SelectionDAG.cpp revision bd209ab9bc0f6ad667c15df4453955c2ed4c2434
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getMemoryVT().getRawBits());
433    ID.AddInteger(LD->getRawSubclassData());
434    break;
435  }
436  case ISD::STORE: {
437    const StoreSDNode *ST = cast<StoreSDNode>(N);
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawSubclassData());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_ADD:
445  case ISD::ATOMIC_LOAD_SUB:
446  case ISD::ATOMIC_LOAD_AND:
447  case ISD::ATOMIC_LOAD_OR:
448  case ISD::ATOMIC_LOAD_XOR:
449  case ISD::ATOMIC_LOAD_NAND:
450  case ISD::ATOMIC_LOAD_MIN:
451  case ISD::ATOMIC_LOAD_MAX:
452  case ISD::ATOMIC_LOAD_UMIN:
453  case ISD::ATOMIC_LOAD_UMAX: {
454    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455    ID.AddInteger(AT->getMemoryVT().getRawBits());
456    ID.AddInteger(AT->getRawSubclassData());
457    break;
458  }
459  } // end switch (N->getOpcode())
460}
461
462/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
463/// data.
464static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
465  AddNodeIDOpcode(ID, N->getOpcode());
466  // Add the return value info.
467  AddNodeIDValueTypes(ID, N->getVTList());
468  // Add the operand info.
469  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
470
471  // Handle SDNode leafs with special info.
472  AddNodeIDCustom(ID, N);
473}
474
475/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476/// the CSE map that carries alignment, volatility, indexing mode, and
477/// extension/truncation information.
478///
479static inline unsigned
480encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
481                     bool isVolatile, unsigned Alignment) {
482  assert((ConvType & 3) == ConvType &&
483         "ConvType may not require more than 2 bits!");
484  assert((AM & 7) == AM &&
485         "AM may not require more than 3 bits!");
486  return ConvType |
487         (AM << 2) |
488         (isVolatile << 5) |
489         ((Log2_32(Alignment) + 1) << 6);
490}
491
492//===----------------------------------------------------------------------===//
493//                              SelectionDAG Class
494//===----------------------------------------------------------------------===//
495
496/// doNotCSE - Return true if CSE should not be performed for this node.
497static bool doNotCSE(SDNode *N) {
498  if (N->getValueType(0) == MVT::Flag)
499    return true; // Never CSE anything that produces a flag.
500
501  switch (N->getOpcode()) {
502  default: break;
503  case ISD::HANDLENODE:
504  case ISD::DBG_LABEL:
505  case ISD::DBG_STOPPOINT:
506  case ISD::EH_LABEL:
507  case ISD::DECLARE:
508    return true;   // Never CSE these nodes.
509  }
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return true; // Never CSE anything that produces a flag.
515
516  return false;
517}
518
519/// RemoveDeadNodes - This method deletes all unreachable nodes in the
520/// SelectionDAG.
521void SelectionDAG::RemoveDeadNodes() {
522  // Create a dummy node (which is not added to allnodes), that adds a reference
523  // to the root node, preventing it from being deleted.
524  HandleSDNode Dummy(getRoot());
525
526  SmallVector<SDNode*, 128> DeadNodes;
527
528  // Add all obviously-dead nodes to the DeadNodes worklist.
529  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530    if (I->use_empty())
531      DeadNodes.push_back(I);
532
533  RemoveDeadNodes(DeadNodes);
534
535  // If the root changed (e.g. it was a dead load, update the root).
536  setRoot(Dummy.getValue());
537}
538
539/// RemoveDeadNodes - This method deletes the unreachable nodes in the
540/// given list, and any nodes that become unreachable as a result.
541void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542                                   DAGUpdateListener *UpdateListener) {
543
544  // Process the worklist, deleting the nodes and adding their uses to the
545  // worklist.
546  while (!DeadNodes.empty()) {
547    SDNode *N = DeadNodes.pop_back_val();
548
549    if (UpdateListener)
550      UpdateListener->NodeDeleted(N, 0);
551
552    // Take the node out of the appropriate CSE map.
553    RemoveNodeFromCSEMaps(N);
554
555    // Next, brutally remove the operand list.  This is safe to do, as there are
556    // no cycles in the graph.
557    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558      SDUse &Use = *I++;
559      SDNode *Operand = Use.getNode();
560      Use.set(SDValue());
561
562      // Now that we removed this operand, see if there are no uses of it left.
563      if (Operand->use_empty())
564        DeadNodes.push_back(Operand);
565    }
566
567    DeallocateNode(N);
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  // First take this out of the appropriate CSE map.
578  RemoveNodeFromCSEMaps(N);
579
580  // Finally, remove uses due to operands of this node, remove from the
581  // AllNodes list, and delete the node.
582  DeleteNodeNotInCSEMaps(N);
583}
584
585void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587  assert(N->use_empty() && "Cannot delete a node that is not dead!");
588
589  // Drop all of the operands and decrement used node's use counts.
590  N->DropOperands();
591
592  DeallocateNode(N);
593}
594
595void SelectionDAG::DeallocateNode(SDNode *N) {
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  // Set the opcode to DELETED_NODE to help catch bugs when node
600  // memory is reallocated.
601  N->NodeType = ISD::DELETED_NODE;
602
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::EntryToken:
614    assert(0 && "EntryToken should not be in CSEMaps!");
615    return false;
616  case ISD::HANDLENODE: return false;  // noop.
617  case ISD::CONDCODE:
618    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619           "Cond code doesn't exist!");
620    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622    break;
623  case ISD::ExternalSymbol:
624    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::TargetExternalSymbol:
627    Erased =
628      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
629    break;
630  case ISD::VALUETYPE: {
631    MVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
636      ValueTypeNodes[VT.getSimpleVT()] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    Erased = CSEMap.RemoveNode(N);
643    break;
644  }
645#ifndef NDEBUG
646  // Verify that the node was actually in one of the CSE maps, unless it has a
647  // flag result (which cannot be CSE'd) or is one of the special cases that are
648  // not subject to CSE.
649  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650      !N->isMachineOpcode() && !doNotCSE(N)) {
651    N->dump(this);
652    cerr << "\n";
653    assert(0 && "Node is not in map!");
654  }
655#endif
656  return Erased;
657}
658
659/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660/// maps and modified in place. Add it back to the CSE maps, unless an identical
661/// node already exists, in which case transfer all its users to the existing
662/// node. This transfer can potentially trigger recursive merging.
