SelectionDAG.cpp revision b5a55d979c84e100f383ce11c5c5e3b616b9dcc4
17839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
27839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger//
37839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger//                     The LLVM Compiler Infrastructure
47839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger//
57839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger// This file is distributed under the University of Illinois Open Source
67839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger// License. See LICENSE.TXT for details.
77839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger//
87839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger//===----------------------------------------------------------------------===//
97839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger//
107839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger// This implements the SelectionDAG class.
117839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger//
127839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger//===----------------------------------------------------------------------===//
137839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
147839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/CodeGen/SelectionDAG.h"
157839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "SDNodeOrdering.h"
167839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "SDNodeDbgValue.h"
177839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Constants.h"
187839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Analysis/DebugInfo.h"
197839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Analysis/ValueTracking.h"
207839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Function.h"
217839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/GlobalAlias.h"
227839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/GlobalVariable.h"
237839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Intrinsics.h"
247839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/DerivedTypes.h"
257839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Assembly/Writer.h"
267839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/CallingConv.h"
277839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/CodeGen/MachineBasicBlock.h"
287839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/CodeGen/MachineConstantPool.h"
297839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/CodeGen/MachineFrameInfo.h"
307839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/CodeGen/MachineModuleInfo.h"
317839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/CodeGen/PseudoSourceValue.h"
327839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Target/TargetRegisterInfo.h"
337839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Target/TargetData.h"
347839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Target/TargetLowering.h"
357839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Target/TargetSelectionDAGInfo.h"
367839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Target/TargetOptions.h"
377839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Target/TargetInstrInfo.h"
387839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Target/TargetIntrinsicInfo.h"
397839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Target/TargetMachine.h"
407839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Support/CommandLine.h"
417839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Support/Debug.h"
427839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Support/ErrorHandling.h"
437839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Support/ManagedStatic.h"
447839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Support/MathExtras.h"
457839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Support/raw_ostream.h"
467839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/Support/Mutex.h"
477839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/ADT/SetVector.h"
487839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/ADT/SmallPtrSet.h"
497839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/ADT/SmallSet.h"
507839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/ADT/SmallVector.h"
517839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include "llvm/ADT/StringExtras.h"
527839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include <algorithm>
537839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger#include <cmath>
547839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenbergerusing namespace llvm;
557839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
567839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger/// makeVTList - Return an instance of the SDVTList struct initialized with the
577839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger/// specified members.
587839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenbergerstatic SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
597839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  SDVTList Res = {VTs, NumVTs};
607839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  return Res;
617839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger}
627839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
637839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenbergerstatic const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
647839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  switch (VT.getSimpleVT().SimpleTy) {
657839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  default: llvm_unreachable("Unknown FP format");
667839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  case MVT::f32:     return &APFloat::IEEEsingle;
677839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  case MVT::f64:     return &APFloat::IEEEdouble;
687839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  case MVT::f80:     return &APFloat::x87DoubleExtended;
697839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  case MVT::f128:    return &APFloat::IEEEquad;
707839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
717839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  }
727839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger}
737839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
747839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek SollenbergerSelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
757839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
767839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger//===----------------------------------------------------------------------===//
777839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger//                              ConstantFPSDNode Class
787839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger//===----------------------------------------------------------------------===//
797839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
807839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger/// isExactlyValue - We don't rely on operator== working on double values, as
817839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
827839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger/// As such, this method can be used to do an exact bit-for-bit comparison of
837839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger/// two floating point values.
847839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenbergerbool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
857839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  return getValueAPF().bitwiseIsEqual(V);
867839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger}
877839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
887839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenbergerbool ConstantFPSDNode::isValueValidForType(EVT VT,
897839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger                                           const APFloat& Val) {
907839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  assert(VT.isFloatingPoint() && "Can only convert between FP types");
917839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
927839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  // PPC long double cannot be converted to any other type.
930a657bbc2c6fc9daf699942e023050536d5ec95fDerek Sollenberger  if (VT == MVT::ppcf128 ||
947839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
957839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger    return false;
967839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
977839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  // convert modifies in place, so make a copy.
987839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  APFloat Val2 = APFloat(Val);
997839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  bool losesInfo;
1007839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
1017839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger                      &losesInfo);
1027839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  return !losesInfo;
1037839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger}
1047839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
1057839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger//===----------------------------------------------------------------------===//
1067839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger//                              ISD Namespace
1077839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger//===----------------------------------------------------------------------===//
1087839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
1097839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger/// isBuildVectorAllOnes - Return true if the specified node is a
1107839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger/// BUILD_VECTOR where all of the elements are ~0 or undef.
1117839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenbergerbool ISD::isBuildVectorAllOnes(const SDNode *N) {
1127839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  // Look through a bit convert.
1137839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  if (N->getOpcode() == ISD::BITCAST)
1147839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger    N = N->getOperand(0).getNode();
1157839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
1167839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
1177839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
1187839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  unsigned i = 0, e = N->getNumOperands();
1197839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
1207839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  // Skip over all of the undef values.
1217839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
1227839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger    ++i;
1237839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
1247839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  // Do not accept an all-undef vector.
1257839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  if (i == e) return false;
1267839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
1277839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  // Do not accept build_vectors that aren't all constants or which have non-~0
1287839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  // elements.
1297839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  SDValue NotZero = N->getOperand(i);
1307839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  if (isa<ConstantSDNode>(NotZero)) {
1317839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
1327839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger      return false;
1337839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  } else if (isa<ConstantFPSDNode>(NotZero)) {
1347839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
1357839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger                bitcastToAPInt().isAllOnesValue())
1367839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger      return false;
1377839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  } else
1387839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger    return false;
1397839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
1407839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  // Okay, we have at least one ~0 value, check to see if the rest match or are
1417839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  // undefs.
1427839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  for (++i; i != e; ++i)
1437839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger    if (N->getOperand(i) != NotZero &&
1447839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger        N->getOperand(i).getOpcode() != ISD::UNDEF)
1457839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger      return false;
1467839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  return true;
1477839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger}
1487839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
1497839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
1507839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger/// isBuildVectorAllZeros - Return true if the specified node is a
1517839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger/// BUILD_VECTOR where all of the elements are 0 or undef.
1527839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenbergerbool ISD::isBuildVectorAllZeros(const SDNode *N) {
1537839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  // Look through a bit convert.
1547839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  if (N->getOpcode() == ISD::BITCAST)
1557839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger    N = N->getOperand(0).getNode();
1567839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
1577839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
1587839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
1597839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  unsigned i = 0, e = N->getNumOperands();
1607839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
1617839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  // Skip over all of the undef values.
1627839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
1637839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger    ++i;
1647839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger
1657839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  // Do not accept an all-undef vector.
1667839ce1af63bf12fe7b3caa866970bbbb3afb13dDerek Sollenberger  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  if (NumElems == 1)
202    return false;
203  for (unsigned i = 1; i < NumElems; ++i) {
204    SDValue V = N->getOperand(i);
205    if (V.getOpcode() != ISD::UNDEF)
206      return false;
207  }
208  return true;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: llvm_unreachable("Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, temporalness, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
476                     bool isNonTemporal) {
477  assert((ConvType & 3) == ConvType &&
478         "ConvType may not require more than 2 bits!");
479  assert((AM & 7) == AM &&
480         "AM may not require more than 3 bits!");
481  return ConvType |
482         (AM << 2) |
483         (isVolatile << 5) |
484         (isNonTemporal << 6);
485}
486
487//===----------------------------------------------------------------------===//
488//                              SelectionDAG Class
489//===----------------------------------------------------------------------===//
490
491/// doNotCSE - Return true if CSE should not be performed for this node.
492static bool doNotCSE(SDNode *N) {
493  if (N->getValueType(0) == MVT::Glue)
494    return true; // Never CSE anything that produces a flag.
495
496  switch (N->getOpcode()) {
497  default: break;
498  case ISD::HANDLENODE:
499  case ISD::EH_LABEL:
500    return true;   // Never CSE these nodes.
501  }
502
503  // Check that remaining values produced are not flags.
504  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
505    if (N->getValueType(i) == MVT::Glue)
506      return true; // Never CSE anything that produces a flag.
507
508  return false;
509}
510
511/// RemoveDeadNodes - This method deletes all unreachable nodes in the
512/// SelectionDAG.
513void SelectionDAG::RemoveDeadNodes() {
514  // Create a dummy node (which is not added to allnodes), that adds a reference
515  // to the root node, preventing it from being deleted.
516  HandleSDNode Dummy(getRoot());
517
518  SmallVector<SDNode*, 128> DeadNodes;
519
520  // Add all obviously-dead nodes to the DeadNodes worklist.
521  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
522    if (I->use_empty())
523      DeadNodes.push_back(I);
524
525  RemoveDeadNodes(DeadNodes);
526
527  // If the root changed (e.g. it was a dead load, update the root).
528  setRoot(Dummy.getValue());
529}
530
531/// RemoveDeadNodes - This method deletes the unreachable nodes in the
532/// given list, and any nodes that become unreachable as a result.
533void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
534                                   DAGUpdateListener *UpdateListener) {
535
536  // Process the worklist, deleting the nodes and adding their uses to the
537  // worklist.
538  while (!DeadNodes.empty()) {
539    SDNode *N = DeadNodes.pop_back_val();
540
541    if (UpdateListener)
542      UpdateListener->NodeDeleted(N, 0);
543
544    // Take the node out of the appropriate CSE map.
545    RemoveNodeFromCSEMaps(N);
546
547    // Next, brutally remove the operand list.  This is safe to do, as there are
548    // no cycles in the graph.
549    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
550      SDUse &Use = *I++;
551      SDNode *Operand = Use.getNode();
552      Use.set(SDValue());
553
554      // Now that we removed this operand, see if there are no uses of it left.
555      if (Operand->use_empty())
556        DeadNodes.push_back(Operand);
557    }
558
559    DeallocateNode(N);
560  }
561}
562
563void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564  SmallVector<SDNode*, 16> DeadNodes(1, N);
565  RemoveDeadNodes(DeadNodes, UpdateListener);
566}
567
568void SelectionDAG::DeleteNode(SDNode *N) {
569  // First take this out of the appropriate CSE map.
570  RemoveNodeFromCSEMaps(N);
571
572  // Finally, remove uses due to operands of this node, remove from the
573  // AllNodes list, and delete the node.
574  DeleteNodeNotInCSEMaps(N);
575}
576
577void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579  assert(N->use_empty() && "Cannot delete a node that is not dead!");
580
581  // Drop all of the operands and decrement used node's use counts.
582  N->DropOperands();
583
584  DeallocateNode(N);
585}
586
587void SelectionDAG::DeallocateNode(SDNode *N) {
588  if (N->OperandsNeedDelete)
589    delete[] N->OperandList;
590
591  // Set the opcode to DELETED_NODE to help catch bugs when node
592  // memory is reallocated.
593  N->NodeType = ISD::DELETED_NODE;
594
595  NodeAllocator.Deallocate(AllNodes.remove(N));
596
597  // Remove the ordering of this node.
598  Ordering->remove(N);
599
600  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
601  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
602  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
603    DbgVals[i]->setIsInvalidated();
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::HANDLENODE: return false;  // noop.
614  case ISD::CONDCODE:
615    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
616           "Cond code doesn't exist!");
617    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
618    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
619    break;
620  case ISD::ExternalSymbol:
621    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
622    break;
623  case ISD::TargetExternalSymbol: {
624    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
625    Erased = TargetExternalSymbols.erase(
626               std::pair<std::string,unsigned char>(ESN->getSymbol(),
627                                                    ESN->getTargetFlags()));
628    break;
629  }
630  case ISD::VALUETYPE: {
631    EVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
636      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
643    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746#ifndef NDEBUG
747/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
748static void VerifyNodeCommon(SDNode *N) {
749  switch (N->getOpcode()) {
750  default:
751    break;
752  case ISD::BUILD_PAIR: {
753    EVT VT = N->getValueType(0);
754    assert(N->getNumValues() == 1 && "Too many results!");
755    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
756           "Wrong return type!");
757    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
758    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
759           "Mismatched operand types!");
760    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
761           "Wrong operand type!");
762    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
763           "Wrong return type size");
764    break;
765  }
766  case ISD::BUILD_VECTOR: {
767    assert(N->getNumValues() == 1 && "Too many results!");
768    assert(N->getValueType(0).isVector() && "Wrong return type!");
769    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
770           "Wrong number of operands!");
771    EVT EltVT = N->getValueType(0).getVectorElementType();
772    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
773      assert((I->getValueType() == EltVT ||
774             (EltVT.isInteger() && I->getValueType().isInteger() &&
775              EltVT.bitsLE(I->getValueType()))) &&
776            "Wrong operand type!");
777    break;
778  }
779  }
780}
781
782/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
783static void VerifySDNode(SDNode *N) {
784  // The SDNode allocators cannot be used to allocate nodes with fields that are
785  // not present in an SDNode!
786  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
787  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
788  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
789  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
790  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
791  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
792  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
793  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
794  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
795  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
796  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
797  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
798  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
799  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
800  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
801  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
802  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
803  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
804  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
805
806  VerifyNodeCommon(N);
807}
808
809/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
810/// invalid.
811static void VerifyMachineNode(SDNode *N) {
812  // The MachineNode allocators cannot be used to allocate nodes with fields
813  // that are not present in a MachineNode!
814  // Currently there are no such nodes.
815
816  VerifyNodeCommon(N);
817}
818#endif // NDEBUG
819
820/// getEVTAlignment - Compute the default alignment value for the
821/// given type.
822///
823unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
824  const Type *Ty = VT == MVT::iPTR ?
825                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
826                   VT.getTypeForEVT(*getContext());
827
828  return TLI.getTargetData()->getABITypeAlignment(Ty);
829}
830
831// EntryNode could meaningfully have debug info if we can find it...
832SelectionDAG::SelectionDAG(const TargetMachine &tm)
833  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
834    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
835    Root(getEntryNode()), Ordering(0) {
836  AllNodes.push_back(&EntryNode);
837  Ordering = new SDNodeOrdering();
838  DbgInfo = new SDDbgInfo();
839}
840
841void SelectionDAG::init(MachineFunction &mf) {
842  MF = &mf;
843  Context = &mf.getFunction()->getContext();
844}
845
846SelectionDAG::~SelectionDAG() {
847  allnodes_clear();
848  delete Ordering;
849  delete DbgInfo;
850}
851
852void SelectionDAG::allnodes_clear() {
853  assert(&*AllNodes.begin() == &EntryNode);
854  AllNodes.remove(AllNodes.begin());
855  while (!AllNodes.empty())
856    DeallocateNode(AllNodes.begin());
857}
858
859void SelectionDAG::clear() {
860  allnodes_clear();
861  OperandAllocator.Reset();
862  CSEMap.clear();
863
864  ExtendedValueTypeNodes.clear();
865  ExternalSymbols.clear();
866  TargetExternalSymbols.clear();
867  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
868            static_cast<CondCodeSDNode*>(0));
869  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
870            static_cast<SDNode*>(0));
871
872  EntryNode.UseList = 0;
873  AllNodes.push_back(&EntryNode);
874  Root = getEntryNode();
875  Ordering->clear();
876  DbgInfo->clear();
877}
878
879SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
880  return VT.bitsGT(Op.getValueType()) ?
881    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
882    getNode(ISD::TRUNCATE, DL, VT, Op);
883}
884
885SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
886  return VT.bitsGT(Op.getValueType()) ?
887    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
888    getNode(ISD::TRUNCATE, DL, VT, Op);
889}
890
891SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
892  assert(!VT.isVector() &&
893         "getZeroExtendInReg should use the vector element type instead of "
894         "the vector type!");
895  if (Op.getValueType() == VT) return Op;
896  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
897  APInt Imm = APInt::getLowBitsSet(BitWidth,
898                                   VT.getSizeInBits());
899  return getNode(ISD::AND, DL, Op.getValueType(), Op,
900                 getConstant(Imm, Op.getValueType()));
901}
902
903/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
904///
905SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
906  EVT EltVT = VT.getScalarType();
907  SDValue NegOne =
908    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
909  return getNode(ISD::XOR, DL, VT, Val, NegOne);
910}
911
912SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
913  EVT EltVT = VT.getScalarType();
914  assert((EltVT.getSizeInBits() >= 64 ||
915         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
916         "getConstant with a uint64_t value that doesn't fit in the type!");
917  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
918}
919
920SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
921  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
922}
923
924SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
925  assert(VT.isInteger() && "Cannot create FP integer constant!");
926
927  EVT EltVT = VT.getScalarType();
928  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
929         "APInt size does not match type size!");
930
931  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
934  ID.AddPointer(&Val);
935  void *IP = 0;
936  SDNode *N = NULL;
937  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
938    if (!VT.isVector())
939      return SDValue(N, 0);
940
941  if (!N) {
942    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
943    CSEMap.InsertNode(N, IP);
944    AllNodes.push_back(N);
945  }
946
947  SDValue Result(N, 0);
948  if (VT.isVector()) {
949    SmallVector<SDValue, 8> Ops;
950    Ops.assign(VT.getVectorNumElements(), Result);
951    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
952  }
953  return Result;
954}
955
956SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
957  return getConstant(Val, TLI.getPointerTy(), isTarget);
958}
959
960
961SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
962  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
963}
964
965SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
966  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
967
968  EVT EltVT = VT.getScalarType();
969
970  // Do the map lookup using the actual bit pattern for the floating point
971  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
972  // we don't have issues with SNANs.
973  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
974  FoldingSetNodeID ID;
975  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
976  ID.AddPointer(&V);
977  void *IP = 0;
978  SDNode *N = NULL;
979  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
980    if (!VT.isVector())
981      return SDValue(N, 0);
982
983  if (!N) {
984    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
985    CSEMap.InsertNode(N, IP);
986    AllNodes.push_back(N);
987  }
988
989  SDValue Result(N, 0);
990  if (VT.isVector()) {
991    SmallVector<SDValue, 8> Ops;
992    Ops.assign(VT.getVectorNumElements(), Result);
993    // FIXME DebugLoc info might be appropriate here
994    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
995  }
996  return Result;
997}
998
999SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1000  EVT EltVT = VT.getScalarType();
1001  if (EltVT==MVT::f32)
1002    return getConstantFP(APFloat((float)Val), VT, isTarget);
1003  else if (EltVT==MVT::f64)
1004    return getConstantFP(APFloat(Val), VT, isTarget);
1005  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1006    bool ignored;
1007    APFloat apf = APFloat(Val);
1008    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1009                &ignored);
1010    return getConstantFP(apf, VT, isTarget);
1011  } else {
1012    assert(0 && "Unsupported type in getConstantFP");
1013    return SDValue();
1014  }
1015}
1016
1017SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1018                                       EVT VT, int64_t Offset,
1019                                       bool isTargetGA,
1020                                       unsigned char TargetFlags) {
1021  assert((TargetFlags == 0 || isTargetGA) &&
1022         "Cannot set target flags on target-independent globals");
1023
1024  // Truncate (with sign-extension) the offset value to the pointer size.
1025  EVT PTy = TLI.getPointerTy();
1026  unsigned BitWidth = PTy.getSizeInBits();
1027  if (BitWidth < 64)
1028    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1029
1030  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1031  if (!GVar) {
1032    // If GV is an alias then use the aliasee for determining thread-localness.
1033    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1034      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1035  }
1036
1037  unsigned Opc;
1038  if (GVar && GVar->isThreadLocal())
1039    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1040  else
1041    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1042
1043  FoldingSetNodeID ID;
1044  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1045  ID.AddPointer(GV);
1046  ID.AddInteger(Offset);
1047  ID.AddInteger(TargetFlags);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051
1052  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1053                                                      Offset, TargetFlags);
1054  CSEMap.InsertNode(N, IP);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1060  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1061  FoldingSetNodeID ID;
1062  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1063  ID.AddInteger(FI);
1064  void *IP = 0;
1065  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1066    return SDValue(E, 0);
1067
1068  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1069  CSEMap.InsertNode(N, IP);
1070  AllNodes.push_back(N);
1071  return SDValue(N, 0);
1072}
1073
1074SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1075                                   unsigned char TargetFlags) {
1076  assert((TargetFlags == 0 || isTarget) &&
1077         "Cannot set target flags on target-independent jump tables");
1078  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1079  FoldingSetNodeID ID;
1080  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1081  ID.AddInteger(JTI);
1082  ID.AddInteger(TargetFlags);
1083  void *IP = 0;
1084  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085    return SDValue(E, 0);
1086
1087  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1088                                                  TargetFlags);
1089  CSEMap.InsertNode(N, IP);
1090  AllNodes.push_back(N);
1091  return SDValue(N, 0);
1092}
1093
1094SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1095                                      unsigned Alignment, int Offset,
1096                                      bool isTarget,
1097                                      unsigned char TargetFlags) {
1098  assert((TargetFlags == 0 || isTarget) &&
1099         "Cannot set target flags on target-independent globals");
1100  if (Alignment == 0)
1101    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1102  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1103  FoldingSetNodeID ID;
1104  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1105  ID.AddInteger(Alignment);
1106  ID.AddInteger(Offset);
1107  ID.AddPointer(C);
1108  ID.AddInteger(TargetFlags);
1109  void *IP = 0;
1110  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1111    return SDValue(E, 0);
1112
1113  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1114                                                     Alignment, TargetFlags);
1115  CSEMap.InsertNode(N, IP);
1116  AllNodes.push_back(N);
1117  return SDValue(N, 0);
1118}
1119
1120
1121SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1122                                      unsigned Alignment, int Offset,
1123                                      bool isTarget,
1124                                      unsigned char TargetFlags) {
1125  assert((TargetFlags == 0 || isTarget) &&
1126         "Cannot set target flags on target-independent globals");
1127  if (Alignment == 0)
1128    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1129  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1130  FoldingSetNodeID ID;
1131  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1132  ID.AddInteger(Alignment);
1133  ID.AddInteger(Offset);
1134  C->AddSelectionDAGCSEId(ID);
1135  ID.AddInteger(TargetFlags);
1136  void *IP = 0;
1137  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1138    return SDValue(E, 0);
1139
1140  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1141                                                     Alignment, TargetFlags);
1142  CSEMap.InsertNode(N, IP);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1148  FoldingSetNodeID ID;
1149  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1150  ID.AddPointer(MBB);
1151  void *IP = 0;
1152  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1153    return SDValue(E, 0);
1154
1155  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1156  CSEMap.InsertNode(N, IP);
1157  AllNodes.push_back(N);
1158  return SDValue(N, 0);
1159}
1160
1161SDValue SelectionDAG::getValueType(EVT VT) {
1162  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1163      ValueTypeNodes.size())
1164    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1165
1166  SDNode *&N = VT.isExtended() ?
1167    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1168
1169  if (N) return SDValue(N, 0);
1170  N = new (NodeAllocator) VTSDNode(VT);
1171  AllNodes.push_back(N);
1172  return SDValue(N, 0);
1173}
1174
1175SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1176  SDNode *&N = ExternalSymbols[Sym];
1177  if (N) return SDValue(N, 0);
1178  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1179  AllNodes.push_back(N);
1180  return SDValue(N, 0);
1181}
1182
1183SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1184                                              unsigned char TargetFlags) {
1185  SDNode *&N =
1186    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1187                                                               TargetFlags)];
1188  if (N) return SDValue(N, 0);
1189  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1190  AllNodes.push_back(N);
1191  return SDValue(N, 0);
1192}
1193
1194SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1195  if ((unsigned)Cond >= CondCodeNodes.size())
1196    CondCodeNodes.resize(Cond+1);
1197
1198  if (CondCodeNodes[Cond] == 0) {
1199    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1200    CondCodeNodes[Cond] = N;
1201    AllNodes.push_back(N);
1202  }
1203
1204  return SDValue(CondCodeNodes[Cond], 0);
1205}
1206
1207// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1208// the shuffle mask M that point at N1 to point at N2, and indices that point
1209// N2 to point at N1.
1210static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1211  std::swap(N1, N2);
1212  int NElts = M.size();
1213  for (int i = 0; i != NElts; ++i) {
1214    if (M[i] >= NElts)
1215      M[i] -= NElts;
1216    else if (M[i] >= 0)
1217      M[i] += NElts;
1218  }
1219}
1220
1221SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1222                                       SDValue N2, const int *Mask) {
1223  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1224  assert(VT.isVector() && N1.getValueType().isVector() &&
1225         "Vector Shuffle VTs must be a vectors");
1226  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1227         && "Vector Shuffle VTs must have same element type");
1228
1229  // Canonicalize shuffle undef, undef -> undef
1230  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1231    return getUNDEF(VT);
1232
1233  // Validate that all indices in Mask are within the range of the elements
1234  // input to the shuffle.
