SelectionDAG.cpp revision b4e6a5df5dada0cd919cc6e2717eb3118db9cc45
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Function.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CallingConv.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/CodeGen/SDNodeOrdering.h"
29#include "llvm/Target/TargetRegisterInfo.h"
30#include "llvm/Target/TargetData.h"
31#include "llvm/Target/TargetFrameInfo.h"
32#include "llvm/Target/TargetLowering.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetIntrinsicInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/ManagedStatic.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/System/Mutex.h"
43#include "llvm/ADT/SetVector.h"
44#include "llvm/ADT/SmallPtrSet.h"
45#include "llvm/ADT/SmallSet.h"
46#include "llvm/ADT/SmallVector.h"
47#include "llvm/ADT/StringExtras.h"
48#include <algorithm>
49#include <cmath>
50using namespace llvm;
51
52/// makeVTList - Return an instance of the SDVTList struct initialized with the
53/// specified members.
54static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
55  SDVTList Res = {VTs, NumVTs};
56  return Res;
57}
58
59static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
60  switch (VT.getSimpleVT().SimpleTy) {
61  default: llvm_unreachable("Unknown FP format");
62  case MVT::f32:     return &APFloat::IEEEsingle;
63  case MVT::f64:     return &APFloat::IEEEdouble;
64  case MVT::f80:     return &APFloat::x87DoubleExtended;
65  case MVT::f128:    return &APFloat::IEEEquad;
66  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
67  }
68}
69
70SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
71
72//===----------------------------------------------------------------------===//
73//                              ConstantFPSDNode Class
74//===----------------------------------------------------------------------===//
75
76/// isExactlyValue - We don't rely on operator== working on double values, as
77/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
78/// As such, this method can be used to do an exact bit-for-bit comparison of
79/// two floating point values.
80bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
81  return getValueAPF().bitwiseIsEqual(V);
82}
83
84bool ConstantFPSDNode::isValueValidForType(EVT VT,
85                                           const APFloat& Val) {
86  assert(VT.isFloatingPoint() && "Can only convert between FP types");
87
88  // PPC long double cannot be converted to any other type.
89  if (VT == MVT::ppcf128 ||
90      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
91    return false;
92
93  // convert modifies in place, so make a copy.
94  APFloat Val2 = APFloat(Val);
95  bool losesInfo;
96  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
97                      &losesInfo);
98  return !losesInfo;
99}
100
101//===----------------------------------------------------------------------===//
102//                              ISD Namespace
103//===----------------------------------------------------------------------===//
104
105/// isBuildVectorAllOnes - Return true if the specified node is a
106/// BUILD_VECTOR where all of the elements are ~0 or undef.
107bool ISD::isBuildVectorAllOnes(const SDNode *N) {
108  // Look through a bit convert.
109  if (N->getOpcode() == ISD::BIT_CONVERT)
110    N = N->getOperand(0).getNode();
111
112  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
113
114  unsigned i = 0, e = N->getNumOperands();
115
116  // Skip over all of the undef values.
117  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
118    ++i;
119
120  // Do not accept an all-undef vector.
121  if (i == e) return false;
122
123  // Do not accept build_vectors that aren't all constants or which have non-~0
124  // elements.
125  SDValue NotZero = N->getOperand(i);
126  if (isa<ConstantSDNode>(NotZero)) {
127    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
128      return false;
129  } else if (isa<ConstantFPSDNode>(NotZero)) {
130    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
131                bitcastToAPInt().isAllOnesValue())
132      return false;
133  } else
134    return false;
135
136  // Okay, we have at least one ~0 value, check to see if the rest match or are
137  // undefs.
138  for (++i; i != e; ++i)
139    if (N->getOperand(i) != NotZero &&
140        N->getOperand(i).getOpcode() != ISD::UNDEF)
141      return false;
142  return true;
143}
144
145
146/// isBuildVectorAllZeros - Return true if the specified node is a
147/// BUILD_VECTOR where all of the elements are 0 or undef.
148bool ISD::isBuildVectorAllZeros(const SDNode *N) {
149  // Look through a bit convert.
150  if (N->getOpcode() == ISD::BIT_CONVERT)
151    N = N->getOperand(0).getNode();
152
153  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
154
155  unsigned i = 0, e = N->getNumOperands();
156
157  // Skip over all of the undef values.
158  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
159    ++i;
160
161  // Do not accept an all-undef vector.
162  if (i == e) return false;
163
164  // Do not accept build_vectors that aren't all constants or which have non-0
165  // elements.
166  SDValue Zero = N->getOperand(i);
167  if (isa<ConstantSDNode>(Zero)) {
168    if (!cast<ConstantSDNode>(Zero)->isNullValue())
169      return false;
170  } else if (isa<ConstantFPSDNode>(Zero)) {
171    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
172      return false;
173  } else
174    return false;
175
176  // Okay, we have at least one 0 value, check to see if the rest match or are
177  // undefs.
178  for (++i; i != e; ++i)
179    if (N->getOperand(i) != Zero &&
180        N->getOperand(i).getOpcode() != ISD::UNDEF)
181      return false;
182  return true;
183}
184
185/// isScalarToVector - Return true if the specified node is a
186/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
187/// element is not an undef.
188bool ISD::isScalarToVector(const SDNode *N) {
189  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
190    return true;
191
192  if (N->getOpcode() != ISD::BUILD_VECTOR)
193    return false;
194  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
195    return false;
196  unsigned NumElems = N->getNumOperands();
197  for (unsigned i = 1; i < NumElems; ++i) {
198    SDValue V = N->getOperand(i);
199    if (V.getOpcode() != ISD::UNDEF)
200      return false;
201  }
202  return true;
203}
204
205/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
206/// when given the operation for (X op Y).
207ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
208  // To perform this operation, we just need to swap the L and G bits of the
209  // operation.
210  unsigned OldL = (Operation >> 2) & 1;
211  unsigned OldG = (Operation >> 1) & 1;
212  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
213                       (OldL << 1) |       // New G bit
214                       (OldG << 2));       // New L bit.
215}
216
217/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
218/// 'op' is a valid SetCC operation.
219ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
220  unsigned Operation = Op;
221  if (isInteger)
222    Operation ^= 7;   // Flip L, G, E bits, but not U.
223  else
224    Operation ^= 15;  // Flip all of the condition bits.
225
226  if (Operation > ISD::SETTRUE2)
227    Operation &= ~8;  // Don't let N and U bits get set.
228
229  return ISD::CondCode(Operation);
230}
231
232
233/// isSignedOp - For an integer comparison, return 1 if the comparison is a
234/// signed operation and 2 if the result is an unsigned comparison.  Return zero
235/// if the operation does not depend on the sign of the input (setne and seteq).
236static int isSignedOp(ISD::CondCode Opcode) {
237  switch (Opcode) {
238  default: llvm_unreachable("Illegal integer setcc operation!");
239  case ISD::SETEQ:
240  case ISD::SETNE: return 0;
241  case ISD::SETLT:
242  case ISD::SETLE:
243  case ISD::SETGT:
244  case ISD::SETGE: return 1;
245  case ISD::SETULT:
246  case ISD::SETULE:
247  case ISD::SETUGT:
248  case ISD::SETUGE: return 2;
249  }
250}
251
252/// getSetCCOrOperation - Return the result of a logical OR between different
253/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
254/// returns SETCC_INVALID if it is not possible to represent the resultant
255/// comparison.
256ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
257                                       bool isInteger) {
258  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
259    // Cannot fold a signed integer setcc with an unsigned integer setcc.
260    return ISD::SETCC_INVALID;
261
262  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
263
264  // If the N and U bits get set then the resultant comparison DOES suddenly
265  // care about orderedness, and is true when ordered.
266  if (Op > ISD::SETTRUE2)
267    Op &= ~16;     // Clear the U bit if the N bit is set.
268
269  // Canonicalize illegal integer setcc's.
270  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
271    Op = ISD::SETNE;
272
273  return ISD::CondCode(Op);
274}
275
276/// getSetCCAndOperation - Return the result of a logical AND between different
277/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
278/// function returns zero if it is not possible to represent the resultant
279/// comparison.
280ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
281                                        bool isInteger) {
282  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
283    // Cannot fold a signed setcc with an unsigned setcc.
284    return ISD::SETCC_INVALID;
285
286  // Combine all of the condition bits.
287  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
288
289  // Canonicalize illegal integer setcc's.
290  if (isInteger) {
291    switch (Result) {
292    default: break;
293    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
294    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
295    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
296    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
297    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
298    }
299  }
300
301  return Result;
302}
303
304const TargetMachine &SelectionDAG::getTarget() const {
305  return MF->getTarget();
306}
307
308//===----------------------------------------------------------------------===//
309//                           SDNode Profile Support
310//===----------------------------------------------------------------------===//
311
312/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
313///
314static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
315  ID.AddInteger(OpC);
316}
317
318/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
319/// solely with their pointer.
320static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
321  ID.AddPointer(VTList.VTs);
322}
323
324/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
325///
326static void AddNodeIDOperands(FoldingSetNodeID &ID,
327                              const SDValue *Ops, unsigned NumOps) {
328  for (; NumOps; --NumOps, ++Ops) {
329    ID.AddPointer(Ops->getNode());
330    ID.AddInteger(Ops->getResNo());
331  }
332}
333
334/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
335///
336static void AddNodeIDOperands(FoldingSetNodeID &ID,
337                              const SDUse *Ops, unsigned NumOps) {
338  for (; NumOps; --NumOps, ++Ops) {
339    ID.AddPointer(Ops->getNode());
340    ID.AddInteger(Ops->getResNo());
341  }
342}
343
344static void AddNodeIDNode(FoldingSetNodeID &ID,
345                          unsigned short OpC, SDVTList VTList,
346                          const SDValue *OpList, unsigned N) {
347  AddNodeIDOpcode(ID, OpC);
348  AddNodeIDValueTypes(ID, VTList);
349  AddNodeIDOperands(ID, OpList, N);
350}
351
352/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
353/// the NodeID data.
354static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
355  switch (N->getOpcode()) {
356  case ISD::TargetExternalSymbol:
357  case ISD::ExternalSymbol:
358    llvm_unreachable("Should only be used on nodes with operands");
359  default: break;  // Normal nodes don't need extra info.
360  case ISD::TargetConstant:
361  case ISD::Constant:
362    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
363    break;
364  case ISD::TargetConstantFP:
365  case ISD::ConstantFP: {
366    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
367    break;
368  }
369  case ISD::TargetGlobalAddress:
370  case ISD::GlobalAddress:
371  case ISD::TargetGlobalTLSAddress:
372  case ISD::GlobalTLSAddress: {
373    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
374    ID.AddPointer(GA->getGlobal());
375    ID.AddInteger(GA->getOffset());
376    ID.AddInteger(GA->getTargetFlags());
377    break;
378  }
379  case ISD::BasicBlock:
380    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
381    break;
382  case ISD::Register:
383    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
384    break;
385
386  case ISD::SRCVALUE:
387    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
388    break;
389  case ISD::FrameIndex:
390  case ISD::TargetFrameIndex:
391    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
392    break;
393  case ISD::JumpTable:
394  case ISD::TargetJumpTable:
395    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
396    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
397    break;
398  case ISD::ConstantPool:
399  case ISD::TargetConstantPool: {
400    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
401    ID.AddInteger(CP->getAlignment());
402    ID.AddInteger(CP->getOffset());
403    if (CP->isMachineConstantPoolEntry())
404      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
405    else
406      ID.AddPointer(CP->getConstVal());
407    ID.AddInteger(CP->getTargetFlags());
408    break;
409  }
410  case ISD::LOAD: {
411    const LoadSDNode *LD = cast<LoadSDNode>(N);
412    ID.AddInteger(LD->getMemoryVT().getRawBits());
413    ID.AddInteger(LD->getRawSubclassData());
414    break;
415  }
416  case ISD::STORE: {
417    const StoreSDNode *ST = cast<StoreSDNode>(N);
418    ID.AddInteger(ST->getMemoryVT().getRawBits());
419    ID.AddInteger(ST->getRawSubclassData());
420    break;
421  }
422  case ISD::ATOMIC_CMP_SWAP:
423  case ISD::ATOMIC_SWAP:
424  case ISD::ATOMIC_LOAD_ADD:
425  case ISD::ATOMIC_LOAD_SUB:
426  case ISD::ATOMIC_LOAD_AND:
427  case ISD::ATOMIC_LOAD_OR:
428  case ISD::ATOMIC_LOAD_XOR:
429  case ISD::ATOMIC_LOAD_NAND:
430  case ISD::ATOMIC_LOAD_MIN:
431  case ISD::ATOMIC_LOAD_MAX:
432  case ISD::ATOMIC_LOAD_UMIN:
433  case ISD::ATOMIC_LOAD_UMAX: {
434    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
435    ID.AddInteger(AT->getMemoryVT().getRawBits());
436    ID.AddInteger(AT->getRawSubclassData());
437    break;
438  }
439  case ISD::VECTOR_SHUFFLE: {
440    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
441    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
442         i != e; ++i)
443      ID.AddInteger(SVN->getMaskElt(i));
444    break;
445  }
446  case ISD::TargetBlockAddress:
447  case ISD::BlockAddress: {
448    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
449    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
450    break;
451  }
452  } // end switch (N->getOpcode())
453}
454
455/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
456/// data.
457static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
458  AddNodeIDOpcode(ID, N->getOpcode());
459  // Add the return value info.
460  AddNodeIDValueTypes(ID, N->getVTList());
461  // Add the operand info.
462  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
463
464  // Handle SDNode leafs with special info.
465  AddNodeIDCustom(ID, N);
466}
467
468/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
469/// the CSE map that carries volatility, indexing mode, and
470/// extension/truncation information.
471///
472static inline unsigned
473encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
474  assert((ConvType & 3) == ConvType &&
475         "ConvType may not require more than 2 bits!");
476  assert((AM & 7) == AM &&
477         "AM may not require more than 3 bits!");
478  return ConvType |
479         (AM << 2) |
480         (isVolatile << 5);
481}
482
483//===----------------------------------------------------------------------===//
484//                              SelectionDAG Class
485//===----------------------------------------------------------------------===//
486
487/// doNotCSE - Return true if CSE should not be performed for this node.
488static bool doNotCSE(SDNode *N) {
489  if (N->getValueType(0) == MVT::Flag)
490    return true; // Never CSE anything that produces a flag.
491
492  switch (N->getOpcode()) {
493  default: break;
494  case ISD::HANDLENODE:
495  case ISD::EH_LABEL:
496    return true;   // Never CSE these nodes.
497  }
498
499  // Check that remaining values produced are not flags.
500  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
501    if (N->getValueType(i) == MVT::Flag)
502      return true; // Never CSE anything that produces a flag.
503
504  return false;
505}
506
507/// RemoveDeadNodes - This method deletes all unreachable nodes in the
508/// SelectionDAG.
509void SelectionDAG::RemoveDeadNodes() {
510  // Create a dummy node (which is not added to allnodes), that adds a reference
511  // to the root node, preventing it from being deleted.
512  HandleSDNode Dummy(getRoot());
513
514  SmallVector<SDNode*, 128> DeadNodes;
515
516  // Add all obviously-dead nodes to the DeadNodes worklist.
517  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
518    if (I->use_empty())
519      DeadNodes.push_back(I);
520
521  RemoveDeadNodes(DeadNodes);
522
523  // If the root changed (e.g. it was a dead load, update the root).
524  setRoot(Dummy.getValue());
525}
526
527/// RemoveDeadNodes - This method deletes the unreachable nodes in the
528/// given list, and any nodes that become unreachable as a result.
529void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
530                                   DAGUpdateListener *UpdateListener) {
531
532  // Process the worklist, deleting the nodes and adding their uses to the
533  // worklist.
534  while (!DeadNodes.empty()) {
535    SDNode *N = DeadNodes.pop_back_val();
536
537    if (UpdateListener)
538      UpdateListener->NodeDeleted(N, 0);
539
540    // Take the node out of the appropriate CSE map.
541    RemoveNodeFromCSEMaps(N);
542
543    // Next, brutally remove the operand list.  This is safe to do, as there are
544    // no cycles in the graph.
545    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
546      SDUse &Use = *I++;
547      SDNode *Operand = Use.getNode();
548      Use.set(SDValue());
549
550      // Now that we removed this operand, see if there are no uses of it left.
551      if (Operand->use_empty())
552        DeadNodes.push_back(Operand);
553    }
554
555    DeallocateNode(N);
556  }
557}
558
559void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
560  SmallVector<SDNode*, 16> DeadNodes(1, N);
561  RemoveDeadNodes(DeadNodes, UpdateListener);
562}
563
564void SelectionDAG::DeleteNode(SDNode *N) {
565  // First take this out of the appropriate CSE map.
566  RemoveNodeFromCSEMaps(N);
567
568  // Finally, remove uses due to operands of this node, remove from the
569  // AllNodes list, and delete the node.
570  DeleteNodeNotInCSEMaps(N);
571}
572
573void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
574  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
575  assert(N->use_empty() && "Cannot delete a node that is not dead!");
576
577  // Drop all of the operands and decrement used node's use counts.
578  N->DropOperands();
579
580  DeallocateNode(N);
581}
582
583void SelectionDAG::DeallocateNode(SDNode *N) {
584  if (N->OperandsNeedDelete)
585    delete[] N->OperandList;
586
587  // Set the opcode to DELETED_NODE to help catch bugs when node
588  // memory is reallocated.
589  N->NodeType = ISD::DELETED_NODE;
590
591  NodeAllocator.Deallocate(AllNodes.remove(N));
592
593  // Remove the ordering of this node.
594  if (Ordering) Ordering->remove(N);
595}
596
597/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
598/// correspond to it.  This is useful when we're about to delete or repurpose
599/// the node.  We don't want future request for structurally identical nodes
600/// to return N anymore.
601bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
602  bool Erased = false;
603  switch (N->getOpcode()) {
604  case ISD::EntryToken:
605    llvm_unreachable("EntryToken should not be in CSEMaps!");
606    return false;
607  case ISD::HANDLENODE: return false;  // noop.
608  case ISD::CONDCODE:
609    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
610           "Cond code doesn't exist!");
611    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
612    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
613    break;
614  case ISD::ExternalSymbol:
615    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
616    break;
617  case ISD::TargetExternalSymbol: {
618    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
619    Erased = TargetExternalSymbols.erase(
620               std::pair<std::string,unsigned char>(ESN->getSymbol(),
621                                                    ESN->getTargetFlags()));
622    break;
623  }
624  case ISD::VALUETYPE: {
625    EVT VT = cast<VTSDNode>(N)->getVT();
626    if (VT.isExtended()) {
627      Erased = ExtendedValueTypeNodes.erase(VT);
628    } else {
629      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
630      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
631    }
632    break;
633  }
634  default:
635    // Remove it from the CSE Map.
636    Erased = CSEMap.RemoveNode(N);
637    break;
638  }
639#ifndef NDEBUG
640  // Verify that the node was actually in one of the CSE maps, unless it has a
641  // flag result (which cannot be CSE'd) or is one of the special cases that are
642  // not subject to CSE.
643  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
644      !N->isMachineOpcode() && !doNotCSE(N)) {
645    N->dump(this);
646    errs() << "\n";
647    llvm_unreachable("Node is not in map!");
648  }
649#endif
650  return Erased;
651}
652
653/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
654/// maps and modified in place. Add it back to the CSE maps, unless an identical
655/// node already exists, in which case transfer all its users to the existing
656/// node. This transfer can potentially trigger recursive merging.
657///
658void
659SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
660                                       DAGUpdateListener *UpdateListener) {
661  // For node types that aren't CSE'd, just act as if no identical node
662  // already exists.
663  if (!doNotCSE(N)) {
664    SDNode *Existing = CSEMap.GetOrInsertNode(N);
665    if (Existing != N) {
666      // If there was already an existing matching node, use ReplaceAllUsesWith
667      // to replace the dead one with the existing one.  This can cause
668      // recursive merging of other unrelated nodes down the line.
669      ReplaceAllUsesWith(N, Existing, UpdateListener);
670
671      // N is now dead.  Inform the listener if it exists and delete it.
672      if (UpdateListener)
673        UpdateListener->NodeDeleted(N, Existing);
674      DeleteNodeNotInCSEMaps(N);
675      return;
676    }
677  }
678
679  // If the node doesn't already exist, we updated it.  Inform a listener if
680  // it exists.
681  if (UpdateListener)
682    UpdateListener->NodeUpdated(N);
683}
684
685/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
686/// were replaced with those specified.  If this node is never memoized,
687/// return null, otherwise return a pointer to the slot it would take.  If a
688/// node already exists with these operands, the slot will be non-null.
689SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
690                                           void *&InsertPos) {
691  if (doNotCSE(N))
692    return 0;
693
694  SDValue Ops[] = { Op };
695  FoldingSetNodeID ID;
696  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
697  AddNodeIDCustom(ID, N);
698  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
699  return Node;
700}
701
702/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
703/// were replaced with those specified.  If this node is never memoized,
704/// return null, otherwise return a pointer to the slot it would take.  If a
705/// node already exists with these operands, the slot will be non-null.
706SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
707                                           SDValue Op1, SDValue Op2,
708                                           void *&InsertPos) {
709  if (doNotCSE(N))
710    return 0;
711
712  SDValue Ops[] = { Op1, Op2 };
713  FoldingSetNodeID ID;
714  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
715  AddNodeIDCustom(ID, N);
716  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
717  return Node;
718}
719
720
721/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
722/// were replaced with those specified.  If this node is never memoized,
723/// return null, otherwise return a pointer to the slot it would take.  If a
724/// node already exists with these operands, the slot will be non-null.
725SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
726                                           const SDValue *Ops,unsigned NumOps,
727                                           void *&InsertPos) {
728  if (doNotCSE(N))
729    return 0;
730
731  FoldingSetNodeID ID;
732  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
733  AddNodeIDCustom(ID, N);
734  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
735  return Node;
736}
737
738/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
739void SelectionDAG::VerifyNode(SDNode *N) {
740  switch (N->getOpcode()) {
741  default:
742    break;
743  case ISD::BUILD_PAIR: {
744    EVT VT = N->getValueType(0);
745    assert(N->getNumValues() == 1 && "Too many results!");
746    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
747           "Wrong return type!");
748    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
749    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
750           "Mismatched operand types!");
751    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
752           "Wrong operand type!");
753    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
754           "Wrong return type size");
755    break;
756  }
757  case ISD::BUILD_VECTOR: {
758    assert(N->getNumValues() == 1 && "Too many results!");
759    assert(N->getValueType(0).isVector() && "Wrong return type!");
760    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
761           "Wrong number of operands!");
762    EVT EltVT = N->getValueType(0).getVectorElementType();
763    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
764      assert((I->getValueType() == EltVT ||
765             (EltVT.isInteger() && I->getValueType().isInteger() &&
766              EltVT.bitsLE(I->getValueType()))) &&
767            "Wrong operand type!");
768    break;
769  }
770  }
771}
772
773/// getEVTAlignment - Compute the default alignment value for the
774/// given type.
775///
776unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
777  const Type *Ty = VT == MVT::iPTR ?
778                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
779                   VT.getTypeForEVT(*getContext());
780
781  return TLI.getTargetData()->getABITypeAlignment(Ty);
782}
783
784// EntryNode could meaningfully have debug info if we can find it...
785SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
786  : TLI(tli), FLI(fli), DW(0),
787    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
788              getVTList(MVT::Other)),
789    Root(getEntryNode()), Ordering(0) {
790  AllNodes.push_back(&EntryNode);
791  if (DisableScheduling)
792    Ordering = new SDNodeOrdering();
793}
794
795void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
796                        DwarfWriter *dw) {
797  MF = &mf;
798  MMI = mmi;
799  DW = dw;
800  Context = &mf.getFunction()->getContext();
801}
802
803SelectionDAG::~SelectionDAG() {
804  allnodes_clear();
805  delete Ordering;
806}
807
808void SelectionDAG::allnodes_clear() {
809  assert(&*AllNodes.begin() == &EntryNode);
810  AllNodes.remove(AllNodes.begin());
811  while (!AllNodes.empty())
812    DeallocateNode(AllNodes.begin());
813}
814
815void SelectionDAG::clear() {
816  allnodes_clear();
817  OperandAllocator.Reset();
818  CSEMap.clear();
819
820  ExtendedValueTypeNodes.clear();
821  ExternalSymbols.clear();
822  TargetExternalSymbols.clear();
823  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
824            static_cast<CondCodeSDNode*>(0));
825  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
826            static_cast<SDNode*>(0));
827
828  EntryNode.UseList = 0;
829  AllNodes.push_back(&EntryNode);
830  Root = getEntryNode();
831  if (DisableScheduling)
832    Ordering = new SDNodeOrdering();
833}
834
835SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
836  return VT.bitsGT(Op.getValueType()) ?