663///
664void
665SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666                                       DAGUpdateListener *UpdateListener) {
667  // For node types that aren't CSE'd, just act as if no identical node
668  // already exists.
669  if (!doNotCSE(N)) {
670    SDNode *Existing = CSEMap.GetOrInsertNode(N);
671    if (Existing != N) {
672      // If there was already an existing matching node, use ReplaceAllUsesWith
673      // to replace the dead one with the existing one.  This can cause
674      // recursive merging of other unrelated nodes down the line.
675      ReplaceAllUsesWith(N, Existing, UpdateListener);
676
677      // N is now dead.  Inform the listener if it exists and delete it.
678      if (UpdateListener)
679        UpdateListener->NodeDeleted(N, Existing);
680      DeleteNodeNotInCSEMaps(N);
681      return;
682    }
683  }
684
685  // If the node doesn't already exist, we updated it.  Inform a listener if
686  // it exists.
687  if (UpdateListener)
688    UpdateListener->NodeUpdated(N);
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696                                           void *&InsertPos) {
697  if (doNotCSE(N))
698    return 0;
699
700  SDValue Ops[] = { Op };
701  FoldingSetNodeID ID;
702  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703  AddNodeIDCustom(ID, N);
704  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
705}
706
707/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708/// were replaced with those specified.  If this node is never memoized,
709/// return null, otherwise return a pointer to the slot it would take.  If a
710/// node already exists with these operands, the slot will be non-null.
711SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
712                                           SDValue Op1, SDValue Op2,
713                                           void *&InsertPos) {
714  if (doNotCSE(N))
715    return 0;
716
717  SDValue Ops[] = { Op1, Op2 };
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
720  AddNodeIDCustom(ID, N);
721  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           const SDValue *Ops,unsigned NumOps,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737  AddNodeIDCustom(ID, N);
738  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739}
740
741/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
742void SelectionDAG::VerifyNode(SDNode *N) {
743  switch (N->getOpcode()) {
744  default:
745    break;
746  case ISD::BUILD_PAIR: {
747    MVT VT = N->getValueType(0);
748    assert(N->getNumValues() == 1 && "Too many results!");
749    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
750           "Wrong return type!");
751    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
752    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
753           "Mismatched operand types!");
754    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
755           "Wrong operand type!");
756    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
757           "Wrong return type size");
758    break;
759  }
760  case ISD::BUILD_VECTOR: {
761    assert(N->getNumValues() == 1 && "Too many results!");
762    assert(N->getValueType(0).isVector() && "Wrong return type!");
763    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
764           "Wrong number of operands!");
765    MVT EltVT = N->getValueType(0).getVectorElementType();
766    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
767      assert((I->getValueType() == EltVT ||
768              (EltVT.isInteger() && I->getValueType().isInteger() &&
769               EltVT.bitsLE(I->getValueType()))) &&
770             "Wrong operand type!");
771    break;
772  }
773  }
774}
775
776/// getMVTAlignment - Compute the default alignment value for the
777/// given type.
778///
779unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
780  const Type *Ty = VT == MVT::iPTR ?
781                   PointerType::get(Type::Int8Ty, 0) :
782                   VT.getTypeForMVT();
783
784  return TLI.getTargetData()->getABITypeAlignment(Ty);
785}
786
787// EntryNode could meaningfully have debug info if we can find it...
788SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
789  : TLI(tli), FLI(fli), DW(0),
790    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
791    getVTList(MVT::Other)), Root(getEntryNode()) {
792  AllNodes.push_back(&EntryNode);
793}
794
795void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
796                        DwarfWriter *dw) {
797  MF = &mf;
798  MMI = mmi;
799  DW = dw;
800}
801
802SelectionDAG::~SelectionDAG() {
803  allnodes_clear();
804}
805
806void SelectionDAG::allnodes_clear() {
807  assert(&*AllNodes.begin() == &EntryNode);
808  AllNodes.remove(AllNodes.begin());
809  while (!AllNodes.empty())
810    DeallocateNode(AllNodes.begin());
811}
812
813void SelectionDAG::clear() {
814  allnodes_clear();
815  OperandAllocator.Reset();
816  CSEMap.clear();
817
818  ExtendedValueTypeNodes.clear();
819  ExternalSymbols.clear();
820  TargetExternalSymbols.clear();
821  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
822            static_cast<CondCodeSDNode*>(0));
823  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
824            static_cast<SDNode*>(0));
825
826  EntryNode.UseList = 0;
827  AllNodes.push_back(&EntryNode);
828  Root = getEntryNode();
829}
830
831SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
832  if (Op.getValueType() == VT) return Op;
833  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
834                                   VT.getSizeInBits());
835  return getNode(ISD::AND, DL, Op.getValueType(), Op,
836                 getConstant(Imm, Op.getValueType()));
837}
838
839/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
840///
841SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
842  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
843  SDValue NegOne =
844    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
845  return getNode(ISD::XOR, DL, VT, Val, NegOne);
846}
847
848SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
849  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
850  assert((EltVT.getSizeInBits() >= 64 ||
851         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
852         "getConstant with a uint64_t value that doesn't fit in the type!");
853  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
854}
855
856SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
857  return getConstant(*ConstantInt::get(Val), VT, isT);
858}
859
860SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
861  assert(VT.isInteger() && "Cannot create FP integer constant!");
862
863  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
864  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
865         "APInt size does not match type size!");
866
867  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
868  FoldingSetNodeID ID;
869  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
870  ID.AddPointer(&Val);
871  void *IP = 0;
872  SDNode *N = NULL;
873  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
874    if (!VT.isVector())
875      return SDValue(N, 0);
876  if (!N) {
877    N = NodeAllocator.Allocate<ConstantSDNode>();
878    new (N) ConstantSDNode(isT, &Val, EltVT);
879    CSEMap.InsertNode(N, IP);
880    AllNodes.push_back(N);
881  }
882
883  SDValue Result(N, 0);
884  if (VT.isVector()) {
885    SmallVector<SDValue, 8> Ops;
886    Ops.assign(VT.getVectorNumElements(), Result);
887    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
888                     VT, &Ops[0], Ops.size());
889  }
890  return Result;
891}
892
893SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
894  return getConstant(Val, TLI.getPointerTy(), isTarget);
895}
896
897
898SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
899  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
900}
901
902SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
903  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
904
905  MVT EltVT =
906    VT.isVector() ? VT.getVectorElementType() : VT;
907
908  // Do the map lookup using the actual bit pattern for the floating point
909  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
910  // we don't have issues with SNANs.