1235  unsigned NElts = VT.getVectorNumElements();
1236  SmallVector<int, 8> MaskVec;
1237  for (unsigned i = 0; i != NElts; ++i) {
1238    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1239    MaskVec.push_back(Mask[i]);
1240  }
1241
1242  // Canonicalize shuffle v, v -> v, undef
1243  if (N1 == N2) {
1244    N2 = getUNDEF(VT);
1245    for (unsigned i = 0; i != NElts; ++i)
1246      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1247  }
1248
1249  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1250  if (N1.getOpcode() == ISD::UNDEF)
1251    commuteShuffle(N1, N2, MaskVec);
1252
1253  // Canonicalize all index into lhs, -> shuffle lhs, undef
1254  // Canonicalize all index into rhs, -> shuffle rhs, undef
1255  bool AllLHS = true, AllRHS = true;
1256  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1257  for (unsigned i = 0; i != NElts; ++i) {
1258    if (MaskVec[i] >= (int)NElts) {
1259      if (N2Undef)
1260        MaskVec[i] = -1;
1261      else
1262        AllLHS = false;
1263    } else if (MaskVec[i] >= 0) {
1264      AllRHS = false;
1265    }
1266  }
1267  if (AllLHS && AllRHS)
1268    return getUNDEF(VT);
1269  if (AllLHS && !N2Undef)
1270    N2 = getUNDEF(VT);
1271  if (AllRHS) {
1272    N1 = getUNDEF(VT);
1273    commuteShuffle(N1, N2, MaskVec);
1274  }
1275
1276  // If Identity shuffle, or all shuffle in to undef, return that node.
1277  bool AllUndef = true;
1278  bool Identity = true;
1279  for (unsigned i = 0; i != NElts; ++i) {
1280    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1281    if (MaskVec[i] >= 0) AllUndef = false;
1282  }
1283  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1284    return N1;
1285  if (AllUndef)
1286    return getUNDEF(VT);
1287
1288  FoldingSetNodeID ID;
1289  SDValue Ops[2] = { N1, N2 };
1290  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1291  for (unsigned i = 0; i != NElts; ++i)
1292    ID.AddInteger(MaskVec[i]);
1293
1294  void* IP = 0;
1295  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1296    return SDValue(E, 0);
1297
1298  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1299  // SDNode doesn't have access to it.  This memory will be "leaked" when
1300  // the node is deallocated, but recovered when the NodeAllocator is released.
1301  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1302  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1303
1304  ShuffleVectorSDNode *N =
1305    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1306  CSEMap.InsertNode(N, IP);
1307  AllNodes.push_back(N);
1308  return SDValue(N, 0);
1309}
1310
1311SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1312                                       SDValue Val, SDValue DTy,
1313                                       SDValue STy, SDValue Rnd, SDValue Sat,
1314                                       ISD::CvtCode Code) {
1315  // If the src and dest types are the same and the conversion is between
1316  // integer types of the same sign or two floats, no conversion is necessary.
1317  if (DTy == STy &&
1318      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1319    return Val;
1320
1321  FoldingSetNodeID ID;
1322  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1323  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1324  void* IP = 0;
1325  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1326    return SDValue(E, 0);
1327
1328  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1329                                                           Code);
1330  CSEMap.InsertNode(N, IP);
1331  AllNodes.push_back(N);
1332  return SDValue(N, 0);
1333}
1334
1335SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1336  FoldingSetNodeID ID;
1337  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1338  ID.AddInteger(RegNo);
1339  void *IP = 0;
1340  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1341    return SDValue(E, 0);
1342
1343  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1344  CSEMap.InsertNode(N, IP);
1345  AllNodes.push_back(N);
1346  return SDValue(N, 0);
1347}
1348
1349SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1350  FoldingSetNodeID ID;
1351  SDValue Ops[] = { Root };
1352  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1353  ID.AddPointer(Label);
1354  void *IP = 0;
1355  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356    return SDValue(E, 0);
1357
1358  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1359  CSEMap.InsertNode(N, IP);
1360  AllNodes.push_back(N);
1361  return SDValue(N, 0);
1362}
1363
1364
1365SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1366                                      bool isTarget,
1367                                      unsigned char TargetFlags) {
1368  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1369
1370  FoldingSetNodeID ID;
1371  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1372  ID.AddPointer(BA);
1373  ID.AddInteger(TargetFlags);
1374  void *IP = 0;
1375  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1376    return SDValue(E, 0);
1377
1378  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1379  CSEMap.InsertNode(N, IP);
1380  AllNodes.push_back(N);
1381  return SDValue(N, 0);
1382}
1383
1384SDValue SelectionDAG::getSrcValue(const Value *V) {
1385  assert((!V || V->getType()->isPointerTy()) &&
1386         "SrcValue is not a pointer?");
1387
1388  FoldingSetNodeID ID;
1389  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1390  ID.AddPointer(V);
1391
1392  void *IP = 0;
1393  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1394    return SDValue(E, 0);
1395
1396  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1397  CSEMap.InsertNode(N, IP);
1398  AllNodes.push_back(N);
1399  return SDValue(N, 0);
1400}
1401
1402/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1403SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1404  FoldingSetNodeID ID;
1405  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1406  ID.AddPointer(MD);
1407
1408  void *IP = 0;
1409  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1410    return SDValue(E, 0);
1411
1412  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1413  CSEMap.InsertNode(N, IP);
1414  AllNodes.push_back(N);
1415  return SDValue(N, 0);
1416}
1417
1418
1419/// getShiftAmountOperand - Return the specified value casted to
1420/// the target's desired shift amount type.
1421SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1422  EVT OpTy = Op.getValueType();
1423  MVT ShTy = TLI.getShiftAmountTy(LHSTy);
1424  if (OpTy == ShTy || OpTy.isVector()) return Op;
1425
1426  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1427  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1428}
1429
1430/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1431/// specified value type.
1432SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1433  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1434  unsigned ByteSize = VT.getStoreSize();
1435  const Type *Ty = VT.getTypeForEVT(*getContext());
1436  unsigned StackAlign =
1437  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1438
1439  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1440  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1441}
1442
1443/// CreateStackTemporary - Create a stack temporary suitable for holding
1444/// either of the specified value types.
1445SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1446  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1447                            VT2.getStoreSizeInBits())/8;
1448  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1449  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1450  const TargetData *TD = TLI.getTargetData();
1451  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1452                            TD->getPrefTypeAlignment(Ty2));
1453
1454  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1455  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1456  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1457}
1458
1459SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1460                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1461  // These setcc operations always fold.
1462  switch (Cond) {
1463  default: break;
1464  case ISD::SETFALSE:
1465  case ISD::SETFALSE2: return getConstant(0, VT);
1466  case ISD::SETTRUE:
1467  case ISD::SETTRUE2:  return getConstant(1, VT);
1468
1469  case ISD::SETOEQ:
1470  case ISD::SETOGT:
1471  case ISD::SETOGE:
1472  case ISD::SETOLT:
1473  case ISD::SETOLE:
1474  case ISD::SETONE:
1475  case ISD::SETO:
1476  case ISD::SETUO:
1477  case ISD::SETUEQ:
1478  case ISD::SETUNE:
1479    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1480    break;
1481  }
1482
1483  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1484    const APInt &C2 = N2C->getAPIntValue();
1485    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1486      const APInt &C1 = N1C->getAPIntValue();
1487
1488      switch (Cond) {
1489      default: llvm_unreachable("Unknown integer setcc!");
1490      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1491      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1492      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1493      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1494      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1495      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1496      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1497      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1498      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1499      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1500      }
1501    }
1502  }
1503  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1504    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1505      // No compile time operations on this type yet.
1506      if (N1C->getValueType(0) == MVT::ppcf128)
1507        return SDValue();
1508
1509      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1510      switch (Cond) {
1511      default: break;
1512      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1513                          return getUNDEF(VT);
1514                        // fall through
1515      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1516      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1517                          return getUNDEF(VT);
1518                        // fall through
1519      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1520                                           R==APFloat::cmpLessThan, VT);
1521      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1522                          return getUNDEF(VT);
1523                        // fall through
1524      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1525      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1526                          return getUNDEF(VT);
1527                        // fall through
1528      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1529      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1530                          return getUNDEF(VT);
1531                        // fall through
1532      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1533                                           R==APFloat::cmpEqual, VT);
1534      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1535                          return getUNDEF(VT);
1536                        // fall through
1537      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1538                                           R==APFloat::cmpEqual, VT);
1539      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1540      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1541      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1542                                           R==APFloat::cmpEqual, VT);
1543      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1544      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1545                                           R==APFloat::cmpLessThan, VT);
1546      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1547                                           R==APFloat::cmpUnordered, VT);
1548      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1549      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1550      }
1551    } else {
1552      // Ensure that the constant occurs on the RHS.
1553      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1554    }
1555  }
1556
1557  // Could not fold it.
1558  return SDValue();
1559}
1560
1561/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1562/// use this predicate to simplify operations downstream.
1563bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1564  // This predicate is not safe for vector operations.
1565  if (Op.getValueType().isVector())
1566    return false;
1567
1568  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1569  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1570}
1571
1572/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1573/// this predicate to simplify operations downstream.  Mask is known to be zero
1574/// for bits that V cannot have.
1575bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1576                                     unsigned Depth) const {
1577  APInt KnownZero, KnownOne;
1578  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1579  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1580  return (KnownZero & Mask) == Mask;
1581}
1582
1583/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1584/// known to be either zero or one and return them in the KnownZero/KnownOne
1585/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1586/// processing.
1587void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1588                                     APInt &KnownZero, APInt &KnownOne,
1589                                     unsigned Depth) const {
1590  unsigned BitWidth = Mask.getBitWidth();
1591  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1592         "Mask size mismatches value type size!");
1593
1594  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1595  if (Depth == 6 || Mask == 0)
1596    return;  // Limit search depth.
1597
1598  APInt KnownZero2, KnownOne2;
1599
1600  switch (Op.getOpcode()) {
1601  case ISD::Constant:
1602    // We know all of the bits for a constant!
1603    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1604    KnownZero = ~KnownOne & Mask;
1605    return;
1606  case ISD::AND:
1607    // If either the LHS or the RHS are Zero, the result is zero.
1608    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1609    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1610                      KnownZero2, KnownOne2, Depth+1);
1611    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1612    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1613
1614    // Output known-1 bits are only known if set in both the LHS & RHS.
1615    KnownOne &= KnownOne2;
1616    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1617    KnownZero |= KnownZero2;
1618    return;
1619  case ISD::OR:
1620    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1621    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1622                      KnownZero2, KnownOne2, Depth+1);
1623    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1625
1626    // Output known-0 bits are only known if clear in both the LHS & RHS.
1627    KnownZero &= KnownZero2;
1628    // Output known-1 are known to be set if set in either the LHS | RHS.
1629    KnownOne |= KnownOne2;
1630    return;
1631  case ISD::XOR: {
1632    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1633    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1634    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1636
1637    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1638    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1639    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1640    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1641    KnownZero = KnownZeroOut;
1642    return;
1643  }
1644  case ISD::MUL: {
1645    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1646    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1647    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1648    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1649    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1650
1651    // If low bits are zero in either operand, output low known-0 bits.
1652    // Also compute a conserative estimate for high known-0 bits.
1653    // More trickiness is possible, but this is sufficient for the
1654    // interesting case of alignment computation.
1655    KnownOne.clearAllBits();
1656    unsigned TrailZ = KnownZero.countTrailingOnes() +
1657                      KnownZero2.countTrailingOnes();
1658    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1659                               KnownZero2.countLeadingOnes(),
1660                               BitWidth) - BitWidth;
1661
1662    TrailZ = std::min(TrailZ, BitWidth);
1663    LeadZ = std::min(LeadZ, BitWidth);
1664    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1665                APInt::getHighBitsSet(BitWidth, LeadZ);
1666    KnownZero &= Mask;
1667    return;
1668  }
1669  case ISD::UDIV: {
1670    // For the purposes of computing leading zeros we can conservatively
1671    // treat a udiv as a logical right shift by the power of 2 known to
1672    // be less than the denominator.
1673    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1674    ComputeMaskedBits(Op.getOperand(0),
1675                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1676    unsigned LeadZ = KnownZero2.countLeadingOnes();
1677
1678    KnownOne2.clearAllBits();
1679    KnownZero2.clearAllBits();
1680    ComputeMaskedBits(Op.getOperand(1),
1681                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1682    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1683    if (RHSUnknownLeadingOnes != BitWidth)
1684      LeadZ = std::min(BitWidth,
1685                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1686
1687    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1688    return;
1689  }
1690  case ISD::SELECT:
1691    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1692    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1693    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1695
1696    // Only known if known in both the LHS and RHS.
1697    KnownOne &= KnownOne2;
1698    KnownZero &= KnownZero2;
1699    return;
1700  case ISD::SELECT_CC:
1701    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1702    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1703    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1705
1706    // Only known if known in both the LHS and RHS.
1707    KnownOne &= KnownOne2;
1708    KnownZero &= KnownZero2;
1709    return;
1710  case ISD::SADDO:
1711  case ISD::UADDO:
1712  case ISD::SSUBO:
1713  case ISD::USUBO:
1714  case ISD::SMULO:
1715  case ISD::UMULO:
1716    if (Op.getResNo() != 1)
1717      return;
1718    // The boolean result conforms to getBooleanContents.  Fall through.
1719  case ISD::SETCC:
1720    // If we know the result of a setcc has the top bits zero, use this info.
1721    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1722        BitWidth > 1)
1723      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1724    return;
1725  case ISD::SHL:
1726    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1727    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1728      unsigned ShAmt = SA->getZExtValue();
1729
1730      // If the shift count is an invalid immediate, don't do anything.
1731      if (ShAmt >= BitWidth)
1732        return;
1733
1734      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1735                        KnownZero, KnownOne, Depth+1);
1736      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737      KnownZero <<= ShAmt;
1738      KnownOne  <<= ShAmt;
1739      // low bits known zero.
1740      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1741    }
1742    return;
1743  case ISD::SRL:
1744    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1745    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1746      unsigned ShAmt = SA->getZExtValue();
1747
1748      // If the shift count is an invalid immediate, don't do anything.
1749      if (ShAmt >= BitWidth)
1750        return;
1751
1752      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1753                        KnownZero, KnownOne, Depth+1);
1754      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1755      KnownZero = KnownZero.lshr(ShAmt);
1756      KnownOne  = KnownOne.lshr(ShAmt);
1757
1758      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1759      KnownZero |= HighBits;  // High bits known zero.
1760    }
1761    return;
1762  case ISD::SRA:
1763    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1764      unsigned ShAmt = SA->getZExtValue();
1765
1766      // If the shift count is an invalid immediate, don't do anything.
1767      if (ShAmt >= BitWidth)
1768        return;
1769
1770      APInt InDemandedMask = (Mask << ShAmt);
1771      // If any of the demanded bits are produced by the sign extension, we also
1772      // demand the input sign bit.
1773      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1774      if (HighBits.getBoolValue())
1775        InDemandedMask |= APInt::getSignBit(BitWidth);
1776
1777      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1778                        Depth+1);
1779      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1780      KnownZero = KnownZero.lshr(ShAmt);
1781      KnownOne  = KnownOne.lshr(ShAmt);
1782
1783      // Handle the sign bits.
1784      APInt SignBit = APInt::getSignBit(BitWidth);
1785      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1786
1787      if (KnownZero.intersects(SignBit)) {
1788        KnownZero |= HighBits;  // New bits are known zero.
1789      } else if (KnownOne.intersects(SignBit)) {
1790        KnownOne  |= HighBits;  // New bits are known one.
1791      }
1792    }
1793    return;
1794  case ISD::SIGN_EXTEND_INREG: {
1795    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1796    unsigned EBits = EVT.getScalarType().getSizeInBits();
1797
1798    // Sign extension.  Compute the demanded bits in the result that are not
1799    // present in the input.
1800    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1801
1802    APInt InSignBit = APInt::getSignBit(EBits);
1803    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1804
1805    // If the sign extended bits are demanded, we know that the sign
1806    // bit is demanded.
1807    InSignBit = InSignBit.zext(BitWidth);
1808    if (NewBits.getBoolValue())
1809      InputDemandedBits |= InSignBit;
1810
1811    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1812                      KnownZero, KnownOne, Depth+1);
1813    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1814
1815    // If the sign bit of the input is known set or clear, then we know the
1816    // top bits of the result.
1817    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1818      KnownZero |= NewBits;
1819      KnownOne  &= ~NewBits;
1820    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1821      KnownOne  |= NewBits;
1822      KnownZero &= ~NewBits;
1823    } else {                              // Input sign bit unknown
1824      KnownZero &= ~NewBits;
1825      KnownOne  &= ~NewBits;
1826    }
1827    return;
1828  }
1829  case ISD::CTTZ:
1830  case ISD::CTLZ:
1831  case ISD::CTPOP: {
1832    unsigned LowBits = Log2_32(BitWidth)+1;
1833    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1834    KnownOne.clearAllBits();
1835    return;
1836  }
1837  case ISD::LOAD: {
1838    if (ISD::isZEXTLoad(Op.getNode())) {
1839      LoadSDNode *LD = cast<LoadSDNode>(Op);
1840      EVT VT = LD->getMemoryVT();
1841      unsigned MemBits = VT.getScalarType().getSizeInBits();
1842      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1843    }
1844    return;
1845  }
1846  case ISD::ZERO_EXTEND: {
1847    EVT InVT = Op.getOperand(0).getValueType();
1848    unsigned InBits = InVT.getScalarType().getSizeInBits();
1849    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1850    APInt InMask    = Mask.trunc(InBits);
1851    KnownZero = KnownZero.trunc(InBits);
1852    KnownOne = KnownOne.trunc(InBits);
1853    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1854    KnownZero = KnownZero.zext(BitWidth);
1855    KnownOne = KnownOne.zext(BitWidth);
1856    KnownZero |= NewBits;
1857    return;
1858  }
1859  case ISD::SIGN_EXTEND: {
1860    EVT InVT = Op.getOperand(0).getValueType();
1861    unsigned InBits = InVT.getScalarType().getSizeInBits();
1862    APInt InSignBit = APInt::getSignBit(InBits);
1863    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1864    APInt InMask = Mask.trunc(InBits);
1865
1866    // If any of the sign extended bits are demanded, we know that the sign
1867    // bit is demanded. Temporarily set this bit in the mask for our callee.
1868    if (NewBits.getBoolValue())
1869      InMask |= InSignBit;
1870
1871    KnownZero = KnownZero.trunc(InBits);
1872    KnownOne = KnownOne.trunc(InBits);
1873    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874
1875    // Note if the sign bit is known to be zero or one.
1876    bool SignBitKnownZero = KnownZero.isNegative();
1877    bool SignBitKnownOne  = KnownOne.isNegative();
1878    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1879           "Sign bit can't be known to be both zero and one!");
1880
1881    // If the sign bit wasn't actually demanded by our caller, we don't
1882    // want it set in the KnownZero and KnownOne result values. Reset the
1883    // mask and reapply it to the result values.
1884    InMask = Mask.trunc(InBits);
1885    KnownZero &= InMask;
1886    KnownOne  &= InMask;
1887
1888    KnownZero = KnownZero.zext(BitWidth);
1889    KnownOne = KnownOne.zext(BitWidth);
1890
1891    // If the sign bit is known zero or one, the top bits match.
1892    if (SignBitKnownZero)
1893      KnownZero |= NewBits;
1894    else if (SignBitKnownOne)
1895      KnownOne  |= NewBits;
1896    return;
1897  }
1898  case ISD::ANY_EXTEND: {
1899    EVT InVT = Op.getOperand(0).getValueType();
1900    unsigned InBits = InVT.getScalarType().getSizeInBits();
1901    APInt InMask = Mask.trunc(InBits);
1902    KnownZero = KnownZero.trunc(InBits);
1903    KnownOne = KnownOne.trunc(InBits);
1904    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1905    KnownZero = KnownZero.zext(BitWidth);
1906    KnownOne = KnownOne.zext(BitWidth);
1907    return;
1908  }
1909  case ISD::TRUNCATE: {
1910    EVT InVT = Op.getOperand(0).getValueType();
1911    unsigned InBits = InVT.getScalarType().getSizeInBits();
1912    APInt InMask = Mask.zext(InBits);
1913    KnownZero = KnownZero.zext(InBits);
1914    KnownOne = KnownOne.zext(InBits);
1915    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1916    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1917    KnownZero = KnownZero.trunc(BitWidth);
1918    KnownOne = KnownOne.trunc(BitWidth);
1919    break;
1920  }
1921  case ISD::AssertZext: {
1922    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1923    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1924    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1925                      KnownOne, Depth+1);
1926    KnownZero |= (~InMask) & Mask;
1927    return;
1928  }
1929  case ISD::FGETSIGN:
1930    // All bits are zero except the low bit.
1931    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1932    return;
1933
1934  case ISD::SUB: {
1935    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1936      // We know that the top bits of C-X are clear if X contains less bits
1937      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1938      // positive if we can prove that X is >= 0 and < 16.
1939      if (CLHS->getAPIntValue().isNonNegative()) {
1940        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1941        // NLZ can't be BitWidth with no sign bit
1942        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1943        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1944                          Depth+1);
1945
1946        // If all of the MaskV bits are known to be zero, then we know the
1947        // output top bits are zero, because we now know that the output is
1948        // from [0-C].
1949        if ((KnownZero2 & MaskV) == MaskV) {
1950          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1951          // Top bits known zero.
1952          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1953        }
1954      }
1955    }
1956  }
1957  // fall through
1958  case ISD::ADD:
1959  case ISD::ADDE: {
1960    // Output known-0 bits are known if clear or set in both the low clear bits
1961    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1962    // low 3 bits clear.
1963    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1964                                       BitWidth - Mask.countLeadingZeros());
1965    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1966    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1967    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1968
1969    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1970    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1971    KnownZeroOut = std::min(KnownZeroOut,
1972                            KnownZero2.countTrailingOnes());
1973
1974    if (Op.getOpcode() == ISD::ADD) {
1975      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1976      return;
1977    }
1978
1979    // With ADDE, a carry bit may be added in, so we can only use this
1980    // information if we know (at least) that the low two bits are clear.  We
1981    // then return to the caller that the low bit is unknown but that other bits
1982    // are known zero.
1983    if (KnownZeroOut >= 2) // ADDE
1984      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
1985    return;
1986  }
1987  case ISD::SREM:
1988    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1989      const APInt &RA = Rem->getAPIntValue().abs();
1990      if (RA.isPowerOf2()) {
1991        APInt LowBits = RA - 1;
1992        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1993        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1994
1995        // The low bits of the first operand are unchanged by the srem.
1996        KnownZero = KnownZero2 & LowBits;
1997        KnownOne = KnownOne2 & LowBits;
1998
1999        // If the first operand is non-negative or has all low bits zero, then
2000        // the upper bits are all zero.
2001        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2002          KnownZero |= ~LowBits;
2003
2004        // If the first operand is negative and not all low bits are zero, then
2005        // the upper bits are all one.
2006        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2007          KnownOne |= ~LowBits;
2008
2009        KnownZero &= Mask;
2010        KnownOne &= Mask;
2011
2012        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2013      }
2014    }
2015    return;
2016  case ISD::UREM: {
2017    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2018      const APInt &RA = Rem->getAPIntValue();
2019      if (RA.isPowerOf2()) {
2020        APInt LowBits = (RA - 1);
2021        APInt Mask2 = LowBits & Mask;
2022        KnownZero |= ~LowBits & Mask;
2023        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2024        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2025        break;
2026      }
2027    }
2028
2029    // Since the result is less than or equal to either operand, any leading
2030    // zero bits in either operand must also exist in the result.
2031    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2032    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2033                      Depth+1);
2034    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2035                      Depth+1);
2036
2037    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2038                                KnownZero2.countLeadingOnes());
2039    KnownOne.clearAllBits();
2040    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2041    return;
2042  }
2043  case ISD::FrameIndex:
2044  case ISD::TargetFrameIndex:
2045    if (unsigned Align = InferPtrAlignment(Op)) {
2046      // The low bits are known zero if the pointer is aligned.
2047      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2048      return;
2049    }
2050    break;
2051
2052  default:
2053    if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2054      break;
2055    // Fallthrough
2056  case ISD::INTRINSIC_WO_CHAIN:
2057  case ISD::INTRINSIC_W_CHAIN:
2058  case ISD::INTRINSIC_VOID:
2059    // Allow the target to implement this method for its nodes.