837    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
838    getNode(ISD::TRUNCATE, DL, VT, Op);
839}
840
841SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
842  return VT.bitsGT(Op.getValueType()) ?
843    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
844    getNode(ISD::TRUNCATE, DL, VT, Op);
845}
846
847SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
848  assert(!VT.isVector() &&
849         "getZeroExtendInReg should use the vector element type instead of "
850         "the vector type!");
851  if (Op.getValueType() == VT) return Op;
852  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
853  APInt Imm = APInt::getLowBitsSet(BitWidth,
854                                   VT.getSizeInBits());
855  return getNode(ISD::AND, DL, Op.getValueType(), Op,
856                 getConstant(Imm, Op.getValueType()));
857}
858
859/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
860///
861SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
862  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
863  SDValue NegOne =
864    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
865  return getNode(ISD::XOR, DL, VT, Val, NegOne);
866}
867
868SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
869  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
870  assert((EltVT.getSizeInBits() >= 64 ||
871         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
872         "getConstant with a uint64_t value that doesn't fit in the type!");
873  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
874}
875
876SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
877  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
878}
879
880SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
881  assert(VT.isInteger() && "Cannot create FP integer constant!");
882
883  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
884  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
885         "APInt size does not match type size!");
886
887  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
888  FoldingSetNodeID ID;
889  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
890  ID.AddPointer(&Val);
891  void *IP = 0;
892  SDNode *N = NULL;
893  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
894    if (!VT.isVector())
895      return SDValue(N, 0);
896
897  if (!N) {
898    N = NodeAllocator.Allocate<ConstantSDNode>();
899    new (N) ConstantSDNode(isT, &Val, EltVT);
900    CSEMap.InsertNode(N, IP);
901    AllNodes.push_back(N);
902  }
903
904  SDValue Result(N, 0);
905  if (VT.isVector()) {
906    SmallVector<SDValue, 8> Ops;
907    Ops.assign(VT.getVectorNumElements(), Result);
908    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
909                     VT, &Ops[0], Ops.size());
910  }
911  return Result;
912}
913
914SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
915  return getConstant(Val, TLI.getPointerTy(), isTarget);
916}
917
918
919SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
920  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
921}
922
923SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
924  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
925
926  EVT EltVT =
927    VT.isVector() ? VT.getVectorElementType() : VT;
928
929  // Do the map lookup using the actual bit pattern for the floating point
930  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
931  // we don't have issues with SNANs.
932  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
933  FoldingSetNodeID ID;
934  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
935  ID.AddPointer(&V);
936  void *IP = 0;
937  SDNode *N = NULL;
938  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
939    if (!VT.isVector())
940      return SDValue(N, 0);
941
942  if (!N) {
943    N = NodeAllocator.Allocate<ConstantFPSDNode>();
944    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
945    CSEMap.InsertNode(N, IP);
946    AllNodes.push_back(N);
947  }
948
949  SDValue Result(N, 0);
950  if (VT.isVector()) {
951    SmallVector<SDValue, 8> Ops;
952    Ops.assign(VT.getVectorNumElements(), Result);
953    // FIXME DebugLoc info might be appropriate here
954    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
955                     VT, &Ops[0], Ops.size());
956  }
957  return Result;
958}
959
960SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
961  EVT EltVT =
962    VT.isVector() ? VT.getVectorElementType() : VT;
963  if (EltVT==MVT::f32)
964    return getConstantFP(APFloat((float)Val), VT, isTarget);
965  else
966    return getConstantFP(APFloat(Val), VT, isTarget);
967}
968
969SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
970                                       EVT VT, int64_t Offset,
971                                       bool isTargetGA,
972                                       unsigned char TargetFlags) {
973  assert((TargetFlags == 0 || isTargetGA) &&
974         "Cannot set target flags on target-independent globals");
975
976  // Truncate (with sign-extension) the offset value to the pointer size.
977  EVT PTy = TLI.getPointerTy();
978  unsigned BitWidth = PTy.getSizeInBits();
979  if (BitWidth < 64)
980    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
981
982  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
983  if (!GVar) {
984    // If GV is an alias then use the aliasee for determining thread-localness.
985    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
986      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
987  }
988
989  unsigned Opc;
990  if (GVar && GVar->isThreadLocal())
991    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
992  else
993    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
994
995  FoldingSetNodeID ID;
996  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
997  ID.AddPointer(GV);
998  ID.AddInteger(Offset);
999  ID.AddInteger(TargetFlags);
1000  void *IP = 0;
1001  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1002    return SDValue(E, 0);
1003
1004  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1005  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1006  CSEMap.InsertNode(N, IP);
1007  AllNodes.push_back(N);
1008  return SDValue(N, 0);
1009}
1010
1011SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1012  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1013  FoldingSetNodeID ID;
1014  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1015  ID.AddInteger(FI);
1016  void *IP = 0;
1017  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1018    return SDValue(E, 0);
1019
1020  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1021  new (N) FrameIndexSDNode(FI, VT, isTarget);
1022  CSEMap.InsertNode(N, IP);
1023  AllNodes.push_back(N);
1024  return SDValue(N, 0);
1025}
1026
1027SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1028                                   unsigned char TargetFlags) {
1029  assert((TargetFlags == 0 || isTarget) &&
1030         "Cannot set target flags on target-independent jump tables");
1031  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1032  FoldingSetNodeID ID;
1033  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1034  ID.AddInteger(JTI);
1035  ID.AddInteger(TargetFlags);
1036  void *IP = 0;
1037  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1038    return SDValue(E, 0);
1039
1040  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1041  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1042  CSEMap.InsertNode(N, IP);
1043  AllNodes.push_back(N);
1044  return SDValue(N, 0);
1045}
1046
1047SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1048                                      unsigned Alignment, int Offset,
1049                                      bool isTarget,
1050                                      unsigned char TargetFlags) {
1051  assert((TargetFlags == 0 || isTarget) &&
1052         "Cannot set target flags on target-independent globals");
1053  if (Alignment == 0)
1054    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1055  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1056  FoldingSetNodeID ID;
1057  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1058  ID.AddInteger(Alignment);
1059  ID.AddInteger(Offset);
1060  ID.AddPointer(C);
1061  ID.AddInteger(TargetFlags);
1062  void *IP = 0;
1063  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1064    return SDValue(E, 0);
1065
1066  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1067  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1068  CSEMap.InsertNode(N, IP);
1069  AllNodes.push_back(N);
1070  return SDValue(N, 0);
1071}
1072
1073
1074SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1075                                      unsigned Alignment, int Offset,
1076                                      bool isTarget,
1077                                      unsigned char TargetFlags) {
1078  assert((TargetFlags == 0 || isTarget) &&
1079         "Cannot set target flags on target-independent globals");
1080  if (Alignment == 0)
1081    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1082  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1083  FoldingSetNodeID ID;
1084  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1085  ID.AddInteger(Alignment);
1086  ID.AddInteger(Offset);
1087  C->AddSelectionDAGCSEId(ID);
1088  ID.AddInteger(TargetFlags);
1089  void *IP = 0;
1090  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1091    return SDValue(E, 0);
1092
1093  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1094  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1095  CSEMap.InsertNode(N, IP);
1096  AllNodes.push_back(N);
1097  return SDValue(N, 0);
1098}
1099
1100SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1101  FoldingSetNodeID ID;
1102  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1103  ID.AddPointer(MBB);
1104  void *IP = 0;
1105  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1106    return SDValue(E, 0);
1107
1108  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1109  new (N) BasicBlockSDNode(MBB);
1110  CSEMap.InsertNode(N, IP);
1111  AllNodes.push_back(N);
1112  return SDValue(N, 0);
1113}
1114
1115SDValue SelectionDAG::getValueType(EVT VT) {
1116  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1117      ValueTypeNodes.size())
1118    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1119
1120  SDNode *&N = VT.isExtended() ?
1121    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1122
1123  if (N) return SDValue(N, 0);
1124  N = NodeAllocator.Allocate<VTSDNode>();
1125  new (N) VTSDNode(VT);
1126  AllNodes.push_back(N);
1127  return SDValue(N, 0);
1128}
1129
1130SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1131  SDNode *&N = ExternalSymbols[Sym];
1132  if (N) return SDValue(N, 0);
1133  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1134  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1135  AllNodes.push_back(N);
1136  return SDValue(N, 0);
1137}
1138
1139SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1140                                              unsigned char TargetFlags) {
1141  SDNode *&N =
1142    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1143                                                               TargetFlags)];
1144  if (N) return SDValue(N, 0);
1145  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1146  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1147  AllNodes.push_back(N);
1148  return SDValue(N, 0);
1149}
1150
1151SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1152  if ((unsigned)Cond >= CondCodeNodes.size())
1153    CondCodeNodes.resize(Cond+1);
1154
1155  if (CondCodeNodes[Cond] == 0) {
1156    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1157    new (N) CondCodeSDNode(Cond);
1158    CondCodeNodes[Cond] = N;
1159    AllNodes.push_back(N);
1160  }
1161
1162  return SDValue(CondCodeNodes[Cond], 0);
1163}
1164
1165// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1166// the shuffle mask M that point at N1 to point at N2, and indices that point
1167// N2 to point at N1.
1168static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1169  std::swap(N1, N2);
1170  int NElts = M.size();
1171  for (int i = 0; i != NElts; ++i) {
1172    if (M[i] >= NElts)
1173      M[i] -= NElts;
1174    else if (M[i] >= 0)
1175      M[i] += NElts;
1176  }
1177}
1178
1179SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1180                                       SDValue N2, const int *Mask) {
1181  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1182  assert(VT.isVector() && N1.getValueType().isVector() &&
1183         "Vector Shuffle VTs must be a vectors");
1184  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1185         && "Vector Shuffle VTs must have same element type");
1186
1187  // Canonicalize shuffle undef, undef -> undef
1188  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1189    return getUNDEF(VT);
1190
1191  // Validate that all indices in Mask are within the range of the elements
1192  // input to the shuffle.
1193  unsigned NElts = VT.getVectorNumElements();
1194  SmallVector<int, 8> MaskVec;
1195  for (unsigned i = 0; i != NElts; ++i) {
1196    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1197    MaskVec.push_back(Mask[i]);
1198  }
1199
1200  // Canonicalize shuffle v, v -> v, undef
1201  if (N1 == N2) {
1202    N2 = getUNDEF(VT);
1203    for (unsigned i = 0; i != NElts; ++i)
1204      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1205  }
1206
1207  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1208  if (N1.getOpcode() == ISD::UNDEF)
1209    commuteShuffle(N1, N2, MaskVec);
1210
1211  // Canonicalize all index into lhs, -> shuffle lhs, undef
1212  // Canonicalize all index into rhs, -> shuffle rhs, undef
1213  bool AllLHS = true, AllRHS = true;
1214  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1215  for (unsigned i = 0; i != NElts; ++i) {
1216    if (MaskVec[i] >= (int)NElts) {
1217      if (N2Undef)
1218        MaskVec[i] = -1;
1219      else
1220        AllLHS = false;
1221    } else if (MaskVec[i] >= 0) {
1222      AllRHS = false;
1223    }
1224  }
1225  if (AllLHS && AllRHS)
1226    return getUNDEF(VT);
1227  if (AllLHS && !N2Undef)
1228    N2 = getUNDEF(VT);
1229  if (AllRHS) {
1230    N1 = getUNDEF(VT);
1231    commuteShuffle(N1, N2, MaskVec);
1232  }
1233
1234  // If Identity shuffle, or all shuffle in to undef, return that node.
1235  bool AllUndef = true;
1236  bool Identity = true;
1237  for (unsigned i = 0; i != NElts; ++i) {
1238    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1239    if (MaskVec[i] >= 0) AllUndef = false;
1240  }
1241  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1242    return N1;
1243  if (AllUndef)
1244    return getUNDEF(VT);
1245
1246  FoldingSetNodeID ID;
1247  SDValue Ops[2] = { N1, N2 };
1248  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1249  for (unsigned i = 0; i != NElts; ++i)
1250    ID.AddInteger(MaskVec[i]);
1251
1252  void* IP = 0;
1253  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1254    return SDValue(E, 0);
1255
1256  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1257  // SDNode doesn't have access to it.  This memory will be "leaked" when
1258  // the node is deallocated, but recovered when the NodeAllocator is released.
1259  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1260  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1261
1262  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1263  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1264  CSEMap.InsertNode(N, IP);
1265  AllNodes.push_back(N);
1266  return SDValue(N, 0);
1267}
1268
1269SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1270                                       SDValue Val, SDValue DTy,
1271                                       SDValue STy, SDValue Rnd, SDValue Sat,
1272                                       ISD::CvtCode Code) {
1273  // If the src and dest types are the same and the conversion is between
1274  // integer types of the same sign or two floats, no conversion is necessary.
1275  if (DTy == STy &&
1276      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1277    return Val;
1278
1279  FoldingSetNodeID ID;
1280  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1281  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1282  void* IP = 0;
1283  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1284    return SDValue(E, 0);
1285
1286  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1287  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1288  CSEMap.InsertNode(N, IP);
1289  AllNodes.push_back(N);
1290  return SDValue(N, 0);
1291}
1292
1293SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1294  FoldingSetNodeID ID;
1295  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1296  ID.AddInteger(RegNo);
1297  void *IP = 0;
1298  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1299    return SDValue(E, 0);
1300
1301  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1302  new (N) RegisterSDNode(RegNo, VT);
1303  CSEMap.InsertNode(N, IP);
1304  AllNodes.push_back(N);
1305  return SDValue(N, 0);
1306}
1307
1308SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1309                               SDValue Root,
1310                               unsigned LabelID) {
1311  FoldingSetNodeID ID;
1312  SDValue Ops[] = { Root };
1313  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1314  ID.AddInteger(LabelID);
1315  void *IP = 0;
1316  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1317    return SDValue(E, 0);
1318
1319  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1320  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1321  CSEMap.InsertNode(N, IP);
1322  AllNodes.push_back(N);
1323  return SDValue(N, 0);
1324}
1325
1326SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1327                                      bool isTarget,
1328                                      unsigned char TargetFlags) {
1329  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1330
1331  FoldingSetNodeID ID;
1332  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1333  ID.AddPointer(BA);
1334  ID.AddInteger(TargetFlags);
1335  void *IP = 0;
1336  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1337    return SDValue(E, 0);
1338
1339  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1340  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1341  CSEMap.InsertNode(N, IP);
1342  AllNodes.push_back(N);
1343  return SDValue(N, 0);
1344}
1345
1346SDValue SelectionDAG::getSrcValue(const Value *V) {
1347  assert((!V || isa<PointerType>(V->getType())) &&
1348         "SrcValue is not a pointer?");
1349
1350  FoldingSetNodeID ID;
1351  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1352  ID.AddPointer(V);
1353
1354  void *IP = 0;
1355  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356    return SDValue(E, 0);
1357
1358  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1359  new (N) SrcValueSDNode(V);
1360  CSEMap.InsertNode(N, IP);
1361  AllNodes.push_back(N);
1362  return SDValue(N, 0);
1363}
1364
1365/// getShiftAmountOperand - Return the specified value casted to
1366/// the target's desired shift amount type.
1367SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1368  EVT OpTy = Op.getValueType();
1369  MVT ShTy = TLI.getShiftAmountTy();
1370  if (OpTy == ShTy || OpTy.isVector()) return Op;
1371
1372  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1373  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1374}
1375
1376/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1377/// specified value type.
1378SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1379  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1380  unsigned ByteSize = VT.getStoreSize();
1381  const Type *Ty = VT.getTypeForEVT(*getContext());
1382  unsigned StackAlign =
1383  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1384
1385  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1386  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1387}
1388
1389/// CreateStackTemporary - Create a stack temporary suitable for holding
1390/// either of the specified value types.
1391SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1392  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1393                            VT2.getStoreSizeInBits())/8;
1394  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1395  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1396  const TargetData *TD = TLI.getTargetData();
1397  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1398                            TD->getPrefTypeAlignment(Ty2));
1399
1400  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1401  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1402  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1403}
1404
1405SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1406                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1407  // These setcc operations always fold.
1408  switch (Cond) {
1409  default: break;
1410  case ISD::SETFALSE:
1411  case ISD::SETFALSE2: return getConstant(0, VT);
1412  case ISD::SETTRUE:
1413  case ISD::SETTRUE2:  return getConstant(1, VT);
1414
1415  case ISD::SETOEQ:
1416  case ISD::SETOGT:
1417  case ISD::SETOGE:
1418  case ISD::SETOLT:
1419  case ISD::SETOLE:
1420  case ISD::SETONE:
1421  case ISD::SETO:
1422  case ISD::SETUO:
1423  case ISD::SETUEQ:
1424  case ISD::SETUNE:
1425    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1426    break;
1427  }
1428
1429  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1430    const APInt &C2 = N2C->getAPIntValue();
1431    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1432      const APInt &C1 = N1C->getAPIntValue();
1433
1434      switch (Cond) {
1435      default: llvm_unreachable("Unknown integer setcc!");
1436      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1437      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1438      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1439      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1440      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1441      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1442      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1443      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1444      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1445      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1446      }
1447    }
1448  }
1449  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1450    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1451      // No compile time operations on this type yet.
1452      if (N1C->getValueType(0) == MVT::ppcf128)
1453        return SDValue();
1454
1455      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1456      switch (Cond) {
1457      default: break;
1458      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1459                          return getUNDEF(VT);
1460                        // fall through
1461      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1462      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1463                          return getUNDEF(VT);
1464                        // fall through
1465      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1466                                           R==APFloat::cmpLessThan, VT);
1467      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1468                          return getUNDEF(VT);
1469                        // fall through
1470      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1471      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1472                          return getUNDEF(VT);
1473                        // fall through
1474      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1475      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1476                          return getUNDEF(VT);
1477                        // fall through
1478      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1479                                           R==APFloat::cmpEqual, VT);
1480      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1481                          return getUNDEF(VT);
1482                        // fall through
1483      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1484                                           R==APFloat::cmpEqual, VT);
1485      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1486      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1487      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1488                                           R==APFloat::cmpEqual, VT);
1489      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1490      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1491                                           R==APFloat::cmpLessThan, VT);
1492      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1493                                           R==APFloat::cmpUnordered, VT);
1494      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1495      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1496      }
1497    } else {
1498      // Ensure that the constant occurs on the RHS.
1499      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1500    }
1501  }
1502
1503  // Could not fold it.
1504  return SDValue();
1505}
1506
1507/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1508/// use this predicate to simplify operations downstream.
1509bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1510  // This predicate is not safe for vector operations.
1511  if (Op.getValueType().isVector())
1512    return false;
1513
1514  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1515  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1516}
1517
1518/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1519/// this predicate to simplify operations downstream.  Mask is known to be zero
1520/// for bits that V cannot have.
1521bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1522                                     unsigned Depth) const {
1523  APInt KnownZero, KnownOne;
1524  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1525  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1526  return (KnownZero & Mask) == Mask;
1527}
1528
1529/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1530/// known to be either zero or one and return them in the KnownZero/KnownOne
1531/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1532/// processing.
1533void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1534                                     APInt &KnownZero, APInt &KnownOne,
1535                                     unsigned Depth) const {
1536  unsigned BitWidth = Mask.getBitWidth();
1537  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1538         "Mask size mismatches value type size!");
1539
1540  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1541  if (Depth == 6 || Mask == 0)
1542    return;  // Limit search depth.
1543
1544  APInt KnownZero2, KnownOne2;
1545
1546  switch (Op.getOpcode()) {
1547  case ISD::Constant:
1548    // We know all of the bits for a constant!
1549    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1550    KnownZero = ~KnownOne & Mask;
1551    return;
1552  case ISD::AND:
1553    // If either the LHS or the RHS are Zero, the result is zero.
1554    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1555    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1556                      KnownZero2, KnownOne2, Depth+1);
1557    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1558    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1559
1560    // Output known-1 bits are only known if set in both the LHS & RHS.
1561    KnownOne &= KnownOne2;
1562    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1563    KnownZero |= KnownZero2;
1564    return;
1565  case ISD::OR:
1566    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1567    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1568                      KnownZero2, KnownOne2, Depth+1);
1569    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1570    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1571
1572    // Output known-0 bits are only known if clear in both the LHS & RHS.
1573    KnownZero &= KnownZero2;
1574    // Output known-1 are known to be set if set in either the LHS | RHS.
1575    KnownOne |= KnownOne2;
1576    return;
1577  case ISD::XOR: {
1578    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1579    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1580    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1581    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1582
1583    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1584    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1585    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1586    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1587    KnownZero = KnownZeroOut;
1588    return;
1589  }
1590  case ISD::MUL: {
1591    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1592    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1593    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1594    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1595    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1596
1597    // If low bits are zero in either operand, output low known-0 bits.
1598    // Also compute a conserative estimate for high known-0 bits.
1599    // More trickiness is possible, but this is sufficient for the
1600    // interesting case of alignment computation.
1601    KnownOne.clear();
1602    unsigned TrailZ = KnownZero.countTrailingOnes() +
1603                      KnownZero2.countTrailingOnes();
1604    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1605                               KnownZero2.countLeadingOnes(),
1606                               BitWidth) - BitWidth;
1607
1608    TrailZ = std::min(TrailZ, BitWidth);
1609    LeadZ = std::min(LeadZ, BitWidth);
1610    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1611                APInt::getHighBitsSet(BitWidth, LeadZ);
1612    KnownZero &= Mask;
1613    return;
1614  }
1615  case ISD::UDIV: {
1616    // For the purposes of computing leading zeros we can conservatively
1617    // treat a udiv as a logical right shift by the power of 2 known to
1618    // be less than the denominator.
1619    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1620    ComputeMaskedBits(Op.getOperand(0),
1621                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1622    unsigned LeadZ = KnownZero2.countLeadingOnes();
1623
1624    KnownOne2.clear();
1625    KnownZero2.clear();
1626    ComputeMaskedBits(Op.getOperand(1),
1627                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1628    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1629    if (RHSUnknownLeadingOnes != BitWidth)
1630      LeadZ = std::min(BitWidth,
1631                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1632
1633    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1634    return;
1635  }
1636  case ISD::SELECT:
1637    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1638    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1639    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1640    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1641
1642    // Only known if known in both the LHS and RHS.
1643    KnownOne &= KnownOne2;
1644    KnownZero &= KnownZero2;
1645    return;
1646  case ISD::SELECT_CC:
1647    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1648    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1649    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1650    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1651
1652    // Only known if known in both the LHS and RHS.
1653    KnownOne &= KnownOne2;
1654    KnownZero &= KnownZero2;
1655    return;
1656  case ISD::SADDO:
1657  case ISD::UADDO:
1658  case ISD::SSUBO:
1659  case ISD::USUBO:
1660  case ISD::SMULO:
1661  case ISD::UMULO:
1662    if (Op.getResNo() != 1)
1663      return;
1664    // The boolean result conforms to getBooleanContents.  Fall through.
1665  case ISD::SETCC:
1666    // If we know the result of a setcc has the top bits zero, use this info.
1667    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1668        BitWidth > 1)
1669      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1670    return;
1671  case ISD::SHL:
1672    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1673    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1674      unsigned ShAmt = SA->getZExtValue();
1675
1676      // If the shift count is an invalid immediate, don't do anything.
1677      if (ShAmt >= BitWidth)
1678        return;
1679
1680      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1681                        KnownZero, KnownOne, Depth+1);
1682      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1683      KnownZero <<= ShAmt;
1684      KnownOne  <<= ShAmt;
1685      // low bits known zero.
1686      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1687    }
1688    return;
1689  case ISD::SRL:
1690    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1691    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1692      unsigned ShAmt = SA->getZExtValue();
1693
1694      // If the shift count is an invalid immediate, don't do anything.
