SelectionDAG.cpp revision bc7588eb6882466fe3cd2e36bfb3d01e4ce23faa
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/System/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f32:     return &APFloat::IEEEsingle;
66  case MVT::f64:     return &APFloat::IEEEdouble;
67  case MVT::f80:     return &APFloat::x87DoubleExtended;
68  case MVT::f128:    return &APFloat::IEEEquad;
69  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70  }
71}
72
73SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74
75//===----------------------------------------------------------------------===//
76//                              ConstantFPSDNode Class
77//===----------------------------------------------------------------------===//
78
79/// isExactlyValue - We don't rely on operator== working on double values, as
80/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81/// As such, this method can be used to do an exact bit-for-bit comparison of
82/// two floating point values.
83bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84  return getValueAPF().bitwiseIsEqual(V);
85}
86
87bool ConstantFPSDNode::isValueValidForType(EVT VT,
88                                           const APFloat& Val) {
89  assert(VT.isFloatingPoint() && "Can only convert between FP types");
90
91  // PPC long double cannot be converted to any other type.
92  if (VT == MVT::ppcf128 ||
93      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94    return false;
95
96  // convert modifies in place, so make a copy.
97  APFloat Val2 = APFloat(Val);
98  bool losesInfo;
99  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100                      &losesInfo);
101  return !losesInfo;
102}
103
104//===----------------------------------------------------------------------===//
105//                              ISD Namespace
106//===----------------------------------------------------------------------===//
107
108/// isBuildVectorAllOnes - Return true if the specified node is a
109/// BUILD_VECTOR where all of the elements are ~0 or undef.
110bool ISD::isBuildVectorAllOnes(const SDNode *N) {
111  // Look through a bit convert.
112  if (N->getOpcode() == ISD::BIT_CONVERT)
113    N = N->getOperand(0).getNode();
114
115  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116
117  unsigned i = 0, e = N->getNumOperands();
118
119  // Skip over all of the undef values.
120  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121    ++i;
122
123  // Do not accept an all-undef vector.
124  if (i == e) return false;
125
126  // Do not accept build_vectors that aren't all constants or which have non-~0
127  // elements.
128  SDValue NotZero = N->getOperand(i);
129  if (isa<ConstantSDNode>(NotZero)) {
130    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131      return false;
132  } else if (isa<ConstantFPSDNode>(NotZero)) {
133    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134                bitcastToAPInt().isAllOnesValue())
135      return false;
136  } else
137    return false;
138
139  // Okay, we have at least one ~0 value, check to see if the rest match or are
140  // undefs.
141  for (++i; i != e; ++i)
142    if (N->getOperand(i) != NotZero &&
143        N->getOperand(i).getOpcode() != ISD::UNDEF)
144      return false;
145  return true;
146}
147
148
149/// isBuildVectorAllZeros - Return true if the specified node is a
150/// BUILD_VECTOR where all of the elements are 0 or undef.
151bool ISD::isBuildVectorAllZeros(const SDNode *N) {
152  // Look through a bit convert.
153  if (N->getOpcode() == ISD::BIT_CONVERT)
154    N = N->getOperand(0).getNode();
155
156  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157
158  unsigned i = 0, e = N->getNumOperands();
159
160  // Skip over all of the undef values.
161  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162    ++i;
163
164  // Do not accept an all-undef vector.
165  if (i == e) return false;
166
167  // Do not accept build_vectors that aren't all constants or which have non-0
168  // elements.
169  SDValue Zero = N->getOperand(i);
170  if (isa<ConstantSDNode>(Zero)) {
171    if (!cast<ConstantSDNode>(Zero)->isNullValue())
172      return false;
173  } else if (isa<ConstantFPSDNode>(Zero)) {
174    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175      return false;
176  } else
177    return false;
178
179  // Okay, we have at least one 0 value, check to see if the rest match or are
180  // undefs.
181  for (++i; i != e; ++i)
182    if (N->getOperand(i) != Zero &&
183        N->getOperand(i).getOpcode() != ISD::UNDEF)
184      return false;
185  return true;
186}
187
188/// isScalarToVector - Return true if the specified node is a
189/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190/// element is not an undef.
191bool ISD::isScalarToVector(const SDNode *N) {
192  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193    return true;
194
195  if (N->getOpcode() != ISD::BUILD_VECTOR)
196    return false;
197  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198    return false;
199  unsigned NumElems = N->getNumOperands();
200  for (unsigned i = 1; i < NumElems; ++i) {
201    SDValue V = N->getOperand(i);
202    if (V.getOpcode() != ISD::UNDEF)
203      return false;
204  }
205  return true;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211  // To perform this operation, we just need to swap the L and G bits of the
212  // operation.
213  unsigned OldL = (Operation >> 2) & 1;
214  unsigned OldG = (Operation >> 1) & 1;
215  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216                       (OldL << 1) |       // New G bit
217                       (OldG << 2));       // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223  unsigned Operation = Op;
224  if (isInteger)
225    Operation ^= 7;   // Flip L, G, E bits, but not U.
226  else
227    Operation ^= 15;  // Flip all of the condition bits.
228
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;  // Don't let N and U bits get set.
231
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: llvm_unreachable("Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307//===----------------------------------------------------------------------===//
308//                           SDNode Profile Support
309//===----------------------------------------------------------------------===//
310
311/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
312///
313static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
314  ID.AddInteger(OpC);
315}
316
317/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
318/// solely with their pointer.
319static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
320  ID.AddPointer(VTList.VTs);
321}
322
323/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
324///
325static void AddNodeIDOperands(FoldingSetNodeID &ID,
326                              const SDValue *Ops, unsigned NumOps) {
327  for (; NumOps; --NumOps, ++Ops) {
328    ID.AddPointer(Ops->getNode());
329    ID.AddInteger(Ops->getResNo());
330  }
331}
332
333/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
334///
335static void AddNodeIDOperands(FoldingSetNodeID &ID,
336                              const SDUse *Ops, unsigned NumOps) {
337  for (; NumOps; --NumOps, ++Ops) {
338    ID.AddPointer(Ops->getNode());
339    ID.AddInteger(Ops->getResNo());
340  }
341}
342
343static void AddNodeIDNode(FoldingSetNodeID &ID,
344                          unsigned short OpC, SDVTList VTList,
345                          const SDValue *OpList, unsigned N) {
346  AddNodeIDOpcode(ID, OpC);
347  AddNodeIDValueTypes(ID, VTList);
348  AddNodeIDOperands(ID, OpList, N);
349}
350
351/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
352/// the NodeID data.
353static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
354  switch (N->getOpcode()) {
355  case ISD::TargetExternalSymbol:
356  case ISD::ExternalSymbol:
357    llvm_unreachable("Should only be used on nodes with operands");
358  default: break;  // Normal nodes don't need extra info.
359  case ISD::TargetConstant:
360  case ISD::Constant:
361    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
362    break;
363  case ISD::TargetConstantFP:
364  case ISD::ConstantFP: {
365    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
366    break;
367  }
368  case ISD::TargetGlobalAddress:
369  case ISD::GlobalAddress:
370  case ISD::TargetGlobalTLSAddress:
371  case ISD::GlobalTLSAddress: {
372    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
373    ID.AddPointer(GA->getGlobal());
374    ID.AddInteger(GA->getOffset());
375    ID.AddInteger(GA->getTargetFlags());
376    break;
377  }
378  case ISD::BasicBlock:
379    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
380    break;
381  case ISD::Register:
382    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
383    break;
384
385  case ISD::SRCVALUE:
386    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
387    break;
388  case ISD::FrameIndex:
389  case ISD::TargetFrameIndex:
390    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
391    break;
392  case ISD::JumpTable:
393  case ISD::TargetJumpTable:
394    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
395    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
396    break;
397  case ISD::ConstantPool:
398  case ISD::TargetConstantPool: {
399    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
400    ID.AddInteger(CP->getAlignment());
401    ID.AddInteger(CP->getOffset());
402    if (CP->isMachineConstantPoolEntry())
403      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
404    else
405      ID.AddPointer(CP->getConstVal());
406    ID.AddInteger(CP->getTargetFlags());
407    break;
408  }
409  case ISD::LOAD: {
410    const LoadSDNode *LD = cast<LoadSDNode>(N);
411    ID.AddInteger(LD->getMemoryVT().getRawBits());
412    ID.AddInteger(LD->getRawSubclassData());
413    break;
414  }
415  case ISD::STORE: {
416    const StoreSDNode *ST = cast<StoreSDNode>(N);
417    ID.AddInteger(ST->getMemoryVT().getRawBits());
418    ID.AddInteger(ST->getRawSubclassData());
419    break;
420  }
421  case ISD::ATOMIC_CMP_SWAP:
422  case ISD::ATOMIC_SWAP:
423  case ISD::ATOMIC_LOAD_ADD:
424  case ISD::ATOMIC_LOAD_SUB:
425  case ISD::ATOMIC_LOAD_AND:
426  case ISD::ATOMIC_LOAD_OR:
427  case ISD::ATOMIC_LOAD_XOR:
428  case ISD::ATOMIC_LOAD_NAND:
429  case ISD::ATOMIC_LOAD_MIN:
430  case ISD::ATOMIC_LOAD_MAX:
431  case ISD::ATOMIC_LOAD_UMIN:
432  case ISD::ATOMIC_LOAD_UMAX: {
433    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
434    ID.AddInteger(AT->getMemoryVT().getRawBits());
435    ID.AddInteger(AT->getRawSubclassData());
436    break;
437  }
438  case ISD::VECTOR_SHUFFLE: {
439    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
440    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
441         i != e; ++i)
442      ID.AddInteger(SVN->getMaskElt(i));
443    break;
444  }
445  case ISD::TargetBlockAddress:
446  case ISD::BlockAddress: {
447    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
448    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
449    break;
450  }
451  } // end switch (N->getOpcode())
452}
453
454/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
455/// data.
456static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
457  AddNodeIDOpcode(ID, N->getOpcode());
458  // Add the return value info.
459  AddNodeIDValueTypes(ID, N->getVTList());
460  // Add the operand info.
461  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
462
463  // Handle SDNode leafs with special info.
464  AddNodeIDCustom(ID, N);
465}
466
467/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
468/// the CSE map that carries volatility, temporalness, indexing mode, and
469/// extension/truncation information.
470///
471static inline unsigned
472encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
473                     bool isNonTemporal) {
474  assert((ConvType & 3) == ConvType &&
475         "ConvType may not require more than 2 bits!");
476  assert((AM & 7) == AM &&
477         "AM may not require more than 3 bits!");
478  return ConvType |
479         (AM << 2) |
480         (isVolatile << 5) |
481         (isNonTemporal << 6);
482}
483
484//===----------------------------------------------------------------------===//
485//                              SelectionDAG Class
486//===----------------------------------------------------------------------===//
487
488/// doNotCSE - Return true if CSE should not be performed for this node.
489static bool doNotCSE(SDNode *N) {
490  if (N->getValueType(0) == MVT::Flag)
491    return true; // Never CSE anything that produces a flag.
492
493  switch (N->getOpcode()) {
494  default: break;
495  case ISD::HANDLENODE:
496  case ISD::EH_LABEL:
497    return true;   // Never CSE these nodes.
498  }
499
500  // Check that remaining values produced are not flags.
501  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
502    if (N->getValueType(i) == MVT::Flag)
503      return true; // Never CSE anything that produces a flag.
504
505  return false;
506}
507
508/// RemoveDeadNodes - This method deletes all unreachable nodes in the
509/// SelectionDAG.
510void SelectionDAG::RemoveDeadNodes() {
511  // Create a dummy node (which is not added to allnodes), that adds a reference
512  // to the root node, preventing it from being deleted.
513  HandleSDNode Dummy(getRoot());
514
515  SmallVector<SDNode*, 128> DeadNodes;
516
517  // Add all obviously-dead nodes to the DeadNodes worklist.
518  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
519    if (I->use_empty())
520      DeadNodes.push_back(I);
521
522  RemoveDeadNodes(DeadNodes);
523
524  // If the root changed (e.g. it was a dead load, update the root).
525  setRoot(Dummy.getValue());
526}
527
528/// RemoveDeadNodes - This method deletes the unreachable nodes in the
529/// given list, and any nodes that become unreachable as a result.
530void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
531                                   DAGUpdateListener *UpdateListener) {
532
533  // Process the worklist, deleting the nodes and adding their uses to the
534  // worklist.
535  while (!DeadNodes.empty()) {
536    SDNode *N = DeadNodes.pop_back_val();
537
538    if (UpdateListener)
539      UpdateListener->NodeDeleted(N, 0);
540
541    // Take the node out of the appropriate CSE map.
542    RemoveNodeFromCSEMaps(N);
543
544    // Next, brutally remove the operand list.  This is safe to do, as there are
545    // no cycles in the graph.
546    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
547      SDUse &Use = *I++;
548      SDNode *Operand = Use.getNode();
549      Use.set(SDValue());
550
551      // Now that we removed this operand, see if there are no uses of it left.
552      if (Operand->use_empty())
553        DeadNodes.push_back(Operand);
554    }
555
556    DeallocateNode(N);
557  }
558}
559
560void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
561  SmallVector<SDNode*, 16> DeadNodes(1, N);
562  RemoveDeadNodes(DeadNodes, UpdateListener);
563}
564
565void SelectionDAG::DeleteNode(SDNode *N) {
566  // First take this out of the appropriate CSE map.
567  RemoveNodeFromCSEMaps(N);
568
569  // Finally, remove uses due to operands of this node, remove from the
570  // AllNodes list, and delete the node.
571  DeleteNodeNotInCSEMaps(N);
572}
573
574void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
575  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
576  assert(N->use_empty() && "Cannot delete a node that is not dead!");
577
578  // Drop all of the operands and decrement used node's use counts.
579  N->DropOperands();
580
581  DeallocateNode(N);
582}
583
584void SelectionDAG::DeallocateNode(SDNode *N) {
585  if (N->OperandsNeedDelete)
586    delete[] N->OperandList;
587
588  // Set the opcode to DELETED_NODE to help catch bugs when node
589  // memory is reallocated.
590  N->NodeType = ISD::DELETED_NODE;
591
592  NodeAllocator.Deallocate(AllNodes.remove(N));
593
594  // Remove the ordering of this node.
595  Ordering->remove(N);
596
597  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
598  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
599  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
600    DbgVals[i]->setIsInvalidated();
601}
602
603/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
604/// correspond to it.  This is useful when we're about to delete or repurpose
605/// the node.  We don't want future request for structurally identical nodes
606/// to return N anymore.
607bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
608  bool Erased = false;
609  switch (N->getOpcode()) {
610  case ISD::EntryToken:
611    llvm_unreachable("EntryToken should not be in CSEMaps!");
612    return false;
613  case ISD::HANDLENODE: return false;  // noop.
614  case ISD::CONDCODE:
615    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
616           "Cond code doesn't exist!");
617    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
618    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
619    break;
620  case ISD::ExternalSymbol:
621    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
622    break;
623  case ISD::TargetExternalSymbol: {
624    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
625    Erased = TargetExternalSymbols.erase(
626               std::pair<std::string,unsigned char>(ESN->getSymbol(),
627                                                    ESN->getTargetFlags()));
628    break;
629  }
630  case ISD::VALUETYPE: {
631    EVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
636      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    Erased = CSEMap.RemoveNode(N);
643    break;
644  }
645#ifndef NDEBUG
646  // Verify that the node was actually in one of the CSE maps, unless it has a
647  // flag result (which cannot be CSE'd) or is one of the special cases that are
648  // not subject to CSE.
649  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650      !N->isMachineOpcode() && !doNotCSE(N)) {
651    N->dump(this);
652    dbgs() << "\n";
653    llvm_unreachable("Node is not in map!");
654  }
655#endif
656  return Erased;
657}
658
659/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660/// maps and modified in place. Add it back to the CSE maps, unless an identical
661/// node already exists, in which case transfer all its users to the existing
662/// node. This transfer can potentially trigger recursive merging.
663///
664void
665SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666                                       DAGUpdateListener *UpdateListener) {
667  // For node types that aren't CSE'd, just act as if no identical node
668  // already exists.
669  if (!doNotCSE(N)) {
670    SDNode *Existing = CSEMap.GetOrInsertNode(N);
671    if (Existing != N) {
672      // If there was already an existing matching node, use ReplaceAllUsesWith
673      // to replace the dead one with the existing one.  This can cause
674      // recursive merging of other unrelated nodes down the line.
675      ReplaceAllUsesWith(N, Existing, UpdateListener);
676
677      // N is now dead.  Inform the listener if it exists and delete it.
678      if (UpdateListener)
679        UpdateListener->NodeDeleted(N, Existing);
680      DeleteNodeNotInCSEMaps(N);
681      return;
682    }
683  }
684
685  // If the node doesn't already exist, we updated it.  Inform a listener if
686  // it exists.
687  if (UpdateListener)
688    UpdateListener->NodeUpdated(N);
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696                                           void *&InsertPos) {
697  if (doNotCSE(N))
698    return 0;
699
700  SDValue Ops[] = { Op };
701  FoldingSetNodeID ID;
702  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703  AddNodeIDCustom(ID, N);
704  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
705  return Node;
706}
707
708/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
709/// were replaced with those specified.  If this node is never memoized,
710/// return null, otherwise return a pointer to the slot it would take.  If a
711/// node already exists with these operands, the slot will be non-null.
712SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
713                                           SDValue Op1, SDValue Op2,
714                                           void *&InsertPos) {
715  if (doNotCSE(N))
716    return 0;
717
718  SDValue Ops[] = { Op1, Op2 };
719  FoldingSetNodeID ID;
720  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
721  AddNodeIDCustom(ID, N);
722  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
723  return Node;
724}
725
726
727/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
728/// were replaced with those specified.  If this node is never memoized,
729/// return null, otherwise return a pointer to the slot it would take.  If a
730/// node already exists with these operands, the slot will be non-null.
731SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
732                                           const SDValue *Ops,unsigned NumOps,
733                                           void *&InsertPos) {
734  if (doNotCSE(N))
735    return 0;
736
737  FoldingSetNodeID ID;
738  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
739  AddNodeIDCustom(ID, N);
740  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
741  return Node;
742}
743
744/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
745void SelectionDAG::VerifyNode(SDNode *N) {
746  switch (N->getOpcode()) {
747  default:
748    break;
749  case ISD::BUILD_PAIR: {
750    EVT VT = N->getValueType(0);
751    assert(N->getNumValues() == 1 && "Too many results!");
752    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
753           "Wrong return type!");
754    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
755    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
756           "Mismatched operand types!");
757    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
758           "Wrong operand type!");
759    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
760           "Wrong return type size");
761    break;
762  }
763  case ISD::BUILD_VECTOR: {
764    assert(N->getNumValues() == 1 && "Too many results!");
765    assert(N->getValueType(0).isVector() && "Wrong return type!");
766    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
767           "Wrong number of operands!");
768    EVT EltVT = N->getValueType(0).getVectorElementType();
769    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
770      assert((I->getValueType() == EltVT ||
771             (EltVT.isInteger() && I->getValueType().isInteger() &&
772              EltVT.bitsLE(I->getValueType()))) &&
773            "Wrong operand type!");
774    break;
775  }
776  }
777}
778
779/// getEVTAlignment - Compute the default alignment value for the
780/// given type.
781///
782unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
783  const Type *Ty = VT == MVT::iPTR ?
784                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
785                   VT.getTypeForEVT(*getContext());
786
787  return TLI.getTargetData()->getABITypeAlignment(Ty);
788}
789
790// EntryNode could meaningfully have debug info if we can find it...
791SelectionDAG::SelectionDAG(const TargetMachine &tm, FunctionLoweringInfo &fli)
792  : TM(tm), TLI(*tm.getTargetLowering()), FLI(fli),
793    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
794    Root(getEntryNode()), Ordering(0) {
795  AllNodes.push_back(&EntryNode);
796  Ordering = new SDNodeOrdering();
797  DbgInfo = new SDDbgInfo();
798}
799
800void SelectionDAG::init(MachineFunction &mf) {
801  MF = &mf;
802  Context = &mf.getFunction()->getContext();
803}
804
805SelectionDAG::~SelectionDAG() {
806  allnodes_clear();
807  delete Ordering;
808  DbgInfo->clear();
809  delete DbgInfo;
810}
811
812void SelectionDAG::allnodes_clear() {
813  assert(&*AllNodes.begin() == &EntryNode);
814  AllNodes.remove(AllNodes.begin());
815  while (!AllNodes.empty())
816    DeallocateNode(AllNodes.begin());
817}
818
819void SelectionDAG::clear() {
820  allnodes_clear();
821  OperandAllocator.Reset();
822  CSEMap.clear();
823
824  ExtendedValueTypeNodes.clear();
825  ExternalSymbols.clear();
826  TargetExternalSymbols.clear();
827  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
828            static_cast<CondCodeSDNode*>(0));
829  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
830            static_cast<SDNode*>(0));
831
832  EntryNode.UseList = 0;
833  AllNodes.push_back(&EntryNode);
834  Root = getEntryNode();
835  delete Ordering;
836  Ordering = new SDNodeOrdering();
837  DbgInfo->clear();
838  delete DbgInfo;
839  DbgInfo = new SDDbgInfo();
840}
841
842SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
843  return VT.bitsGT(Op.getValueType()) ?
844    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
845    getNode(ISD::TRUNCATE, DL, VT, Op);
846}
847
848SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
849  return VT.bitsGT(Op.getValueType()) ?
850    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
851    getNode(ISD::TRUNCATE, DL, VT, Op);
852}
853
854SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
855  assert(!VT.isVector() &&
856         "getZeroExtendInReg should use the vector element type instead of "
857         "the vector type!");
858  if (Op.getValueType() == VT) return Op;
859  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
860  APInt Imm = APInt::getLowBitsSet(BitWidth,
861                                   VT.getSizeInBits());
862  return getNode(ISD::AND, DL, Op.getValueType(), Op,
863                 getConstant(Imm, Op.getValueType()));
864}
865
866/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
867///
868SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
869  EVT EltVT = VT.getScalarType();
870  SDValue NegOne =
871    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
872  return getNode(ISD::XOR, DL, VT, Val, NegOne);
873}
874
875SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
876  EVT EltVT = VT.getScalarType();
877  assert((EltVT.getSizeInBits() >= 64 ||
878         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
879         "getConstant with a uint64_t value that doesn't fit in the type!");
880  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
881}
882
883SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
884  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
885}
886
887SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
888  assert(VT.isInteger() && "Cannot create FP integer constant!");
889
890  EVT EltVT = VT.getScalarType();
891  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
892         "APInt size does not match type size!");
893
894  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
895  FoldingSetNodeID ID;
896  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
897  ID.AddPointer(&Val);
898  void *IP = 0;
899  SDNode *N = NULL;
900  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
901    if (!VT.isVector())
902      return SDValue(N, 0);
903
904  if (!N) {
905    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
906    CSEMap.InsertNode(N, IP);
907    AllNodes.push_back(N);
908  }
909
910  SDValue Result(N, 0);
911  if (VT.isVector()) {
912    SmallVector<SDValue, 8> Ops;
913    Ops.assign(VT.getVectorNumElements(), Result);
914    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
915  }
916  return Result;
917}
918
919SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
920  return getConstant(Val, TLI.getPointerTy(), isTarget);
921}
922
923
924SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
925  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
926}
927
928SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
929  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
930
931  EVT EltVT = VT.getScalarType();
932
933  // Do the map lookup using the actual bit pattern for the floating point
934  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
935  // we don't have issues with SNANs.
936  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
937  FoldingSetNodeID ID;
938  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
939  ID.AddPointer(&V);
940  void *IP = 0;
941  SDNode *N = NULL;
942  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
943    if (!VT.isVector())
944      return SDValue(N, 0);
945
946  if (!N) {
947    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
948    CSEMap.InsertNode(N, IP);
949    AllNodes.push_back(N);
950  }
951
952  SDValue Result(N, 0);
953  if (VT.isVector()) {
954    SmallVector<SDValue, 8> Ops;
955    Ops.assign(VT.getVectorNumElements(), Result);
956    // FIXME DebugLoc info might be appropriate here
957    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
958  }
959  return Result;
960}
961
962SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
963  EVT EltVT = VT.getScalarType();
964  if (EltVT==MVT::f32)
965    return getConstantFP(APFloat((float)Val), VT, isTarget);
966  else
967    return getConstantFP(APFloat(Val), VT, isTarget);
968}
969
970SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
971                                       EVT VT, int64_t Offset,
972                                       bool isTargetGA,
973                                       unsigned char TargetFlags) {
974  assert((TargetFlags == 0 || isTargetGA) &&
975         "Cannot set target flags on target-independent globals");
976
977  // Truncate (with sign-extension) the offset value to the pointer size.
