1540    Val <<= 64-VTBits;
1541
1542    // Return # leading zeros.  We use 'min' here in case Val was zero before
1543    // shifting.  We don't want to return '64' as for an i32 "0".
1544    return std::min(VTBits, CountLeadingZeros_64(Val));
1545  }
1546
1547  case ISD::SIGN_EXTEND:
1548    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1549    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1550
1551  case ISD::SIGN_EXTEND_INREG:
1552    // Max of the input and what this extends.
1553    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1554    Tmp = VTBits-Tmp+1;
1555
1556    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1557    return std::max(Tmp, Tmp2);
1558
1559  case ISD::SRA:
1560    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1561    // SRA X, C   -> adds C sign bits.
1562    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1563      Tmp += C->getValue();
1564      if (Tmp > VTBits) Tmp = VTBits;
1565    }
1566    return Tmp;
1567  case ISD::SHL:
1568    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1569      // shl destroys sign bits.
1570      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1571      if (C->getValue() >= VTBits ||      // Bad shift.
1572          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1573      return Tmp - C->getValue();
1574    }
1575    break;
1576  case ISD::AND:
1577  case ISD::OR:
1578  case ISD::XOR:    // NOT is handled here.
1579    // Logical binary ops preserve the number of sign bits.
1580    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1581    if (Tmp == 1) return 1;  // Early out.
1582    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1583    return std::min(Tmp, Tmp2);
1584
1585  case ISD::SELECT:
1586    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1587    if (Tmp == 1) return 1;  // Early out.
1588    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1589    return std::min(Tmp, Tmp2);
1590
1591  case ISD::SETCC:
1592    // If setcc returns 0/-1, all bits are sign bits.
1593    if (TLI.getSetCCResultContents() ==
1594        TargetLowering::ZeroOrNegativeOneSetCCResult)
1595      return VTBits;
1596    break;
1597  case ISD::ROTL:
1598  case ISD::ROTR:
1599    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1600      unsigned RotAmt = C->getValue() & (VTBits-1);
1601
1602      // Handle rotate right by N like a rotate left by 32-N.
1603      if (Op.getOpcode() == ISD::ROTR)
1604        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1605
1606      // If we aren't rotating out all of the known-in sign bits, return the
1607      // number that are left.  This handles rotl(sext(x), 1) for example.
1608      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1609      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1610    }
1611    break;
1612  case ISD::ADD:
1613    // Add can have at most one carry bit.  Thus we know that the output
1614    // is, at worst, one more bit than the inputs.
1615    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1616    if (Tmp == 1) return 1;  // Early out.
1617
1618    // Special case decrementing a value (ADD X, -1):
1619    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1620      if (CRHS->isAllOnesValue()) {
1621        APInt KnownZero, KnownOne;
1622        APInt Mask = APInt::getAllOnesValue(VTBits);
1623        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1624
1625        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1626        // sign bits set.
1627        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1628          return VTBits;
1629
1630        // If we are subtracting one from a positive number, there is no carry
1631        // out of the result.
1632        if (KnownZero.isNegative())
1633          return Tmp;
1634      }
1635
1636    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1637    if (Tmp2 == 1) return 1;
1638      return std::min(Tmp, Tmp2)-1;
1639    break;
1640
1641  case ISD::SUB:
1642    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1643    if (Tmp2 == 1) return 1;
1644
1645    // Handle NEG.
1646    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1647      if (CLHS->getValue() == 0) {
1648        APInt KnownZero, KnownOne;
1649        APInt Mask = APInt::getAllOnesValue(VTBits);
1650        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1651        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1652        // sign bits set.
1653        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1654          return VTBits;
1655
1656        // If the input is known to be positive (the sign bit is known clear),
1657        // the output of the NEG has the same number of sign bits as the input.
1658        if (KnownZero.isNegative())
1659          return Tmp2;
1660
1661        // Otherwise, we treat this like a SUB.
1662      }
1663
1664    // Sub can have at most one carry bit.  Thus we know that the output
1665    // is, at worst, one more bit than the inputs.
1666    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1667    if (Tmp == 1) return 1;  // Early out.
1668      return std::min(Tmp, Tmp2)-1;
1669    break;
1670  case ISD::TRUNCATE:
1671    // FIXME: it's tricky to do anything useful for this, but it is an important
1672    // case for targets like X86.
1673    break;
1674  }
1675
1676  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1677  if (Op.getOpcode() == ISD::LOAD) {
1678    LoadSDNode *LD = cast<LoadSDNode>(Op);
1679    unsigned ExtType = LD->getExtensionType();
1680    switch (ExtType) {
1681    default: break;
1682    case ISD::SEXTLOAD:    // '17' bits known
1683      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1684      return VTBits-Tmp+1;
1685    case ISD::ZEXTLOAD:    // '16' bits known
1686      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1687      return VTBits-Tmp;
1688    }
1689  }
1690
1691  // Allow the target to implement this method for its nodes.
1692  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1693      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1694      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1695      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1696    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1697    if (NumBits > 1) return NumBits;
1698  }
1699
1700  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1701  // use this information.
1702  APInt KnownZero, KnownOne;
1703  APInt Mask = APInt::getAllOnesValue(VTBits);
1704  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1705
1706  if (KnownZero.isNegative()) {        // sign bit is 0
1707    Mask = KnownZero;
1708  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1709    Mask = KnownOne;
1710  } else {
1711    // Nothing known.
1712    return 1;
1713  }
1714
1715  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1716  // the number of identical bits in the top of the input value.
1717  Mask = ~Mask;
1718  Mask <<= Mask.getBitWidth()-VTBits;
1719  // Return # leading zeros.  We use 'min' here in case Val was zero before
1720  // shifting.  We don't want to return '64' as for an i32 "0".
1721  return std::min(VTBits, Mask.countLeadingZeros());
1722}
1723
1724
1725bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1726  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1727  if (!GA) return false;
1728  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1729  if (!GV) return false;
1730  MachineModuleInfo *MMI = getMachineModuleInfo();
1731  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1732}
1733
1734
1735/// getNode - Gets or creates the specified node.
1736///
1737SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1738  FoldingSetNodeID ID;
1739  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1740  void *IP = 0;
1741  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1742    return SDOperand(E, 0);
1743  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1744  CSEMap.InsertNode(N, IP);
1745
1746  AllNodes.push_back(N);
1747  return SDOperand(N, 0);
1748}
1749
1750SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1751                                SDOperand Operand) {
1752  unsigned Tmp1;
1753  // Constant fold unary operations with an integer constant operand.
1754  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1755    uint64_t Val = C->getValue();
1756    switch (Opcode) {
1757    default: break;
1758    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1759    case ISD::ANY_EXTEND:
1760    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1761    case ISD::TRUNCATE:    return getConstant(Val, VT);
1762    case ISD::UINT_TO_FP:
1763    case ISD::SINT_TO_FP: {
1764      const uint64_t zero[] = {0, 0};
1765      // No compile time operations on this type.
1766      if (VT==MVT::ppcf128)
1767        break;
1768      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1769      (void)apf.convertFromZeroExtendedInteger(&Val,
1770                               MVT::getSizeInBits(Operand.getValueType()),
1771                               Opcode==ISD::SINT_TO_FP,
1772                               APFloat::rmNearestTiesToEven);
1773      return getConstantFP(apf, VT);
1774    }
1775    case ISD::BIT_CONVERT:
1776      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1777        return getConstantFP(BitsToFloat(Val), VT);
1778      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1779        return getConstantFP(BitsToDouble(Val), VT);
1780      break;
1781    case ISD::BSWAP:
1782      switch(VT) {
1783      default: assert(0 && "Invalid bswap!"); break;
1784      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1785      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1786      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1787      }
1788      break;
1789    case ISD::CTPOP:
1790      switch(VT) {
1791      default: assert(0 && "Invalid ctpop!"); break;
1792      case MVT::i1: return getConstant(Val != 0, VT);
1793      case MVT::i8:
1794        Tmp1 = (unsigned)Val & 0xFF;
1795        return getConstant(CountPopulation_32(Tmp1), VT);
1796      case MVT::i16:
1797        Tmp1 = (unsigned)Val & 0xFFFF;
1798        return getConstant(CountPopulation_32(Tmp1), VT);
1799      case MVT::i32:
1800        return getConstant(CountPopulation_32((unsigned)Val), VT);
1801      case MVT::i64:
1802        return getConstant(CountPopulation_64(Val), VT);
1803      }
1804    case ISD::CTLZ:
1805      switch(VT) {
1806      default: assert(0 && "Invalid ctlz!"); break;
1807      case MVT::i1: return getConstant(Val == 0, VT);
1808      case MVT::i8:
1809        Tmp1 = (unsigned)Val & 0xFF;
1810        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1811      case MVT::i16:
1812        Tmp1 = (unsigned)Val & 0xFFFF;
1813        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1814      case MVT::i32:
1815        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1816      case MVT::i64:
1817        return getConstant(CountLeadingZeros_64(Val), VT);
1818      }
1819    case ISD::CTTZ:
1820      switch(VT) {
1821      default: assert(0 && "Invalid cttz!"); break;
1822      case MVT::i1: return getConstant(Val == 0, VT);
1823      case MVT::i8:
1824        Tmp1 = (unsigned)Val | 0x100;
1825        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1826      case MVT::i16:
1827        Tmp1 = (unsigned)Val | 0x10000;
1828        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1829      case MVT::i32:
1830        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1831      case MVT::i64:
1832        return getConstant(CountTrailingZeros_64(Val), VT);
1833      }
1834    }
1835  }
1836
1837  // Constant fold unary operations with a floating point constant operand.
1838  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1839    APFloat V = C->getValueAPF();    // make copy
1840    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1841      switch (Opcode) {
1842      case ISD::FNEG:
1843        V.changeSign();
1844        return getConstantFP(V, VT);
1845      case ISD::FABS:
1846        V.clearSign();
1847        return getConstantFP(V, VT);
1848      case ISD::FP_ROUND:
1849      case ISD::FP_EXTEND:
1850        // This can return overflow, underflow, or inexact; we don't care.
1851        // FIXME need to be more flexible about rounding mode.
1852        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1853                         VT==MVT::f64 ? APFloat::IEEEdouble :
1854                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1855                         VT==MVT::f128 ? APFloat::IEEEquad :
1856                         APFloat::Bogus,
1857                         APFloat::rmNearestTiesToEven);
1858        return getConstantFP(V, VT);
1859      case ISD::FP_TO_SINT:
1860      case ISD::FP_TO_UINT: {
1861        integerPart x;
1862        assert(integerPartWidth >= 64);
1863        // FIXME need to be more flexible about rounding mode.
1864        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1865                              Opcode==ISD::FP_TO_SINT,
1866                              APFloat::rmTowardZero);
1867        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1868          break;
1869        return getConstant(x, VT);
1870      }
1871      case ISD::BIT_CONVERT:
1872        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1873          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1874        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1875          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1876        break;
1877      }
1878    }
1879  }
1880
1881  unsigned OpOpcode = Operand.Val->getOpcode();
1882  switch (Opcode) {
1883  case ISD::TokenFactor:
1884    return Operand;         // Factor of one node?  No factor.