1695      if (ShAmt >= BitWidth)
1696        return;
1697
1698      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1699                        KnownZero, KnownOne, Depth+1);
1700      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1701      KnownZero = KnownZero.lshr(ShAmt);
1702      KnownOne  = KnownOne.lshr(ShAmt);
1703
1704      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1705      KnownZero |= HighBits;  // High bits known zero.
1706    }
1707    return;
1708  case ISD::SRA:
1709    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1710      unsigned ShAmt = SA->getZExtValue();
1711
1712      // If the shift count is an invalid immediate, don't do anything.
1713      if (ShAmt >= BitWidth)
1714        return;
1715
1716      APInt InDemandedMask = (Mask << ShAmt);
1717      // If any of the demanded bits are produced by the sign extension, we also
1718      // demand the input sign bit.
1719      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1720      if (HighBits.getBoolValue())
1721        InDemandedMask |= APInt::getSignBit(BitWidth);
1722
1723      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1724                        Depth+1);
1725      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1726      KnownZero = KnownZero.lshr(ShAmt);
1727      KnownOne  = KnownOne.lshr(ShAmt);
1728
1729      // Handle the sign bits.
1730      APInt SignBit = APInt::getSignBit(BitWidth);
1731      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1732
1733      if (KnownZero.intersects(SignBit)) {
1734        KnownZero |= HighBits;  // New bits are known zero.
1735      } else if (KnownOne.intersects(SignBit)) {
1736        KnownOne  |= HighBits;  // New bits are known one.
1737      }
1738    }
1739    return;
1740  case ISD::SIGN_EXTEND_INREG: {
1741    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1742    unsigned EBits = EVT.getSizeInBits();
1743
1744    // Sign extension.  Compute the demanded bits in the result that are not
1745    // present in the input.
1746    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1747
1748    APInt InSignBit = APInt::getSignBit(EBits);
1749    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1750
1751    // If the sign extended bits are demanded, we know that the sign
1752    // bit is demanded.
1753    InSignBit.zext(BitWidth);
1754    if (NewBits.getBoolValue())
1755      InputDemandedBits |= InSignBit;
1756
1757    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1758                      KnownZero, KnownOne, Depth+1);
1759    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1760
1761    // If the sign bit of the input is known set or clear, then we know the
1762    // top bits of the result.
1763    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1764      KnownZero |= NewBits;
1765      KnownOne  &= ~NewBits;
1766    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1767      KnownOne  |= NewBits;
1768      KnownZero &= ~NewBits;
1769    } else {                              // Input sign bit unknown
1770      KnownZero &= ~NewBits;
1771      KnownOne  &= ~NewBits;
1772    }
1773    return;
1774  }
1775  case ISD::CTTZ:
1776  case ISD::CTLZ:
1777  case ISD::CTPOP: {
1778    unsigned LowBits = Log2_32(BitWidth)+1;
1779    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1780    KnownOne.clear();
1781    return;
1782  }
1783  case ISD::LOAD: {
1784    if (ISD::isZEXTLoad(Op.getNode())) {
1785      LoadSDNode *LD = cast<LoadSDNode>(Op);
1786      EVT VT = LD->getMemoryVT();
1787      unsigned MemBits = VT.getSizeInBits();
1788      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1789    }
1790    return;
1791  }
1792  case ISD::ZERO_EXTEND: {
1793    EVT InVT = Op.getOperand(0).getValueType();
1794    unsigned InBits = InVT.getScalarType().getSizeInBits();
1795    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1796    APInt InMask    = Mask;
1797    InMask.trunc(InBits);
1798    KnownZero.trunc(InBits);
1799    KnownOne.trunc(InBits);
1800    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1801    KnownZero.zext(BitWidth);
1802    KnownOne.zext(BitWidth);
1803    KnownZero |= NewBits;
1804    return;
1805  }
1806  case ISD::SIGN_EXTEND: {
1807    EVT InVT = Op.getOperand(0).getValueType();
1808    unsigned InBits = InVT.getScalarType().getSizeInBits();
1809    APInt InSignBit = APInt::getSignBit(InBits);
1810    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1811    APInt InMask = Mask;
1812    InMask.trunc(InBits);
1813
1814    // If any of the sign extended bits are demanded, we know that the sign
1815    // bit is demanded. Temporarily set this bit in the mask for our callee.
1816    if (NewBits.getBoolValue())
1817      InMask |= InSignBit;
1818
1819    KnownZero.trunc(InBits);
1820    KnownOne.trunc(InBits);
1821    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1822
1823    // Note if the sign bit is known to be zero or one.
1824    bool SignBitKnownZero = KnownZero.isNegative();
1825    bool SignBitKnownOne  = KnownOne.isNegative();
1826    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1827           "Sign bit can't be known to be both zero and one!");
1828
1829    // If the sign bit wasn't actually demanded by our caller, we don't
1830    // want it set in the KnownZero and KnownOne result values. Reset the
1831    // mask and reapply it to the result values.
1832    InMask = Mask;
1833    InMask.trunc(InBits);
1834    KnownZero &= InMask;
1835    KnownOne  &= InMask;
1836
1837    KnownZero.zext(BitWidth);
1838    KnownOne.zext(BitWidth);
1839
1840    // If the sign bit is known zero or one, the top bits match.
1841    if (SignBitKnownZero)
1842      KnownZero |= NewBits;
1843    else if (SignBitKnownOne)
1844      KnownOne  |= NewBits;
1845    return;
1846  }
1847  case ISD::ANY_EXTEND: {
1848    EVT InVT = Op.getOperand(0).getValueType();
1849    unsigned InBits = InVT.getScalarType().getSizeInBits();
1850    APInt InMask = Mask;
1851    InMask.trunc(InBits);
1852    KnownZero.trunc(InBits);
1853    KnownOne.trunc(InBits);
1854    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1855    KnownZero.zext(BitWidth);
1856    KnownOne.zext(BitWidth);
1857    return;
1858  }
1859  case ISD::TRUNCATE: {
1860    EVT InVT = Op.getOperand(0).getValueType();
1861    unsigned InBits = InVT.getScalarType().getSizeInBits();
1862    APInt InMask = Mask;
1863    InMask.zext(InBits);
1864    KnownZero.zext(InBits);
1865    KnownOne.zext(InBits);
1866    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1867    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1868    KnownZero.trunc(BitWidth);
1869    KnownOne.trunc(BitWidth);
1870    break;
1871  }
1872  case ISD::AssertZext: {
1873    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1874    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1875    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1876                      KnownOne, Depth+1);
1877    KnownZero |= (~InMask) & Mask;
1878    return;
1879  }
1880  case ISD::FGETSIGN:
1881    // All bits are zero except the low bit.
1882    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1883    return;
1884
1885  case ISD::SUB: {
1886    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1887      // We know that the top bits of C-X are clear if X contains less bits
1888      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1889      // positive if we can prove that X is >= 0 and < 16.
1890      if (CLHS->getAPIntValue().isNonNegative()) {
1891        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1892        // NLZ can't be BitWidth with no sign bit
1893        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1894        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1895                          Depth+1);
1896
1897        // If all of the MaskV bits are known to be zero, then we know the
1898        // output top bits are zero, because we now know that the output is
1899        // from [0-C].
1900        if ((KnownZero2 & MaskV) == MaskV) {
1901          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1902          // Top bits known zero.
1903          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1904        }
1905      }
1906    }
1907  }
1908  // fall through
1909  case ISD::ADD: {
1910    // Output known-0 bits are known if clear or set in both the low clear bits
1911    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1912    // low 3 bits clear.
1913    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1914    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1915    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1916    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1917
1918    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1919    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1920    KnownZeroOut = std::min(KnownZeroOut,
1921                            KnownZero2.countTrailingOnes());
1922
1923    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1924    return;
1925  }
1926  case ISD::SREM:
1927    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1928      const APInt &RA = Rem->getAPIntValue();
1929      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1930        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1931        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1932        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1933
1934        // If the sign bit of the first operand is zero, the sign bit of
1935        // the result is zero. If the first operand has no one bits below
1936        // the second operand's single 1 bit, its sign will be zero.
1937        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1938          KnownZero2 |= ~LowBits;
1939
1940        KnownZero |= KnownZero2 & Mask;
1941
1942        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1943      }
1944    }
1945    return;
1946  case ISD::UREM: {
1947    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1948      const APInt &RA = Rem->getAPIntValue();
1949      if (RA.isPowerOf2()) {
1950        APInt LowBits = (RA - 1);
1951        APInt Mask2 = LowBits & Mask;
1952        KnownZero |= ~LowBits & Mask;
1953        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1954        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1955        break;
1956      }
1957    }
1958
1959    // Since the result is less than or equal to either operand, any leading
1960    // zero bits in either operand must also exist in the result.
1961    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1962    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1963                      Depth+1);
1964    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1965                      Depth+1);
1966
1967    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1968                                KnownZero2.countLeadingOnes());
1969    KnownOne.clear();
1970    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1971    return;
1972  }
1973  default:
1974    // Allow the target to implement this method for its nodes.
1975    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1976  case ISD::INTRINSIC_WO_CHAIN:
1977  case ISD::INTRINSIC_W_CHAIN:
1978  case ISD::INTRINSIC_VOID:
1979      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1980                                         Depth);
1981    }
1982    return;
1983  }
1984}
1985
1986/// ComputeNumSignBits - Return the number of times the sign bit of the
1987/// register is replicated into the other bits.  We know that at least 1 bit
1988/// is always equal to the sign bit (itself), but other cases can give us
1989/// information.  For example, immediately after an "SRA X, 2", we know that
1990/// the top 3 bits are all equal to each other, so we return 3.
1991unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1992  EVT VT = Op.getValueType();
1993  assert(VT.isInteger() && "Invalid VT!");
1994  unsigned VTBits = VT.getScalarType().getSizeInBits();
1995  unsigned Tmp, Tmp2;
1996  unsigned FirstAnswer = 1;
1997
1998  if (Depth == 6)
1999    return 1;  // Limit search depth.
2000
2001  switch (Op.getOpcode()) {
2002  default: break;
2003  case ISD::AssertSext:
2004    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2005    return VTBits-Tmp+1;
2006  case ISD::AssertZext:
2007    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2008    return VTBits-Tmp;
2009
2010  case ISD::Constant: {
2011    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2012    // If negative, return # leading ones.
2013    if (Val.isNegative())
2014      return Val.countLeadingOnes();
2015
2016    // Return # leading zeros.
2017    return Val.countLeadingZeros();
2018  }
2019
2020  case ISD::SIGN_EXTEND:
2021    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2022    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2023
2024  case ISD::SIGN_EXTEND_INREG:
2025    // Max of the input and what this extends.
2026    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2027    Tmp = VTBits-Tmp+1;
2028
2029    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2030    return std::max(Tmp, Tmp2);
2031
2032  case ISD::SRA:
2033    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2034    // SRA X, C   -> adds C sign bits.
2035    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2036      Tmp += C->getZExtValue();
2037      if (Tmp > VTBits) Tmp = VTBits;
2038    }
2039    return Tmp;
2040  case ISD::SHL:
2041    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2042      // shl destroys sign bits.
2043      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2044      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2045          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2046      return Tmp - C->getZExtValue();
2047    }
2048    break;
2049  case ISD::AND:
2050  case ISD::OR:
2051  case ISD::XOR:    // NOT is handled here.
2052    // Logical binary ops preserve the number of sign bits at the worst.
2053    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2054    if (Tmp != 1) {
2055      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2056      FirstAnswer = std::min(Tmp, Tmp2);
2057      // We computed what we know about the sign bits as our first
2058      // answer. Now proceed to the generic code that uses
2059      // ComputeMaskedBits, and pick whichever answer is better.
2060    }
2061    break;
2062
2063  case ISD::SELECT:
2064    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2065    if (Tmp == 1) return 1;  // Early out.
2066    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2067    return std::min(Tmp, Tmp2);
2068
2069  case ISD::SADDO:
2070  case ISD::UADDO:
2071  case ISD::SSUBO:
2072  case ISD::USUBO:
2073  case ISD::SMULO:
2074  case ISD::UMULO:
2075    if (Op.getResNo() != 1)
2076      break;
2077    // The boolean result conforms to getBooleanContents.  Fall through.
2078  case ISD::SETCC:
2079    // If setcc returns 0/-1, all bits are sign bits.
2080    if (TLI.getBooleanContents() ==
2081        TargetLowering::ZeroOrNegativeOneBooleanContent)
2082      return VTBits;
2083    break;
2084  case ISD::ROTL:
2085  case ISD::ROTR:
2086    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2087      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2088
2089      // Handle rotate right by N like a rotate left by 32-N.
2090      if (Op.getOpcode() == ISD::ROTR)
2091        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2092
2093      // If we aren't rotating out all of the known-in sign bits, return the
2094      // number that are left.  This handles rotl(sext(x), 1) for example.
2095      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2096      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2097    }
2098    break;
2099  case ISD::ADD:
2100    // Add can have at most one carry bit.  Thus we know that the output
2101    // is, at worst, one more bit than the inputs.
2102    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2103    if (Tmp == 1) return 1;  // Early out.
2104
2105    // Special case decrementing a value (ADD X, -1):
2106    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2107      if (CRHS->isAllOnesValue()) {
2108        APInt KnownZero, KnownOne;
2109        APInt Mask = APInt::getAllOnesValue(VTBits);
2110        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2111
2112        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2113        // sign bits set.
2114        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2115          return VTBits;
2116
2117        // If we are subtracting one from a positive number, there is no carry
2118        // out of the result.
2119        if (KnownZero.isNegative())
2120          return Tmp;
2121      }
2122
2123    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2124    if (Tmp2 == 1) return 1;
2125      return std::min(Tmp, Tmp2)-1;
2126    break;
2127
2128  case ISD::SUB:
2129    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2130    if (Tmp2 == 1) return 1;
2131
2132    // Handle NEG.
2133    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2134      if (CLHS->isNullValue()) {
2135        APInt KnownZero, KnownOne;
2136        APInt Mask = APInt::getAllOnesValue(VTBits);
2137        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2138        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2139        // sign bits set.
2140        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2141          return VTBits;
2142
2143        // If the input is known to be positive (the sign bit is known clear),
2144        // the output of the NEG has the same number of sign bits as the input.
2145        if (KnownZero.isNegative())
2146          return Tmp2;
2147
2148        // Otherwise, we treat this like a SUB.
2149      }
2150
2151    // Sub can have at most one carry bit.  Thus we know that the output
2152    // is, at worst, one more bit than the inputs.
2153    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2154    if (Tmp == 1) return 1;  // Early out.
2155      return std::min(Tmp, Tmp2)-1;
2156    break;
2157  case ISD::TRUNCATE:
2158    // FIXME: it's tricky to do anything useful for this, but it is an important
2159    // case for targets like X86.
2160    break;
2161  }
2162
2163  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2164  if (Op.getOpcode() == ISD::LOAD) {
2165    LoadSDNode *LD = cast<LoadSDNode>(Op);
2166    unsigned ExtType = LD->getExtensionType();
2167    switch (ExtType) {
2168    default: break;
2169    case ISD::SEXTLOAD:    // '17' bits known
2170      Tmp = LD->getMemoryVT().getSizeInBits();
2171      return VTBits-Tmp+1;
2172    case ISD::ZEXTLOAD:    // '16' bits known
2173      Tmp = LD->getMemoryVT().getSizeInBits();
2174      return VTBits-Tmp;
2175    }
2176  }
2177
2178  // Allow the target to implement this method for its nodes.
2179  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2180      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2181      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2182      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2183    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2184    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2185  }
2186
2187  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2188  // use this information.
2189  APInt KnownZero, KnownOne;
2190  APInt Mask = APInt::getAllOnesValue(VTBits);
2191  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2192
2193  if (KnownZero.isNegative()) {        // sign bit is 0
2194    Mask = KnownZero;
2195  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2196    Mask = KnownOne;
2197  } else {
2198    // Nothing known.
2199    return FirstAnswer;
2200  }
2201
2202  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2203  // the number of identical bits in the top of the input value.
2204  Mask = ~Mask;
2205  Mask <<= Mask.getBitWidth()-VTBits;
2206  // Return # leading zeros.  We use 'min' here in case Val was zero before
2207  // shifting.  We don't want to return '64' as for an i32 "0".
2208  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2209}
2210
2211bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2212  // If we're told that NaNs won't happen, assume they won't.
2213  if (FiniteOnlyFPMath())
2214    return true;
2215
2216  // If the value is a constant, we can obviously see if it is a NaN or not.
2217  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2218    return !C->getValueAPF().isNaN();
2219
2220  // TODO: Recognize more cases here.
2221
2222  return false;
2223}
2224
2225bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2226  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2227  if (!GA) return false;
2228  if (GA->getOffset() != 0) return false;
2229  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2230  if (!GV) return false;
2231  MachineModuleInfo *MMI = getMachineModuleInfo();
2232  return MMI && MMI->hasDebugInfo();
2233}
2234
2235
2236/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2237/// element of the result of the vector shuffle.
2238SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2239                                          unsigned i) {
2240  EVT VT = N->getValueType(0);
2241  DebugLoc dl = N->getDebugLoc();
2242  if (N->getMaskElt(i) < 0)
2243    return getUNDEF(VT.getVectorElementType());
2244  unsigned Index = N->getMaskElt(i);
2245  unsigned NumElems = VT.getVectorNumElements();
2246  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2247  Index %= NumElems;
2248
2249  if (V.getOpcode() == ISD::BIT_CONVERT) {
2250    V = V.getOperand(0);
2251    EVT VVT = V.getValueType();
2252    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2253      return SDValue();
2254  }
2255  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2256    return (Index == 0) ? V.getOperand(0)
2257                      : getUNDEF(VT.getVectorElementType());
2258  if (V.getOpcode() == ISD::BUILD_VECTOR)
2259    return V.getOperand(Index);
2260  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2261    return getShuffleScalarElt(SVN, Index);
2262  return SDValue();
2263}
2264
2265
2266/// getNode - Gets or creates the specified node.
2267///
2268SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2269  FoldingSetNodeID ID;
2270  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2271  void *IP = 0;
2272  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2273    return SDValue(E, 0);
2274
2275  SDNode *N = NodeAllocator.Allocate<SDNode>();
2276  new (N) SDNode(Opcode, DL, getVTList(VT));
2277  CSEMap.InsertNode(N, IP);
2278
2279  AllNodes.push_back(N);
2280#ifndef NDEBUG
2281  VerifyNode(N);
2282#endif
2283  return SDValue(N, 0);
2284}
2285
2286SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2287                              EVT VT, SDValue Operand) {
2288  // Constant fold unary operations with an integer constant operand.
2289  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2290    const APInt &Val = C->getAPIntValue();
2291    unsigned BitWidth = VT.getSizeInBits();
2292    switch (Opcode) {
2293    default: break;
2294    case ISD::SIGN_EXTEND:
2295      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2296    case ISD::ANY_EXTEND:
2297    case ISD::ZERO_EXTEND:
2298    case ISD::TRUNCATE:
2299      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2300    case ISD::UINT_TO_FP:
2301    case ISD::SINT_TO_FP: {
2302      const uint64_t zero[] = {0, 0};
2303      // No compile time operations on this type.
2304      if (VT==MVT::ppcf128)
2305        break;
2306      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2307      (void)apf.convertFromAPInt(Val,
2308                                 Opcode==ISD::SINT_TO_FP,
2309                                 APFloat::rmNearestTiesToEven);
2310      return getConstantFP(apf, VT);
2311    }
2312    case ISD::BIT_CONVERT:
2313      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2314        return getConstantFP(Val.bitsToFloat(), VT);
2315      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2316        return getConstantFP(Val.bitsToDouble(), VT);
2317      break;
2318    case ISD::BSWAP:
2319      return getConstant(Val.byteSwap(), VT);
2320    case ISD::CTPOP:
2321      return getConstant(Val.countPopulation(), VT);
2322    case ISD::CTLZ:
2323      return getConstant(Val.countLeadingZeros(), VT);
2324    case ISD::CTTZ:
2325      return getConstant(Val.countTrailingZeros(), VT);
2326    }
2327  }
2328
2329  // Constant fold unary operations with a floating point constant operand.
2330  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2331    APFloat V = C->getValueAPF();    // make copy
2332    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2333      switch (Opcode) {
2334      case ISD::FNEG:
2335        V.changeSign();
2336        return getConstantFP(V, VT);
2337      case ISD::FABS:
2338        V.clearSign();
2339        return getConstantFP(V, VT);
2340      case ISD::FP_ROUND:
2341      case ISD::FP_EXTEND: {
2342        bool ignored;
2343        // This can return overflow, underflow, or inexact; we don't care.
2344        // FIXME need to be more flexible about rounding mode.
2345        (void)V.convert(*EVTToAPFloatSemantics(VT),
2346                        APFloat::rmNearestTiesToEven, &ignored);
2347        return getConstantFP(V, VT);
2348      }
2349      case ISD::FP_TO_SINT:
2350      case ISD::FP_TO_UINT: {
2351        integerPart x[2];
2352        bool ignored;
2353        assert(integerPartWidth >= 64);
2354        // FIXME need to be more flexible about rounding mode.
2355        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2356                              Opcode==ISD::FP_TO_SINT,
2357                              APFloat::rmTowardZero, &ignored);
2358        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2359          break;
2360        APInt api(VT.getSizeInBits(), 2, x);
2361        return getConstant(api, VT);
2362      }
2363      case ISD::BIT_CONVERT:
2364        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2365          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2366        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2367          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2368        break;
2369      }
2370    }
2371  }
2372
2373  unsigned OpOpcode = Operand.getNode()->getOpcode();
2374  switch (Opcode) {
2375  case ISD::TokenFactor:
2376  case ISD::MERGE_VALUES:
2377  case ISD::CONCAT_VECTORS:
2378    return Operand;         // Factor, merge or concat of one node?  No need.
2379  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2380  case ISD::FP_EXTEND:
2381    assert(VT.isFloatingPoint() &&
2382           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2383    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2384    assert((!VT.isVector() ||
2385            VT.getVectorNumElements() ==
2386            Operand.getValueType().getVectorNumElements()) &&
2387           "Vector element count mismatch!");
2388    if (Operand.getOpcode() == ISD::UNDEF)
2389      return getUNDEF(VT);
2390    break;
2391  case ISD::SIGN_EXTEND:
2392    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2393           "Invalid SIGN_EXTEND!");
2394    if (Operand.getValueType() == VT) return Operand;   // noop extension
2395    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2396           "Invalid sext node, dst < src!");
2397    assert((!VT.isVector() ||
2398            VT.getVectorNumElements() ==
2399            Operand.getValueType().getVectorNumElements()) &&
2400           "Vector element count mismatch!");
2401    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2402      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2403    break;
2404  case ISD::ZERO_EXTEND:
2405    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2406           "Invalid ZERO_EXTEND!");
2407    if (Operand.getValueType() == VT) return Operand;   // noop extension
2408    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2409           "Invalid zext node, dst < src!");
2410    assert((!VT.isVector() ||
2411            VT.getVectorNumElements() ==
2412            Operand.getValueType().getVectorNumElements()) &&
2413           "Vector element count mismatch!");
2414    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2415      return getNode(ISD::ZERO_EXTEND, DL, VT,
2416                     Operand.getNode()->getOperand(0));
2417    break;
2418  case ISD::ANY_EXTEND:
2419    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2420           "Invalid ANY_EXTEND!");
2421    if (Operand.getValueType() == VT) return Operand;   // noop extension
2422    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2423           "Invalid anyext node, dst < src!");
2424    assert((!VT.isVector() ||
2425            VT.getVectorNumElements() ==
2426            Operand.getValueType().getVectorNumElements()) &&
2427           "Vector element count mismatch!");
2428    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2429      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2430      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2431    break;
2432  case ISD::TRUNCATE:
2433    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2434           "Invalid TRUNCATE!");
2435    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2436    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2437           "Invalid truncate node, src < dst!");
2438    assert((!VT.isVector() ||
2439            VT.getVectorNumElements() ==
2440            Operand.getValueType().getVectorNumElements()) &&
2441           "Vector element count mismatch!");
2442    if (OpOpcode == ISD::TRUNCATE)
2443      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2444    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2445             OpOpcode == ISD::ANY_EXTEND) {
2446      // If the source is smaller than the dest, we still need an extend.
2447      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2448            .bitsLT(VT.getScalarType()))
2449        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2450      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2451        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2452      else
2453        return Operand.getNode()->getOperand(0);
2454    }
2455    break;
2456  case ISD::BIT_CONVERT:
2457    // Basic sanity checking.