978  EVT PTy = TLI.getPointerTy();
979  unsigned BitWidth = PTy.getSizeInBits();
980  if (BitWidth < 64)
981    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
982
983  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
984  if (!GVar) {
985    // If GV is an alias then use the aliasee for determining thread-localness.
986    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
987      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
988  }
989
990  unsigned Opc;
991  if (GVar && GVar->isThreadLocal())
992    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
993  else
994    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
995
996  FoldingSetNodeID ID;
997  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
998  ID.AddPointer(GV);
999  ID.AddInteger(Offset);
1000  ID.AddInteger(TargetFlags);
1001  void *IP = 0;
1002  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1003    return SDValue(E, 0);
1004
1005  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1006                                                      Offset, TargetFlags);
1007  CSEMap.InsertNode(N, IP);
1008  AllNodes.push_back(N);
1009  return SDValue(N, 0);
1010}
1011
1012SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1013  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1014  FoldingSetNodeID ID;
1015  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1016  ID.AddInteger(FI);
1017  void *IP = 0;
1018  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1019    return SDValue(E, 0);
1020
1021  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1022  CSEMap.InsertNode(N, IP);
1023  AllNodes.push_back(N);
1024  return SDValue(N, 0);
1025}
1026
1027SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1028                                   unsigned char TargetFlags) {
1029  assert((TargetFlags == 0 || isTarget) &&
1030         "Cannot set target flags on target-independent jump tables");
1031  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1032  FoldingSetNodeID ID;
1033  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1034  ID.AddInteger(JTI);
1035  ID.AddInteger(TargetFlags);
1036  void *IP = 0;
1037  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1038    return SDValue(E, 0);
1039
1040  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1041                                                  TargetFlags);
1042  CSEMap.InsertNode(N, IP);
1043  AllNodes.push_back(N);
1044  return SDValue(N, 0);
1045}
1046
1047SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1048                                      unsigned Alignment, int Offset,
1049                                      bool isTarget,
1050                                      unsigned char TargetFlags) {
1051  assert((TargetFlags == 0 || isTarget) &&
1052         "Cannot set target flags on target-independent globals");
1053  if (Alignment == 0)
1054    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1055  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1056  FoldingSetNodeID ID;
1057  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1058  ID.AddInteger(Alignment);
1059  ID.AddInteger(Offset);
1060  ID.AddPointer(C);
1061  ID.AddInteger(TargetFlags);
1062  void *IP = 0;
1063  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1064    return SDValue(E, 0);
1065
1066  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1067                                                     Alignment, TargetFlags);
1068  CSEMap.InsertNode(N, IP);
1069  AllNodes.push_back(N);
1070  return SDValue(N, 0);
1071}
1072
1073
1074SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1075                                      unsigned Alignment, int Offset,
1076                                      bool isTarget,
1077                                      unsigned char TargetFlags) {
1078  assert((TargetFlags == 0 || isTarget) &&
1079         "Cannot set target flags on target-independent globals");
1080  if (Alignment == 0)
1081    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1082  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1083  FoldingSetNodeID ID;
1084  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1085  ID.AddInteger(Alignment);
1086  ID.AddInteger(Offset);
1087  C->AddSelectionDAGCSEId(ID);
1088  ID.AddInteger(TargetFlags);
1089  void *IP = 0;
1090  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1091    return SDValue(E, 0);
1092
1093  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1094                                                     Alignment, TargetFlags);
1095  CSEMap.InsertNode(N, IP);
1096  AllNodes.push_back(N);
1097  return SDValue(N, 0);
1098}
1099
1100SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1101  FoldingSetNodeID ID;
1102  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1103  ID.AddPointer(MBB);
1104  void *IP = 0;
1105  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1106    return SDValue(E, 0);
1107
1108  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1109  CSEMap.InsertNode(N, IP);
1110  AllNodes.push_back(N);
1111  return SDValue(N, 0);
1112}
1113
1114SDValue SelectionDAG::getValueType(EVT VT) {
1115  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1116      ValueTypeNodes.size())
1117    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1118
1119  SDNode *&N = VT.isExtended() ?
1120    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1121
1122  if (N) return SDValue(N, 0);
1123  N = new (NodeAllocator) VTSDNode(VT);
1124  AllNodes.push_back(N);
1125  return SDValue(N, 0);
1126}
1127
1128SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1129  SDNode *&N = ExternalSymbols[Sym];
1130  if (N) return SDValue(N, 0);
1131  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1132  AllNodes.push_back(N);
1133  return SDValue(N, 0);
1134}
1135
1136SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1137                                              unsigned char TargetFlags) {
1138  SDNode *&N =
1139    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1140                                                               TargetFlags)];
1141  if (N) return SDValue(N, 0);
1142  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1148  if ((unsigned)Cond >= CondCodeNodes.size())
1149    CondCodeNodes.resize(Cond+1);
1150
1151  if (CondCodeNodes[Cond] == 0) {
1152    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1153    CondCodeNodes[Cond] = N;
1154    AllNodes.push_back(N);
1155  }
1156
1157  return SDValue(CondCodeNodes[Cond], 0);
1158}
1159
1160// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1161// the shuffle mask M that point at N1 to point at N2, and indices that point
1162// N2 to point at N1.
1163static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1164  std::swap(N1, N2);
1165  int NElts = M.size();
1166  for (int i = 0; i != NElts; ++i) {
1167    if (M[i] >= NElts)
1168      M[i] -= NElts;
1169    else if (M[i] >= 0)
1170      M[i] += NElts;
1171  }
1172}
1173
1174SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1175                                       SDValue N2, const int *Mask) {
1176  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1177  assert(VT.isVector() && N1.getValueType().isVector() &&
1178         "Vector Shuffle VTs must be a vectors");
1179  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1180         && "Vector Shuffle VTs must have same element type");
1181
1182  // Canonicalize shuffle undef, undef -> undef
1183  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1184    return getUNDEF(VT);
1185
1186  // Validate that all indices in Mask are within the range of the elements
1187  // input to the shuffle.
1188  unsigned NElts = VT.getVectorNumElements();
1189  SmallVector<int, 8> MaskVec;
1190  for (unsigned i = 0; i != NElts; ++i) {
1191    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1192    MaskVec.push_back(Mask[i]);
1193  }
1194
1195  // Canonicalize shuffle v, v -> v, undef
1196  if (N1 == N2) {
1197    N2 = getUNDEF(VT);
1198    for (unsigned i = 0; i != NElts; ++i)
1199      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1200  }
1201
1202  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1203  if (N1.getOpcode() == ISD::UNDEF)
1204    commuteShuffle(N1, N2, MaskVec);
1205
1206  // Canonicalize all index into lhs, -> shuffle lhs, undef
1207  // Canonicalize all index into rhs, -> shuffle rhs, undef
1208  bool AllLHS = true, AllRHS = true;
1209  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1210  for (unsigned i = 0; i != NElts; ++i) {
1211    if (MaskVec[i] >= (int)NElts) {
1212      if (N2Undef)
1213        MaskVec[i] = -1;
1214      else
1215        AllLHS = false;
1216    } else if (MaskVec[i] >= 0) {
1217      AllRHS = false;
1218    }
1219  }
1220  if (AllLHS && AllRHS)
1221    return getUNDEF(VT);
1222  if (AllLHS && !N2Undef)
1223    N2 = getUNDEF(VT);
1224  if (AllRHS) {
1225    N1 = getUNDEF(VT);
1226    commuteShuffle(N1, N2, MaskVec);
1227  }
1228
1229  // If Identity shuffle, or all shuffle in to undef, return that node.
1230  bool AllUndef = true;
1231  bool Identity = true;
1232  for (unsigned i = 0; i != NElts; ++i) {
1233    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1234    if (MaskVec[i] >= 0) AllUndef = false;
1235  }
1236  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1237    return N1;
1238  if (AllUndef)
1239    return getUNDEF(VT);
1240
1241  FoldingSetNodeID ID;
1242  SDValue Ops[2] = { N1, N2 };
1243  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1244  for (unsigned i = 0; i != NElts; ++i)
1245    ID.AddInteger(MaskVec[i]);
1246
1247  void* IP = 0;
1248  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1249    return SDValue(E, 0);
1250
1251  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1252  // SDNode doesn't have access to it.  This memory will be "leaked" when
1253  // the node is deallocated, but recovered when the NodeAllocator is released.
1254  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1255  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1256
1257  ShuffleVectorSDNode *N =
1258    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1259  CSEMap.InsertNode(N, IP);
1260  AllNodes.push_back(N);
1261  return SDValue(N, 0);
1262}
1263
1264SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1265                                       SDValue Val, SDValue DTy,
1266                                       SDValue STy, SDValue Rnd, SDValue Sat,
1267                                       ISD::CvtCode Code) {
1268  // If the src and dest types are the same and the conversion is between
1269  // integer types of the same sign or two floats, no conversion is necessary.
1270  if (DTy == STy &&
1271      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1272    return Val;
1273
1274  FoldingSetNodeID ID;
1275  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1276  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1277  void* IP = 0;
1278  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1279    return SDValue(E, 0);
1280
1281  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1282                                                           Code);
1283  CSEMap.InsertNode(N, IP);
1284  AllNodes.push_back(N);
1285  return SDValue(N, 0);
1286}
1287
1288SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1289  FoldingSetNodeID ID;
1290  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1291  ID.AddInteger(RegNo);
1292  void *IP = 0;
1293  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1294    return SDValue(E, 0);
1295
1296  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1297  CSEMap.InsertNode(N, IP);
1298  AllNodes.push_back(N);
1299  return SDValue(N, 0);
1300}
1301
1302SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1303  FoldingSetNodeID ID;
1304  SDValue Ops[] = { Root };
1305  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1306  ID.AddPointer(Label);
1307  void *IP = 0;
1308  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1309    return SDValue(E, 0);
1310
1311  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1312  CSEMap.InsertNode(N, IP);
1313  AllNodes.push_back(N);
1314  return SDValue(N, 0);
1315}
1316
1317
1318SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1319                                      bool isTarget,
1320                                      unsigned char TargetFlags) {
1321  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1322
1323  FoldingSetNodeID ID;
1324  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1325  ID.AddPointer(BA);
1326  ID.AddInteger(TargetFlags);
1327  void *IP = 0;
1328  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1329    return SDValue(E, 0);
1330
1331  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1332  CSEMap.InsertNode(N, IP);
1333  AllNodes.push_back(N);
1334  return SDValue(N, 0);
1335}
1336
1337SDValue SelectionDAG::getSrcValue(const Value *V) {
1338  assert((!V || V->getType()->isPointerTy()) &&
1339         "SrcValue is not a pointer?");
1340
1341  FoldingSetNodeID ID;
1342  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1343  ID.AddPointer(V);
1344
1345  void *IP = 0;
1346  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1347    return SDValue(E, 0);
1348
1349  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1350  CSEMap.InsertNode(N, IP);
1351  AllNodes.push_back(N);
1352  return SDValue(N, 0);
1353}
1354
1355/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1356SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1357  FoldingSetNodeID ID;
1358  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1359  ID.AddPointer(MD);
1360
1361  void *IP = 0;
1362  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1363    return SDValue(E, 0);
1364
1365  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1366  CSEMap.InsertNode(N, IP);
1367  AllNodes.push_back(N);
1368  return SDValue(N, 0);
1369}
1370
1371
1372/// getShiftAmountOperand - Return the specified value casted to
1373/// the target's desired shift amount type.
1374SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1375  EVT OpTy = Op.getValueType();
1376  MVT ShTy = TLI.getShiftAmountTy();
1377  if (OpTy == ShTy || OpTy.isVector()) return Op;
1378
1379  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1380  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1381}
1382
1383/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1384/// specified value type.
1385SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1386  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1387  unsigned ByteSize = VT.getStoreSize();
1388  const Type *Ty = VT.getTypeForEVT(*getContext());
1389  unsigned StackAlign =
1390  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1391
1392  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1393  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1394}
1395
1396/// CreateStackTemporary - Create a stack temporary suitable for holding
1397/// either of the specified value types.
1398SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1399  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1400                            VT2.getStoreSizeInBits())/8;
1401  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1402  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1403  const TargetData *TD = TLI.getTargetData();
1404  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1405                            TD->getPrefTypeAlignment(Ty2));
1406
1407  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1408  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1409  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1410}
1411
1412SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1413                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1414  // These setcc operations always fold.
1415  switch (Cond) {
1416  default: break;
1417  case ISD::SETFALSE:
1418  case ISD::SETFALSE2: return getConstant(0, VT);
1419  case ISD::SETTRUE:
1420  case ISD::SETTRUE2:  return getConstant(1, VT);
1421
1422  case ISD::SETOEQ:
1423  case ISD::SETOGT:
1424  case ISD::SETOGE:
1425  case ISD::SETOLT:
1426  case ISD::SETOLE:
1427  case ISD::SETONE:
1428  case ISD::SETO:
1429  case ISD::SETUO:
1430  case ISD::SETUEQ:
1431  case ISD::SETUNE:
1432    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1433    break;
1434  }
1435
1436  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1437    const APInt &C2 = N2C->getAPIntValue();
1438    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1439      const APInt &C1 = N1C->getAPIntValue();
1440
1441      switch (Cond) {
1442      default: llvm_unreachable("Unknown integer setcc!");
1443      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1444      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1445      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1446      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1447      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1448      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1449      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1450      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1451      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1452      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1453      }
1454    }
1455  }
1456  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1457    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1458      // No compile time operations on this type yet.
1459      if (N1C->getValueType(0) == MVT::ppcf128)
1460        return SDValue();
1461
1462      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1463      switch (Cond) {
1464      default: break;
1465      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1466                          return getUNDEF(VT);
1467                        // fall through
1468      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1469      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1470                          return getUNDEF(VT);
1471                        // fall through
1472      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1473                                           R==APFloat::cmpLessThan, VT);
1474      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1475                          return getUNDEF(VT);
1476                        // fall through
1477      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1478      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1479                          return getUNDEF(VT);
1480                        // fall through
1481      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1482      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1483                          return getUNDEF(VT);
1484                        // fall through
1485      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1486                                           R==APFloat::cmpEqual, VT);
1487      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1488                          return getUNDEF(VT);
1489                        // fall through
1490      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1491                                           R==APFloat::cmpEqual, VT);
1492      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1493      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1494      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1495                                           R==APFloat::cmpEqual, VT);
1496      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1497      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1498                                           R==APFloat::cmpLessThan, VT);
1499      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1500                                           R==APFloat::cmpUnordered, VT);
1501      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1502      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1503      }
1504    } else {
1505      // Ensure that the constant occurs on the RHS.
1506      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1507    }
1508  }
1509
1510  // Could not fold it.
1511  return SDValue();
1512}
1513
1514/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1515/// use this predicate to simplify operations downstream.
1516bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1517  // This predicate is not safe for vector operations.
1518  if (Op.getValueType().isVector())
1519    return false;
1520
1521  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1522  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1523}
1524
1525/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1526/// this predicate to simplify operations downstream.  Mask is known to be zero
1527/// for bits that V cannot have.
1528bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1529                                     unsigned Depth) const {
1530  APInt KnownZero, KnownOne;
1531  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1532  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1533  return (KnownZero & Mask) == Mask;
1534}
1535
1536/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1537/// known to be either zero or one and return them in the KnownZero/KnownOne
1538/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1539/// processing.
1540void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1541                                     APInt &KnownZero, APInt &KnownOne,
1542                                     unsigned Depth) const {
1543  unsigned BitWidth = Mask.getBitWidth();
1544  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1545         "Mask size mismatches value type size!");
1546
1547  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1548  if (Depth == 6 || Mask == 0)
1549    return;  // Limit search depth.
1550
1551  APInt KnownZero2, KnownOne2;
1552
1553  switch (Op.getOpcode()) {
1554  case ISD::Constant:
1555    // We know all of the bits for a constant!
1556    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1557    KnownZero = ~KnownOne & Mask;
1558    return;
1559  case ISD::AND:
1560    // If either the LHS or the RHS are Zero, the result is zero.
1561    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1562    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1563                      KnownZero2, KnownOne2, Depth+1);
1564    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1565    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1566
1567    // Output known-1 bits are only known if set in both the LHS & RHS.
1568    KnownOne &= KnownOne2;
1569    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1570    KnownZero |= KnownZero2;
1571    return;
1572  case ISD::OR:
1573    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1574    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1575                      KnownZero2, KnownOne2, Depth+1);
1576    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1577    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1578
1579    // Output known-0 bits are only known if clear in both the LHS & RHS.
1580    KnownZero &= KnownZero2;
1581    // Output known-1 are known to be set if set in either the LHS | RHS.
1582    KnownOne |= KnownOne2;
1583    return;
1584  case ISD::XOR: {
1585    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1586    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1587    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1588    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1589
1590    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1591    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1592    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1593    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1594    KnownZero = KnownZeroOut;
1595    return;
1596  }
1597  case ISD::MUL: {
1598    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1599    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1600    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1601    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1602    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1603
1604    // If low bits are zero in either operand, output low known-0 bits.
1605    // Also compute a conserative estimate for high known-0 bits.
1606    // More trickiness is possible, but this is sufficient for the
1607    // interesting case of alignment computation.
1608    KnownOne.clear();
1609    unsigned TrailZ = KnownZero.countTrailingOnes() +
1610                      KnownZero2.countTrailingOnes();
1611    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1612                               KnownZero2.countLeadingOnes(),
1613                               BitWidth) - BitWidth;
1614
1615    TrailZ = std::min(TrailZ, BitWidth);
1616    LeadZ = std::min(LeadZ, BitWidth);
1617    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1618                APInt::getHighBitsSet(BitWidth, LeadZ);
1619    KnownZero &= Mask;
1620    return;
1621  }
1622  case ISD::UDIV: {
1623    // For the purposes of computing leading zeros we can conservatively
1624    // treat a udiv as a logical right shift by the power of 2 known to
1625    // be less than the denominator.
1626    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1627    ComputeMaskedBits(Op.getOperand(0),
1628                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1629    unsigned LeadZ = KnownZero2.countLeadingOnes();
1630
1631    KnownOne2.clear();
1632    KnownZero2.clear();
1633    ComputeMaskedBits(Op.getOperand(1),
1634                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1635    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1636    if (RHSUnknownLeadingOnes != BitWidth)
1637      LeadZ = std::min(BitWidth,
1638                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1639
1640    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1641    return;
1642  }
1643  case ISD::SELECT:
1644    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1645    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1646    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1647    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1648
1649    // Only known if known in both the LHS and RHS.
1650    KnownOne &= KnownOne2;
1651    KnownZero &= KnownZero2;
1652    return;
1653  case ISD::SELECT_CC:
1654    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1655    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1656    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1657    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1658
1659    // Only known if known in both the LHS and RHS.
1660    KnownOne &= KnownOne2;
1661    KnownZero &= KnownZero2;
1662    return;
1663  case ISD::SADDO:
1664  case ISD::UADDO:
1665  case ISD::SSUBO:
1666  case ISD::USUBO:
1667  case ISD::SMULO:
1668  case ISD::UMULO:
1669    if (Op.getResNo() != 1)
1670      return;
1671    // The boolean result conforms to getBooleanContents.  Fall through.
1672  case ISD::SETCC:
1673    // If we know the result of a setcc has the top bits zero, use this info.
1674    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1675        BitWidth > 1)
1676      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1677    return;
1678  case ISD::SHL:
1679    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1680    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1681      unsigned ShAmt = SA->getZExtValue();
1682
1683      // If the shift count is an invalid immediate, don't do anything.
1684      if (ShAmt >= BitWidth)
1685        return;
1686
1687      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1688                        KnownZero, KnownOne, Depth+1);
1689      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1690      KnownZero <<= ShAmt;
1691      KnownOne  <<= ShAmt;
1692      // low bits known zero.
1693      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1694    }
1695    return;
1696  case ISD::SRL:
1697    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1698    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1699      unsigned ShAmt = SA->getZExtValue();
1700
1701      // If the shift count is an invalid immediate, don't do anything.
1702      if (ShAmt >= BitWidth)
1703        return;
1704
1705      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1706                        KnownZero, KnownOne, Depth+1);
1707      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1708      KnownZero = KnownZero.lshr(ShAmt);
1709      KnownOne  = KnownOne.lshr(ShAmt);
1710
1711      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1712      KnownZero |= HighBits;  // High bits known zero.
1713    }
1714    return;
1715  case ISD::SRA:
1716    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1717      unsigned ShAmt = SA->getZExtValue();
1718
1719      // If the shift count is an invalid immediate, don't do anything.
1720      if (ShAmt >= BitWidth)
1721        return;
1722
1723      APInt InDemandedMask = (Mask << ShAmt);
1724      // If any of the demanded bits are produced by the sign extension, we also
1725      // demand the input sign bit.
1726      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1727      if (HighBits.getBoolValue())
1728        InDemandedMask |= APInt::getSignBit(BitWidth);
1729
1730      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1731                        Depth+1);
1732      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1733      KnownZero = KnownZero.lshr(ShAmt);
1734      KnownOne  = KnownOne.lshr(ShAmt);
1735
1736      // Handle the sign bits.
1737      APInt SignBit = APInt::getSignBit(BitWidth);
1738      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1739
1740      if (KnownZero.intersects(SignBit)) {
1741        KnownZero |= HighBits;  // New bits are known zero.
1742      } else if (KnownOne.intersects(SignBit)) {
1743        KnownOne  |= HighBits;  // New bits are known one.
1744      }
1745    }
1746    return;
1747  case ISD::SIGN_EXTEND_INREG: {
1748    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1749    unsigned EBits = EVT.getScalarType().getSizeInBits();
1750
1751    // Sign extension.  Compute the demanded bits in the result that are not
1752    // present in the input.
1753    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1754
1755    APInt InSignBit = APInt::getSignBit(EBits);
1756    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1757
1758    // If the sign extended bits are demanded, we know that the sign
1759    // bit is demanded.
1760    InSignBit.zext(BitWidth);
1761    if (NewBits.getBoolValue())
1762      InputDemandedBits |= InSignBit;
1763
1764    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1765                      KnownZero, KnownOne, Depth+1);
1766    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1767
1768    // If the sign bit of the input is known set or clear, then we know the
1769    // top bits of the result.
1770    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1771      KnownZero |= NewBits;
1772      KnownOne  &= ~NewBits;
1773    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1774      KnownOne  |= NewBits;
1775      KnownZero &= ~NewBits;
1776    } else {                              // Input sign bit unknown
1777      KnownZero &= ~NewBits;
1778      KnownOne  &= ~NewBits;
1779    }
1780    return;
1781  }
1782  case ISD::CTTZ:
1783  case ISD::CTLZ:
1784  case ISD::CTPOP: {
1785    unsigned LowBits = Log2_32(BitWidth)+1;
1786    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1787    KnownOne.clear();
1788    return;
1789  }
1790  case ISD::LOAD: {
1791    if (ISD::isZEXTLoad(Op.getNode())) {
1792      LoadSDNode *LD = cast<LoadSDNode>(Op);
1793      EVT VT = LD->getMemoryVT();
1794      unsigned MemBits = VT.getScalarType().getSizeInBits();
1795      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1796    }
1797    return;
1798  }
1799  case ISD::ZERO_EXTEND: {
1800    EVT InVT = Op.getOperand(0).getValueType();
1801    unsigned InBits = InVT.getScalarType().getSizeInBits();
1802    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1803    APInt InMask    = Mask;
1804    InMask.trunc(InBits);
1805    KnownZero.trunc(InBits);
1806    KnownOne.trunc(InBits);
1807    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1808    KnownZero.zext(BitWidth);
1809    KnownOne.zext(BitWidth);
1810    KnownZero |= NewBits;
1811    return;
1812  }
1813  case ISD::SIGN_EXTEND: {
1814    EVT InVT = Op.getOperand(0).getValueType();
1815    unsigned InBits = InVT.getScalarType().getSizeInBits();
1816    APInt InSignBit = APInt::getSignBit(InBits);
1817    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1818    APInt InMask = Mask;
1819    InMask.trunc(InBits);
1820
1821    // If any of the sign extended bits are demanded, we know that the sign
1822    // bit is demanded. Temporarily set this bit in the mask for our callee.
1823    if (NewBits.getBoolValue())
1824      InMask |= InSignBit;
1825
1826    KnownZero.trunc(InBits);
1827    KnownOne.trunc(InBits);
1828    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1829
1830    // Note if the sign bit is known to be zero or one.