911  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
912  FoldingSetNodeID ID;
913  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
914  ID.AddPointer(&V);
915  void *IP = 0;
916  SDNode *N = NULL;
917  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
918    if (!VT.isVector())
919      return SDValue(N, 0);
920  if (!N) {
921    N = NodeAllocator.Allocate<ConstantFPSDNode>();
922    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
923    CSEMap.InsertNode(N, IP);
924    AllNodes.push_back(N);
925  }
926
927  SDValue Result(N, 0);
928  if (VT.isVector()) {
929    SmallVector<SDValue, 8> Ops;
930    Ops.assign(VT.getVectorNumElements(), Result);
931    // FIXME DebugLoc info might be appropriate here
932    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
933                     VT, &Ops[0], Ops.size());
934  }
935  return Result;
936}
937
938SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
939  MVT EltVT =
940    VT.isVector() ? VT.getVectorElementType() : VT;
941  if (EltVT==MVT::f32)
942    return getConstantFP(APFloat((float)Val), VT, isTarget);
943  else
944    return getConstantFP(APFloat(Val), VT, isTarget);
945}
946
947SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
948                                       MVT VT, int64_t Offset,
949                                       bool isTargetGA) {
950  unsigned Opc;
951
952  // Truncate (with sign-extension) the offset value to the pointer size.
953  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
954  if (BitWidth < 64)
955    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
956
957  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
958  if (!GVar) {
959    // If GV is an alias then use the aliasee for determining thread-localness.
960    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
961      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
962  }
963
964  if (GVar && GVar->isThreadLocal())
965    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
966  else
967    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
968
969  FoldingSetNodeID ID;
970  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
971  ID.AddPointer(GV);
972  ID.AddInteger(Offset);
973  void *IP = 0;
974  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
975    return SDValue(E, 0);
976  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
977  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
978  CSEMap.InsertNode(N, IP);
979  AllNodes.push_back(N);
980  return SDValue(N, 0);
981}
982
983SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
984  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
985  FoldingSetNodeID ID;
986  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
987  ID.AddInteger(FI);
988  void *IP = 0;
989  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
990    return SDValue(E, 0);
991  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
992  new (N) FrameIndexSDNode(FI, VT, isTarget);
993  CSEMap.InsertNode(N, IP);
994  AllNodes.push_back(N);
995  return SDValue(N, 0);
996}
997
998SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
999  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1000  FoldingSetNodeID ID;
1001  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1002  ID.AddInteger(JTI);
1003  void *IP = 0;
1004  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1005    return SDValue(E, 0);
1006  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1007  new (N) JumpTableSDNode(JTI, VT, isTarget);
1008  CSEMap.InsertNode(N, IP);
1009  AllNodes.push_back(N);
1010  return SDValue(N, 0);
1011}
1012
1013SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1014                                      unsigned Alignment, int Offset,
1015                                      bool isTarget) {
1016  if (Alignment == 0)
1017    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1018  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1019  FoldingSetNodeID ID;
1020  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1021  ID.AddInteger(Alignment);
1022  ID.AddInteger(Offset);
1023  ID.AddPointer(C);
1024  void *IP = 0;
1025  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1026    return SDValue(E, 0);
1027  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1028  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1029  CSEMap.InsertNode(N, IP);
1030  AllNodes.push_back(N);
1031  return SDValue(N, 0);
1032}
1033
1034
1035SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1036                                      unsigned Alignment, int Offset,
1037                                      bool isTarget) {
1038  if (Alignment == 0)
1039    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1040  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1041  FoldingSetNodeID ID;
1042  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1043  ID.AddInteger(Alignment);
1044  ID.AddInteger(Offset);
1045  C->AddSelectionDAGCSEId(ID);
1046  void *IP = 0;
1047  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1048    return SDValue(E, 0);
1049  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1050  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1051  CSEMap.InsertNode(N, IP);
1052  AllNodes.push_back(N);
1053  return SDValue(N, 0);
1054}
1055
1056SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1057  FoldingSetNodeID ID;
1058  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1059  ID.AddPointer(MBB);
1060  void *IP = 0;
1061  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1062    return SDValue(E, 0);
1063  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1064  new (N) BasicBlockSDNode(MBB);
1065  CSEMap.InsertNode(N, IP);
1066  AllNodes.push_back(N);
1067  return SDValue(N, 0);
1068}
1069
1070SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1071  FoldingSetNodeID ID;
1072  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1073  ID.AddInteger(Flags.getRawBits());
1074  void *IP = 0;
1075  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1076    return SDValue(E, 0);
1077  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1078  new (N) ARG_FLAGSSDNode(Flags);
1079  CSEMap.InsertNode(N, IP);
1080  AllNodes.push_back(N);
1081  return SDValue(N, 0);
1082}
1083
1084SDValue SelectionDAG::getValueType(MVT VT) {
1085  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1086    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1087
1088  SDNode *&N = VT.isExtended() ?
1089    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1090
1091  if (N) return SDValue(N, 0);
1092  N = NodeAllocator.Allocate<VTSDNode>();
1093  new (N) VTSDNode(VT);
1094  AllNodes.push_back(N);
1095  return SDValue(N, 0);
1096}
1097
1098SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1099  SDNode *&N = ExternalSymbols[Sym];
1100  if (N) return SDValue(N, 0);
1101  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1102  new (N) ExternalSymbolSDNode(false, Sym, VT);
1103  AllNodes.push_back(N);
1104  return SDValue(N, 0);
1105}
1106
1107SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1108  SDNode *&N = TargetExternalSymbols[Sym];
1109  if (N) return SDValue(N, 0);
1110  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1111  new (N) ExternalSymbolSDNode(true, Sym, VT);
1112  AllNodes.push_back(N);
1113  return SDValue(N, 0);
1114}
1115
1116SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1117  if ((unsigned)Cond >= CondCodeNodes.size())
1118    CondCodeNodes.resize(Cond+1);
1119
1120  if (CondCodeNodes[Cond] == 0) {
1121    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1122    new (N) CondCodeSDNode(Cond);
1123    CondCodeNodes[Cond] = N;
1124    AllNodes.push_back(N);
1125  }
1126  return SDValue(CondCodeNodes[Cond], 0);
1127}
1128
1129SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1130                                       SDValue Val, SDValue DTy,
1131                                       SDValue STy, SDValue Rnd, SDValue Sat,
1132                                       ISD::CvtCode Code) {
1133  // If the src and dest types are the same and the conversion is between
1134  // integer types of the same sign or two floats, no conversion is necessary.