2458    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2459           && "Cannot BIT_CONVERT between types of different sizes!");
2460    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2461    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2462      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2463    if (OpOpcode == ISD::UNDEF)
2464      return getUNDEF(VT);
2465    break;
2466  case ISD::SCALAR_TO_VECTOR:
2467    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2468           (VT.getVectorElementType() == Operand.getValueType() ||
2469            (VT.getVectorElementType().isInteger() &&
2470             Operand.getValueType().isInteger() &&
2471             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2472           "Illegal SCALAR_TO_VECTOR node!");
2473    if (OpOpcode == ISD::UNDEF)
2474      return getUNDEF(VT);
2475    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2476    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2477        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2478        Operand.getConstantOperandVal(1) == 0 &&
2479        Operand.getOperand(0).getValueType() == VT)
2480      return Operand.getOperand(0);
2481    break;
2482  case ISD::FNEG:
2483    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2484    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2485      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2486                     Operand.getNode()->getOperand(0));
2487    if (OpOpcode == ISD::FNEG)  // --X -> X
2488      return Operand.getNode()->getOperand(0);
2489    break;
2490  case ISD::FABS:
2491    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2492      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2493    break;
2494  }
2495
2496  SDNode *N;
2497  SDVTList VTs = getVTList(VT);
2498  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2499    FoldingSetNodeID ID;
2500    SDValue Ops[1] = { Operand };
2501    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2502    void *IP = 0;
2503    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2504      return SDValue(E, 0);
2505
2506    N = NodeAllocator.Allocate<UnarySDNode>();
2507    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2508    CSEMap.InsertNode(N, IP);
2509  } else {
2510    N = NodeAllocator.Allocate<UnarySDNode>();
2511    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2512  }
2513
2514  AllNodes.push_back(N);
2515#ifndef NDEBUG
2516  VerifyNode(N);
2517#endif
2518  return SDValue(N, 0);
2519}
2520
2521SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2522                                             EVT VT,
2523                                             ConstantSDNode *Cst1,
2524                                             ConstantSDNode *Cst2) {
2525  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2526
2527  switch (Opcode) {
2528  case ISD::ADD:  return getConstant(C1 + C2, VT);
2529  case ISD::SUB:  return getConstant(C1 - C2, VT);
2530  case ISD::MUL:  return getConstant(C1 * C2, VT);
2531  case ISD::UDIV:
2532    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2533    break;
2534  case ISD::UREM:
2535    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2536    break;
2537  case ISD::SDIV:
2538    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2539    break;
2540  case ISD::SREM:
2541    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2542    break;
2543  case ISD::AND:  return getConstant(C1 & C2, VT);
2544  case ISD::OR:   return getConstant(C1 | C2, VT);
2545  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2546  case ISD::SHL:  return getConstant(C1 << C2, VT);
2547  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2548  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2549  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2550  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2551  default: break;
2552  }
2553
2554  return SDValue();
2555}
2556
2557SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2558                              SDValue N1, SDValue N2) {
2559  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2560  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2561  switch (Opcode) {
2562  default: break;
2563  case ISD::TokenFactor:
2564    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2565           N2.getValueType() == MVT::Other && "Invalid token factor!");
2566    // Fold trivial token factors.
2567    if (N1.getOpcode() == ISD::EntryToken) return N2;
2568    if (N2.getOpcode() == ISD::EntryToken) return N1;
2569    if (N1 == N2) return N1;
2570    break;
2571  case ISD::CONCAT_VECTORS:
2572    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2573    // one big BUILD_VECTOR.
2574    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2575        N2.getOpcode() == ISD::BUILD_VECTOR) {
2576      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2577      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2578      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2579    }
2580    break;
2581  case ISD::AND:
2582    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2583           N1.getValueType() == VT && "Binary operator types must match!");
2584    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2585    // worth handling here.
2586    if (N2C && N2C->isNullValue())
2587      return N2;
2588    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2589      return N1;
2590    break;
2591  case ISD::OR:
2592  case ISD::XOR:
2593  case ISD::ADD:
2594  case ISD::SUB:
2595    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2596           N1.getValueType() == VT && "Binary operator types must match!");
2597    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2598    // it's worth handling here.
2599    if (N2C && N2C->isNullValue())
2600      return N1;
2601    break;
2602  case ISD::UDIV:
2603  case ISD::UREM:
2604  case ISD::MULHU:
2605  case ISD::MULHS:
2606  case ISD::MUL:
2607  case ISD::SDIV:
2608  case ISD::SREM:
2609    assert(VT.isInteger() && "This operator does not apply to FP types!");
2610    // fall through
2611  case ISD::FADD:
2612  case ISD::FSUB:
2613  case ISD::FMUL:
2614  case ISD::FDIV:
2615  case ISD::FREM:
2616    if (UnsafeFPMath) {
2617      if (Opcode == ISD::FADD) {
2618        // 0+x --> x
2619        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2620          if (CFP->getValueAPF().isZero())
2621            return N2;
2622        // x+0 --> x
2623        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2624          if (CFP->getValueAPF().isZero())
2625            return N1;
2626      } else if (Opcode == ISD::FSUB) {
2627        // x-0 --> x
2628        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2629          if (CFP->getValueAPF().isZero())
2630            return N1;
2631      }
2632    }
2633    assert(N1.getValueType() == N2.getValueType() &&
2634           N1.getValueType() == VT && "Binary operator types must match!");
2635    break;
2636  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2637    assert(N1.getValueType() == VT &&
2638           N1.getValueType().isFloatingPoint() &&
2639           N2.getValueType().isFloatingPoint() &&
2640           "Invalid FCOPYSIGN!");
2641    break;
2642  case ISD::SHL:
2643  case ISD::SRA:
2644  case ISD::SRL:
2645  case ISD::ROTL:
2646  case ISD::ROTR:
2647    assert(VT == N1.getValueType() &&
2648           "Shift operators return type must be the same as their first arg");
2649    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2650           "Shifts only work on integers");
2651
2652    // Always fold shifts of i1 values so the code generator doesn't need to
2653    // handle them.  Since we know the size of the shift has to be less than the
2654    // size of the value, the shift/rotate count is guaranteed to be zero.
2655    if (VT == MVT::i1)
2656      return N1;
2657    break;
2658  case ISD::FP_ROUND_INREG: {
2659    EVT EVT = cast<VTSDNode>(N2)->getVT();
2660    assert(VT == N1.getValueType() && "Not an inreg round!");
2661    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2662           "Cannot FP_ROUND_INREG integer types");
2663    assert(EVT.bitsLE(VT) && "Not rounding down!");
2664    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2665    break;
2666  }
2667  case ISD::FP_ROUND:
2668    assert(VT.isFloatingPoint() &&
2669           N1.getValueType().isFloatingPoint() &&
2670           VT.bitsLE(N1.getValueType()) &&
2671           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2672    if (N1.getValueType() == VT) return N1;  // noop conversion.
2673    break;
2674  case ISD::AssertSext:
2675  case ISD::AssertZext: {
2676    EVT EVT = cast<VTSDNode>(N2)->getVT();
2677    assert(VT == N1.getValueType() && "Not an inreg extend!");
2678    assert(VT.isInteger() && EVT.isInteger() &&
2679           "Cannot *_EXTEND_INREG FP types");
2680    assert(!EVT.isVector() &&
2681           "AssertSExt/AssertZExt type should be the vector element type "
2682           "rather than the vector type!");
2683    assert(EVT.bitsLE(VT) && "Not extending!");
2684    if (VT == EVT) return N1; // noop assertion.
2685    break;
2686  }
2687  case ISD::SIGN_EXTEND_INREG: {
2688    EVT EVT = cast<VTSDNode>(N2)->getVT();
2689    assert(VT == N1.getValueType() && "Not an inreg extend!");
2690    assert(VT.isInteger() && EVT.isInteger() &&
2691           "Cannot *_EXTEND_INREG FP types");
2692    assert(!EVT.isVector() &&
2693           "SIGN_EXTEND_INREG type should be the vector element type rather "
2694           "than the vector type!");
2695    assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
2696    if (EVT == VT) return N1;  // Not actually extending
2697
2698    if (N1C) {
2699      APInt Val = N1C->getAPIntValue();
2700      unsigned FromBits = EVT.getSizeInBits();
2701      Val <<= Val.getBitWidth()-FromBits;
2702      Val = Val.ashr(Val.getBitWidth()-FromBits);
2703      return getConstant(Val, VT);
2704    }
2705    break;
2706  }
2707  case ISD::EXTRACT_VECTOR_ELT:
2708    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2709    if (N1.getOpcode() == ISD::UNDEF)
2710      return getUNDEF(VT);
2711
2712    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2713    // expanding copies of large vectors from registers.
2714    if (N2C &&
2715        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2716        N1.getNumOperands() > 0) {
2717      unsigned Factor =
2718        N1.getOperand(0).getValueType().getVectorNumElements();
2719      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2720                     N1.getOperand(N2C->getZExtValue() / Factor),
2721                     getConstant(N2C->getZExtValue() % Factor,
2722                                 N2.getValueType()));
2723    }
2724
2725    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2726    // expanding large vector constants.
2727    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2728      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2729      EVT VEltTy = N1.getValueType().getVectorElementType();
2730      if (Elt.getValueType() != VEltTy) {
2731        // If the vector element type is not legal, the BUILD_VECTOR operands
2732        // are promoted and implicitly truncated.  Make that explicit here.
2733        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2734      }
2735      if (VT != VEltTy) {
2736        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2737        // result is implicitly extended.
2738        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2739      }
2740      return Elt;
2741    }
2742
2743    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2744    // operations are lowered to scalars.
2745    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2746      // If the indices are the same, return the inserted element.
2747      if (N1.getOperand(2) == N2)
2748        return N1.getOperand(1);
2749      // If the indices are known different, extract the element from
2750      // the original vector.
2751      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2752               isa<ConstantSDNode>(N2))
2753        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2754    }
2755    break;
2756  case ISD::EXTRACT_ELEMENT:
2757    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2758    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2759           (N1.getValueType().isInteger() == VT.isInteger()) &&
2760           "Wrong types for EXTRACT_ELEMENT!");
2761
2762    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2763    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2764    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2765    if (N1.getOpcode() == ISD::BUILD_PAIR)
2766      return N1.getOperand(N2C->getZExtValue());
2767
2768    // EXTRACT_ELEMENT of a constant int is also very common.
2769    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2770      unsigned ElementSize = VT.getSizeInBits();
2771      unsigned Shift = ElementSize * N2C->getZExtValue();
2772      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2773      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2774    }
2775    break;
2776  case ISD::EXTRACT_SUBVECTOR:
2777    if (N1.getValueType() == VT) // Trivial extraction.
2778      return N1;
2779    break;
2780  }
2781
2782  if (N1C) {
2783    if (N2C) {
2784      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2785      if (SV.getNode()) return SV;
2786    } else {      // Cannonicalize constant to RHS if commutative
2787      if (isCommutativeBinOp(Opcode)) {
2788        std::swap(N1C, N2C);
2789        std::swap(N1, N2);
2790      }
2791    }
2792  }
2793
2794  // Constant fold FP operations.
2795  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2796  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2797  if (N1CFP) {
2798    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2799      // Cannonicalize constant to RHS if commutative
2800      std::swap(N1CFP, N2CFP);
2801      std::swap(N1, N2);
2802    } else if (N2CFP && VT != MVT::ppcf128) {
2803      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2804      APFloat::opStatus s;
2805      switch (Opcode) {
2806      case ISD::FADD:
2807        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2808        if (s != APFloat::opInvalidOp)
2809          return getConstantFP(V1, VT);
2810        break;
2811      case ISD::FSUB:
2812        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2813        if (s!=APFloat::opInvalidOp)
2814          return getConstantFP(V1, VT);
2815        break;
2816      case ISD::FMUL:
2817        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2818        if (s!=APFloat::opInvalidOp)
2819          return getConstantFP(V1, VT);
2820        break;
2821      case ISD::FDIV:
2822        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2823        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2824          return getConstantFP(V1, VT);
2825        break;
2826      case ISD::FREM :
2827        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2828        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2829          return getConstantFP(V1, VT);
2830        break;
2831      case ISD::FCOPYSIGN:
2832        V1.copySign(V2);
2833        return getConstantFP(V1, VT);
2834      default: break;
2835      }
2836    }
2837  }
2838
2839  // Canonicalize an UNDEF to the RHS, even over a constant.
2840  if (N1.getOpcode() == ISD::UNDEF) {
2841    if (isCommutativeBinOp(Opcode)) {
2842      std::swap(N1, N2);
2843    } else {
2844      switch (Opcode) {
2845      case ISD::FP_ROUND_INREG:
2846      case ISD::SIGN_EXTEND_INREG:
2847      case ISD::SUB:
2848      case ISD::FSUB:
2849      case ISD::FDIV:
2850      case ISD::FREM:
2851      case ISD::SRA:
2852        return N1;     // fold op(undef, arg2) -> undef
2853      case ISD::UDIV:
2854      case ISD::SDIV:
2855      case ISD::UREM:
2856      case ISD::SREM:
2857      case ISD::SRL:
2858      case ISD::SHL:
2859        if (!VT.isVector())
2860          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2861        // For vectors, we can't easily build an all zero vector, just return
2862        // the LHS.
2863        return N2;
2864      }
2865    }
2866  }
2867
2868  // Fold a bunch of operators when the RHS is undef.
2869  if (N2.getOpcode() == ISD::UNDEF) {
2870    switch (Opcode) {
2871    case ISD::XOR:
2872      if (N1.getOpcode() == ISD::UNDEF)
2873        // Handle undef ^ undef -> 0 special case. This is a common
2874        // idiom (misuse).
2875        return getConstant(0, VT);
2876      // fallthrough
2877    case ISD::ADD:
2878    case ISD::ADDC:
2879    case ISD::ADDE:
2880    case ISD::SUB:
2881    case ISD::UDIV:
2882    case ISD::SDIV:
2883    case ISD::UREM:
2884    case ISD::SREM:
2885      return N2;       // fold op(arg1, undef) -> undef
2886    case ISD::FADD:
2887    case ISD::FSUB:
2888    case ISD::FMUL:
2889    case ISD::FDIV:
2890    case ISD::FREM:
2891      if (UnsafeFPMath)
2892        return N2;
2893      break;
2894    case ISD::MUL:
2895    case ISD::AND:
2896    case ISD::SRL:
2897    case ISD::SHL:
2898      if (!VT.isVector())
2899        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2900      // For vectors, we can't easily build an all zero vector, just return
2901      // the LHS.
2902      return N1;
2903    case ISD::OR:
2904      if (!VT.isVector())
2905        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2906      // For vectors, we can't easily build an all one vector, just return
2907      // the LHS.
2908      return N1;
2909    case ISD::SRA:
2910      return N1;
2911    }
2912  }
2913
2914  // Memoize this node if possible.
2915  SDNode *N;
2916  SDVTList VTs = getVTList(VT);
2917  if (VT != MVT::Flag) {
2918    SDValue Ops[] = { N1, N2 };
2919    FoldingSetNodeID ID;
2920    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2921    void *IP = 0;
2922    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2923      return SDValue(E, 0);
2924
2925    N = NodeAllocator.Allocate<BinarySDNode>();
2926    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2927    CSEMap.InsertNode(N, IP);
2928  } else {
2929    N = NodeAllocator.Allocate<BinarySDNode>();
2930    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2931  }
2932
2933  AllNodes.push_back(N);
2934#ifndef NDEBUG
2935  VerifyNode(N);
2936#endif
2937  return SDValue(N, 0);
2938}
2939
2940SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2941                              SDValue N1, SDValue N2, SDValue N3) {
2942  // Perform various simplifications.
2943  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2944  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2945  switch (Opcode) {
2946  case ISD::CONCAT_VECTORS:
2947    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2948    // one big BUILD_VECTOR.
2949    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2950        N2.getOpcode() == ISD::BUILD_VECTOR &&
2951        N3.getOpcode() == ISD::BUILD_VECTOR) {
2952      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2953      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2954      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2955      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2956    }
2957    break;
2958  case ISD::SETCC: {
2959    // Use FoldSetCC to simplify SETCC's.
2960    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2961    if (Simp.getNode()) return Simp;
2962    break;
2963  }
2964  case ISD::SELECT:
2965    if (N1C) {
2966     if (N1C->getZExtValue())
2967        return N2;             // select true, X, Y -> X
2968      else
2969        return N3;             // select false, X, Y -> Y
2970    }
2971
2972    if (N2 == N3) return N2;   // select C, X, X -> X
2973    break;
2974  case ISD::BRCOND:
2975    if (N2C) {
2976      if (N2C->getZExtValue()) // Unconditional branch
2977        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2978      else
2979        return N1;         // Never-taken branch
2980    }
2981    break;
2982  case ISD::VECTOR_SHUFFLE:
2983    llvm_unreachable("should use getVectorShuffle constructor!");
2984    break;
2985  case ISD::BIT_CONVERT:
2986    // Fold bit_convert nodes from a type to themselves.
2987    if (N1.getValueType() == VT)
2988      return N1;
2989    break;
2990  }
2991
2992  // Memoize node if it doesn't produce a flag.
2993  SDNode *N;
2994  SDVTList VTs = getVTList(VT);
2995  if (VT != MVT::Flag) {
2996    SDValue Ops[] = { N1, N2, N3 };
2997    FoldingSetNodeID ID;
2998    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2999    void *IP = 0;
3000    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3001      return SDValue(E, 0);
3002
3003    N = NodeAllocator.Allocate<TernarySDNode>();
3004    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3005    CSEMap.InsertNode(N, IP);
3006  } else {
3007    N = NodeAllocator.Allocate<TernarySDNode>();
3008    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3009  }
3010
3011  AllNodes.push_back(N);
3012#ifndef NDEBUG
3013  VerifyNode(N);
3014#endif
3015  return SDValue(N, 0);
3016}
3017
3018SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3019                              SDValue N1, SDValue N2, SDValue N3,
3020                              SDValue N4) {
3021  SDValue Ops[] = { N1, N2, N3, N4 };
3022  return getNode(Opcode, DL, VT, Ops, 4);
3023}
3024
3025SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3026                              SDValue N1, SDValue N2, SDValue N3,
3027                              SDValue N4, SDValue N5) {
3028  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3029  return getNode(Opcode, DL, VT, Ops, 5);
3030}
3031
3032/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3033/// the incoming stack arguments to be loaded from the stack.
3034SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3035  SmallVector<SDValue, 8> ArgChains;
3036
3037  // Include the original chain at the beginning of the list. When this is
3038  // used by target LowerCall hooks, this helps legalize find the
3039  // CALLSEQ_BEGIN node.
3040  ArgChains.push_back(Chain);
3041
3042  // Add a chain value for each stack argument.
3043  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3044       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3045    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3046      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3047        if (FI->getIndex() < 0)
3048          ArgChains.push_back(SDValue(L, 1));
3049
3050  // Build a tokenfactor for all the chains.
3051  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3052                 &ArgChains[0], ArgChains.size());
3053}
3054
3055/// getMemsetValue - Vectorized representation of the memset value
3056/// operand.
3057static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3058                              DebugLoc dl) {
3059  unsigned NumBits = VT.isVector() ?
3060    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3061  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3062    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3063    unsigned Shift = 8;
3064    for (unsigned i = NumBits; i > 8; i >>= 1) {
3065      Val = (Val << Shift) | Val;
3066      Shift <<= 1;
3067    }
3068    if (VT.isInteger())
3069      return DAG.getConstant(Val, VT);
3070    return DAG.getConstantFP(APFloat(Val), VT);
3071  }
3072
3073  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3074  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3075  unsigned Shift = 8;
3076  for (unsigned i = NumBits; i > 8; i >>= 1) {
3077    Value = DAG.getNode(ISD::OR, dl, VT,
3078                        DAG.getNode(ISD::SHL, dl, VT, Value,
3079                                    DAG.getConstant(Shift,
3080                                                    TLI.getShiftAmountTy())),
3081                        Value);
3082    Shift <<= 1;
3083  }
3084
3085  return Value;
3086}
3087
3088/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3089/// used when a memcpy is turned into a memset when the source is a constant
3090/// string ptr.
3091static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3092                                  const TargetLowering &TLI,
3093                                  std::string &Str, unsigned Offset) {
3094  // Handle vector with all elements zero.
3095  if (Str.empty()) {
3096    if (VT.isInteger())
3097      return DAG.getConstant(0, VT);
3098    unsigned NumElts = VT.getVectorNumElements();
3099    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3100    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3101                       DAG.getConstant(0,
3102                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3103  }
3104
3105  assert(!VT.isVector() && "Can't handle vector type here!");
3106  unsigned NumBits = VT.getSizeInBits();
3107  unsigned MSB = NumBits / 8;
3108  uint64_t Val = 0;
3109  if (TLI.isLittleEndian())
3110    Offset = Offset + MSB - 1;
3111  for (unsigned i = 0; i != MSB; ++i) {
3112    Val = (Val << 8) | (unsigned char)Str[Offset];
3113    Offset += TLI.isLittleEndian() ? -1 : 1;
3114  }
3115  return DAG.getConstant(Val, VT);
3116}
3117
3118/// getMemBasePlusOffset - Returns base and offset node for the
3119///
3120static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3121                                      SelectionDAG &DAG) {
3122  EVT VT = Base.getValueType();
3123  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3124                     VT, Base, DAG.getConstant(Offset, VT));
3125}
3126
3127/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3128///
3129static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3130  unsigned SrcDelta = 0;
3131  GlobalAddressSDNode *G = NULL;
3132  if (Src.getOpcode() == ISD::GlobalAddress)
3133    G = cast<GlobalAddressSDNode>(Src);
3134  else if (Src.getOpcode() == ISD::ADD &&
3135           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3136           Src.getOperand(1).getOpcode() == ISD::Constant) {
3137    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3138    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3139  }
3140  if (!G)
3141    return false;
3142
3143  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3144  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3145    return true;
3146
3147  return false;
3148}
3149
3150/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3151/// to replace the memset / memcpy is below the threshold. It also returns the
3152/// types of the sequence of memory ops to perform memset / memcpy.
3153static
3154bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3155                              SDValue Dst, SDValue Src,
3156                              unsigned Limit, uint64_t Size, unsigned &Align,
3157                              std::string &Str, bool &isSrcStr,
3158                              SelectionDAG &DAG,
3159                              const TargetLowering &TLI) {
3160  isSrcStr = isMemSrcFromString(Src, Str);
3161  bool isSrcConst = isa<ConstantSDNode>(Src);
3162  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3163  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3164  if (VT != MVT::iAny) {
3165    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3166    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3167    // If source is a string constant, this will require an unaligned load.
3168    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3169      if (Dst.getOpcode() != ISD::FrameIndex) {
3170        // Can't change destination alignment. It requires a unaligned store.
3171        if (AllowUnalign)
3172          VT = MVT::iAny;
3173      } else {
3174        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3175        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3176        if (MFI->isFixedObjectIndex(FI)) {
3177          // Can't change destination alignment. It requires a unaligned store.
3178          if (AllowUnalign)
3179            VT = MVT::iAny;
3180        } else {
3181          // Give the stack frame object a larger alignment if needed.
3182          if (MFI->getObjectAlignment(FI) < NewAlign)
3183            MFI->setObjectAlignment(FI, NewAlign);
3184          Align = NewAlign;
3185        }
3186      }
3187    }
3188  }
3189
3190  if (VT == MVT::iAny) {
3191    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3192      VT = MVT::i64;
3193    } else {
3194      switch (Align & 7) {
3195      case 0:  VT = MVT::i64; break;
3196      case 4:  VT = MVT::i32; break;
3197      case 2:  VT = MVT::i16; break;
3198      default: VT = MVT::i8;  break;
3199      }
3200    }
3201
3202    MVT LVT = MVT::i64;
3203    while (!TLI.isTypeLegal(LVT))
3204      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3205    assert(LVT.isInteger());
3206
3207    if (VT.bitsGT(LVT))
3208      VT = LVT;
3209  }
3210
3211  unsigned NumMemOps = 0;
3212  while (Size != 0) {
3213    unsigned VTSize = VT.getSizeInBits() / 8;
3214    while (VTSize > Size) {
3215      // For now, only use non-vector load / store's for the left-over pieces.