1831    bool SignBitKnownZero = KnownZero.isNegative();
1832    bool SignBitKnownOne  = KnownOne.isNegative();
1833    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1834           "Sign bit can't be known to be both zero and one!");
1835
1836    // If the sign bit wasn't actually demanded by our caller, we don't
1837    // want it set in the KnownZero and KnownOne result values. Reset the
1838    // mask and reapply it to the result values.
1839    InMask = Mask;
1840    InMask.trunc(InBits);
1841    KnownZero &= InMask;
1842    KnownOne  &= InMask;
1843
1844    KnownZero.zext(BitWidth);
1845    KnownOne.zext(BitWidth);
1846
1847    // If the sign bit is known zero or one, the top bits match.
1848    if (SignBitKnownZero)
1849      KnownZero |= NewBits;
1850    else if (SignBitKnownOne)
1851      KnownOne  |= NewBits;
1852    return;
1853  }
1854  case ISD::ANY_EXTEND: {
1855    EVT InVT = Op.getOperand(0).getValueType();
1856    unsigned InBits = InVT.getScalarType().getSizeInBits();
1857    APInt InMask = Mask;
1858    InMask.trunc(InBits);
1859    KnownZero.trunc(InBits);
1860    KnownOne.trunc(InBits);
1861    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1862    KnownZero.zext(BitWidth);
1863    KnownOne.zext(BitWidth);
1864    return;
1865  }
1866  case ISD::TRUNCATE: {
1867    EVT InVT = Op.getOperand(0).getValueType();
1868    unsigned InBits = InVT.getScalarType().getSizeInBits();
1869    APInt InMask = Mask;
1870    InMask.zext(InBits);
1871    KnownZero.zext(InBits);
1872    KnownOne.zext(InBits);
1873    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1875    KnownZero.trunc(BitWidth);
1876    KnownOne.trunc(BitWidth);
1877    break;
1878  }
1879  case ISD::AssertZext: {
1880    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1881    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1882    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1883                      KnownOne, Depth+1);
1884    KnownZero |= (~InMask) & Mask;
1885    return;
1886  }
1887  case ISD::FGETSIGN:
1888    // All bits are zero except the low bit.
1889    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1890    return;
1891
1892  case ISD::SUB: {
1893    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1894      // We know that the top bits of C-X are clear if X contains less bits
1895      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1896      // positive if we can prove that X is >= 0 and < 16.
1897      if (CLHS->getAPIntValue().isNonNegative()) {
1898        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1899        // NLZ can't be BitWidth with no sign bit
1900        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1901        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1902                          Depth+1);
1903
1904        // If all of the MaskV bits are known to be zero, then we know the
1905        // output top bits are zero, because we now know that the output is
1906        // from [0-C].
1907        if ((KnownZero2 & MaskV) == MaskV) {
1908          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1909          // Top bits known zero.
1910          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1911        }
1912      }
1913    }
1914  }
1915  // fall through
1916  case ISD::ADD: {
1917    // Output known-0 bits are known if clear or set in both the low clear bits
1918    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1919    // low 3 bits clear.
1920    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1921                                       BitWidth - Mask.countLeadingZeros());
1922    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1923    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1924    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1925
1926    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1927    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1928    KnownZeroOut = std::min(KnownZeroOut,
1929                            KnownZero2.countTrailingOnes());
1930
1931    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1932    return;
1933  }
1934  case ISD::SREM:
1935    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1936      const APInt &RA = Rem->getAPIntValue().abs();
1937      if (RA.isPowerOf2()) {
1938        APInt LowBits = RA - 1;
1939        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1940        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1941
1942        // The low bits of the first operand are unchanged by the srem.
1943        KnownZero = KnownZero2 & LowBits;
1944        KnownOne = KnownOne2 & LowBits;
1945
1946        // If the first operand is non-negative or has all low bits zero, then
1947        // the upper bits are all zero.
1948        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1949          KnownZero |= ~LowBits;
1950
1951        // If the first operand is negative and not all low bits are zero, then
1952        // the upper bits are all one.
1953        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1954          KnownOne |= ~LowBits;
1955
1956        KnownZero &= Mask;
1957        KnownOne &= Mask;
1958
1959        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1960      }
1961    }
1962    return;
1963  case ISD::UREM: {
1964    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1965      const APInt &RA = Rem->getAPIntValue();
1966      if (RA.isPowerOf2()) {
1967        APInt LowBits = (RA - 1);
1968        APInt Mask2 = LowBits & Mask;
1969        KnownZero |= ~LowBits & Mask;
1970        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1971        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1972        break;
1973      }
1974    }
1975
1976    // Since the result is less than or equal to either operand, any leading
1977    // zero bits in either operand must also exist in the result.
1978    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1979    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1980                      Depth+1);
1981    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1982                      Depth+1);
1983
1984    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1985                                KnownZero2.countLeadingOnes());
1986    KnownOne.clear();
1987    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1988    return;
1989  }
1990  default:
1991    // Allow the target to implement this method for its nodes.
1992    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1993  case ISD::INTRINSIC_WO_CHAIN:
1994  case ISD::INTRINSIC_W_CHAIN:
1995  case ISD::INTRINSIC_VOID:
1996      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1997                                         Depth);
1998    }
1999    return;
2000  }
2001}
2002
2003/// ComputeNumSignBits - Return the number of times the sign bit of the
2004/// register is replicated into the other bits.  We know that at least 1 bit
2005/// is always equal to the sign bit (itself), but other cases can give us
2006/// information.  For example, immediately after an "SRA X, 2", we know that
2007/// the top 3 bits are all equal to each other, so we return 3.
2008unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2009  EVT VT = Op.getValueType();
2010  assert(VT.isInteger() && "Invalid VT!");
2011  unsigned VTBits = VT.getScalarType().getSizeInBits();
2012  unsigned Tmp, Tmp2;
2013  unsigned FirstAnswer = 1;
2014
2015  if (Depth == 6)
2016    return 1;  // Limit search depth.
2017
2018  switch (Op.getOpcode()) {
2019  default: break;
2020  case ISD::AssertSext:
2021    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2022    return VTBits-Tmp+1;
2023  case ISD::AssertZext:
2024    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2025    return VTBits-Tmp;
2026
2027  case ISD::Constant: {
2028    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2029    // If negative, return # leading ones.
2030    if (Val.isNegative())
2031      return Val.countLeadingOnes();
2032
2033    // Return # leading zeros.
2034    return Val.countLeadingZeros();
2035  }
2036
2037  case ISD::SIGN_EXTEND:
2038    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2039    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2040
2041  case ISD::SIGN_EXTEND_INREG:
2042    // Max of the input and what this extends.
2043    Tmp =
2044      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2045    Tmp = VTBits-Tmp+1;
2046
2047    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2048    return std::max(Tmp, Tmp2);
2049
2050  case ISD::SRA:
2051    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2052    // SRA X, C   -> adds C sign bits.
2053    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2054      Tmp += C->getZExtValue();
2055      if (Tmp > VTBits) Tmp = VTBits;
2056    }
2057    return Tmp;
2058  case ISD::SHL:
2059    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2060      // shl destroys sign bits.
2061      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2062      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2063          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2064      return Tmp - C->getZExtValue();
2065    }
2066    break;
2067  case ISD::AND:
2068  case ISD::OR:
2069  case ISD::XOR:    // NOT is handled here.
2070    // Logical binary ops preserve the number of sign bits at the worst.
2071    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2072    if (Tmp != 1) {
2073      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2074      FirstAnswer = std::min(Tmp, Tmp2);
2075      // We computed what we know about the sign bits as our first
2076      // answer. Now proceed to the generic code that uses
2077      // ComputeMaskedBits, and pick whichever answer is better.
2078    }
2079    break;
2080
2081  case ISD::SELECT:
2082    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2083    if (Tmp == 1) return 1;  // Early out.
2084    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2085    return std::min(Tmp, Tmp2);
2086
2087  case ISD::SADDO:
2088  case ISD::UADDO:
2089  case ISD::SSUBO:
2090  case ISD::USUBO:
2091  case ISD::SMULO:
2092  case ISD::UMULO:
2093    if (Op.getResNo() != 1)
2094      break;
2095    // The boolean result conforms to getBooleanContents.  Fall through.
2096  case ISD::SETCC:
2097    // If setcc returns 0/-1, all bits are sign bits.
2098    if (TLI.getBooleanContents() ==
2099        TargetLowering::ZeroOrNegativeOneBooleanContent)
2100      return VTBits;
2101    break;
2102  case ISD::ROTL:
2103  case ISD::ROTR:
2104    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2105      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2106
2107      // Handle rotate right by N like a rotate left by 32-N.
2108      if (Op.getOpcode() == ISD::ROTR)
2109        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2110
2111      // If we aren't rotating out all of the known-in sign bits, return the
2112      // number that are left.  This handles rotl(sext(x), 1) for example.
2113      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2114      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2115    }
2116    break;
2117  case ISD::ADD:
2118    // Add can have at most one carry bit.  Thus we know that the output
2119    // is, at worst, one more bit than the inputs.
2120    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2121    if (Tmp == 1) return 1;  // Early out.
2122
2123    // Special case decrementing a value (ADD X, -1):
2124    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2125      if (CRHS->isAllOnesValue()) {
2126        APInt KnownZero, KnownOne;
2127        APInt Mask = APInt::getAllOnesValue(VTBits);
2128        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2129
2130        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2131        // sign bits set.
2132        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2133          return VTBits;
2134
2135        // If we are subtracting one from a positive number, there is no carry
2136        // out of the result.
2137        if (KnownZero.isNegative())
2138          return Tmp;
2139      }
2140
2141    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2142    if (Tmp2 == 1) return 1;
2143      return std::min(Tmp, Tmp2)-1;
2144    break;
2145
2146  case ISD::SUB:
2147    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2148    if (Tmp2 == 1) return 1;
2149
2150    // Handle NEG.
2151    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2152      if (CLHS->isNullValue()) {
2153        APInt KnownZero, KnownOne;
2154        APInt Mask = APInt::getAllOnesValue(VTBits);
2155        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2156        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2157        // sign bits set.
2158        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2159          return VTBits;
2160
2161        // If the input is known to be positive (the sign bit is known clear),
2162        // the output of the NEG has the same number of sign bits as the input.
2163        if (KnownZero.isNegative())
2164          return Tmp2;
2165
2166        // Otherwise, we treat this like a SUB.
2167      }
2168
2169    // Sub can have at most one carry bit.  Thus we know that the output
2170    // is, at worst, one more bit than the inputs.
2171    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2172    if (Tmp == 1) return 1;  // Early out.
2173      return std::min(Tmp, Tmp2)-1;
2174    break;
2175  case ISD::TRUNCATE:
2176    // FIXME: it's tricky to do anything useful for this, but it is an important
2177    // case for targets like X86.
2178    break;
2179  }
2180
2181  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2182  if (Op.getOpcode() == ISD::LOAD) {
2183    LoadSDNode *LD = cast<LoadSDNode>(Op);
2184    unsigned ExtType = LD->getExtensionType();
2185    switch (ExtType) {
2186    default: break;
2187    case ISD::SEXTLOAD:    // '17' bits known
2188      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2189      return VTBits-Tmp+1;
2190    case ISD::ZEXTLOAD:    // '16' bits known
2191      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2192      return VTBits-Tmp;
2193    }
2194  }
2195
2196  // Allow the target to implement this method for its nodes.
2197  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2198      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2199      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2200      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2201    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2202    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2203  }
2204
2205  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2206  // use this information.
2207  APInt KnownZero, KnownOne;
2208  APInt Mask = APInt::getAllOnesValue(VTBits);
2209  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2210
2211  if (KnownZero.isNegative()) {        // sign bit is 0
2212    Mask = KnownZero;
2213  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2214    Mask = KnownOne;
2215  } else {
2216    // Nothing known.
2217    return FirstAnswer;
2218  }
2219
2220  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2221  // the number of identical bits in the top of the input value.
2222  Mask = ~Mask;
2223  Mask <<= Mask.getBitWidth()-VTBits;
2224  // Return # leading zeros.  We use 'min' here in case Val was zero before
2225  // shifting.  We don't want to return '64' as for an i32 "0".
2226  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2227}
2228
2229bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2230  // If we're told that NaNs won't happen, assume they won't.
2231  if (FiniteOnlyFPMath())
2232    return true;
2233
2234  // If the value is a constant, we can obviously see if it is a NaN or not.
2235  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2236    return !C->getValueAPF().isNaN();
2237
2238  // TODO: Recognize more cases here.
2239
2240  return false;
2241}
2242
2243bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2244  // If the value is a constant, we can obviously see if it is a zero or not.
2245  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2246    return !C->isZero();
2247
2248  // TODO: Recognize more cases here.
2249
2250  return false;
2251}
2252
2253bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2254  // Check the obvious case.
2255  if (A == B) return true;
2256
2257  // For for negative and positive zero.
2258  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2259    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2260      if (CA->isZero() && CB->isZero()) return true;
2261
2262  // Otherwise they may not be equal.
2263  return false;
2264}
2265
2266bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2267  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2268  if (!GA) return false;
2269  if (GA->getOffset() != 0) return false;
2270  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2271  if (!GV) return false;
2272  return MF->getMMI().hasDebugInfo();
2273}
2274
2275
2276/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2277/// element of the result of the vector shuffle.
2278SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2279                                          unsigned i) {
2280  EVT VT = N->getValueType(0);
2281  DebugLoc dl = N->getDebugLoc();
2282  if (N->getMaskElt(i) < 0)
2283    return getUNDEF(VT.getVectorElementType());
2284  unsigned Index = N->getMaskElt(i);
2285  unsigned NumElems = VT.getVectorNumElements();
2286  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2287  Index %= NumElems;
2288
2289  if (V.getOpcode() == ISD::BIT_CONVERT) {
2290    V = V.getOperand(0);
2291    EVT VVT = V.getValueType();
2292    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2293      return SDValue();
2294  }
2295  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2296    return (Index == 0) ? V.getOperand(0)
2297                      : getUNDEF(VT.getVectorElementType());
2298  if (V.getOpcode() == ISD::BUILD_VECTOR)
2299    return V.getOperand(Index);
2300  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2301    return getShuffleScalarElt(SVN, Index);
2302  return SDValue();
2303}
2304
2305
2306/// getNode - Gets or creates the specified node.
2307///
2308SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2309  FoldingSetNodeID ID;
2310  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2311  void *IP = 0;
2312  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2313    return SDValue(E, 0);
2314
2315  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2316  CSEMap.InsertNode(N, IP);
2317
2318  AllNodes.push_back(N);
2319#ifndef NDEBUG
2320  VerifyNode(N);
2321#endif
2322  return SDValue(N, 0);
2323}
2324
2325SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2326                              EVT VT, SDValue Operand) {
2327  // Constant fold unary operations with an integer constant operand.
2328  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2329    const APInt &Val = C->getAPIntValue();
2330    switch (Opcode) {
2331    default: break;
2332    case ISD::SIGN_EXTEND:
2333      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2334    case ISD::ANY_EXTEND:
2335    case ISD::ZERO_EXTEND:
2336    case ISD::TRUNCATE:
2337      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2338    case ISD::UINT_TO_FP:
2339    case ISD::SINT_TO_FP: {
2340      const uint64_t zero[] = {0, 0};
2341      // No compile time operations on ppcf128.
2342      if (VT == MVT::ppcf128) break;
2343      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2344      (void)apf.convertFromAPInt(Val,
2345                                 Opcode==ISD::SINT_TO_FP,
2346                                 APFloat::rmNearestTiesToEven);
2347      return getConstantFP(apf, VT);
2348    }
2349    case ISD::BIT_CONVERT:
2350      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2351        return getConstantFP(Val.bitsToFloat(), VT);
2352      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2353        return getConstantFP(Val.bitsToDouble(), VT);
2354      break;
2355    case ISD::BSWAP:
2356      return getConstant(Val.byteSwap(), VT);
2357    case ISD::CTPOP:
2358      return getConstant(Val.countPopulation(), VT);
2359    case ISD::CTLZ:
2360      return getConstant(Val.countLeadingZeros(), VT);
2361    case ISD::CTTZ:
2362      return getConstant(Val.countTrailingZeros(), VT);
2363    }
2364  }
2365
2366  // Constant fold unary operations with a floating point constant operand.
2367  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2368    APFloat V = C->getValueAPF();    // make copy
2369    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2370      switch (Opcode) {
2371      case ISD::FNEG:
2372        V.changeSign();
2373        return getConstantFP(V, VT);
2374      case ISD::FABS:
2375        V.clearSign();
2376        return getConstantFP(V, VT);
2377      case ISD::FP_ROUND:
2378      case ISD::FP_EXTEND: {
2379        bool ignored;
2380        // This can return overflow, underflow, or inexact; we don't care.
2381        // FIXME need to be more flexible about rounding mode.
2382        (void)V.convert(*EVTToAPFloatSemantics(VT),
2383                        APFloat::rmNearestTiesToEven, &ignored);
2384        return getConstantFP(V, VT);
2385      }
2386      case ISD::FP_TO_SINT:
2387      case ISD::FP_TO_UINT: {
2388        integerPart x[2];
2389        bool ignored;
2390        assert(integerPartWidth >= 64);
2391        // FIXME need to be more flexible about rounding mode.
2392        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2393                              Opcode==ISD::FP_TO_SINT,
2394                              APFloat::rmTowardZero, &ignored);
2395        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2396          break;
2397        APInt api(VT.getSizeInBits(), 2, x);
2398        return getConstant(api, VT);
2399      }
2400      case ISD::BIT_CONVERT:
2401        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2402          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2403        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2404          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2405        break;
2406      }
2407    }
2408  }
2409
2410  unsigned OpOpcode = Operand.getNode()->getOpcode();
2411  switch (Opcode) {
2412  case ISD::TokenFactor:
2413  case ISD::MERGE_VALUES:
2414  case ISD::CONCAT_VECTORS:
2415    return Operand;         // Factor, merge or concat of one node?  No need.
2416  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2417  case ISD::FP_EXTEND:
2418    assert(VT.isFloatingPoint() &&
2419           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2420    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2421    assert((!VT.isVector() ||
2422            VT.getVectorNumElements() ==
2423            Operand.getValueType().getVectorNumElements()) &&
2424           "Vector element count mismatch!");
2425    if (Operand.getOpcode() == ISD::UNDEF)
2426      return getUNDEF(VT);
2427    break;
2428  case ISD::SIGN_EXTEND:
2429    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2430           "Invalid SIGN_EXTEND!");
2431    if (Operand.getValueType() == VT) return Operand;   // noop extension
2432    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2433           "Invalid sext node, dst < src!");
2434    assert((!VT.isVector() ||
2435            VT.getVectorNumElements() ==
2436            Operand.getValueType().getVectorNumElements()) &&
2437           "Vector element count mismatch!");
2438    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2439      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2440    break;
2441  case ISD::ZERO_EXTEND:
2442    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2443           "Invalid ZERO_EXTEND!");
2444    if (Operand.getValueType() == VT) return Operand;   // noop extension
2445    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2446           "Invalid zext node, dst < src!");
2447    assert((!VT.isVector() ||
2448            VT.getVectorNumElements() ==
2449            Operand.getValueType().getVectorNumElements()) &&
2450           "Vector element count mismatch!");
2451    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2452      return getNode(ISD::ZERO_EXTEND, DL, VT,
2453                     Operand.getNode()->getOperand(0));
2454    break;
2455  case ISD::ANY_EXTEND:
2456    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2457           "Invalid ANY_EXTEND!");
2458    if (Operand.getValueType() == VT) return Operand;   // noop extension
2459    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2460           "Invalid anyext node, dst < src!");
2461    assert((!VT.isVector() ||
2462            VT.getVectorNumElements() ==
2463            Operand.getValueType().getVectorNumElements()) &&
2464           "Vector element count mismatch!");
2465    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2466      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2467      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2468    break;
2469  case ISD::TRUNCATE:
2470    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2471           "Invalid TRUNCATE!");
2472    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2473    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2474           "Invalid truncate node, src < dst!");
2475    assert((!VT.isVector() ||
2476            VT.getVectorNumElements() ==
2477            Operand.getValueType().getVectorNumElements()) &&
2478           "Vector element count mismatch!");
2479    if (OpOpcode == ISD::TRUNCATE)
2480      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2481    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2482             OpOpcode == ISD::ANY_EXTEND) {
2483      // If the source is smaller than the dest, we still need an extend.
2484      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2485            .bitsLT(VT.getScalarType()))
2486        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2487      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2488        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2489      else
2490        return Operand.getNode()->getOperand(0);
2491    }
2492    break;
2493  case ISD::BIT_CONVERT:
2494    // Basic sanity checking.
2495    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2496           && "Cannot BIT_CONVERT between types of different sizes!");
2497    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2498    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2499      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2500    if (OpOpcode == ISD::UNDEF)
2501      return getUNDEF(VT);
2502    break;
2503  case ISD::SCALAR_TO_VECTOR:
2504    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2505           (VT.getVectorElementType() == Operand.getValueType() ||
2506            (VT.getVectorElementType().isInteger() &&
2507             Operand.getValueType().isInteger() &&
2508             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2509           "Illegal SCALAR_TO_VECTOR node!");
2510    if (OpOpcode == ISD::UNDEF)
2511      return getUNDEF(VT);
2512    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2513    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2514        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2515        Operand.getConstantOperandVal(1) == 0 &&
2516        Operand.getOperand(0).getValueType() == VT)
2517      return Operand.getOperand(0);
2518    break;
2519  case ISD::FNEG:
2520    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2521    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2522      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2523                     Operand.getNode()->getOperand(0));
2524    if (OpOpcode == ISD::FNEG)  // --X -> X
2525      return Operand.getNode()->getOperand(0);
2526    break;
2527  case ISD::FABS:
2528    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2529      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2530    break;
2531  }
2532
2533  SDNode *N;
2534  SDVTList VTs = getVTList(VT);
2535  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2536    FoldingSetNodeID ID;
2537    SDValue Ops[1] = { Operand };
2538    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2539    void *IP = 0;
2540    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2541      return SDValue(E, 0);
2542
2543    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2544    CSEMap.InsertNode(N, IP);
2545  } else {
2546    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2547  }
2548
2549  AllNodes.push_back(N);
2550#ifndef NDEBUG
2551  VerifyNode(N);
2552#endif
2553  return SDValue(N, 0);
2554}
2555
2556SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2557                                             EVT VT,
2558                                             ConstantSDNode *Cst1,
2559                                             ConstantSDNode *Cst2) {
2560  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2561
2562  switch (Opcode) {
2563  case ISD::ADD:  return getConstant(C1 + C2, VT);
2564  case ISD::SUB:  return getConstant(C1 - C2, VT);
2565  case ISD::MUL:  return getConstant(C1 * C2, VT);
2566  case ISD::UDIV:
2567    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2568    break;
2569  case ISD::UREM:
2570    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2571    break;
2572  case ISD::SDIV:
2573    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2574    break;
2575  case ISD::SREM:
2576    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2577    break;
2578  case ISD::AND:  return getConstant(C1 & C2, VT);
2579  case ISD::OR:   return getConstant(C1 | C2, VT);
2580  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2581  case ISD::SHL:  return getConstant(C1 << C2, VT);
2582  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2583  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2584  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2585  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2586  default: break;
2587  }
2588
2589  return SDValue();
2590}
2591
2592SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2593                              SDValue N1, SDValue N2) {
2594  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2595  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2596  switch (Opcode) {
2597  default: break;
2598  case ISD::TokenFactor:
2599    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2600           N2.getValueType() == MVT::Other && "Invalid token factor!");
2601    // Fold trivial token factors.
2602    if (N1.getOpcode() == ISD::EntryToken) return N2;
2603    if (N2.getOpcode() == ISD::EntryToken) return N1;
2604    if (N1 == N2) return N1;
2605    break;
2606  case ISD::CONCAT_VECTORS:
2607    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2608    // one big BUILD_VECTOR.
2609    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2610        N2.getOpcode() == ISD::BUILD_VECTOR) {
2611      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2612      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2613      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2614    }
2615    break;
2616  case ISD::AND:
2617    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2618           N1.getValueType() == VT && "Binary operator types must match!");
2619    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2620    // worth handling here.
2621    if (N2C && N2C->isNullValue())
2622      return N2;
2623    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2624      return N1;
2625    break;
2626  case ISD::OR:
2627  case ISD::XOR:
2628  case ISD::ADD:
2629  case ISD::SUB:
2630    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2631           N1.getValueType() == VT && "Binary operator types must match!");
2632    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2633    // it's worth handling here.