1135  if (DTy == STy &&
1136      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1137    return Val;
1138
1139  FoldingSetNodeID ID;
1140  void* IP = 0;
1141  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1142    return SDValue(E, 0);
1143  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1144  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1145  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1146  CSEMap.InsertNode(N, IP);
1147  AllNodes.push_back(N);
1148  return SDValue(N, 0);
1149}
1150
1151SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1152  FoldingSetNodeID ID;
1153  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1154  ID.AddInteger(RegNo);
1155  void *IP = 0;
1156  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1157    return SDValue(E, 0);
1158  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1159  new (N) RegisterSDNode(RegNo, VT);
1160  CSEMap.InsertNode(N, IP);
1161  AllNodes.push_back(N);
1162  return SDValue(N, 0);
1163}
1164
1165SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1166                                      unsigned Line, unsigned Col,
1167                                      Value *CU) {
1168  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1169  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1170  AllNodes.push_back(N);
1171  return SDValue(N, 0);
1172}
1173
1174SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1175                               SDValue Root,
1176                               unsigned LabelID) {
1177  FoldingSetNodeID ID;
1178  SDValue Ops[] = { Root };
1179  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1180  ID.AddInteger(LabelID);
1181  void *IP = 0;
1182  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1183    return SDValue(E, 0);
1184  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1185  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1186  CSEMap.InsertNode(N, IP);
1187  AllNodes.push_back(N);
1188  return SDValue(N, 0);
1189}
1190
1191SDValue SelectionDAG::getSrcValue(const Value *V) {
1192  assert((!V || isa<PointerType>(V->getType())) &&
1193         "SrcValue is not a pointer?");
1194
1195  FoldingSetNodeID ID;
1196  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1197  ID.AddPointer(V);
1198
1199  void *IP = 0;
1200  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1201    return SDValue(E, 0);
1202
1203  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1204  new (N) SrcValueSDNode(V);
1205  CSEMap.InsertNode(N, IP);
1206  AllNodes.push_back(N);
1207  return SDValue(N, 0);
1208}
1209
1210SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1211#ifndef NDEBUG
1212  const Value *v = MO.getValue();
1213  assert((!v || isa<PointerType>(v->getType())) &&
1214         "SrcValue is not a pointer?");
1215#endif
1216
1217  FoldingSetNodeID ID;
1218  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1219  MO.Profile(ID);
1220
1221  void *IP = 0;
1222  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1223    return SDValue(E, 0);
1224
1225  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1226  new (N) MemOperandSDNode(MO);
1227  CSEMap.InsertNode(N, IP);
1228  AllNodes.push_back(N);
1229  return SDValue(N, 0);
1230}
1231
1232/// getShiftAmountOperand - Return the specified value casted to
1233/// the target's desired shift amount type.
1234SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1235  MVT OpTy = Op.getValueType();
1236  MVT ShTy = TLI.getShiftAmountTy();
1237  if (OpTy == ShTy || OpTy.isVector()) return Op;
1238
1239  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1240  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1241}
1242
1243/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1244/// specified value type.
1245SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1246  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1247  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1248  const Type *Ty = VT.getTypeForMVT();
1249  unsigned StackAlign =
1250  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1251
1252  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1253  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1254}
1255
1256/// CreateStackTemporary - Create a stack temporary suitable for holding
1257/// either of the specified value types.
1258SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1259  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1260                            VT2.getStoreSizeInBits())/8;
1261  const Type *Ty1 = VT1.getTypeForMVT();
1262  const Type *Ty2 = VT2.getTypeForMVT();
1263  const TargetData *TD = TLI.getTargetData();
1264  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1265                            TD->getPrefTypeAlignment(Ty2));
1266
1267  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1268  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1269  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1270}
1271
1272SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1273                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1274  // These setcc operations always fold.
1275  switch (Cond) {
1276  default: break;
1277  case ISD::SETFALSE:
1278  case ISD::SETFALSE2: return getConstant(0, VT);
1279  case ISD::SETTRUE:
1280  case ISD::SETTRUE2:  return getConstant(1, VT);
1281
1282  case ISD::SETOEQ:
1283  case ISD::SETOGT:
1284  case ISD::SETOGE:
1285  case ISD::SETOLT:
1286  case ISD::SETOLE:
1287  case ISD::SETONE:
1288  case ISD::SETO:
1289  case ISD::SETUO:
1290  case ISD::SETUEQ:
1291  case ISD::SETUNE:
1292    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1293    break;
1294  }
1295
1296  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1297    const APInt &C2 = N2C->getAPIntValue();
1298    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1299      const APInt &C1 = N1C->getAPIntValue();
1300
1301      switch (Cond) {
1302      default: assert(0 && "Unknown integer setcc!");
1303      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1304      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1305      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1306      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1307      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1308      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1309      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1310      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1311      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1312      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1313      }
1314    }
1315  }
1316  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1317    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1318      // No compile time operations on this type yet.
1319      if (N1C->getValueType(0) == MVT::ppcf128)
1320        return SDValue();
1321
1322      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1323      switch (Cond) {
1324      default: break;
1325      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1326                          return getUNDEF(VT);
1327                        // fall through
1328      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1329      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1330                          return getUNDEF(VT);
1331                        // fall through
1332      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1333                                           R==APFloat::cmpLessThan, VT);
1334      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1335                          return getUNDEF(VT);
1336                        // fall through
1337      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1338      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1339                          return getUNDEF(VT);
1340                        // fall through
1341      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1342      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1343                          return getUNDEF(VT);
1344                        // fall through
1345      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1346                                           R==APFloat::cmpEqual, VT);
1347      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1348                          return getUNDEF(VT);
1349                        // fall through
1350      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1351                                           R==APFloat::cmpEqual, VT);
1352      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1353      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1354      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1355                                           R==APFloat::cmpEqual, VT);
1356      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1357      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1358                                           R==APFloat::cmpLessThan, VT);
1359      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1360                                           R==APFloat::cmpUnordered, VT);
1361      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1362      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1363      }
1364    } else {
1365      // Ensure that the constant occurs on the RHS.
1366      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1367    }
1368  }
1369
1370  // Could not fold it.
1371  return SDValue();
1372}
1373
1374/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1375/// use this predicate to simplify operations downstream.
1376bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1377  unsigned BitWidth = Op.getValueSizeInBits();
1378  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1379}
1380
1381/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1382/// this predicate to simplify operations downstream.  Mask is known to be zero
1383/// for bits that V cannot have.