3216      if (VT.isVector()) {
3217        VT = MVT::i64;
3218        while (!TLI.isTypeLegal(VT))
3219          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3220        VTSize = VT.getSizeInBits() / 8;
3221      } else {
3222        // This can result in a type that is not legal on the target, e.g.
3223        // 1 or 2 bytes on PPC.
3224        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3225        VTSize >>= 1;
3226      }
3227    }
3228
3229    if (++NumMemOps > Limit)
3230      return false;
3231    MemOps.push_back(VT);
3232    Size -= VTSize;
3233  }
3234
3235  return true;
3236}
3237
3238static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3239                                         SDValue Chain, SDValue Dst,
3240                                         SDValue Src, uint64_t Size,
3241                                         unsigned Align, bool AlwaysInline,
3242                                         const Value *DstSV, uint64_t DstSVOff,
3243                                         const Value *SrcSV, uint64_t SrcSVOff){
3244  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3245
3246  // Expand memcpy to a series of load and store ops if the size operand falls
3247  // below a certain threshold.
3248  std::vector<EVT> MemOps;
3249  uint64_t Limit = -1ULL;
3250  if (!AlwaysInline)
3251    Limit = TLI.getMaxStoresPerMemcpy();
3252  unsigned DstAlign = Align;  // Destination alignment can change.
3253  std::string Str;
3254  bool CopyFromStr;
3255  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3256                                Str, CopyFromStr, DAG, TLI))
3257    return SDValue();
3258
3259
3260  bool isZeroStr = CopyFromStr && Str.empty();
3261  SmallVector<SDValue, 8> OutChains;
3262  unsigned NumMemOps = MemOps.size();
3263  uint64_t SrcOff = 0, DstOff = 0;
3264  for (unsigned i = 0; i != NumMemOps; ++i) {
3265    EVT VT = MemOps[i];
3266    unsigned VTSize = VT.getSizeInBits() / 8;
3267    SDValue Value, Store;
3268
3269    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3270      // It's unlikely a store of a vector immediate can be done in a single
3271      // instruction. It would require a load from a constantpool first.
3272      // We also handle store a vector with all zero's.
3273      // FIXME: Handle other cases where store of vector immediate is done in
3274      // a single instruction.
3275      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3276      Store = DAG.getStore(Chain, dl, Value,
3277                           getMemBasePlusOffset(Dst, DstOff, DAG),
3278                           DstSV, DstSVOff + DstOff, false, DstAlign);
3279    } else {
3280      // The type might not be legal for the target.  This should only happen
3281      // if the type is smaller than a legal type, as on PPC, so the right
3282      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3283      // to Load/Store if NVT==VT.
3284      // FIXME does the case above also need this?
3285      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3286      assert(NVT.bitsGE(VT));
3287      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3288                             getMemBasePlusOffset(Src, SrcOff, DAG),
3289                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3290      Store = DAG.getTruncStore(Chain, dl, Value,
3291                             getMemBasePlusOffset(Dst, DstOff, DAG),
3292                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3293    }
3294    OutChains.push_back(Store);
3295    SrcOff += VTSize;
3296    DstOff += VTSize;
3297  }
3298
3299  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3300                     &OutChains[0], OutChains.size());
3301}
3302
3303static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3304                                          SDValue Chain, SDValue Dst,
3305                                          SDValue Src, uint64_t Size,
3306                                          unsigned Align, bool AlwaysInline,
3307                                          const Value *DstSV, uint64_t DstSVOff,
3308                                          const Value *SrcSV, uint64_t SrcSVOff){
3309  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3310
3311  // Expand memmove to a series of load and store ops if the size operand falls
3312  // below a certain threshold.
3313  std::vector<EVT> MemOps;
3314  uint64_t Limit = -1ULL;
3315  if (!AlwaysInline)
3316    Limit = TLI.getMaxStoresPerMemmove();
3317  unsigned DstAlign = Align;  // Destination alignment can change.
3318  std::string Str;
3319  bool CopyFromStr;
3320  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3321                                Str, CopyFromStr, DAG, TLI))
3322    return SDValue();
3323
3324  uint64_t SrcOff = 0, DstOff = 0;
3325
3326  SmallVector<SDValue, 8> LoadValues;
3327  SmallVector<SDValue, 8> LoadChains;
3328  SmallVector<SDValue, 8> OutChains;
3329  unsigned NumMemOps = MemOps.size();
3330  for (unsigned i = 0; i < NumMemOps; i++) {
3331    EVT VT = MemOps[i];
3332    unsigned VTSize = VT.getSizeInBits() / 8;
3333    SDValue Value, Store;
3334
3335    Value = DAG.getLoad(VT, dl, Chain,
3336                        getMemBasePlusOffset(Src, SrcOff, DAG),
3337                        SrcSV, SrcSVOff + SrcOff, false, Align);
3338    LoadValues.push_back(Value);
3339    LoadChains.push_back(Value.getValue(1));
3340    SrcOff += VTSize;
3341  }
3342  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3343                      &LoadChains[0], LoadChains.size());
3344  OutChains.clear();
3345  for (unsigned i = 0; i < NumMemOps; i++) {
3346    EVT VT = MemOps[i];
3347    unsigned VTSize = VT.getSizeInBits() / 8;
3348    SDValue Value, Store;
3349
3350    Store = DAG.getStore(Chain, dl, LoadValues[i],
3351                         getMemBasePlusOffset(Dst, DstOff, DAG),
3352                         DstSV, DstSVOff + DstOff, false, DstAlign);
3353    OutChains.push_back(Store);
3354    DstOff += VTSize;
3355  }
3356
3357  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3358                     &OutChains[0], OutChains.size());
3359}
3360
3361static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3362                                 SDValue Chain, SDValue Dst,
3363                                 SDValue Src, uint64_t Size,
3364                                 unsigned Align,
3365                                 const Value *DstSV, uint64_t DstSVOff) {
3366  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3367
3368  // Expand memset to a series of load/store ops if the size operand
3369  // falls below a certain threshold.
3370  std::vector<EVT> MemOps;
3371  std::string Str;
3372  bool CopyFromStr;
3373  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3374                                Size, Align, Str, CopyFromStr, DAG, TLI))
3375    return SDValue();
3376
3377  SmallVector<SDValue, 8> OutChains;
3378  uint64_t DstOff = 0;
3379
3380  unsigned NumMemOps = MemOps.size();
3381  for (unsigned i = 0; i < NumMemOps; i++) {
3382    EVT VT = MemOps[i];
3383    unsigned VTSize = VT.getSizeInBits() / 8;
3384    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3385    SDValue Store = DAG.getStore(Chain, dl, Value,
3386                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3387                                 DstSV, DstSVOff + DstOff);
3388    OutChains.push_back(Store);
3389    DstOff += VTSize;
3390  }
3391
3392  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3393                     &OutChains[0], OutChains.size());
3394}
3395
3396SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3397                                SDValue Src, SDValue Size,
3398                                unsigned Align, bool AlwaysInline,
3399                                const Value *DstSV, uint64_t DstSVOff,
3400                                const Value *SrcSV, uint64_t SrcSVOff) {
3401
3402  // Check to see if we should lower the memcpy to loads and stores first.
3403  // For cases within the target-specified limits, this is the best choice.
3404  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3405  if (ConstantSize) {
3406    // Memcpy with size zero? Just return the original chain.
3407    if (ConstantSize->isNullValue())
3408      return Chain;
3409
3410    SDValue Result =
3411      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3412                              ConstantSize->getZExtValue(),
3413                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3414    if (Result.getNode())
3415      return Result;
3416  }
3417
3418  // Then check to see if we should lower the memcpy with target-specific
3419  // code. If the target chooses to do this, this is the next best.
3420  SDValue Result =
3421    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3422                                AlwaysInline,
3423                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3424  if (Result.getNode())
3425    return Result;
3426
3427  // If we really need inline code and the target declined to provide it,
3428  // use a (potentially long) sequence of loads and stores.
3429  if (AlwaysInline) {
3430    assert(ConstantSize && "AlwaysInline requires a constant size!");
3431    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3432                                   ConstantSize->getZExtValue(), Align, true,
3433                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3434  }
3435
3436  // Emit a library call.
3437  TargetLowering::ArgListTy Args;
3438  TargetLowering::ArgListEntry Entry;
3439  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3440  Entry.Node = Dst; Args.push_back(Entry);
3441  Entry.Node = Src; Args.push_back(Entry);
3442  Entry.Node = Size; Args.push_back(Entry);
3443  // FIXME: pass in DebugLoc
3444  std::pair<SDValue,SDValue> CallResult =
3445    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3446                    false, false, false, false, 0,
3447                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3448                    /*isReturnValueUsed=*/false,
3449                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3450                                      TLI.getPointerTy()),
3451                    Args, *this, dl);
3452  return CallResult.second;
3453}
3454
3455SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3456                                 SDValue Src, SDValue Size,
3457                                 unsigned Align,
3458                                 const Value *DstSV, uint64_t DstSVOff,
3459                                 const Value *SrcSV, uint64_t SrcSVOff) {
3460
3461  // Check to see if we should lower the memmove to loads and stores first.
3462  // For cases within the target-specified limits, this is the best choice.
3463  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3464  if (ConstantSize) {
3465    // Memmove with size zero? Just return the original chain.
3466    if (ConstantSize->isNullValue())
3467      return Chain;
3468
3469    SDValue Result =
3470      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3471                               ConstantSize->getZExtValue(),
3472                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3473    if (Result.getNode())
3474      return Result;
3475  }
3476
3477  // Then check to see if we should lower the memmove with target-specific
3478  // code. If the target chooses to do this, this is the next best.
3479  SDValue Result =
3480    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3481                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3482  if (Result.getNode())
3483    return Result;
3484
3485  // Emit a library call.
3486  TargetLowering::ArgListTy Args;
3487  TargetLowering::ArgListEntry Entry;
3488  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3489  Entry.Node = Dst; Args.push_back(Entry);
3490  Entry.Node = Src; Args.push_back(Entry);
3491  Entry.Node = Size; Args.push_back(Entry);
3492  // FIXME:  pass in DebugLoc
3493  std::pair<SDValue,SDValue> CallResult =
3494    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3495                    false, false, false, false, 0,
3496                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3497                    /*isReturnValueUsed=*/false,
3498                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3499                                      TLI.getPointerTy()),
3500                    Args, *this, dl);
3501  return CallResult.second;
3502}
3503
3504SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3505                                SDValue Src, SDValue Size,
3506                                unsigned Align,
3507                                const Value *DstSV, uint64_t DstSVOff) {
3508
3509  // Check to see if we should lower the memset to stores first.
3510  // For cases within the target-specified limits, this is the best choice.
3511  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3512  if (ConstantSize) {
3513    // Memset with size zero? Just return the original chain.
3514    if (ConstantSize->isNullValue())
3515      return Chain;
3516
3517    SDValue Result =
3518      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3519                      Align, DstSV, DstSVOff);
3520    if (Result.getNode())
3521      return Result;
3522  }
3523
3524  // Then check to see if we should lower the memset with target-specific
3525  // code. If the target chooses to do this, this is the next best.
3526  SDValue Result =
3527    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3528                                DstSV, DstSVOff);
3529  if (Result.getNode())
3530    return Result;
3531
3532  // Emit a library call.
3533  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3534  TargetLowering::ArgListTy Args;
3535  TargetLowering::ArgListEntry Entry;
3536  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3537  Args.push_back(Entry);
3538  // Extend or truncate the argument to be an i32 value for the call.
3539  if (Src.getValueType().bitsGT(MVT::i32))
3540    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3541  else
3542    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3543  Entry.Node = Src;
3544  Entry.Ty = Type::getInt32Ty(*getContext());
3545  Entry.isSExt = true;
3546  Args.push_back(Entry);
3547  Entry.Node = Size;
3548  Entry.Ty = IntPtrTy;
3549  Entry.isSExt = false;
3550  Args.push_back(Entry);
3551  // FIXME: pass in DebugLoc
3552  std::pair<SDValue,SDValue> CallResult =
3553    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3554                    false, false, false, false, 0,
3555                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3556                    /*isReturnValueUsed=*/false,
3557                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3558                                      TLI.getPointerTy()),
3559                    Args, *this, dl);
3560  return CallResult.second;
3561}
3562
3563SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3564                                SDValue Chain,
3565                                SDValue Ptr, SDValue Cmp,
3566                                SDValue Swp, const Value* PtrVal,
3567                                unsigned Alignment) {
3568  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3569    Alignment = getEVTAlignment(MemVT);
3570
3571  // Check if the memory reference references a frame index
3572  if (!PtrVal)
3573    if (const FrameIndexSDNode *FI =
3574          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3575      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3576
3577  MachineFunction &MF = getMachineFunction();
3578  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3579
3580  // For now, atomics are considered to be volatile always.
3581  Flags |= MachineMemOperand::MOVolatile;
3582
3583  MachineMemOperand *MMO =
3584    MF.getMachineMemOperand(PtrVal, Flags, 0,
3585                            MemVT.getStoreSize(), Alignment);
3586
3587  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3588}
3589
3590SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3591                                SDValue Chain,
3592                                SDValue Ptr, SDValue Cmp,
3593                                SDValue Swp, MachineMemOperand *MMO) {
3594  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3595  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3596
3597  EVT VT = Cmp.getValueType();
3598
3599  SDVTList VTs = getVTList(VT, MVT::Other);
3600  FoldingSetNodeID ID;
3601  ID.AddInteger(MemVT.getRawBits());
3602  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3603  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3604  void* IP = 0;
3605  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3606    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3607    return SDValue(E, 0);
3608  }
3609  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3610  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3611  CSEMap.InsertNode(N, IP);
3612  AllNodes.push_back(N);
3613  return SDValue(N, 0);
3614}
3615
3616SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3617                                SDValue Chain,
3618                                SDValue Ptr, SDValue Val,
3619                                const Value* PtrVal,
3620                                unsigned Alignment) {
3621  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3622    Alignment = getEVTAlignment(MemVT);
3623
3624  // Check if the memory reference references a frame index
3625  if (!PtrVal)
3626    if (const FrameIndexSDNode *FI =
3627          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3628      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3629
3630  MachineFunction &MF = getMachineFunction();
3631  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3632
3633  // For now, atomics are considered to be volatile always.
3634  Flags |= MachineMemOperand::MOVolatile;
3635
3636  MachineMemOperand *MMO =
3637    MF.getMachineMemOperand(PtrVal, Flags, 0,
3638                            MemVT.getStoreSize(), Alignment);
3639
3640  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3641}
3642
3643SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3644                                SDValue Chain,
3645                                SDValue Ptr, SDValue Val,
3646                                MachineMemOperand *MMO) {
3647  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3648          Opcode == ISD::ATOMIC_LOAD_SUB ||
3649          Opcode == ISD::ATOMIC_LOAD_AND ||
3650          Opcode == ISD::ATOMIC_LOAD_OR ||
3651          Opcode == ISD::ATOMIC_LOAD_XOR ||
3652          Opcode == ISD::ATOMIC_LOAD_NAND ||
3653          Opcode == ISD::ATOMIC_LOAD_MIN ||
3654          Opcode == ISD::ATOMIC_LOAD_MAX ||
3655          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3656          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3657          Opcode == ISD::ATOMIC_SWAP) &&
3658         "Invalid Atomic Op");
3659
3660  EVT VT = Val.getValueType();
3661
3662  SDVTList VTs = getVTList(VT, MVT::Other);
3663  FoldingSetNodeID ID;
3664  ID.AddInteger(MemVT.getRawBits());
3665  SDValue Ops[] = {Chain, Ptr, Val};
3666  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3667  void* IP = 0;
3668  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3669    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3670    return SDValue(E, 0);
3671  }
3672  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3673  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3674  CSEMap.InsertNode(N, IP);
3675  AllNodes.push_back(N);
3676  return SDValue(N, 0);
3677}
3678
3679/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3680/// Allowed to return something different (and simpler) if Simplify is true.
3681SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3682                                     DebugLoc dl) {
3683  if (NumOps == 1)
3684    return Ops[0];
3685
3686  SmallVector<EVT, 4> VTs;
3687  VTs.reserve(NumOps);
3688  for (unsigned i = 0; i < NumOps; ++i)
3689    VTs.push_back(Ops[i].getValueType());
3690  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3691                 Ops, NumOps);
3692}
3693
3694SDValue
3695SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3696                                  const EVT *VTs, unsigned NumVTs,
3697                                  const SDValue *Ops, unsigned NumOps,
3698                                  EVT MemVT, const Value *srcValue, int SVOff,
3699                                  unsigned Align, bool Vol,
3700                                  bool ReadMem, bool WriteMem) {
3701  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3702                             MemVT, srcValue, SVOff, Align, Vol,
3703                             ReadMem, WriteMem);
3704}
3705
3706SDValue
3707SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3708                                  const SDValue *Ops, unsigned NumOps,
3709                                  EVT MemVT, const Value *srcValue, int SVOff,
3710                                  unsigned Align, bool Vol,
3711                                  bool ReadMem, bool WriteMem) {
3712  if (Align == 0)  // Ensure that codegen never sees alignment 0
3713    Align = getEVTAlignment(MemVT);
3714
3715  MachineFunction &MF = getMachineFunction();
3716  unsigned Flags = 0;
3717  if (WriteMem)
3718    Flags |= MachineMemOperand::MOStore;
3719  if (ReadMem)
3720    Flags |= MachineMemOperand::MOLoad;
3721  if (Vol)
3722    Flags |= MachineMemOperand::MOVolatile;
3723  MachineMemOperand *MMO =
3724    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3725                            MemVT.getStoreSize(), Align);
3726
3727  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3728}
3729
3730SDValue
3731SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3732                                  const SDValue *Ops, unsigned NumOps,
3733                                  EVT MemVT, MachineMemOperand *MMO) {
3734  assert((Opcode == ISD::INTRINSIC_VOID ||
3735          Opcode == ISD::INTRINSIC_W_CHAIN ||
3736          (Opcode <= INT_MAX &&
3737           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3738         "Opcode is not a memory-accessing opcode!");
3739
3740  // Memoize the node unless it returns a flag.
3741  MemIntrinsicSDNode *N;
3742  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3743    FoldingSetNodeID ID;
3744    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3745    void *IP = 0;
3746    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3747      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3748      return SDValue(E, 0);
3749    }
3750
3751    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3752    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3753    CSEMap.InsertNode(N, IP);
3754  } else {
3755    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3756    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3757  }
3758  AllNodes.push_back(N);
3759  return SDValue(N, 0);
3760}
3761
3762SDValue
3763SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3764                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3765                      SDValue Ptr, SDValue Offset,
3766                      const Value *SV, int SVOffset, EVT MemVT,
3767                      bool isVolatile, unsigned Alignment) {
3768  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3769    Alignment = getEVTAlignment(VT);
3770
3771  // Check if the memory reference references a frame index
3772  if (!SV)
3773    if (const FrameIndexSDNode *FI =
3774          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3775      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3776
3777  MachineFunction &MF = getMachineFunction();
3778  unsigned Flags = MachineMemOperand::MOLoad;
3779  if (isVolatile)
3780    Flags |= MachineMemOperand::MOVolatile;
3781  MachineMemOperand *MMO =
3782    MF.getMachineMemOperand(SV, Flags, SVOffset,
3783                            MemVT.getStoreSize(), Alignment);
3784  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3785}
3786
3787SDValue
3788SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3789                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3790                      SDValue Ptr, SDValue Offset, EVT MemVT,
3791                      MachineMemOperand *MMO) {
3792  if (VT == MemVT) {
3793    ExtType = ISD::NON_EXTLOAD;
3794  } else if (ExtType == ISD::NON_EXTLOAD) {
3795    assert(VT == MemVT && "Non-extending load from different memory type!");
3796  } else {
3797    // Extending load.
3798    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3799           "Should only be an extending load, not truncating!");
3800    assert(VT.isInteger() == MemVT.isInteger() &&
3801           "Cannot convert from FP to Int or Int -> FP!");
3802    assert(VT.isVector() == MemVT.isVector() &&
3803           "Cannot use trunc store to convert to or from a vector!");
3804    assert((!VT.isVector() ||
3805            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3806           "Cannot use trunc store to change the number of vector elements!");
3807  }
3808
3809  bool Indexed = AM != ISD::UNINDEXED;
3810  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3811         "Unindexed load with an offset!");
3812
3813  SDVTList VTs = Indexed ?
3814    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3815  SDValue Ops[] = { Chain, Ptr, Offset };
3816  FoldingSetNodeID ID;
3817  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3818  ID.AddInteger(MemVT.getRawBits());
3819  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
3820  void *IP = 0;
3821  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3822    cast<LoadSDNode>(E)->refineAlignment(MMO);
3823    return SDValue(E, 0);
3824  }
3825  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3826  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3827  CSEMap.InsertNode(N, IP);
3828  AllNodes.push_back(N);
3829  return SDValue(N, 0);
3830}
3831
3832SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3833                              SDValue Chain, SDValue Ptr,
3834                              const Value *SV, int SVOffset,
3835                              bool isVolatile, unsigned Alignment) {
3836  SDValue Undef = getUNDEF(Ptr.getValueType());
3837  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3838                 SV, SVOffset, VT, isVolatile, Alignment);
3839}
3840
3841SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3842                                 SDValue Chain, SDValue Ptr,
3843                                 const Value *SV,
3844                                 int SVOffset, EVT MemVT,
3845                                 bool isVolatile, unsigned Alignment) {
3846  SDValue Undef = getUNDEF(Ptr.getValueType());
3847  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3848                 SV, SVOffset, MemVT, isVolatile, Alignment);
3849}
3850
3851SDValue
3852SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3853                             SDValue Offset, ISD::MemIndexedMode AM) {
3854  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3855  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3856         "Load is already a indexed load!");
3857  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3858                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3859                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3860                 LD->isVolatile(), LD->getAlignment());
3861}
3862
3863SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3864                               SDValue Ptr, const Value *SV, int SVOffset,
3865                               bool isVolatile, unsigned Alignment) {
3866  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3867    Alignment = getEVTAlignment(Val.getValueType());
3868
3869  // Check if the memory reference references a frame index
3870  if (!SV)
3871    if (const FrameIndexSDNode *FI =
3872          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3873      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3874
3875  MachineFunction &MF = getMachineFunction();
3876  unsigned Flags = MachineMemOperand::MOStore;
3877  if (isVolatile)
3878    Flags |= MachineMemOperand::MOVolatile;
3879  MachineMemOperand *MMO =
3880    MF.getMachineMemOperand(SV, Flags, SVOffset,
3881                            Val.getValueType().getStoreSize(), Alignment);
3882
3883  return getStore(Chain, dl, Val, Ptr, MMO);
3884}
3885
3886SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3887                               SDValue Ptr, MachineMemOperand *MMO) {
3888  EVT VT = Val.getValueType();
3889  SDVTList VTs = getVTList(MVT::Other);
3890  SDValue Undef = getUNDEF(Ptr.getValueType());
3891  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3892  FoldingSetNodeID ID;
3893  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3894  ID.AddInteger(VT.getRawBits());
3895  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
3896  void *IP = 0;
3897  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3898    cast<StoreSDNode>(E)->refineAlignment(MMO);
3899    return SDValue(E, 0);
3900  }
3901  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3902  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3903  CSEMap.InsertNode(N, IP);
3904  AllNodes.push_back(N);
3905  return SDValue(N, 0);
3906}
3907
3908SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3909                                    SDValue Ptr, const Value *SV,
3910                                    int SVOffset, EVT SVT,
3911                                    bool isVolatile, unsigned Alignment) {
3912  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3913    Alignment = getEVTAlignment(SVT);
3914
3915  // Check if the memory reference references a frame index
3916  if (!SV)
3917    if (const FrameIndexSDNode *FI =
3918          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3919      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3920
3921  MachineFunction &MF = getMachineFunction();
3922  unsigned Flags = MachineMemOperand::MOStore;
3923  if (isVolatile)
3924    Flags |= MachineMemOperand::MOVolatile;
3925  MachineMemOperand *MMO =
3926    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3927
3928  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3929}
3930
3931SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3932                                    SDValue Ptr, EVT SVT,
3933                                    MachineMemOperand *MMO) {
3934  EVT VT = Val.getValueType();
3935
3936  if (VT == SVT)
3937    return getStore(Chain, dl, Val, Ptr, MMO);
3938
3939  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
3940         "Should only be a truncating store, not extending!");
3941  assert(VT.isInteger() == SVT.isInteger() &&
3942         "Can't do FP-INT conversion!");
3943  assert(VT.isVector() == SVT.isVector() &&
3944         "Cannot use trunc store to convert to or from a vector!");
3945  assert((!VT.isVector() ||
3946          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
3947         "Cannot use trunc store to change the number of vector elements!");
3948
3949  SDVTList VTs = getVTList(MVT::Other);
3950  SDValue Undef = getUNDEF(Ptr.getValueType());
3951  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3952  FoldingSetNodeID ID;
3953  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3954  ID.AddInteger(SVT.getRawBits());
3955  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
3956  void *IP = 0;
3957  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3958    cast<StoreSDNode>(E)->refineAlignment(MMO);
3959    return SDValue(E, 0);
3960  }
3961  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3962  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
3963  CSEMap.InsertNode(N, IP);
3964  AllNodes.push_back(N);
3965  return SDValue(N, 0);
3966}
3967
3968SDValue
3969SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3970                              SDValue Offset, ISD::MemIndexedMode AM) {
3971  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3972  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3973         "Store is already a indexed store!");
3974  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3975  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3976  FoldingSetNodeID ID;
3977  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3978  ID.AddInteger(ST->getMemoryVT().getRawBits());
3979  ID.AddInteger(ST->getRawSubclassData());
3980  void *IP = 0;
3981  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3982    return SDValue(E, 0);
3983
3984  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3985  new (N) StoreSDNode(Ops, dl, VTs, AM,
3986                      ST->isTruncatingStore(), ST->getMemoryVT(),
3987                      ST->getMemOperand());
3988  CSEMap.InsertNode(N, IP);
3989  AllNodes.push_back(N);
3990  return SDValue(N, 0);
3991}
3992
3993SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
3994                               SDValue Chain, SDValue Ptr,
3995                               SDValue SV) {
3996  SDValue Ops[] = { Chain, Ptr, SV };
3997  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3998}
3999
4000SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4001                              const SDUse *Ops, unsigned NumOps) {
4002  switch (NumOps) {
4003  case 0: return getNode(Opcode, DL, VT);
4004  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4005  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4006  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4007  default: break;
4008  }
4009
4010  // Copy from an SDUse array into an SDValue array for use with
4011  // the regular getNode logic.