2634    if (N2C && N2C->isNullValue())
2635      return N1;
2636    break;
2637  case ISD::UDIV:
2638  case ISD::UREM:
2639  case ISD::MULHU:
2640  case ISD::MULHS:
2641  case ISD::MUL:
2642  case ISD::SDIV:
2643  case ISD::SREM:
2644    assert(VT.isInteger() && "This operator does not apply to FP types!");
2645    // fall through
2646  case ISD::FADD:
2647  case ISD::FSUB:
2648  case ISD::FMUL:
2649  case ISD::FDIV:
2650  case ISD::FREM:
2651    if (UnsafeFPMath) {
2652      if (Opcode == ISD::FADD) {
2653        // 0+x --> x
2654        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2655          if (CFP->getValueAPF().isZero())
2656            return N2;
2657        // x+0 --> x
2658        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2659          if (CFP->getValueAPF().isZero())
2660            return N1;
2661      } else if (Opcode == ISD::FSUB) {
2662        // x-0 --> x
2663        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2664          if (CFP->getValueAPF().isZero())
2665            return N1;
2666      }
2667    }
2668    assert(N1.getValueType() == N2.getValueType() &&
2669           N1.getValueType() == VT && "Binary operator types must match!");
2670    break;
2671  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2672    assert(N1.getValueType() == VT &&
2673           N1.getValueType().isFloatingPoint() &&
2674           N2.getValueType().isFloatingPoint() &&
2675           "Invalid FCOPYSIGN!");
2676    break;
2677  case ISD::SHL:
2678  case ISD::SRA:
2679  case ISD::SRL:
2680  case ISD::ROTL:
2681  case ISD::ROTR:
2682    assert(VT == N1.getValueType() &&
2683           "Shift operators return type must be the same as their first arg");
2684    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2685           "Shifts only work on integers");
2686
2687    // Always fold shifts of i1 values so the code generator doesn't need to
2688    // handle them.  Since we know the size of the shift has to be less than the
2689    // size of the value, the shift/rotate count is guaranteed to be zero.
2690    if (VT == MVT::i1)
2691      return N1;
2692    if (N2C && N2C->isNullValue())
2693      return N1;
2694    break;
2695  case ISD::FP_ROUND_INREG: {
2696    EVT EVT = cast<VTSDNode>(N2)->getVT();
2697    assert(VT == N1.getValueType() && "Not an inreg round!");
2698    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2699           "Cannot FP_ROUND_INREG integer types");
2700    assert(EVT.isVector() == VT.isVector() &&
2701           "FP_ROUND_INREG type should be vector iff the operand "
2702           "type is vector!");
2703    assert((!EVT.isVector() ||
2704            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2705           "Vector element counts must match in FP_ROUND_INREG");
2706    assert(EVT.bitsLE(VT) && "Not rounding down!");
2707    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2708    break;
2709  }
2710  case ISD::FP_ROUND:
2711    assert(VT.isFloatingPoint() &&
2712           N1.getValueType().isFloatingPoint() &&
2713           VT.bitsLE(N1.getValueType()) &&
2714           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2715    if (N1.getValueType() == VT) return N1;  // noop conversion.
2716    break;
2717  case ISD::AssertSext:
2718  case ISD::AssertZext: {
2719    EVT EVT = cast<VTSDNode>(N2)->getVT();
2720    assert(VT == N1.getValueType() && "Not an inreg extend!");
2721    assert(VT.isInteger() && EVT.isInteger() &&
2722           "Cannot *_EXTEND_INREG FP types");
2723    assert(!EVT.isVector() &&
2724           "AssertSExt/AssertZExt type should be the vector element type "
2725           "rather than the vector type!");
2726    assert(EVT.bitsLE(VT) && "Not extending!");
2727    if (VT == EVT) return N1; // noop assertion.
2728    break;
2729  }
2730  case ISD::SIGN_EXTEND_INREG: {
2731    EVT EVT = cast<VTSDNode>(N2)->getVT();
2732    assert(VT == N1.getValueType() && "Not an inreg extend!");
2733    assert(VT.isInteger() && EVT.isInteger() &&
2734           "Cannot *_EXTEND_INREG FP types");
2735    assert(EVT.isVector() == VT.isVector() &&
2736           "SIGN_EXTEND_INREG type should be vector iff the operand "
2737           "type is vector!");
2738    assert((!EVT.isVector() ||
2739            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2740           "Vector element counts must match in SIGN_EXTEND_INREG");
2741    assert(EVT.bitsLE(VT) && "Not extending!");
2742    if (EVT == VT) return N1;  // Not actually extending
2743
2744    if (N1C) {
2745      APInt Val = N1C->getAPIntValue();
2746      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2747      Val <<= Val.getBitWidth()-FromBits;
2748      Val = Val.ashr(Val.getBitWidth()-FromBits);
2749      return getConstant(Val, VT);
2750    }
2751    break;
2752  }
2753  case ISD::EXTRACT_VECTOR_ELT:
2754    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2755    if (N1.getOpcode() == ISD::UNDEF)
2756      return getUNDEF(VT);
2757
2758    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2759    // expanding copies of large vectors from registers.
2760    if (N2C &&
2761        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2762        N1.getNumOperands() > 0) {
2763      unsigned Factor =
2764        N1.getOperand(0).getValueType().getVectorNumElements();
2765      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2766                     N1.getOperand(N2C->getZExtValue() / Factor),
2767                     getConstant(N2C->getZExtValue() % Factor,
2768                                 N2.getValueType()));
2769    }
2770
2771    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2772    // expanding large vector constants.
2773    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2774      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2775      EVT VEltTy = N1.getValueType().getVectorElementType();
2776      if (Elt.getValueType() != VEltTy) {
2777        // If the vector element type is not legal, the BUILD_VECTOR operands
2778        // are promoted and implicitly truncated.  Make that explicit here.
2779        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2780      }
2781      if (VT != VEltTy) {
2782        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2783        // result is implicitly extended.
2784        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2785      }
2786      return Elt;
2787    }
2788
2789    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2790    // operations are lowered to scalars.
2791    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2792      // If the indices are the same, return the inserted element else
2793      // if the indices are known different, extract the element from
2794      // the original vector.
2795      if (N1.getOperand(2) == N2) {
2796        if (VT == N1.getOperand(1).getValueType())
2797          return N1.getOperand(1);
2798        else
2799          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2800      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2801                 isa<ConstantSDNode>(N2))
2802        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2803    }
2804    break;
2805  case ISD::EXTRACT_ELEMENT:
2806    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2807    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2808           (N1.getValueType().isInteger() == VT.isInteger()) &&
2809           "Wrong types for EXTRACT_ELEMENT!");
2810
2811    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2812    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2813    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2814    if (N1.getOpcode() == ISD::BUILD_PAIR)
2815      return N1.getOperand(N2C->getZExtValue());
2816
2817    // EXTRACT_ELEMENT of a constant int is also very common.
2818    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2819      unsigned ElementSize = VT.getSizeInBits();
2820      unsigned Shift = ElementSize * N2C->getZExtValue();
2821      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2822      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2823    }
2824    break;
2825  case ISD::EXTRACT_SUBVECTOR:
2826    if (N1.getValueType() == VT) // Trivial extraction.
2827      return N1;
2828    break;
2829  }
2830
2831  if (N1C) {
2832    if (N2C) {
2833      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2834      if (SV.getNode()) return SV;
2835    } else {      // Cannonicalize constant to RHS if commutative
2836      if (isCommutativeBinOp(Opcode)) {
2837        std::swap(N1C, N2C);
2838        std::swap(N1, N2);
2839      }
2840    }
2841  }
2842
2843  // Constant fold FP operations.
2844  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2845  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2846  if (N1CFP) {
2847    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2848      // Cannonicalize constant to RHS if commutative
2849      std::swap(N1CFP, N2CFP);
2850      std::swap(N1, N2);
2851    } else if (N2CFP && VT != MVT::ppcf128) {
2852      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2853      APFloat::opStatus s;
2854      switch (Opcode) {
2855      case ISD::FADD:
2856        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2857        if (s != APFloat::opInvalidOp)
2858          return getConstantFP(V1, VT);
2859        break;
2860      case ISD::FSUB:
2861        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2862        if (s!=APFloat::opInvalidOp)
2863          return getConstantFP(V1, VT);
2864        break;
2865      case ISD::FMUL:
2866        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2867        if (s!=APFloat::opInvalidOp)
2868          return getConstantFP(V1, VT);
2869        break;
2870      case ISD::FDIV:
2871        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2872        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2873          return getConstantFP(V1, VT);
2874        break;
2875      case ISD::FREM :
2876        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2877        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2878          return getConstantFP(V1, VT);
2879        break;
2880      case ISD::FCOPYSIGN:
2881        V1.copySign(V2);
2882        return getConstantFP(V1, VT);
2883      default: break;
2884      }
2885    }
2886  }
2887
2888  // Canonicalize an UNDEF to the RHS, even over a constant.
2889  if (N1.getOpcode() == ISD::UNDEF) {
2890    if (isCommutativeBinOp(Opcode)) {
2891      std::swap(N1, N2);
2892    } else {
2893      switch (Opcode) {
2894      case ISD::FP_ROUND_INREG:
2895      case ISD::SIGN_EXTEND_INREG:
2896      case ISD::SUB:
2897      case ISD::FSUB:
2898      case ISD::FDIV:
2899      case ISD::FREM:
2900      case ISD::SRA:
2901        return N1;     // fold op(undef, arg2) -> undef
2902      case ISD::UDIV:
2903      case ISD::SDIV:
2904      case ISD::UREM:
2905      case ISD::SREM:
2906      case ISD::SRL:
2907      case ISD::SHL:
2908        if (!VT.isVector())
2909          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2910        // For vectors, we can't easily build an all zero vector, just return
2911        // the LHS.
2912        return N2;
2913      }
2914    }
2915  }
2916
2917  // Fold a bunch of operators when the RHS is undef.
2918  if (N2.getOpcode() == ISD::UNDEF) {
2919    switch (Opcode) {
2920    case ISD::XOR:
2921      if (N1.getOpcode() == ISD::UNDEF)
2922        // Handle undef ^ undef -> 0 special case. This is a common
2923        // idiom (misuse).
2924        return getConstant(0, VT);
2925      // fallthrough
2926    case ISD::ADD:
2927    case ISD::ADDC:
2928    case ISD::ADDE:
2929    case ISD::SUB:
2930    case ISD::UDIV:
2931    case ISD::SDIV:
2932    case ISD::UREM:
2933    case ISD::SREM:
2934      return N2;       // fold op(arg1, undef) -> undef
2935    case ISD::FADD:
2936    case ISD::FSUB:
2937    case ISD::FMUL:
2938    case ISD::FDIV:
2939    case ISD::FREM:
2940      if (UnsafeFPMath)
2941        return N2;
2942      break;
2943    case ISD::MUL:
2944    case ISD::AND:
2945    case ISD::SRL:
2946    case ISD::SHL:
2947      if (!VT.isVector())
2948        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2949      // For vectors, we can't easily build an all zero vector, just return
2950      // the LHS.
2951      return N1;
2952    case ISD::OR:
2953      if (!VT.isVector())
2954        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2955      // For vectors, we can't easily build an all one vector, just return
2956      // the LHS.
2957      return N1;
2958    case ISD::SRA:
2959      return N1;
2960    }
2961  }
2962
2963  // Memoize this node if possible.
2964  SDNode *N;
2965  SDVTList VTs = getVTList(VT);
2966  if (VT != MVT::Flag) {
2967    SDValue Ops[] = { N1, N2 };
2968    FoldingSetNodeID ID;
2969    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2970    void *IP = 0;
2971    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2972      return SDValue(E, 0);
2973
2974    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2975    CSEMap.InsertNode(N, IP);
2976  } else {
2977    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2978  }
2979
2980  AllNodes.push_back(N);
2981#ifndef NDEBUG
2982  VerifyNode(N);
2983#endif
2984  return SDValue(N, 0);
2985}
2986
2987SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2988                              SDValue N1, SDValue N2, SDValue N3) {
2989  // Perform various simplifications.
2990  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2991  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2992  switch (Opcode) {
2993  case ISD::CONCAT_VECTORS:
2994    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2995    // one big BUILD_VECTOR.
2996    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2997        N2.getOpcode() == ISD::BUILD_VECTOR &&
2998        N3.getOpcode() == ISD::BUILD_VECTOR) {
2999      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3000      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3001      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3002      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3003    }
3004    break;
3005  case ISD::SETCC: {
3006    // Use FoldSetCC to simplify SETCC's.
3007    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3008    if (Simp.getNode()) return Simp;
3009    break;
3010  }
3011  case ISD::SELECT:
3012    if (N1C) {
3013     if (N1C->getZExtValue())
3014        return N2;             // select true, X, Y -> X
3015      else
3016        return N3;             // select false, X, Y -> Y
3017    }
3018
3019    if (N2 == N3) return N2;   // select C, X, X -> X
3020    break;
3021  case ISD::BRCOND:
3022    if (N2C) {
3023      if (N2C->getZExtValue()) // Unconditional branch
3024        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3025      else
3026        return N1;         // Never-taken branch
3027    }
3028    break;
3029  case ISD::VECTOR_SHUFFLE:
3030    llvm_unreachable("should use getVectorShuffle constructor!");
3031    break;
3032  case ISD::BIT_CONVERT:
3033    // Fold bit_convert nodes from a type to themselves.
3034    if (N1.getValueType() == VT)
3035      return N1;
3036    break;
3037  }
3038
3039  // Memoize node if it doesn't produce a flag.
3040  SDNode *N;
3041  SDVTList VTs = getVTList(VT);
3042  if (VT != MVT::Flag) {
3043    SDValue Ops[] = { N1, N2, N3 };
3044    FoldingSetNodeID ID;
3045    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3046    void *IP = 0;
3047    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3048      return SDValue(E, 0);
3049
3050    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3051    CSEMap.InsertNode(N, IP);
3052  } else {
3053    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3054  }
3055
3056  AllNodes.push_back(N);
3057#ifndef NDEBUG
3058  VerifyNode(N);
3059#endif
3060  return SDValue(N, 0);
3061}
3062
3063SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3064                              SDValue N1, SDValue N2, SDValue N3,
3065                              SDValue N4) {
3066  SDValue Ops[] = { N1, N2, N3, N4 };
3067  return getNode(Opcode, DL, VT, Ops, 4);
3068}
3069
3070SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3071                              SDValue N1, SDValue N2, SDValue N3,
3072                              SDValue N4, SDValue N5) {
3073  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3074  return getNode(Opcode, DL, VT, Ops, 5);
3075}
3076
3077/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3078/// the incoming stack arguments to be loaded from the stack.
3079SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3080  SmallVector<SDValue, 8> ArgChains;
3081
3082  // Include the original chain at the beginning of the list. When this is
3083  // used by target LowerCall hooks, this helps legalize find the
3084  // CALLSEQ_BEGIN node.
3085  ArgChains.push_back(Chain);
3086
3087  // Add a chain value for each stack argument.
3088  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3089       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3090    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3091      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3092        if (FI->getIndex() < 0)
3093          ArgChains.push_back(SDValue(L, 1));
3094
3095  // Build a tokenfactor for all the chains.
3096  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3097                 &ArgChains[0], ArgChains.size());
3098}
3099
3100/// getMemsetValue - Vectorized representation of the memset value
3101/// operand.
3102static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3103                              DebugLoc dl) {
3104  assert(Value.getOpcode() != ISD::UNDEF);
3105
3106  unsigned NumBits = VT.getScalarType().getSizeInBits();
3107  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3108    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3109    unsigned Shift = 8;
3110    for (unsigned i = NumBits; i > 8; i >>= 1) {
3111      Val = (Val << Shift) | Val;
3112      Shift <<= 1;
3113    }
3114    if (VT.isInteger())
3115      return DAG.getConstant(Val, VT);
3116    return DAG.getConstantFP(APFloat(Val), VT);
3117  }
3118
3119  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3120  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3121  unsigned Shift = 8;
3122  for (unsigned i = NumBits; i > 8; i >>= 1) {
3123    Value = DAG.getNode(ISD::OR, dl, VT,
3124                        DAG.getNode(ISD::SHL, dl, VT, Value,
3125                                    DAG.getConstant(Shift,
3126                                                    TLI.getShiftAmountTy())),
3127                        Value);
3128    Shift <<= 1;
3129  }
3130
3131  return Value;
3132}
3133
3134/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3135/// used when a memcpy is turned into a memset when the source is a constant
3136/// string ptr.
3137static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3138                                  const TargetLowering &TLI,
3139                                  std::string &Str, unsigned Offset) {
3140  // Handle vector with all elements zero.
3141  if (Str.empty()) {
3142    if (VT.isInteger())
3143      return DAG.getConstant(0, VT);
3144    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3145             VT.getSimpleVT().SimpleTy == MVT::f64)
3146      return DAG.getConstantFP(0.0, VT);
3147    else if (VT.isVector()) {
3148      unsigned NumElts = VT.getVectorNumElements();
3149      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3150      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3151                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3152                                                             EltVT, NumElts)));
3153    } else
3154      llvm_unreachable("Expected type!");
3155  }
3156
3157  assert(!VT.isVector() && "Can't handle vector type here!");
3158  unsigned NumBits = VT.getSizeInBits();
3159  unsigned MSB = NumBits / 8;
3160  uint64_t Val = 0;
3161  if (TLI.isLittleEndian())
3162    Offset = Offset + MSB - 1;
3163  for (unsigned i = 0; i != MSB; ++i) {
3164    Val = (Val << 8) | (unsigned char)Str[Offset];
3165    Offset += TLI.isLittleEndian() ? -1 : 1;
3166  }
3167  return DAG.getConstant(Val, VT);
3168}
3169
3170/// getMemBasePlusOffset - Returns base and offset node for the
3171///
3172static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3173                                      SelectionDAG &DAG) {
3174  EVT VT = Base.getValueType();
3175  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3176                     VT, Base, DAG.getConstant(Offset, VT));
3177}
3178
3179/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3180///
3181static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3182  unsigned SrcDelta = 0;
3183  GlobalAddressSDNode *G = NULL;
3184  if (Src.getOpcode() == ISD::GlobalAddress)
3185    G = cast<GlobalAddressSDNode>(Src);
3186  else if (Src.getOpcode() == ISD::ADD &&
3187           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3188           Src.getOperand(1).getOpcode() == ISD::Constant) {
3189    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3190    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3191  }
3192  if (!G)
3193    return false;
3194
3195  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3196  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3197    return true;
3198
3199  return false;
3200}
3201
3202/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3203/// to replace the memset / memcpy. Return true if the number of memory ops
3204/// is below the threshold. It returns the types of the sequence of
3205/// memory ops to perform memset / memcpy by reference.
3206static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3207                                     unsigned Limit, uint64_t Size,
3208                                     unsigned DstAlign, unsigned SrcAlign,
3209                                     bool NonScalarIntSafe,
3210                                     bool MemcpyStrSrc,
3211                                     SelectionDAG &DAG,
3212                                     const TargetLowering &TLI) {
3213  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3214         "Expecting memcpy / memset source to meet alignment requirement!");
3215  // If 'SrcAlign' is zero, that means the memory operation does not need load
3216  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3217  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3218  // specified alignment of the memory operation. If it is zero, that means
3219  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3220  // indicates whether the memcpy source is constant so it does not need to be
3221  // loaded.
3222  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3223                                   NonScalarIntSafe, MemcpyStrSrc,
3224                                   DAG.getMachineFunction());
3225
3226  if (VT == MVT::Other) {
3227    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3228        TLI.allowsUnalignedMemoryAccesses(VT)) {
3229      VT = TLI.getPointerTy();
3230    } else {
3231      switch (DstAlign & 7) {
3232      case 0:  VT = MVT::i64; break;
3233      case 4:  VT = MVT::i32; break;
3234      case 2:  VT = MVT::i16; break;
3235      default: VT = MVT::i8;  break;
3236      }
3237    }
3238
3239    MVT LVT = MVT::i64;
3240    while (!TLI.isTypeLegal(LVT))
3241      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3242    assert(LVT.isInteger());
3243
3244    if (VT.bitsGT(LVT))
3245      VT = LVT;
3246  }
3247
3248  unsigned NumMemOps = 0;
3249  while (Size != 0) {
3250    unsigned VTSize = VT.getSizeInBits() / 8;
3251    while (VTSize > Size) {
3252      // For now, only use non-vector load / store's for the left-over pieces.
3253      if (VT.isVector() || VT.isFloatingPoint()) {
3254        VT = MVT::i64;
3255        while (!TLI.isTypeLegal(VT))
3256          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3257        VTSize = VT.getSizeInBits() / 8;
3258      } else {
3259        // This can result in a type that is not legal on the target, e.g.
3260        // 1 or 2 bytes on PPC.
3261        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3262        VTSize >>= 1;
3263      }
3264    }
3265
3266    if (++NumMemOps > Limit)
3267      return false;
3268    MemOps.push_back(VT);
3269    Size -= VTSize;
3270  }
3271
3272  return true;
3273}
3274
3275static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3276                                       SDValue Chain, SDValue Dst,
3277                                       SDValue Src, uint64_t Size,
3278                                       unsigned Align, bool isVol,
3279                                       bool AlwaysInline,
3280                                       const Value *DstSV, uint64_t DstSVOff,
3281                                       const Value *SrcSV, uint64_t SrcSVOff) {
3282  // Turn a memcpy of undef to nop.
3283  if (Src.getOpcode() == ISD::UNDEF)
3284    return Chain;
3285
3286  // Expand memcpy to a series of load and store ops if the size operand falls
3287  // below a certain threshold.
3288  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3289  std::vector<EVT> MemOps;
3290  bool DstAlignCanChange = false;
3291  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3292  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3293  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3294    DstAlignCanChange = true;
3295  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3296  if (Align > SrcAlign)
3297    SrcAlign = Align;
3298  std::string Str;
3299  bool CopyFromStr = isMemSrcFromString(Src, Str);
3300  bool isZeroStr = CopyFromStr && Str.empty();
3301  uint64_t Limit = -1ULL;
3302  if (!AlwaysInline)
3303    Limit = TLI.getMaxStoresPerMemcpy();
3304  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3305                                (DstAlignCanChange ? 0 : Align),
3306                                (isZeroStr ? 0 : SrcAlign),
3307                                true, CopyFromStr, DAG, TLI))
3308    return SDValue();
3309
3310  if (DstAlignCanChange) {
3311    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3312    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3313    if (NewAlign > Align) {
3314      // Give the stack frame object a larger alignment if needed.
3315      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3316        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3317      Align = NewAlign;
3318    }
3319  }
3320
3321  SmallVector<SDValue, 8> OutChains;
3322  unsigned NumMemOps = MemOps.size();
3323  uint64_t SrcOff = 0, DstOff = 0;
3324  for (unsigned i = 0; i != NumMemOps; ++i) {
3325    EVT VT = MemOps[i];
3326    unsigned VTSize = VT.getSizeInBits() / 8;
3327    SDValue Value, Store;
3328
3329    if (CopyFromStr &&
3330        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3331      // It's unlikely a store of a vector immediate can be done in a single
3332      // instruction. It would require a load from a constantpool first.
3333      // We only handle zero vectors here.
3334      // FIXME: Handle other cases where store of vector immediate is done in
3335      // a single instruction.
3336      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3337      Store = DAG.getStore(Chain, dl, Value,
3338                           getMemBasePlusOffset(Dst, DstOff, DAG),
3339                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3340    } else {
3341      // The type might not be legal for the target.  This should only happen
3342      // if the type is smaller than a legal type, as on PPC, so the right
3343      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3344      // to Load/Store if NVT==VT.
3345      // FIXME does the case above also need this?
3346      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3347      assert(NVT.bitsGE(VT));
3348      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3349                             getMemBasePlusOffset(Src, SrcOff, DAG),
3350                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3351                             MinAlign(SrcAlign, SrcOff));
3352      Store = DAG.getTruncStore(Chain, dl, Value,
3353                                getMemBasePlusOffset(Dst, DstOff, DAG),
3354                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3355                                Align);
3356    }
3357    OutChains.push_back(Store);
3358    SrcOff += VTSize;
3359    DstOff += VTSize;
3360  }
3361
3362  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3363                     &OutChains[0], OutChains.size());
3364}
3365
3366static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3367                                        SDValue Chain, SDValue Dst,
3368                                        SDValue Src, uint64_t Size,
3369                                        unsigned Align,  bool isVol,
3370                                        bool AlwaysInline,
3371                                        const Value *DstSV, uint64_t DstSVOff,
3372                                        const Value *SrcSV, uint64_t SrcSVOff) {
3373  // Turn a memmove of undef to nop.