2060    TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2061                                       Depth);
2062    return;
2063  }
2064}
2065
2066/// ComputeNumSignBits - Return the number of times the sign bit of the
2067/// register is replicated into the other bits.  We know that at least 1 bit
2068/// is always equal to the sign bit (itself), but other cases can give us
2069/// information.  For example, immediately after an "SRA X, 2", we know that
2070/// the top 3 bits are all equal to each other, so we return 3.
2071unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2072  EVT VT = Op.getValueType();
2073  assert(VT.isInteger() && "Invalid VT!");
2074  unsigned VTBits = VT.getScalarType().getSizeInBits();
2075  unsigned Tmp, Tmp2;
2076  unsigned FirstAnswer = 1;
2077
2078  if (Depth == 6)
2079    return 1;  // Limit search depth.
2080
2081  switch (Op.getOpcode()) {
2082  default: break;
2083  case ISD::AssertSext:
2084    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2085    return VTBits-Tmp+1;
2086  case ISD::AssertZext:
2087    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2088    return VTBits-Tmp;
2089
2090  case ISD::Constant: {
2091    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2092    return Val.getNumSignBits();
2093  }
2094
2095  case ISD::SIGN_EXTEND:
2096    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2097    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2098
2099  case ISD::SIGN_EXTEND_INREG:
2100    // Max of the input and what this extends.
2101    Tmp =
2102      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2103    Tmp = VTBits-Tmp+1;
2104
2105    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2106    return std::max(Tmp, Tmp2);
2107
2108  case ISD::SRA:
2109    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2110    // SRA X, C   -> adds C sign bits.
2111    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2112      Tmp += C->getZExtValue();
2113      if (Tmp > VTBits) Tmp = VTBits;
2114    }
2115    return Tmp;
2116  case ISD::SHL:
2117    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2118      // shl destroys sign bits.
2119      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2120      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2121          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2122      return Tmp - C->getZExtValue();
2123    }
2124    break;
2125  case ISD::AND:
2126  case ISD::OR:
2127  case ISD::XOR:    // NOT is handled here.
2128    // Logical binary ops preserve the number of sign bits at the worst.
2129    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2130    if (Tmp != 1) {
2131      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2132      FirstAnswer = std::min(Tmp, Tmp2);
2133      // We computed what we know about the sign bits as our first
2134      // answer. Now proceed to the generic code that uses
2135      // ComputeMaskedBits, and pick whichever answer is better.
2136    }
2137    break;
2138
2139  case ISD::SELECT:
2140    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2141    if (Tmp == 1) return 1;  // Early out.
2142    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2143    return std::min(Tmp, Tmp2);
2144
2145  case ISD::SADDO:
2146  case ISD::UADDO:
2147  case ISD::SSUBO:
2148  case ISD::USUBO:
2149  case ISD::SMULO:
2150  case ISD::UMULO:
2151    if (Op.getResNo() != 1)
2152      break;
2153    // The boolean result conforms to getBooleanContents.  Fall through.
2154  case ISD::SETCC:
2155    // If setcc returns 0/-1, all bits are sign bits.
2156    if (TLI.getBooleanContents() ==
2157        TargetLowering::ZeroOrNegativeOneBooleanContent)
2158      return VTBits;
2159    break;
2160  case ISD::ROTL:
2161  case ISD::ROTR:
2162    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2163      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2164
2165      // Handle rotate right by N like a rotate left by 32-N.
2166      if (Op.getOpcode() == ISD::ROTR)
2167        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2168
2169      // If we aren't rotating out all of the known-in sign bits, return the
2170      // number that are left.  This handles rotl(sext(x), 1) for example.
2171      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2172      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2173    }
2174    break;
2175  case ISD::ADD:
2176    // Add can have at most one carry bit.  Thus we know that the output
2177    // is, at worst, one more bit than the inputs.
2178    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2179    if (Tmp == 1) return 1;  // Early out.
2180
2181    // Special case decrementing a value (ADD X, -1):
2182    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2183      if (CRHS->isAllOnesValue()) {
2184        APInt KnownZero, KnownOne;
2185        APInt Mask = APInt::getAllOnesValue(VTBits);
2186        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2187
2188        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2189        // sign bits set.
2190        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2191          return VTBits;
2192
2193        // If we are subtracting one from a positive number, there is no carry
2194        // out of the result.
2195        if (KnownZero.isNegative())
2196          return Tmp;
2197      }
2198
2199    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2200    if (Tmp2 == 1) return 1;
2201      return std::min(Tmp, Tmp2)-1;
2202    break;
2203
2204  case ISD::SUB:
2205    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2206    if (Tmp2 == 1) return 1;
2207
2208    // Handle NEG.
2209    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2210      if (CLHS->isNullValue()) {
2211        APInt KnownZero, KnownOne;
2212        APInt Mask = APInt::getAllOnesValue(VTBits);
2213        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2214        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2215        // sign bits set.
2216        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2217          return VTBits;
2218
2219        // If the input is known to be positive (the sign bit is known clear),
2220        // the output of the NEG has the same number of sign bits as the input.
2221        if (KnownZero.isNegative())
2222          return Tmp2;
2223
2224        // Otherwise, we treat this like a SUB.
2225      }
2226
2227    // Sub can have at most one carry bit.  Thus we know that the output
2228    // is, at worst, one more bit than the inputs.
2229    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2230    if (Tmp == 1) return 1;  // Early out.
2231      return std::min(Tmp, Tmp2)-1;
2232    break;
2233  case ISD::TRUNCATE:
2234    // FIXME: it's tricky to do anything useful for this, but it is an important
2235    // case for targets like X86.
2236    break;
2237  }
2238
2239  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2240  if (Op.getOpcode() == ISD::LOAD) {
2241    LoadSDNode *LD = cast<LoadSDNode>(Op);
2242    unsigned ExtType = LD->getExtensionType();
2243    switch (ExtType) {
2244    default: break;
2245    case ISD::SEXTLOAD:    // '17' bits known
2246      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2247      return VTBits-Tmp+1;
2248    case ISD::ZEXTLOAD:    // '16' bits known
2249      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2250      return VTBits-Tmp;
2251    }
2252  }
2253
2254  // Allow the target to implement this method for its nodes.
2255  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2256      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2257      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2258      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2259    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2260    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2261  }
2262
2263  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2264  // use this information.
2265  APInt KnownZero, KnownOne;
2266  APInt Mask = APInt::getAllOnesValue(VTBits);
2267  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2268
2269  if (KnownZero.isNegative()) {        // sign bit is 0
2270    Mask = KnownZero;
2271  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2272    Mask = KnownOne;
2273  } else {
2274    // Nothing known.
2275    return FirstAnswer;
2276  }
2277
2278  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2279  // the number of identical bits in the top of the input value.
2280  Mask = ~Mask;
2281  Mask <<= Mask.getBitWidth()-VTBits;
2282  // Return # leading zeros.  We use 'min' here in case Val was zero before
2283  // shifting.  We don't want to return '64' as for an i32 "0".
2284  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2285}
2286
2287/// isBaseWithConstantOffset - Return true if the specified operand is an
2288/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2289/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2290/// semantics as an ADD.  This handles the equivalence:
2291///     X|Cst == X+Cst iff X&Cst = 0.
2292bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2293  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2294      !isa<ConstantSDNode>(Op.getOperand(1)))
2295    return false;
2296
2297  if (Op.getOpcode() == ISD::OR &&
2298      !MaskedValueIsZero(Op.getOperand(0),
2299                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2300    return false;
2301
2302  return true;
2303}
2304
2305
2306bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2307  // If we're told that NaNs won't happen, assume they won't.
2308  if (NoNaNsFPMath)
2309    return true;
2310
2311  // If the value is a constant, we can obviously see if it is a NaN or not.
2312  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2313    return !C->getValueAPF().isNaN();
2314
2315  // TODO: Recognize more cases here.
2316
2317  return false;
2318}
2319
2320bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2321  // If the value is a constant, we can obviously see if it is a zero or not.
2322  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2323    return !C->isZero();
2324
2325  // TODO: Recognize more cases here.
2326  switch (Op.getOpcode()) {
2327  default: break;
2328  case ISD::OR:
2329    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2330      return !C->isNullValue();
2331    break;
2332  }
2333
2334  return false;
2335}
2336
2337bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2338  // Check the obvious case.
2339  if (A == B) return true;
2340
2341  // For for negative and positive zero.
2342  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2343    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2344      if (CA->isZero() && CB->isZero()) return true;
2345
2346  // Otherwise they may not be equal.
2347  return false;
2348}
2349
2350bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2351  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2352  if (!GA) return false;
2353  if (GA->getOffset() != 0) return false;
2354  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2355  if (!GV) return false;
2356  return MF->getMMI().hasDebugInfo();
2357}
2358
2359
2360/// getNode - Gets or creates the specified node.
2361///
2362SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2363  FoldingSetNodeID ID;
2364  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2365  void *IP = 0;
2366  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2367    return SDValue(E, 0);
2368
2369  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2370  CSEMap.InsertNode(N, IP);
2371
2372  AllNodes.push_back(N);
2373#ifndef NDEBUG
2374  VerifySDNode(N);
2375#endif
2376  return SDValue(N, 0);
2377}
2378
2379SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2380                              EVT VT, SDValue Operand) {
2381  // Constant fold unary operations with an integer constant operand.
2382  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2383    const APInt &Val = C->getAPIntValue();
2384    switch (Opcode) {
2385    default: break;
2386    case ISD::SIGN_EXTEND:
2387      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2388    case ISD::ANY_EXTEND:
2389    case ISD::ZERO_EXTEND:
2390    case ISD::TRUNCATE:
2391      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2392    case ISD::UINT_TO_FP:
2393    case ISD::SINT_TO_FP: {
2394      // No compile time operations on ppcf128.
2395      if (VT == MVT::ppcf128) break;
2396      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2397      (void)apf.convertFromAPInt(Val,
2398                                 Opcode==ISD::SINT_TO_FP,
2399                                 APFloat::rmNearestTiesToEven);
2400      return getConstantFP(apf, VT);
2401    }
2402    case ISD::BITCAST:
2403      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2404        return getConstantFP(Val.bitsToFloat(), VT);
2405      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2406        return getConstantFP(Val.bitsToDouble(), VT);
2407      break;
2408    case ISD::BSWAP:
2409      return getConstant(Val.byteSwap(), VT);
2410    case ISD::CTPOP:
2411      return getConstant(Val.countPopulation(), VT);
2412    case ISD::CTLZ:
2413      return getConstant(Val.countLeadingZeros(), VT);
2414    case ISD::CTTZ:
2415      return getConstant(Val.countTrailingZeros(), VT);
2416    }
2417  }
2418
2419  // Constant fold unary operations with a floating point constant operand.
2420  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2421    APFloat V = C->getValueAPF();    // make copy
2422    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2423      switch (Opcode) {
2424      case ISD::FNEG:
2425        V.changeSign();
2426        return getConstantFP(V, VT);
2427      case ISD::FABS:
2428        V.clearSign();
2429        return getConstantFP(V, VT);
2430      case ISD::FP_ROUND:
2431      case ISD::FP_EXTEND: {
2432        bool ignored;
2433        // This can return overflow, underflow, or inexact; we don't care.
2434        // FIXME need to be more flexible about rounding mode.
2435        (void)V.convert(*EVTToAPFloatSemantics(VT),
2436                        APFloat::rmNearestTiesToEven, &ignored);
2437        return getConstantFP(V, VT);
2438      }
2439      case ISD::FP_TO_SINT:
2440      case ISD::FP_TO_UINT: {
2441        integerPart x[2];
2442        bool ignored;
2443        assert(integerPartWidth >= 64);
2444        // FIXME need to be more flexible about rounding mode.
2445        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2446                              Opcode==ISD::FP_TO_SINT,
2447                              APFloat::rmTowardZero, &ignored);
2448        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2449          break;
2450        APInt api(VT.getSizeInBits(), 2, x);
2451        return getConstant(api, VT);
2452      }
2453      case ISD::BITCAST:
2454        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2455          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2456        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2457          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2458        break;
2459      }
2460    }
2461  }
2462
2463  unsigned OpOpcode = Operand.getNode()->getOpcode();
2464  switch (Opcode) {
2465  case ISD::TokenFactor:
2466  case ISD::MERGE_VALUES:
2467  case ISD::CONCAT_VECTORS:
2468    return Operand;         // Factor, merge or concat of one node?  No need.
2469  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2470  case ISD::FP_EXTEND:
2471    assert(VT.isFloatingPoint() &&
2472           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2473    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2474    assert((!VT.isVector() ||
2475            VT.getVectorNumElements() ==
2476            Operand.getValueType().getVectorNumElements()) &&
2477           "Vector element count mismatch!");
2478    if (Operand.getOpcode() == ISD::UNDEF)
2479      return getUNDEF(VT);
2480    break;
2481  case ISD::SIGN_EXTEND:
2482    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2483           "Invalid SIGN_EXTEND!");
2484    if (Operand.getValueType() == VT) return Operand;   // noop extension
2485    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2486           "Invalid sext node, dst < src!");
2487    assert((!VT.isVector() ||
2488            VT.getVectorNumElements() ==
2489            Operand.getValueType().getVectorNumElements()) &&
2490           "Vector element count mismatch!");
2491    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2492      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2493    else if (OpOpcode == ISD::UNDEF)
2494      // sext(undef) = 0, because the top bits will all be the same.
2495      return getConstant(0, VT);
2496    break;
2497  case ISD::ZERO_EXTEND:
2498    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2499           "Invalid ZERO_EXTEND!");
2500    if (Operand.getValueType() == VT) return Operand;   // noop extension
2501    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2502           "Invalid zext node, dst < src!");
2503    assert((!VT.isVector() ||
2504            VT.getVectorNumElements() ==
2505            Operand.getValueType().getVectorNumElements()) &&
2506           "Vector element count mismatch!");
2507    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2508      return getNode(ISD::ZERO_EXTEND, DL, VT,
2509                     Operand.getNode()->getOperand(0));
2510    else if (OpOpcode == ISD::UNDEF)
2511      // zext(undef) = 0, because the top bits will be zero.
2512      return getConstant(0, VT);
2513    break;
2514  case ISD::ANY_EXTEND:
2515    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2516           "Invalid ANY_EXTEND!");
2517    if (Operand.getValueType() == VT) return Operand;   // noop extension
2518    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2519           "Invalid anyext node, dst < src!");
2520    assert((!VT.isVector() ||
2521            VT.getVectorNumElements() ==
2522            Operand.getValueType().getVectorNumElements()) &&
2523           "Vector element count mismatch!");
2524
2525    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2526        OpOpcode == ISD::ANY_EXTEND)
2527      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2528      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2529    else if (OpOpcode == ISD::UNDEF)
2530      return getUNDEF(VT);
2531
2532    // (ext (trunx x)) -> x
2533    if (OpOpcode == ISD::TRUNCATE) {
2534      SDValue OpOp = Operand.getNode()->getOperand(0);
2535      if (OpOp.getValueType() == VT)
2536        return OpOp;
2537    }
2538    break;
2539  case ISD::TRUNCATE:
2540    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2541           "Invalid TRUNCATE!");
2542    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2543    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2544           "Invalid truncate node, src < dst!");
2545    assert((!VT.isVector() ||
2546            VT.getVectorNumElements() ==
2547            Operand.getValueType().getVectorNumElements()) &&
2548           "Vector element count mismatch!");
2549    if (OpOpcode == ISD::TRUNCATE)
2550      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2551    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2552             OpOpcode == ISD::ANY_EXTEND) {
2553      // If the source is smaller than the dest, we still need an extend.
2554      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2555            .bitsLT(VT.getScalarType()))
2556        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2557      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2558        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2559      else
2560        return Operand.getNode()->getOperand(0);
2561    }
2562    break;
2563  case ISD::BITCAST:
2564    // Basic sanity checking.
2565    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2566           && "Cannot BITCAST between types of different sizes!");
2567    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2568    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2569      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2570    if (OpOpcode == ISD::UNDEF)
2571      return getUNDEF(VT);
2572    break;
2573  case ISD::SCALAR_TO_VECTOR:
2574    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2575           (VT.getVectorElementType() == Operand.getValueType() ||
2576            (VT.getVectorElementType().isInteger() &&
2577             Operand.getValueType().isInteger() &&
2578             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2579           "Illegal SCALAR_TO_VECTOR node!");
2580    if (OpOpcode == ISD::UNDEF)
2581      return getUNDEF(VT);
2582    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2583    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2584        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2585        Operand.getConstantOperandVal(1) == 0 &&
2586        Operand.getOperand(0).getValueType() == VT)
2587      return Operand.getOperand(0);
2588    break;
2589  case ISD::FNEG:
2590    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2591    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2592      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2593                     Operand.getNode()->getOperand(0));
2594    if (OpOpcode == ISD::FNEG)  // --X -> X
2595      return Operand.getNode()->getOperand(0);
2596    break;
2597  case ISD::FABS:
2598    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2599      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2600    break;
2601  }
2602
2603  SDNode *N;
2604  SDVTList VTs = getVTList(VT);
2605  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2606    FoldingSetNodeID ID;
2607    SDValue Ops[1] = { Operand };
2608    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2609    void *IP = 0;
2610    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2611      return SDValue(E, 0);
2612
2613    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2614    CSEMap.InsertNode(N, IP);
2615  } else {
2616    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2617  }
2618
2619  AllNodes.push_back(N);
2620#ifndef NDEBUG
2621  VerifySDNode(N);
2622#endif
2623  return SDValue(N, 0);
2624}
2625
2626SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2627                                             EVT VT,
2628                                             ConstantSDNode *Cst1,
2629                                             ConstantSDNode *Cst2) {
2630  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2631
2632  switch (Opcode) {
2633  case ISD::ADD:  return getConstant(C1 + C2, VT);
2634  case ISD::SUB:  return getConstant(C1 - C2, VT);
2635  case ISD::MUL:  return getConstant(C1 * C2, VT);
2636  case ISD::UDIV:
2637    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2638    break;
2639  case ISD::UREM:
2640    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2641    break;
2642  case ISD::SDIV:
2643    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2644    break;
2645  case ISD::SREM:
2646    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2647    break;
2648  case ISD::AND:  return getConstant(C1 & C2, VT);
2649  case ISD::OR:   return getConstant(C1 | C2, VT);
2650  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2651  case ISD::SHL:  return getConstant(C1 << C2, VT);
2652  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2653  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2654  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2655  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2656  default: break;
2657  }
2658
2659  return SDValue();
2660}
2661
2662SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2663                              SDValue N1, SDValue N2) {
2664  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2665  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2666  switch (Opcode) {
2667  default: break;
2668  case ISD::TokenFactor:
2669    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2670           N2.getValueType() == MVT::Other && "Invalid token factor!");
2671    // Fold trivial token factors.
2672    if (N1.getOpcode() == ISD::EntryToken) return N2;
2673    if (N2.getOpcode() == ISD::EntryToken) return N1;
2674    if (N1 == N2) return N1;
2675    break;
2676  case ISD::CONCAT_VECTORS:
2677    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2678    // one big BUILD_VECTOR.
2679    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2680        N2.getOpcode() == ISD::BUILD_VECTOR) {
2681      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2682                                    N1.getNode()->op_end());
2683      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2684      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2685    }
2686    break;
2687  case ISD::AND:
2688    assert(VT.isInteger() && "This operator does not apply to FP types!");
2689    assert(N1.getValueType() == N2.getValueType() &&
2690           N1.getValueType() == VT && "Binary operator types must match!");
2691    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2692    // worth handling here.
2693    if (N2C && N2C->isNullValue())
2694      return N2;
2695    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2696      return N1;
2697    break;
2698  case ISD::OR:
2699  case ISD::XOR:
2700  case ISD::ADD:
2701  case ISD::SUB:
2702    assert(VT.isInteger() && "This operator does not apply to FP types!");
2703    assert(N1.getValueType() == N2.getValueType() &&
2704           N1.getValueType() == VT && "Binary operator types must match!");
2705    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2706    // it's worth handling here.
2707    if (N2C && N2C->isNullValue())
2708      return N1;
2709    break;
2710  case ISD::UDIV:
2711  case ISD::UREM:
2712  case ISD::MULHU:
2713  case ISD::MULHS:
2714  case ISD::MUL:
2715  case ISD::SDIV:
2716  case ISD::SREM:
2717    assert(VT.isInteger() && "This operator does not apply to FP types!");
2718    assert(N1.getValueType() == N2.getValueType() &&
2719           N1.getValueType() == VT && "Binary operator types must match!");
2720    break;
2721  case ISD::FADD:
2722  case ISD::FSUB:
2723  case ISD::FMUL:
2724  case ISD::FDIV:
2725  case ISD::FREM:
2726    if (UnsafeFPMath) {
2727      if (Opcode == ISD::FADD) {
2728        // 0+x --> x
2729        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2730          if (CFP->getValueAPF().isZero())
2731            return N2;
2732        // x+0 --> x
2733        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2734          if (CFP->getValueAPF().isZero())
2735            return N1;
2736      } else if (Opcode == ISD::FSUB) {
2737        // x-0 --> x
2738        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2739          if (CFP->getValueAPF().isZero())
2740            return N1;
2741      }
2742    }
2743    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2744    assert(N1.getValueType() == N2.getValueType() &&
2745           N1.getValueType() == VT && "Binary operator types must match!");
2746    break;
2747  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2748    assert(N1.getValueType() == VT &&
2749           N1.getValueType().isFloatingPoint() &&
2750           N2.getValueType().isFloatingPoint() &&
2751           "Invalid FCOPYSIGN!");
2752    break;
2753  case ISD::SHL:
2754  case ISD::SRA:
2755  case ISD::SRL:
2756  case ISD::ROTL:
2757  case ISD::ROTR:
2758    assert(VT == N1.getValueType() &&
2759           "Shift operators return type must be the same as their first arg");
2760    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2761           "Shifts only work on integers");
2762    // Verify that the shift amount VT is bit enough to hold valid shift
2763    // amounts.  This catches things like trying to shift an i1024 value by an
2764    // i8, which is easy to fall into in generic code that uses
2765    // TLI.getShiftAmount().
2766    assert(N2.getValueType().getSizeInBits() >=
2767                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2768           "Invalid use of small shift amount with oversized value!");
2769
2770    // Always fold shifts of i1 values so the code generator doesn't need to
2771    // handle them.  Since we know the size of the shift has to be less than the
2772    // size of the value, the shift/rotate count is guaranteed to be zero.
2773    if (VT == MVT::i1)
2774      return N1;
2775    if (N2C && N2C->isNullValue())
2776      return N1;
2777    break;
2778  case ISD::FP_ROUND_INREG: {
2779    EVT EVT = cast<VTSDNode>(N2)->getVT();
2780    assert(VT == N1.getValueType() && "Not an inreg round!");
2781    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2782           "Cannot FP_ROUND_INREG integer types");
2783    assert(EVT.isVector() == VT.isVector() &&
2784           "FP_ROUND_INREG type should be vector iff the operand "
2785           "type is vector!");
2786    assert((!EVT.isVector() ||
2787            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2788           "Vector element counts must match in FP_ROUND_INREG");
2789    assert(EVT.bitsLE(VT) && "Not rounding down!");
2790    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2791    break;
2792  }
2793  case ISD::FP_ROUND:
2794    assert(VT.isFloatingPoint() &&
2795           N1.getValueType().isFloatingPoint() &&
2796           VT.bitsLE(N1.getValueType()) &&
2797           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2798    if (N1.getValueType() == VT) return N1;  // noop conversion.
2799    break;
2800  case ISD::AssertSext:
2801  case ISD::AssertZext: {
2802    EVT EVT = cast<VTSDNode>(N2)->getVT();
2803    assert(VT == N1.getValueType() && "Not an inreg extend!");
2804    assert(VT.isInteger() && EVT.isInteger() &&
2805           "Cannot *_EXTEND_INREG FP types");
2806    assert(!EVT.isVector() &&
2807           "AssertSExt/AssertZExt type should be the vector element type "
2808           "rather than the vector type!");
2809    assert(EVT.bitsLE(VT) && "Not extending!");
2810    if (VT == EVT) return N1; // noop assertion.