1384bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1385                                     unsigned Depth) const {
1386  APInt KnownZero, KnownOne;
1387  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1388  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1389  return (KnownZero & Mask) == Mask;
1390}
1391
1392/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1393/// known to be either zero or one and return them in the KnownZero/KnownOne
1394/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1395/// processing.
1396void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1397                                     APInt &KnownZero, APInt &KnownOne,
1398                                     unsigned Depth) const {
1399  unsigned BitWidth = Mask.getBitWidth();
1400  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1401         "Mask size mismatches value type size!");
1402
1403  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1404  if (Depth == 6 || Mask == 0)
1405    return;  // Limit search depth.
1406
1407  APInt KnownZero2, KnownOne2;
1408
1409  switch (Op.getOpcode()) {
1410  case ISD::Constant:
1411    // We know all of the bits for a constant!
1412    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1413    KnownZero = ~KnownOne & Mask;
1414    return;
1415  case ISD::AND:
1416    // If either the LHS or the RHS are Zero, the result is zero.
1417    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1418    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1419                      KnownZero2, KnownOne2, Depth+1);
1420    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1421    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1422
1423    // Output known-1 bits are only known if set in both the LHS & RHS.
1424    KnownOne &= KnownOne2;
1425    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1426    KnownZero |= KnownZero2;
1427    return;
1428  case ISD::OR:
1429    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1430    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1431                      KnownZero2, KnownOne2, Depth+1);
1432    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1433    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1434
1435    // Output known-0 bits are only known if clear in both the LHS & RHS.
1436    KnownZero &= KnownZero2;
1437    // Output known-1 are known to be set if set in either the LHS | RHS.
1438    KnownOne |= KnownOne2;
1439    return;
1440  case ISD::XOR: {
1441    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1442    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1443    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1444    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1445
1446    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1447    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1448    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1449    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1450    KnownZero = KnownZeroOut;
1451    return;
1452  }
1453  case ISD::MUL: {
1454    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1455    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1456    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1457    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1458    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1459
1460    // If low bits are zero in either operand, output low known-0 bits.
1461    // Also compute a conserative estimate for high known-0 bits.
1462    // More trickiness is possible, but this is sufficient for the
1463    // interesting case of alignment computation.
1464    KnownOne.clear();
1465    unsigned TrailZ = KnownZero.countTrailingOnes() +
1466                      KnownZero2.countTrailingOnes();
1467    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1468                               KnownZero2.countLeadingOnes(),
1469                               BitWidth) - BitWidth;
1470
1471    TrailZ = std::min(TrailZ, BitWidth);
1472    LeadZ = std::min(LeadZ, BitWidth);
1473    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1474                APInt::getHighBitsSet(BitWidth, LeadZ);
1475    KnownZero &= Mask;
1476    return;
1477  }
1478  case ISD::UDIV: {
1479    // For the purposes of computing leading zeros we can conservatively
1480    // treat a udiv as a logical right shift by the power of 2 known to
1481    // be less than the denominator.
1482    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1483    ComputeMaskedBits(Op.getOperand(0),
1484                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1485    unsigned LeadZ = KnownZero2.countLeadingOnes();
1486
1487    KnownOne2.clear();
1488    KnownZero2.clear();
1489    ComputeMaskedBits(Op.getOperand(1),
1490                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1491    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1492    if (RHSUnknownLeadingOnes != BitWidth)
1493      LeadZ = std::min(BitWidth,
1494                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1495
1496    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1497    return;
1498  }
1499  case ISD::SELECT:
1500    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1501    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1502    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1503    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1504
1505    // Only known if known in both the LHS and RHS.
1506    KnownOne &= KnownOne2;
1507    KnownZero &= KnownZero2;
1508    return;
1509  case ISD::SELECT_CC:
1510    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1511    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1512    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1513    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1514
1515    // Only known if known in both the LHS and RHS.
1516    KnownOne &= KnownOne2;
1517    KnownZero &= KnownZero2;
1518    return;
1519  case ISD::SADDO:
1520  case ISD::UADDO:
1521  case ISD::SSUBO:
1522  case ISD::USUBO:
1523  case ISD::SMULO:
1524  case ISD::UMULO:
1525    if (Op.getResNo() != 1)
1526      return;
1527    // The boolean result conforms to getBooleanContents.  Fall through.
1528  case ISD::SETCC:
1529    // If we know the result of a setcc has the top bits zero, use this info.
1530    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1531        BitWidth > 1)
1532      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1533    return;
1534  case ISD::SHL:
1535    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1536    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1537      unsigned ShAmt = SA->getZExtValue();
1538
1539      // If the shift count is an invalid immediate, don't do anything.
1540      if (ShAmt >= BitWidth)
1541        return;
1542
1543      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1544                        KnownZero, KnownOne, Depth+1);
1545      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1546      KnownZero <<= ShAmt;
1547      KnownOne  <<= ShAmt;
1548      // low bits known zero.
1549      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1550    }
1551    return;
1552  case ISD::SRL:
1553    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1554    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1555      unsigned ShAmt = SA->getZExtValue();
1556
1557      // If the shift count is an invalid immediate, don't do anything.
1558      if (ShAmt >= BitWidth)
1559        return;
1560
1561      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1562                        KnownZero, KnownOne, Depth+1);
1563      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1564      KnownZero = KnownZero.lshr(ShAmt);
1565      KnownOne  = KnownOne.lshr(ShAmt);
1566
1567      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1568      KnownZero |= HighBits;  // High bits known zero.
1569    }
1570    return;
1571  case ISD::SRA:
1572    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1573      unsigned ShAmt = SA->getZExtValue();
1574
1575      // If the shift count is an invalid immediate, don't do anything.
1576      if (ShAmt >= BitWidth)
1577        return;
1578
1579      APInt InDemandedMask = (Mask << ShAmt);
1580      // If any of the demanded bits are produced by the sign extension, we also
1581      // demand the input sign bit.
1582      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1583      if (HighBits.getBoolValue())
1584        InDemandedMask |= APInt::getSignBit(BitWidth);
1585
1586      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1587                        Depth+1);
1588      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1589      KnownZero = KnownZero.lshr(ShAmt);
1590      KnownOne  = KnownOne.lshr(ShAmt);
1591
1592      // Handle the sign bits.
1593      APInt SignBit = APInt::getSignBit(BitWidth);
1594      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1595
1596      if (KnownZero.intersects(SignBit)) {
1597        KnownZero |= HighBits;  // New bits are known zero.
1598      } else if (KnownOne.intersects(SignBit)) {
1599        KnownOne  |= HighBits;  // New bits are known one.
1600      }
1601    }
1602    return;
1603  case ISD::SIGN_EXTEND_INREG: {
1604    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1605    unsigned EBits = EVT.getSizeInBits();
1606
1607    // Sign extension.  Compute the demanded bits in the result that are not
1608    // present in the input.