1885  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1886  case ISD::FP_EXTEND:
1887    assert(MVT::isFloatingPoint(VT) &&
1888           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1889    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1890    break;
1891    case ISD::SIGN_EXTEND:
1892    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1893           "Invalid SIGN_EXTEND!");
1894    if (Operand.getValueType() == VT) return Operand;   // noop extension
1895    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1896           && "Invalid sext node, dst < src!");
1897    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1898      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1899    break;
1900  case ISD::ZERO_EXTEND:
1901    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1902           "Invalid ZERO_EXTEND!");
1903    if (Operand.getValueType() == VT) return Operand;   // noop extension
1904    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1905           && "Invalid zext node, dst < src!");
1906    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1907      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1908    break;
1909  case ISD::ANY_EXTEND:
1910    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1911           "Invalid ANY_EXTEND!");
1912    if (Operand.getValueType() == VT) return Operand;   // noop extension
1913    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1914           && "Invalid anyext node, dst < src!");
1915    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1916      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1917      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1918    break;
1919  case ISD::TRUNCATE:
1920    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1921           "Invalid TRUNCATE!");
1922    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1923    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1924           && "Invalid truncate node, src < dst!");
1925    if (OpOpcode == ISD::TRUNCATE)
1926      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1927    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1928             OpOpcode == ISD::ANY_EXTEND) {
1929      // If the source is smaller than the dest, we still need an extend.
1930      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1931          < MVT::getSizeInBits(VT))
1932        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1933      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1934               > MVT::getSizeInBits(VT))
1935        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1936      else
1937        return Operand.Val->getOperand(0);
1938    }
1939    break;
1940  case ISD::BIT_CONVERT:
1941    // Basic sanity checking.
1942    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1943           && "Cannot BIT_CONVERT between types of different sizes!");
1944    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1945    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1946      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1947    if (OpOpcode == ISD::UNDEF)
1948      return getNode(ISD::UNDEF, VT);
1949    break;
1950  case ISD::SCALAR_TO_VECTOR:
1951    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1952           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1953           "Illegal SCALAR_TO_VECTOR node!");
1954    break;
1955  case ISD::FNEG:
1956    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1957      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1958                     Operand.Val->getOperand(0));
1959    if (OpOpcode == ISD::FNEG)  // --X -> X
1960      return Operand.Val->getOperand(0);
1961    break;
1962  case ISD::FABS:
1963    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1964      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1965    break;
1966  }
1967
1968  SDNode *N;
1969  SDVTList VTs = getVTList(VT);
1970  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1971    FoldingSetNodeID ID;
1972    SDOperand Ops[1] = { Operand };
1973    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1974    void *IP = 0;
1975    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1976      return SDOperand(E, 0);
1977    N = new UnarySDNode(Opcode, VTs, Operand);
1978    CSEMap.InsertNode(N, IP);
1979  } else {
1980    N = new UnarySDNode(Opcode, VTs, Operand);
1981  }
1982  AllNodes.push_back(N);
1983  return SDOperand(N, 0);
1984}
1985
1986
1987
1988SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1989                                SDOperand N1, SDOperand N2) {
1990  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1991  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1992  switch (Opcode) {
1993  default: break;
1994  case ISD::TokenFactor:
1995    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1996           N2.getValueType() == MVT::Other && "Invalid token factor!");
1997    // Fold trivial token factors.
1998    if (N1.getOpcode() == ISD::EntryToken) return N2;
1999    if (N2.getOpcode() == ISD::EntryToken) return N1;
2000    break;
2001  case ISD::AND:
2002    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2003           N1.getValueType() == VT && "Binary operator types must match!");
2004    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2005    // worth handling here.
2006    if (N2C && N2C->getValue() == 0)
2007      return N2;
2008    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2009      return N1;
2010    break;
2011  case ISD::OR:
2012  case ISD::XOR:
2013    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2014           N1.getValueType() == VT && "Binary operator types must match!");
2015    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2016    // worth handling here.
2017    if (N2C && N2C->getValue() == 0)
2018      return N1;
2019    break;
2020  case ISD::UDIV:
2021  case ISD::UREM:
2022  case ISD::MULHU:
2023  case ISD::MULHS:
2024    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
2025    // fall through
2026  case ISD::ADD:
2027  case ISD::SUB:
2028  case ISD::MUL:
2029  case ISD::SDIV:
2030  case ISD::SREM:
2031  case ISD::FADD:
2032  case ISD::FSUB:
2033  case ISD::FMUL:
2034  case ISD::FDIV:
2035  case ISD::FREM:
2036    assert(N1.getValueType() == N2.getValueType() &&
2037           N1.getValueType() == VT && "Binary operator types must match!");
2038    break;
2039  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2040    assert(N1.getValueType() == VT &&
2041           MVT::isFloatingPoint(N1.getValueType()) &&
2042           MVT::isFloatingPoint(N2.getValueType()) &&
2043           "Invalid FCOPYSIGN!");
2044    break;
2045  case ISD::SHL:
2046  case ISD::SRA:
2047  case ISD::SRL:
2048  case ISD::ROTL:
2049  case ISD::ROTR:
2050    assert(VT == N1.getValueType() &&
2051           "Shift operators return type must be the same as their first arg");
2052    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2053           VT != MVT::i1 && "Shifts only work on integers");
2054    break;
2055  case ISD::FP_ROUND_INREG: {
2056    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2057    assert(VT == N1.getValueType() && "Not an inreg round!");
2058    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2059           "Cannot FP_ROUND_INREG integer types");
2060    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2061           "Not rounding down!");
2062    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2063    break;
2064  }
2065  case ISD::FP_ROUND:
2066    assert(MVT::isFloatingPoint(VT) &&
2067           MVT::isFloatingPoint(N1.getValueType()) &&
2068           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2069           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2070    if (N1.getValueType() == VT) return N1;  // noop conversion.
2071    break;
2072  case ISD::AssertSext:
2073  case ISD::AssertZext: {
2074    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2075    assert(VT == N1.getValueType() && "Not an inreg extend!");
2076    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2077           "Cannot *_EXTEND_INREG FP types");
2078    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2079           "Not extending!");
2080    if (VT == EVT) return N1; // noop assertion.
2081    break;
2082  }
2083  case ISD::SIGN_EXTEND_INREG: {
2084    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2085    assert(VT == N1.getValueType() && "Not an inreg extend!");
2086    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2087           "Cannot *_EXTEND_INREG FP types");
2088    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2089           "Not extending!");
2090    if (EVT == VT) return N1;  // Not actually extending
2091
2092    if (N1C) {
2093      int64_t Val = N1C->getValue();
2094      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2095      Val <<= 64-FromBits;
2096      Val >>= 64-FromBits;
2097      return getConstant(Val, VT);
2098    }
2099    break;
2100  }
2101  case ISD::EXTRACT_VECTOR_ELT:
2102    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2103
2104    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2105    // expanding copies of large vectors from registers.
2106    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2107        N1.getNumOperands() > 0) {
2108      unsigned Factor =
2109        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2110      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2111                     N1.getOperand(N2C->getValue() / Factor),
2112                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2113    }
2114
2115    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2116    // expanding large vector constants.
2117    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2118      return N1.getOperand(N2C->getValue());
2119
2120    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2121    // operations are lowered to scalars.
2122    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2123      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2124        if (IEC == N2C)
2125          return N1.getOperand(1);
2126        else
2127          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2128      }
2129    break;
2130  case ISD::EXTRACT_ELEMENT:
2131    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2132
2133    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2134    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2135    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2136    if (N1.getOpcode() == ISD::BUILD_PAIR)
2137      return N1.getOperand(N2C->getValue());
2138
2139    // EXTRACT_ELEMENT of a constant int is also very common.
2140    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2141      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2142      return getConstant(C->getValue() >> Shift, VT);
2143    }
2144    break;
2145  case ISD::EXTRACT_SUBVECTOR:
2146    if (N1.getValueType() == VT) // Trivial extraction.
2147      return N1;
2148    break;
2149  }
2150
2151  if (N1C) {
2152    if (N2C) {
2153      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
2154      switch (Opcode) {
2155      case ISD::ADD: return getConstant(C1 + C2, VT);
2156      case ISD::SUB: return getConstant(C1 - C2, VT);
2157      case ISD::MUL: return getConstant(C1 * C2, VT);
2158      case ISD::UDIV:
2159        if (C2) return getConstant(C1 / C2, VT);
2160        break;
2161      case ISD::UREM :
2162        if (C2) return getConstant(C1 % C2, VT);
2163        break;
2164      case ISD::SDIV :
2165        if (C2) return getConstant(N1C->getSignExtended() /
2166                                   N2C->getSignExtended(), VT);
2167        break;
2168      case ISD::SREM :
2169        if (C2) return getConstant(N1C->getSignExtended() %
2170                                   N2C->getSignExtended(), VT);
2171        break;
2172      case ISD::AND  : return getConstant(C1 & C2, VT);
2173      case ISD::OR   : return getConstant(C1 | C2, VT);
2174      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2175      case ISD::SHL  : return getConstant(C1 << C2, VT);
2176      case ISD::SRL  : return getConstant(C1 >> C2, VT);
2177      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
2178      case ISD::ROTL :
2179        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
2180                           VT);
2181      case ISD::ROTR :
2182        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
2183                           VT);
2184      default: break;
2185      }
2186    } else {      // Cannonicalize constant to RHS if commutative
2187      if (isCommutativeBinOp(Opcode)) {
2188        std::swap(N1C, N2C);
2189        std::swap(N1, N2);
2190      }
2191    }
2192  }
2193
2194  // Constant fold FP operations.
2195  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2196  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2197  if (N1CFP) {
2198    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2199      // Cannonicalize constant to RHS if commutative
2200      std::swap(N1CFP, N2CFP);
2201      std::swap(N1, N2);
2202    } else if (N2CFP && VT != MVT::ppcf128) {
2203      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2204      APFloat::opStatus s;
2205      switch (Opcode) {
2206      case ISD::FADD:
2207        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2208        if (s != APFloat::opInvalidOp)
2209          return getConstantFP(V1, VT);
2210        break;
2211      case ISD::FSUB:
2212        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2213        if (s!=APFloat::opInvalidOp)
2214          return getConstantFP(V1, VT);
2215        break;
2216      case ISD::FMUL:
2217        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2218        if (s!=APFloat::opInvalidOp)
2219          return getConstantFP(V1, VT);
2220        break;
2221      case ISD::FDIV:
2222        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2223        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2224          return getConstantFP(V1, VT);
2225        break;
2226      case ISD::FREM :
2227        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2228        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2229          return getConstantFP(V1, VT);
2230        break;
2231      case ISD::FCOPYSIGN:
2232        V1.copySign(V2);
2233        return getConstantFP(V1, VT);
2234      default: break;
2235      }
2236    }
2237  }
2238
2239  // Canonicalize an UNDEF to the RHS, even over a constant.