2811    break;
2812  }
2813  case ISD::SIGN_EXTEND_INREG: {
2814    EVT EVT = cast<VTSDNode>(N2)->getVT();
2815    assert(VT == N1.getValueType() && "Not an inreg extend!");
2816    assert(VT.isInteger() && EVT.isInteger() &&
2817           "Cannot *_EXTEND_INREG FP types");
2818    assert(EVT.isVector() == VT.isVector() &&
2819           "SIGN_EXTEND_INREG type should be vector iff the operand "
2820           "type is vector!");
2821    assert((!EVT.isVector() ||
2822            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2823           "Vector element counts must match in SIGN_EXTEND_INREG");
2824    assert(EVT.bitsLE(VT) && "Not extending!");
2825    if (EVT == VT) return N1;  // Not actually extending
2826
2827    if (N1C) {
2828      APInt Val = N1C->getAPIntValue();
2829      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2830      Val <<= Val.getBitWidth()-FromBits;
2831      Val = Val.ashr(Val.getBitWidth()-FromBits);
2832      return getConstant(Val, VT);
2833    }
2834    break;
2835  }
2836  case ISD::EXTRACT_VECTOR_ELT:
2837    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2838    if (N1.getOpcode() == ISD::UNDEF)
2839      return getUNDEF(VT);
2840
2841    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2842    // expanding copies of large vectors from registers.
2843    if (N2C &&
2844        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2845        N1.getNumOperands() > 0) {
2846      unsigned Factor =
2847        N1.getOperand(0).getValueType().getVectorNumElements();
2848      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2849                     N1.getOperand(N2C->getZExtValue() / Factor),
2850                     getConstant(N2C->getZExtValue() % Factor,
2851                                 N2.getValueType()));
2852    }
2853
2854    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2855    // expanding large vector constants.
2856    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2857      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2858      EVT VEltTy = N1.getValueType().getVectorElementType();
2859      if (Elt.getValueType() != VEltTy) {
2860        // If the vector element type is not legal, the BUILD_VECTOR operands
2861        // are promoted and implicitly truncated.  Make that explicit here.
2862        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2863      }
2864      if (VT != VEltTy) {
2865        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2866        // result is implicitly extended.
2867        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2868      }
2869      return Elt;
2870    }
2871
2872    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2873    // operations are lowered to scalars.
2874    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2875      // If the indices are the same, return the inserted element else
2876      // if the indices are known different, extract the element from
2877      // the original vector.
2878      SDValue N1Op2 = N1.getOperand(2);
2879      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2880
2881      if (N1Op2C && N2C) {
2882        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2883          if (VT == N1.getOperand(1).getValueType())
2884            return N1.getOperand(1);
2885          else
2886            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2887        }
2888
2889        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2890      }
2891    }
2892    break;
2893  case ISD::EXTRACT_ELEMENT:
2894    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2895    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2896           (N1.getValueType().isInteger() == VT.isInteger()) &&
2897           "Wrong types for EXTRACT_ELEMENT!");
2898
2899    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2900    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2901    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2902    if (N1.getOpcode() == ISD::BUILD_PAIR)
2903      return N1.getOperand(N2C->getZExtValue());
2904
2905    // EXTRACT_ELEMENT of a constant int is also very common.
2906    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2907      unsigned ElementSize = VT.getSizeInBits();
2908      unsigned Shift = ElementSize * N2C->getZExtValue();
2909      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2910      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2911    }
2912    break;
2913  case ISD::EXTRACT_SUBVECTOR: {
2914    SDValue Index = N2;
2915    if (VT.isSimple() && N1.getValueType().isSimple()) {
2916      assert(VT.isVector() && N1.getValueType().isVector() &&
2917             "Extract subvector VTs must be a vectors!");
2918      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2919             "Extract subvector VTs must have the same element type!");
2920      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2921             "Extract subvector must be from larger vector to smaller vector!");
2922
2923      if (isa<ConstantSDNode>(Index.getNode())) {
2924        assert((VT.getVectorNumElements() +
2925                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2926                <= N1.getValueType().getVectorNumElements())
2927               && "Extract subvector overflow!");
2928      }
2929
2930      // Trivial extraction.
2931      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2932        return N1;
2933    }
2934    break;
2935  }
2936  }
2937
2938  if (N1C) {
2939    if (N2C) {
2940      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2941      if (SV.getNode()) return SV;
2942    } else {      // Cannonicalize constant to RHS if commutative
2943      if (isCommutativeBinOp(Opcode)) {
2944        std::swap(N1C, N2C);
2945        std::swap(N1, N2);
2946      }
2947    }
2948  }
2949
2950  // Constant fold FP operations.
2951  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2952  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2953  if (N1CFP) {
2954    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2955      // Cannonicalize constant to RHS if commutative
2956      std::swap(N1CFP, N2CFP);
2957      std::swap(N1, N2);
2958    } else if (N2CFP && VT != MVT::ppcf128) {
2959      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2960      APFloat::opStatus s;
2961      switch (Opcode) {
2962      case ISD::FADD:
2963        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2964        if (s != APFloat::opInvalidOp)
2965          return getConstantFP(V1, VT);
2966        break;
2967      case ISD::FSUB:
2968        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2969        if (s!=APFloat::opInvalidOp)
2970          return getConstantFP(V1, VT);
2971        break;
2972      case ISD::FMUL:
2973        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2974        if (s!=APFloat::opInvalidOp)
2975          return getConstantFP(V1, VT);
2976        break;
2977      case ISD::FDIV:
2978        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2979        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2980          return getConstantFP(V1, VT);
2981        break;
2982      case ISD::FREM :
2983        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2984        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2985          return getConstantFP(V1, VT);
2986        break;
2987      case ISD::FCOPYSIGN:
2988        V1.copySign(V2);
2989        return getConstantFP(V1, VT);
2990      default: break;
2991      }
2992    }
2993  }
2994
2995  // Canonicalize an UNDEF to the RHS, even over a constant.
2996  if (N1.getOpcode() == ISD::UNDEF) {
2997    if (isCommutativeBinOp(Opcode)) {
2998      std::swap(N1, N2);
2999    } else {
3000      switch (Opcode) {
3001      case ISD::FP_ROUND_INREG:
3002      case ISD::SIGN_EXTEND_INREG:
3003      case ISD::SUB:
3004      case ISD::FSUB:
3005      case ISD::FDIV:
3006      case ISD::FREM:
3007      case ISD::SRA:
3008        return N1;     // fold op(undef, arg2) -> undef
3009      case ISD::UDIV:
3010      case ISD::SDIV:
3011      case ISD::UREM:
3012      case ISD::SREM:
3013      case ISD::SRL:
3014      case ISD::SHL:
3015        if (!VT.isVector())
3016          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3017        // For vectors, we can't easily build an all zero vector, just return
3018        // the LHS.
3019        return N2;
3020      }
3021    }
3022  }
3023
3024  // Fold a bunch of operators when the RHS is undef.
3025  if (N2.getOpcode() == ISD::UNDEF) {
3026    switch (Opcode) {
3027    case ISD::XOR:
3028      if (N1.getOpcode() == ISD::UNDEF)
3029        // Handle undef ^ undef -> 0 special case. This is a common
3030        // idiom (misuse).
3031        return getConstant(0, VT);
3032      // fallthrough
3033    case ISD::ADD:
3034    case ISD::ADDC:
3035    case ISD::ADDE:
3036    case ISD::SUB:
3037    case ISD::UDIV:
3038    case ISD::SDIV:
3039    case ISD::UREM:
3040    case ISD::SREM:
3041      return N2;       // fold op(arg1, undef) -> undef
3042    case ISD::FADD:
3043    case ISD::FSUB:
3044    case ISD::FMUL:
3045    case ISD::FDIV:
3046    case ISD::FREM:
3047      if (UnsafeFPMath)
3048        return N2;
3049      break;
3050    case ISD::MUL:
3051    case ISD::AND:
3052    case ISD::SRL:
3053    case ISD::SHL:
3054      if (!VT.isVector())
3055        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3056      // For vectors, we can't easily build an all zero vector, just return
3057      // the LHS.
3058      return N1;
3059    case ISD::OR:
3060      if (!VT.isVector())
3061        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3062      // For vectors, we can't easily build an all one vector, just return
3063      // the LHS.
3064      return N1;
3065    case ISD::SRA:
3066      return N1;
3067    }
3068  }
3069
3070  // Memoize this node if possible.
3071  SDNode *N;
3072  SDVTList VTs = getVTList(VT);
3073  if (VT != MVT::Glue) {
3074    SDValue Ops[] = { N1, N2 };
3075    FoldingSetNodeID ID;
3076    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3077    void *IP = 0;
3078    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3079      return SDValue(E, 0);
3080
3081    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3082    CSEMap.InsertNode(N, IP);
3083  } else {
3084    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3085  }
3086
3087  AllNodes.push_back(N);
3088#ifndef NDEBUG
3089  VerifySDNode(N);
3090#endif
3091  return SDValue(N, 0);
3092}
3093
3094SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3095                              SDValue N1, SDValue N2, SDValue N3) {
3096  // Perform various simplifications.
3097  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3098  switch (Opcode) {
3099  case ISD::CONCAT_VECTORS:
3100    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3101    // one big BUILD_VECTOR.
3102    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3103        N2.getOpcode() == ISD::BUILD_VECTOR &&
3104        N3.getOpcode() == ISD::BUILD_VECTOR) {
3105      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3106                                    N1.getNode()->op_end());
3107      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3108      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3109      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3110    }
3111    break;
3112  case ISD::SETCC: {
3113    // Use FoldSetCC to simplify SETCC's.
3114    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3115    if (Simp.getNode()) return Simp;
3116    break;
3117  }
3118  case ISD::SELECT:
3119    if (N1C) {
3120     if (N1C->getZExtValue())
3121        return N2;             // select true, X, Y -> X
3122      else
3123        return N3;             // select false, X, Y -> Y
3124    }
3125
3126    if (N2 == N3) return N2;   // select C, X, X -> X
3127    break;
3128  case ISD::VECTOR_SHUFFLE:
3129    llvm_unreachable("should use getVectorShuffle constructor!");
3130    break;
3131  case ISD::INSERT_SUBVECTOR: {
3132    SDValue Index = N3;
3133    if (VT.isSimple() && N1.getValueType().isSimple()
3134        && N2.getValueType().isSimple()) {
3135      assert(VT.isVector() && N1.getValueType().isVector() &&
3136             N2.getValueType().isVector() &&
3137             "Insert subvector VTs must be a vectors");
3138      assert(VT == N1.getValueType() &&
3139             "Dest and insert subvector source types must match!");
3140      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3141             "Insert subvector must be from smaller vector to larger vector!");
3142      if (isa<ConstantSDNode>(Index.getNode())) {
3143        assert((N2.getValueType().getVectorNumElements() +
3144                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3145                <= VT.getVectorNumElements())
3146               && "Insert subvector overflow!");
3147      }
3148
3149      // Trivial insertion.
3150      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3151        return N2;
3152    }
3153    break;
3154  }
3155  case ISD::BITCAST:
3156    // Fold bit_convert nodes from a type to themselves.
3157    if (N1.getValueType() == VT)
3158      return N1;
3159    break;
3160  }
3161
3162  // Memoize node if it doesn't produce a flag.
3163  SDNode *N;
3164  SDVTList VTs = getVTList(VT);
3165  if (VT != MVT::Glue) {
3166    SDValue Ops[] = { N1, N2, N3 };
3167    FoldingSetNodeID ID;
3168    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3169    void *IP = 0;
3170    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3171      return SDValue(E, 0);
3172
3173    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3174    CSEMap.InsertNode(N, IP);
3175  } else {
3176    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3177  }
3178
3179  AllNodes.push_back(N);
3180#ifndef NDEBUG
3181  VerifySDNode(N);
3182#endif
3183  return SDValue(N, 0);
3184}
3185
3186SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3187                              SDValue N1, SDValue N2, SDValue N3,
3188                              SDValue N4) {
3189  SDValue Ops[] = { N1, N2, N3, N4 };
3190  return getNode(Opcode, DL, VT, Ops, 4);
3191}
3192
3193SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3194                              SDValue N1, SDValue N2, SDValue N3,
3195                              SDValue N4, SDValue N5) {
3196  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3197  return getNode(Opcode, DL, VT, Ops, 5);
3198}
3199
3200/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3201/// the incoming stack arguments to be loaded from the stack.
3202SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3203  SmallVector<SDValue, 8> ArgChains;
3204
3205  // Include the original chain at the beginning of the list. When this is
3206  // used by target LowerCall hooks, this helps legalize find the
3207  // CALLSEQ_BEGIN node.
3208  ArgChains.push_back(Chain);
3209
3210  // Add a chain value for each stack argument.
3211  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3212       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3213    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3214      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3215        if (FI->getIndex() < 0)
3216          ArgChains.push_back(SDValue(L, 1));
3217
3218  // Build a tokenfactor for all the chains.
3219  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3220                 &ArgChains[0], ArgChains.size());
3221}
3222
3223/// SplatByte - Distribute ByteVal over NumBits bits.
3224static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3225  APInt Val = APInt(NumBits, ByteVal);
3226  unsigned Shift = 8;
3227  for (unsigned i = NumBits; i > 8; i >>= 1) {
3228    Val = (Val << Shift) | Val;
3229    Shift <<= 1;
3230  }
3231  return Val;
3232}
3233
3234/// getMemsetValue - Vectorized representation of the memset value
3235/// operand.
3236static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3237                              DebugLoc dl) {
3238  assert(Value.getOpcode() != ISD::UNDEF);
3239
3240  unsigned NumBits = VT.getScalarType().getSizeInBits();
3241  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3242    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3243    if (VT.isInteger())
3244      return DAG.getConstant(Val, VT);
3245    return DAG.getConstantFP(APFloat(Val), VT);
3246  }
3247
3248  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3249  if (NumBits > 8) {
3250    // Use a multiplication with 0x010101... to extend the input to the
3251    // required length.
3252    APInt Magic = SplatByte(NumBits, 0x01);
3253    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3254  }
3255
3256  return Value;
3257}
3258
3259/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3260/// used when a memcpy is turned into a memset when the source is a constant
3261/// string ptr.
3262static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3263                                  const TargetLowering &TLI,
3264                                  std::string &Str, unsigned Offset) {
3265  // Handle vector with all elements zero.
3266  if (Str.empty()) {
3267    if (VT.isInteger())
3268      return DAG.getConstant(0, VT);
3269    else if (VT == MVT::f32 || VT == MVT::f64)
3270      return DAG.getConstantFP(0.0, VT);
3271    else if (VT.isVector()) {
3272      unsigned NumElts = VT.getVectorNumElements();
3273      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3274      return DAG.getNode(ISD::BITCAST, dl, VT,
3275                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3276                                                             EltVT, NumElts)));
3277    } else
3278      llvm_unreachable("Expected type!");
3279  }
3280
3281  assert(!VT.isVector() && "Can't handle vector type here!");
3282  unsigned NumBits = VT.getSizeInBits();
3283  unsigned MSB = NumBits / 8;
3284  uint64_t Val = 0;
3285  if (TLI.isLittleEndian())
3286    Offset = Offset + MSB - 1;
3287  for (unsigned i = 0; i != MSB; ++i) {
3288    Val = (Val << 8) | (unsigned char)Str[Offset];
3289    Offset += TLI.isLittleEndian() ? -1 : 1;
3290  }
3291  return DAG.getConstant(Val, VT);
3292}
3293
3294/// getMemBasePlusOffset - Returns base and offset node for the
3295///
3296static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3297                                      SelectionDAG &DAG) {
3298  EVT VT = Base.getValueType();
3299  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3300                     VT, Base, DAG.getConstant(Offset, VT));
3301}
3302
3303/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3304///
3305static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3306  unsigned SrcDelta = 0;
3307  GlobalAddressSDNode *G = NULL;
3308  if (Src.getOpcode() == ISD::GlobalAddress)
3309    G = cast<GlobalAddressSDNode>(Src);
3310  else if (Src.getOpcode() == ISD::ADD &&
3311           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3312           Src.getOperand(1).getOpcode() == ISD::Constant) {
3313    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3314    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3315  }
3316  if (!G)
3317    return false;
3318
3319  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3320  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3321    return true;
3322
3323  return false;
3324}
3325
3326/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3327/// to replace the memset / memcpy. Return true if the number of memory ops
3328/// is below the threshold. It returns the types of the sequence of
3329/// memory ops to perform memset / memcpy by reference.
3330static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3331                                     unsigned Limit, uint64_t Size,
3332                                     unsigned DstAlign, unsigned SrcAlign,
3333                                     bool NonScalarIntSafe,
3334                                     bool MemcpyStrSrc,
3335                                     SelectionDAG &DAG,
3336                                     const TargetLowering &TLI) {
3337  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3338         "Expecting memcpy / memset source to meet alignment requirement!");
3339  // If 'SrcAlign' is zero, that means the memory operation does not need load
3340  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3341  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3342  // specified alignment of the memory operation. If it is zero, that means
3343  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3344  // indicates whether the memcpy source is constant so it does not need to be
3345  // loaded.
3346  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3347                                   NonScalarIntSafe, MemcpyStrSrc,
3348                                   DAG.getMachineFunction());
3349
3350  if (VT == MVT::Other) {
3351    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3352        TLI.allowsUnalignedMemoryAccesses(VT)) {
3353      VT = TLI.getPointerTy();
3354    } else {
3355      switch (DstAlign & 7) {
3356      case 0:  VT = MVT::i64; break;
3357      case 4:  VT = MVT::i32; break;
3358      case 2:  VT = MVT::i16; break;
3359      default: VT = MVT::i8;  break;
3360      }
3361    }
3362
3363    MVT LVT = MVT::i64;
3364    while (!TLI.isTypeLegal(LVT))
3365      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3366    assert(LVT.isInteger());
3367
3368    if (VT.bitsGT(LVT))
3369      VT = LVT;
3370  }
3371
3372  unsigned NumMemOps = 0;
3373  while (Size != 0) {
3374    unsigned VTSize = VT.getSizeInBits() / 8;
3375    while (VTSize > Size) {
3376      // For now, only use non-vector load / store's for the left-over pieces.
3377      if (VT.isVector() || VT.isFloatingPoint()) {
3378        VT = MVT::i64;
3379        while (!TLI.isTypeLegal(VT))
3380          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3381        VTSize = VT.getSizeInBits() / 8;
3382      } else {
3383        // This can result in a type that is not legal on the target, e.g.
3384        // 1 or 2 bytes on PPC.
3385        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3386        VTSize >>= 1;
3387      }
3388    }
3389
3390    if (++NumMemOps > Limit)
3391      return false;
3392    MemOps.push_back(VT);
3393    Size -= VTSize;
3394  }
3395
3396  return true;
3397}
3398
3399static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3400                                       SDValue Chain, SDValue Dst,
3401                                       SDValue Src, uint64_t Size,
3402                                       unsigned Align, bool isVol,
3403                                       bool AlwaysInline,
3404                                       MachinePointerInfo DstPtrInfo,
3405                                       MachinePointerInfo SrcPtrInfo) {
3406  // Turn a memcpy of undef to nop.
3407  if (Src.getOpcode() == ISD::UNDEF)
3408    return Chain;
3409
3410  // Expand memcpy to a series of load and store ops if the size operand falls
3411  // below a certain threshold.
3412  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3413  // rather than maybe a humongous number of loads and stores.
3414  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3415  std::vector<EVT> MemOps;
3416  bool DstAlignCanChange = false;
3417  MachineFunction &MF = DAG.getMachineFunction();
3418  MachineFrameInfo *MFI = MF.getFrameInfo();
3419  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3420  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3421  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3422    DstAlignCanChange = true;
3423  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3424  if (Align > SrcAlign)
3425    SrcAlign = Align;
3426  std::string Str;
3427  bool CopyFromStr = isMemSrcFromString(Src, Str);
3428  bool isZeroStr = CopyFromStr && Str.empty();
3429  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3430
3431  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3432                                (DstAlignCanChange ? 0 : Align),
3433                                (isZeroStr ? 0 : SrcAlign),
3434                                true, CopyFromStr, DAG, TLI))
3435    return SDValue();
3436
3437  if (DstAlignCanChange) {
3438    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3439    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3440    if (NewAlign > Align) {
3441      // Give the stack frame object a larger alignment if needed.
3442      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3443        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3444      Align = NewAlign;
3445    }
3446  }
3447
3448  SmallVector<SDValue, 8> OutChains;
3449  unsigned NumMemOps = MemOps.size();
3450  uint64_t SrcOff = 0, DstOff = 0;
3451  for (unsigned i = 0; i != NumMemOps; ++i) {
3452    EVT VT = MemOps[i];
3453    unsigned VTSize = VT.getSizeInBits() / 8;
3454    SDValue Value, Store;
3455
3456    if (CopyFromStr &&
3457        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3458      // It's unlikely a store of a vector immediate can be done in a single
3459      // instruction. It would require a load from a constantpool first.
3460      // We only handle zero vectors here.
3461      // FIXME: Handle other cases where store of vector immediate is done in
3462      // a single instruction.
3463      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3464      Store = DAG.getStore(Chain, dl, Value,
3465                           getMemBasePlusOffset(Dst, DstOff, DAG),
3466                           DstPtrInfo.getWithOffset(DstOff), isVol,
3467                           false, Align);
3468    } else {
3469      // The type might not be legal for the target.  This should only happen
3470      // if the type is smaller than a legal type, as on PPC, so the right
3471      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3472      // to Load/Store if NVT==VT.
3473      // FIXME does the case above also need this?
3474      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3475      assert(NVT.bitsGE(VT));
3476      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3477                             getMemBasePlusOffset(Src, SrcOff, DAG),
3478                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3479                             MinAlign(SrcAlign, SrcOff));
3480      Store = DAG.getTruncStore(Chain, dl, Value,
3481                                getMemBasePlusOffset(Dst, DstOff, DAG),
3482                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3483                                false, Align);
3484    }
3485    OutChains.push_back(Store);
3486    SrcOff += VTSize;
3487    DstOff += VTSize;
3488  }
3489
3490  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3491                     &OutChains[0], OutChains.size());
3492}
3493
3494static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3495                                        SDValue Chain, SDValue Dst,
3496                                        SDValue Src, uint64_t Size,
3497                                        unsigned Align,  bool isVol,
3498                                        bool AlwaysInline,
3499                                        MachinePointerInfo DstPtrInfo,
3500                                        MachinePointerInfo SrcPtrInfo) {
3501  // Turn a memmove of undef to nop.
3502  if (Src.getOpcode() == ISD::UNDEF)
3503    return Chain;
3504
3505  // Expand memmove to a series of load and store ops if the size operand falls
3506  // below a certain threshold.
3507  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3508  std::vector<EVT> MemOps;
3509  bool DstAlignCanChange = false;
3510  MachineFunction &MF = DAG.getMachineFunction();
3511  MachineFrameInfo *MFI = MF.getFrameInfo();
3512  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3513  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3514  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3515    DstAlignCanChange = true;
3516  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3517  if (Align > SrcAlign)
3518    SrcAlign = Align;
3519  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3520
3521  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3522                                (DstAlignCanChange ? 0 : Align),
3523                                SrcAlign, true, false, DAG, TLI))
3524    return SDValue();
3525
3526  if (DstAlignCanChange) {
3527    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3528    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3529    if (NewAlign > Align) {
3530      // Give the stack frame object a larger alignment if needed.
3531      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3532        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3533      Align = NewAlign;
3534    }
3535  }
3536
3537  uint64_t SrcOff = 0, DstOff = 0;
3538  SmallVector<SDValue, 8> LoadValues;
3539  SmallVector<SDValue, 8> LoadChains;
3540  SmallVector<SDValue, 8> OutChains;
3541  unsigned NumMemOps = MemOps.size();
3542  for (unsigned i = 0; i < NumMemOps; i++) {
3543    EVT VT = MemOps[i];
3544    unsigned VTSize = VT.getSizeInBits() / 8;
3545    SDValue Value, Store;
3546
3547    Value = DAG.getLoad(VT, dl, Chain,
3548                        getMemBasePlusOffset(Src, SrcOff, DAG),
3549                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3550                        false, SrcAlign);
3551    LoadValues.push_back(Value);
3552    LoadChains.push_back(Value.getValue(1));
3553    SrcOff += VTSize;
3554  }
3555  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3556                      &LoadChains[0], LoadChains.size());
3557  OutChains.clear();
3558  for (unsigned i = 0; i < NumMemOps; i++) {
3559    EVT VT = MemOps[i];
3560    unsigned VTSize = VT.getSizeInBits() / 8;
3561    SDValue Value, Store;
3562
3563    Store = DAG.getStore(Chain, dl, LoadValues[i],
3564                         getMemBasePlusOffset(Dst, DstOff, DAG),
3565                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3566    OutChains.push_back(Store);
3567    DstOff += VTSize;
3568  }
3569
3570  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3571                     &OutChains[0], OutChains.size());
3572}
3573
3574static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3575                               SDValue Chain, SDValue Dst,
3576                               SDValue Src, uint64_t Size,
3577                               unsigned Align, bool isVol,
3578                               MachinePointerInfo DstPtrInfo) {
3579  // Turn a memset of undef to nop.