4012  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4013  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4014}
4015
4016SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4017                              const SDValue *Ops, unsigned NumOps) {
4018  switch (NumOps) {
4019  case 0: return getNode(Opcode, DL, VT);
4020  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4021  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4022  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4023  default: break;
4024  }
4025
4026  switch (Opcode) {
4027  default: break;
4028  case ISD::SELECT_CC: {
4029    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4030    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4031           "LHS and RHS of condition must have same type!");
4032    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4033           "True and False arms of SelectCC must have same type!");
4034    assert(Ops[2].getValueType() == VT &&
4035           "select_cc node must be of same type as true and false value!");
4036    break;
4037  }
4038  case ISD::BR_CC: {
4039    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4040    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4041           "LHS/RHS of comparison should match types!");
4042    break;
4043  }
4044  }
4045
4046  // Memoize nodes.
4047  SDNode *N;
4048  SDVTList VTs = getVTList(VT);
4049
4050  if (VT != MVT::Flag) {
4051    FoldingSetNodeID ID;
4052    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4053    void *IP = 0;
4054
4055    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4056      return SDValue(E, 0);
4057
4058    N = NodeAllocator.Allocate<SDNode>();
4059    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4060    CSEMap.InsertNode(N, IP);
4061  } else {
4062    N = NodeAllocator.Allocate<SDNode>();
4063    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4064  }
4065
4066  AllNodes.push_back(N);
4067#ifndef NDEBUG
4068  VerifyNode(N);
4069#endif
4070  return SDValue(N, 0);
4071}
4072
4073SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4074                              const std::vector<EVT> &ResultTys,
4075                              const SDValue *Ops, unsigned NumOps) {
4076  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4077                 Ops, NumOps);
4078}
4079
4080SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4081                              const EVT *VTs, unsigned NumVTs,
4082                              const SDValue *Ops, unsigned NumOps) {
4083  if (NumVTs == 1)
4084    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4085  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4086}
4087
4088SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4089                              const SDValue *Ops, unsigned NumOps) {
4090  if (VTList.NumVTs == 1)
4091    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4092
4093#if 0
4094  switch (Opcode) {
4095  // FIXME: figure out how to safely handle things like
4096  // int foo(int x) { return 1 << (x & 255); }
4097  // int bar() { return foo(256); }
4098  case ISD::SRA_PARTS:
4099  case ISD::SRL_PARTS:
4100  case ISD::SHL_PARTS:
4101    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4102        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4103      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4104    else if (N3.getOpcode() == ISD::AND)
4105      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4106        // If the and is only masking out bits that cannot effect the shift,
4107        // eliminate the and.
4108        unsigned NumBits = VT.getSizeInBits()*2;
4109        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4110          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4111      }
4112    break;
4113  }
4114#endif
4115
4116  // Memoize the node unless it returns a flag.
4117  SDNode *N;
4118  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4119    FoldingSetNodeID ID;
4120    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4121    void *IP = 0;
4122    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4123      return SDValue(E, 0);
4124
4125    if (NumOps == 1) {
4126      N = NodeAllocator.Allocate<UnarySDNode>();
4127      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4128    } else if (NumOps == 2) {
4129      N = NodeAllocator.Allocate<BinarySDNode>();
4130      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4131    } else if (NumOps == 3) {
4132      N = NodeAllocator.Allocate<TernarySDNode>();
4133      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4134    } else {
4135      N = NodeAllocator.Allocate<SDNode>();
4136      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4137    }
4138    CSEMap.InsertNode(N, IP);
4139  } else {
4140    if (NumOps == 1) {
4141      N = NodeAllocator.Allocate<UnarySDNode>();
4142      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4143    } else if (NumOps == 2) {
4144      N = NodeAllocator.Allocate<BinarySDNode>();
4145      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4146    } else if (NumOps == 3) {
4147      N = NodeAllocator.Allocate<TernarySDNode>();
4148      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4149    } else {
4150      N = NodeAllocator.Allocate<SDNode>();
4151      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4152    }
4153  }
4154  AllNodes.push_back(N);
4155#ifndef NDEBUG
4156  VerifyNode(N);
4157#endif
4158  return SDValue(N, 0);
4159}
4160
4161SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4162  return getNode(Opcode, DL, VTList, 0, 0);
4163}
4164
4165SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4166                              SDValue N1) {
4167  SDValue Ops[] = { N1 };
4168  return getNode(Opcode, DL, VTList, Ops, 1);
4169}
4170
4171SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4172                              SDValue N1, SDValue N2) {
4173  SDValue Ops[] = { N1, N2 };
4174  return getNode(Opcode, DL, VTList, Ops, 2);
4175}
4176
4177SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4178                              SDValue N1, SDValue N2, SDValue N3) {
4179  SDValue Ops[] = { N1, N2, N3 };
4180  return getNode(Opcode, DL, VTList, Ops, 3);
4181}
4182
4183SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4184                              SDValue N1, SDValue N2, SDValue N3,
4185                              SDValue N4) {
4186  SDValue Ops[] = { N1, N2, N3, N4 };
4187  return getNode(Opcode, DL, VTList, Ops, 4);
4188}
4189
4190SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4191                              SDValue N1, SDValue N2, SDValue N3,
4192                              SDValue N4, SDValue N5) {
4193  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4194  return getNode(Opcode, DL, VTList, Ops, 5);
4195}
4196
4197SDVTList SelectionDAG::getVTList(EVT VT) {
4198  return makeVTList(SDNode::getValueTypeList(VT), 1);
4199}
4200
4201SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4202  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4203       E = VTList.rend(); I != E; ++I)
4204    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4205      return *I;
4206
4207  EVT *Array = Allocator.Allocate<EVT>(2);
4208  Array[0] = VT1;
4209  Array[1] = VT2;
4210  SDVTList Result = makeVTList(Array, 2);
4211  VTList.push_back(Result);
4212  return Result;
4213}
4214
4215SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4216  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4217       E = VTList.rend(); I != E; ++I)
4218    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4219                          I->VTs[2] == VT3)
4220      return *I;
4221
4222  EVT *Array = Allocator.Allocate<EVT>(3);
4223  Array[0] = VT1;
4224  Array[1] = VT2;
4225  Array[2] = VT3;
4226  SDVTList Result = makeVTList(Array, 3);
4227  VTList.push_back(Result);
4228  return Result;
4229}
4230
4231SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4232  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4233       E = VTList.rend(); I != E; ++I)
4234    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4235                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4236      return *I;
4237
4238  EVT *Array = Allocator.Allocate<EVT>(4);
4239  Array[0] = VT1;
4240  Array[1] = VT2;
4241  Array[2] = VT3;
4242  Array[3] = VT4;
4243  SDVTList Result = makeVTList(Array, 4);
4244  VTList.push_back(Result);
4245  return Result;
4246}
4247
4248SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4249  switch (NumVTs) {
4250    case 0: llvm_unreachable("Cannot have nodes without results!");
4251    case 1: return getVTList(VTs[0]);
4252    case 2: return getVTList(VTs[0], VTs[1]);
4253    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4254    default: break;
4255  }
4256
4257  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4258       E = VTList.rend(); I != E; ++I) {
4259    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4260      continue;
4261
4262    bool NoMatch = false;
4263    for (unsigned i = 2; i != NumVTs; ++i)
4264      if (VTs[i] != I->VTs[i]) {
4265        NoMatch = true;
4266        break;
4267      }
4268    if (!NoMatch)
4269      return *I;
4270  }
4271
4272  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4273  std::copy(VTs, VTs+NumVTs, Array);
4274  SDVTList Result = makeVTList(Array, NumVTs);
4275  VTList.push_back(Result);
4276  return Result;
4277}
4278
4279
4280/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4281/// specified operands.  If the resultant node already exists in the DAG,
4282/// this does not modify the specified node, instead it returns the node that
4283/// already exists.  If the resultant node does not exist in the DAG, the
4284/// input node is returned.  As a degenerate case, if you specify the same
4285/// input operands as the node already has, the input node is returned.
4286SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4287  SDNode *N = InN.getNode();
4288  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4289
4290  // Check to see if there is no change.
4291  if (Op == N->getOperand(0)) return InN;
4292
4293  // See if the modified node already exists.
4294  void *InsertPos = 0;
4295  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4296    return SDValue(Existing, InN.getResNo());
4297
4298  // Nope it doesn't.  Remove the node from its current place in the maps.
4299  if (InsertPos)
4300    if (!RemoveNodeFromCSEMaps(N))
4301      InsertPos = 0;
4302
4303  // Now we update the operands.
4304  N->OperandList[0].set(Op);
4305
4306  // If this gets put into a CSE map, add it.
4307  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4308  return InN;
4309}
4310
4311SDValue SelectionDAG::
4312UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4313  SDNode *N = InN.getNode();
4314  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4315
4316  // Check to see if there is no change.
4317  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4318    return InN;   // No operands changed, just return the input node.
4319
4320  // See if the modified node already exists.
4321  void *InsertPos = 0;
4322  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4323    return SDValue(Existing, InN.getResNo());
4324
4325  // Nope it doesn't.  Remove the node from its current place in the maps.
4326  if (InsertPos)
4327    if (!RemoveNodeFromCSEMaps(N))
4328      InsertPos = 0;
4329
4330  // Now we update the operands.
4331  if (N->OperandList[0] != Op1)
4332    N->OperandList[0].set(Op1);
4333  if (N->OperandList[1] != Op2)
4334    N->OperandList[1].set(Op2);
4335
4336  // If this gets put into a CSE map, add it.
4337  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4338  return InN;
4339}
4340
4341SDValue SelectionDAG::
4342UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4343  SDValue Ops[] = { Op1, Op2, Op3 };
4344  return UpdateNodeOperands(N, Ops, 3);
4345}
4346
4347SDValue SelectionDAG::
4348UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4349                   SDValue Op3, SDValue Op4) {
4350  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4351  return UpdateNodeOperands(N, Ops, 4);
4352}
4353
4354SDValue SelectionDAG::
4355UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4356                   SDValue Op3, SDValue Op4, SDValue Op5) {
4357  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4358  return UpdateNodeOperands(N, Ops, 5);
4359}
4360
4361SDValue SelectionDAG::
4362UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4363  SDNode *N = InN.getNode();
4364  assert(N->getNumOperands() == NumOps &&
4365         "Update with wrong number of operands");
4366
4367  // Check to see if there is no change.
4368  bool AnyChange = false;
4369  for (unsigned i = 0; i != NumOps; ++i) {
4370    if (Ops[i] != N->getOperand(i)) {
4371      AnyChange = true;
4372      break;
4373    }
4374  }
4375
4376  // No operands changed, just return the input node.
4377  if (!AnyChange) return InN;
4378
4379  // See if the modified node already exists.
4380  void *InsertPos = 0;
4381  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4382    return SDValue(Existing, InN.getResNo());
4383
4384  // Nope it doesn't.  Remove the node from its current place in the maps.
4385  if (InsertPos)
4386    if (!RemoveNodeFromCSEMaps(N))
4387      InsertPos = 0;
4388
4389  // Now we update the operands.
4390  for (unsigned i = 0; i != NumOps; ++i)
4391    if (N->OperandList[i] != Ops[i])
4392      N->OperandList[i].set(Ops[i]);
4393
4394  // If this gets put into a CSE map, add it.
4395  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4396  return InN;
4397}
4398
4399/// DropOperands - Release the operands and set this node to have
4400/// zero operands.
4401void SDNode::DropOperands() {
4402  // Unlike the code in MorphNodeTo that does this, we don't need to
4403  // watch for dead nodes here.
4404  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4405    SDUse &Use = *I++;
4406    Use.set(SDValue());
4407  }
4408}
4409
4410/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4411/// machine opcode.
4412///
4413SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4414                                   EVT VT) {
4415  SDVTList VTs = getVTList(VT);
4416  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4417}
4418
4419SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4420                                   EVT VT, SDValue Op1) {
4421  SDVTList VTs = getVTList(VT);
4422  SDValue Ops[] = { Op1 };
4423  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4424}
4425
4426SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4427                                   EVT VT, SDValue Op1,
4428                                   SDValue Op2) {
4429  SDVTList VTs = getVTList(VT);
4430  SDValue Ops[] = { Op1, Op2 };
4431  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4432}
4433
4434SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4435                                   EVT VT, SDValue Op1,
4436                                   SDValue Op2, SDValue Op3) {
4437  SDVTList VTs = getVTList(VT);
4438  SDValue Ops[] = { Op1, Op2, Op3 };
4439  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4440}
4441
4442SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4443                                   EVT VT, const SDValue *Ops,
4444                                   unsigned NumOps) {
4445  SDVTList VTs = getVTList(VT);
4446  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4447}
4448
4449SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4450                                   EVT VT1, EVT VT2, const SDValue *Ops,
4451                                   unsigned NumOps) {
4452  SDVTList VTs = getVTList(VT1, VT2);
4453  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4454}
4455
4456SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4457                                   EVT VT1, EVT VT2) {
4458  SDVTList VTs = getVTList(VT1, VT2);
4459  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4460}
4461
4462SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4463                                   EVT VT1, EVT VT2, EVT VT3,
4464                                   const SDValue *Ops, unsigned NumOps) {
4465  SDVTList VTs = getVTList(VT1, VT2, VT3);
4466  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4467}
4468
4469SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4470                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4471                                   const SDValue *Ops, unsigned NumOps) {
4472  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4473  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4474}
4475
4476SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4477                                   EVT VT1, EVT VT2,
4478                                   SDValue Op1) {
4479  SDVTList VTs = getVTList(VT1, VT2);
4480  SDValue Ops[] = { Op1 };
4481  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4482}
4483
4484SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4485                                   EVT VT1, EVT VT2,
4486                                   SDValue Op1, SDValue Op2) {
4487  SDVTList VTs = getVTList(VT1, VT2);
4488  SDValue Ops[] = { Op1, Op2 };
4489  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4490}
4491
4492SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4493                                   EVT VT1, EVT VT2,
4494                                   SDValue Op1, SDValue Op2,
4495                                   SDValue Op3) {
4496  SDVTList VTs = getVTList(VT1, VT2);
4497  SDValue Ops[] = { Op1, Op2, Op3 };
4498  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4499}
4500
4501SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4502                                   EVT VT1, EVT VT2, EVT VT3,
4503                                   SDValue Op1, SDValue Op2,
4504                                   SDValue Op3) {
4505  SDVTList VTs = getVTList(VT1, VT2, VT3);
4506  SDValue Ops[] = { Op1, Op2, Op3 };
4507  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4508}
4509
4510SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4511                                   SDVTList VTs, const SDValue *Ops,
4512                                   unsigned NumOps) {
4513  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4514}
4515
4516SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4517                                  EVT VT) {
4518  SDVTList VTs = getVTList(VT);
4519  return MorphNodeTo(N, Opc, VTs, 0, 0);
4520}
4521
4522SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4523                                  EVT VT, SDValue Op1) {
4524  SDVTList VTs = getVTList(VT);
4525  SDValue Ops[] = { Op1 };
4526  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4527}
4528
4529SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4530                                  EVT VT, SDValue Op1,
4531                                  SDValue Op2) {
4532  SDVTList VTs = getVTList(VT);
4533  SDValue Ops[] = { Op1, Op2 };
4534  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4535}
4536
4537SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4538                                  EVT VT, SDValue Op1,
4539                                  SDValue Op2, SDValue Op3) {
4540  SDVTList VTs = getVTList(VT);
4541  SDValue Ops[] = { Op1, Op2, Op3 };
4542  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4543}
4544
4545SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4546                                  EVT VT, const SDValue *Ops,
4547                                  unsigned NumOps) {
4548  SDVTList VTs = getVTList(VT);
4549  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4550}
4551
4552SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4553                                  EVT VT1, EVT VT2, const SDValue *Ops,
4554                                  unsigned NumOps) {
4555  SDVTList VTs = getVTList(VT1, VT2);
4556  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4557}
4558
4559SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4560                                  EVT VT1, EVT VT2) {
4561  SDVTList VTs = getVTList(VT1, VT2);
4562  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4563}
4564
4565SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4566                                  EVT VT1, EVT VT2, EVT VT3,
4567                                  const SDValue *Ops, unsigned NumOps) {
4568  SDVTList VTs = getVTList(VT1, VT2, VT3);
4569  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4570}
4571
4572SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4573                                  EVT VT1, EVT VT2,
4574                                  SDValue Op1) {
4575  SDVTList VTs = getVTList(VT1, VT2);
4576  SDValue Ops[] = { Op1 };
4577  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4578}
4579
4580SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4581                                  EVT VT1, EVT VT2,
4582                                  SDValue Op1, SDValue Op2) {
4583  SDVTList VTs = getVTList(VT1, VT2);
4584  SDValue Ops[] = { Op1, Op2 };
4585  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4586}
4587
4588SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4589                                  EVT VT1, EVT VT2,
4590                                  SDValue Op1, SDValue Op2,
4591                                  SDValue Op3) {
4592  SDVTList VTs = getVTList(VT1, VT2);
4593  SDValue Ops[] = { Op1, Op2, Op3 };
4594  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4595}
4596
4597/// MorphNodeTo - These *mutate* the specified node to have the specified
4598/// return type, opcode, and operands.
4599///
4600/// Note that MorphNodeTo returns the resultant node.  If there is already a
4601/// node of the specified opcode and operands, it returns that node instead of
4602/// the current one.  Note that the DebugLoc need not be the same.
4603///
4604/// Using MorphNodeTo is faster than creating a new node and swapping it in
4605/// with ReplaceAllUsesWith both because it often avoids allocating a new
4606/// node, and because it doesn't require CSE recalculation for any of
4607/// the node's users.
4608///
4609SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4610                                  SDVTList VTs, const SDValue *Ops,
4611                                  unsigned NumOps) {
4612  // If an identical node already exists, use it.
4613  void *IP = 0;
4614  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4615    FoldingSetNodeID ID;
4616    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4617    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4618      return ON;
4619  }
4620
4621  if (!RemoveNodeFromCSEMaps(N))
4622    IP = 0;
4623
4624  // Start the morphing.
4625  N->NodeType = Opc;
4626  N->ValueList = VTs.VTs;
4627  N->NumValues = VTs.NumVTs;
4628
4629  // Clear the operands list, updating used nodes to remove this from their
4630  // use list.  Keep track of any operands that become dead as a result.
4631  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4632  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4633    SDUse &Use = *I++;
4634    SDNode *Used = Use.getNode();
4635    Use.set(SDValue());
4636    if (Used->use_empty())
4637      DeadNodeSet.insert(Used);
4638  }
4639
4640  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4641    // Initialize the memory references information.
4642    MN->setMemRefs(0, 0);
4643    // If NumOps is larger than the # of operands we can have in a
4644    // MachineSDNode, reallocate the operand list.
4645    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4646      if (MN->OperandsNeedDelete)
4647        delete[] MN->OperandList;
4648      if (NumOps > array_lengthof(MN->LocalOperands))
4649        // We're creating a final node that will live unmorphed for the
4650        // remainder of the current SelectionDAG iteration, so we can allocate
4651        // the operands directly out of a pool with no recycling metadata.
4652        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4653                        Ops, NumOps);
4654      else
4655        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4656      MN->OperandsNeedDelete = false;
4657    } else
4658      MN->InitOperands(MN->OperandList, Ops, NumOps);
4659  } else {
4660    // If NumOps is larger than the # of operands we currently have, reallocate
4661    // the operand list.
4662    if (NumOps > N->NumOperands) {
4663      if (N->OperandsNeedDelete)
4664        delete[] N->OperandList;
4665      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4666      N->OperandsNeedDelete = true;
4667    } else
4668      N->InitOperands(N->OperandList, Ops, NumOps);
4669  }
4670
4671  // Delete any nodes that are still dead after adding the uses for the
4672  // new operands.
4673  SmallVector<SDNode *, 16> DeadNodes;
4674  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4675       E = DeadNodeSet.end(); I != E; ++I)
4676    if ((*I)->use_empty())
4677      DeadNodes.push_back(*I);
4678  RemoveDeadNodes(DeadNodes);
4679
4680  if (IP)
4681    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4682  return N;
4683}
4684
4685
4686/// getMachineNode - These are used for target selectors to create a new node
4687/// with specified return type(s), MachineInstr opcode, and operands.
4688///
4689/// Note that getMachineNode returns the resultant node.  If there is already a
4690/// node of the specified opcode and operands, it returns that node instead of
4691/// the current one.