1609    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1610
1611    APInt InSignBit = APInt::getSignBit(EBits);
1612    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1613
1614    // If the sign extended bits are demanded, we know that the sign
1615    // bit is demanded.
1616    InSignBit.zext(BitWidth);
1617    if (NewBits.getBoolValue())
1618      InputDemandedBits |= InSignBit;
1619
1620    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1621                      KnownZero, KnownOne, Depth+1);
1622    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1623
1624    // If the sign bit of the input is known set or clear, then we know the
1625    // top bits of the result.
1626    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1627      KnownZero |= NewBits;
1628      KnownOne  &= ~NewBits;
1629    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1630      KnownOne  |= NewBits;
1631      KnownZero &= ~NewBits;
1632    } else {                              // Input sign bit unknown
1633      KnownZero &= ~NewBits;
1634      KnownOne  &= ~NewBits;
1635    }
1636    return;
1637  }
1638  case ISD::CTTZ:
1639  case ISD::CTLZ:
1640  case ISD::CTPOP: {
1641    unsigned LowBits = Log2_32(BitWidth)+1;
1642    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1643    KnownOne.clear();
1644    return;
1645  }
1646  case ISD::LOAD: {
1647    if (ISD::isZEXTLoad(Op.getNode())) {
1648      LoadSDNode *LD = cast<LoadSDNode>(Op);
1649      MVT VT = LD->getMemoryVT();
1650      unsigned MemBits = VT.getSizeInBits();
1651      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1652    }
1653    return;
1654  }
1655  case ISD::ZERO_EXTEND: {
1656    MVT InVT = Op.getOperand(0).getValueType();
1657    unsigned InBits = InVT.getSizeInBits();
1658    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1659    APInt InMask    = Mask;
1660    InMask.trunc(InBits);
1661    KnownZero.trunc(InBits);
1662    KnownOne.trunc(InBits);
1663    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1664    KnownZero.zext(BitWidth);
1665    KnownOne.zext(BitWidth);
1666    KnownZero |= NewBits;
1667    return;
1668  }
1669  case ISD::SIGN_EXTEND: {
1670    MVT InVT = Op.getOperand(0).getValueType();
1671    unsigned InBits = InVT.getSizeInBits();
1672    APInt InSignBit = APInt::getSignBit(InBits);
1673    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1674    APInt InMask = Mask;
1675    InMask.trunc(InBits);
1676
1677    // If any of the sign extended bits are demanded, we know that the sign
1678    // bit is demanded. Temporarily set this bit in the mask for our callee.
1679    if (NewBits.getBoolValue())
1680      InMask |= InSignBit;
1681
1682    KnownZero.trunc(InBits);
1683    KnownOne.trunc(InBits);
1684    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1685
1686    // Note if the sign bit is known to be zero or one.
1687    bool SignBitKnownZero = KnownZero.isNegative();
1688    bool SignBitKnownOne  = KnownOne.isNegative();
1689    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1690           "Sign bit can't be known to be both zero and one!");
1691
1692    // If the sign bit wasn't actually demanded by our caller, we don't
1693    // want it set in the KnownZero and KnownOne result values. Reset the
1694    // mask and reapply it to the result values.
1695    InMask = Mask;
1696    InMask.trunc(InBits);
1697    KnownZero &= InMask;
1698    KnownOne  &= InMask;
1699
1700    KnownZero.zext(BitWidth);
1701    KnownOne.zext(BitWidth);
1702
1703    // If the sign bit is known zero or one, the top bits match.
1704    if (SignBitKnownZero)
1705      KnownZero |= NewBits;
1706    else if (SignBitKnownOne)
1707      KnownOne  |= NewBits;
1708    return;
1709  }
1710  case ISD::ANY_EXTEND: {
1711    MVT InVT = Op.getOperand(0).getValueType();
1712    unsigned InBits = InVT.getSizeInBits();
1713    APInt InMask = Mask;
1714    InMask.trunc(InBits);
1715    KnownZero.trunc(InBits);
1716    KnownOne.trunc(InBits);
1717    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1718    KnownZero.zext(BitWidth);
1719    KnownOne.zext(BitWidth);
1720    return;
1721  }
1722  case ISD::TRUNCATE: {
1723    MVT InVT = Op.getOperand(0).getValueType();
1724    unsigned InBits = InVT.getSizeInBits();
1725    APInt InMask = Mask;
1726    InMask.zext(InBits);
1727    KnownZero.zext(InBits);
1728    KnownOne.zext(InBits);
1729    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1730    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1731    KnownZero.trunc(BitWidth);
1732    KnownOne.trunc(BitWidth);
1733    break;
1734  }
1735  case ISD::AssertZext: {
1736    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1737    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1738    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1739                      KnownOne, Depth+1);
1740    KnownZero |= (~InMask) & Mask;
1741    return;
1742  }
1743  case ISD::FGETSIGN:
1744    // All bits are zero except the low bit.
1745    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1746    return;
1747
1748  case ISD::SUB: {
1749    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1750      // We know that the top bits of C-X are clear if X contains less bits
1751      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1752      // positive if we can prove that X is >= 0 and < 16.
1753      if (CLHS->getAPIntValue().isNonNegative()) {
1754        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1755        // NLZ can't be BitWidth with no sign bit
1756        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1757        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1758                          Depth+1);
1759
1760        // If all of the MaskV bits are known to be zero, then we know the
1761        // output top bits are zero, because we now know that the output is
1762        // from [0-C].
1763        if ((KnownZero2 & MaskV) == MaskV) {
1764          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1765          // Top bits known zero.
1766          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1767        }
1768      }
1769    }
1770  }
1771  // fall through
1772  case ISD::ADD: {
1773    // Output known-0 bits are known if clear or set in both the low clear bits
1774    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1775    // low 3 bits clear.
1776    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1777    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1778    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1779    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1780
1781    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1782    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1783    KnownZeroOut = std::min(KnownZeroOut,
1784                            KnownZero2.countTrailingOnes());
1785
1786    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1787    return;
1788  }
1789  case ISD::SREM:
1790    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1791      const APInt &RA = Rem->getAPIntValue();
1792      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1793        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1794        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1795        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1796
1797        // If the sign bit of the first operand is zero, the sign bit of
1798        // the result is zero. If the first operand has no one bits below
1799        // the second operand's single 1 bit, its sign will be zero.