3580  if (Src.getOpcode() == ISD::UNDEF)
3581    return Chain;
3582
3583  // Expand memset to a series of load/store ops if the size operand
3584  // falls below a certain threshold.
3585  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3586  std::vector<EVT> MemOps;
3587  bool DstAlignCanChange = false;
3588  MachineFunction &MF = DAG.getMachineFunction();
3589  MachineFrameInfo *MFI = MF.getFrameInfo();
3590  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3591  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3592  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3593    DstAlignCanChange = true;
3594  bool NonScalarIntSafe =
3595    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3596  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3597                                Size, (DstAlignCanChange ? 0 : Align), 0,
3598                                NonScalarIntSafe, false, DAG, TLI))
3599    return SDValue();
3600
3601  if (DstAlignCanChange) {
3602    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3603    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3604    if (NewAlign > Align) {
3605      // Give the stack frame object a larger alignment if needed.
3606      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3607        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3608      Align = NewAlign;
3609    }
3610  }
3611
3612  SmallVector<SDValue, 8> OutChains;
3613  uint64_t DstOff = 0;
3614  unsigned NumMemOps = MemOps.size();
3615
3616  // Find the largest store and generate the bit pattern for it.
3617  EVT LargestVT = MemOps[0];
3618  for (unsigned i = 1; i < NumMemOps; i++)
3619    if (MemOps[i].bitsGT(LargestVT))
3620      LargestVT = MemOps[i];
3621  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3622
3623  for (unsigned i = 0; i < NumMemOps; i++) {
3624    EVT VT = MemOps[i];
3625
3626    // If this store is smaller than the largest store see whether we can get
3627    // the smaller value for free with a truncate.
3628    SDValue Value = MemSetValue;
3629    if (VT.bitsLT(LargestVT)) {
3630      if (!LargestVT.isVector() && !VT.isVector() &&
3631          TLI.isTruncateFree(LargestVT, VT))
3632        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3633      else
3634        Value = getMemsetValue(Src, VT, DAG, dl);
3635    }
3636    assert(Value.getValueType() == VT && "Value with wrong type.");
3637    SDValue Store = DAG.getStore(Chain, dl, Value,
3638                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3639                                 DstPtrInfo.getWithOffset(DstOff),
3640                                 isVol, false, Align);
3641    OutChains.push_back(Store);
3642    DstOff += VT.getSizeInBits() / 8;
3643  }
3644
3645  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3646                     &OutChains[0], OutChains.size());
3647}
3648
3649SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3650                                SDValue Src, SDValue Size,
3651                                unsigned Align, bool isVol, bool AlwaysInline,
3652                                MachinePointerInfo DstPtrInfo,
3653                                MachinePointerInfo SrcPtrInfo) {
3654
3655  // Check to see if we should lower the memcpy to loads and stores first.
3656  // For cases within the target-specified limits, this is the best choice.
3657  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3658  if (ConstantSize) {
3659    // Memcpy with size zero? Just return the original chain.
3660    if (ConstantSize->isNullValue())
3661      return Chain;
3662
3663    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3664                                             ConstantSize->getZExtValue(),Align,
3665                                isVol, false, DstPtrInfo, SrcPtrInfo);
3666    if (Result.getNode())
3667      return Result;
3668  }
3669
3670  // Then check to see if we should lower the memcpy with target-specific
3671  // code. If the target chooses to do this, this is the next best.
3672  SDValue Result =
3673    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3674                                isVol, AlwaysInline,
3675                                DstPtrInfo, SrcPtrInfo);
3676  if (Result.getNode())
3677    return Result;
3678
3679  // If we really need inline code and the target declined to provide it,
3680  // use a (potentially long) sequence of loads and stores.
3681  if (AlwaysInline) {
3682    assert(ConstantSize && "AlwaysInline requires a constant size!");
3683    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3684                                   ConstantSize->getZExtValue(), Align, isVol,
3685                                   true, DstPtrInfo, SrcPtrInfo);
3686  }
3687
3688  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3689  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3690  // respect volatile, so they may do things like read or write memory
3691  // beyond the given memory regions. But fixing this isn't easy, and most
3692  // people don't care.
3693
3694  // Emit a library call.
3695  TargetLowering::ArgListTy Args;
3696  TargetLowering::ArgListEntry Entry;
3697  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3698  Entry.Node = Dst; Args.push_back(Entry);
3699  Entry.Node = Src; Args.push_back(Entry);
3700  Entry.Node = Size; Args.push_back(Entry);
3701  // FIXME: pass in DebugLoc
3702  std::pair<SDValue,SDValue> CallResult =
3703    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3704                    false, false, false, false, 0,
3705                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3706                    /*isReturnValueUsed=*/false,
3707                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3708                                      TLI.getPointerTy()),
3709                    Args, *this, dl);
3710  return CallResult.second;
3711}
3712
3713SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3714                                 SDValue Src, SDValue Size,
3715                                 unsigned Align, bool isVol,
3716                                 MachinePointerInfo DstPtrInfo,
3717                                 MachinePointerInfo SrcPtrInfo) {
3718
3719  // Check to see if we should lower the memmove to loads and stores first.
3720  // For cases within the target-specified limits, this is the best choice.
3721  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3722  if (ConstantSize) {
3723    // Memmove with size zero? Just return the original chain.
3724    if (ConstantSize->isNullValue())
3725      return Chain;
3726
3727    SDValue Result =
3728      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3729                               ConstantSize->getZExtValue(), Align, isVol,
3730                               false, DstPtrInfo, SrcPtrInfo);
3731    if (Result.getNode())
3732      return Result;
3733  }
3734
3735  // Then check to see if we should lower the memmove with target-specific
3736  // code. If the target chooses to do this, this is the next best.
3737  SDValue Result =
3738    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3739                                 DstPtrInfo, SrcPtrInfo);
3740  if (Result.getNode())
3741    return Result;
3742
3743  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3744  // not be safe.  See memcpy above for more details.
3745
3746  // Emit a library call.
3747  TargetLowering::ArgListTy Args;
3748  TargetLowering::ArgListEntry Entry;
3749  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3750  Entry.Node = Dst; Args.push_back(Entry);
3751  Entry.Node = Src; Args.push_back(Entry);
3752  Entry.Node = Size; Args.push_back(Entry);
3753  // FIXME:  pass in DebugLoc
3754  std::pair<SDValue,SDValue> CallResult =
3755    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3756                    false, false, false, false, 0,
3757                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3758                    /*isReturnValueUsed=*/false,
3759                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3760                                      TLI.getPointerTy()),
3761                    Args, *this, dl);
3762  return CallResult.second;
3763}
3764
3765SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3766                                SDValue Src, SDValue Size,
3767                                unsigned Align, bool isVol,
3768                                MachinePointerInfo DstPtrInfo) {
3769
3770  // Check to see if we should lower the memset to stores first.
3771  // For cases within the target-specified limits, this is the best choice.
3772  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3773  if (ConstantSize) {
3774    // Memset with size zero? Just return the original chain.
3775    if (ConstantSize->isNullValue())
3776      return Chain;
3777
3778    SDValue Result =
3779      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3780                      Align, isVol, DstPtrInfo);
3781
3782    if (Result.getNode())
3783      return Result;
3784  }
3785
3786  // Then check to see if we should lower the memset with target-specific
3787  // code. If the target chooses to do this, this is the next best.
3788  SDValue Result =
3789    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3790                                DstPtrInfo);
3791  if (Result.getNode())
3792    return Result;
3793
3794  // Emit a library call.
3795  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3796  TargetLowering::ArgListTy Args;
3797  TargetLowering::ArgListEntry Entry;
3798  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3799  Args.push_back(Entry);
3800  // Extend or truncate the argument to be an i32 value for the call.
3801  if (Src.getValueType().bitsGT(MVT::i32))
3802    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3803  else
3804    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3805  Entry.Node = Src;
3806  Entry.Ty = Type::getInt32Ty(*getContext());
3807  Entry.isSExt = true;
3808  Args.push_back(Entry);
3809  Entry.Node = Size;
3810  Entry.Ty = IntPtrTy;
3811  Entry.isSExt = false;
3812  Args.push_back(Entry);
3813  // FIXME: pass in DebugLoc
3814  std::pair<SDValue,SDValue> CallResult =
3815    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3816                    false, false, false, false, 0,
3817                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3818                    /*isReturnValueUsed=*/false,
3819                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3820                                      TLI.getPointerTy()),
3821                    Args, *this, dl);
3822  return CallResult.second;
3823}
3824
3825SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3826                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3827                                SDValue Swp, MachinePointerInfo PtrInfo,
3828                                unsigned Alignment) {
3829  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3830    Alignment = getEVTAlignment(MemVT);
3831
3832  MachineFunction &MF = getMachineFunction();
3833  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3834
3835  // For now, atomics are considered to be volatile always.
3836  Flags |= MachineMemOperand::MOVolatile;
3837
3838  MachineMemOperand *MMO =
3839    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3840
3841  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3842}
3843
3844SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3845                                SDValue Chain,
3846                                SDValue Ptr, SDValue Cmp,
3847                                SDValue Swp, MachineMemOperand *MMO) {
3848  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3849  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3850
3851  EVT VT = Cmp.getValueType();
3852
3853  SDVTList VTs = getVTList(VT, MVT::Other);
3854  FoldingSetNodeID ID;
3855  ID.AddInteger(MemVT.getRawBits());
3856  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3857  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3858  void* IP = 0;
3859  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3860    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3861    return SDValue(E, 0);
3862  }
3863  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3864                                               Ptr, Cmp, Swp, MMO);
3865  CSEMap.InsertNode(N, IP);
3866  AllNodes.push_back(N);
3867  return SDValue(N, 0);
3868}
3869
3870SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3871                                SDValue Chain,
3872                                SDValue Ptr, SDValue Val,
3873                                const Value* PtrVal,
3874                                unsigned Alignment) {
3875  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3876    Alignment = getEVTAlignment(MemVT);
3877
3878  MachineFunction &MF = getMachineFunction();
3879  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3880
3881  // For now, atomics are considered to be volatile always.
3882  Flags |= MachineMemOperand::MOVolatile;
3883
3884  MachineMemOperand *MMO =
3885    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3886                            MemVT.getStoreSize(), Alignment);
3887
3888  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3889}
3890
3891SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3892                                SDValue Chain,
3893                                SDValue Ptr, SDValue Val,
3894                                MachineMemOperand *MMO) {
3895  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3896          Opcode == ISD::ATOMIC_LOAD_SUB ||
3897          Opcode == ISD::ATOMIC_LOAD_AND ||
3898          Opcode == ISD::ATOMIC_LOAD_OR ||
3899          Opcode == ISD::ATOMIC_LOAD_XOR ||
3900          Opcode == ISD::ATOMIC_LOAD_NAND ||
3901          Opcode == ISD::ATOMIC_LOAD_MIN ||
3902          Opcode == ISD::ATOMIC_LOAD_MAX ||
3903          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3904          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3905          Opcode == ISD::ATOMIC_SWAP) &&
3906         "Invalid Atomic Op");
3907
3908  EVT VT = Val.getValueType();
3909
3910  SDVTList VTs = getVTList(VT, MVT::Other);
3911  FoldingSetNodeID ID;
3912  ID.AddInteger(MemVT.getRawBits());
3913  SDValue Ops[] = {Chain, Ptr, Val};
3914  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3915  void* IP = 0;
3916  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3917    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3918    return SDValue(E, 0);
3919  }
3920  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3921                                               Ptr, Val, MMO);
3922  CSEMap.InsertNode(N, IP);
3923  AllNodes.push_back(N);
3924  return SDValue(N, 0);
3925}
3926
3927/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3928SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3929                                     DebugLoc dl) {
3930  if (NumOps == 1)
3931    return Ops[0];
3932
3933  SmallVector<EVT, 4> VTs;
3934  VTs.reserve(NumOps);
3935  for (unsigned i = 0; i < NumOps; ++i)
3936    VTs.push_back(Ops[i].getValueType());
3937  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3938                 Ops, NumOps);
3939}
3940
3941SDValue
3942SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3943                                  const EVT *VTs, unsigned NumVTs,
3944                                  const SDValue *Ops, unsigned NumOps,
3945                                  EVT MemVT, MachinePointerInfo PtrInfo,
3946                                  unsigned Align, bool Vol,
3947                                  bool ReadMem, bool WriteMem) {
3948  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3949                             MemVT, PtrInfo, Align, Vol,
3950                             ReadMem, WriteMem);
3951}
3952
3953SDValue
3954SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3955                                  const SDValue *Ops, unsigned NumOps,
3956                                  EVT MemVT, MachinePointerInfo PtrInfo,
3957                                  unsigned Align, bool Vol,
3958                                  bool ReadMem, bool WriteMem) {
3959  if (Align == 0)  // Ensure that codegen never sees alignment 0
3960    Align = getEVTAlignment(MemVT);
3961
3962  MachineFunction &MF = getMachineFunction();
3963  unsigned Flags = 0;
3964  if (WriteMem)
3965    Flags |= MachineMemOperand::MOStore;
3966  if (ReadMem)
3967    Flags |= MachineMemOperand::MOLoad;
3968  if (Vol)
3969    Flags |= MachineMemOperand::MOVolatile;
3970  MachineMemOperand *MMO =
3971    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3972
3973  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3974}
3975
3976SDValue
3977SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3978                                  const SDValue *Ops, unsigned NumOps,
3979                                  EVT MemVT, MachineMemOperand *MMO) {
3980  assert((Opcode == ISD::INTRINSIC_VOID ||
3981          Opcode == ISD::INTRINSIC_W_CHAIN ||
3982          Opcode == ISD::PREFETCH ||
3983          (Opcode <= INT_MAX &&
3984           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3985         "Opcode is not a memory-accessing opcode!");
3986
3987  // Memoize the node unless it returns a flag.
3988  MemIntrinsicSDNode *N;
3989  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
3990    FoldingSetNodeID ID;
3991    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3992    void *IP = 0;
3993    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3994      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3995      return SDValue(E, 0);
3996    }
3997
3998    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3999                                               MemVT, MMO);
4000    CSEMap.InsertNode(N, IP);
4001  } else {
4002    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4003                                               MemVT, MMO);
4004  }
4005  AllNodes.push_back(N);
4006  return SDValue(N, 0);
4007}
4008
4009/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4010/// MachinePointerInfo record from it.  This is particularly useful because the
4011/// code generator has many cases where it doesn't bother passing in a
4012/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4013static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4014  // If this is FI+Offset, we can model it.
4015  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4016    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4017
4018  // If this is (FI+Offset1)+Offset2, we can model it.
4019  if (Ptr.getOpcode() != ISD::ADD ||
4020      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4021      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4022    return MachinePointerInfo();
4023
4024  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4025  return MachinePointerInfo::getFixedStack(FI, Offset+
4026                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4027}
4028
4029/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4030/// MachinePointerInfo record from it.  This is particularly useful because the
4031/// code generator has many cases where it doesn't bother passing in a
4032/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4033static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4034  // If the 'Offset' value isn't a constant, we can't handle this.
4035  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4036    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4037  if (OffsetOp.getOpcode() == ISD::UNDEF)
4038    return InferPointerInfo(Ptr);
4039  return MachinePointerInfo();
4040}
4041
4042
4043SDValue
4044SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4045                      EVT VT, DebugLoc dl, SDValue Chain,
4046                      SDValue Ptr, SDValue Offset,
4047                      MachinePointerInfo PtrInfo, EVT MemVT,
4048                      bool isVolatile, bool isNonTemporal,
4049                      unsigned Alignment, const MDNode *TBAAInfo) {
4050  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4051    Alignment = getEVTAlignment(VT);
4052
4053  unsigned Flags = MachineMemOperand::MOLoad;
4054  if (isVolatile)
4055    Flags |= MachineMemOperand::MOVolatile;
4056  if (isNonTemporal)
4057    Flags |= MachineMemOperand::MONonTemporal;
4058
4059  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4060  // clients.
4061  if (PtrInfo.V == 0)
4062    PtrInfo = InferPointerInfo(Ptr, Offset);
4063
4064  MachineFunction &MF = getMachineFunction();
4065  MachineMemOperand *MMO =
4066    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4067                            TBAAInfo);
4068  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4069}
4070
4071SDValue
4072SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4073                      EVT VT, DebugLoc dl, SDValue Chain,
4074                      SDValue Ptr, SDValue Offset, EVT MemVT,
4075                      MachineMemOperand *MMO) {
4076  if (VT == MemVT) {
4077    ExtType = ISD::NON_EXTLOAD;
4078  } else if (ExtType == ISD::NON_EXTLOAD) {
4079    assert(VT == MemVT && "Non-extending load from different memory type!");
4080  } else {
4081    // Extending load.
4082    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4083           "Should only be an extending load, not truncating!");
4084    assert(VT.isInteger() == MemVT.isInteger() &&
4085           "Cannot convert from FP to Int or Int -> FP!");
4086    assert(VT.isVector() == MemVT.isVector() &&
4087           "Cannot use trunc store to convert to or from a vector!");
4088    assert((!VT.isVector() ||
4089            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4090           "Cannot use trunc store to change the number of vector elements!");
4091  }
4092
4093  bool Indexed = AM != ISD::UNINDEXED;
4094  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4095         "Unindexed load with an offset!");
4096
4097  SDVTList VTs = Indexed ?
4098    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4099  SDValue Ops[] = { Chain, Ptr, Offset };
4100  FoldingSetNodeID ID;
4101  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4102  ID.AddInteger(MemVT.getRawBits());
4103  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4104                                     MMO->isNonTemporal()));
4105  void *IP = 0;
4106  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4107    cast<LoadSDNode>(E)->refineAlignment(MMO);
4108    return SDValue(E, 0);
4109  }
4110  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4111                                             MemVT, MMO);
4112  CSEMap.InsertNode(N, IP);
4113  AllNodes.push_back(N);
4114  return SDValue(N, 0);
4115}
4116
4117SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4118                              SDValue Chain, SDValue Ptr,
4119                              MachinePointerInfo PtrInfo,
4120                              bool isVolatile, bool isNonTemporal,
4121                              unsigned Alignment, const MDNode *TBAAInfo) {
4122  SDValue Undef = getUNDEF(Ptr.getValueType());
4123  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4124                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4125}
4126
4127SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4128                                 SDValue Chain, SDValue Ptr,
4129                                 MachinePointerInfo PtrInfo, EVT MemVT,
4130                                 bool isVolatile, bool isNonTemporal,
4131                                 unsigned Alignment, const MDNode *TBAAInfo) {
4132  SDValue Undef = getUNDEF(Ptr.getValueType());
4133  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4134                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4135                 TBAAInfo);
4136}
4137
4138
4139SDValue
4140SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4141                             SDValue Offset, ISD::MemIndexedMode AM) {
4142  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4143  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4144         "Load is already a indexed load!");
4145  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4146                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4147                 LD->getMemoryVT(),
4148                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4149}
4150
4151SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4152                               SDValue Ptr, MachinePointerInfo PtrInfo,
4153                               bool isVolatile, bool isNonTemporal,
4154                               unsigned Alignment, const MDNode *TBAAInfo) {
4155  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4156    Alignment = getEVTAlignment(Val.getValueType());
4157
4158  unsigned Flags = MachineMemOperand::MOStore;
4159  if (isVolatile)
4160    Flags |= MachineMemOperand::MOVolatile;
4161  if (isNonTemporal)
4162    Flags |= MachineMemOperand::MONonTemporal;
4163
4164  if (PtrInfo.V == 0)
4165    PtrInfo = InferPointerInfo(Ptr);
4166
4167  MachineFunction &MF = getMachineFunction();
4168  MachineMemOperand *MMO =
4169    MF.getMachineMemOperand(PtrInfo, Flags,
4170                            Val.getValueType().getStoreSize(), Alignment,
4171                            TBAAInfo);
4172
4173  return getStore(Chain, dl, Val, Ptr, MMO);
4174}
4175
4176SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4177                               SDValue Ptr, MachineMemOperand *MMO) {
4178  EVT VT = Val.getValueType();
4179  SDVTList VTs = getVTList(MVT::Other);
4180  SDValue Undef = getUNDEF(Ptr.getValueType());
4181  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4182  FoldingSetNodeID ID;
4183  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4184  ID.AddInteger(VT.getRawBits());
4185  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4186                                     MMO->isNonTemporal()));
4187  void *IP = 0;
4188  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4189    cast<StoreSDNode>(E)->refineAlignment(MMO);
4190    return SDValue(E, 0);
4191  }
4192  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4193                                              false, VT, MMO);
4194  CSEMap.InsertNode(N, IP);
4195  AllNodes.push_back(N);
4196  return SDValue(N, 0);
4197}
4198
4199SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4200                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4201                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4202                                    unsigned Alignment,
4203                                    const MDNode *TBAAInfo) {
4204  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4205    Alignment = getEVTAlignment(SVT);
4206
4207  unsigned Flags = MachineMemOperand::MOStore;
4208  if (isVolatile)
4209    Flags |= MachineMemOperand::MOVolatile;
4210  if (isNonTemporal)
4211    Flags |= MachineMemOperand::MONonTemporal;
4212
4213  if (PtrInfo.V == 0)
4214    PtrInfo = InferPointerInfo(Ptr);
4215
4216  MachineFunction &MF = getMachineFunction();
4217  MachineMemOperand *MMO =
4218    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4219                            TBAAInfo);
4220
4221  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4222}
4223
4224SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4225                                    SDValue Ptr, EVT SVT,
4226                                    MachineMemOperand *MMO) {
4227  EVT VT = Val.getValueType();
4228
4229  if (VT == SVT)
4230    return getStore(Chain, dl, Val, Ptr, MMO);
4231
4232  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4233         "Should only be a truncating store, not extending!");
4234  assert(VT.isInteger() == SVT.isInteger() &&
4235         "Can't do FP-INT conversion!");
4236  assert(VT.isVector() == SVT.isVector() &&
4237         "Cannot use trunc store to convert to or from a vector!");
4238  assert((!VT.isVector() ||
4239          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4240         "Cannot use trunc store to change the number of vector elements!");
4241
4242  SDVTList VTs = getVTList(MVT::Other);
4243  SDValue Undef = getUNDEF(Ptr.getValueType());
4244  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4245  FoldingSetNodeID ID;
4246  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4247  ID.AddInteger(SVT.getRawBits());
4248  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4249                                     MMO->isNonTemporal()));
4250  void *IP = 0;
4251  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4252    cast<StoreSDNode>(E)->refineAlignment(MMO);
4253    return SDValue(E, 0);
4254  }
4255  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4256                                              true, SVT, MMO);
4257  CSEMap.InsertNode(N, IP);
4258  AllNodes.push_back(N);
4259  return SDValue(N, 0);
4260}
4261
4262SDValue
4263SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4264                              SDValue Offset, ISD::MemIndexedMode AM) {
4265  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4266  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4267         "Store is already a indexed store!");
4268  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4269  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4270  FoldingSetNodeID ID;
4271  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4272  ID.AddInteger(ST->getMemoryVT().getRawBits());
4273  ID.AddInteger(ST->getRawSubclassData());
4274  void *IP = 0;
4275  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4276    return SDValue(E, 0);
4277
4278  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4279                                              ST->isTruncatingStore(),
4280                                              ST->getMemoryVT(),
4281                                              ST->getMemOperand());
4282  CSEMap.InsertNode(N, IP);
4283  AllNodes.push_back(N);
4284  return SDValue(N, 0);
4285}
4286
4287SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4288                               SDValue Chain, SDValue Ptr,
4289                               SDValue SV,
4290                               unsigned Align) {
4291  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4292  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4293}
4294
4295SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4296                              const SDUse *Ops, unsigned NumOps) {
4297  switch (NumOps) {
4298  case 0: return getNode(Opcode, DL, VT);
4299  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4300  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4301  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4302  default: break;
4303  }
4304
4305  // Copy from an SDUse array into an SDValue array for use with
4306  // the regular getNode logic.