3374  if (Src.getOpcode() == ISD::UNDEF)
3375    return Chain;
3376
3377  // Expand memmove to a series of load and store ops if the size operand falls
3378  // below a certain threshold.
3379  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3380  std::vector<EVT> MemOps;
3381  uint64_t Limit = -1ULL;
3382  if (!AlwaysInline)
3383    Limit = TLI.getMaxStoresPerMemmove();
3384  bool DstAlignCanChange = false;
3385  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3386  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3387  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3388    DstAlignCanChange = true;
3389  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3390  if (Align > SrcAlign)
3391    SrcAlign = Align;
3392
3393  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3394                                (DstAlignCanChange ? 0 : Align),
3395                                SrcAlign, true, false, DAG, TLI))
3396    return SDValue();
3397
3398  if (DstAlignCanChange) {
3399    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3400    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3401    if (NewAlign > Align) {
3402      // Give the stack frame object a larger alignment if needed.
3403      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3404        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3405      Align = NewAlign;
3406    }
3407  }
3408
3409  uint64_t SrcOff = 0, DstOff = 0;
3410  SmallVector<SDValue, 8> LoadValues;
3411  SmallVector<SDValue, 8> LoadChains;
3412  SmallVector<SDValue, 8> OutChains;
3413  unsigned NumMemOps = MemOps.size();
3414  for (unsigned i = 0; i < NumMemOps; i++) {
3415    EVT VT = MemOps[i];
3416    unsigned VTSize = VT.getSizeInBits() / 8;
3417    SDValue Value, Store;
3418
3419    Value = DAG.getLoad(VT, dl, Chain,
3420                        getMemBasePlusOffset(Src, SrcOff, DAG),
3421                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3422    LoadValues.push_back(Value);
3423    LoadChains.push_back(Value.getValue(1));
3424    SrcOff += VTSize;
3425  }
3426  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3427                      &LoadChains[0], LoadChains.size());
3428  OutChains.clear();
3429  for (unsigned i = 0; i < NumMemOps; i++) {
3430    EVT VT = MemOps[i];
3431    unsigned VTSize = VT.getSizeInBits() / 8;
3432    SDValue Value, Store;
3433
3434    Store = DAG.getStore(Chain, dl, LoadValues[i],
3435                         getMemBasePlusOffset(Dst, DstOff, DAG),
3436                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3437    OutChains.push_back(Store);
3438    DstOff += VTSize;
3439  }
3440
3441  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3442                     &OutChains[0], OutChains.size());
3443}
3444
3445static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3446                               SDValue Chain, SDValue Dst,
3447                               SDValue Src, uint64_t Size,
3448                               unsigned Align, bool isVol,
3449                               const Value *DstSV, uint64_t DstSVOff) {
3450  // Turn a memset of undef to nop.
3451  if (Src.getOpcode() == ISD::UNDEF)
3452    return Chain;
3453
3454  // Expand memset to a series of load/store ops if the size operand
3455  // falls below a certain threshold.
3456  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3457  std::vector<EVT> MemOps;
3458  bool DstAlignCanChange = false;
3459  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3460  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3461  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3462    DstAlignCanChange = true;
3463  bool NonScalarIntSafe =
3464    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3465  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3466                                Size, (DstAlignCanChange ? 0 : Align), 0,
3467                                NonScalarIntSafe, false, DAG, TLI))
3468    return SDValue();
3469
3470  if (DstAlignCanChange) {
3471    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3472    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3473    if (NewAlign > Align) {
3474      // Give the stack frame object a larger alignment if needed.
3475      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3476        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3477      Align = NewAlign;
3478    }
3479  }
3480
3481  SmallVector<SDValue, 8> OutChains;
3482  uint64_t DstOff = 0;
3483  unsigned NumMemOps = MemOps.size();
3484  for (unsigned i = 0; i < NumMemOps; i++) {
3485    EVT VT = MemOps[i];
3486    unsigned VTSize = VT.getSizeInBits() / 8;
3487    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3488    SDValue Store = DAG.getStore(Chain, dl, Value,
3489                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3490                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3491    OutChains.push_back(Store);
3492    DstOff += VTSize;
3493  }
3494
3495  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3496                     &OutChains[0], OutChains.size());
3497}
3498
3499SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3500                                SDValue Src, SDValue Size,
3501                                unsigned Align, bool isVol, bool AlwaysInline,
3502                                const Value *DstSV, uint64_t DstSVOff,
3503                                const Value *SrcSV, uint64_t SrcSVOff) {
3504
3505  // Check to see if we should lower the memcpy to loads and stores first.
3506  // For cases within the target-specified limits, this is the best choice.
3507  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3508  if (ConstantSize) {
3509    // Memcpy with size zero? Just return the original chain.
3510    if (ConstantSize->isNullValue())
3511      return Chain;
3512
3513    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3514                                             ConstantSize->getZExtValue(),Align,
3515                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3516    if (Result.getNode())
3517      return Result;
3518  }
3519
3520  // Then check to see if we should lower the memcpy with target-specific
3521  // code. If the target chooses to do this, this is the next best.
3522  SDValue Result =
3523    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3524                                isVol, AlwaysInline,
3525                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3526  if (Result.getNode())
3527    return Result;
3528
3529  // If we really need inline code and the target declined to provide it,
3530  // use a (potentially long) sequence of loads and stores.
3531  if (AlwaysInline) {
3532    assert(ConstantSize && "AlwaysInline requires a constant size!");
3533    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3534                                   ConstantSize->getZExtValue(), Align, isVol,
3535                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3536  }
3537
3538  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3539  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3540  // respect volatile, so they may do things like read or write memory
3541  // beyond the given memory regions. But fixing this isn't easy, and most
3542  // people don't care.
3543
3544  // Emit a library call.
3545  TargetLowering::ArgListTy Args;
3546  TargetLowering::ArgListEntry Entry;
3547  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3548  Entry.Node = Dst; Args.push_back(Entry);
3549  Entry.Node = Src; Args.push_back(Entry);
3550  Entry.Node = Size; Args.push_back(Entry);
3551  // FIXME: pass in DebugLoc
3552  std::pair<SDValue,SDValue> CallResult =
3553    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3554                    false, false, false, false, 0,
3555                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3556                    /*isReturnValueUsed=*/false,
3557                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3558                                      TLI.getPointerTy()),
3559                    Args, *this, dl);
3560  return CallResult.second;
3561}
3562
3563SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3564                                 SDValue Src, SDValue Size,
3565                                 unsigned Align, bool isVol,
3566                                 const Value *DstSV, uint64_t DstSVOff,
3567                                 const Value *SrcSV, uint64_t SrcSVOff) {
3568
3569  // Check to see if we should lower the memmove to loads and stores first.
3570  // For cases within the target-specified limits, this is the best choice.
3571  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3572  if (ConstantSize) {
3573    // Memmove with size zero? Just return the original chain.
3574    if (ConstantSize->isNullValue())
3575      return Chain;
3576
3577    SDValue Result =
3578      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3579                               ConstantSize->getZExtValue(), Align, isVol,
3580                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3581    if (Result.getNode())
3582      return Result;
3583  }
3584
3585  // Then check to see if we should lower the memmove with target-specific
3586  // code. If the target chooses to do this, this is the next best.
3587  SDValue Result =
3588    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3589                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3590  if (Result.getNode())
3591    return Result;
3592
3593  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3594  // not be safe.  See memcpy above for more details.
3595
3596  // Emit a library call.
3597  TargetLowering::ArgListTy Args;
3598  TargetLowering::ArgListEntry Entry;
3599  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3600  Entry.Node = Dst; Args.push_back(Entry);
3601  Entry.Node = Src; Args.push_back(Entry);
3602  Entry.Node = Size; Args.push_back(Entry);
3603  // FIXME:  pass in DebugLoc
3604  std::pair<SDValue,SDValue> CallResult =
3605    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3606                    false, false, false, false, 0,
3607                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3608                    /*isReturnValueUsed=*/false,
3609                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3610                                      TLI.getPointerTy()),
3611                    Args, *this, dl);
3612  return CallResult.second;
3613}
3614
3615SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3616                                SDValue Src, SDValue Size,
3617                                unsigned Align, bool isVol,
3618                                const Value *DstSV, uint64_t DstSVOff) {
3619
3620  // Check to see if we should lower the memset to stores first.
3621  // For cases within the target-specified limits, this is the best choice.
3622  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3623  if (ConstantSize) {
3624    // Memset with size zero? Just return the original chain.
3625    if (ConstantSize->isNullValue())
3626      return Chain;
3627
3628    SDValue Result =
3629      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3630                      Align, isVol, DstSV, DstSVOff);
3631
3632    if (Result.getNode())
3633      return Result;
3634  }
3635
3636  // Then check to see if we should lower the memset with target-specific
3637  // code. If the target chooses to do this, this is the next best.
3638  SDValue Result =
3639    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3640                                DstSV, DstSVOff);
3641  if (Result.getNode())
3642    return Result;
3643
3644  // Emit a library call.
3645  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3646  TargetLowering::ArgListTy Args;
3647  TargetLowering::ArgListEntry Entry;
3648  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3649  Args.push_back(Entry);
3650  // Extend or truncate the argument to be an i32 value for the call.
3651  if (Src.getValueType().bitsGT(MVT::i32))
3652    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3653  else
3654    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3655  Entry.Node = Src;
3656  Entry.Ty = Type::getInt32Ty(*getContext());
3657  Entry.isSExt = true;
3658  Args.push_back(Entry);
3659  Entry.Node = Size;
3660  Entry.Ty = IntPtrTy;
3661  Entry.isSExt = false;
3662  Args.push_back(Entry);
3663  // FIXME: pass in DebugLoc
3664  std::pair<SDValue,SDValue> CallResult =
3665    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3666                    false, false, false, false, 0,
3667                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3668                    /*isReturnValueUsed=*/false,
3669                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3670                                      TLI.getPointerTy()),
3671                    Args, *this, dl);
3672  return CallResult.second;
3673}
3674
3675SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3676                                SDValue Chain,
3677                                SDValue Ptr, SDValue Cmp,
3678                                SDValue Swp, const Value* PtrVal,
3679                                unsigned Alignment) {
3680  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3681    Alignment = getEVTAlignment(MemVT);
3682
3683  // Check if the memory reference references a frame index
3684  if (!PtrVal)
3685    if (const FrameIndexSDNode *FI =
3686          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3687      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3688
3689  MachineFunction &MF = getMachineFunction();
3690  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3691
3692  // For now, atomics are considered to be volatile always.
3693  Flags |= MachineMemOperand::MOVolatile;
3694
3695  MachineMemOperand *MMO =
3696    MF.getMachineMemOperand(PtrVal, Flags, 0,
3697                            MemVT.getStoreSize(), Alignment);
3698
3699  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3700}
3701
3702SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3703                                SDValue Chain,
3704                                SDValue Ptr, SDValue Cmp,
3705                                SDValue Swp, MachineMemOperand *MMO) {
3706  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3707  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3708
3709  EVT VT = Cmp.getValueType();
3710
3711  SDVTList VTs = getVTList(VT, MVT::Other);
3712  FoldingSetNodeID ID;
3713  ID.AddInteger(MemVT.getRawBits());
3714  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3715  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3716  void* IP = 0;
3717  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3718    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3719    return SDValue(E, 0);
3720  }
3721  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3722                                               Ptr, Cmp, Swp, MMO);
3723  CSEMap.InsertNode(N, IP);
3724  AllNodes.push_back(N);
3725  return SDValue(N, 0);
3726}
3727
3728SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3729                                SDValue Chain,
3730                                SDValue Ptr, SDValue Val,
3731                                const Value* PtrVal,
3732                                unsigned Alignment) {
3733  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3734    Alignment = getEVTAlignment(MemVT);
3735
3736  // Check if the memory reference references a frame index
3737  if (!PtrVal)
3738    if (const FrameIndexSDNode *FI =
3739          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3740      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3741
3742  MachineFunction &MF = getMachineFunction();
3743  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3744
3745  // For now, atomics are considered to be volatile always.
3746  Flags |= MachineMemOperand::MOVolatile;
3747
3748  MachineMemOperand *MMO =
3749    MF.getMachineMemOperand(PtrVal, Flags, 0,
3750                            MemVT.getStoreSize(), Alignment);
3751
3752  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3753}
3754
3755SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3756                                SDValue Chain,
3757                                SDValue Ptr, SDValue Val,
3758                                MachineMemOperand *MMO) {
3759  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3760          Opcode == ISD::ATOMIC_LOAD_SUB ||
3761          Opcode == ISD::ATOMIC_LOAD_AND ||
3762          Opcode == ISD::ATOMIC_LOAD_OR ||
3763          Opcode == ISD::ATOMIC_LOAD_XOR ||
3764          Opcode == ISD::ATOMIC_LOAD_NAND ||
3765          Opcode == ISD::ATOMIC_LOAD_MIN ||
3766          Opcode == ISD::ATOMIC_LOAD_MAX ||
3767          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3768          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3769          Opcode == ISD::ATOMIC_SWAP) &&
3770         "Invalid Atomic Op");
3771
3772  EVT VT = Val.getValueType();
3773
3774  SDVTList VTs = getVTList(VT, MVT::Other);
3775  FoldingSetNodeID ID;
3776  ID.AddInteger(MemVT.getRawBits());
3777  SDValue Ops[] = {Chain, Ptr, Val};
3778  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3779  void* IP = 0;
3780  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3781    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3782    return SDValue(E, 0);
3783  }
3784  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3785                                               Ptr, Val, MMO);
3786  CSEMap.InsertNode(N, IP);
3787  AllNodes.push_back(N);
3788  return SDValue(N, 0);
3789}
3790
3791/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3792/// Allowed to return something different (and simpler) if Simplify is true.
3793SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3794                                     DebugLoc dl) {
3795  if (NumOps == 1)
3796    return Ops[0];
3797
3798  SmallVector<EVT, 4> VTs;
3799  VTs.reserve(NumOps);
3800  for (unsigned i = 0; i < NumOps; ++i)
3801    VTs.push_back(Ops[i].getValueType());
3802  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3803                 Ops, NumOps);
3804}
3805
3806SDValue
3807SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3808                                  const EVT *VTs, unsigned NumVTs,
3809                                  const SDValue *Ops, unsigned NumOps,
3810                                  EVT MemVT, const Value *srcValue, int SVOff,
3811                                  unsigned Align, bool Vol,
3812                                  bool ReadMem, bool WriteMem) {
3813  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3814                             MemVT, srcValue, SVOff, Align, Vol,
3815                             ReadMem, WriteMem);
3816}
3817
3818SDValue
3819SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3820                                  const SDValue *Ops, unsigned NumOps,
3821                                  EVT MemVT, const Value *srcValue, int SVOff,
3822                                  unsigned Align, bool Vol,
3823                                  bool ReadMem, bool WriteMem) {
3824  if (Align == 0)  // Ensure that codegen never sees alignment 0
3825    Align = getEVTAlignment(MemVT);
3826
3827  MachineFunction &MF = getMachineFunction();
3828  unsigned Flags = 0;
3829  if (WriteMem)
3830    Flags |= MachineMemOperand::MOStore;
3831  if (ReadMem)
3832    Flags |= MachineMemOperand::MOLoad;
3833  if (Vol)
3834    Flags |= MachineMemOperand::MOVolatile;
3835  MachineMemOperand *MMO =
3836    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3837                            MemVT.getStoreSize(), Align);
3838
3839  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3840}
3841
3842SDValue
3843SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3844                                  const SDValue *Ops, unsigned NumOps,
3845                                  EVT MemVT, MachineMemOperand *MMO) {
3846  assert((Opcode == ISD::INTRINSIC_VOID ||
3847          Opcode == ISD::INTRINSIC_W_CHAIN ||
3848          (Opcode <= INT_MAX &&
3849           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3850         "Opcode is not a memory-accessing opcode!");
3851
3852  // Memoize the node unless it returns a flag.
3853  MemIntrinsicSDNode *N;
3854  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3855    FoldingSetNodeID ID;
3856    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3857    void *IP = 0;
3858    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3859      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3860      return SDValue(E, 0);
3861    }
3862
3863    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3864                                               MemVT, MMO);
3865    CSEMap.InsertNode(N, IP);
3866  } else {
3867    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3868                                               MemVT, MMO);
3869  }
3870  AllNodes.push_back(N);
3871  return SDValue(N, 0);
3872}
3873
3874SDValue
3875SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3876                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3877                      SDValue Ptr, SDValue Offset,
3878                      const Value *SV, int SVOffset, EVT MemVT,
3879                      bool isVolatile, bool isNonTemporal,
3880                      unsigned Alignment) {
3881  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3882    Alignment = getEVTAlignment(VT);
3883
3884  // Check if the memory reference references a frame index
3885  if (!SV)
3886    if (const FrameIndexSDNode *FI =
3887          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3888      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3889
3890  MachineFunction &MF = getMachineFunction();
3891  unsigned Flags = MachineMemOperand::MOLoad;
3892  if (isVolatile)
3893    Flags |= MachineMemOperand::MOVolatile;
3894  if (isNonTemporal)
3895    Flags |= MachineMemOperand::MONonTemporal;
3896  MachineMemOperand *MMO =
3897    MF.getMachineMemOperand(SV, Flags, SVOffset,
3898                            MemVT.getStoreSize(), Alignment);
3899  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3900}
3901
3902SDValue
3903SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3904                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3905                      SDValue Ptr, SDValue Offset, EVT MemVT,
3906                      MachineMemOperand *MMO) {
3907  if (VT == MemVT) {
3908    ExtType = ISD::NON_EXTLOAD;
3909  } else if (ExtType == ISD::NON_EXTLOAD) {
3910    assert(VT == MemVT && "Non-extending load from different memory type!");
3911  } else {
3912    // Extending load.
3913    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3914           "Should only be an extending load, not truncating!");
3915    assert(VT.isInteger() == MemVT.isInteger() &&
3916           "Cannot convert from FP to Int or Int -> FP!");
3917    assert(VT.isVector() == MemVT.isVector() &&
3918           "Cannot use trunc store to convert to or from a vector!");
3919    assert((!VT.isVector() ||
3920            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3921           "Cannot use trunc store to change the number of vector elements!");
3922  }
3923
3924  bool Indexed = AM != ISD::UNINDEXED;
3925  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3926         "Unindexed load with an offset!");
3927
3928  SDVTList VTs = Indexed ?
3929    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3930  SDValue Ops[] = { Chain, Ptr, Offset };
3931  FoldingSetNodeID ID;
3932  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3933  ID.AddInteger(MemVT.getRawBits());
3934  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3935                                     MMO->isNonTemporal()));
3936  void *IP = 0;
3937  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3938    cast<LoadSDNode>(E)->refineAlignment(MMO);
3939    return SDValue(E, 0);
3940  }
3941  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3942                                             MemVT, MMO);
3943  CSEMap.InsertNode(N, IP);
3944  AllNodes.push_back(N);
3945  return SDValue(N, 0);
3946}
3947
3948SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3949                              SDValue Chain, SDValue Ptr,
3950                              const Value *SV, int SVOffset,
3951                              bool isVolatile, bool isNonTemporal,
3952                              unsigned Alignment) {
3953  SDValue Undef = getUNDEF(Ptr.getValueType());
3954  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3955                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3956}
3957
3958SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3959                                 SDValue Chain, SDValue Ptr,
3960                                 const Value *SV,
3961                                 int SVOffset, EVT MemVT,
3962                                 bool isVolatile, bool isNonTemporal,
3963                                 unsigned Alignment) {
3964  SDValue Undef = getUNDEF(Ptr.getValueType());
3965  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3966                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3967}
3968
3969SDValue
3970SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3971                             SDValue Offset, ISD::MemIndexedMode AM) {
3972  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3973  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3974         "Load is already a indexed load!");
3975  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3976                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3977                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3978                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3979}
3980
3981SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3982                               SDValue Ptr, const Value *SV, int SVOffset,
3983                               bool isVolatile, bool isNonTemporal,
3984                               unsigned Alignment) {
3985  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3986    Alignment = getEVTAlignment(Val.getValueType());
3987
3988  // Check if the memory reference references a frame index
3989  if (!SV)
3990    if (const FrameIndexSDNode *FI =
3991          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3992      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3993
3994  MachineFunction &MF = getMachineFunction();
3995  unsigned Flags = MachineMemOperand::MOStore;
3996  if (isVolatile)
3997    Flags |= MachineMemOperand::MOVolatile;
3998  if (isNonTemporal)
3999    Flags |= MachineMemOperand::MONonTemporal;
4000  MachineMemOperand *MMO =
4001    MF.getMachineMemOperand(SV, Flags, SVOffset,
4002                            Val.getValueType().getStoreSize(), Alignment);
4003
4004  return getStore(Chain, dl, Val, Ptr, MMO);
4005}
4006
4007SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4008                               SDValue Ptr, MachineMemOperand *MMO) {
4009  EVT VT = Val.getValueType();
4010  SDVTList VTs = getVTList(MVT::Other);
4011  SDValue Undef = getUNDEF(Ptr.getValueType());
4012  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4013  FoldingSetNodeID ID;
4014  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4015  ID.AddInteger(VT.getRawBits());
4016  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4017                                     MMO->isNonTemporal()));
4018  void *IP = 0;
4019  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4020    cast<StoreSDNode>(E)->refineAlignment(MMO);
4021    return SDValue(E, 0);
4022  }
4023  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4024                                              false, VT, MMO);
4025  CSEMap.InsertNode(N, IP);
4026  AllNodes.push_back(N);
4027  return SDValue(N, 0);
4028}
4029
4030SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4031                                    SDValue Ptr, const Value *SV,
4032                                    int SVOffset, EVT SVT,
4033                                    bool isVolatile, bool isNonTemporal,
4034                                    unsigned Alignment) {
4035  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4036    Alignment = getEVTAlignment(SVT);
4037
4038  // Check if the memory reference references a frame index
4039  if (!SV)
4040    if (const FrameIndexSDNode *FI =
4041          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4042      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4043
4044  MachineFunction &MF = getMachineFunction();
4045  unsigned Flags = MachineMemOperand::MOStore;
4046  if (isVolatile)
4047    Flags |= MachineMemOperand::MOVolatile;
4048  if (isNonTemporal)
4049    Flags |= MachineMemOperand::MONonTemporal;
4050  MachineMemOperand *MMO =
4051    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4052
4053  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4054}
4055
4056SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4057                                    SDValue Ptr, EVT SVT,
4058                                    MachineMemOperand *MMO) {
4059  EVT VT = Val.getValueType();
4060
4061  if (VT == SVT)
4062    return getStore(Chain, dl, Val, Ptr, MMO);
4063
4064  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4065         "Should only be a truncating store, not extending!");
4066  assert(VT.isInteger() == SVT.isInteger() &&
4067         "Can't do FP-INT conversion!");
4068  assert(VT.isVector() == SVT.isVector() &&
4069         "Cannot use trunc store to convert to or from a vector!");
4070  assert((!VT.isVector() ||
4071          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4072         "Cannot use trunc store to change the number of vector elements!");
4073
4074  SDVTList VTs = getVTList(MVT::Other);
4075  SDValue Undef = getUNDEF(Ptr.getValueType());
4076  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4077  FoldingSetNodeID ID;
4078  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4079  ID.AddInteger(SVT.getRawBits());
4080  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4081                                     MMO->isNonTemporal()));
4082  void *IP = 0;
4083  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4084    cast<StoreSDNode>(E)->refineAlignment(MMO);
4085    return SDValue(E, 0);
4086  }
4087  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4088                                              true, SVT, MMO);
4089  CSEMap.InsertNode(N, IP);
4090  AllNodes.push_back(N);
4091  return SDValue(N, 0);
4092}
4093
4094SDValue
4095SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4096                              SDValue Offset, ISD::MemIndexedMode AM) {
4097  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4098  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4099         "Store is already a indexed store!");
4100  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4101  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4102  FoldingSetNodeID ID;
4103  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4104  ID.AddInteger(ST->getMemoryVT().getRawBits());
4105  ID.AddInteger(ST->getRawSubclassData());
4106  void *IP = 0;
4107  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4108    return SDValue(E, 0);
4109
4110  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4111                                              ST->isTruncatingStore(),
4112                                              ST->getMemoryVT(),
4113                                              ST->getMemOperand());
4114  CSEMap.InsertNode(N, IP);
4115  AllNodes.push_back(N);
4116  return SDValue(N, 0);
4117}
4118
4119SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4120                               SDValue Chain, SDValue Ptr,
4121                               SDValue SV) {
4122  SDValue Ops[] = { Chain, Ptr, SV };
4123  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4124}
4125
4126SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4127                              const SDUse *Ops, unsigned NumOps) {
4128  switch (NumOps) {
4129  case 0: return getNode(Opcode, DL, VT);
4130  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4131  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4132  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4133  default: break;
4134  }
4135
4136  // Copy from an SDUse array into an SDValue array for use with
4137  // the regular getNode logic.