1800        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1801          KnownZero2 |= ~LowBits;
1802
1803        KnownZero |= KnownZero2 & Mask;
1804
1805        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1806      }
1807    }
1808    return;
1809  case ISD::UREM: {
1810    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1811      const APInt &RA = Rem->getAPIntValue();
1812      if (RA.isPowerOf2()) {
1813        APInt LowBits = (RA - 1);
1814        APInt Mask2 = LowBits & Mask;
1815        KnownZero |= ~LowBits & Mask;
1816        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1817        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1818        break;
1819      }
1820    }
1821
1822    // Since the result is less than or equal to either operand, any leading
1823    // zero bits in either operand must also exist in the result.
1824    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1825    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1826                      Depth+1);
1827    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1828                      Depth+1);
1829
1830    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1831                                KnownZero2.countLeadingOnes());
1832    KnownOne.clear();
1833    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1834    return;
1835  }
1836  default:
1837    // Allow the target to implement this method for its nodes.
1838    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1839  case ISD::INTRINSIC_WO_CHAIN:
1840  case ISD::INTRINSIC_W_CHAIN:
1841  case ISD::INTRINSIC_VOID:
1842      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1843    }
1844    return;
1845  }
1846}
1847
1848/// ComputeNumSignBits - Return the number of times the sign bit of the
1849/// register is replicated into the other bits.  We know that at least 1 bit
1850/// is always equal to the sign bit (itself), but other cases can give us
1851/// information.  For example, immediately after an "SRA X, 2", we know that
1852/// the top 3 bits are all equal to each other, so we return 3.
1853unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1854  MVT VT = Op.getValueType();
1855  assert(VT.isInteger() && "Invalid VT!");
1856  unsigned VTBits = VT.getSizeInBits();
1857  unsigned Tmp, Tmp2;
1858  unsigned FirstAnswer = 1;
1859
1860  if (Depth == 6)
1861    return 1;  // Limit search depth.
1862
1863  switch (Op.getOpcode()) {
1864  default: break;
1865  case ISD::AssertSext:
1866    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1867    return VTBits-Tmp+1;
1868  case ISD::AssertZext:
1869    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1870    return VTBits-Tmp;
1871
1872  case ISD::Constant: {
1873    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1874    // If negative, return # leading ones.
1875    if (Val.isNegative())
1876      return Val.countLeadingOnes();
1877
1878    // Return # leading zeros.
1879    return Val.countLeadingZeros();
1880  }
1881
1882  case ISD::SIGN_EXTEND:
1883    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1884    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1885
1886  case ISD::SIGN_EXTEND_INREG:
1887    // Max of the input and what this extends.
1888    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1889    Tmp = VTBits-Tmp+1;
1890
1891    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1892    return std::max(Tmp, Tmp2);
1893
1894  case ISD::SRA:
1895    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1896    // SRA X, C   -> adds C sign bits.
1897    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1898      Tmp += C->getZExtValue();
1899      if (Tmp > VTBits) Tmp = VTBits;
1900    }
1901    return Tmp;
1902  case ISD::SHL:
1903    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1904      // shl destroys sign bits.
1905      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1906      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1907          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1908      return Tmp - C->getZExtValue();
1909    }
1910    break;
1911  case ISD::AND:
1912  case ISD::OR:
1913  case ISD::XOR:    // NOT is handled here.
1914    // Logical binary ops preserve the number of sign bits at the worst.
1915    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1916    if (Tmp != 1) {
1917      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1918      FirstAnswer = std::min(Tmp, Tmp2);
1919      // We computed what we know about the sign bits as our first
1920      // answer. Now proceed to the generic code that uses
1921      // ComputeMaskedBits, and pick whichever answer is better.
1922    }
1923    break;
1924
1925  case ISD::SELECT:
1926    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1927    if (Tmp == 1) return 1;  // Early out.
1928    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1929    return std::min(Tmp, Tmp2);
1930
1931  case ISD::SADDO:
1932  case ISD::UADDO:
1933  case ISD::SSUBO:
1934  case ISD::USUBO:
1935  case ISD::SMULO:
1936  case ISD::UMULO:
1937    if (Op.getResNo() != 1)
1938      break;
1939    // The boolean result conforms to getBooleanContents.  Fall through.
1940  case ISD::SETCC:
1941    // If setcc returns 0/-1, all bits are sign bits.
1942    if (TLI.getBooleanContents() ==
1943        TargetLowering::ZeroOrNegativeOneBooleanContent)
1944      return VTBits;
1945    break;
1946  case ISD::ROTL:
1947  case ISD::ROTR:
1948    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1949      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1950
1951      // Handle rotate right by N like a rotate left by 32-N.
1952      if (Op.getOpcode() == ISD::ROTR)
1953        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1954
1955      // If we aren't rotating out all of the known-in sign bits, return the
1956      // number that are left.  This handles rotl(sext(x), 1) for example.
1957      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1958      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1959    }
1960    break;
1961  case ISD::ADD:
1962    // Add can have at most one carry bit.  Thus we know that the output
1963    // is, at worst, one more bit than the inputs.
1964    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1965    if (Tmp == 1) return 1;  // Early out.
1966
1967    // Special case decrementing a value (ADD X, -1):
1968    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1969      if (CRHS->isAllOnesValue()) {
1970        APInt KnownZero, KnownOne;
1971        APInt Mask = APInt::getAllOnesValue(VTBits);
1972        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1973
1974        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1975        // sign bits set.
1976        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1977          return VTBits;
1978
1979        // If we are subtracting one from a positive number, there is no carry
1980        // out of the result.
1981        if (KnownZero.isNegative())
1982          return Tmp;
1983      }
1984
1985    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1986    if (Tmp2 == 1) return 1;
1987      return std::min(Tmp, Tmp2)-1;
1988    break;
1989
1990  case ISD::SUB:
1991    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1992    if (Tmp2 == 1) return 1;
1993
1994    // Handle NEG.
1995    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1996      if (CLHS->isNullValue()) {
1997        APInt KnownZero, KnownOne;
1998        APInt Mask = APInt::getAllOnesValue(VTBits);
1999        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2000        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2001        // sign bits set.
2002        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2003          return VTBits;
2004
2005        // If the input is known to be positive (the sign bit is known clear),
2006        // the output of the NEG has the same number of sign bits as the input.
2007        if (KnownZero.isNegative())
2008          return Tmp2;
2009
2010        // Otherwise, we treat this like a SUB.