4307  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4308  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4309}
4310
4311SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4312                              const SDValue *Ops, unsigned NumOps) {
4313  switch (NumOps) {
4314  case 0: return getNode(Opcode, DL, VT);
4315  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4316  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4317  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4318  default: break;
4319  }
4320
4321  switch (Opcode) {
4322  default: break;
4323  case ISD::SELECT_CC: {
4324    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4325    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4326           "LHS and RHS of condition must have same type!");
4327    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4328           "True and False arms of SelectCC must have same type!");
4329    assert(Ops[2].getValueType() == VT &&
4330           "select_cc node must be of same type as true and false value!");
4331    break;
4332  }
4333  case ISD::BR_CC: {
4334    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4335    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4336           "LHS/RHS of comparison should match types!");
4337    break;
4338  }
4339  }
4340
4341  // Memoize nodes.
4342  SDNode *N;
4343  SDVTList VTs = getVTList(VT);
4344
4345  if (VT != MVT::Glue) {
4346    FoldingSetNodeID ID;
4347    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4348    void *IP = 0;
4349
4350    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4351      return SDValue(E, 0);
4352
4353    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4354    CSEMap.InsertNode(N, IP);
4355  } else {
4356    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4357  }
4358
4359  AllNodes.push_back(N);
4360#ifndef NDEBUG
4361  VerifySDNode(N);
4362#endif
4363  return SDValue(N, 0);
4364}
4365
4366SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4367                              const std::vector<EVT> &ResultTys,
4368                              const SDValue *Ops, unsigned NumOps) {
4369  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4370                 Ops, NumOps);
4371}
4372
4373SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4374                              const EVT *VTs, unsigned NumVTs,
4375                              const SDValue *Ops, unsigned NumOps) {
4376  if (NumVTs == 1)
4377    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4378  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4379}
4380
4381SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4382                              const SDValue *Ops, unsigned NumOps) {
4383  if (VTList.NumVTs == 1)
4384    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4385
4386#if 0
4387  switch (Opcode) {
4388  // FIXME: figure out how to safely handle things like
4389  // int foo(int x) { return 1 << (x & 255); }
4390  // int bar() { return foo(256); }
4391  case ISD::SRA_PARTS:
4392  case ISD::SRL_PARTS:
4393  case ISD::SHL_PARTS:
4394    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4395        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4396      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4397    else if (N3.getOpcode() == ISD::AND)
4398      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4399        // If the and is only masking out bits that cannot effect the shift,
4400        // eliminate the and.
4401        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4402        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4403          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4404      }
4405    break;
4406  }
4407#endif
4408
4409  // Memoize the node unless it returns a flag.
4410  SDNode *N;
4411  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4412    FoldingSetNodeID ID;
4413    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4414    void *IP = 0;
4415    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4416      return SDValue(E, 0);
4417
4418    if (NumOps == 1) {
4419      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4420    } else if (NumOps == 2) {
4421      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4422    } else if (NumOps == 3) {
4423      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4424                                            Ops[2]);
4425    } else {
4426      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4427    }
4428    CSEMap.InsertNode(N, IP);
4429  } else {
4430    if (NumOps == 1) {
4431      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4432    } else if (NumOps == 2) {
4433      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4434    } else if (NumOps == 3) {
4435      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4436                                            Ops[2]);
4437    } else {
4438      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4439    }
4440  }
4441  AllNodes.push_back(N);
4442#ifndef NDEBUG
4443  VerifySDNode(N);
4444#endif
4445  return SDValue(N, 0);
4446}
4447
4448SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4449  return getNode(Opcode, DL, VTList, 0, 0);
4450}
4451
4452SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4453                              SDValue N1) {
4454  SDValue Ops[] = { N1 };
4455  return getNode(Opcode, DL, VTList, Ops, 1);
4456}
4457
4458SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4459                              SDValue N1, SDValue N2) {
4460  SDValue Ops[] = { N1, N2 };
4461  return getNode(Opcode, DL, VTList, Ops, 2);
4462}
4463
4464SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4465                              SDValue N1, SDValue N2, SDValue N3) {
4466  SDValue Ops[] = { N1, N2, N3 };
4467  return getNode(Opcode, DL, VTList, Ops, 3);
4468}
4469
4470SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4471                              SDValue N1, SDValue N2, SDValue N3,
4472                              SDValue N4) {
4473  SDValue Ops[] = { N1, N2, N3, N4 };
4474  return getNode(Opcode, DL, VTList, Ops, 4);
4475}
4476
4477SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4478                              SDValue N1, SDValue N2, SDValue N3,
4479                              SDValue N4, SDValue N5) {
4480  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4481  return getNode(Opcode, DL, VTList, Ops, 5);
4482}
4483
4484SDVTList SelectionDAG::getVTList(EVT VT) {
4485  return makeVTList(SDNode::getValueTypeList(VT), 1);
4486}
4487
4488SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4489  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4490       E = VTList.rend(); I != E; ++I)
4491    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4492      return *I;
4493
4494  EVT *Array = Allocator.Allocate<EVT>(2);
4495  Array[0] = VT1;
4496  Array[1] = VT2;
4497  SDVTList Result = makeVTList(Array, 2);
4498  VTList.push_back(Result);
4499  return Result;
4500}
4501
4502SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4503  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4504       E = VTList.rend(); I != E; ++I)
4505    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4506                          I->VTs[2] == VT3)
4507      return *I;
4508
4509  EVT *Array = Allocator.Allocate<EVT>(3);
4510  Array[0] = VT1;
4511  Array[1] = VT2;
4512  Array[2] = VT3;
4513  SDVTList Result = makeVTList(Array, 3);
4514  VTList.push_back(Result);
4515  return Result;
4516}
4517
4518SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4519  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4520       E = VTList.rend(); I != E; ++I)
4521    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4522                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4523      return *I;
4524
4525  EVT *Array = Allocator.Allocate<EVT>(4);
4526  Array[0] = VT1;
4527  Array[1] = VT2;
4528  Array[2] = VT3;
4529  Array[3] = VT4;
4530  SDVTList Result = makeVTList(Array, 4);
4531  VTList.push_back(Result);
4532  return Result;
4533}
4534
4535SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4536  switch (NumVTs) {
4537    case 0: llvm_unreachable("Cannot have nodes without results!");
4538    case 1: return getVTList(VTs[0]);
4539    case 2: return getVTList(VTs[0], VTs[1]);
4540    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4541    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4542    default: break;
4543  }
4544
4545  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4546       E = VTList.rend(); I != E; ++I) {
4547    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4548      continue;
4549
4550    bool NoMatch = false;
4551    for (unsigned i = 2; i != NumVTs; ++i)
4552      if (VTs[i] != I->VTs[i]) {
4553        NoMatch = true;
4554        break;
4555      }
4556    if (!NoMatch)
4557      return *I;
4558  }
4559
4560  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4561  std::copy(VTs, VTs+NumVTs, Array);
4562  SDVTList Result = makeVTList(Array, NumVTs);
4563  VTList.push_back(Result);
4564  return Result;
4565}
4566
4567
4568/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4569/// specified operands.  If the resultant node already exists in the DAG,
4570/// this does not modify the specified node, instead it returns the node that
4571/// already exists.  If the resultant node does not exist in the DAG, the
4572/// input node is returned.  As a degenerate case, if you specify the same
4573/// input operands as the node already has, the input node is returned.
4574SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4575  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4576
4577  // Check to see if there is no change.
4578  if (Op == N->getOperand(0)) return N;
4579
4580  // See if the modified node already exists.
4581  void *InsertPos = 0;
4582  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4583    return Existing;
4584
4585  // Nope it doesn't.  Remove the node from its current place in the maps.
4586  if (InsertPos)
4587    if (!RemoveNodeFromCSEMaps(N))
4588      InsertPos = 0;
4589
4590  // Now we update the operands.
4591  N->OperandList[0].set(Op);
4592
4593  // If this gets put into a CSE map, add it.
4594  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4595  return N;
4596}
4597
4598SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4599  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4600
4601  // Check to see if there is no change.
4602  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4603    return N;   // No operands changed, just return the input node.
4604
4605  // See if the modified node already exists.
4606  void *InsertPos = 0;
4607  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4608    return Existing;
4609
4610  // Nope it doesn't.  Remove the node from its current place in the maps.
4611  if (InsertPos)
4612    if (!RemoveNodeFromCSEMaps(N))
4613      InsertPos = 0;
4614
4615  // Now we update the operands.
4616  if (N->OperandList[0] != Op1)
4617    N->OperandList[0].set(Op1);
4618  if (N->OperandList[1] != Op2)
4619    N->OperandList[1].set(Op2);
4620
4621  // If this gets put into a CSE map, add it.
4622  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4623  return N;
4624}
4625
4626SDNode *SelectionDAG::
4627UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4628  SDValue Ops[] = { Op1, Op2, Op3 };
4629  return UpdateNodeOperands(N, Ops, 3);
4630}
4631
4632SDNode *SelectionDAG::
4633UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4634                   SDValue Op3, SDValue Op4) {
4635  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4636  return UpdateNodeOperands(N, Ops, 4);
4637}
4638
4639SDNode *SelectionDAG::
4640UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4641                   SDValue Op3, SDValue Op4, SDValue Op5) {
4642  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4643  return UpdateNodeOperands(N, Ops, 5);
4644}
4645
4646SDNode *SelectionDAG::
4647UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4648  assert(N->getNumOperands() == NumOps &&
4649         "Update with wrong number of operands");
4650
4651  // Check to see if there is no change.
4652  bool AnyChange = false;
4653  for (unsigned i = 0; i != NumOps; ++i) {
4654    if (Ops[i] != N->getOperand(i)) {
4655      AnyChange = true;
4656      break;
4657    }
4658  }
4659
4660  // No operands changed, just return the input node.
4661  if (!AnyChange) return N;
4662
4663  // See if the modified node already exists.
4664  void *InsertPos = 0;
4665  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4666    return Existing;
4667
4668  // Nope it doesn't.  Remove the node from its current place in the maps.
4669  if (InsertPos)
4670    if (!RemoveNodeFromCSEMaps(N))
4671      InsertPos = 0;
4672
4673  // Now we update the operands.
4674  for (unsigned i = 0; i != NumOps; ++i)
4675    if (N->OperandList[i] != Ops[i])
4676      N->OperandList[i].set(Ops[i]);
4677
4678  // If this gets put into a CSE map, add it.
4679  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4680  return N;
4681}
4682
4683/// DropOperands - Release the operands and set this node to have
4684/// zero operands.
4685void SDNode::DropOperands() {
4686  // Unlike the code in MorphNodeTo that does this, we don't need to
4687  // watch for dead nodes here.
4688  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4689    SDUse &Use = *I++;
4690    Use.set(SDValue());
4691  }
4692}
4693
4694/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4695/// machine opcode.
4696///
4697SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4698                                   EVT VT) {
4699  SDVTList VTs = getVTList(VT);
4700  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4701}
4702
4703SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4704                                   EVT VT, SDValue Op1) {
4705  SDVTList VTs = getVTList(VT);
4706  SDValue Ops[] = { Op1 };
4707  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4708}
4709
4710SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4711                                   EVT VT, SDValue Op1,
4712                                   SDValue Op2) {
4713  SDVTList VTs = getVTList(VT);
4714  SDValue Ops[] = { Op1, Op2 };
4715  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4716}
4717
4718SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4719                                   EVT VT, SDValue Op1,
4720                                   SDValue Op2, SDValue Op3) {
4721  SDVTList VTs = getVTList(VT);
4722  SDValue Ops[] = { Op1, Op2, Op3 };
4723  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4724}
4725
4726SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4727                                   EVT VT, const SDValue *Ops,
4728                                   unsigned NumOps) {
4729  SDVTList VTs = getVTList(VT);
4730  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4731}
4732
4733SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4734                                   EVT VT1, EVT VT2, const SDValue *Ops,
4735                                   unsigned NumOps) {
4736  SDVTList VTs = getVTList(VT1, VT2);
4737  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4738}
4739
4740SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4741                                   EVT VT1, EVT VT2) {
4742  SDVTList VTs = getVTList(VT1, VT2);
4743  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4744}
4745
4746SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4747                                   EVT VT1, EVT VT2, EVT VT3,
4748                                   const SDValue *Ops, unsigned NumOps) {
4749  SDVTList VTs = getVTList(VT1, VT2, VT3);
4750  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4751}
4752
4753SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4754                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4755                                   const SDValue *Ops, unsigned NumOps) {
4756  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4757  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4758}
4759
4760SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4761                                   EVT VT1, EVT VT2,
4762                                   SDValue Op1) {
4763  SDVTList VTs = getVTList(VT1, VT2);
4764  SDValue Ops[] = { Op1 };
4765  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4766}
4767
4768SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4769                                   EVT VT1, EVT VT2,
4770                                   SDValue Op1, SDValue Op2) {
4771  SDVTList VTs = getVTList(VT1, VT2);
4772  SDValue Ops[] = { Op1, Op2 };
4773  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4774}
4775
4776SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4777                                   EVT VT1, EVT VT2,
4778                                   SDValue Op1, SDValue Op2,
4779                                   SDValue Op3) {
4780  SDVTList VTs = getVTList(VT1, VT2);
4781  SDValue Ops[] = { Op1, Op2, Op3 };
4782  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4783}
4784
4785SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4786                                   EVT VT1, EVT VT2, EVT VT3,
4787                                   SDValue Op1, SDValue Op2,
4788                                   SDValue Op3) {
4789  SDVTList VTs = getVTList(VT1, VT2, VT3);
4790  SDValue Ops[] = { Op1, Op2, Op3 };
4791  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4792}
4793
4794SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4795                                   SDVTList VTs, const SDValue *Ops,
4796                                   unsigned NumOps) {
4797  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4798  // Reset the NodeID to -1.
4799  N->setNodeId(-1);
4800  return N;
4801}
4802
4803/// MorphNodeTo - This *mutates* the specified node to have the specified
4804/// return type, opcode, and operands.
4805///
4806/// Note that MorphNodeTo returns the resultant node.  If there is already a
4807/// node of the specified opcode and operands, it returns that node instead of
4808/// the current one.  Note that the DebugLoc need not be the same.
4809///
4810/// Using MorphNodeTo is faster than creating a new node and swapping it in
4811/// with ReplaceAllUsesWith both because it often avoids allocating a new
4812/// node, and because it doesn't require CSE recalculation for any of
4813/// the node's users.
4814///
4815SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4816                                  SDVTList VTs, const SDValue *Ops,
4817                                  unsigned NumOps) {
4818  // If an identical node already exists, use it.
4819  void *IP = 0;
4820  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4821    FoldingSetNodeID ID;
4822    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4823    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4824      return ON;
4825  }
4826
4827  if (!RemoveNodeFromCSEMaps(N))
4828    IP = 0;
4829
4830  // Start the morphing.
4831  N->NodeType = Opc;
4832  N->ValueList = VTs.VTs;
4833  N->NumValues = VTs.NumVTs;
4834
4835  // Clear the operands list, updating used nodes to remove this from their
4836  // use list.  Keep track of any operands that become dead as a result.
4837  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4838  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4839    SDUse &Use = *I++;
4840    SDNode *Used = Use.getNode();
4841    Use.set(SDValue());
4842    if (Used->use_empty())
4843      DeadNodeSet.insert(Used);
4844  }
4845
4846  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4847    // Initialize the memory references information.
4848    MN->setMemRefs(0, 0);
4849    // If NumOps is larger than the # of operands we can have in a
4850    // MachineSDNode, reallocate the operand list.
4851    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4852      if (MN->OperandsNeedDelete)
4853        delete[] MN->OperandList;
4854      if (NumOps > array_lengthof(MN->LocalOperands))
4855        // We're creating a final node that will live unmorphed for the
4856        // remainder of the current SelectionDAG iteration, so we can allocate
4857        // the operands directly out of a pool with no recycling metadata.
4858        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4859                         Ops, NumOps);
4860      else
4861        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4862      MN->OperandsNeedDelete = false;
4863    } else
4864      MN->InitOperands(MN->OperandList, Ops, NumOps);
4865  } else {
4866    // If NumOps is larger than the # of operands we currently have, reallocate
4867    // the operand list.
4868    if (NumOps > N->NumOperands) {
4869      if (N->OperandsNeedDelete)
4870        delete[] N->OperandList;
4871      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4872      N->OperandsNeedDelete = true;
4873    } else
4874      N->InitOperands(N->OperandList, Ops, NumOps);
4875  }
4876
4877  // Delete any nodes that are still dead after adding the uses for the
4878  // new operands.
4879  if (!DeadNodeSet.empty()) {
4880    SmallVector<SDNode *, 16> DeadNodes;
4881    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4882         E = DeadNodeSet.end(); I != E; ++I)
4883      if ((*I)->use_empty())
4884        DeadNodes.push_back(*I);
4885    RemoveDeadNodes(DeadNodes);
4886  }
4887
4888  if (IP)
4889    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4890  return N;
4891}
4892
4893
4894/// getMachineNode - These are used for target selectors to create a new node
4895/// with specified return type(s), MachineInstr opcode, and operands.
4896///
4897/// Note that getMachineNode returns the resultant node.  If there is already a
4898/// node of the specified opcode and operands, it returns that node instead of
4899/// the current one.
4900MachineSDNode *
4901SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4902  SDVTList VTs = getVTList(VT);
4903  return getMachineNode(Opcode, dl, VTs, 0, 0);
4904}
4905
4906MachineSDNode *
4907SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4908  SDVTList VTs = getVTList(VT);
4909  SDValue Ops[] = { Op1 };
4910  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4911}
4912
4913MachineSDNode *
4914SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4915                             SDValue Op1, SDValue Op2) {
4916  SDVTList VTs = getVTList(VT);
4917  SDValue Ops[] = { Op1, Op2 };
4918  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4919}
4920
4921MachineSDNode *
4922SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4923                             SDValue Op1, SDValue Op2, SDValue Op3) {
4924  SDVTList VTs = getVTList(VT);
4925  SDValue Ops[] = { Op1, Op2, Op3 };
4926  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4927}
4928
4929MachineSDNode *
4930SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4931                             const SDValue *Ops, unsigned NumOps) {
4932  SDVTList VTs = getVTList(VT);
4933  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4934}
4935
4936MachineSDNode *
4937SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4938  SDVTList VTs = getVTList(VT1, VT2);
4939  return getMachineNode(Opcode, dl, VTs, 0, 0);
4940}
4941
4942MachineSDNode *
4943SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4944                             EVT VT1, EVT VT2, SDValue Op1) {
4945  SDVTList VTs = getVTList(VT1, VT2);
4946  SDValue Ops[] = { Op1 };
4947  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4948}
4949
4950MachineSDNode *
4951SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4952                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4953  SDVTList VTs = getVTList(VT1, VT2);
4954  SDValue Ops[] = { Op1, Op2 };
4955  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4956}
4957
4958MachineSDNode *
4959SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4960                             EVT VT1, EVT VT2, SDValue Op1,
4961                             SDValue Op2, SDValue Op3) {
4962  SDVTList VTs = getVTList(VT1, VT2);
4963  SDValue Ops[] = { Op1, Op2, Op3 };
4964  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4965}
4966
4967MachineSDNode *
4968SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4969                             EVT VT1, EVT VT2,
4970                             const SDValue *Ops, unsigned NumOps) {
4971  SDVTList VTs = getVTList(VT1, VT2);
4972  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4973}
4974
4975MachineSDNode *
4976SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4977                             EVT VT1, EVT VT2, EVT VT3,
4978                             SDValue Op1, SDValue Op2) {
4979  SDVTList VTs = getVTList(VT1, VT2, VT3);
4980  SDValue Ops[] = { Op1, Op2 };
4981  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4982}
4983
4984MachineSDNode *
4985SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4986                             EVT VT1, EVT VT2, EVT VT3,
4987                             SDValue Op1, SDValue Op2, SDValue Op3) {
4988  SDVTList VTs = getVTList(VT1, VT2, VT3);
4989  SDValue Ops[] = { Op1, Op2, Op3 };
4990  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4991}
4992
4993MachineSDNode *
4994SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4995                             EVT VT1, EVT VT2, EVT VT3,
4996                             const SDValue *Ops, unsigned NumOps) {
4997  SDVTList VTs = getVTList(VT1, VT2, VT3);
4998  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4999}
5000
5001MachineSDNode *
5002SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
5003                             EVT VT2, EVT VT3, EVT VT4,
5004                             const SDValue *Ops, unsigned NumOps) {
5005  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5006  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5007}
5008
5009MachineSDNode *
5010SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5011                             const std::vector<EVT> &ResultTys,
5012                             const SDValue *Ops, unsigned NumOps) {
5013  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5014  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5015}
5016
5017MachineSDNode *
5018SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5019                             const SDValue *Ops, unsigned NumOps) {
5020  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5021  MachineSDNode *N;
5022  void *IP = 0;
5023
5024  if (DoCSE) {
5025    FoldingSetNodeID ID;
5026    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5027    IP = 0;
5028    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5029      return cast<MachineSDNode>(E);
5030  }
5031
5032  // Allocate a new MachineSDNode.
5033  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5034
5035  // Initialize the operands list.
5036  if (NumOps > array_lengthof(N->LocalOperands))
5037    // We're creating a final node that will live unmorphed for the
5038    // remainder of the current SelectionDAG iteration, so we can allocate
5039    // the operands directly out of a pool with no recycling metadata.
5040    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5041                    Ops, NumOps);
5042  else
5043    N->InitOperands(N->LocalOperands, Ops, NumOps);
5044  N->OperandsNeedDelete = false;
5045
5046  if (DoCSE)
5047    CSEMap.InsertNode(N, IP);
5048
5049  AllNodes.push_back(N);
5050#ifndef NDEBUG
5051  VerifyMachineNode(N);
5052#endif
5053  return N;
5054}
5055
5056/// getTargetExtractSubreg - A convenience function for creating
5057/// TargetOpcode::EXTRACT_SUBREG nodes.
5058SDValue
5059SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5060                                     SDValue Operand) {
5061  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5062  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5063                                  VT, Operand, SRIdxVal);
5064  return SDValue(Subreg, 0);
5065}
5066
5067/// getTargetInsertSubreg - A convenience function for creating
5068/// TargetOpcode::INSERT_SUBREG nodes.
5069SDValue
5070SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5071                                    SDValue Operand, SDValue Subreg) {
5072  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5073  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5074                                  VT, Operand, Subreg, SRIdxVal);
5075  return SDValue(Result, 0);
5076}
5077
5078/// getNodeIfExists - Get the specified node if it's already available, or
5079/// else return NULL.
5080SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5081                                      const SDValue *Ops, unsigned NumOps) {
5082  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5083    FoldingSetNodeID ID;
5084    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5085    void *IP = 0;
5086    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5087      return E;
5088  }
5089  return NULL;
5090}
5091
5092/// getDbgValue - Creates a SDDbgValue node.
5093///
5094SDDbgValue *
5095SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5096                          DebugLoc DL, unsigned O) {
5097  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5098}
5099
5100SDDbgValue *
5101SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5102                          DebugLoc DL, unsigned O) {
5103  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5104}
5105
5106SDDbgValue *
5107SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5108                          DebugLoc DL, unsigned O) {
5109  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5110}
5111
5112namespace {
5113
5114/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5115/// pointed to by a use iterator is deleted, increment the use iterator
5116/// so that it doesn't dangle.
5117///
5118/// This class also manages a "downlink" DAGUpdateListener, to forward
5119/// messages to ReplaceAllUsesWith's callers.
5120///
5121class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5122  SelectionDAG::DAGUpdateListener *DownLink;
5123  SDNode::use_iterator &UI;
5124  SDNode::use_iterator &UE;
5125
5126  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5127    // Increment the iterator as needed.
5128    while (UI != UE && N == *UI)
5129      ++UI;
5130
5131    // Then forward the message.
5132    if (DownLink) DownLink->NodeDeleted(N, E);
5133  }
5134
5135  virtual void NodeUpdated(SDNode *N) {
5136    // Just forward the message.
5137    if (DownLink) DownLink->NodeUpdated(N);
5138  }
5139
5140public:
5141  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5142                     SDNode::use_iterator &ui,
5143                     SDNode::use_iterator &ue)
5144    : DownLink(dl), UI(ui), UE(ue) {}
5145};
5146
5147}
5148
5149/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5150/// This can cause recursive merging of nodes in the DAG.
5151///
5152/// This version assumes From has a single result value.
5153///
5154void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5155                                      DAGUpdateListener *UpdateListener) {
5156  SDNode *From = FromN.getNode();
5157  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5158         "Cannot replace with this method!");
5159  assert(From != To.getNode() && "Cannot replace uses of with self");
5160
5161  // Iterate over all the existing uses of From. New uses will be added
5162  // to the beginning of the use list, which we avoid visiting.