4138  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4139  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4140}
4141
4142SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4143                              const SDValue *Ops, unsigned NumOps) {
4144  switch (NumOps) {
4145  case 0: return getNode(Opcode, DL, VT);
4146  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4147  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4148  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4149  default: break;
4150  }
4151
4152  switch (Opcode) {
4153  default: break;
4154  case ISD::SELECT_CC: {
4155    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4156    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4157           "LHS and RHS of condition must have same type!");
4158    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4159           "True and False arms of SelectCC must have same type!");
4160    assert(Ops[2].getValueType() == VT &&
4161           "select_cc node must be of same type as true and false value!");
4162    break;
4163  }
4164  case ISD::BR_CC: {
4165    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4166    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4167           "LHS/RHS of comparison should match types!");
4168    break;
4169  }
4170  }
4171
4172  // Memoize nodes.
4173  SDNode *N;
4174  SDVTList VTs = getVTList(VT);
4175
4176  if (VT != MVT::Flag) {
4177    FoldingSetNodeID ID;
4178    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4179    void *IP = 0;
4180
4181    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4182      return SDValue(E, 0);
4183
4184    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4185    CSEMap.InsertNode(N, IP);
4186  } else {
4187    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4188  }
4189
4190  AllNodes.push_back(N);
4191#ifndef NDEBUG
4192  VerifyNode(N);
4193#endif
4194  return SDValue(N, 0);
4195}
4196
4197SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4198                              const std::vector<EVT> &ResultTys,
4199                              const SDValue *Ops, unsigned NumOps) {
4200  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4201                 Ops, NumOps);
4202}
4203
4204SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4205                              const EVT *VTs, unsigned NumVTs,
4206                              const SDValue *Ops, unsigned NumOps) {
4207  if (NumVTs == 1)
4208    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4209  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4210}
4211
4212SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4213                              const SDValue *Ops, unsigned NumOps) {
4214  if (VTList.NumVTs == 1)
4215    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4216
4217#if 0
4218  switch (Opcode) {
4219  // FIXME: figure out how to safely handle things like
4220  // int foo(int x) { return 1 << (x & 255); }
4221  // int bar() { return foo(256); }
4222  case ISD::SRA_PARTS:
4223  case ISD::SRL_PARTS:
4224  case ISD::SHL_PARTS:
4225    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4226        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4227      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4228    else if (N3.getOpcode() == ISD::AND)
4229      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4230        // If the and is only masking out bits that cannot effect the shift,
4231        // eliminate the and.
4232        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4233        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4234          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4235      }
4236    break;
4237  }
4238#endif
4239
4240  // Memoize the node unless it returns a flag.
4241  SDNode *N;
4242  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4243    FoldingSetNodeID ID;
4244    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4245    void *IP = 0;
4246    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4247      return SDValue(E, 0);
4248
4249    if (NumOps == 1) {
4250      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4251    } else if (NumOps == 2) {
4252      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4253    } else if (NumOps == 3) {
4254      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4255                                            Ops[2]);
4256    } else {
4257      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4258    }
4259    CSEMap.InsertNode(N, IP);
4260  } else {
4261    if (NumOps == 1) {
4262      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4263    } else if (NumOps == 2) {
4264      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4265    } else if (NumOps == 3) {
4266      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4267                                            Ops[2]);
4268    } else {
4269      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4270    }
4271  }
4272  AllNodes.push_back(N);
4273#ifndef NDEBUG
4274  VerifyNode(N);
4275#endif
4276  return SDValue(N, 0);
4277}
4278
4279SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4280  return getNode(Opcode, DL, VTList, 0, 0);
4281}
4282
4283SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4284                              SDValue N1) {
4285  SDValue Ops[] = { N1 };
4286  return getNode(Opcode, DL, VTList, Ops, 1);
4287}
4288
4289SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4290                              SDValue N1, SDValue N2) {
4291  SDValue Ops[] = { N1, N2 };
4292  return getNode(Opcode, DL, VTList, Ops, 2);
4293}
4294
4295SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4296                              SDValue N1, SDValue N2, SDValue N3) {
4297  SDValue Ops[] = { N1, N2, N3 };
4298  return getNode(Opcode, DL, VTList, Ops, 3);
4299}
4300
4301SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4302                              SDValue N1, SDValue N2, SDValue N3,
4303                              SDValue N4) {
4304  SDValue Ops[] = { N1, N2, N3, N4 };
4305  return getNode(Opcode, DL, VTList, Ops, 4);
4306}
4307
4308SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4309                              SDValue N1, SDValue N2, SDValue N3,
4310                              SDValue N4, SDValue N5) {
4311  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4312  return getNode(Opcode, DL, VTList, Ops, 5);
4313}
4314
4315SDVTList SelectionDAG::getVTList(EVT VT) {
4316  return makeVTList(SDNode::getValueTypeList(VT), 1);
4317}
4318
4319SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4320  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4321       E = VTList.rend(); I != E; ++I)
4322    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4323      return *I;
4324
4325  EVT *Array = Allocator.Allocate<EVT>(2);
4326  Array[0] = VT1;
4327  Array[1] = VT2;
4328  SDVTList Result = makeVTList(Array, 2);
4329  VTList.push_back(Result);
4330  return Result;
4331}
4332
4333SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4334  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4335       E = VTList.rend(); I != E; ++I)
4336    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4337                          I->VTs[2] == VT3)
4338      return *I;
4339
4340  EVT *Array = Allocator.Allocate<EVT>(3);
4341  Array[0] = VT1;
4342  Array[1] = VT2;
4343  Array[2] = VT3;
4344  SDVTList Result = makeVTList(Array, 3);
4345  VTList.push_back(Result);
4346  return Result;
4347}
4348
4349SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4350  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4351       E = VTList.rend(); I != E; ++I)
4352    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4353                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4354      return *I;
4355
4356  EVT *Array = Allocator.Allocate<EVT>(4);
4357  Array[0] = VT1;
4358  Array[1] = VT2;
4359  Array[2] = VT3;
4360  Array[3] = VT4;
4361  SDVTList Result = makeVTList(Array, 4);
4362  VTList.push_back(Result);
4363  return Result;
4364}
4365
4366SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4367  switch (NumVTs) {
4368    case 0: llvm_unreachable("Cannot have nodes without results!");
4369    case 1: return getVTList(VTs[0]);
4370    case 2: return getVTList(VTs[0], VTs[1]);
4371    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4372    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4373    default: break;
4374  }
4375
4376  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4377       E = VTList.rend(); I != E; ++I) {
4378    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4379      continue;
4380
4381    bool NoMatch = false;
4382    for (unsigned i = 2; i != NumVTs; ++i)
4383      if (VTs[i] != I->VTs[i]) {
4384        NoMatch = true;
4385        break;
4386      }
4387    if (!NoMatch)
4388      return *I;
4389  }
4390
4391  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4392  std::copy(VTs, VTs+NumVTs, Array);
4393  SDVTList Result = makeVTList(Array, NumVTs);
4394  VTList.push_back(Result);
4395  return Result;
4396}
4397
4398
4399/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4400/// specified operands.  If the resultant node already exists in the DAG,
4401/// this does not modify the specified node, instead it returns the node that
4402/// already exists.  If the resultant node does not exist in the DAG, the
4403/// input node is returned.  As a degenerate case, if you specify the same
4404/// input operands as the node already has, the input node is returned.
4405SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4406  SDNode *N = InN.getNode();
4407  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4408
4409  // Check to see if there is no change.
4410  if (Op == N->getOperand(0)) return InN;
4411
4412  // See if the modified node already exists.
4413  void *InsertPos = 0;
4414  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4415    return SDValue(Existing, InN.getResNo());
4416
4417  // Nope it doesn't.  Remove the node from its current place in the maps.
4418  if (InsertPos)
4419    if (!RemoveNodeFromCSEMaps(N))
4420      InsertPos = 0;
4421
4422  // Now we update the operands.
4423  N->OperandList[0].set(Op);
4424
4425  // If this gets put into a CSE map, add it.
4426  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4427  return InN;
4428}
4429
4430SDValue SelectionDAG::
4431UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4432  SDNode *N = InN.getNode();
4433  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4434
4435  // Check to see if there is no change.
4436  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4437    return InN;   // No operands changed, just return the input node.
4438
4439  // See if the modified node already exists.
4440  void *InsertPos = 0;
4441  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4442    return SDValue(Existing, InN.getResNo());
4443
4444  // Nope it doesn't.  Remove the node from its current place in the maps.
4445  if (InsertPos)
4446    if (!RemoveNodeFromCSEMaps(N))
4447      InsertPos = 0;
4448
4449  // Now we update the operands.
4450  if (N->OperandList[0] != Op1)
4451    N->OperandList[0].set(Op1);
4452  if (N->OperandList[1] != Op2)
4453    N->OperandList[1].set(Op2);
4454
4455  // If this gets put into a CSE map, add it.
4456  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4457  return InN;
4458}
4459
4460SDValue SelectionDAG::
4461UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4462  SDValue Ops[] = { Op1, Op2, Op3 };
4463  return UpdateNodeOperands(N, Ops, 3);
4464}
4465
4466SDValue SelectionDAG::
4467UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4468                   SDValue Op3, SDValue Op4) {
4469  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4470  return UpdateNodeOperands(N, Ops, 4);
4471}
4472
4473SDValue SelectionDAG::
4474UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4475                   SDValue Op3, SDValue Op4, SDValue Op5) {
4476  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4477  return UpdateNodeOperands(N, Ops, 5);
4478}
4479
4480SDValue SelectionDAG::
4481UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4482  SDNode *N = InN.getNode();
4483  assert(N->getNumOperands() == NumOps &&
4484         "Update with wrong number of operands");
4485
4486  // Check to see if there is no change.
4487  bool AnyChange = false;
4488  for (unsigned i = 0; i != NumOps; ++i) {
4489    if (Ops[i] != N->getOperand(i)) {
4490      AnyChange = true;
4491      break;
4492    }
4493  }
4494
4495  // No operands changed, just return the input node.
4496  if (!AnyChange) return InN;
4497
4498  // See if the modified node already exists.
4499  void *InsertPos = 0;
4500  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4501    return SDValue(Existing, InN.getResNo());
4502
4503  // Nope it doesn't.  Remove the node from its current place in the maps.
4504  if (InsertPos)
4505    if (!RemoveNodeFromCSEMaps(N))
4506      InsertPos = 0;
4507
4508  // Now we update the operands.
4509  for (unsigned i = 0; i != NumOps; ++i)
4510    if (N->OperandList[i] != Ops[i])
4511      N->OperandList[i].set(Ops[i]);
4512
4513  // If this gets put into a CSE map, add it.
4514  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4515  return InN;
4516}
4517
4518/// DropOperands - Release the operands and set this node to have
4519/// zero operands.
4520void SDNode::DropOperands() {
4521  // Unlike the code in MorphNodeTo that does this, we don't need to
4522  // watch for dead nodes here.
4523  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4524    SDUse &Use = *I++;
4525    Use.set(SDValue());
4526  }
4527}
4528
4529/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4530/// machine opcode.
4531///
4532SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4533                                   EVT VT) {
4534  SDVTList VTs = getVTList(VT);
4535  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4536}
4537
4538SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4539                                   EVT VT, SDValue Op1) {
4540  SDVTList VTs = getVTList(VT);
4541  SDValue Ops[] = { Op1 };
4542  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4543}
4544
4545SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4546                                   EVT VT, SDValue Op1,
4547                                   SDValue Op2) {
4548  SDVTList VTs = getVTList(VT);
4549  SDValue Ops[] = { Op1, Op2 };
4550  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4551}
4552
4553SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4554                                   EVT VT, SDValue Op1,
4555                                   SDValue Op2, SDValue Op3) {
4556  SDVTList VTs = getVTList(VT);
4557  SDValue Ops[] = { Op1, Op2, Op3 };
4558  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4559}
4560
4561SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4562                                   EVT VT, const SDValue *Ops,
4563                                   unsigned NumOps) {
4564  SDVTList VTs = getVTList(VT);
4565  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4566}
4567
4568SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4569                                   EVT VT1, EVT VT2, const SDValue *Ops,
4570                                   unsigned NumOps) {
4571  SDVTList VTs = getVTList(VT1, VT2);
4572  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4573}
4574
4575SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4576                                   EVT VT1, EVT VT2) {
4577  SDVTList VTs = getVTList(VT1, VT2);
4578  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4579}
4580
4581SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4582                                   EVT VT1, EVT VT2, EVT VT3,
4583                                   const SDValue *Ops, unsigned NumOps) {
4584  SDVTList VTs = getVTList(VT1, VT2, VT3);
4585  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4586}
4587
4588SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4589                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4590                                   const SDValue *Ops, unsigned NumOps) {
4591  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4592  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4593}
4594
4595SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4596                                   EVT VT1, EVT VT2,
4597                                   SDValue Op1) {
4598  SDVTList VTs = getVTList(VT1, VT2);
4599  SDValue Ops[] = { Op1 };
4600  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4601}
4602
4603SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4604                                   EVT VT1, EVT VT2,
4605                                   SDValue Op1, SDValue Op2) {
4606  SDVTList VTs = getVTList(VT1, VT2);
4607  SDValue Ops[] = { Op1, Op2 };
4608  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4609}
4610
4611SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4612                                   EVT VT1, EVT VT2,
4613                                   SDValue Op1, SDValue Op2,
4614                                   SDValue Op3) {
4615  SDVTList VTs = getVTList(VT1, VT2);
4616  SDValue Ops[] = { Op1, Op2, Op3 };
4617  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4618}
4619
4620SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4621                                   EVT VT1, EVT VT2, EVT VT3,
4622                                   SDValue Op1, SDValue Op2,
4623                                   SDValue Op3) {
4624  SDVTList VTs = getVTList(VT1, VT2, VT3);
4625  SDValue Ops[] = { Op1, Op2, Op3 };
4626  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4627}
4628
4629SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4630                                   SDVTList VTs, const SDValue *Ops,
4631                                   unsigned NumOps) {
4632  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4633  // Reset the NodeID to -1.
4634  N->setNodeId(-1);
4635  return N;
4636}
4637
4638/// MorphNodeTo - This *mutates* the specified node to have the specified
4639/// return type, opcode, and operands.
4640///
4641/// Note that MorphNodeTo returns the resultant node.  If there is already a
4642/// node of the specified opcode and operands, it returns that node instead of
4643/// the current one.  Note that the DebugLoc need not be the same.
4644///
4645/// Using MorphNodeTo is faster than creating a new node and swapping it in
4646/// with ReplaceAllUsesWith both because it often avoids allocating a new
4647/// node, and because it doesn't require CSE recalculation for any of
4648/// the node's users.
4649///
4650SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4651                                  SDVTList VTs, const SDValue *Ops,
4652                                  unsigned NumOps) {
4653  // If an identical node already exists, use it.
4654  void *IP = 0;
4655  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4656    FoldingSetNodeID ID;
4657    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4658    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4659      return ON;
4660  }
4661
4662  if (!RemoveNodeFromCSEMaps(N))
4663    IP = 0;
4664
4665  // Start the morphing.
4666  N->NodeType = Opc;
4667  N->ValueList = VTs.VTs;
4668  N->NumValues = VTs.NumVTs;
4669
4670  // Clear the operands list, updating used nodes to remove this from their
4671  // use list.  Keep track of any operands that become dead as a result.
4672  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4673  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4674    SDUse &Use = *I++;
4675    SDNode *Used = Use.getNode();
4676    Use.set(SDValue());
4677    if (Used->use_empty())
4678      DeadNodeSet.insert(Used);
4679  }
4680
4681  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4682    // Initialize the memory references information.
4683    MN->setMemRefs(0, 0);
4684    // If NumOps is larger than the # of operands we can have in a
4685    // MachineSDNode, reallocate the operand list.
4686    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4687      if (MN->OperandsNeedDelete)
4688        delete[] MN->OperandList;
4689      if (NumOps > array_lengthof(MN->LocalOperands))
4690        // We're creating a final node that will live unmorphed for the
4691        // remainder of the current SelectionDAG iteration, so we can allocate
4692        // the operands directly out of a pool with no recycling metadata.
4693        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4694                         Ops, NumOps);
4695      else
4696        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4697      MN->OperandsNeedDelete = false;
4698    } else
4699      MN->InitOperands(MN->OperandList, Ops, NumOps);
4700  } else {
4701    // If NumOps is larger than the # of operands we currently have, reallocate
4702    // the operand list.
4703    if (NumOps > N->NumOperands) {
4704      if (N->OperandsNeedDelete)
4705        delete[] N->OperandList;
4706      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4707      N->OperandsNeedDelete = true;
4708    } else
4709      N->InitOperands(N->OperandList, Ops, NumOps);
4710  }
4711
4712  // Delete any nodes that are still dead after adding the uses for the
4713  // new operands.
4714  if (!DeadNodeSet.empty()) {
4715    SmallVector<SDNode *, 16> DeadNodes;
4716    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4717         E = DeadNodeSet.end(); I != E; ++I)
4718      if ((*I)->use_empty())
4719        DeadNodes.push_back(*I);
4720    RemoveDeadNodes(DeadNodes);
4721  }
4722
4723  if (IP)
4724    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4725  return N;
4726}
4727
4728
4729/// getMachineNode - These are used for target selectors to create a new node
4730/// with specified return type(s), MachineInstr opcode, and operands.
4731///
4732/// Note that getMachineNode returns the resultant node.  If there is already a
4733/// node of the specified opcode and operands, it returns that node instead of
4734/// the current one.
4735MachineSDNode *
4736SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4737  SDVTList VTs = getVTList(VT);
4738  return getMachineNode(Opcode, dl, VTs, 0, 0);
4739}
4740
4741MachineSDNode *
4742SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4743  SDVTList VTs = getVTList(VT);
4744  SDValue Ops[] = { Op1 };
4745  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4746}
4747
4748MachineSDNode *
4749SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4750                             SDValue Op1, SDValue Op2) {
4751  SDVTList VTs = getVTList(VT);
4752  SDValue Ops[] = { Op1, Op2 };
4753  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4754}
4755
4756MachineSDNode *
4757SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4758                             SDValue Op1, SDValue Op2, SDValue Op3) {
4759  SDVTList VTs = getVTList(VT);
4760  SDValue Ops[] = { Op1, Op2, Op3 };
4761  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4762}
4763
4764MachineSDNode *
4765SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4766                             const SDValue *Ops, unsigned NumOps) {
4767  SDVTList VTs = getVTList(VT);
4768  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4769}
4770
4771MachineSDNode *
4772SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4773  SDVTList VTs = getVTList(VT1, VT2);
4774  return getMachineNode(Opcode, dl, VTs, 0, 0);
4775}
4776
4777MachineSDNode *
4778SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4779                             EVT VT1, EVT VT2, SDValue Op1) {
4780  SDVTList VTs = getVTList(VT1, VT2);
4781  SDValue Ops[] = { Op1 };
4782  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4783}
4784
4785MachineSDNode *
4786SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4787                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4788  SDVTList VTs = getVTList(VT1, VT2);
4789  SDValue Ops[] = { Op1, Op2 };
4790  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4791}
4792
4793MachineSDNode *
4794SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4795                             EVT VT1, EVT VT2, SDValue Op1,
4796                             SDValue Op2, SDValue Op3) {
4797  SDVTList VTs = getVTList(VT1, VT2);
4798  SDValue Ops[] = { Op1, Op2, Op3 };
4799  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4800}
4801
4802MachineSDNode *
4803SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4804                             EVT VT1, EVT VT2,
4805                             const SDValue *Ops, unsigned NumOps) {
4806  SDVTList VTs = getVTList(VT1, VT2);
4807  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4808}
4809
4810MachineSDNode *
4811SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4812                             EVT VT1, EVT VT2, EVT VT3,
4813                             SDValue Op1, SDValue Op2) {
4814  SDVTList VTs = getVTList(VT1, VT2, VT3);
4815  SDValue Ops[] = { Op1, Op2 };
4816  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4817}
4818
4819MachineSDNode *
4820SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4821                             EVT VT1, EVT VT2, EVT VT3,
4822                             SDValue Op1, SDValue Op2, SDValue Op3) {
4823  SDVTList VTs = getVTList(VT1, VT2, VT3);
4824  SDValue Ops[] = { Op1, Op2, Op3 };
4825  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4826}
4827
4828MachineSDNode *
4829SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4830                             EVT VT1, EVT VT2, EVT VT3,
4831                             const SDValue *Ops, unsigned NumOps) {
4832  SDVTList VTs = getVTList(VT1, VT2, VT3);
4833  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4834}
4835
4836MachineSDNode *
4837SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4838                             EVT VT2, EVT VT3, EVT VT4,
4839                             const SDValue *Ops, unsigned NumOps) {
4840  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4841  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4842}
4843
4844MachineSDNode *
4845SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4846                             const std::vector<EVT> &ResultTys,
4847                             const SDValue *Ops, unsigned NumOps) {
4848  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4849  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4850}
4851
4852MachineSDNode *
4853SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4854                             const SDValue *Ops, unsigned NumOps) {
4855  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4856  MachineSDNode *N;
4857  void *IP;
4858
4859  if (DoCSE) {
4860    FoldingSetNodeID ID;
4861    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4862    IP = 0;
4863    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4864      return cast<MachineSDNode>(E);
4865  }
4866
4867  // Allocate a new MachineSDNode.
4868  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4869
4870  // Initialize the operands list.
4871  if (NumOps > array_lengthof(N->LocalOperands))
4872    // We're creating a final node that will live unmorphed for the
4873    // remainder of the current SelectionDAG iteration, so we can allocate
4874    // the operands directly out of a pool with no recycling metadata.
4875    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4876                    Ops, NumOps);
4877  else
4878    N->InitOperands(N->LocalOperands, Ops, NumOps);
4879  N->OperandsNeedDelete = false;
4880
4881  if (DoCSE)
4882    CSEMap.InsertNode(N, IP);
4883
4884  AllNodes.push_back(N);
4885#ifndef NDEBUG
4886  VerifyNode(N);
4887#endif
4888  return N;
4889}
4890
4891/// getTargetExtractSubreg - A convenience function for creating
4892/// TargetOpcode::EXTRACT_SUBREG nodes.
4893SDValue
4894SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4895                                     SDValue Operand) {
4896  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4897  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4898                                  VT, Operand, SRIdxVal);
4899  return SDValue(Subreg, 0);
4900}
4901
4902/// getTargetInsertSubreg - A convenience function for creating
4903/// TargetOpcode::INSERT_SUBREG nodes.
4904SDValue
4905SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4906                                    SDValue Operand, SDValue Subreg) {
4907  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4908  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4909                                  VT, Operand, Subreg, SRIdxVal);
4910  return SDValue(Result, 0);
4911}
4912
4913/// getNodeIfExists - Get the specified node if it's already available, or
4914/// else return NULL.
4915SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4916                                      const SDValue *Ops, unsigned NumOps) {
4917  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4918    FoldingSetNodeID ID;
4919    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4920    void *IP = 0;
4921    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4922      return E;
4923  }
4924  return NULL;
4925}
4926
4927/// getDbgValue - Creates a SDDbgValue node.
4928///
4929SDDbgValue *
4930SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4931                          DebugLoc DL, unsigned O) {
4932  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4933}
4934
4935SDDbgValue *
4936SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4937                          DebugLoc DL, unsigned O) {
4938  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4939}
4940
4941SDDbgValue *
4942SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4943                          DebugLoc DL, unsigned O) {
4944  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4945}
4946
4947namespace {
4948
4949/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4950/// pointed to by a use iterator is deleted, increment the use iterator
4951/// so that it doesn't dangle.
4952///
4953/// This class also manages a "downlink" DAGUpdateListener, to forward
4954/// messages to ReplaceAllUsesWith's callers.