2240  if (N1.getOpcode() == ISD::UNDEF) {
2241    if (isCommutativeBinOp(Opcode)) {
2242      std::swap(N1, N2);
2243    } else {
2244      switch (Opcode) {
2245      case ISD::FP_ROUND_INREG:
2246      case ISD::SIGN_EXTEND_INREG:
2247      case ISD::SUB:
2248      case ISD::FSUB:
2249      case ISD::FDIV:
2250      case ISD::FREM:
2251      case ISD::SRA:
2252        return N1;     // fold op(undef, arg2) -> undef
2253      case ISD::UDIV:
2254      case ISD::SDIV:
2255      case ISD::UREM:
2256      case ISD::SREM:
2257      case ISD::SRL:
2258      case ISD::SHL:
2259        if (!MVT::isVector(VT))
2260          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2261        // For vectors, we can't easily build an all zero vector, just return
2262        // the LHS.
2263        return N2;
2264      }
2265    }
2266  }
2267
2268  // Fold a bunch of operators when the RHS is undef.
2269  if (N2.getOpcode() == ISD::UNDEF) {
2270    switch (Opcode) {
2271    case ISD::ADD:
2272    case ISD::ADDC:
2273    case ISD::ADDE:
2274    case ISD::SUB:
2275    case ISD::FADD:
2276    case ISD::FSUB:
2277    case ISD::FMUL:
2278    case ISD::FDIV:
2279    case ISD::FREM:
2280    case ISD::UDIV:
2281    case ISD::SDIV:
2282    case ISD::UREM:
2283    case ISD::SREM:
2284    case ISD::XOR:
2285      return N2;       // fold op(arg1, undef) -> undef
2286    case ISD::MUL:
2287    case ISD::AND:
2288    case ISD::SRL:
2289    case ISD::SHL:
2290      if (!MVT::isVector(VT))
2291        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2292      // For vectors, we can't easily build an all zero vector, just return
2293      // the LHS.
2294      return N1;
2295    case ISD::OR:
2296      if (!MVT::isVector(VT))
2297        return getConstant(MVT::getIntVTBitMask(VT), VT);
2298      // For vectors, we can't easily build an all one vector, just return
2299      // the LHS.
2300      return N1;
2301    case ISD::SRA:
2302      return N1;
2303    }
2304  }
2305
2306  // Memoize this node if possible.
2307  SDNode *N;
2308  SDVTList VTs = getVTList(VT);
2309  if (VT != MVT::Flag) {
2310    SDOperand Ops[] = { N1, N2 };
2311    FoldingSetNodeID ID;
2312    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2313    void *IP = 0;
2314    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2315      return SDOperand(E, 0);
2316    N = new BinarySDNode(Opcode, VTs, N1, N2);
2317    CSEMap.InsertNode(N, IP);
2318  } else {
2319    N = new BinarySDNode(Opcode, VTs, N1, N2);
2320  }
2321
2322  AllNodes.push_back(N);
2323  return SDOperand(N, 0);
2324}
2325
2326SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2327                                SDOperand N1, SDOperand N2, SDOperand N3) {
2328  // Perform various simplifications.
2329  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2330  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2331  switch (Opcode) {
2332  case ISD::SETCC: {
2333    // Use FoldSetCC to simplify SETCC's.
2334    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2335    if (Simp.Val) return Simp;
2336    break;
2337  }
2338  case ISD::SELECT:
2339    if (N1C) {
2340     if (N1C->getValue())
2341        return N2;             // select true, X, Y -> X
2342      else
2343        return N3;             // select false, X, Y -> Y
2344    }
2345
2346    if (N2 == N3) return N2;   // select C, X, X -> X
2347    break;
2348  case ISD::BRCOND:
2349    if (N2C) {
2350      if (N2C->getValue()) // Unconditional branch
2351        return getNode(ISD::BR, MVT::Other, N1, N3);
2352      else
2353        return N1;         // Never-taken branch
2354    }
2355    break;
2356  case ISD::VECTOR_SHUFFLE:
2357    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2358           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2359           N3.getOpcode() == ISD::BUILD_VECTOR &&
2360           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2361           "Illegal VECTOR_SHUFFLE node!");
2362    break;
2363  case ISD::BIT_CONVERT:
2364    // Fold bit_convert nodes from a type to themselves.
2365    if (N1.getValueType() == VT)
2366      return N1;
2367    break;
2368  }
2369
2370  // Memoize node if it doesn't produce a flag.
2371  SDNode *N;
2372  SDVTList VTs = getVTList(VT);
2373  if (VT != MVT::Flag) {
2374    SDOperand Ops[] = { N1, N2, N3 };
2375    FoldingSetNodeID ID;
2376    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2377    void *IP = 0;
2378    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2379      return SDOperand(E, 0);
2380    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2381    CSEMap.InsertNode(N, IP);
2382  } else {
2383    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2384  }
2385  AllNodes.push_back(N);
2386  return SDOperand(N, 0);
2387}
2388
2389SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2390                                SDOperand N1, SDOperand N2, SDOperand N3,
2391                                SDOperand N4) {
2392  SDOperand Ops[] = { N1, N2, N3, N4 };
2393  return getNode(Opcode, VT, Ops, 4);
2394}
2395
2396SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2397                                SDOperand N1, SDOperand N2, SDOperand N3,
2398                                SDOperand N4, SDOperand N5) {
2399  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2400  return getNode(Opcode, VT, Ops, 5);
2401}
2402
2403SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2404                                  SDOperand Src, SDOperand Size,
2405                                  SDOperand Align,
2406                                  SDOperand AlwaysInline) {
2407  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2408  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2409}
2410
2411SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2412                                  SDOperand Src, SDOperand Size,
2413                                  SDOperand Align,
2414                                  SDOperand AlwaysInline) {
2415  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2416  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2417}
2418
2419SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2420                                  SDOperand Src, SDOperand Size,
2421                                  SDOperand Align,
2422                                  SDOperand AlwaysInline) {
2423  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2424  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2425}
2426
2427SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2428                                  SDOperand Ptr, SDOperand Cmp,
2429                                  SDOperand Swp, MVT::ValueType VT) {
2430  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2431  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2432  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2433  FoldingSetNodeID ID;
2434  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2435  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2436  ID.AddInteger((unsigned int)VT);
2437  void* IP = 0;
2438  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2439    return SDOperand(E, 0);
2440  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2441  CSEMap.InsertNode(N, IP);
2442  AllNodes.push_back(N);
2443  return SDOperand(N, 0);
2444}
2445
2446SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2447                                  SDOperand Ptr, SDOperand Val,
2448                                  MVT::ValueType VT) {
2449  assert((Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_SWAP)
2450         && "Invalid Atomic Op");
2451  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
2452  FoldingSetNodeID ID;
2453  SDOperand Ops[] = {Chain, Ptr, Val};
2454  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2455  ID.AddInteger((unsigned int)VT);
2456  void* IP = 0;
2457  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2458    return SDOperand(E, 0);
2459  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
2460  CSEMap.InsertNode(N, IP);
2461  AllNodes.push_back(N);
2462  return SDOperand(N, 0);
2463}
2464
2465SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2466                                SDOperand Chain, SDOperand Ptr,
2467                                const Value *SV, int SVOffset,
2468                                bool isVolatile, unsigned Alignment) {
2469  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2470    const Type *Ty = 0;
2471    if (VT != MVT::iPTR) {
2472      Ty = MVT::getTypeForValueType(VT);
2473    } else if (SV) {
2474      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2475      assert(PT && "Value for load must be a pointer");
2476      Ty = PT->getElementType();
2477    }
2478    assert(Ty && "Could not get type information for load");
2479    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2480  }
2481  SDVTList VTs = getVTList(VT, MVT::Other);
2482  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2483  SDOperand Ops[] = { Chain, Ptr, Undef };
2484  FoldingSetNodeID ID;
2485  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2486  ID.AddInteger(ISD::UNINDEXED);
2487  ID.AddInteger(ISD::NON_EXTLOAD);
2488  ID.AddInteger((unsigned int)VT);
2489  ID.AddInteger(Alignment);
2490  ID.AddInteger(isVolatile);
2491  void *IP = 0;
2492  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2493    return SDOperand(E, 0);
2494  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2495                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2496                             isVolatile);
2497  CSEMap.InsertNode(N, IP);
2498  AllNodes.push_back(N);
2499  return SDOperand(N, 0);
2500}
2501
2502SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2503                                   SDOperand Chain, SDOperand Ptr,
2504                                   const Value *SV,
2505                                   int SVOffset, MVT::ValueType EVT,
2506                                   bool isVolatile, unsigned Alignment) {
2507  // If they are asking for an extending load from/to the same thing, return a
2508  // normal load.