4692MachineSDNode *
4693SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4694  SDVTList VTs = getVTList(VT);
4695  return getMachineNode(Opcode, dl, VTs, 0, 0);
4696}
4697
4698MachineSDNode *
4699SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4700  SDVTList VTs = getVTList(VT);
4701  SDValue Ops[] = { Op1 };
4702  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4703}
4704
4705MachineSDNode *
4706SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4707                             SDValue Op1, SDValue Op2) {
4708  SDVTList VTs = getVTList(VT);
4709  SDValue Ops[] = { Op1, Op2 };
4710  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4711}
4712
4713MachineSDNode *
4714SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4715                             SDValue Op1, SDValue Op2, SDValue Op3) {
4716  SDVTList VTs = getVTList(VT);
4717  SDValue Ops[] = { Op1, Op2, Op3 };
4718  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4719}
4720
4721MachineSDNode *
4722SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4723                             const SDValue *Ops, unsigned NumOps) {
4724  SDVTList VTs = getVTList(VT);
4725  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4726}
4727
4728MachineSDNode *
4729SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4730  SDVTList VTs = getVTList(VT1, VT2);
4731  return getMachineNode(Opcode, dl, VTs, 0, 0);
4732}
4733
4734MachineSDNode *
4735SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4736                             EVT VT1, EVT VT2, SDValue Op1) {
4737  SDVTList VTs = getVTList(VT1, VT2);
4738  SDValue Ops[] = { Op1 };
4739  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4740}
4741
4742MachineSDNode *
4743SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4744                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4745  SDVTList VTs = getVTList(VT1, VT2);
4746  SDValue Ops[] = { Op1, Op2 };
4747  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4748}
4749
4750MachineSDNode *
4751SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4752                             EVT VT1, EVT VT2, SDValue Op1,
4753                             SDValue Op2, SDValue Op3) {
4754  SDVTList VTs = getVTList(VT1, VT2);
4755  SDValue Ops[] = { Op1, Op2, Op3 };
4756  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4757}
4758
4759MachineSDNode *
4760SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4761                             EVT VT1, EVT VT2,
4762                             const SDValue *Ops, unsigned NumOps) {
4763  SDVTList VTs = getVTList(VT1, VT2);
4764  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4765}
4766
4767MachineSDNode *
4768SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4769                             EVT VT1, EVT VT2, EVT VT3,
4770                             SDValue Op1, SDValue Op2) {
4771  SDVTList VTs = getVTList(VT1, VT2, VT3);
4772  SDValue Ops[] = { Op1, Op2 };
4773  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4774}
4775
4776MachineSDNode *
4777SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4778                             EVT VT1, EVT VT2, EVT VT3,
4779                             SDValue Op1, SDValue Op2, SDValue Op3) {
4780  SDVTList VTs = getVTList(VT1, VT2, VT3);
4781  SDValue Ops[] = { Op1, Op2, Op3 };
4782  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4783}
4784
4785MachineSDNode *
4786SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4787                             EVT VT1, EVT VT2, EVT VT3,
4788                             const SDValue *Ops, unsigned NumOps) {
4789  SDVTList VTs = getVTList(VT1, VT2, VT3);
4790  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4791}
4792
4793MachineSDNode *
4794SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4795                             EVT VT2, EVT VT3, EVT VT4,
4796                             const SDValue *Ops, unsigned NumOps) {
4797  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4798  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4799}
4800
4801MachineSDNode *
4802SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4803                             const std::vector<EVT> &ResultTys,
4804                             const SDValue *Ops, unsigned NumOps) {
4805  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4806  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4807}
4808
4809MachineSDNode *
4810SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4811                             const SDValue *Ops, unsigned NumOps) {
4812  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4813  MachineSDNode *N;
4814  void *IP;
4815
4816  if (DoCSE) {
4817    FoldingSetNodeID ID;
4818    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4819    IP = 0;
4820    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4821      return cast<MachineSDNode>(E);
4822  }
4823
4824  // Allocate a new MachineSDNode.
4825  N = NodeAllocator.Allocate<MachineSDNode>();
4826  new (N) MachineSDNode(~Opcode, DL, VTs);
4827
4828  // Initialize the operands list.
4829  if (NumOps > array_lengthof(N->LocalOperands))
4830    // We're creating a final node that will live unmorphed for the
4831    // remainder of the current SelectionDAG iteration, so we can allocate
4832    // the operands directly out of a pool with no recycling metadata.
4833    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4834                    Ops, NumOps);
4835  else
4836    N->InitOperands(N->LocalOperands, Ops, NumOps);
4837  N->OperandsNeedDelete = false;
4838
4839  if (DoCSE)
4840    CSEMap.InsertNode(N, IP);
4841
4842  AllNodes.push_back(N);
4843#ifndef NDEBUG
4844  VerifyNode(N);
4845#endif
4846  return N;
4847}
4848
4849/// getTargetExtractSubreg - A convenience function for creating
4850/// TargetInstrInfo::EXTRACT_SUBREG nodes.
4851SDValue
4852SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4853                                     SDValue Operand) {
4854  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4855  SDNode *Subreg = getMachineNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4856                                  VT, Operand, SRIdxVal);
4857  return SDValue(Subreg, 0);
4858}
4859
4860/// getTargetInsertSubreg - A convenience function for creating
4861/// TargetInstrInfo::INSERT_SUBREG nodes.
4862SDValue
4863SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4864                                    SDValue Operand, SDValue Subreg) {
4865  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4866  SDNode *Result = getMachineNode(TargetInstrInfo::INSERT_SUBREG, DL,
4867                                  VT, Operand, Subreg, SRIdxVal);
4868  return SDValue(Result, 0);
4869}
4870
4871/// getNodeIfExists - Get the specified node if it's already available, or
4872/// else return NULL.
4873SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4874                                      const SDValue *Ops, unsigned NumOps) {
4875  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4876    FoldingSetNodeID ID;
4877    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4878    void *IP = 0;
4879    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4880      return E;
4881  }
4882  return NULL;
4883}
4884
4885/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4886/// This can cause recursive merging of nodes in the DAG.
4887///
4888/// This version assumes From has a single result value.
4889///
4890void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4891                                      DAGUpdateListener *UpdateListener) {
4892  SDNode *From = FromN.getNode();
4893  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4894         "Cannot replace with this method!");
4895  assert(From != To.getNode() && "Cannot replace uses of with self");
4896
4897  // Iterate over all the existing uses of From. New uses will be added
4898  // to the beginning of the use list, which we avoid visiting.
4899  // This specifically avoids visiting uses of From that arise while the
4900  // replacement is happening, because any such uses would be the result
4901  // of CSE: If an existing node looks like From after one of its operands
4902  // is replaced by To, we don't want to replace of all its users with To
4903  // too. See PR3018 for more info.
4904  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4905  while (UI != UE) {
4906    SDNode *User = *UI;
4907
4908    // This node is about to morph, remove its old self from the CSE maps.
4909    RemoveNodeFromCSEMaps(User);
4910
4911    // A user can appear in a use list multiple times, and when this
4912    // happens the uses are usually next to each other in the list.
4913    // To help reduce the number of CSE recomputations, process all
4914    // the uses of this user that we can find this way.
4915    do {
4916      SDUse &Use = UI.getUse();
4917      ++UI;
4918      Use.set(To);
4919    } while (UI != UE && *UI == User);
4920
4921    // Now that we have modified User, add it back to the CSE maps.  If it
4922    // already exists there, recursively merge the results together.
4923    AddModifiedNodeToCSEMaps(User, UpdateListener);
4924  }
4925}
4926
4927/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4928/// This can cause recursive merging of nodes in the DAG.
4929///
4930/// This version assumes that for each value of From, there is a
4931/// corresponding value in To in the same position with the same type.
4932///
4933void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4934                                      DAGUpdateListener *UpdateListener) {
4935#ifndef NDEBUG
4936  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4937    assert((!From->hasAnyUseOfValue(i) ||
4938            From->getValueType(i) == To->getValueType(i)) &&
4939           "Cannot use this version of ReplaceAllUsesWith!");
4940#endif
4941
4942  // Handle the trivial case.
4943  if (From == To)
4944    return;
4945
4946  // Iterate over just the existing users of From. See the comments in
4947  // the ReplaceAllUsesWith above.
4948  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4949  while (UI != UE) {
4950    SDNode *User = *UI;
4951
4952    // This node is about to morph, remove its old self from the CSE maps.
4953    RemoveNodeFromCSEMaps(User);
4954
4955    // A user can appear in a use list multiple times, and when this
4956    // happens the uses are usually next to each other in the list.
4957    // To help reduce the number of CSE recomputations, process all
4958    // the uses of this user that we can find this way.
4959    do {
4960      SDUse &Use = UI.getUse();
4961      ++UI;
4962      Use.setNode(To);
4963    } while (UI != UE && *UI == User);
4964
4965    // Now that we have modified User, add it back to the CSE maps.  If it
4966    // already exists there, recursively merge the results together.
4967    AddModifiedNodeToCSEMaps(User, UpdateListener);
4968  }
4969}
4970
4971/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4972/// This can cause recursive merging of nodes in the DAG.
4973///
4974/// This version can replace From with any result values.  To must match the
4975/// number and types of values returned by From.
4976void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4977                                      const SDValue *To,
4978                                      DAGUpdateListener *UpdateListener) {
4979  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4980    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4981
4982  // Iterate over just the existing users of From. See the comments in
4983  // the ReplaceAllUsesWith above.
4984  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4985  while (UI != UE) {
4986    SDNode *User = *UI;
4987
4988    // This node is about to morph, remove its old self from the CSE maps.
4989    RemoveNodeFromCSEMaps(User);
4990
4991    // A user can appear in a use list multiple times, and when this
4992    // happens the uses are usually next to each other in the list.
4993    // To help reduce the number of CSE recomputations, process all
4994    // the uses of this user that we can find this way.
4995    do {
4996      SDUse &Use = UI.getUse();
4997      const SDValue &ToOp = To[Use.getResNo()];
4998      ++UI;
4999      Use.set(ToOp);
5000    } while (UI != UE && *UI == User);
5001
5002    // Now that we have modified User, add it back to the CSE maps.  If it
5003    // already exists there, recursively merge the results together.
5004    AddModifiedNodeToCSEMaps(User, UpdateListener);
5005  }
5006}
5007
5008/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5009/// uses of other values produced by From.getNode() alone.  The Deleted
5010/// vector is handled the same way as for ReplaceAllUsesWith.
5011void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5012                                             DAGUpdateListener *UpdateListener){
5013  // Handle the really simple, really trivial case efficiently.
5014  if (From == To) return;
5015
5016  // Handle the simple, trivial, case efficiently.
5017  if (From.getNode()->getNumValues() == 1) {
5018    ReplaceAllUsesWith(From, To, UpdateListener);
5019    return;
5020  }
5021
5022  // Iterate over just the existing users of From. See the comments in
5023  // the ReplaceAllUsesWith above.
5024  SDNode::use_iterator UI = From.getNode()->use_begin(),
5025                       UE = From.getNode()->use_end();
5026  while (UI != UE) {
5027    SDNode *User = *UI;
5028    bool UserRemovedFromCSEMaps = false;
5029
5030    // A user can appear in a use list multiple times, and when this
5031    // happens the uses are usually next to each other in the list.
5032    // To help reduce the number of CSE recomputations, process all
5033    // the uses of this user that we can find this way.
5034    do {
5035      SDUse &Use = UI.getUse();
5036
5037      // Skip uses of different values from the same node.
5038      if (Use.getResNo() != From.getResNo()) {
5039        ++UI;
5040        continue;
5041      }
5042
5043      // If this node hasn't been modified yet, it's still in the CSE maps,
5044      // so remove its old self from the CSE maps.
5045      if (!UserRemovedFromCSEMaps) {
5046        RemoveNodeFromCSEMaps(User);
5047        UserRemovedFromCSEMaps = true;
5048      }
5049
5050      ++UI;
5051      Use.set(To);
5052    } while (UI != UE && *UI == User);
5053
5054    // We are iterating over all uses of the From node, so if a use
5055    // doesn't use the specific value, no changes are made.
5056    if (!UserRemovedFromCSEMaps)
5057      continue;
5058
5059    // Now that we have modified User, add it back to the CSE maps.  If it
5060    // already exists there, recursively merge the results together.
5061    AddModifiedNodeToCSEMaps(User, UpdateListener);
5062  }
5063}
5064
5065namespace {
5066  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5067  /// to record information about a use.
5068  struct UseMemo {
5069    SDNode *User;
5070    unsigned Index;
5071    SDUse *Use;
5072  };
5073
5074  /// operator< - Sort Memos by User.
5075  bool operator<(const UseMemo &L, const UseMemo &R) {
5076    return (intptr_t)L.User < (intptr_t)R.User;
5077  }
5078}
5079
5080/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5081/// uses of other values produced by From.getNode() alone.  The same value
5082/// may appear in both the From and To list.  The Deleted vector is
5083/// handled the same way as for ReplaceAllUsesWith.
5084void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5085                                              const SDValue *To,
5086                                              unsigned Num,
5087                                              DAGUpdateListener *UpdateListener){
5088  // Handle the simple, trivial case efficiently.
5089  if (Num == 1)
5090    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5091
5092  // Read up all the uses and make records of them. This helps
5093  // processing new uses that are introduced during the
5094  // replacement process.
5095  SmallVector<UseMemo, 4> Uses;
5096  for (unsigned i = 0; i != Num; ++i) {
5097    unsigned FromResNo = From[i].getResNo();
5098    SDNode *FromNode = From[i].getNode();
5099    for (SDNode::use_iterator UI = FromNode->use_begin(),
5100         E = FromNode->use_end(); UI != E; ++UI) {
5101      SDUse &Use = UI.getUse();
5102      if (Use.getResNo() == FromResNo) {
5103        UseMemo Memo = { *UI, i, &Use };
5104        Uses.push_back(Memo);
5105      }
5106    }
5107  }
5108
5109  // Sort the uses, so that all the uses from a given User are together.
5110  std::sort(Uses.begin(), Uses.end());
5111
5112  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5113       UseIndex != UseIndexEnd; ) {
5114    // We know that this user uses some value of From.  If it is the right
5115    // value, update it.
5116    SDNode *User = Uses[UseIndex].User;
5117
5118    // This node is about to morph, remove its old self from the CSE maps.
5119    RemoveNodeFromCSEMaps(User);
5120
5121    // The Uses array is sorted, so all the uses for a given User
5122    // are next to each other in the list.
5123    // To help reduce the number of CSE recomputations, process all
5124    // the uses of this user that we can find this way.
5125    do {
5126      unsigned i = Uses[UseIndex].Index;
5127      SDUse &Use = *Uses[UseIndex].Use;
5128      ++UseIndex;
5129
5130      Use.set(To[i]);
5131    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5132
5133    // Now that we have modified User, add it back to the CSE maps.  If it
5134    // already exists there, recursively merge the results together.
5135    AddModifiedNodeToCSEMaps(User, UpdateListener);
5136  }
5137}
5138
5139/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5140/// based on their topological order. It returns the maximum id and a vector
5141/// of the SDNodes* in assigned order by reference.
5142unsigned SelectionDAG::AssignTopologicalOrder() {
5143
5144  unsigned DAGSize = 0;
5145
5146  // SortedPos tracks the progress of the algorithm. Nodes before it are
5147  // sorted, nodes after it are unsorted. When the algorithm completes
5148  // it is at the end of the list.
5149  allnodes_iterator SortedPos = allnodes_begin();
5150
5151  // Visit all the nodes. Move nodes with no operands to the front of
5152  // the list immediately. Annotate nodes that do have operands with their
5153  // operand count. Before we do this, the Node Id fields of the nodes
5154  // may contain arbitrary values. After, the Node Id fields for nodes
5155  // before SortedPos will contain the topological sort index, and the
5156  // Node Id fields for nodes At SortedPos and after will contain the
5157  // count of outstanding operands.
5158  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5159    SDNode *N = I++;
5160    unsigned Degree = N->getNumOperands();
5161    if (Degree == 0) {
5162      // A node with no uses, add it to the result array immediately.
5163      N->setNodeId(DAGSize++);
5164      allnodes_iterator Q = N;
5165      if (Q != SortedPos)
5166        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5167      ++SortedPos;
5168    } else {
5169      // Temporarily use the Node Id as scratch space for the degree count.
5170      N->setNodeId(Degree);
5171    }
5172  }
5173
5174  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5175  // such that by the time the end is reached all nodes will be sorted.
5176  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5177    SDNode *N = I;
5178    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5179         UI != UE; ++UI) {
5180      SDNode *P = *UI;
5181      unsigned Degree = P->getNodeId();
5182      --Degree;
5183      if (Degree == 0) {
5184        // All of P's operands are sorted, so P may sorted now.
5185        P->setNodeId(DAGSize++);
5186        if (P != SortedPos)
5187          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5188        ++SortedPos;
5189      } else {
5190        // Update P's outstanding operand count.
5191        P->setNodeId(Degree);
5192      }
5193    }
5194  }
5195
5196  assert(SortedPos == AllNodes.end() &&
5197         "Topological sort incomplete!");
5198  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5199         "First node in topological sort is not the entry token!");
5200  assert(AllNodes.front().getNodeId() == 0 &&
5201         "First node in topological sort has non-zero id!");
5202  assert(AllNodes.front().getNumOperands() == 0 &&
5203         "First node in topological sort has operands!");
5204  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5205         "Last node in topologic sort has unexpected id!");
5206  assert(AllNodes.back().use_empty() &&
5207         "Last node in topologic sort has users!");
5208  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5209  return DAGSize;
5210}
5211
5212/// AssignOrdering - Assign an order to the SDNode.
5213void SelectionDAG::AssignOrdering(SDNode *SD, unsigned Order) {
5214  assert(SD && "Trying to assign an order to a null node!");
5215  if (Ordering)
5216    Ordering->add(SD, Order);
5217}
5218
5219
5220//===----------------------------------------------------------------------===//
5221//                              SDNode Class
5222//===----------------------------------------------------------------------===//
5223
5224HandleSDNode::~HandleSDNode() {
5225  DropOperands();
5226}
5227
5228GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5229                                         EVT VT, int64_t o, unsigned char TF)
5230  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5231    Offset(o), TargetFlags(TF) {
5232  TheGlobal = const_cast<GlobalValue*>(GA);
5233}
5234
5235MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5236                     MachineMemOperand *mmo)
5237 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5238  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5239  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5240  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5241}
5242
5243MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5244                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5245                     MachineMemOperand *mmo)
5246   : SDNode(Opc, dl, VTs, Ops, NumOps),
5247     MemoryVT(memvt), MMO(mmo) {
5248  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5249  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5250  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5251}
5252
5253/// Profile - Gather unique data for the node.
5254///
5255void SDNode::Profile(FoldingSetNodeID &ID) const {
5256  AddNodeIDNode(ID, this);
5257}
5258
5259namespace {
5260  struct EVTArray {
5261    std::vector<EVT> VTs;
5262
5263    EVTArray() {
5264      VTs.reserve(MVT::LAST_VALUETYPE);
5265      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5266        VTs.push_back(MVT((MVT::SimpleValueType)i));
5267    }
5268  };
5269}
5270
5271static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5272static ManagedStatic<EVTArray> SimpleVTArray;
5273static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5274
5275/// getValueTypeList - Return a pointer to the specified value type.
5276///
5277const EVT *SDNode::getValueTypeList(EVT VT) {
5278  if (VT.isExtended()) {
5279    sys::SmartScopedLock<true> Lock(*VTMutex);
5280    return &(*EVTs->insert(VT).first);
5281  } else {
5282    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5283  }
5284}
5285
5286/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5287/// indicated value.  This method ignores uses of other values defined by this
5288/// operation.
5289bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5290  assert(Value < getNumValues() && "Bad value!");
5291
5292  // TODO: Only iterate over uses of a given value of the node
5293  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5294    if (UI.getUse().getResNo() == Value) {
5295      if (NUses == 0)
5296        return false;
5297      --NUses;
5298    }
5299  }
5300
5301  // Found exactly the right number of uses?
5302  return NUses == 0;
5303}
5304
5305
5306/// hasAnyUseOfValue - Return true if there are any use of the indicated
5307/// value. This method ignores uses of other values defined by this operation.
5308bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5309  assert(Value < getNumValues() && "Bad value!");
5310
5311  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5312    if (UI.getUse().getResNo() == Value)
5313      return true;
5314
5315  return false;
5316}
5317
5318
5319/// isOnlyUserOf - Return true if this node is the only use of N.
5320///
5321bool SDNode::isOnlyUserOf(SDNode *N) const {
5322  bool Seen = false;
5323  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5324    SDNode *User = *I;
5325    if (User == this)
5326      Seen = true;
5327    else
5328      return false;
5329  }
5330
5331  return Seen;
5332}
5333
5334/// isOperand - Return true if this node is an operand of N.
5335///
5336bool SDValue::isOperandOf(SDNode *N) const {
5337  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5338    if (*this == N->getOperand(i))
5339      return true;
5340  return false;
5341}
5342
5343bool SDNode::isOperandOf(SDNode *N) const {
5344  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5345    if (this == N->OperandList[i].getNode())
5346      return true;
5347  return false;
5348}
5349
5350/// reachesChainWithoutSideEffects - Return true if this operand (which must
5351/// be a chain) reaches the specified operand without crossing any
5352/// side-effecting instructions.  In practice, this looks through token
5353/// factors and non-volatile loads.  In order to remain efficient, this only
5354/// looks a couple of nodes in, it does not do an exhaustive search.
5355bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5356                                               unsigned Depth) const {
5357  if (*this == Dest) return true;
5358
5359  // Don't search too deeply, we just want to be able to see through
5360  // TokenFactor's etc.
5361  if (Depth == 0) return false;
5362
5363  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5364  // of the operands of the TF reach dest, then we can do the xform.
5365  if (getOpcode() == ISD::TokenFactor) {
5366    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5367      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5368        return true;
5369    return false;
5370  }
5371
5372  // Loads don't have side effects, look through them.
5373  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5374    if (!Ld->isVolatile())
5375      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5376  }
5377  return false;
5378}
5379
5380/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5381/// is either an operand of N or it can be reached by traversing up the operands.
5382/// NOTE: this is an expensive method. Use it carefully.