5163  // This specifically avoids visiting uses of From that arise while the
5164  // replacement is happening, because any such uses would be the result
5165  // of CSE: If an existing node looks like From after one of its operands
5166  // is replaced by To, we don't want to replace of all its users with To
5167  // too. See PR3018 for more info.
5168  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5169  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5170  while (UI != UE) {
5171    SDNode *User = *UI;
5172
5173    // This node is about to morph, remove its old self from the CSE maps.
5174    RemoveNodeFromCSEMaps(User);
5175
5176    // A user can appear in a use list multiple times, and when this
5177    // happens the uses are usually next to each other in the list.
5178    // To help reduce the number of CSE recomputations, process all
5179    // the uses of this user that we can find this way.
5180    do {
5181      SDUse &Use = UI.getUse();
5182      ++UI;
5183      Use.set(To);
5184    } while (UI != UE && *UI == User);
5185
5186    // Now that we have modified User, add it back to the CSE maps.  If it
5187    // already exists there, recursively merge the results together.
5188    AddModifiedNodeToCSEMaps(User, &Listener);
5189  }
5190}
5191
5192/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5193/// This can cause recursive merging of nodes in the DAG.
5194///
5195/// This version assumes that for each value of From, there is a
5196/// corresponding value in To in the same position with the same type.
5197///
5198void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5199                                      DAGUpdateListener *UpdateListener) {
5200#ifndef NDEBUG
5201  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5202    assert((!From->hasAnyUseOfValue(i) ||
5203            From->getValueType(i) == To->getValueType(i)) &&
5204           "Cannot use this version of ReplaceAllUsesWith!");
5205#endif
5206
5207  // Handle the trivial case.
5208  if (From == To)
5209    return;
5210
5211  // Iterate over just the existing users of From. See the comments in
5212  // the ReplaceAllUsesWith above.
5213  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5214  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5215  while (UI != UE) {
5216    SDNode *User = *UI;
5217
5218    // This node is about to morph, remove its old self from the CSE maps.
5219    RemoveNodeFromCSEMaps(User);
5220
5221    // A user can appear in a use list multiple times, and when this
5222    // happens the uses are usually next to each other in the list.
5223    // To help reduce the number of CSE recomputations, process all
5224    // the uses of this user that we can find this way.
5225    do {
5226      SDUse &Use = UI.getUse();
5227      ++UI;
5228      Use.setNode(To);
5229    } while (UI != UE && *UI == User);
5230
5231    // Now that we have modified User, add it back to the CSE maps.  If it
5232    // already exists there, recursively merge the results together.
5233    AddModifiedNodeToCSEMaps(User, &Listener);
5234  }
5235}
5236
5237/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5238/// This can cause recursive merging of nodes in the DAG.
5239///
5240/// This version can replace From with any result values.  To must match the
5241/// number and types of values returned by From.
5242void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5243                                      const SDValue *To,
5244                                      DAGUpdateListener *UpdateListener) {
5245  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5246    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5247
5248  // Iterate over just the existing users of From. See the comments in
5249  // the ReplaceAllUsesWith above.
5250  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5251  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5252  while (UI != UE) {
5253    SDNode *User = *UI;
5254
5255    // This node is about to morph, remove its old self from the CSE maps.
5256    RemoveNodeFromCSEMaps(User);
5257
5258    // A user can appear in a use list multiple times, and when this
5259    // happens the uses are usually next to each other in the list.
5260    // To help reduce the number of CSE recomputations, process all
5261    // the uses of this user that we can find this way.
5262    do {
5263      SDUse &Use = UI.getUse();
5264      const SDValue &ToOp = To[Use.getResNo()];
5265      ++UI;
5266      Use.set(ToOp);
5267    } while (UI != UE && *UI == User);
5268
5269    // Now that we have modified User, add it back to the CSE maps.  If it
5270    // already exists there, recursively merge the results together.
5271    AddModifiedNodeToCSEMaps(User, &Listener);
5272  }
5273}
5274
5275/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5276/// uses of other values produced by From.getNode() alone.  The Deleted
5277/// vector is handled the same way as for ReplaceAllUsesWith.
5278void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5279                                             DAGUpdateListener *UpdateListener){
5280  // Handle the really simple, really trivial case efficiently.
5281  if (From == To) return;
5282
5283  // Handle the simple, trivial, case efficiently.
5284  if (From.getNode()->getNumValues() == 1) {
5285    ReplaceAllUsesWith(From, To, UpdateListener);
5286    return;
5287  }
5288
5289  // Iterate over just the existing users of From. See the comments in
5290  // the ReplaceAllUsesWith above.
5291  SDNode::use_iterator UI = From.getNode()->use_begin(),
5292                       UE = From.getNode()->use_end();
5293  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5294  while (UI != UE) {
5295    SDNode *User = *UI;
5296    bool UserRemovedFromCSEMaps = false;
5297
5298    // A user can appear in a use list multiple times, and when this
5299    // happens the uses are usually next to each other in the list.
5300    // To help reduce the number of CSE recomputations, process all
5301    // the uses of this user that we can find this way.
5302    do {
5303      SDUse &Use = UI.getUse();
5304
5305      // Skip uses of different values from the same node.
5306      if (Use.getResNo() != From.getResNo()) {
5307        ++UI;
5308        continue;
5309      }
5310
5311      // If this node hasn't been modified yet, it's still in the CSE maps,
5312      // so remove its old self from the CSE maps.
5313      if (!UserRemovedFromCSEMaps) {
5314        RemoveNodeFromCSEMaps(User);
5315        UserRemovedFromCSEMaps = true;
5316      }
5317
5318      ++UI;
5319      Use.set(To);
5320    } while (UI != UE && *UI == User);
5321
5322    // We are iterating over all uses of the From node, so if a use
5323    // doesn't use the specific value, no changes are made.
5324    if (!UserRemovedFromCSEMaps)
5325      continue;
5326
5327    // Now that we have modified User, add it back to the CSE maps.  If it
5328    // already exists there, recursively merge the results together.
5329    AddModifiedNodeToCSEMaps(User, &Listener);
5330  }
5331}
5332
5333namespace {
5334  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5335  /// to record information about a use.
5336  struct UseMemo {
5337    SDNode *User;
5338    unsigned Index;
5339    SDUse *Use;
5340  };
5341
5342  /// operator< - Sort Memos by User.
5343  bool operator<(const UseMemo &L, const UseMemo &R) {
5344    return (intptr_t)L.User < (intptr_t)R.User;
5345  }
5346}
5347
5348/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5349/// uses of other values produced by From.getNode() alone.  The same value
5350/// may appear in both the From and To list.  The Deleted vector is
5351/// handled the same way as for ReplaceAllUsesWith.
5352void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5353                                              const SDValue *To,
5354                                              unsigned Num,
5355                                              DAGUpdateListener *UpdateListener){
5356  // Handle the simple, trivial case efficiently.
5357  if (Num == 1)
5358    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5359
5360  // Read up all the uses and make records of them. This helps
5361  // processing new uses that are introduced during the
5362  // replacement process.
5363  SmallVector<UseMemo, 4> Uses;
5364  for (unsigned i = 0; i != Num; ++i) {
5365    unsigned FromResNo = From[i].getResNo();
5366    SDNode *FromNode = From[i].getNode();
5367    for (SDNode::use_iterator UI = FromNode->use_begin(),
5368         E = FromNode->use_end(); UI != E; ++UI) {
5369      SDUse &Use = UI.getUse();
5370      if (Use.getResNo() == FromResNo) {
5371        UseMemo Memo = { *UI, i, &Use };
5372        Uses.push_back(Memo);
5373      }
5374    }
5375  }
5376
5377  // Sort the uses, so that all the uses from a given User are together.
5378  std::sort(Uses.begin(), Uses.end());
5379
5380  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5381       UseIndex != UseIndexEnd; ) {
5382    // We know that this user uses some value of From.  If it is the right
5383    // value, update it.
5384    SDNode *User = Uses[UseIndex].User;
5385
5386    // This node is about to morph, remove its old self from the CSE maps.
5387    RemoveNodeFromCSEMaps(User);
5388
5389    // The Uses array is sorted, so all the uses for a given User
5390    // are next to each other in the list.
5391    // To help reduce the number of CSE recomputations, process all
5392    // the uses of this user that we can find this way.
5393    do {
5394      unsigned i = Uses[UseIndex].Index;
5395      SDUse &Use = *Uses[UseIndex].Use;
5396      ++UseIndex;
5397
5398      Use.set(To[i]);
5399    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5400
5401    // Now that we have modified User, add it back to the CSE maps.  If it
5402    // already exists there, recursively merge the results together.
5403    AddModifiedNodeToCSEMaps(User, UpdateListener);
5404  }
5405}
5406
5407/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5408/// based on their topological order. It returns the maximum id and a vector
5409/// of the SDNodes* in assigned order by reference.
5410unsigned SelectionDAG::AssignTopologicalOrder() {
5411
5412  unsigned DAGSize = 0;
5413
5414  // SortedPos tracks the progress of the algorithm. Nodes before it are
5415  // sorted, nodes after it are unsorted. When the algorithm completes
5416  // it is at the end of the list.
5417  allnodes_iterator SortedPos = allnodes_begin();
5418
5419  // Visit all the nodes. Move nodes with no operands to the front of
5420  // the list immediately. Annotate nodes that do have operands with their
5421  // operand count. Before we do this, the Node Id fields of the nodes
5422  // may contain arbitrary values. After, the Node Id fields for nodes
5423  // before SortedPos will contain the topological sort index, and the
5424  // Node Id fields for nodes At SortedPos and after will contain the
5425  // count of outstanding operands.
5426  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5427    SDNode *N = I++;
5428    checkForCycles(N);
5429    unsigned Degree = N->getNumOperands();
5430    if (Degree == 0) {
5431      // A node with no uses, add it to the result array immediately.
5432      N->setNodeId(DAGSize++);
5433      allnodes_iterator Q = N;
5434      if (Q != SortedPos)
5435        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5436      assert(SortedPos != AllNodes.end() && "Overran node list");
5437      ++SortedPos;
5438    } else {
5439      // Temporarily use the Node Id as scratch space for the degree count.
5440      N->setNodeId(Degree);
5441    }
5442  }
5443
5444  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5445  // such that by the time the end is reached all nodes will be sorted.
5446  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5447    SDNode *N = I;
5448    checkForCycles(N);
5449    // N is in sorted position, so all its uses have one less operand
5450    // that needs to be sorted.
5451    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5452         UI != UE; ++UI) {
5453      SDNode *P = *UI;
5454      unsigned Degree = P->getNodeId();
5455      assert(Degree != 0 && "Invalid node degree");
5456      --Degree;
5457      if (Degree == 0) {
5458        // All of P's operands are sorted, so P may sorted now.
5459        P->setNodeId(DAGSize++);
5460        if (P != SortedPos)
5461          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5462        assert(SortedPos != AllNodes.end() && "Overran node list");
5463        ++SortedPos;
5464      } else {
5465        // Update P's outstanding operand count.
5466        P->setNodeId(Degree);
5467      }
5468    }
5469    if (I == SortedPos) {
5470#ifndef NDEBUG
5471      SDNode *S = ++I;
5472      dbgs() << "Overran sorted position:\n";
5473      S->dumprFull();
5474#endif
5475      llvm_unreachable(0);
5476    }
5477  }
5478
5479  assert(SortedPos == AllNodes.end() &&
5480         "Topological sort incomplete!");
5481  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5482         "First node in topological sort is not the entry token!");
5483  assert(AllNodes.front().getNodeId() == 0 &&
5484         "First node in topological sort has non-zero id!");
5485  assert(AllNodes.front().getNumOperands() == 0 &&
5486         "First node in topological sort has operands!");
5487  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5488         "Last node in topologic sort has unexpected id!");
5489  assert(AllNodes.back().use_empty() &&
5490         "Last node in topologic sort has users!");
5491  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5492  return DAGSize;
5493}
5494
5495/// AssignOrdering - Assign an order to the SDNode.
5496void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5497  assert(SD && "Trying to assign an order to a null node!");
5498  Ordering->add(SD, Order);
5499}
5500
5501/// GetOrdering - Get the order for the SDNode.
5502unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5503  assert(SD && "Trying to get the order of a null node!");
5504  return Ordering->getOrder(SD);
5505}
5506
5507/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5508/// value is produced by SD.
5509void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5510  DbgInfo->add(DB, SD, isParameter);
5511  if (SD)
5512    SD->setHasDebugValue(true);
5513}
5514
5515/// TransferDbgValues - Transfer SDDbgValues.
5516void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5517  if (From == To || !From.getNode()->getHasDebugValue())
5518    return;
5519  SDNode *FromNode = From.getNode();
5520  SDNode *ToNode = To.getNode();
5521  SmallVector<SDDbgValue *, 2> &DVs = GetDbgValues(FromNode);
5522  SmallVector<SDDbgValue *, 2> ClonedDVs;
5523  for (SmallVector<SDDbgValue *, 2>::iterator I = DVs.begin(), E = DVs.end();
5524       I != E; ++I) {
5525    SDDbgValue *Dbg = *I;
5526    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5527      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5528                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5529                                      Dbg->getOrder());
5530      ClonedDVs.push_back(Clone);
5531    }
5532  }
5533  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5534         E = ClonedDVs.end(); I != E; ++I)
5535    AddDbgValue(*I, ToNode, false);
5536}
5537
5538//===----------------------------------------------------------------------===//
5539//                              SDNode Class
5540//===----------------------------------------------------------------------===//
5541
5542HandleSDNode::~HandleSDNode() {
5543  DropOperands();
5544}
5545
5546GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5547                                         const GlobalValue *GA,
5548                                         EVT VT, int64_t o, unsigned char TF)
5549  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5550  TheGlobal = GA;
5551}
5552
5553MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5554                     MachineMemOperand *mmo)
5555 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5556  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5557                                      MMO->isNonTemporal());
5558  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5559  assert(isNonTemporal() == MMO->isNonTemporal() &&
5560         "Non-temporal encoding error!");
5561  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5562}
5563
5564MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5565                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5566                     MachineMemOperand *mmo)
5567   : SDNode(Opc, dl, VTs, Ops, NumOps),
5568     MemoryVT(memvt), MMO(mmo) {
5569  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5570                                      MMO->isNonTemporal());
5571  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5572  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5573}
5574
5575/// Profile - Gather unique data for the node.
5576///
5577void SDNode::Profile(FoldingSetNodeID &ID) const {
5578  AddNodeIDNode(ID, this);
5579}
5580
5581namespace {
5582  struct EVTArray {
5583    std::vector<EVT> VTs;
5584
5585    EVTArray() {
5586      VTs.reserve(MVT::LAST_VALUETYPE);
5587      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5588        VTs.push_back(MVT((MVT::SimpleValueType)i));
5589    }
5590  };
5591}
5592
5593static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5594static ManagedStatic<EVTArray> SimpleVTArray;
5595static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5596
5597/// getValueTypeList - Return a pointer to the specified value type.
5598///
5599const EVT *SDNode::getValueTypeList(EVT VT) {
5600  if (VT.isExtended()) {
5601    sys::SmartScopedLock<true> Lock(*VTMutex);
5602    return &(*EVTs->insert(VT).first);
5603  } else {
5604    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5605           "Value type out of range!");
5606    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5607  }
5608}
5609
5610/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5611/// indicated value.  This method ignores uses of other values defined by this
5612/// operation.
5613bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5614  assert(Value < getNumValues() && "Bad value!");
5615
5616  // TODO: Only iterate over uses of a given value of the node
5617  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5618    if (UI.getUse().getResNo() == Value) {
5619      if (NUses == 0)
5620        return false;
5621      --NUses;
5622    }
5623  }
5624
5625  // Found exactly the right number of uses?
5626  return NUses == 0;
5627}
5628
5629
5630/// hasAnyUseOfValue - Return true if there are any use of the indicated
5631/// value. This method ignores uses of other values defined by this operation.
5632bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5633  assert(Value < getNumValues() && "Bad value!");
5634
5635  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5636    if (UI.getUse().getResNo() == Value)
5637      return true;
5638
5639  return false;
5640}
5641
5642
5643/// isOnlyUserOf - Return true if this node is the only use of N.
5644///
5645bool SDNode::isOnlyUserOf(SDNode *N) const {
5646  bool Seen = false;
5647  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5648    SDNode *User = *I;
5649    if (User == this)
5650      Seen = true;
5651    else
5652      return false;
5653  }
5654
5655  return Seen;
5656}
5657
5658/// isOperand - Return true if this node is an operand of N.
5659///
5660bool SDValue::isOperandOf(SDNode *N) const {
5661  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5662    if (*this == N->getOperand(i))
5663      return true;
5664  return false;
5665}
5666
5667bool SDNode::isOperandOf(SDNode *N) const {
5668  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5669    if (this == N->OperandList[i].getNode())
5670      return true;
5671  return false;
5672}
5673
5674/// reachesChainWithoutSideEffects - Return true if this operand (which must
5675/// be a chain) reaches the specified operand without crossing any
5676/// side-effecting instructions on any chain path.  In practice, this looks
5677/// through token factors and non-volatile loads.  In order to remain efficient,
5678/// this only looks a couple of nodes in, it does not do an exhaustive search.
5679bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5680                                               unsigned Depth) const {
5681  if (*this == Dest) return true;
5682
5683  // Don't search too deeply, we just want to be able to see through
5684  // TokenFactor's etc.
5685  if (Depth == 0) return false;
5686
5687  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5688  // of the operands of the TF does not reach dest, then we cannot do the xform.
5689  if (getOpcode() == ISD::TokenFactor) {
5690    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5691      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5692        return false;
5693    return true;
5694  }
5695
5696  // Loads don't have side effects, look through them.
5697  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5698    if (!Ld->isVolatile())
5699      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5700  }
5701  return false;
5702}
5703
5704/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5705/// is either an operand of N or it can be reached by traversing up the operands.
5706/// NOTE: this is an expensive method. Use it carefully.
5707bool SDNode::isPredecessorOf(SDNode *N) const {
5708  SmallPtrSet<SDNode *, 32> Visited;
5709  SmallVector<SDNode *, 16> Worklist;
5710  Worklist.push_back(N);
5711
5712  do {
5713    N = Worklist.pop_back_val();
5714    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5715      SDNode *Op = N->getOperand(i).getNode();
5716      if (Op == this)
5717        return true;
5718      if (Visited.insert(Op))
5719        Worklist.push_back(Op);
5720    }
5721  } while (!Worklist.empty());
5722
5723  return false;
5724}
5725
5726uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5727  assert(Num < NumOperands && "Invalid child # of SDNode!");
5728  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5729}
5730
5731std::string SDNode::getOperationName(const SelectionDAG *G) const {
5732  switch (getOpcode()) {
5733  default:
5734    if (getOpcode() < ISD::BUILTIN_OP_END)
5735      return "<<Unknown DAG Node>>";
5736    if (isMachineOpcode()) {
5737      if (G)
5738        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5739          if (getMachineOpcode() < TII->getNumOpcodes())
5740            return TII->get(getMachineOpcode()).getName();
5741      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5742    }
5743    if (G) {
5744      const TargetLowering &TLI = G->getTargetLoweringInfo();
5745      const char *Name = TLI.getTargetNodeName(getOpcode());
5746      if (Name) return Name;
5747      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5748    }
5749    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5750
5751#ifndef NDEBUG
5752  case ISD::DELETED_NODE:
5753    return "<<Deleted Node!>>";
5754#endif
5755  case ISD::PREFETCH:      return "Prefetch";
5756  case ISD::MEMBARRIER:    return "MemBarrier";
5757  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5758  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5759  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5760  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5761  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5762  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5763  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5764  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5765  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5766  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5767  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5768  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5769  case ISD::PCMARKER:      return "PCMarker";
5770  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5771  case ISD::SRCVALUE:      return "SrcValue";
5772  case ISD::MDNODE_SDNODE: return "MDNode";
5773  case ISD::EntryToken:    return "EntryToken";
5774  case ISD::TokenFactor:   return "TokenFactor";
5775  case ISD::AssertSext:    return "AssertSext";
5776  case ISD::AssertZext:    return "AssertZext";
5777
5778  case ISD::BasicBlock:    return "BasicBlock";
5779  case ISD::VALUETYPE:     return "ValueType";
5780  case ISD::Register:      return "Register";
5781
5782  case ISD::Constant:      return "Constant";
5783  case ISD::ConstantFP:    return "ConstantFP";
5784  case ISD::GlobalAddress: return "GlobalAddress";
5785  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5786  case ISD::FrameIndex:    return "FrameIndex";
5787  case ISD::JumpTable:     return "JumpTable";
5788  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5789  case ISD::RETURNADDR: return "RETURNADDR";
5790  case ISD::FRAMEADDR: return "FRAMEADDR";
5791  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5792  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5793  case ISD::LSDAADDR: return "LSDAADDR";
5794  case ISD::EHSELECTION: return "EHSELECTION";
5795  case ISD::EH_RETURN: return "EH_RETURN";
5796  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5797  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5798  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5799  case ISD::ConstantPool:  return "ConstantPool";
5800  case ISD::ExternalSymbol: return "ExternalSymbol";
5801  case ISD::BlockAddress:  return "BlockAddress";
5802  case ISD::INTRINSIC_WO_CHAIN:
5803  case ISD::INTRINSIC_VOID:
5804  case ISD::INTRINSIC_W_CHAIN: {
5805    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5806    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5807    if (IID < Intrinsic::num_intrinsics)
5808      return Intrinsic::getName((Intrinsic::ID)IID);
5809    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5810      return TII->getName(IID);
5811    llvm_unreachable("Invalid intrinsic ID");
5812  }
5813
5814  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5815  case ISD::TargetConstant: return "TargetConstant";
5816  case ISD::TargetConstantFP:return "TargetConstantFP";
5817  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5818  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5819  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5820  case ISD::TargetJumpTable:  return "TargetJumpTable";
5821  case ISD::TargetConstantPool:  return "TargetConstantPool";
5822  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5823  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5824
5825  case ISD::CopyToReg:     return "CopyToReg";
5826  case ISD::CopyFromReg:   return "CopyFromReg";
5827  case ISD::UNDEF:         return "undef";
5828  case ISD::MERGE_VALUES:  return "merge_values";
5829  case ISD::INLINEASM:     return "inlineasm";
5830  case ISD::EH_LABEL:      return "eh_label";
5831  case ISD::HANDLENODE:    return "handlenode";
5832
5833  // Unary operators
5834  case ISD::FABS:   return "fabs";
5835  case ISD::FNEG:   return "fneg";
5836  case ISD::FSQRT:  return "fsqrt";
5837  case ISD::FSIN:   return "fsin";
5838  case ISD::FCOS:   return "fcos";
5839  case ISD::FTRUNC: return "ftrunc";
5840  case ISD::FFLOOR: return "ffloor";
5841  case ISD::FCEIL:  return "fceil";
5842  case ISD::FRINT:  return "frint";
5843  case ISD::FNEARBYINT: return "fnearbyint";
5844  case ISD::FEXP:   return "fexp";
5845  case ISD::FEXP2:  return "fexp2";
5846  case ISD::FLOG:   return "flog";
5847  case ISD::FLOG2:  return "flog2";
5848  case ISD::FLOG10: return "flog10";
5849
5850  // Binary operators
5851  case ISD::ADD:    return "add";
5852  case ISD::SUB:    return "sub";
5853  case ISD::MUL:    return "mul";
5854  case ISD::MULHU:  return "mulhu";
5855  case ISD::MULHS:  return "mulhs";
5856  case ISD::SDIV:   return "sdiv";
5857  case ISD::UDIV:   return "udiv";
5858  case ISD::SREM:   return "srem";
5859  case ISD::UREM:   return "urem";
5860  case ISD::SMUL_LOHI:  return "smul_lohi";
5861  case ISD::UMUL_LOHI:  return "umul_lohi";
5862  case ISD::SDIVREM:    return "sdivrem";
5863  case ISD::UDIVREM:    return "udivrem";
5864  case ISD::AND:    return "and";
5865  case ISD::OR:     return "or";
5866  case ISD::XOR:    return "xor";
5867  case ISD::SHL:    return "shl";
5868  case ISD::SRA:    return "sra";
5869  case ISD::SRL:    return "srl";
5870  case ISD::ROTL:   return "rotl";
5871  case ISD::ROTR:   return "rotr";
5872  case ISD::FADD:   return "fadd";
5873  case ISD::FSUB:   return "fsub";
5874  case ISD::FMUL:   return "fmul";
5875  case ISD::FDIV:   return "fdiv";
5876  case ISD::FREM:   return "frem";
5877  case ISD::FCOPYSIGN: return "fcopysign";
5878  case ISD::FGETSIGN:  return "fgetsign";
5879  case ISD::FPOW:   return "fpow";
5880
5881  case ISD::FPOWI:  return "fpowi";
5882  case ISD::SETCC:       return "setcc";
5883  case ISD::VSETCC:      return "vsetcc";
5884  case ISD::SELECT:      return "select";
5885  case ISD::SELECT_CC:   return "select_cc";
5886  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5887  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5888  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5889  case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
5890  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5891  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5892  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5893  case ISD::CARRY_FALSE:         return "carry_false";
5894  case ISD::ADDC:        return "addc";
5895  case ISD::ADDE:        return "adde";
5896  case ISD::SADDO:       return "saddo";
5897  case ISD::UADDO:       return "uaddo";
5898  case ISD::SSUBO:       return "ssubo";
5899  case ISD::USUBO:       return "usubo";
5900  case ISD::SMULO:       return "smulo";
5901  case ISD::UMULO:       return "umulo";
5902  case ISD::SUBC:        return "subc";
5903  case ISD::SUBE:        return "sube";
5904  case ISD::SHL_PARTS:   return "shl_parts";
5905  case ISD::SRA_PARTS:   return "sra_parts";
5906  case ISD::SRL_PARTS:   return "srl_parts";
5907
5908  // Conversion operators.