2509  if (VT == EVT)
2510    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2511
2512  if (MVT::isVector(VT))
2513    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2514  else
2515    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2516           "Should only be an extending load, not truncating!");
2517  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2518         "Cannot sign/zero extend a FP/Vector load!");
2519  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2520         "Cannot convert from FP to Int or Int -> FP!");
2521
2522  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2523    const Type *Ty = 0;
2524    if (VT != MVT::iPTR) {
2525      Ty = MVT::getTypeForValueType(VT);
2526    } else if (SV) {
2527      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2528      assert(PT && "Value for load must be a pointer");
2529      Ty = PT->getElementType();
2530    }
2531    assert(Ty && "Could not get type information for load");
2532    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2533  }
2534  SDVTList VTs = getVTList(VT, MVT::Other);
2535  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2536  SDOperand Ops[] = { Chain, Ptr, Undef };
2537  FoldingSetNodeID ID;
2538  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2539  ID.AddInteger(ISD::UNINDEXED);
2540  ID.AddInteger(ExtType);
2541  ID.AddInteger((unsigned int)EVT);
2542  ID.AddInteger(Alignment);
2543  ID.AddInteger(isVolatile);
2544  void *IP = 0;
2545  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2546    return SDOperand(E, 0);
2547  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2548                             SV, SVOffset, Alignment, isVolatile);
2549  CSEMap.InsertNode(N, IP);
2550  AllNodes.push_back(N);
2551  return SDOperand(N, 0);
2552}
2553
2554SDOperand
2555SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2556                             SDOperand Offset, ISD::MemIndexedMode AM) {
2557  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2558  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2559         "Load is already a indexed load!");
2560  MVT::ValueType VT = OrigLoad.getValueType();
2561  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2562  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2563  FoldingSetNodeID ID;
2564  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2565  ID.AddInteger(AM);
2566  ID.AddInteger(LD->getExtensionType());
2567  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2568  ID.AddInteger(LD->getAlignment());
2569  ID.AddInteger(LD->isVolatile());
2570  void *IP = 0;
2571  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2572    return SDOperand(E, 0);
2573  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2574                             LD->getExtensionType(), LD->getMemoryVT(),
2575                             LD->getSrcValue(), LD->getSrcValueOffset(),
2576                             LD->getAlignment(), LD->isVolatile());
2577  CSEMap.InsertNode(N, IP);
2578  AllNodes.push_back(N);
2579  return SDOperand(N, 0);
2580}
2581
2582SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2583                                 SDOperand Ptr, const Value *SV, int SVOffset,
2584                                 bool isVolatile, unsigned Alignment) {
2585  MVT::ValueType VT = Val.getValueType();
2586
2587  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2588    const Type *Ty = 0;
2589    if (VT != MVT::iPTR) {
2590      Ty = MVT::getTypeForValueType(VT);
2591    } else if (SV) {
2592      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2593      assert(PT && "Value for store must be a pointer");
2594      Ty = PT->getElementType();
2595    }
2596    assert(Ty && "Could not get type information for store");
2597    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2598  }
2599  SDVTList VTs = getVTList(MVT::Other);
2600  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2601  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2602  FoldingSetNodeID ID;
2603  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2604  ID.AddInteger(ISD::UNINDEXED);
2605  ID.AddInteger(false);
2606  ID.AddInteger((unsigned int)VT);
2607  ID.AddInteger(Alignment);
2608  ID.AddInteger(isVolatile);
2609  void *IP = 0;
2610  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2611    return SDOperand(E, 0);
2612  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2613                              VT, SV, SVOffset, Alignment, isVolatile);
2614  CSEMap.InsertNode(N, IP);
2615  AllNodes.push_back(N);
2616  return SDOperand(N, 0);
2617}
2618
2619SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2620                                      SDOperand Ptr, const Value *SV,
2621                                      int SVOffset, MVT::ValueType SVT,
2622                                      bool isVolatile, unsigned Alignment) {
2623  MVT::ValueType VT = Val.getValueType();
2624
2625  if (VT == SVT)
2626    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2627
2628  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2629         "Not a truncation?");
2630  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2631         "Can't do FP-INT conversion!");
2632
2633  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2634    const Type *Ty = 0;
2635    if (VT != MVT::iPTR) {
2636      Ty = MVT::getTypeForValueType(VT);
2637    } else if (SV) {
2638      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2639      assert(PT && "Value for store must be a pointer");
2640      Ty = PT->getElementType();
2641    }
2642    assert(Ty && "Could not get type information for store");
2643    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2644  }
2645  SDVTList VTs = getVTList(MVT::Other);
2646  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2647  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2648  FoldingSetNodeID ID;
2649  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2650  ID.AddInteger(ISD::UNINDEXED);
2651  ID.AddInteger(1);
2652  ID.AddInteger((unsigned int)SVT);
2653  ID.AddInteger(Alignment);
2654  ID.AddInteger(isVolatile);
2655  void *IP = 0;
2656  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2657    return SDOperand(E, 0);
2658  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2659                              SVT, SV, SVOffset, Alignment, isVolatile);
2660  CSEMap.InsertNode(N, IP);
2661  AllNodes.push_back(N);
2662  return SDOperand(N, 0);
2663}
2664
2665SDOperand
2666SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2667                              SDOperand Offset, ISD::MemIndexedMode AM) {
2668  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2669  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2670         "Store is already a indexed store!");
2671  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2672  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2673  FoldingSetNodeID ID;
2674  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2675  ID.AddInteger(AM);
2676  ID.AddInteger(ST->isTruncatingStore());
2677  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2678  ID.AddInteger(ST->getAlignment());
2679  ID.AddInteger(ST->isVolatile());
2680  void *IP = 0;
2681  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2682    return SDOperand(E, 0);
2683  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2684                              ST->isTruncatingStore(), ST->getMemoryVT(),
2685                              ST->getSrcValue(), ST->getSrcValueOffset(),
2686                              ST->getAlignment(), ST->isVolatile());
2687  CSEMap.InsertNode(N, IP);
2688  AllNodes.push_back(N);
2689  return SDOperand(N, 0);
2690}
2691
2692SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2693                                 SDOperand Chain, SDOperand Ptr,
2694                                 SDOperand SV) {
2695  SDOperand Ops[] = { Chain, Ptr, SV };
2696  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2697}
2698
2699SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2700                                const SDOperand *Ops, unsigned NumOps) {
2701  switch (NumOps) {
2702  case 0: return getNode(Opcode, VT);
2703  case 1: return getNode(Opcode, VT, Ops[0]);
2704  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2705  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2706  default: break;
2707  }
2708
2709  switch (Opcode) {
2710  default: break;
2711  case ISD::SELECT_CC: {
2712    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2713    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2714           "LHS and RHS of condition must have same type!");
2715    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2716           "True and False arms of SelectCC must have same type!");
2717    assert(Ops[2].getValueType() == VT &&
2718           "select_cc node must be of same type as true and false value!");
2719    break;
2720  }
2721  case ISD::BR_CC: {
2722    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2723    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2724           "LHS/RHS of comparison should match types!");
2725    break;
2726  }
2727  }
2728
2729  // Memoize nodes.
2730  SDNode *N;
2731  SDVTList VTs = getVTList(VT);
2732  if (VT != MVT::Flag) {
2733    FoldingSetNodeID ID;
2734    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2735    void *IP = 0;
2736    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2737      return SDOperand(E, 0);
2738    N = new SDNode(Opcode, VTs, Ops, NumOps);
2739    CSEMap.InsertNode(N, IP);
2740  } else {
2741    N = new SDNode(Opcode, VTs, Ops, NumOps);
2742  }
2743  AllNodes.push_back(N);
2744  return SDOperand(N, 0);
2745}
2746
2747SDOperand SelectionDAG::getNode(unsigned Opcode,
2748                                std::vector<MVT::ValueType> &ResultTys,
2749                                const SDOperand *Ops, unsigned NumOps) {
2750  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2751                 Ops, NumOps);
2752}
2753
2754SDOperand SelectionDAG::getNode(unsigned Opcode,
2755                                const MVT::ValueType *VTs, unsigned NumVTs,
2756                                const SDOperand *Ops, unsigned NumOps) {
2757  if (NumVTs == 1)
2758    return getNode(Opcode, VTs[0], Ops, NumOps);
2759  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2760}
2761
2762SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2763                                const SDOperand *Ops, unsigned NumOps) {
2764  if (VTList.NumVTs == 1)
2765    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2766
2767  switch (Opcode) {
2768  // FIXME: figure out how to safely handle things like
2769  // int foo(int x) { return 1 << (x & 255); }
2770  // int bar() { return foo(256); }
2771#if 0
2772  case ISD::SRA_PARTS:
2773  case ISD::SRL_PARTS:
2774  case ISD::SHL_PARTS:
2775    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2776        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2777      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2778    else if (N3.getOpcode() == ISD::AND)
2779      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2780        // If the and is only masking out bits that cannot effect the shift,
2781        // eliminate the and.
2782        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2783        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2784          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2785      }
2786    break;
2787#endif
2788  }
2789
2790  // Memoize the node unless it returns a flag.
2791  SDNode *N;
2792  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2793    FoldingSetNodeID ID;
2794    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2795    void *IP = 0;
2796    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2797      return SDOperand(E, 0);
2798    if (NumOps == 1)
2799      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2800    else if (NumOps == 2)
2801      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2802    else if (NumOps == 3)
2803      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2804    else
2805      N = new SDNode(Opcode, VTList, Ops, NumOps);
2806    CSEMap.InsertNode(N, IP);
2807  } else {
2808    if (NumOps == 1)
2809      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2810    else if (NumOps == 2)
2811      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2812    else if (NumOps == 3)
2813      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2814    else
2815      N = new SDNode(Opcode, VTList, Ops, NumOps);
2816  }
2817  AllNodes.push_back(N);
2818  return SDOperand(N, 0);
2819}
2820
2821SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2822  return getNode(Opcode, VTList, 0, 0);
2823}
2824
2825SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2826                                SDOperand N1) {
2827  SDOperand Ops[] = { N1 };
2828  return getNode(Opcode, VTList, Ops, 1);
2829}
2830
2831SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2832                                SDOperand N1, SDOperand N2) {
2833  SDOperand Ops[] = { N1, N2 };
2834  return getNode(Opcode, VTList, Ops, 2);
2835}
2836
2837SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2838                                SDOperand N1, SDOperand N2, SDOperand N3) {
2839  SDOperand Ops[] = { N1, N2, N3 };
2840  return getNode(Opcode, VTList, Ops, 3);
2841}
2842
2843SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2844                                SDOperand N1, SDOperand N2, SDOperand N3,
2845                                SDOperand N4) {
2846  SDOperand Ops[] = { N1, N2, N3, N4 };
2847  return getNode(Opcode, VTList, Ops, 4);
2848}
2849
2850SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2851                                SDOperand N1, SDOperand N2, SDOperand N3,
2852                                SDOperand N4, SDOperand N5) {
2853  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2854  return getNode(Opcode, VTList, Ops, 5);
2855}
2856
2857SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2858  return makeVTList(SDNode::getValueTypeList(VT), 1);
2859}
2860
2861SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2862  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2863       E = VTList.end(); I != E; ++I) {
2864    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2865      return makeVTList(&(*I)[0], 2);
2866  }
2867  std::vector<MVT::ValueType> V;
2868  V.push_back(VT1);
2869  V.push_back(VT2);
2870  VTList.push_front(V);
2871  return makeVTList(&(*VTList.begin())[0], 2);
2872}
2873SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2874                                 MVT::ValueType VT3) {
2875  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2876       E = VTList.end(); I != E; ++I) {
2877    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2878        (*I)[2] == VT3)
2879      return makeVTList(&(*I)[0], 3);
2880  }
2881  std::vector<MVT::ValueType> V;
2882  V.push_back(VT1);
2883  V.push_back(VT2);
2884  V.push_back(VT3);
2885  VTList.push_front(V);
2886  return makeVTList(&(*VTList.begin())[0], 3);
2887}
2888
2889SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2890  switch (NumVTs) {
2891    case 0: assert(0 && "Cannot have nodes without results!");
2892    case 1: return getVTList(VTs[0]);
2893    case 2: return getVTList(VTs[0], VTs[1]);
2894    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2895    default: break;
2896  }
2897
2898  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2899       E = VTList.end(); I != E; ++I) {
2900    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2901
2902    bool NoMatch = false;
2903    for (unsigned i = 2; i != NumVTs; ++i)
2904      if (VTs[i] != (*I)[i]) {
2905        NoMatch = true;
2906        break;
2907      }
2908    if (!NoMatch)
2909      return makeVTList(&*I->begin(), NumVTs);
2910  }
2911
2912  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2913  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2914}
2915
2916
2917/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2918/// specified operands.  If the resultant node already exists in the DAG,
2919/// this does not modify the specified node, instead it returns the node that
2920/// already exists.  If the resultant node does not exist in the DAG, the
2921/// input node is returned.  As a degenerate case, if you specify the same
2922/// input operands as the node already has, the input node is returned.
2923SDOperand SelectionDAG::
2924UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2925  SDNode *N = InN.Val;
2926  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2927
2928  // Check to see if there is no change.
2929  if (Op == N->getOperand(0)) return InN;
2930
2931  // See if the modified node already exists.
2932  void *InsertPos = 0;
2933  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2934    return SDOperand(Existing, InN.ResNo);
2935
2936  // Nope it doesn't.  Remove the node from it's current place in the maps.
2937  if (InsertPos)
2938    RemoveNodeFromCSEMaps(N);
2939
2940  // Now we update the operands.