4955///
4956class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4957  SelectionDAG::DAGUpdateListener *DownLink;
4958  SDNode::use_iterator &UI;
4959  SDNode::use_iterator &UE;
4960
4961  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4962    // Increment the iterator as needed.
4963    while (UI != UE && N == *UI)
4964      ++UI;
4965
4966    // Then forward the message.
4967    if (DownLink) DownLink->NodeDeleted(N, E);
4968  }
4969
4970  virtual void NodeUpdated(SDNode *N) {
4971    // Just forward the message.
4972    if (DownLink) DownLink->NodeUpdated(N);
4973  }
4974
4975public:
4976  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4977                     SDNode::use_iterator &ui,
4978                     SDNode::use_iterator &ue)
4979    : DownLink(dl), UI(ui), UE(ue) {}
4980};
4981
4982}
4983
4984/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4985/// This can cause recursive merging of nodes in the DAG.
4986///
4987/// This version assumes From has a single result value.
4988///
4989void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4990                                      DAGUpdateListener *UpdateListener) {
4991  SDNode *From = FromN.getNode();
4992  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4993         "Cannot replace with this method!");
4994  assert(From != To.getNode() && "Cannot replace uses of with self");
4995
4996  // Iterate over all the existing uses of From. New uses will be added
4997  // to the beginning of the use list, which we avoid visiting.
4998  // This specifically avoids visiting uses of From that arise while the
4999  // replacement is happening, because any such uses would be the result
5000  // of CSE: If an existing node looks like From after one of its operands
5001  // is replaced by To, we don't want to replace of all its users with To
5002  // too. See PR3018 for more info.
5003  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5004  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5005  while (UI != UE) {
5006    SDNode *User = *UI;
5007
5008    // This node is about to morph, remove its old self from the CSE maps.
5009    RemoveNodeFromCSEMaps(User);
5010
5011    // A user can appear in a use list multiple times, and when this
5012    // happens the uses are usually next to each other in the list.
5013    // To help reduce the number of CSE recomputations, process all
5014    // the uses of this user that we can find this way.
5015    do {
5016      SDUse &Use = UI.getUse();
5017      ++UI;
5018      Use.set(To);
5019    } while (UI != UE && *UI == User);
5020
5021    // Now that we have modified User, add it back to the CSE maps.  If it
5022    // already exists there, recursively merge the results together.
5023    AddModifiedNodeToCSEMaps(User, &Listener);
5024  }
5025}
5026
5027/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5028/// This can cause recursive merging of nodes in the DAG.
5029///
5030/// This version assumes that for each value of From, there is a
5031/// corresponding value in To in the same position with the same type.
5032///
5033void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5034                                      DAGUpdateListener *UpdateListener) {
5035#ifndef NDEBUG
5036  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5037    assert((!From->hasAnyUseOfValue(i) ||
5038            From->getValueType(i) == To->getValueType(i)) &&
5039           "Cannot use this version of ReplaceAllUsesWith!");
5040#endif
5041
5042  // Handle the trivial case.
5043  if (From == To)
5044    return;
5045
5046  // Iterate over just the existing users of From. See the comments in
5047  // the ReplaceAllUsesWith above.
5048  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5049  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5050  while (UI != UE) {
5051    SDNode *User = *UI;
5052
5053    // This node is about to morph, remove its old self from the CSE maps.
5054    RemoveNodeFromCSEMaps(User);
5055
5056    // A user can appear in a use list multiple times, and when this
5057    // happens the uses are usually next to each other in the list.
5058    // To help reduce the number of CSE recomputations, process all
5059    // the uses of this user that we can find this way.
5060    do {
5061      SDUse &Use = UI.getUse();
5062      ++UI;
5063      Use.setNode(To);
5064    } while (UI != UE && *UI == User);
5065
5066    // Now that we have modified User, add it back to the CSE maps.  If it
5067    // already exists there, recursively merge the results together.
5068    AddModifiedNodeToCSEMaps(User, &Listener);
5069  }
5070}
5071
5072/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5073/// This can cause recursive merging of nodes in the DAG.
5074///
5075/// This version can replace From with any result values.  To must match the
5076/// number and types of values returned by From.
5077void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5078                                      const SDValue *To,
5079                                      DAGUpdateListener *UpdateListener) {
5080  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5081    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5082
5083  // Iterate over just the existing users of From. See the comments in
5084  // the ReplaceAllUsesWith above.
5085  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5086  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5087  while (UI != UE) {
5088    SDNode *User = *UI;
5089
5090    // This node is about to morph, remove its old self from the CSE maps.
5091    RemoveNodeFromCSEMaps(User);
5092
5093    // A user can appear in a use list multiple times, and when this
5094    // happens the uses are usually next to each other in the list.
5095    // To help reduce the number of CSE recomputations, process all
5096    // the uses of this user that we can find this way.
5097    do {
5098      SDUse &Use = UI.getUse();
5099      const SDValue &ToOp = To[Use.getResNo()];
5100      ++UI;
5101      Use.set(ToOp);
5102    } while (UI != UE && *UI == User);
5103
5104    // Now that we have modified User, add it back to the CSE maps.  If it
5105    // already exists there, recursively merge the results together.
5106    AddModifiedNodeToCSEMaps(User, &Listener);
5107  }
5108}
5109
5110/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5111/// uses of other values produced by From.getNode() alone.  The Deleted
5112/// vector is handled the same way as for ReplaceAllUsesWith.
5113void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5114                                             DAGUpdateListener *UpdateListener){
5115  // Handle the really simple, really trivial case efficiently.
5116  if (From == To) return;
5117
5118  // Handle the simple, trivial, case efficiently.
5119  if (From.getNode()->getNumValues() == 1) {
5120    ReplaceAllUsesWith(From, To, UpdateListener);
5121    return;
5122  }
5123
5124  // Iterate over just the existing users of From. See the comments in
5125  // the ReplaceAllUsesWith above.
5126  SDNode::use_iterator UI = From.getNode()->use_begin(),
5127                       UE = From.getNode()->use_end();
5128  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5129  while (UI != UE) {
5130    SDNode *User = *UI;
5131    bool UserRemovedFromCSEMaps = false;
5132
5133    // A user can appear in a use list multiple times, and when this
5134    // happens the uses are usually next to each other in the list.
5135    // To help reduce the number of CSE recomputations, process all
5136    // the uses of this user that we can find this way.
5137    do {
5138      SDUse &Use = UI.getUse();
5139
5140      // Skip uses of different values from the same node.
5141      if (Use.getResNo() != From.getResNo()) {
5142        ++UI;
5143        continue;
5144      }
5145
5146      // If this node hasn't been modified yet, it's still in the CSE maps,
5147      // so remove its old self from the CSE maps.
5148      if (!UserRemovedFromCSEMaps) {
5149        RemoveNodeFromCSEMaps(User);
5150        UserRemovedFromCSEMaps = true;
5151      }
5152
5153      ++UI;
5154      Use.set(To);
5155    } while (UI != UE && *UI == User);
5156
5157    // We are iterating over all uses of the From node, so if a use
5158    // doesn't use the specific value, no changes are made.
5159    if (!UserRemovedFromCSEMaps)
5160      continue;
5161
5162    // Now that we have modified User, add it back to the CSE maps.  If it
5163    // already exists there, recursively merge the results together.
5164    AddModifiedNodeToCSEMaps(User, &Listener);
5165  }
5166}
5167
5168namespace {
5169  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5170  /// to record information about a use.
5171  struct UseMemo {
5172    SDNode *User;
5173    unsigned Index;
5174    SDUse *Use;
5175  };
5176
5177  /// operator< - Sort Memos by User.
5178  bool operator<(const UseMemo &L, const UseMemo &R) {
5179    return (intptr_t)L.User < (intptr_t)R.User;
5180  }
5181}
5182
5183/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5184/// uses of other values produced by From.getNode() alone.  The same value
5185/// may appear in both the From and To list.  The Deleted vector is
5186/// handled the same way as for ReplaceAllUsesWith.
5187void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5188                                              const SDValue *To,
5189                                              unsigned Num,
5190                                              DAGUpdateListener *UpdateListener){
5191  // Handle the simple, trivial case efficiently.
5192  if (Num == 1)
5193    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5194
5195  // Read up all the uses and make records of them. This helps
5196  // processing new uses that are introduced during the
5197  // replacement process.
5198  SmallVector<UseMemo, 4> Uses;
5199  for (unsigned i = 0; i != Num; ++i) {
5200    unsigned FromResNo = From[i].getResNo();
5201    SDNode *FromNode = From[i].getNode();
5202    for (SDNode::use_iterator UI = FromNode->use_begin(),
5203         E = FromNode->use_end(); UI != E; ++UI) {
5204      SDUse &Use = UI.getUse();
5205      if (Use.getResNo() == FromResNo) {
5206        UseMemo Memo = { *UI, i, &Use };
5207        Uses.push_back(Memo);
5208      }
5209    }
5210  }
5211
5212  // Sort the uses, so that all the uses from a given User are together.
5213  std::sort(Uses.begin(), Uses.end());
5214
5215  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5216       UseIndex != UseIndexEnd; ) {
5217    // We know that this user uses some value of From.  If it is the right
5218    // value, update it.
5219    SDNode *User = Uses[UseIndex].User;
5220
5221    // This node is about to morph, remove its old self from the CSE maps.
5222    RemoveNodeFromCSEMaps(User);
5223
5224    // The Uses array is sorted, so all the uses for a given User
5225    // are next to each other in the list.
5226    // To help reduce the number of CSE recomputations, process all
5227    // the uses of this user that we can find this way.
5228    do {
5229      unsigned i = Uses[UseIndex].Index;
5230      SDUse &Use = *Uses[UseIndex].Use;
5231      ++UseIndex;
5232
5233      Use.set(To[i]);
5234    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5235
5236    // Now that we have modified User, add it back to the CSE maps.  If it
5237    // already exists there, recursively merge the results together.
5238    AddModifiedNodeToCSEMaps(User, UpdateListener);
5239  }
5240}
5241
5242/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5243/// based on their topological order. It returns the maximum id and a vector
5244/// of the SDNodes* in assigned order by reference.
5245unsigned SelectionDAG::AssignTopologicalOrder() {
5246
5247  unsigned DAGSize = 0;
5248
5249  // SortedPos tracks the progress of the algorithm. Nodes before it are
5250  // sorted, nodes after it are unsorted. When the algorithm completes
5251  // it is at the end of the list.
5252  allnodes_iterator SortedPos = allnodes_begin();
5253
5254  // Visit all the nodes. Move nodes with no operands to the front of
5255  // the list immediately. Annotate nodes that do have operands with their
5256  // operand count. Before we do this, the Node Id fields of the nodes
5257  // may contain arbitrary values. After, the Node Id fields for nodes
5258  // before SortedPos will contain the topological sort index, and the
5259  // Node Id fields for nodes At SortedPos and after will contain the
5260  // count of outstanding operands.
5261  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5262    SDNode *N = I++;
5263    checkForCycles(N);
5264    unsigned Degree = N->getNumOperands();
5265    if (Degree == 0) {
5266      // A node with no uses, add it to the result array immediately.
5267      N->setNodeId(DAGSize++);
5268      allnodes_iterator Q = N;
5269      if (Q != SortedPos)
5270        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5271      assert(SortedPos != AllNodes.end() && "Overran node list");
5272      ++SortedPos;
5273    } else {
5274      // Temporarily use the Node Id as scratch space for the degree count.
5275      N->setNodeId(Degree);
5276    }
5277  }
5278
5279  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5280  // such that by the time the end is reached all nodes will be sorted.
5281  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5282    SDNode *N = I;
5283    checkForCycles(N);
5284    // N is in sorted position, so all its uses have one less operand
5285    // that needs to be sorted.
5286    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5287         UI != UE; ++UI) {
5288      SDNode *P = *UI;
5289      unsigned Degree = P->getNodeId();
5290      assert(Degree != 0 && "Invalid node degree");
5291      --Degree;
5292      if (Degree == 0) {
5293        // All of P's operands are sorted, so P may sorted now.
5294        P->setNodeId(DAGSize++);
5295        if (P != SortedPos)
5296          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5297        assert(SortedPos != AllNodes.end() && "Overran node list");
5298        ++SortedPos;
5299      } else {
5300        // Update P's outstanding operand count.
5301        P->setNodeId(Degree);
5302      }
5303    }
5304    if (I == SortedPos) {
5305#ifndef NDEBUG
5306      SDNode *S = ++I;
5307      dbgs() << "Overran sorted position:\n";
5308      S->dumprFull();
5309#endif
5310      llvm_unreachable(0);
5311    }
5312  }
5313
5314  assert(SortedPos == AllNodes.end() &&
5315         "Topological sort incomplete!");
5316  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5317         "First node in topological sort is not the entry token!");
5318  assert(AllNodes.front().getNodeId() == 0 &&
5319         "First node in topological sort has non-zero id!");
5320  assert(AllNodes.front().getNumOperands() == 0 &&
5321         "First node in topological sort has operands!");
5322  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5323         "Last node in topologic sort has unexpected id!");
5324  assert(AllNodes.back().use_empty() &&
5325         "Last node in topologic sort has users!");
5326  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5327  return DAGSize;
5328}
5329
5330/// AssignOrdering - Assign an order to the SDNode.
5331void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5332  assert(SD && "Trying to assign an order to a null node!");
5333  Ordering->add(SD, Order);
5334}
5335
5336/// GetOrdering - Get the order for the SDNode.
5337unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5338  assert(SD && "Trying to get the order of a null node!");
5339  return Ordering->getOrder(SD);
5340}
5341
5342/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5343/// value is produced by SD.
5344void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD) {
5345  DbgInfo->add(DB, SD);
5346  if (SD)
5347    SD->setHasDebugValue(true);
5348}
5349
5350//===----------------------------------------------------------------------===//
5351//                              SDNode Class
5352//===----------------------------------------------------------------------===//
5353
5354HandleSDNode::~HandleSDNode() {
5355  DropOperands();
5356}
5357
5358GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5359                                         EVT VT, int64_t o, unsigned char TF)
5360  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5361  TheGlobal = GA;
5362}
5363
5364MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5365                     MachineMemOperand *mmo)
5366 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5367  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5368                                      MMO->isNonTemporal());
5369  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5370  assert(isNonTemporal() == MMO->isNonTemporal() &&
5371         "Non-temporal encoding error!");
5372  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5373}
5374
5375MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5376                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5377                     MachineMemOperand *mmo)
5378   : SDNode(Opc, dl, VTs, Ops, NumOps),
5379     MemoryVT(memvt), MMO(mmo) {
5380  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5381                                      MMO->isNonTemporal());
5382  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5383  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5384}
5385
5386/// Profile - Gather unique data for the node.
5387///
5388void SDNode::Profile(FoldingSetNodeID &ID) const {
5389  AddNodeIDNode(ID, this);
5390}
5391
5392namespace {
5393  struct EVTArray {
5394    std::vector<EVT> VTs;
5395
5396    EVTArray() {
5397      VTs.reserve(MVT::LAST_VALUETYPE);
5398      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5399        VTs.push_back(MVT((MVT::SimpleValueType)i));
5400    }
5401  };
5402}
5403
5404static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5405static ManagedStatic<EVTArray> SimpleVTArray;
5406static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5407
5408/// getValueTypeList - Return a pointer to the specified value type.
5409///
5410const EVT *SDNode::getValueTypeList(EVT VT) {
5411  if (VT.isExtended()) {
5412    sys::SmartScopedLock<true> Lock(*VTMutex);
5413    return &(*EVTs->insert(VT).first);
5414  } else {
5415    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5416  }
5417}
5418
5419/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5420/// indicated value.  This method ignores uses of other values defined by this
5421/// operation.
5422bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5423  assert(Value < getNumValues() && "Bad value!");
5424
5425  // TODO: Only iterate over uses of a given value of the node
5426  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5427    if (UI.getUse().getResNo() == Value) {
5428      if (NUses == 0)
5429        return false;
5430      --NUses;
5431    }
5432  }
5433
5434  // Found exactly the right number of uses?
5435  return NUses == 0;
5436}
5437
5438
5439/// hasAnyUseOfValue - Return true if there are any use of the indicated
5440/// value. This method ignores uses of other values defined by this operation.
5441bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5442  assert(Value < getNumValues() && "Bad value!");
5443
5444  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5445    if (UI.getUse().getResNo() == Value)
5446      return true;
5447
5448  return false;
5449}
5450
5451
5452/// isOnlyUserOf - Return true if this node is the only use of N.
5453///
5454bool SDNode::isOnlyUserOf(SDNode *N) const {
5455  bool Seen = false;
5456  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5457    SDNode *User = *I;
5458    if (User == this)
5459      Seen = true;
5460    else
5461      return false;
5462  }
5463
5464  return Seen;
5465}
5466
5467/// isOperand - Return true if this node is an operand of N.
5468///
5469bool SDValue::isOperandOf(SDNode *N) const {
5470  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5471    if (*this == N->getOperand(i))
5472      return true;
5473  return false;
5474}
5475
5476bool SDNode::isOperandOf(SDNode *N) const {
5477  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5478    if (this == N->OperandList[i].getNode())
5479      return true;
5480  return false;
5481}
5482
5483/// reachesChainWithoutSideEffects - Return true if this operand (which must
5484/// be a chain) reaches the specified operand without crossing any
5485/// side-effecting instructions.  In practice, this looks through token
5486/// factors and non-volatile loads.  In order to remain efficient, this only
5487/// looks a couple of nodes in, it does not do an exhaustive search.
5488bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5489                                               unsigned Depth) const {
5490  if (*this == Dest) return true;
5491
5492  // Don't search too deeply, we just want to be able to see through
5493  // TokenFactor's etc.
5494  if (Depth == 0) return false;
5495
5496  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5497  // of the operands of the TF reach dest, then we can do the xform.
5498  if (getOpcode() == ISD::TokenFactor) {
5499    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5500      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5501        return true;
5502    return false;
5503  }
5504
5505  // Loads don't have side effects, look through them.
5506  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5507    if (!Ld->isVolatile())
5508      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5509  }
5510  return false;
5511}
5512
5513/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5514/// is either an operand of N or it can be reached by traversing up the operands.
5515/// NOTE: this is an expensive method. Use it carefully.
5516bool SDNode::isPredecessorOf(SDNode *N) const {
5517  SmallPtrSet<SDNode *, 32> Visited;
5518  SmallVector<SDNode *, 16> Worklist;
5519  Worklist.push_back(N);
5520
5521  do {
5522    N = Worklist.pop_back_val();
5523    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5524      SDNode *Op = N->getOperand(i).getNode();
5525      if (Op == this)
5526        return true;
5527      if (Visited.insert(Op))
5528        Worklist.push_back(Op);
5529    }
5530  } while (!Worklist.empty());
5531
5532  return false;
5533}
5534
5535uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5536  assert(Num < NumOperands && "Invalid child # of SDNode!");
5537  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5538}
5539
5540std::string SDNode::getOperationName(const SelectionDAG *G) const {
5541  switch (getOpcode()) {
5542  default:
5543    if (getOpcode() < ISD::BUILTIN_OP_END)
5544      return "<<Unknown DAG Node>>";
5545    if (isMachineOpcode()) {
5546      if (G)
5547        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5548          if (getMachineOpcode() < TII->getNumOpcodes())
5549            return TII->get(getMachineOpcode()).getName();
5550      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5551    }
5552    if (G) {
5553      const TargetLowering &TLI = G->getTargetLoweringInfo();
5554      const char *Name = TLI.getTargetNodeName(getOpcode());
5555      if (Name) return Name;
5556      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5557    }
5558    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5559
5560#ifndef NDEBUG
5561  case ISD::DELETED_NODE:
5562    return "<<Deleted Node!>>";
5563#endif
5564  case ISD::PREFETCH:      return "Prefetch";
5565  case ISD::MEMBARRIER:    return "MemBarrier";
5566  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5567  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5568  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5569  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5570  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5571  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5572  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5573  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5574  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5575  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5576  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5577  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5578  case ISD::PCMARKER:      return "PCMarker";
5579  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5580  case ISD::SRCVALUE:      return "SrcValue";
5581  case ISD::MDNODE_SDNODE: return "MDNode";
5582  case ISD::EntryToken:    return "EntryToken";
5583  case ISD::TokenFactor:   return "TokenFactor";
5584  case ISD::AssertSext:    return "AssertSext";
5585  case ISD::AssertZext:    return "AssertZext";
5586
5587  case ISD::BasicBlock:    return "BasicBlock";
5588  case ISD::VALUETYPE:     return "ValueType";
5589  case ISD::Register:      return "Register";
5590
5591  case ISD::Constant:      return "Constant";
5592  case ISD::ConstantFP:    return "ConstantFP";
5593  case ISD::GlobalAddress: return "GlobalAddress";
5594  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5595  case ISD::FrameIndex:    return "FrameIndex";
5596  case ISD::JumpTable:     return "JumpTable";
5597  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5598  case ISD::RETURNADDR: return "RETURNADDR";
5599  case ISD::FRAMEADDR: return "FRAMEADDR";
5600  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5601  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5602  case ISD::LSDAADDR: return "LSDAADDR";
5603  case ISD::EHSELECTION: return "EHSELECTION";
5604  case ISD::EH_RETURN: return "EH_RETURN";
5605  case ISD::ConstantPool:  return "ConstantPool";
5606  case ISD::ExternalSymbol: return "ExternalSymbol";
5607  case ISD::BlockAddress:  return "BlockAddress";
5608  case ISD::INTRINSIC_WO_CHAIN:
5609  case ISD::INTRINSIC_VOID:
5610  case ISD::INTRINSIC_W_CHAIN: {
5611    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5612    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5613    if (IID < Intrinsic::num_intrinsics)
5614      return Intrinsic::getName((Intrinsic::ID)IID);
5615    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5616      return TII->getName(IID);
5617    llvm_unreachable("Invalid intrinsic ID");
5618  }
5619
5620  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5621  case ISD::TargetConstant: return "TargetConstant";
5622  case ISD::TargetConstantFP:return "TargetConstantFP";
5623  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5624  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5625  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5626  case ISD::TargetJumpTable:  return "TargetJumpTable";
5627  case ISD::TargetConstantPool:  return "TargetConstantPool";
5628  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5629  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5630
5631  case ISD::CopyToReg:     return "CopyToReg";
5632  case ISD::CopyFromReg:   return "CopyFromReg";
5633  case ISD::UNDEF:         return "undef";
5634  case ISD::MERGE_VALUES:  return "merge_values";
5635  case ISD::INLINEASM:     return "inlineasm";
5636  case ISD::EH_LABEL:      return "eh_label";
5637  case ISD::HANDLENODE:    return "handlenode";
5638
5639  // Unary operators
5640  case ISD::FABS:   return "fabs";
5641  case ISD::FNEG:   return "fneg";
5642  case ISD::FSQRT:  return "fsqrt";
5643  case ISD::FSIN:   return "fsin";
5644  case ISD::FCOS:   return "fcos";
5645  case ISD::FPOWI:  return "fpowi";
5646  case ISD::FPOW:   return "fpow";
5647  case ISD::FTRUNC: return "ftrunc";
5648  case ISD::FFLOOR: return "ffloor";
5649  case ISD::FCEIL:  return "fceil";
5650  case ISD::FRINT:  return "frint";
5651  case ISD::FNEARBYINT: return "fnearbyint";
5652
5653  // Binary operators
5654  case ISD::ADD:    return "add";
5655  case ISD::SUB:    return "sub";
5656  case ISD::MUL:    return "mul";
5657  case ISD::MULHU:  return "mulhu";
5658  case ISD::MULHS:  return "mulhs";
5659  case ISD::SDIV:   return "sdiv";
5660  case ISD::UDIV:   return "udiv";
5661  case ISD::SREM:   return "srem";
5662  case ISD::UREM:   return "urem";
5663  case ISD::SMUL_LOHI:  return "smul_lohi";
5664  case ISD::UMUL_LOHI:  return "umul_lohi";
5665  case ISD::SDIVREM:    return "sdivrem";
5666  case ISD::UDIVREM:    return "udivrem";
5667  case ISD::AND:    return "and";
5668  case ISD::OR:     return "or";
5669  case ISD::XOR:    return "xor";
5670  case ISD::SHL:    return "shl";
5671  case ISD::SRA:    return "sra";
5672  case ISD::SRL:    return "srl";
5673  case ISD::ROTL:   return "rotl";
5674  case ISD::ROTR:   return "rotr";
5675  case ISD::FADD:   return "fadd";
5676  case ISD::FSUB:   return "fsub";
5677  case ISD::FMUL:   return "fmul";
5678  case ISD::FDIV:   return "fdiv";
5679  case ISD::FREM:   return "frem";
5680  case ISD::FCOPYSIGN: return "fcopysign";
5681  case ISD::FGETSIGN:  return "fgetsign";
5682
5683  case ISD::SETCC:       return "setcc";
5684  case ISD::VSETCC:      return "vsetcc";
5685  case ISD::SELECT:      return "select";
5686  case ISD::SELECT_CC:   return "select_cc";
5687  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5688  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5689  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5690  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5691  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5692  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5693  case ISD::CARRY_FALSE:         return "carry_false";
5694  case ISD::ADDC:        return "addc";
5695  case ISD::ADDE:        return "adde";
5696  case ISD::SADDO:       return "saddo";
5697  case ISD::UADDO:       return "uaddo";
5698  case ISD::SSUBO:       return "ssubo";
5699  case ISD::USUBO:       return "usubo";
5700  case ISD::SMULO:       return "smulo";
5701  case ISD::UMULO:       return "umulo";
5702  case ISD::SUBC:        return "subc";
5703  case ISD::SUBE:        return "sube";
5704  case ISD::SHL_PARTS:   return "shl_parts";
5705  case ISD::SRA_PARTS:   return "sra_parts";
5706  case ISD::SRL_PARTS:   return "srl_parts";
5707
5708  // Conversion operators.