5909  case ISD::SIGN_EXTEND: return "sign_extend";
5910  case ISD::ZERO_EXTEND: return "zero_extend";
5911  case ISD::ANY_EXTEND:  return "any_extend";
5912  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5913  case ISD::TRUNCATE:    return "truncate";
5914  case ISD::FP_ROUND:    return "fp_round";
5915  case ISD::FLT_ROUNDS_: return "flt_rounds";
5916  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5917  case ISD::FP_EXTEND:   return "fp_extend";
5918
5919  case ISD::SINT_TO_FP:  return "sint_to_fp";
5920  case ISD::UINT_TO_FP:  return "uint_to_fp";
5921  case ISD::FP_TO_SINT:  return "fp_to_sint";
5922  case ISD::FP_TO_UINT:  return "fp_to_uint";
5923  case ISD::BITCAST:     return "bitcast";
5924  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5925  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5926
5927  case ISD::CONVERT_RNDSAT: {
5928    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5929    default: llvm_unreachable("Unknown cvt code!");
5930    case ISD::CVT_FF:  return "cvt_ff";
5931    case ISD::CVT_FS:  return "cvt_fs";
5932    case ISD::CVT_FU:  return "cvt_fu";
5933    case ISD::CVT_SF:  return "cvt_sf";
5934    case ISD::CVT_UF:  return "cvt_uf";
5935    case ISD::CVT_SS:  return "cvt_ss";
5936    case ISD::CVT_SU:  return "cvt_su";
5937    case ISD::CVT_US:  return "cvt_us";
5938    case ISD::CVT_UU:  return "cvt_uu";
5939    }
5940  }
5941
5942    // Control flow instructions
5943  case ISD::BR:      return "br";
5944  case ISD::BRIND:   return "brind";
5945  case ISD::BR_JT:   return "br_jt";
5946  case ISD::BRCOND:  return "brcond";
5947  case ISD::BR_CC:   return "br_cc";
5948  case ISD::CALLSEQ_START:  return "callseq_start";
5949  case ISD::CALLSEQ_END:    return "callseq_end";
5950
5951    // Other operators
5952  case ISD::LOAD:               return "load";
5953  case ISD::STORE:              return "store";
5954  case ISD::VAARG:              return "vaarg";
5955  case ISD::VACOPY:             return "vacopy";
5956  case ISD::VAEND:              return "vaend";
5957  case ISD::VASTART:            return "vastart";
5958  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5959  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5960  case ISD::BUILD_PAIR:         return "build_pair";
5961  case ISD::STACKSAVE:          return "stacksave";
5962  case ISD::STACKRESTORE:       return "stackrestore";
5963  case ISD::TRAP:               return "trap";
5964
5965  // Bit manipulation
5966  case ISD::BSWAP:   return "bswap";
5967  case ISD::CTPOP:   return "ctpop";
5968  case ISD::CTTZ:    return "cttz";
5969  case ISD::CTLZ:    return "ctlz";
5970
5971  // Trampolines
5972  case ISD::TRAMPOLINE: return "trampoline";
5973
5974  case ISD::CONDCODE:
5975    switch (cast<CondCodeSDNode>(this)->get()) {
5976    default: llvm_unreachable("Unknown setcc condition!");
5977    case ISD::SETOEQ:  return "setoeq";
5978    case ISD::SETOGT:  return "setogt";
5979    case ISD::SETOGE:  return "setoge";
5980    case ISD::SETOLT:  return "setolt";
5981    case ISD::SETOLE:  return "setole";
5982    case ISD::SETONE:  return "setone";
5983
5984    case ISD::SETO:    return "seto";
5985    case ISD::SETUO:   return "setuo";
5986    case ISD::SETUEQ:  return "setue";
5987    case ISD::SETUGT:  return "setugt";
5988    case ISD::SETUGE:  return "setuge";
5989    case ISD::SETULT:  return "setult";
5990    case ISD::SETULE:  return "setule";
5991    case ISD::SETUNE:  return "setune";
5992
5993    case ISD::SETEQ:   return "seteq";
5994    case ISD::SETGT:   return "setgt";
5995    case ISD::SETGE:   return "setge";
5996    case ISD::SETLT:   return "setlt";
5997    case ISD::SETLE:   return "setle";
5998    case ISD::SETNE:   return "setne";
5999    }
6000  }
6001}
6002
6003const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
6004  switch (AM) {
6005  default:
6006    return "";
6007  case ISD::PRE_INC:
6008    return "<pre-inc>";
6009  case ISD::PRE_DEC:
6010    return "<pre-dec>";
6011  case ISD::POST_INC:
6012    return "<post-inc>";
6013  case ISD::POST_DEC:
6014    return "<post-dec>";
6015  }
6016}
6017
6018std::string ISD::ArgFlagsTy::getArgFlagsString() {
6019  std::string S = "< ";
6020
6021  if (isZExt())
6022    S += "zext ";
6023  if (isSExt())
6024    S += "sext ";
6025  if (isInReg())
6026    S += "inreg ";
6027  if (isSRet())
6028    S += "sret ";
6029  if (isByVal())
6030    S += "byval ";
6031  if (isNest())
6032    S += "nest ";
6033  if (getByValAlign())
6034    S += "byval-align:" + utostr(getByValAlign()) + " ";
6035  if (getOrigAlign())
6036    S += "orig-align:" + utostr(getOrigAlign()) + " ";
6037  if (getByValSize())
6038    S += "byval-size:" + utostr(getByValSize()) + " ";
6039  return S + ">";
6040}
6041
6042void SDNode::dump() const { dump(0); }
6043void SDNode::dump(const SelectionDAG *G) const {
6044  print(dbgs(), G);
6045  dbgs() << '\n';
6046}
6047
6048void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6049  OS << (void*)this << ": ";
6050
6051  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6052    if (i) OS << ",";
6053    if (getValueType(i) == MVT::Other)
6054      OS << "ch";
6055    else
6056      OS << getValueType(i).getEVTString();
6057  }
6058  OS << " = " << getOperationName(G);
6059}
6060
6061void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6062  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6063    if (!MN->memoperands_empty()) {
6064      OS << "<";
6065      OS << "Mem:";
6066      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6067           e = MN->memoperands_end(); i != e; ++i) {
6068        OS << **i;
6069        if (llvm::next(i) != e)
6070          OS << " ";
6071      }
6072      OS << ">";
6073    }
6074  } else if (const ShuffleVectorSDNode *SVN =
6075               dyn_cast<ShuffleVectorSDNode>(this)) {
6076    OS << "<";
6077    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6078      int Idx = SVN->getMaskElt(i);
6079      if (i) OS << ",";
6080      if (Idx < 0)
6081        OS << "u";
6082      else
6083        OS << Idx;
6084    }
6085    OS << ">";
6086  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6087    OS << '<' << CSDN->getAPIntValue() << '>';
6088  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6089    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6090      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6091    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6092      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6093    else {
6094      OS << "<APFloat(";
6095      CSDN->getValueAPF().bitcastToAPInt().dump();
6096      OS << ")>";
6097    }
6098  } else if (const GlobalAddressSDNode *GADN =
6099             dyn_cast<GlobalAddressSDNode>(this)) {
6100    int64_t offset = GADN->getOffset();
6101    OS << '<';
6102    WriteAsOperand(OS, GADN->getGlobal());
6103    OS << '>';
6104    if (offset > 0)
6105      OS << " + " << offset;
6106    else
6107      OS << " " << offset;
6108    if (unsigned int TF = GADN->getTargetFlags())
6109      OS << " [TF=" << TF << ']';
6110  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6111    OS << "<" << FIDN->getIndex() << ">";
6112  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6113    OS << "<" << JTDN->getIndex() << ">";
6114    if (unsigned int TF = JTDN->getTargetFlags())
6115      OS << " [TF=" << TF << ']';
6116  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6117    int offset = CP->getOffset();
6118    if (CP->isMachineConstantPoolEntry())
6119      OS << "<" << *CP->getMachineCPVal() << ">";
6120    else
6121      OS << "<" << *CP->getConstVal() << ">";
6122    if (offset > 0)
6123      OS << " + " << offset;
6124    else
6125      OS << " " << offset;
6126    if (unsigned int TF = CP->getTargetFlags())
6127      OS << " [TF=" << TF << ']';
6128  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6129    OS << "<";
6130    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6131    if (LBB)
6132      OS << LBB->getName() << " ";
6133    OS << (const void*)BBDN->getBasicBlock() << ">";
6134  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6135    OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6136  } else if (const ExternalSymbolSDNode *ES =
6137             dyn_cast<ExternalSymbolSDNode>(this)) {
6138    OS << "'" << ES->getSymbol() << "'";
6139    if (unsigned int TF = ES->getTargetFlags())
6140      OS << " [TF=" << TF << ']';
6141  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6142    if (M->getValue())
6143      OS << "<" << M->getValue() << ">";
6144    else
6145      OS << "<null>";
6146  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6147    if (MD->getMD())
6148      OS << "<" << MD->getMD() << ">";
6149    else
6150      OS << "<null>";
6151  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6152    OS << ":" << N->getVT().getEVTString();
6153  }
6154  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6155    OS << "<" << *LD->getMemOperand();
6156
6157    bool doExt = true;
6158    switch (LD->getExtensionType()) {
6159    default: doExt = false; break;
6160    case ISD::EXTLOAD: OS << ", anyext"; break;
6161    case ISD::SEXTLOAD: OS << ", sext"; break;
6162    case ISD::ZEXTLOAD: OS << ", zext"; break;
6163    }
6164    if (doExt)
6165      OS << " from " << LD->getMemoryVT().getEVTString();
6166
6167    const char *AM = getIndexedModeName(LD->getAddressingMode());
6168    if (*AM)
6169      OS << ", " << AM;
6170
6171    OS << ">";
6172  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6173    OS << "<" << *ST->getMemOperand();
6174
6175    if (ST->isTruncatingStore())
6176      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6177
6178    const char *AM = getIndexedModeName(ST->getAddressingMode());
6179    if (*AM)
6180      OS << ", " << AM;
6181
6182    OS << ">";
6183  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6184    OS << "<" << *M->getMemOperand() << ">";
6185  } else if (const BlockAddressSDNode *BA =
6186               dyn_cast<BlockAddressSDNode>(this)) {
6187    OS << "<";
6188    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6189    OS << ", ";
6190    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6191    OS << ">";
6192    if (unsigned int TF = BA->getTargetFlags())
6193      OS << " [TF=" << TF << ']';
6194  }
6195
6196  if (G)
6197    if (unsigned Order = G->GetOrdering(this))
6198      OS << " [ORD=" << Order << ']';
6199
6200  if (getNodeId() != -1)
6201    OS << " [ID=" << getNodeId() << ']';
6202
6203  DebugLoc dl = getDebugLoc();
6204  if (G && !dl.isUnknown()) {
6205    DIScope
6206      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6207    OS << " dbg:";
6208    // Omit the directory, since it's usually long and uninteresting.
6209    if (Scope.Verify())
6210      OS << Scope.getFilename();
6211    else
6212      OS << "<unknown>";
6213    OS << ':' << dl.getLine();
6214    if (dl.getCol() != 0)
6215      OS << ':' << dl.getCol();
6216  }
6217}
6218
6219void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6220  print_types(OS, G);
6221  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6222    if (i) OS << ", "; else OS << " ";
6223    OS << (void*)getOperand(i).getNode();
6224    if (unsigned RN = getOperand(i).getResNo())
6225      OS << ":" << RN;
6226  }
6227  print_details(OS, G);
6228}
6229
6230static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6231                                  const SelectionDAG *G, unsigned depth,
6232                                  unsigned indent)
6233{
6234  if (depth == 0)
6235    return;
6236
6237  OS.indent(indent);
6238
6239  N->print(OS, G);
6240
6241  if (depth < 1)
6242    return;
6243
6244  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6245    // Don't follow chain operands.
6246    if (N->getOperand(i).getValueType() == MVT::Other)
6247      continue;
6248    OS << '\n';
6249    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6250  }
6251}
6252
6253void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6254                            unsigned depth) const {
6255  printrWithDepthHelper(OS, this, G, depth, 0);
6256}
6257
6258void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6259  // Don't print impossibly deep things.
6260  printrWithDepth(OS, G, 10);
6261}
6262
6263void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6264  printrWithDepth(dbgs(), G, depth);
6265}
6266
6267void SDNode::dumprFull(const SelectionDAG *G) const {
6268  // Don't print impossibly deep things.
6269  dumprWithDepth(G, 10);
6270}
6271
6272static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6273  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6274    if (N->getOperand(i).getNode()->hasOneUse())
6275      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6276    else
6277      dbgs() << "\n" << std::string(indent+2, ' ')
6278           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6279
6280
6281  dbgs() << "\n";
6282  dbgs().indent(indent);
6283  N->dump(G);
6284}
6285
6286SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6287  assert(N->getNumValues() == 1 &&
6288         "Can't unroll a vector with multiple results!");
6289
6290  EVT VT = N->getValueType(0);
6291  unsigned NE = VT.getVectorNumElements();
6292  EVT EltVT = VT.getVectorElementType();
6293  DebugLoc dl = N->getDebugLoc();
6294
6295  SmallVector<SDValue, 8> Scalars;
6296  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6297
6298  // If ResNE is 0, fully unroll the vector op.
6299  if (ResNE == 0)
6300    ResNE = NE;
6301  else if (NE > ResNE)
6302    NE = ResNE;
6303
6304  unsigned i;
6305  for (i= 0; i != NE; ++i) {
6306    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6307      SDValue Operand = N->getOperand(j);
6308      EVT OperandVT = Operand.getValueType();
6309      if (OperandVT.isVector()) {
6310        // A vector operand; extract a single element.
6311        EVT OperandEltVT = OperandVT.getVectorElementType();
6312        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6313                              OperandEltVT,
6314                              Operand,
6315                              getConstant(i, TLI.getPointerTy()));
6316      } else {
6317        // A scalar operand; just use it as is.
6318        Operands[j] = Operand;
6319      }
6320    }
6321
6322    switch (N->getOpcode()) {
6323    default:
6324      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6325                                &Operands[0], Operands.size()));
6326      break;
6327    case ISD::SHL:
6328    case ISD::SRA:
6329    case ISD::SRL:
6330    case ISD::ROTL:
6331    case ISD::ROTR:
6332      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6333                                getShiftAmountOperand(Operands[0].getValueType(),
6334                                                      Operands[1])));
6335      break;
6336    case ISD::SIGN_EXTEND_INREG:
6337    case ISD::FP_ROUND_INREG: {
6338      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6339      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6340                                Operands[0],
6341                                getValueType(ExtVT)));
6342    }
6343    }
6344  }
6345
6346  for (; i < ResNE; ++i)
6347    Scalars.push_back(getUNDEF(EltVT));
6348
6349  return getNode(ISD::BUILD_VECTOR, dl,
6350                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6351                 &Scalars[0], Scalars.size());
6352}
6353
6354
6355/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6356/// location that is 'Dist' units away from the location that the 'Base' load
6357/// is loading from.
6358bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6359                                     unsigned Bytes, int Dist) const {
6360  if (LD->getChain() != Base->getChain())
6361    return false;
6362  EVT VT = LD->getValueType(0);
6363  if (VT.getSizeInBits() / 8 != Bytes)
6364    return false;
6365
6366  SDValue Loc = LD->getOperand(1);
6367  SDValue BaseLoc = Base->getOperand(1);
6368  if (Loc.getOpcode() == ISD::FrameIndex) {
6369    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6370      return false;
6371    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6372    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6373    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6374    int FS  = MFI->getObjectSize(FI);
6375    int BFS = MFI->getObjectSize(BFI);
6376    if (FS != BFS || FS != (int)Bytes) return false;
6377    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6378  }
6379
6380  // Handle X+C
6381  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6382      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6383    return true;
6384
6385  const GlobalValue *GV1 = NULL;
6386  const GlobalValue *GV2 = NULL;
6387  int64_t Offset1 = 0;
6388  int64_t Offset2 = 0;
6389  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6390  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6391  if (isGA1 && isGA2 && GV1 == GV2)
6392    return Offset1 == (Offset2 + Dist*Bytes);
6393  return false;
6394}
6395
6396
6397/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6398/// it cannot be inferred.
6399unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6400  // If this is a GlobalAddress + cst, return the alignment.
6401  const GlobalValue *GV;
6402  int64_t GVOffset = 0;
6403  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6404    // If GV has specified alignment, then use it. Otherwise, use the preferred
6405    // alignment.
6406    unsigned Align = GV->getAlignment();
6407    if (!Align) {
6408      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6409        if (GVar->hasInitializer()) {
6410          const TargetData *TD = TLI.getTargetData();
6411          Align = TD->getPreferredAlignment(GVar);
6412        }
6413      }
6414    }
6415    return MinAlign(Align, GVOffset);
6416  }
6417
6418  // If this is a direct reference to a stack slot, use information about the
6419  // stack slot's alignment.
6420  int FrameIdx = 1 << 31;
6421  int64_t FrameOffset = 0;
6422  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6423    FrameIdx = FI->getIndex();
6424  } else if (isBaseWithConstantOffset(Ptr) &&
6425             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6426    // Handle FI+Cst
6427    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6428    FrameOffset = Ptr.getConstantOperandVal(1);
6429  }
6430
6431  if (FrameIdx != (1 << 31)) {
6432    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6433    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6434                                    FrameOffset);
6435    return FIInfoAlign;
6436  }
6437
6438  return 0;
6439}
6440
6441void SelectionDAG::dump() const {
6442  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6443
6444  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6445       I != E; ++I) {
6446    const SDNode *N = I;
6447    if (!N->hasOneUse() && N != getRoot().getNode())
6448      DumpNodes(N, 2, this);
6449  }
6450
6451  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6452
6453  dbgs() << "\n\n";
6454}
6455
6456void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6457  print_types(OS, G);
6458  print_details(OS, G);
6459}
6460
6461typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6462static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6463                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6464  if (!once.insert(N))          // If we've been here before, return now.
6465    return;
6466
6467  // Dump the current SDNode, but don't end the line yet.
6468  OS << std::string(indent, ' ');
6469  N->printr(OS, G);
6470
6471  // Having printed this SDNode, walk the children:
6472  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6473    const SDNode *child = N->getOperand(i).getNode();
6474
6475    if (i) OS << ",";
6476    OS << " ";
6477
6478    if (child->getNumOperands() == 0) {
6479      // This child has no grandchildren; print it inline right here.
6480      child->printr(OS, G);
6481      once.insert(child);
6482    } else {         // Just the address. FIXME: also print the child's opcode.
6483      OS << (void*)child;
6484      if (unsigned RN = N->getOperand(i).getResNo())
6485        OS << ":" << RN;
6486    }
6487  }
6488
6489  OS << "\n";
6490
6491  // Dump children that have grandchildren on their own line(s).
6492  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6493    const SDNode *child = N->getOperand(i).getNode();
6494    DumpNodesr(OS, child, indent+2, G, once);
6495  }
6496}
6497
6498void SDNode::dumpr() const {
6499  VisitedSDNodeSet once;
6500  DumpNodesr(dbgs(), this, 0, 0, once);
6501}
6502
6503void SDNode::dumpr(const SelectionDAG *G) const {
6504  VisitedSDNodeSet once;
6505  DumpNodesr(dbgs(), this, 0, G, once);
6506}
6507
6508
6509// getAddressSpace - Return the address space this GlobalAddress belongs to.
6510unsigned GlobalAddressSDNode::getAddressSpace() const {
6511  return getGlobal()->getType()->getAddressSpace();
6512}
6513
6514
6515const Type *ConstantPoolSDNode::getType() const {
6516  if (isMachineConstantPoolEntry())
6517    return Val.MachineCPVal->getType();
6518  return Val.ConstVal->getType();
6519}
6520
6521bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6522                                        APInt &SplatUndef,
6523                                        unsigned &SplatBitSize,
6524                                        bool &HasAnyUndefs,
6525                                        unsigned MinSplatBits,
6526                                        bool isBigEndian) {
6527  EVT VT = getValueType(0);
6528  assert(VT.isVector() && "Expected a vector type");
6529  unsigned sz = VT.getSizeInBits();
6530  if (MinSplatBits > sz)
6531    return false;
6532
6533  SplatValue = APInt(sz, 0);
6534  SplatUndef = APInt(sz, 0);
6535
6536  // Get the bits.  Bits with undefined values (when the corresponding element
6537  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6538  // in SplatValue.  If any of the values are not constant, give up and return
6539  // false.
6540  unsigned int nOps = getNumOperands();
6541  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6542  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6543
6544  for (unsigned j = 0; j < nOps; ++j) {
6545    unsigned i = isBigEndian ? nOps-1-j : j;
6546    SDValue OpVal = getOperand(i);
6547    unsigned BitPos = j * EltBitSize;
6548
6549    if (OpVal.getOpcode() == ISD::UNDEF)
6550      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6551    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6552      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6553                    zextOrTrunc(sz) << BitPos;
6554    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6555      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6556     else
6557      return false;
6558  }
6559
6560  // The build_vector is all constants or undefs.  Find the smallest element
6561  // size that splats the vector.
6562
6563  HasAnyUndefs = (SplatUndef != 0);
6564  while (sz > 8) {
6565
6566    unsigned HalfSize = sz / 2;
6567    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6568    APInt LowValue = SplatValue.trunc(HalfSize);
6569    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6570    APInt LowUndef = SplatUndef.trunc(HalfSize);
6571
6572    // If the two halves do not match (ignoring undef bits), stop here.
6573    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6574        MinSplatBits > HalfSize)
6575      break;
6576
6577    SplatValue = HighValue | LowValue;
6578    SplatUndef = HighUndef & LowUndef;
6579
6580    sz = HalfSize;
6581  }
6582
6583  SplatBitSize = sz;
6584  return true;
6585}
6586
6587bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6588  // Find the first non-undef value in the shuffle mask.
6589  unsigned i, e;
6590  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6591    /* search */;
6592
6593  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6594
6595  // Make sure all remaining elements are either undef or the same as the first
6596  // non-undef value.
6597  for (int Idx = Mask[i]; i != e; ++i)
6598    if (Mask[i] >= 0 && Mask[i] != Idx)
6599      return false;
6600  return true;
6601}
6602
6603#ifdef XDEBUG
6604static void checkForCyclesHelper(const SDNode *N,
6605                                 SmallPtrSet<const SDNode*, 32> &Visited,
6606                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6607  // If this node has already been checked, don't check it again.
6608  if (Checked.count(N))
6609    return;
6610
6611  // If a node has already been visited on this depth-first walk, reject it as
6612  // a cycle.
6613  if (!Visited.insert(N)) {
6614    dbgs() << "Offending node:\n";
6615    N->dumprFull();
6616    errs() << "Detected cycle in SelectionDAG\n";
6617    abort();
6618  }
6619
6620  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6621    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6622
6623  Checked.insert(N);
6624  Visited.erase(N);
6625}
6626#endif
6627
6628void llvm::checkForCycles(const llvm::SDNode *N) {
6629#ifdef XDEBUG
6630  assert(N && "Checking nonexistant SDNode");
6631  SmallPtrSet<const SDNode*, 32> visited;
6632  SmallPtrSet<const SDNode*, 32> checked;
6633  checkForCyclesHelper(N, visited, checked);
6634#endif
6635}
6636
6637void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6638  checkForCycles(DAG->getRoot().getNode());
6639}
6640