2941  N->OperandList[0].Val->removeUser(N);
2942  Op.Val->addUser(N);
2943  N->OperandList[0] = Op;
2944
2945  // If this gets put into a CSE map, add it.
2946  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2947  return InN;
2948}
2949
2950SDOperand SelectionDAG::
2951UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2952  SDNode *N = InN.Val;
2953  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2954
2955  // Check to see if there is no change.
2956  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2957    return InN;   // No operands changed, just return the input node.
2958
2959  // See if the modified node already exists.
2960  void *InsertPos = 0;
2961  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2962    return SDOperand(Existing, InN.ResNo);
2963
2964  // Nope it doesn't.  Remove the node from it's current place in the maps.
2965  if (InsertPos)
2966    RemoveNodeFromCSEMaps(N);
2967
2968  // Now we update the operands.
2969  if (N->OperandList[0] != Op1) {
2970    N->OperandList[0].Val->removeUser(N);
2971    Op1.Val->addUser(N);
2972    N->OperandList[0] = Op1;
2973  }
2974  if (N->OperandList[1] != Op2) {
2975    N->OperandList[1].Val->removeUser(N);
2976    Op2.Val->addUser(N);
2977    N->OperandList[1] = Op2;
2978  }
2979
2980  // If this gets put into a CSE map, add it.
2981  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2982  return InN;
2983}
2984
2985SDOperand SelectionDAG::
2986UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2987  SDOperand Ops[] = { Op1, Op2, Op3 };
2988  return UpdateNodeOperands(N, Ops, 3);
2989}
2990
2991SDOperand SelectionDAG::
2992UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2993                   SDOperand Op3, SDOperand Op4) {
2994  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2995  return UpdateNodeOperands(N, Ops, 4);
2996}
2997
2998SDOperand SelectionDAG::
2999UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3000                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3001  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3002  return UpdateNodeOperands(N, Ops, 5);
3003}
3004
3005
3006SDOperand SelectionDAG::
3007UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
3008  SDNode *N = InN.Val;
3009  assert(N->getNumOperands() == NumOps &&
3010         "Update with wrong number of operands");
3011
3012  // Check to see if there is no change.
3013  bool AnyChange = false;
3014  for (unsigned i = 0; i != NumOps; ++i) {
3015    if (Ops[i] != N->getOperand(i)) {
3016      AnyChange = true;
3017      break;
3018    }
3019  }
3020
3021  // No operands changed, just return the input node.
3022  if (!AnyChange) return InN;
3023
3024  // See if the modified node already exists.
3025  void *InsertPos = 0;
3026  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3027    return SDOperand(Existing, InN.ResNo);
3028
3029  // Nope it doesn't.  Remove the node from it's current place in the maps.
3030  if (InsertPos)
3031    RemoveNodeFromCSEMaps(N);
3032
3033  // Now we update the operands.
3034  for (unsigned i = 0; i != NumOps; ++i) {
3035    if (N->OperandList[i] != Ops[i]) {
3036      N->OperandList[i].Val->removeUser(N);
3037      Ops[i].Val->addUser(N);
3038      N->OperandList[i] = Ops[i];
3039    }
3040  }
3041
3042  // If this gets put into a CSE map, add it.
3043  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3044  return InN;
3045}
3046
3047
3048/// MorphNodeTo - This frees the operands of the current node, resets the
3049/// opcode, types, and operands to the specified value.  This should only be
3050/// used by the SelectionDAG class.
3051void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3052                         const SDOperand *Ops, unsigned NumOps) {
3053  NodeType = Opc;
3054  ValueList = L.VTs;
3055  NumValues = L.NumVTs;
3056
3057  // Clear the operands list, updating used nodes to remove this from their
3058  // use list.
3059  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3060    I->Val->removeUser(this);
3061
3062  // If NumOps is larger than the # of operands we currently have, reallocate
3063  // the operand list.
3064  if (NumOps > NumOperands) {
3065    if (OperandsNeedDelete)
3066      delete [] OperandList;
3067    OperandList = new SDOperand[NumOps];
3068    OperandsNeedDelete = true;
3069  }
3070
3071  // Assign the new operands.
3072  NumOperands = NumOps;
3073
3074  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3075    OperandList[i] = Ops[i];
3076    SDNode *N = OperandList[i].Val;
3077    N->Uses.push_back(this);
3078  }
3079}
3080
3081/// SelectNodeTo - These are used for target selectors to *mutate* the
3082/// specified node to have the specified return type, Target opcode, and
3083/// operands.  Note that target opcodes are stored as
3084/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3085///
3086/// Note that SelectNodeTo returns the resultant node.  If there is already a
3087/// node of the specified opcode and operands, it returns that node instead of
3088/// the current one.
3089SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3090                                   MVT::ValueType VT) {
3091  SDVTList VTs = getVTList(VT);
3092  FoldingSetNodeID ID;
3093  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3094  void *IP = 0;
3095  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3096    return ON;
3097
3098  RemoveNodeFromCSEMaps(N);
3099
3100  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3101
3102  CSEMap.InsertNode(N, IP);
3103  return N;
3104}
3105
3106SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3107                                   MVT::ValueType VT, SDOperand Op1) {
3108  // If an identical node already exists, use it.
3109  SDVTList VTs = getVTList(VT);
3110  SDOperand Ops[] = { Op1 };
3111
3112  FoldingSetNodeID ID;
3113  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3114  void *IP = 0;
3115  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3116    return ON;
3117
3118  RemoveNodeFromCSEMaps(N);
3119  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3120  CSEMap.InsertNode(N, IP);
3121  return N;
3122}
3123
3124SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3125                                   MVT::ValueType VT, SDOperand Op1,
3126                                   SDOperand Op2) {
3127  // If an identical node already exists, use it.
3128  SDVTList VTs = getVTList(VT);
3129  SDOperand Ops[] = { Op1, Op2 };
3130
3131  FoldingSetNodeID ID;
3132  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3133  void *IP = 0;
3134  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3135    return ON;
3136
3137  RemoveNodeFromCSEMaps(N);
3138
3139  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3140
3141  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3142  return N;
3143}
3144
3145SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3146                                   MVT::ValueType VT, SDOperand Op1,
3147                                   SDOperand Op2, SDOperand Op3) {
3148  // If an identical node already exists, use it.
3149  SDVTList VTs = getVTList(VT);
3150  SDOperand Ops[] = { Op1, Op2, Op3 };
3151  FoldingSetNodeID ID;
3152  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3153  void *IP = 0;
3154  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3155    return ON;
3156
3157  RemoveNodeFromCSEMaps(N);
3158
3159  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3160
3161  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3162  return N;
3163}
3164
3165SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3166                                   MVT::ValueType VT, const SDOperand *Ops,
3167                                   unsigned NumOps) {
3168  // If an identical node already exists, use it.
3169  SDVTList VTs = getVTList(VT);
3170  FoldingSetNodeID ID;
3171  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3172  void *IP = 0;
3173  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3174    return ON;
3175
3176  RemoveNodeFromCSEMaps(N);
3177  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3178
3179  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3180  return N;
3181}
3182
3183SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3184                                   MVT::ValueType VT1, MVT::ValueType VT2,
3185                                   SDOperand Op1, SDOperand Op2) {
3186  SDVTList VTs = getVTList(VT1, VT2);
3187  FoldingSetNodeID ID;
3188  SDOperand Ops[] = { Op1, Op2 };
3189  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3190  void *IP = 0;
3191  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3192    return ON;
3193
3194  RemoveNodeFromCSEMaps(N);
3195  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3196  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3197  return N;
3198}
3199
3200SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3201                                   MVT::ValueType VT1, MVT::ValueType VT2,
3202                                   SDOperand Op1, SDOperand Op2,
3203                                   SDOperand Op3) {
3204  // If an identical node already exists, use it.
3205  SDVTList VTs = getVTList(VT1, VT2);
3206  SDOperand Ops[] = { Op1, Op2, Op3 };
3207  FoldingSetNodeID ID;
3208  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3209  void *IP = 0;
3210  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3211    return ON;
3212
3213  RemoveNodeFromCSEMaps(N);
3214
3215  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3216  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3217  return N;
3218}
3219
3220
3221/// getTargetNode - These are used for target selectors to create a new node
3222/// with specified return type(s), target opcode, and operands.
3223///
3224/// Note that getTargetNode returns the resultant node.  If there is already a
3225/// node of the specified opcode and operands, it returns that node instead of
3226/// the current one.
3227SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3228  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3229}
3230SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3231                                    SDOperand Op1) {
3232  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3233}
3234SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3235                                    SDOperand Op1, SDOperand Op2) {
3236  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3237}
3238SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3239                                    SDOperand Op1, SDOperand Op2,
3240                                    SDOperand Op3) {
3241  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3242}
3243SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3244                                    const SDOperand *Ops, unsigned NumOps) {
3245  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3246}
3247SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3248                                    MVT::ValueType VT2) {
3249  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3250  SDOperand Op;
3251  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3252}
3253SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3254                                    MVT::ValueType VT2, SDOperand Op1) {
3255  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3256  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3257}
3258SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3259                                    MVT::ValueType VT2, SDOperand Op1,
3260                                    SDOperand Op2) {
3261  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3262  SDOperand Ops[] = { Op1, Op2 };
3263  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3264}
3265SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3266                                    MVT::ValueType VT2, SDOperand Op1,
3267                                    SDOperand Op2, SDOperand Op3) {
3268  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3269  SDOperand Ops[] = { Op1, Op2, Op3 };
3270  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3271}
3272SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3273                                    MVT::ValueType VT2,
3274                                    const SDOperand *Ops, unsigned NumOps) {
3275  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3276  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3277}
3278SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3279                                    MVT::ValueType VT2, MVT::ValueType VT3,
3280                                    SDOperand Op1, SDOperand Op2) {
3281  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3282  SDOperand Ops[] = { Op1, Op2 };
3283  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3284}
3285SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3286                                    MVT::ValueType VT2, MVT::ValueType VT3,
3287                                    SDOperand Op1, SDOperand Op2,
3288                                    SDOperand Op3) {
3289  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3290  SDOperand Ops[] = { Op1, Op2, Op3 };
3291  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3292}
3293SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3294                                    MVT::ValueType VT2, MVT::ValueType VT3,
3295                                    const SDOperand *Ops, unsigned NumOps) {
3296  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3297  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3298}
3299SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3300                                    MVT::ValueType VT2, MVT::ValueType VT3,
3301                                    MVT::ValueType VT4,
3302                                    const SDOperand *Ops, unsigned NumOps) {
3303  std::vector<MVT::ValueType> VTList;
3304  VTList.push_back(VT1);
3305  VTList.push_back(VT2);
3306  VTList.push_back(VT3);
3307  VTList.push_back(VT4);
3308  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3309  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3310}
3311SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3312                                    std::vector<MVT::ValueType> &ResultTys,
3313                                    const SDOperand *Ops, unsigned NumOps) {
3314  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3315  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3316                 Ops, NumOps).Val;
3317}
3318
3319
3320/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3321/// This can cause recursive merging of nodes in the DAG.
3322///
3323/// This version assumes From has a single result value.