5383bool SDNode::isPredecessorOf(SDNode *N) const {
5384  SmallPtrSet<SDNode *, 32> Visited;
5385  SmallVector<SDNode *, 16> Worklist;
5386  Worklist.push_back(N);
5387
5388  do {
5389    N = Worklist.pop_back_val();
5390    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5391      SDNode *Op = N->getOperand(i).getNode();
5392      if (Op == this)
5393        return true;
5394      if (Visited.insert(Op))
5395        Worklist.push_back(Op);
5396    }
5397  } while (!Worklist.empty());
5398
5399  return false;
5400}
5401
5402uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5403  assert(Num < NumOperands && "Invalid child # of SDNode!");
5404  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5405}
5406
5407std::string SDNode::getOperationName(const SelectionDAG *G) const {
5408  switch (getOpcode()) {
5409  default:
5410    if (getOpcode() < ISD::BUILTIN_OP_END)
5411      return "<<Unknown DAG Node>>";
5412    if (isMachineOpcode()) {
5413      if (G)
5414        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5415          if (getMachineOpcode() < TII->getNumOpcodes())
5416            return TII->get(getMachineOpcode()).getName();
5417      return "<<Unknown Machine Node>>";
5418    }
5419    if (G) {
5420      const TargetLowering &TLI = G->getTargetLoweringInfo();
5421      const char *Name = TLI.getTargetNodeName(getOpcode());
5422      if (Name) return Name;
5423      return "<<Unknown Target Node>>";
5424    }
5425    return "<<Unknown Node>>";
5426
5427#ifndef NDEBUG
5428  case ISD::DELETED_NODE:
5429    return "<<Deleted Node!>>";
5430#endif
5431  case ISD::PREFETCH:      return "Prefetch";
5432  case ISD::MEMBARRIER:    return "MemBarrier";
5433  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5434  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5435  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5436  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5437  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5438  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5439  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5440  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5441  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5442  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5443  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5444  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5445  case ISD::PCMARKER:      return "PCMarker";
5446  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5447  case ISD::SRCVALUE:      return "SrcValue";
5448  case ISD::EntryToken:    return "EntryToken";
5449  case ISD::TokenFactor:   return "TokenFactor";
5450  case ISD::AssertSext:    return "AssertSext";
5451  case ISD::AssertZext:    return "AssertZext";
5452
5453  case ISD::BasicBlock:    return "BasicBlock";
5454  case ISD::VALUETYPE:     return "ValueType";
5455  case ISD::Register:      return "Register";
5456
5457  case ISD::Constant:      return "Constant";
5458  case ISD::ConstantFP:    return "ConstantFP";
5459  case ISD::GlobalAddress: return "GlobalAddress";
5460  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5461  case ISD::FrameIndex:    return "FrameIndex";
5462  case ISD::JumpTable:     return "JumpTable";
5463  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5464  case ISD::RETURNADDR: return "RETURNADDR";
5465  case ISD::FRAMEADDR: return "FRAMEADDR";
5466  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5467  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5468  case ISD::LSDAADDR: return "LSDAADDR";
5469  case ISD::EHSELECTION: return "EHSELECTION";
5470  case ISD::EH_RETURN: return "EH_RETURN";
5471  case ISD::ConstantPool:  return "ConstantPool";
5472  case ISD::ExternalSymbol: return "ExternalSymbol";
5473  case ISD::BlockAddress:  return "BlockAddress";
5474  case ISD::INTRINSIC_WO_CHAIN:
5475  case ISD::INTRINSIC_VOID:
5476  case ISD::INTRINSIC_W_CHAIN: {
5477    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5478    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5479    if (IID < Intrinsic::num_intrinsics)
5480      return Intrinsic::getName((Intrinsic::ID)IID);
5481    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5482      return TII->getName(IID);
5483    llvm_unreachable("Invalid intrinsic ID");
5484  }
5485
5486  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5487  case ISD::TargetConstant: return "TargetConstant";
5488  case ISD::TargetConstantFP:return "TargetConstantFP";
5489  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5490  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5491  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5492  case ISD::TargetJumpTable:  return "TargetJumpTable";
5493  case ISD::TargetConstantPool:  return "TargetConstantPool";
5494  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5495  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5496
5497  case ISD::CopyToReg:     return "CopyToReg";
5498  case ISD::CopyFromReg:   return "CopyFromReg";
5499  case ISD::UNDEF:         return "undef";
5500  case ISD::MERGE_VALUES:  return "merge_values";
5501  case ISD::INLINEASM:     return "inlineasm";
5502  case ISD::EH_LABEL:      return "eh_label";
5503  case ISD::HANDLENODE:    return "handlenode";
5504
5505  // Unary operators
5506  case ISD::FABS:   return "fabs";
5507  case ISD::FNEG:   return "fneg";
5508  case ISD::FSQRT:  return "fsqrt";
5509  case ISD::FSIN:   return "fsin";
5510  case ISD::FCOS:   return "fcos";
5511  case ISD::FPOWI:  return "fpowi";
5512  case ISD::FPOW:   return "fpow";
5513  case ISD::FTRUNC: return "ftrunc";
5514  case ISD::FFLOOR: return "ffloor";
5515  case ISD::FCEIL:  return "fceil";
5516  case ISD::FRINT:  return "frint";
5517  case ISD::FNEARBYINT: return "fnearbyint";
5518
5519  // Binary operators
5520  case ISD::ADD:    return "add";
5521  case ISD::SUB:    return "sub";
5522  case ISD::MUL:    return "mul";
5523  case ISD::MULHU:  return "mulhu";
5524  case ISD::MULHS:  return "mulhs";
5525  case ISD::SDIV:   return "sdiv";
5526  case ISD::UDIV:   return "udiv";
5527  case ISD::SREM:   return "srem";
5528  case ISD::UREM:   return "urem";
5529  case ISD::SMUL_LOHI:  return "smul_lohi";
5530  case ISD::UMUL_LOHI:  return "umul_lohi";
5531  case ISD::SDIVREM:    return "sdivrem";
5532  case ISD::UDIVREM:    return "udivrem";
5533  case ISD::AND:    return "and";
5534  case ISD::OR:     return "or";
5535  case ISD::XOR:    return "xor";
5536  case ISD::SHL:    return "shl";
5537  case ISD::SRA:    return "sra";
5538  case ISD::SRL:    return "srl";
5539  case ISD::ROTL:   return "rotl";
5540  case ISD::ROTR:   return "rotr";
5541  case ISD::FADD:   return "fadd";
5542  case ISD::FSUB:   return "fsub";
5543  case ISD::FMUL:   return "fmul";
5544  case ISD::FDIV:   return "fdiv";
5545  case ISD::FREM:   return "frem";
5546  case ISD::FCOPYSIGN: return "fcopysign";
5547  case ISD::FGETSIGN:  return "fgetsign";
5548
5549  case ISD::SETCC:       return "setcc";
5550  case ISD::VSETCC:      return "vsetcc";
5551  case ISD::SELECT:      return "select";
5552  case ISD::SELECT_CC:   return "select_cc";
5553  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5554  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5555  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5556  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5557  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5558  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5559  case ISD::CARRY_FALSE:         return "carry_false";
5560  case ISD::ADDC:        return "addc";
5561  case ISD::ADDE:        return "adde";
5562  case ISD::SADDO:       return "saddo";
5563  case ISD::UADDO:       return "uaddo";
5564  case ISD::SSUBO:       return "ssubo";
5565  case ISD::USUBO:       return "usubo";
5566  case ISD::SMULO:       return "smulo";
5567  case ISD::UMULO:       return "umulo";
5568  case ISD::SUBC:        return "subc";
5569  case ISD::SUBE:        return "sube";
5570  case ISD::SHL_PARTS:   return "shl_parts";
5571  case ISD::SRA_PARTS:   return "sra_parts";
5572  case ISD::SRL_PARTS:   return "srl_parts";
5573
5574  // Conversion operators.
5575  case ISD::SIGN_EXTEND: return "sign_extend";
5576  case ISD::ZERO_EXTEND: return "zero_extend";
5577  case ISD::ANY_EXTEND:  return "any_extend";
5578  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5579  case ISD::TRUNCATE:    return "truncate";
5580  case ISD::FP_ROUND:    return "fp_round";
5581  case ISD::FLT_ROUNDS_: return "flt_rounds";
5582  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5583  case ISD::FP_EXTEND:   return "fp_extend";
5584
5585  case ISD::SINT_TO_FP:  return "sint_to_fp";
5586  case ISD::UINT_TO_FP:  return "uint_to_fp";
5587  case ISD::FP_TO_SINT:  return "fp_to_sint";
5588  case ISD::FP_TO_UINT:  return "fp_to_uint";
5589  case ISD::BIT_CONVERT: return "bit_convert";
5590
5591  case ISD::CONVERT_RNDSAT: {
5592    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5593    default: llvm_unreachable("Unknown cvt code!");
5594    case ISD::CVT_FF:  return "cvt_ff";
5595    case ISD::CVT_FS:  return "cvt_fs";
5596    case ISD::CVT_FU:  return "cvt_fu";
5597    case ISD::CVT_SF:  return "cvt_sf";
5598    case ISD::CVT_UF:  return "cvt_uf";
5599    case ISD::CVT_SS:  return "cvt_ss";
5600    case ISD::CVT_SU:  return "cvt_su";
5601    case ISD::CVT_US:  return "cvt_us";
5602    case ISD::CVT_UU:  return "cvt_uu";
5603    }
5604  }
5605
5606    // Control flow instructions
5607  case ISD::BR:      return "br";
5608  case ISD::BRIND:   return "brind";
5609  case ISD::BR_JT:   return "br_jt";
5610  case ISD::BRCOND:  return "brcond";
5611  case ISD::BR_CC:   return "br_cc";
5612  case ISD::CALLSEQ_START:  return "callseq_start";
5613  case ISD::CALLSEQ_END:    return "callseq_end";
5614
5615    // Other operators
5616  case ISD::LOAD:               return "load";
5617  case ISD::STORE:              return "store";
5618  case ISD::VAARG:              return "vaarg";
5619  case ISD::VACOPY:             return "vacopy";
5620  case ISD::VAEND:              return "vaend";
5621  case ISD::VASTART:            return "vastart";
5622  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5623  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5624  case ISD::BUILD_PAIR:         return "build_pair";
5625  case ISD::STACKSAVE:          return "stacksave";
5626  case ISD::STACKRESTORE:       return "stackrestore";
5627  case ISD::TRAP:               return "trap";
5628
5629  // Bit manipulation
5630  case ISD::BSWAP:   return "bswap";
5631  case ISD::CTPOP:   return "ctpop";
5632  case ISD::CTTZ:    return "cttz";
5633  case ISD::CTLZ:    return "ctlz";
5634
5635  // Trampolines
5636  case ISD::TRAMPOLINE: return "trampoline";
5637
5638  case ISD::CONDCODE:
5639    switch (cast<CondCodeSDNode>(this)->get()) {
5640    default: llvm_unreachable("Unknown setcc condition!");
5641    case ISD::SETOEQ:  return "setoeq";
5642    case ISD::SETOGT:  return "setogt";
5643    case ISD::SETOGE:  return "setoge";
5644    case ISD::SETOLT:  return "setolt";
5645    case ISD::SETOLE:  return "setole";
5646    case ISD::SETONE:  return "setone";
5647
5648    case ISD::SETO:    return "seto";
5649    case ISD::SETUO:   return "setuo";
5650    case ISD::SETUEQ:  return "setue";
5651    case ISD::SETUGT:  return "setugt";
5652    case ISD::SETUGE:  return "setuge";
5653    case ISD::SETULT:  return "setult";
5654    case ISD::SETULE:  return "setule";
5655    case ISD::SETUNE:  return "setune";
5656
5657    case ISD::SETEQ:   return "seteq";
5658    case ISD::SETGT:   return "setgt";
5659    case ISD::SETGE:   return "setge";
5660    case ISD::SETLT:   return "setlt";
5661    case ISD::SETLE:   return "setle";
5662    case ISD::SETNE:   return "setne";
5663    }
5664  }
5665}
5666
5667const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5668  switch (AM) {
5669  default:
5670    return "";
5671  case ISD::PRE_INC:
5672    return "<pre-inc>";
5673  case ISD::PRE_DEC:
5674    return "<pre-dec>";
5675  case ISD::POST_INC:
5676    return "<post-inc>";
5677  case ISD::POST_DEC:
5678    return "<post-dec>";
5679  }
5680}
5681
5682std::string ISD::ArgFlagsTy::getArgFlagsString() {
5683  std::string S = "< ";
5684
5685  if (isZExt())
5686    S += "zext ";
5687  if (isSExt())
5688    S += "sext ";
5689  if (isInReg())
5690    S += "inreg ";
5691  if (isSRet())
5692    S += "sret ";
5693  if (isByVal())
5694    S += "byval ";
5695  if (isNest())
5696    S += "nest ";
5697  if (getByValAlign())
5698    S += "byval-align:" + utostr(getByValAlign()) + " ";
5699  if (getOrigAlign())
5700    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5701  if (getByValSize())
5702    S += "byval-size:" + utostr(getByValSize()) + " ";
5703  return S + ">";
5704}
5705
5706void SDNode::dump() const { dump(0); }
5707void SDNode::dump(const SelectionDAG *G) const {
5708  print(errs(), G);
5709}
5710
5711void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5712  OS << (void*)this << ": ";
5713
5714  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5715    if (i) OS << ",";
5716    if (getValueType(i) == MVT::Other)
5717      OS << "ch";
5718    else
5719      OS << getValueType(i).getEVTString();
5720  }
5721  OS << " = " << getOperationName(G);
5722}
5723
5724void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5725  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5726    if (!MN->memoperands_empty()) {
5727      OS << "<";
5728      OS << "Mem:";
5729      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5730           e = MN->memoperands_end(); i != e; ++i) {
5731        OS << **i;
5732        if (next(i) != e)
5733          OS << " ";
5734      }
5735      OS << ">";
5736    }
5737  } else if (const ShuffleVectorSDNode *SVN =
5738               dyn_cast<ShuffleVectorSDNode>(this)) {
5739    OS << "<";
5740    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5741      int Idx = SVN->getMaskElt(i);
5742      if (i) OS << ",";
5743      if (Idx < 0)
5744        OS << "u";
5745      else
5746        OS << Idx;
5747    }
5748    OS << ">";
5749  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5750    OS << '<' << CSDN->getAPIntValue() << '>';
5751  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5752    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5753      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5754    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5755      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5756    else {
5757      OS << "<APFloat(";
5758      CSDN->getValueAPF().bitcastToAPInt().dump();
5759      OS << ")>";
5760    }
5761  } else if (const GlobalAddressSDNode *GADN =
5762             dyn_cast<GlobalAddressSDNode>(this)) {
5763    int64_t offset = GADN->getOffset();
5764    OS << '<';
5765    WriteAsOperand(OS, GADN->getGlobal());
5766    OS << '>';
5767    if (offset > 0)
5768      OS << " + " << offset;
5769    else
5770      OS << " " << offset;
5771    if (unsigned int TF = GADN->getTargetFlags())
5772      OS << " [TF=" << TF << ']';
5773  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5774    OS << "<" << FIDN->getIndex() << ">";
5775  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5776    OS << "<" << JTDN->getIndex() << ">";
5777    if (unsigned int TF = JTDN->getTargetFlags())
5778      OS << " [TF=" << TF << ']';
5779  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5780    int offset = CP->getOffset();
5781    if (CP->isMachineConstantPoolEntry())
5782      OS << "<" << *CP->getMachineCPVal() << ">";
5783    else
5784      OS << "<" << *CP->getConstVal() << ">";
5785    if (offset > 0)
5786      OS << " + " << offset;
5787    else
5788      OS << " " << offset;
5789    if (unsigned int TF = CP->getTargetFlags())
5790      OS << " [TF=" << TF << ']';
5791  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5792    OS << "<";
5793    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5794    if (LBB)
5795      OS << LBB->getName() << " ";
5796    OS << (const void*)BBDN->getBasicBlock() << ">";
5797  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5798    if (G && R->getReg() &&
5799        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5800      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5801    } else {
5802      OS << " %reg" << R->getReg();
5803    }
5804  } else if (const ExternalSymbolSDNode *ES =
5805             dyn_cast<ExternalSymbolSDNode>(this)) {
5806    OS << "'" << ES->getSymbol() << "'";
5807    if (unsigned int TF = ES->getTargetFlags())
5808      OS << " [TF=" << TF << ']';
5809  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5810    if (M->getValue())
5811      OS << "<" << M->getValue() << ">";
5812    else
5813      OS << "<null>";
5814  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5815    OS << ":" << N->getVT().getEVTString();
5816  }
5817  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5818    OS << "<" << *LD->getMemOperand();
5819
5820    bool doExt = true;
5821    switch (LD->getExtensionType()) {
5822    default: doExt = false; break;
5823    case ISD::EXTLOAD: OS << ", anyext"; break;
5824    case ISD::SEXTLOAD: OS << ", sext"; break;
5825    case ISD::ZEXTLOAD: OS << ", zext"; break;
5826    }
5827    if (doExt)
5828      OS << " from " << LD->getMemoryVT().getEVTString();
5829
5830    const char *AM = getIndexedModeName(LD->getAddressingMode());
5831    if (*AM)
5832      OS << ", " << AM;
5833
5834    OS << ">";
5835  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5836    OS << "<" << *ST->getMemOperand();
5837
5838    if (ST->isTruncatingStore())
5839      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5840
5841    const char *AM = getIndexedModeName(ST->getAddressingMode());
5842    if (*AM)
5843      OS << ", " << AM;
5844
5845    OS << ">";
5846  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5847    OS << "<" << *M->getMemOperand() << ">";
5848  } else if (const BlockAddressSDNode *BA =
5849               dyn_cast<BlockAddressSDNode>(this)) {
5850    OS << "<";
5851    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5852    OS << ", ";
5853    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5854    OS << ">";
5855    if (unsigned int TF = BA->getTargetFlags())
5856      OS << " [TF=" << TF << ']';
5857  }
5858}
5859
5860void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5861  print_types(OS, G);
5862  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5863    if (i) OS << ", "; else OS << " ";
5864    OS << (void*)getOperand(i).getNode();
5865    if (unsigned RN = getOperand(i).getResNo())
5866      OS << ":" << RN;
5867  }
5868  print_details(OS, G);
5869}
5870
5871static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5872  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5873    if (N->getOperand(i).getNode()->hasOneUse())
5874      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5875    else
5876      errs() << "\n" << std::string(indent+2, ' ')
5877             << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5878
5879
5880  errs() << "\n";
5881  errs().indent(indent);
5882  N->dump(G);
5883}
5884
5885SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5886  assert(N->getNumValues() == 1 &&
5887         "Can't unroll a vector with multiple results!");
5888
5889  EVT VT = N->getValueType(0);
5890  unsigned NE = VT.getVectorNumElements();
5891  EVT EltVT = VT.getVectorElementType();
5892  DebugLoc dl = N->getDebugLoc();
5893
5894  SmallVector<SDValue, 8> Scalars;
5895  SmallVector<SDValue, 4> Operands(N->getNumOperands());
5896
5897  // If ResNE is 0, fully unroll the vector op.
5898  if (ResNE == 0)
5899    ResNE = NE;
5900  else if (NE > ResNE)
5901    NE = ResNE;
5902
5903  unsigned i;
5904  for (i= 0; i != NE; ++i) {
5905    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
5906      SDValue Operand = N->getOperand(j);
5907      EVT OperandVT = Operand.getValueType();
5908      if (OperandVT.isVector()) {
5909        // A vector operand; extract a single element.
5910        EVT OperandEltVT = OperandVT.getVectorElementType();
5911        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
5912                              OperandEltVT,
5913                              Operand,
5914                              getConstant(i, MVT::i32));
5915      } else {
5916        // A scalar operand; just use it as is.
5917        Operands[j] = Operand;
5918      }
5919    }
5920
5921    switch (N->getOpcode()) {
5922    default:
5923      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
5924                                &Operands[0], Operands.size()));
5925      break;
5926    case ISD::SHL:
5927    case ISD::SRA:
5928    case ISD::SRL:
5929    case ISD::ROTL:
5930    case ISD::ROTR:
5931      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
5932                                getShiftAmountOperand(Operands[1])));
5933      break;
5934    }
5935  }
5936
5937  for (; i < ResNE; ++i)
5938    Scalars.push_back(getUNDEF(EltVT));
5939
5940  return getNode(ISD::BUILD_VECTOR, dl,
5941                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
5942                 &Scalars[0], Scalars.size());
5943}
5944
5945
5946/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
5947/// location that is 'Dist' units away from the location that the 'Base' load
5948/// is loading from.
5949bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
5950                                     unsigned Bytes, int Dist) const {
5951  if (LD->getChain() != Base->getChain())
5952    return false;
5953  EVT VT = LD->getValueType(0);
5954  if (VT.getSizeInBits() / 8 != Bytes)
5955    return false;
5956
5957  SDValue Loc = LD->getOperand(1);
5958  SDValue BaseLoc = Base->getOperand(1);
5959  if (Loc.getOpcode() == ISD::FrameIndex) {
5960    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5961      return false;
5962    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
5963    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
5964    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5965    int FS  = MFI->getObjectSize(FI);
5966    int BFS = MFI->getObjectSize(BFI);
5967    if (FS != BFS || FS != (int)Bytes) return false;
5968    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
5969  }
5970  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
5971    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
5972    if (V && (V->getSExtValue() == Dist*Bytes))
5973      return true;
5974  }
5975
5976  GlobalValue *GV1 = NULL;
5977  GlobalValue *GV2 = NULL;
5978  int64_t Offset1 = 0;
5979  int64_t Offset2 = 0;
5980  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
5981  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
5982  if (isGA1 && isGA2 && GV1 == GV2)
5983    return Offset1 == (Offset2 + Dist*Bytes);
5984  return false;
5985}
5986
5987
5988/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
5989/// it cannot be inferred.
5990unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
5991  // If this is a GlobalAddress + cst, return the alignment.
5992  GlobalValue *GV;
5993  int64_t GVOffset = 0;
5994  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
5995    return MinAlign(GV->getAlignment(), GVOffset);
5996
5997  // If this is a direct reference to a stack slot, use information about the
5998  // stack slot's alignment.
5999  int FrameIdx = 1 << 31;
6000  int64_t FrameOffset = 0;
6001  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6002    FrameIdx = FI->getIndex();
6003  } else if (Ptr.getOpcode() == ISD::ADD &&
6004             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6005             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6006    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6007    FrameOffset = Ptr.getConstantOperandVal(1);
6008  }
6009
6010  if (FrameIdx != (1 << 31)) {
6011    // FIXME: Handle FI+CST.
6012    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6013    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6014                                    FrameOffset);
6015    if (MFI.isFixedObjectIndex(FrameIdx)) {
6016      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6017
6018      // The alignment of the frame index can be determined from its offset from
6019      // the incoming frame position.  If the frame object is at offset 32 and
6020      // the stack is guaranteed to be 16-byte aligned, then we know that the
6021      // object is 16-byte aligned.
6022      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6023      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6024
6025      // Finally, the frame object itself may have a known alignment.  Factor
6026      // the alignment + offset into a new alignment.  For example, if we know
6027      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6028      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6029      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6030      return std::max(Align, FIInfoAlign);
6031    }
6032    return FIInfoAlign;
6033  }
6034
6035  return 0;
6036}
6037
6038void SelectionDAG::dump() const {
6039  errs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6040
6041  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6042       I != E; ++I) {
6043    const SDNode *N = I;
6044    if (!N->hasOneUse() && N != getRoot().getNode())
6045      DumpNodes(N, 2, this);
6046  }
6047
6048  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6049
6050  errs() << "\n\n";
6051}
6052
6053void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6054  print_types(OS, G);
6055  print_details(OS, G);
6056}
6057
6058typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6059static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6060                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6061  if (!once.insert(N))          // If we've been here before, return now.
6062    return;
6063  // Dump the current SDNode, but don't end the line yet.
6064  OS << std::string(indent, ' ');
6065  N->printr(OS, G);
6066  // Having printed this SDNode, walk the children:
6067  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6068    const SDNode *child = N->getOperand(i).getNode();
6069    if (i) OS << ",";
6070    OS << " ";
6071    if (child->getNumOperands() == 0) {
6072      // This child has no grandchildren; print it inline right here.
6073      child->printr(OS, G);
6074      once.insert(child);
6075    } else {          // Just the address.  FIXME: also print the child's opcode
6076      OS << (void*)child;
6077      if (unsigned RN = N->getOperand(i).getResNo())
6078        OS << ":" << RN;
6079    }
6080  }
6081  OS << "\n";
6082  // Dump children that have grandchildren on their own line(s).
6083  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6084    const SDNode *child = N->getOperand(i).getNode();
6085    DumpNodesr(OS, child, indent+2, G, once);
6086  }
6087}
6088
6089void SDNode::dumpr() const {
6090  VisitedSDNodeSet once;
6091  DumpNodesr(errs(), this, 0, 0, once);
6092}
6093
6094void SDNode::dumpr(const SelectionDAG *G) const {
6095  VisitedSDNodeSet once;
6096  DumpNodesr(errs(), this, 0, G, once);
6097}
6098
6099
6100// getAddressSpace - Return the address space this GlobalAddress belongs to.
6101unsigned GlobalAddressSDNode::getAddressSpace() const {
6102  return getGlobal()->getType()->getAddressSpace();
6103}
6104
6105
6106const Type *ConstantPoolSDNode::getType() const {
6107  if (isMachineConstantPoolEntry())
6108    return Val.MachineCPVal->getType();
6109  return Val.ConstVal->getType();
6110}
6111
6112bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6113                                        APInt &SplatUndef,
6114                                        unsigned &SplatBitSize,
6115                                        bool &HasAnyUndefs,
6116                                        unsigned MinSplatBits,
6117                                        bool isBigEndian) {
6118  EVT VT = getValueType(0);
6119  assert(VT.isVector() && "Expected a vector type");
6120  unsigned sz = VT.getSizeInBits();
6121  if (MinSplatBits > sz)
6122    return false;
6123
6124  SplatValue = APInt(sz, 0);
6125  SplatUndef = APInt(sz, 0);
6126
6127  // Get the bits.  Bits with undefined values (when the corresponding element
6128  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6129  // in SplatValue.  If any of the values are not constant, give up and return
6130  // false.
6131  unsigned int nOps = getNumOperands();
6132  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6133  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6134
6135  for (unsigned j = 0; j < nOps; ++j) {
6136    unsigned i = isBigEndian ? nOps-1-j : j;
6137    SDValue OpVal = getOperand(i);
6138    unsigned BitPos = j * EltBitSize;
6139
6140    if (OpVal.getOpcode() == ISD::UNDEF)
6141      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6142    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6143      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6144                     zextOrTrunc(sz) << BitPos);
6145    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6146      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6147     else
6148      return false;
6149  }
6150
6151  // The build_vector is all constants or undefs.  Find the smallest element
6152  // size that splats the vector.
6153
6154  HasAnyUndefs = (SplatUndef != 0);
6155  while (sz > 8) {
6156
6157    unsigned HalfSize = sz / 2;
6158    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6159    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6160    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6161    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6162
6163    // If the two halves do not match (ignoring undef bits), stop here.
6164    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6165        MinSplatBits > HalfSize)
6166      break;
6167
6168    SplatValue = HighValue | LowValue;
6169    SplatUndef = HighUndef & LowUndef;
6170
6171    sz = HalfSize;
6172  }
6173
6174  SplatBitSize = sz;
6175  return true;
6176}
6177
6178bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6179  // Find the first non-undef value in the shuffle mask.
6180  unsigned i, e;
6181  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6182    /* search */;
6183
6184  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6185
6186  // Make sure all remaining elements are either undef or the same as the first
6187  // non-undef value.
6188  for (int Idx = Mask[i]; i != e; ++i)
6189    if (Mask[i] >= 0 && Mask[i] != Idx)
6190      return false;
6191  return true;
6192}
6193