5709  case ISD::SIGN_EXTEND: return "sign_extend";
5710  case ISD::ZERO_EXTEND: return "zero_extend";
5711  case ISD::ANY_EXTEND:  return "any_extend";
5712  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5713  case ISD::TRUNCATE:    return "truncate";
5714  case ISD::FP_ROUND:    return "fp_round";
5715  case ISD::FLT_ROUNDS_: return "flt_rounds";
5716  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5717  case ISD::FP_EXTEND:   return "fp_extend";
5718
5719  case ISD::SINT_TO_FP:  return "sint_to_fp";
5720  case ISD::UINT_TO_FP:  return "uint_to_fp";
5721  case ISD::FP_TO_SINT:  return "fp_to_sint";
5722  case ISD::FP_TO_UINT:  return "fp_to_uint";
5723  case ISD::BIT_CONVERT: return "bit_convert";
5724  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5725  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5726
5727  case ISD::CONVERT_RNDSAT: {
5728    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5729    default: llvm_unreachable("Unknown cvt code!");
5730    case ISD::CVT_FF:  return "cvt_ff";
5731    case ISD::CVT_FS:  return "cvt_fs";
5732    case ISD::CVT_FU:  return "cvt_fu";
5733    case ISD::CVT_SF:  return "cvt_sf";
5734    case ISD::CVT_UF:  return "cvt_uf";
5735    case ISD::CVT_SS:  return "cvt_ss";
5736    case ISD::CVT_SU:  return "cvt_su";
5737    case ISD::CVT_US:  return "cvt_us";
5738    case ISD::CVT_UU:  return "cvt_uu";
5739    }
5740  }
5741
5742    // Control flow instructions
5743  case ISD::BR:      return "br";
5744  case ISD::BRIND:   return "brind";
5745  case ISD::BR_JT:   return "br_jt";
5746  case ISD::BRCOND:  return "brcond";
5747  case ISD::BR_CC:   return "br_cc";
5748  case ISD::CALLSEQ_START:  return "callseq_start";
5749  case ISD::CALLSEQ_END:    return "callseq_end";
5750
5751    // Other operators
5752  case ISD::LOAD:               return "load";
5753  case ISD::STORE:              return "store";
5754  case ISD::VAARG:              return "vaarg";
5755  case ISD::VACOPY:             return "vacopy";
5756  case ISD::VAEND:              return "vaend";
5757  case ISD::VASTART:            return "vastart";
5758  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5759  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5760  case ISD::BUILD_PAIR:         return "build_pair";
5761  case ISD::STACKSAVE:          return "stacksave";
5762  case ISD::STACKRESTORE:       return "stackrestore";
5763  case ISD::TRAP:               return "trap";
5764
5765  // Bit manipulation
5766  case ISD::BSWAP:   return "bswap";
5767  case ISD::CTPOP:   return "ctpop";
5768  case ISD::CTTZ:    return "cttz";
5769  case ISD::CTLZ:    return "ctlz";
5770
5771  // Trampolines
5772  case ISD::TRAMPOLINE: return "trampoline";
5773
5774  case ISD::CONDCODE:
5775    switch (cast<CondCodeSDNode>(this)->get()) {
5776    default: llvm_unreachable("Unknown setcc condition!");
5777    case ISD::SETOEQ:  return "setoeq";
5778    case ISD::SETOGT:  return "setogt";
5779    case ISD::SETOGE:  return "setoge";
5780    case ISD::SETOLT:  return "setolt";
5781    case ISD::SETOLE:  return "setole";
5782    case ISD::SETONE:  return "setone";
5783
5784    case ISD::SETO:    return "seto";
5785    case ISD::SETUO:   return "setuo";
5786    case ISD::SETUEQ:  return "setue";
5787    case ISD::SETUGT:  return "setugt";
5788    case ISD::SETUGE:  return "setuge";
5789    case ISD::SETULT:  return "setult";
5790    case ISD::SETULE:  return "setule";
5791    case ISD::SETUNE:  return "setune";
5792
5793    case ISD::SETEQ:   return "seteq";
5794    case ISD::SETGT:   return "setgt";
5795    case ISD::SETGE:   return "setge";
5796    case ISD::SETLT:   return "setlt";
5797    case ISD::SETLE:   return "setle";
5798    case ISD::SETNE:   return "setne";
5799    }
5800  }
5801}
5802
5803const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5804  switch (AM) {
5805  default:
5806    return "";
5807  case ISD::PRE_INC:
5808    return "<pre-inc>";
5809  case ISD::PRE_DEC:
5810    return "<pre-dec>";
5811  case ISD::POST_INC:
5812    return "<post-inc>";
5813  case ISD::POST_DEC:
5814    return "<post-dec>";
5815  }
5816}
5817
5818std::string ISD::ArgFlagsTy::getArgFlagsString() {
5819  std::string S = "< ";
5820
5821  if (isZExt())
5822    S += "zext ";
5823  if (isSExt())
5824    S += "sext ";
5825  if (isInReg())
5826    S += "inreg ";
5827  if (isSRet())
5828    S += "sret ";
5829  if (isByVal())
5830    S += "byval ";
5831  if (isNest())
5832    S += "nest ";
5833  if (getByValAlign())
5834    S += "byval-align:" + utostr(getByValAlign()) + " ";
5835  if (getOrigAlign())
5836    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5837  if (getByValSize())
5838    S += "byval-size:" + utostr(getByValSize()) + " ";
5839  return S + ">";
5840}
5841
5842void SDNode::dump() const { dump(0); }
5843void SDNode::dump(const SelectionDAG *G) const {
5844  print(dbgs(), G);
5845}
5846
5847void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5848  OS << (void*)this << ": ";
5849
5850  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5851    if (i) OS << ",";
5852    if (getValueType(i) == MVT::Other)
5853      OS << "ch";
5854    else
5855      OS << getValueType(i).getEVTString();
5856  }
5857  OS << " = " << getOperationName(G);
5858}
5859
5860void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5861  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5862    if (!MN->memoperands_empty()) {
5863      OS << "<";
5864      OS << "Mem:";
5865      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5866           e = MN->memoperands_end(); i != e; ++i) {
5867        OS << **i;
5868        if (next(i) != e)
5869          OS << " ";
5870      }
5871      OS << ">";
5872    }
5873  } else if (const ShuffleVectorSDNode *SVN =
5874               dyn_cast<ShuffleVectorSDNode>(this)) {
5875    OS << "<";
5876    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5877      int Idx = SVN->getMaskElt(i);
5878      if (i) OS << ",";
5879      if (Idx < 0)
5880        OS << "u";
5881      else
5882        OS << Idx;
5883    }
5884    OS << ">";
5885  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5886    OS << '<' << CSDN->getAPIntValue() << '>';
5887  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5888    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5889      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5890    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5891      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5892    else {
5893      OS << "<APFloat(";
5894      CSDN->getValueAPF().bitcastToAPInt().dump();
5895      OS << ")>";
5896    }
5897  } else if (const GlobalAddressSDNode *GADN =
5898             dyn_cast<GlobalAddressSDNode>(this)) {
5899    int64_t offset = GADN->getOffset();
5900    OS << '<';
5901    WriteAsOperand(OS, GADN->getGlobal());
5902    OS << '>';
5903    if (offset > 0)
5904      OS << " + " << offset;
5905    else
5906      OS << " " << offset;
5907    if (unsigned int TF = GADN->getTargetFlags())
5908      OS << " [TF=" << TF << ']';
5909  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5910    OS << "<" << FIDN->getIndex() << ">";
5911  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5912    OS << "<" << JTDN->getIndex() << ">";
5913    if (unsigned int TF = JTDN->getTargetFlags())
5914      OS << " [TF=" << TF << ']';
5915  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5916    int offset = CP->getOffset();
5917    if (CP->isMachineConstantPoolEntry())
5918      OS << "<" << *CP->getMachineCPVal() << ">";
5919    else
5920      OS << "<" << *CP->getConstVal() << ">";
5921    if (offset > 0)
5922      OS << " + " << offset;
5923    else
5924      OS << " " << offset;
5925    if (unsigned int TF = CP->getTargetFlags())
5926      OS << " [TF=" << TF << ']';
5927  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5928    OS << "<";
5929    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5930    if (LBB)
5931      OS << LBB->getName() << " ";
5932    OS << (const void*)BBDN->getBasicBlock() << ">";
5933  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5934    if (G && R->getReg() &&
5935        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5936      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5937    } else {
5938      OS << " %reg" << R->getReg();
5939    }
5940  } else if (const ExternalSymbolSDNode *ES =
5941             dyn_cast<ExternalSymbolSDNode>(this)) {
5942    OS << "'" << ES->getSymbol() << "'";
5943    if (unsigned int TF = ES->getTargetFlags())
5944      OS << " [TF=" << TF << ']';
5945  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5946    if (M->getValue())
5947      OS << "<" << M->getValue() << ">";
5948    else
5949      OS << "<null>";
5950  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5951    if (MD->getMD())
5952      OS << "<" << MD->getMD() << ">";
5953    else
5954      OS << "<null>";
5955  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5956    OS << ":" << N->getVT().getEVTString();
5957  }
5958  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5959    OS << "<" << *LD->getMemOperand();
5960
5961    bool doExt = true;
5962    switch (LD->getExtensionType()) {
5963    default: doExt = false; break;
5964    case ISD::EXTLOAD: OS << ", anyext"; break;
5965    case ISD::SEXTLOAD: OS << ", sext"; break;
5966    case ISD::ZEXTLOAD: OS << ", zext"; break;
5967    }
5968    if (doExt)
5969      OS << " from " << LD->getMemoryVT().getEVTString();
5970
5971    const char *AM = getIndexedModeName(LD->getAddressingMode());
5972    if (*AM)
5973      OS << ", " << AM;
5974
5975    OS << ">";
5976  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5977    OS << "<" << *ST->getMemOperand();
5978
5979    if (ST->isTruncatingStore())
5980      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5981
5982    const char *AM = getIndexedModeName(ST->getAddressingMode());
5983    if (*AM)
5984      OS << ", " << AM;
5985
5986    OS << ">";
5987  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5988    OS << "<" << *M->getMemOperand() << ">";
5989  } else if (const BlockAddressSDNode *BA =
5990               dyn_cast<BlockAddressSDNode>(this)) {
5991    OS << "<";
5992    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5993    OS << ", ";
5994    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5995    OS << ">";
5996    if (unsigned int TF = BA->getTargetFlags())
5997      OS << " [TF=" << TF << ']';
5998  }
5999
6000  if (G)
6001    if (unsigned Order = G->GetOrdering(this))
6002      OS << " [ORD=" << Order << ']';
6003
6004  if (getNodeId() != -1)
6005    OS << " [ID=" << getNodeId() << ']';
6006}
6007
6008void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6009  print_types(OS, G);
6010  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6011    if (i) OS << ", "; else OS << " ";
6012    OS << (void*)getOperand(i).getNode();
6013    if (unsigned RN = getOperand(i).getResNo())
6014      OS << ":" << RN;
6015  }
6016  print_details(OS, G);
6017}
6018
6019static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6020                                  const SelectionDAG *G, unsigned depth,
6021                                  unsigned indent)
6022{
6023  if (depth == 0)
6024    return;
6025
6026  OS.indent(indent);
6027
6028  N->print(OS, G);
6029
6030  if (depth < 1)
6031    return;
6032
6033  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6034    OS << '\n';
6035    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6036  }
6037}
6038
6039void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6040                            unsigned depth) const {
6041  printrWithDepthHelper(OS, this, G, depth, 0);
6042}
6043
6044void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6045  // Don't print impossibly deep things.
6046  printrWithDepth(OS, G, 100);
6047}
6048
6049void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6050  printrWithDepth(dbgs(), G, depth);
6051}
6052
6053void SDNode::dumprFull(const SelectionDAG *G) const {
6054  // Don't print impossibly deep things.
6055  dumprWithDepth(G, 100);
6056}
6057
6058static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6059  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6060    if (N->getOperand(i).getNode()->hasOneUse())
6061      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6062    else
6063      dbgs() << "\n" << std::string(indent+2, ' ')
6064           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6065
6066
6067  dbgs() << "\n";
6068  dbgs().indent(indent);
6069  N->dump(G);
6070}
6071
6072SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6073  assert(N->getNumValues() == 1 &&
6074         "Can't unroll a vector with multiple results!");
6075
6076  EVT VT = N->getValueType(0);
6077  unsigned NE = VT.getVectorNumElements();
6078  EVT EltVT = VT.getVectorElementType();
6079  DebugLoc dl = N->getDebugLoc();
6080
6081  SmallVector<SDValue, 8> Scalars;
6082  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6083
6084  // If ResNE is 0, fully unroll the vector op.
6085  if (ResNE == 0)
6086    ResNE = NE;
6087  else if (NE > ResNE)
6088    NE = ResNE;
6089
6090  unsigned i;
6091  for (i= 0; i != NE; ++i) {
6092    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6093      SDValue Operand = N->getOperand(j);
6094      EVT OperandVT = Operand.getValueType();
6095      if (OperandVT.isVector()) {
6096        // A vector operand; extract a single element.
6097        EVT OperandEltVT = OperandVT.getVectorElementType();
6098        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6099                              OperandEltVT,
6100                              Operand,
6101                              getConstant(i, MVT::i32));
6102      } else {
6103        // A scalar operand; just use it as is.
6104        Operands[j] = Operand;
6105      }
6106    }
6107
6108    switch (N->getOpcode()) {
6109    default:
6110      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6111                                &Operands[0], Operands.size()));
6112      break;
6113    case ISD::SHL:
6114    case ISD::SRA:
6115    case ISD::SRL:
6116    case ISD::ROTL:
6117    case ISD::ROTR:
6118      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6119                                getShiftAmountOperand(Operands[1])));
6120      break;
6121    case ISD::SIGN_EXTEND_INREG:
6122    case ISD::FP_ROUND_INREG: {
6123      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6124      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6125                                Operands[0],
6126                                getValueType(ExtVT)));
6127    }
6128    }
6129  }
6130
6131  for (; i < ResNE; ++i)
6132    Scalars.push_back(getUNDEF(EltVT));
6133
6134  return getNode(ISD::BUILD_VECTOR, dl,
6135                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6136                 &Scalars[0], Scalars.size());
6137}
6138
6139
6140/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6141/// location that is 'Dist' units away from the location that the 'Base' load
6142/// is loading from.
6143bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6144                                     unsigned Bytes, int Dist) const {
6145  if (LD->getChain() != Base->getChain())
6146    return false;
6147  EVT VT = LD->getValueType(0);
6148  if (VT.getSizeInBits() / 8 != Bytes)
6149    return false;
6150
6151  SDValue Loc = LD->getOperand(1);
6152  SDValue BaseLoc = Base->getOperand(1);
6153  if (Loc.getOpcode() == ISD::FrameIndex) {
6154    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6155      return false;
6156    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6157    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6158    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6159    int FS  = MFI->getObjectSize(FI);
6160    int BFS = MFI->getObjectSize(BFI);
6161    if (FS != BFS || FS != (int)Bytes) return false;
6162    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6163  }
6164  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6165    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6166    if (V && (V->getSExtValue() == Dist*Bytes))
6167      return true;
6168  }
6169
6170  const GlobalValue *GV1 = NULL;
6171  const GlobalValue *GV2 = NULL;
6172  int64_t Offset1 = 0;
6173  int64_t Offset2 = 0;
6174  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6175  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6176  if (isGA1 && isGA2 && GV1 == GV2)
6177    return Offset1 == (Offset2 + Dist*Bytes);
6178  return false;
6179}
6180
6181
6182/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6183/// it cannot be inferred.
6184unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6185  // If this is a GlobalAddress + cst, return the alignment.
6186  const GlobalValue *GV;
6187  int64_t GVOffset = 0;
6188  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6189    // If GV has specified alignment, then use it. Otherwise, use the preferred
6190    // alignment.
6191    unsigned Align = GV->getAlignment();
6192    if (!Align) {
6193      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6194        if (GVar->hasInitializer()) {
6195          const TargetData *TD = TLI.getTargetData();
6196          Align = TD->getPreferredAlignment(GVar);
6197        }
6198      }
6199    }
6200    return MinAlign(Align, GVOffset);
6201  }
6202
6203  // If this is a direct reference to a stack slot, use information about the
6204  // stack slot's alignment.
6205  int FrameIdx = 1 << 31;
6206  int64_t FrameOffset = 0;
6207  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6208    FrameIdx = FI->getIndex();
6209  } else if (Ptr.getOpcode() == ISD::ADD &&
6210             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6211             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6212    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6213    FrameOffset = Ptr.getConstantOperandVal(1);
6214  }
6215
6216  if (FrameIdx != (1 << 31)) {
6217    // FIXME: Handle FI+CST.
6218    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6219    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6220                                    FrameOffset);
6221    if (MFI.isFixedObjectIndex(FrameIdx)) {
6222      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6223
6224      // The alignment of the frame index can be determined from its offset from
6225      // the incoming frame position.  If the frame object is at offset 32 and
6226      // the stack is guaranteed to be 16-byte aligned, then we know that the
6227      // object is 16-byte aligned.
6228      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6229      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6230
6231      // Finally, the frame object itself may have a known alignment.  Factor
6232      // the alignment + offset into a new alignment.  For example, if we know
6233      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6234      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6235      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6236      return std::max(Align, FIInfoAlign);
6237    }
6238    return FIInfoAlign;
6239  }
6240
6241  return 0;
6242}
6243
6244void SelectionDAG::dump() const {
6245  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6246
6247  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6248       I != E; ++I) {
6249    const SDNode *N = I;
6250    if (!N->hasOneUse() && N != getRoot().getNode())
6251      DumpNodes(N, 2, this);
6252  }
6253
6254  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6255
6256  dbgs() << "\n\n";
6257}
6258
6259void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6260  print_types(OS, G);
6261  print_details(OS, G);
6262}
6263
6264typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6265static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6266                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6267  if (!once.insert(N))          // If we've been here before, return now.
6268    return;
6269
6270  // Dump the current SDNode, but don't end the line yet.
6271  OS << std::string(indent, ' ');
6272  N->printr(OS, G);
6273
6274  // Having printed this SDNode, walk the children:
6275  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6276    const SDNode *child = N->getOperand(i).getNode();
6277
6278    if (i) OS << ",";
6279    OS << " ";
6280
6281    if (child->getNumOperands() == 0) {
6282      // This child has no grandchildren; print it inline right here.
6283      child->printr(OS, G);
6284      once.insert(child);
6285    } else {         // Just the address. FIXME: also print the child's opcode.
6286      OS << (void*)child;
6287      if (unsigned RN = N->getOperand(i).getResNo())
6288        OS << ":" << RN;
6289    }
6290  }
6291
6292  OS << "\n";
6293
6294  // Dump children that have grandchildren on their own line(s).
6295  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6296    const SDNode *child = N->getOperand(i).getNode();
6297    DumpNodesr(OS, child, indent+2, G, once);
6298  }
6299}
6300
6301void SDNode::dumpr() const {
6302  VisitedSDNodeSet once;
6303  DumpNodesr(dbgs(), this, 0, 0, once);
6304}
6305
6306void SDNode::dumpr(const SelectionDAG *G) const {
6307  VisitedSDNodeSet once;
6308  DumpNodesr(dbgs(), this, 0, G, once);
6309}
6310
6311
6312// getAddressSpace - Return the address space this GlobalAddress belongs to.
6313unsigned GlobalAddressSDNode::getAddressSpace() const {
6314  return getGlobal()->getType()->getAddressSpace();
6315}
6316
6317
6318const Type *ConstantPoolSDNode::getType() const {
6319  if (isMachineConstantPoolEntry())
6320    return Val.MachineCPVal->getType();
6321  return Val.ConstVal->getType();
6322}
6323
6324bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6325                                        APInt &SplatUndef,
6326                                        unsigned &SplatBitSize,
6327                                        bool &HasAnyUndefs,
6328                                        unsigned MinSplatBits,
6329                                        bool isBigEndian) {
6330  EVT VT = getValueType(0);
6331  assert(VT.isVector() && "Expected a vector type");
6332  unsigned sz = VT.getSizeInBits();
6333  if (MinSplatBits > sz)
6334    return false;
6335
6336  SplatValue = APInt(sz, 0);
6337  SplatUndef = APInt(sz, 0);
6338
6339  // Get the bits.  Bits with undefined values (when the corresponding element
6340  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6341  // in SplatValue.  If any of the values are not constant, give up and return
6342  // false.
6343  unsigned int nOps = getNumOperands();
6344  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6345  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6346
6347  for (unsigned j = 0; j < nOps; ++j) {
6348    unsigned i = isBigEndian ? nOps-1-j : j;
6349    SDValue OpVal = getOperand(i);
6350    unsigned BitPos = j * EltBitSize;
6351
6352    if (OpVal.getOpcode() == ISD::UNDEF)
6353      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6354    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6355      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6356                    zextOrTrunc(sz) << BitPos;
6357    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6358      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6359     else
6360      return false;
6361  }
6362
6363  // The build_vector is all constants or undefs.  Find the smallest element
6364  // size that splats the vector.
6365
6366  HasAnyUndefs = (SplatUndef != 0);
6367  while (sz > 8) {
6368
6369    unsigned HalfSize = sz / 2;
6370    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6371    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6372    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6373    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6374
6375    // If the two halves do not match (ignoring undef bits), stop here.
6376    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6377        MinSplatBits > HalfSize)
6378      break;
6379
6380    SplatValue = HighValue | LowValue;
6381    SplatUndef = HighUndef & LowUndef;
6382
6383    sz = HalfSize;
6384  }
6385
6386  SplatBitSize = sz;
6387  return true;
6388}
6389
6390bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6391  // Find the first non-undef value in the shuffle mask.
6392  unsigned i, e;
6393  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6394    /* search */;
6395
6396  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6397
6398  // Make sure all remaining elements are either undef or the same as the first
6399  // non-undef value.
6400  for (int Idx = Mask[i]; i != e; ++i)
6401    if (Mask[i] >= 0 && Mask[i] != Idx)
6402      return false;
6403  return true;
6404}
6405
6406#ifdef XDEBUG
6407static void checkForCyclesHelper(const SDNode *N,
6408                                 SmallPtrSet<const SDNode*, 32> &Visited,
6409                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6410  // If this node has already been checked, don't check it again.
6411  if (Checked.count(N))
6412    return;
6413
6414  // If a node has already been visited on this depth-first walk, reject it as
6415  // a cycle.
6416  if (!Visited.insert(N)) {
6417    dbgs() << "Offending node:\n";
6418    N->dumprFull();
6419    errs() << "Detected cycle in SelectionDAG\n";
6420    abort();
6421  }
6422
6423  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6424    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6425
6426  Checked.insert(N);
6427  Visited.erase(N);
6428}
6429#endif
6430
6431void llvm::checkForCycles(const llvm::SDNode *N) {
6432#ifdef XDEBUG
6433  assert(N && "Checking nonexistant SDNode");
6434  SmallPtrSet<const SDNode*, 32> visited;
6435  SmallPtrSet<const SDNode*, 32> checked;
6436  checkForCyclesHelper(N, visited, checked);
6437#endif
6438}
6439
6440void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6441  checkForCycles(DAG->getRoot().getNode());
6442}
6443