3324///
3325void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3326                                      DAGUpdateListener *UpdateListener) {
3327  SDNode *From = FromN.Val;
3328  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3329         "Cannot replace with this method!");
3330  assert(From != To.Val && "Cannot replace uses of with self");
3331
3332  while (!From->use_empty()) {
3333    // Process users until they are all gone.
3334    SDNode *U = *From->use_begin();
3335
3336    // This node is about to morph, remove its old self from the CSE maps.
3337    RemoveNodeFromCSEMaps(U);
3338
3339    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3340         I != E; ++I)
3341      if (I->Val == From) {
3342        From->removeUser(U);
3343        *I = To;
3344        To.Val->addUser(U);
3345      }
3346
3347    // Now that we have modified U, add it back to the CSE maps.  If it already
3348    // exists there, recursively merge the results together.
3349    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3350      ReplaceAllUsesWith(U, Existing, UpdateListener);
3351      // U is now dead.  Inform the listener if it exists and delete it.
3352      if (UpdateListener)
3353        UpdateListener->NodeDeleted(U);
3354      DeleteNodeNotInCSEMaps(U);
3355    } else {
3356      // If the node doesn't already exist, we updated it.  Inform a listener if
3357      // it exists.
3358      if (UpdateListener)
3359        UpdateListener->NodeUpdated(U);
3360    }
3361  }
3362}
3363
3364/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3365/// This can cause recursive merging of nodes in the DAG.
3366///
3367/// This version assumes From/To have matching types and numbers of result
3368/// values.
3369///
3370void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3371                                      DAGUpdateListener *UpdateListener) {
3372  assert(From != To && "Cannot replace uses of with self");
3373  assert(From->getNumValues() == To->getNumValues() &&
3374         "Cannot use this version of ReplaceAllUsesWith!");
3375  if (From->getNumValues() == 1)   // If possible, use the faster version.
3376    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3377                              UpdateListener);
3378
3379  while (!From->use_empty()) {
3380    // Process users until they are all gone.
3381    SDNode *U = *From->use_begin();
3382
3383    // This node is about to morph, remove its old self from the CSE maps.
3384    RemoveNodeFromCSEMaps(U);
3385
3386    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3387         I != E; ++I)
3388      if (I->Val == From) {
3389        From->removeUser(U);
3390        I->Val = To;
3391        To->addUser(U);
3392      }
3393
3394    // Now that we have modified U, add it back to the CSE maps.  If it already
3395    // exists there, recursively merge the results together.
3396    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3397      ReplaceAllUsesWith(U, Existing, UpdateListener);
3398      // U is now dead.  Inform the listener if it exists and delete it.
3399      if (UpdateListener)
3400        UpdateListener->NodeDeleted(U);
3401      DeleteNodeNotInCSEMaps(U);
3402    } else {
3403      // If the node doesn't already exist, we updated it.  Inform a listener if
3404      // it exists.
3405      if (UpdateListener)
3406        UpdateListener->NodeUpdated(U);
3407    }
3408  }
3409}
3410
3411/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3412/// This can cause recursive merging of nodes in the DAG.
3413///
3414/// This version can replace From with any result values.  To must match the
3415/// number and types of values returned by From.
3416void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3417                                      const SDOperand *To,
3418                                      DAGUpdateListener *UpdateListener) {
3419  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3420    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3421
3422  while (!From->use_empty()) {
3423    // Process users until they are all gone.
3424    SDNode *U = *From->use_begin();
3425
3426    // This node is about to morph, remove its old self from the CSE maps.
3427    RemoveNodeFromCSEMaps(U);
3428
3429    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3430         I != E; ++I)
3431      if (I->Val == From) {
3432        const SDOperand &ToOp = To[I->ResNo];
3433        From->removeUser(U);
3434        *I = ToOp;
3435        ToOp.Val->addUser(U);
3436      }
3437
3438    // Now that we have modified U, add it back to the CSE maps.  If it already
3439    // exists there, recursively merge the results together.
3440    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3441      ReplaceAllUsesWith(U, Existing, UpdateListener);
3442      // U is now dead.  Inform the listener if it exists and delete it.
3443      if (UpdateListener)
3444        UpdateListener->NodeDeleted(U);
3445      DeleteNodeNotInCSEMaps(U);
3446    } else {
3447      // If the node doesn't already exist, we updated it.  Inform a listener if
3448      // it exists.
3449      if (UpdateListener)
3450        UpdateListener->NodeUpdated(U);
3451    }
3452  }
3453}
3454
3455namespace {
3456  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3457  /// any deleted nodes from the set passed into its constructor and recursively
3458  /// notifies another update listener if specified.
3459  class ChainedSetUpdaterListener :
3460  public SelectionDAG::DAGUpdateListener {
3461    SmallSetVector<SDNode*, 16> &Set;
3462    SelectionDAG::DAGUpdateListener *Chain;
3463  public:
3464    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3465                              SelectionDAG::DAGUpdateListener *chain)
3466      : Set(set), Chain(chain) {}
3467
3468    virtual void NodeDeleted(SDNode *N) {
3469      Set.remove(N);
3470      if (Chain) Chain->NodeDeleted(N);
3471    }
3472    virtual void NodeUpdated(SDNode *N) {
3473      if (Chain) Chain->NodeUpdated(N);
3474    }
3475  };
3476}
3477
3478/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3479/// uses of other values produced by From.Val alone.  The Deleted vector is
3480/// handled the same way as for ReplaceAllUsesWith.
3481void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3482                                             DAGUpdateListener *UpdateListener){
3483  assert(From != To && "Cannot replace a value with itself");
3484
3485  // Handle the simple, trivial, case efficiently.
3486  if (From.Val->getNumValues() == 1) {
3487    ReplaceAllUsesWith(From, To, UpdateListener);
3488    return;
3489  }
3490
3491  if (From.use_empty()) return;
3492
3493  // Get all of the users of From.Val.  We want these in a nice,
3494  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3495  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3496
3497  // When one of the recursive merges deletes nodes from the graph, we need to
3498  // make sure that UpdateListener is notified *and* that the node is removed
3499  // from Users if present.  CSUL does this.
3500  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3501
3502  while (!Users.empty()) {
3503    // We know that this user uses some value of From.  If it is the right
3504    // value, update it.
3505    SDNode *User = Users.back();
3506    Users.pop_back();
3507
3508    // Scan for an operand that matches From.
3509    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3510    for (; Op != E; ++Op)
3511      if (*Op == From) break;
3512
3513    // If there are no matches, the user must use some other result of From.
3514    if (Op == E) continue;
3515
3516    // Okay, we know this user needs to be updated.  Remove its old self
3517    // from the CSE maps.
3518    RemoveNodeFromCSEMaps(User);
3519
3520    // Update all operands that match "From" in case there are multiple uses.
3521    for (; Op != E; ++Op) {
3522      if (*Op == From) {
3523        From.Val->removeUser(User);
3524        *Op = To;
3525        To.Val->addUser(User);
3526      }
3527    }
3528
3529    // Now that we have modified User, add it back to the CSE maps.  If it
3530    // already exists there, recursively merge the results together.
3531    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3532    if (!Existing) {
3533      if (UpdateListener) UpdateListener->NodeUpdated(User);
3534      continue;  // Continue on to next user.
3535    }
3536
3537    // If there was already an existing matching node, use ReplaceAllUsesWith
3538    // to replace the dead one with the existing one.  This can cause
3539    // recursive merging of other unrelated nodes down the line.  The merging
3540    // can cause deletion of nodes that used the old value.  To handle this, we
3541    // use CSUL to remove them from the Users set.
3542    ReplaceAllUsesWith(User, Existing, &CSUL);
3543
3544    // User is now dead.  Notify a listener if present.
3545    if (UpdateListener) UpdateListener->NodeDeleted(User);
3546    DeleteNodeNotInCSEMaps(User);
3547  }
3548}
3549
3550
3551/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3552/// their allnodes order. It returns the maximum id.
3553unsigned SelectionDAG::AssignNodeIds() {
3554  unsigned Id = 0;
3555  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3556    SDNode *N = I;
3557    N->setNodeId(Id++);
3558  }
3559  return Id;
3560}
3561
3562/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3563/// based on their topological order. It returns the maximum id and a vector
3564/// of the SDNodes* in assigned order by reference.
3565unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3566  unsigned DAGSize = AllNodes.size();
3567  std::vector<unsigned> InDegree(DAGSize);
3568  std::vector<SDNode*> Sources;
3569
3570  // Use a two pass approach to avoid using a std::map which is slow.
3571  unsigned Id = 0;
3572  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3573    SDNode *N = I;
3574    N->setNodeId(Id++);
3575    unsigned Degree = N->use_size();
3576    InDegree[N->getNodeId()] = Degree;
3577    if (Degree == 0)
3578      Sources.push_back(N);
3579  }
3580
3581  TopOrder.clear();
3582  while (!Sources.empty()) {
3583    SDNode *N = Sources.back();
3584    Sources.pop_back();
3585    TopOrder.push_back(N);
3586    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3587      SDNode *P = I->Val;
3588      unsigned Degree = --InDegree[P->getNodeId()];
3589      if (Degree == 0)
3590        Sources.push_back(P);
3591    }
3592  }
3593
3594  // Second pass, assign the actual topological order as node ids.
3595  Id = 0;
3596  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3597       TI != TE; ++TI)
3598    (*TI)->setNodeId(Id++);
3599
3600  return Id;
3601}
3602
3603
3604
3605//===----------------------------------------------------------------------===//
3606//                              SDNode Class
3607//===----------------------------------------------------------------------===//
3608
3609// Out-of-line virtual method to give class a home.
3610void SDNode::ANCHOR() {}
3611void UnarySDNode::ANCHOR() {}
3612void BinarySDNode::ANCHOR() {}
3613void TernarySDNode::ANCHOR() {}
3614void HandleSDNode::ANCHOR() {}
3615void StringSDNode::ANCHOR() {}
3616void ConstantSDNode::ANCHOR() {}
3617void ConstantFPSDNode::ANCHOR() {}
3618void GlobalAddressSDNode::ANCHOR() {}
3619void FrameIndexSDNode::ANCHOR() {}
3620void JumpTableSDNode::ANCHOR() {}
3621void ConstantPoolSDNode::ANCHOR() {}
3622void BasicBlockSDNode::ANCHOR() {}
3623void SrcValueSDNode::ANCHOR() {}
3624void MemOperandSDNode::ANCHOR() {}
3625void RegisterSDNode::ANCHOR() {}
3626void ExternalSymbolSDNode::ANCHOR() {}
3627void CondCodeSDNode::ANCHOR() {}
3628void VTSDNode::ANCHOR() {}
3629void LoadSDNode::ANCHOR() {}
3630void StoreSDNode::ANCHOR() {}
3631void AtomicSDNode::ANCHOR() {}
3632
3633HandleSDNode::~HandleSDNode() {
3634  SDVTList VTs = { 0, 0 };
3635  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3636}
3637
3638GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3639                                         MVT::ValueType VT, int o)
3640  : SDNode(isa<GlobalVariable>(GA) &&
3641           cast<GlobalVariable>(GA)->isThreadLocal() ?
3642           // Thread Local
3643           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3644           // Non Thread Local
3645           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3646           getSDVTList(VT)), Offset(o) {
3647  TheGlobal = const_cast<GlobalValue*>(GA);
3648}
3649
3650/// getMemOperand - Return a MemOperand object describing the memory
3651/// reference performed by this load or store.
3652MemOperand LSBaseSDNode::getMemOperand() const {
3653  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3654  int Flags =
3655    getOpcode() == ISD::LOAD ? MemOperand::MOLoad : MemOperand::MOStore;
3656  if (IsVolatile) Flags |= MemOperand::MOVolatile;
3657
3658  // Check if the load references a frame index, and does not have
3659  // an SV attached.
3660  const FrameIndexSDNode *FI =
3661    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3662  if (!getSrcValue() && FI)
3663    return MemOperand(PseudoSourceValue::getFixedStack(), Flags,
3664                      FI->getIndex(), Size, Alignment);
3665  else
3666    return MemOperand(getSrcValue(), Flags,
3667                      getSrcValueOffset(), Size, Alignment);
3668}
3669
3670/// Profile - Gather unique data for the node.
3671///
3672void SDNode::Profile(FoldingSetNodeID &ID) {
3673  AddNodeIDNode(ID, this);
3674}
3675
3676/// getValueTypeList - Return a pointer to the specified value type.
3677///
3678const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3679  if (MVT::isExtendedVT(VT)) {
3680    static std::set<MVT::ValueType> EVTs;
3681    return &(*EVTs.insert(VT).first);
3682  } else {
3683    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3684    VTs[VT] = VT;
3685    return &VTs[VT];
3686  }
3687}
3688
3689/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3690/// indicated value.  This method ignores uses of other values defined by this
3691/// operation.
3692bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3693  assert(Value < getNumValues() && "Bad value!");
3694
3695  // If there is only one value, this is easy.
3696  if (getNumValues() == 1)
3697    return use_size() == NUses;
3698  if (use_size() < NUses) return false;
3699
3700  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3701
3702  SmallPtrSet<SDNode*, 32> UsersHandled;
3703
3704  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3705    SDNode *User = *UI;
3706    if (User->getNumOperands() == 1 ||
3707        UsersHandled.insert(User))     // First time we've seen this?
3708      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3709        if (User->getOperand(i) == TheValue) {
3710          if (NUses == 0)
3711            return false;   // too many uses
3712          --NUses;
3713        }
3714  }
3715
3716  // Found exactly the right number of uses?
3717  return NUses == 0;
3718}
3719
3720
3721/// hasAnyUseOfValue - Return true if there are any use of the indicated
3722/// value. This method ignores uses of other values defined by this operation.
3723bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3724  assert(Value < getNumValues() && "Bad value!");
3725
3726  if (use_empty()) return false;
3727
3728  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3729
3730  SmallPtrSet<SDNode*, 32> UsersHandled;
3731
3732  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3733    SDNode *User = *UI;
3734    if (User->getNumOperands() == 1 ||
3735        UsersHandled.insert(User))     // First time we've seen this?
3736      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3737        if (User->getOperand(i) == TheValue) {
3738          return true;
3739        }
3740  }
3741
3742  return false;
3743}
3744
3745
3746/// isOnlyUse - Return true if this node is the only use of N.
3747///
3748bool SDNode::isOnlyUse(SDNode *N) const {
3749  bool Seen = false;
3750  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3751    SDNode *User = *I;
3752    if (User == this)
3753      Seen = true;
3754    else
3755      return false;
3756  }
3757
3758  return Seen;
3759}
3760
3761/// isOperand - Return true if this node is an operand of N.
3762///
3763bool SDOperand::isOperand(SDNode *N) const {
3764  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3765    if (*this == N->getOperand(i))
3766      return true;
3767  return false;
3768}
3769
3770bool SDNode::isOperand(SDNode *N) const {
3771  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3772    if (this == N->OperandList[i].Val)
3773      return true;
3774  return false;
3775}
3776
3777/// reachesChainWithoutSideEffects - Return true if this operand (which must
3778/// be a chain) reaches the specified operand without crossing any
3779/// side-effecting instructions.  In practice, this looks through token
3780/// factors and non-volatile loads.  In order to remain efficient, this only
3781/// looks a couple of nodes in, it does not do an exhaustive search.
3782bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3783                                               unsigned Depth) const {
3784  if (*this == Dest) return true;
3785
3786  // Don't search too deeply, we just want to be able to see through
3787  // TokenFactor's etc.
3788  if (Depth == 0) return false;
3789
3790  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3791  // of the operands of the TF reach dest, then we can do the xform.
3792  if (getOpcode() == ISD::TokenFactor) {
3793    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3794      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3795        return true;
3796    return false;
3797  }
3798
3799  // Loads don't have side effects, look through them.
3800  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3801    if (!Ld->isVolatile())
3802      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3803  }
3804  return false;
3805}
3806
3807
3808static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3809                            SmallPtrSet<SDNode *, 32> &Visited) {
3810  if (found || !Visited.insert(N))
3811    return;
3812
3813  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3814    SDNode *Op = N->getOperand(i).Val;
3815    if (Op == P) {
3816      found = true;
3817      return;
3818    }
3819    findPredecessor(Op, P, found, Visited);
3820  }
3821}
3822
3823/// isPredecessor - Return true if this node is a predecessor of N. This node
3824/// is either an operand of N or it can be reached by recursively traversing
3825/// up the operands.
3826/// NOTE: this is an expensive method. Use it carefully.
3827bool SDNode::isPredecessor(SDNode *N) const {
3828  SmallPtrSet<SDNode *, 32> Visited;
3829  bool found = false;
3830  findPredecessor(N, this, found, Visited);
3831  return found;
3832}
3833
3834uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3835  assert(Num < NumOperands && "Invalid child # of SDNode!");
3836  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3837}
3838
3839std::string SDNode::getOperationName(const SelectionDAG *G) const {
3840  switch (getOpcode()) {
3841  default:
3842    if (getOpcode() < ISD::BUILTIN_OP_END)
3843      return "<<Unknown DAG Node>>";
3844    else {
3845      if (G) {
3846        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3847          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3848            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3849
3850        TargetLowering &TLI = G->getTargetLoweringInfo();
3851        const char *Name =
3852          TLI.getTargetNodeName(getOpcode());
3853        if (Name) return Name;
3854      }
3855
3856      return "<<Unknown Target Node>>";
3857    }
3858
3859  case ISD::MEMBARRIER:    return "MemBarrier";
3860  case ISD::ATOMIC_LCS:    return "AtomicLCS";
3861  case ISD::ATOMIC_LAS:    return "AtomicLAS";
3862  case ISD::ATOMIC_SWAP:    return "AtomicSWAP";
3863  case ISD::PCMARKER:      return "PCMarker";
3864  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3865  case ISD::SRCVALUE:      return "SrcValue";
3866  case ISD::MEMOPERAND:    return "MemOperand";
3867  case ISD::EntryToken:    return "EntryToken";
3868  case ISD::TokenFactor:   return "TokenFactor";
3869  case ISD::AssertSext:    return "AssertSext";
3870  case ISD::AssertZext:    return "AssertZext";
3871
3872  case ISD::STRING:        return "String";
3873  case ISD::BasicBlock:    return "BasicBlock";
3874  case ISD::VALUETYPE:     return "ValueType";
3875  case ISD::Register:      return "Register";
3876
3877  case ISD::Constant:      return "Constant";
3878  case ISD::ConstantFP:    return "ConstantFP";
3879  case ISD::GlobalAddress: return "GlobalAddress";
3880  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3881  case ISD::FrameIndex:    return "FrameIndex";
3882  case ISD::JumpTable:     return "JumpTable";
3883  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3884  case ISD::RETURNADDR: return "RETURNADDR";
3885  case ISD::FRAMEADDR: return "FRAMEADDR";
3886  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3887  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3888  case ISD::EHSELECTION: return "EHSELECTION";
3889  case ISD::EH_RETURN: return "EH_RETURN";
3890  case ISD::ConstantPool:  return "ConstantPool";
3891  case ISD::ExternalSymbol: return "ExternalSymbol";
3892  case ISD::INTRINSIC_WO_CHAIN: {
3893    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3894    return Intrinsic::getName((Intrinsic::ID)IID);
3895  }
3896  case ISD::INTRINSIC_VOID:
3897  case ISD::INTRINSIC_W_CHAIN: {
3898    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3899    return Intrinsic::getName((Intrinsic::ID)IID);
3900  }
3901
3902  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3903  case ISD::TargetConstant: return "TargetConstant";
3904  case ISD::TargetConstantFP:return "TargetConstantFP";
3905  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3906  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3907  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3908  case ISD::TargetJumpTable:  return "TargetJumpTable";
3909  case ISD::TargetConstantPool:  return "TargetConstantPool";
3910  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3911
3912  case ISD::CopyToReg:     return "CopyToReg";
3913  case ISD::CopyFromReg:   return "CopyFromReg";
3914  case ISD::UNDEF:         return "undef";
3915  case ISD::MERGE_VALUES:  return "merge_values";
3916  case ISD::INLINEASM:     return "inlineasm";
3917  case ISD::LABEL:         return "label";
3918  case ISD::DECLARE:       return "declare";
3919  case ISD::HANDLENODE:    return "handlenode";
3920  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3921  case ISD::CALL:          return "call";
3922
3923  // Unary operators
3924  case ISD::FABS:   return "fabs";
3925  case ISD::FNEG:   return "fneg";
3926  case ISD::FSQRT:  return "fsqrt";
3927  case ISD::FSIN:   return "fsin";
3928  case ISD::FCOS:   return "fcos";
3929  case ISD::FPOWI:  return "fpowi";
3930  case ISD::FPOW:   return "fpow";
3931
3932  // Binary operators
3933  case ISD::ADD:    return "add";
3934  case ISD::SUB:    return "sub";
3935  case ISD::MUL:    return "mul";
3936  case ISD::MULHU:  return "mulhu";
3937  case ISD::MULHS:  return "mulhs";
3938  case ISD::SDIV:   return "sdiv";
3939  case ISD::UDIV:   return "udiv";
3940  case ISD::SREM:   return "srem";
3941  case ISD::UREM:   return "urem";
3942  case ISD::SMUL_LOHI:  return "smul_lohi";
3943  case ISD::UMUL_LOHI:  return "umul_lohi";
3944  case ISD::SDIVREM:    return "sdivrem";
3945  case ISD::UDIVREM:    return "divrem";
3946  case ISD::AND:    return "and";
3947  case ISD::OR:     return "or";
3948  case ISD::XOR:    return "xor";
3949  case ISD::SHL:    return "shl";
3950  case ISD::SRA:    return "sra";
3951  case ISD::SRL:    return "srl";
3952  case ISD::ROTL:   return "rotl";
3953  case ISD::ROTR:   return "rotr";
3954  case ISD::FADD:   return "fadd";
3955  case ISD::FSUB:   return "fsub";
3956  case ISD::FMUL:   return "fmul";
3957  case ISD::FDIV:   return "fdiv";
3958  case ISD::FREM:   return "frem";
3959  case ISD::FCOPYSIGN: return "fcopysign";
3960  case ISD::FGETSIGN:  return "fgetsign";
3961
3962  case ISD::SETCC:       return "setcc";
3963  case ISD::SELECT:      return "select";
3964  case ISD::SELECT_CC:   return "select_cc";
3965  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3966  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3967  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3968  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3969  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3970  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3971  case ISD::CARRY_FALSE:         return "carry_false";
3972  case ISD::ADDC:        return "addc";
3973  case ISD::ADDE:        return "adde";
3974  case ISD::SUBC:        return "subc";
3975  case ISD::SUBE:        return "sube";
3976  case ISD::SHL_PARTS:   return "shl_parts";
3977  case ISD::SRA_PARTS:   return "sra_parts";
3978  case ISD::SRL_PARTS:   return "srl_parts";
3979
3980  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3981  case ISD::INSERT_SUBREG:      return "insert_subreg";
3982
3983  // Conversion operators.
3984  case ISD::SIGN_EXTEND: return "sign_extend";
3985  case ISD::ZERO_EXTEND: return "zero_extend";
3986  case ISD::ANY_EXTEND:  return "any_extend";
3987  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3988  case ISD::TRUNCATE:    return "truncate";
3989  case ISD::FP_ROUND:    return "fp_round";
3990  case ISD::FLT_ROUNDS_: return "flt_rounds";
3991  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3992  case ISD::FP_EXTEND:   return "fp_extend";
3993
3994  case ISD::SINT_TO_FP:  return "sint_to_fp";
3995  case ISD::UINT_TO_FP:  return "uint_to_fp";
3996  case ISD::FP_TO_SINT:  return "fp_to_sint";
3997  case ISD::FP_TO_UINT:  return "fp_to_uint";
3998  case ISD::BIT_CONVERT: return "bit_convert";
3999
4000    // Control flow instructions
4001  case ISD::BR:      return "br";
4002  case ISD::BRIND:   return "brind";
4003  case ISD::BR_JT:   return "br_jt";
4004  case ISD::BRCOND:  return "brcond";
4005  case ISD::BR_CC:   return "br_cc";
4006  case ISD::RET:     return "ret";
4007  case ISD::CALLSEQ_START:  return "callseq_start";
4008  case ISD::CALLSEQ_END:    return "callseq_end";
4009
4010    // Other operators
4011  case ISD::LOAD:               return "load";
4012  case ISD::STORE:              return "store";
4013  case ISD::VAARG:              return "vaarg";
4014  case ISD::VACOPY:             return "vacopy";
4015  case ISD::VAEND:              return "vaend";
4016  case ISD::VASTART:            return "vastart";
4017  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4018  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4019  case ISD::BUILD_PAIR:         return "build_pair";
4020  case ISD::STACKSAVE:          return "stacksave";
4021  case ISD::STACKRESTORE:       return "stackrestore";
4022  case ISD::TRAP:               return "trap";
4023
4024  // Block memory operations.
4025  case ISD::MEMSET:  return "memset";
4026  case ISD::MEMCPY:  return "memcpy";
4027  case ISD::MEMMOVE: return "memmove";
4028
4029  // Bit manipulation
4030  case ISD::BSWAP:   return "bswap";
4031  case ISD::CTPOP:   return "ctpop";
4032  case ISD::CTTZ:    return "cttz";
4033  case ISD::CTLZ:    return "ctlz";
4034
4035  // Debug info
4036  case ISD::LOCATION: return "location";
4037  case ISD::DEBUG_LOC: return "debug_loc";
4038
4039  // Trampolines
4040  case ISD::TRAMPOLINE: return "trampoline";
4041
4042  case ISD::CONDCODE:
4043    switch (cast<CondCodeSDNode>(this)->get()) {
4044    default: assert(0 && "Unknown setcc condition!");
4045    case ISD::SETOEQ:  return "setoeq";
4046    case ISD::SETOGT:  return "setogt";
4047    case ISD::SETOGE:  return "setoge";
4048    case ISD::SETOLT:  return "setolt";
4049    case ISD::SETOLE:  return "setole";
4050    case ISD::SETONE:  return "setone";
4051
4052    case ISD::SETO:    return "seto";
4053    case ISD::SETUO:   return "setuo";
4054    case ISD::SETUEQ:  return "setue";
4055    case ISD::SETUGT:  return "setugt";
4056    case ISD::SETUGE:  return "setuge";
4057    case ISD::SETULT:  return "setult";
4058    case ISD::SETULE:  return "setule";
4059    case ISD::SETUNE:  return "setune";
4060
4061    case ISD::SETEQ:   return "seteq";
4062    case ISD::SETGT:   return "setgt";
4063    case ISD::SETGE:   return "setge";
4064    case ISD::SETLT:   return "setlt";
4065    case ISD::SETLE:   return "setle";
4066    case ISD::SETNE:   return "setne";
4067    }
4068  }
4069}
4070
4071const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4072  switch (AM) {
4073  default:
4074    return "";
4075  case ISD::PRE_INC:
4076    return "<pre-inc>";
4077  case ISD::PRE_DEC:
4078    return "<pre-dec>";
4079  case ISD::POST_INC:
4080    return "<post-inc>";
4081  case ISD::POST_DEC:
4082    return "<post-dec>";
4083  }
4084}
4085
4086void SDNode::dump() const { dump(0); }
4087void SDNode::dump(const SelectionDAG *G) const {
4088  cerr << (void*)this << ": ";
4089
4090  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4091    if (i) cerr << ",";
4092    if (getValueType(i) == MVT::Other)
4093      cerr << "ch";
4094    else
4095      cerr << MVT::getValueTypeString(getValueType(i));
4096  }
4097  cerr << " = " << getOperationName(G);
4098
4099  cerr << " ";
4100  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4101    if (i) cerr << ", ";
4102    cerr << (void*)getOperand(i).Val;
4103    if (unsigned RN = getOperand(i).ResNo)
4104      cerr << ":" << RN;
4105  }
4106
4107  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4108    SDNode *Mask = getOperand(2).Val;
4109    cerr << "<";
4110    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4111      if (i) cerr << ",";
4112      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4113        cerr << "u";
4114      else
4115        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4116    }
4117    cerr << ">";
4118  }
4119
4120  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4121    cerr << "<" << CSDN->getValue() << ">";
4122  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4123    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4124      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4125    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4126      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4127    else {
4128      cerr << "<APFloat(";
4129      CSDN->getValueAPF().convertToAPInt().dump();
4130      cerr << ")>";
4131    }
4132  } else if (const GlobalAddressSDNode *GADN =
4133             dyn_cast<GlobalAddressSDNode>(this)) {
4134    int offset = GADN->getOffset();
4135    cerr << "<";
4136    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4137    if (offset > 0)
4138      cerr << " + " << offset;
4139    else
4140      cerr << " " << offset;
4141  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4142    cerr << "<" << FIDN->getIndex() << ">";
4143  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4144    cerr << "<" << JTDN->getIndex() << ">";
4145  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4146    int offset = CP->getOffset();
4147    if (CP->isMachineConstantPoolEntry())
4148      cerr << "<" << *CP->getMachineCPVal() << ">";
4149    else
4150      cerr << "<" << *CP->getConstVal() << ">";
4151    if (offset > 0)
4152      cerr << " + " << offset;
4153    else
4154      cerr << " " << offset;
4155  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4156    cerr << "<";
4157    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4158    if (LBB)
4159      cerr << LBB->getName() << " ";
4160    cerr << (const void*)BBDN->getBasicBlock() << ">";
4161  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4162    if (G && R->getReg() &&
4163        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4164      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4165    } else {
4166      cerr << " #" << R->getReg();
4167    }
4168  } else if (const ExternalSymbolSDNode *ES =
4169             dyn_cast<ExternalSymbolSDNode>(this)) {
4170    cerr << "'" << ES->getSymbol() << "'";
4171  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4172    if (M->getValue())
4173      cerr << "<" << M->getValue() << ">";
4174    else
4175      cerr << "<null>";
4176  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4177    if (M->MO.getValue())
4178      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4179    else
4180      cerr << "<null:" << M->MO.getOffset() << ">";
4181  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4182    cerr << ":" << MVT::getValueTypeString(N->getVT());
4183  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4184    const Value *SrcValue = LD->getSrcValue();
4185    int SrcOffset = LD->getSrcValueOffset();
4186    cerr << " <";
4187    if (SrcValue)
4188      cerr << SrcValue;
4189    else
4190      cerr << "null";
4191    cerr << ":" << SrcOffset << ">";
4192
4193    bool doExt = true;
4194    switch (LD->getExtensionType()) {
4195    default: doExt = false; break;
4196    case ISD::EXTLOAD:
4197      cerr << " <anyext ";
4198      break;
4199    case ISD::SEXTLOAD:
4200      cerr << " <sext ";
4201      break;
4202    case ISD::ZEXTLOAD:
4203      cerr << " <zext ";
4204      break;
4205    }
4206    if (doExt)
4207      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4208
4209    const char *AM = getIndexedModeName(LD->getAddressingMode());
4210    if (*AM)
4211      cerr << " " << AM;
4212    if (LD->isVolatile())
4213      cerr << " <volatile>";
4214    cerr << " alignment=" << LD->getAlignment();
4215  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4216    const Value *SrcValue = ST->getSrcValue();
4217    int SrcOffset = ST->getSrcValueOffset();
4218    cerr << " <";
4219    if (SrcValue)
4220      cerr << SrcValue;
4221    else
4222      cerr << "null";
4223    cerr << ":" << SrcOffset << ">";
4224
4225    if (ST->isTruncatingStore())
4226      cerr << " <trunc "
4227           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4228
4229    const char *AM = getIndexedModeName(ST->getAddressingMode());
4230    if (*AM)
4231      cerr << " " << AM;
4232    if (ST->isVolatile())
4233      cerr << " <volatile>";
4234    cerr << " alignment=" << ST->getAlignment();
4235  }
4236}
4237
4238static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4239  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4240    if (N->getOperand(i).Val->hasOneUse())
4241      DumpNodes(N->getOperand(i).Val, indent+2, G);
4242    else
4243      cerr << "\n" << std::string(indent+2, ' ')
4244           << (void*)N->getOperand(i).Val << ": <multiple use>";
4245
4246
4247  cerr << "\n" << std::string(indent, ' ');
4248  N->dump(G);
4249}
4250
4251void SelectionDAG::dump() const {
4252  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4253  std::vector<const SDNode*> Nodes;
4254  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4255       I != E; ++I)
4256    Nodes.push_back(I);
4257
4258  std::sort(Nodes.begin(), Nodes.end());
4259
4260  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4261    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4262      DumpNodes(Nodes[i], 2, this);
4263  }
4264
4265  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4266
4267  cerr << "\n\n";
4268}
4269
4270const Type *ConstantPoolSDNode::getType() const {
4271  if (isMachineConstantPoolEntry())
4272    return Val.MachineCPVal->getType();
4273  return Val.ConstVal->getType();
4274}
4275