2011      }
2012
2013    // Sub can have at most one carry bit.  Thus we know that the output
2014    // is, at worst, one more bit than the inputs.
2015    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2016    if (Tmp == 1) return 1;  // Early out.
2017      return std::min(Tmp, Tmp2)-1;
2018    break;
2019  case ISD::TRUNCATE:
2020    // FIXME: it's tricky to do anything useful for this, but it is an important
2021    // case for targets like X86.
2022    break;
2023  }
2024
2025  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2026  if (Op.getOpcode() == ISD::LOAD) {
2027    LoadSDNode *LD = cast<LoadSDNode>(Op);
2028    unsigned ExtType = LD->getExtensionType();
2029    switch (ExtType) {
2030    default: break;
2031    case ISD::SEXTLOAD:    // '17' bits known
2032      Tmp = LD->getMemoryVT().getSizeInBits();
2033      return VTBits-Tmp+1;
2034    case ISD::ZEXTLOAD:    // '16' bits known
2035      Tmp = LD->getMemoryVT().getSizeInBits();
2036      return VTBits-Tmp;
2037    }
2038  }
2039
2040  // Allow the target to implement this method for its nodes.
2041  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2042      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2043      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2044      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2045    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2046    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2047  }
2048
2049  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2050  // use this information.
2051  APInt KnownZero, KnownOne;
2052  APInt Mask = APInt::getAllOnesValue(VTBits);
2053  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2054
2055  if (KnownZero.isNegative()) {        // sign bit is 0
2056    Mask = KnownZero;
2057  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2058    Mask = KnownOne;
2059  } else {
2060    // Nothing known.
2061    return FirstAnswer;
2062  }
2063
2064  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2065  // the number of identical bits in the top of the input value.
2066  Mask = ~Mask;
2067  Mask <<= Mask.getBitWidth()-VTBits;
2068  // Return # leading zeros.  We use 'min' here in case Val was zero before
2069  // shifting.  We don't want to return '64' as for an i32 "0".
2070  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2071}
2072
2073
2074bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2075  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2076  if (!GA) return false;
2077  if (GA->getOffset() != 0) return false;
2078  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2079  if (!GV) return false;
2080  MachineModuleInfo *MMI = getMachineModuleInfo();
2081  return MMI && MMI->hasDebugInfo();
2082}
2083
2084
2085/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2086/// element of the result of the vector shuffle.
2087SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2088  MVT VT = N->getValueType(0);
2089  DebugLoc dl = N->getDebugLoc();
2090  SDValue PermMask = N->getOperand(2);
2091  SDValue Idx = PermMask.getOperand(i);
2092  if (Idx.getOpcode() == ISD::UNDEF)
2093    return getUNDEF(VT.getVectorElementType());
2094  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2095  unsigned NumElems = PermMask.getNumOperands();
2096  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2097  Index %= NumElems;
2098
2099  if (V.getOpcode() == ISD::BIT_CONVERT) {
2100    V = V.getOperand(0);
2101    MVT VVT = V.getValueType();
2102    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2103      return SDValue();
2104  }
2105  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2106    return (Index == 0) ? V.getOperand(0)
2107                      : getUNDEF(VT.getVectorElementType());
2108  if (V.getOpcode() == ISD::BUILD_VECTOR)
2109    return V.getOperand(Index);
2110  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2111    return getShuffleScalarElt(V.getNode(), Index);
2112  return SDValue();
2113}
2114
2115
2116/// getNode - Gets or creates the specified node.
2117///
2118SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2119  FoldingSetNodeID ID;
2120  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2121  void *IP = 0;
2122  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2123    return SDValue(E, 0);
2124  SDNode *N = NodeAllocator.Allocate<SDNode>();
2125  new (N) SDNode(Opcode, DL, getVTList(VT));
2126  CSEMap.InsertNode(N, IP);
2127
2128  AllNodes.push_back(N);
2129#ifndef NDEBUG
2130  VerifyNode(N);
2131#endif
2132  return SDValue(N, 0);
2133}
2134
2135SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2136                              MVT VT, SDValue Operand) {
2137  // Constant fold unary operations with an integer constant operand.
2138  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2139    const APInt &Val = C->getAPIntValue();
2140    unsigned BitWidth = VT.getSizeInBits();
2141    switch (Opcode) {
2142    default: break;
2143    case ISD::SIGN_EXTEND:
2144      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2145    case ISD::ANY_EXTEND:
2146    case ISD::ZERO_EXTEND:
2147    case ISD::TRUNCATE:
2148      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2149    case ISD::UINT_TO_FP:
2150    case ISD::SINT_TO_FP: {
2151      const uint64_t zero[] = {0, 0};
2152      // No compile time operations on this type.
2153      if (VT==MVT::ppcf128)
2154        break;
2155      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2156      (void)apf.convertFromAPInt(Val,
2157                                 Opcode==ISD::SINT_TO_FP,
2158                                 APFloat::rmNearestTiesToEven);
2159      return getConstantFP(apf, VT);
2160    }
2161    case ISD::BIT_CONVERT:
2162      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2163        return getConstantFP(Val.bitsToFloat(), VT);
2164      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2165        return getConstantFP(Val.bitsToDouble(), VT);
2166      break;
2167    case ISD::BSWAP:
2168      return getConstant(Val.byteSwap(), VT);
2169    case ISD::CTPOP:
2170      return getConstant(Val.countPopulation(), VT);
2171    case ISD::CTLZ:
2172      return getConstant(Val.countLeadingZeros(), VT);
2173    case ISD::CTTZ:
2174      return getConstant(Val.countTrailingZeros(), VT);
2175    }
2176  }
2177
2178  // Constant fold unary operations with a floating point constant operand.
2179  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2180    APFloat V = C->getValueAPF();    // make copy
2181    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2182      switch (Opcode) {
2183      case ISD::FNEG:
2184        V.changeSign();
2185        return getConstantFP(V, VT);
2186      case ISD::FABS:
2187        V.clearSign();
2188        return getConstantFP(V, VT);
2189      case ISD::FP_ROUND:
2190      case ISD::FP_EXTEND: {
2191        bool ignored;
2192        // This can return overflow, underflow, or inexact; we don't care.
2193        // FIXME need to be more flexible about rounding mode.
2194        (void)V.convert(*MVTToAPFloatSemantics(VT),
2195                        APFloat::rmNearestTiesToEven, &ignored);
2196        return getConstantFP(V, VT);
2197      }
2198      case ISD::FP_TO_SINT:
2199      case ISD::FP_TO_UINT: {
2200        integerPart x;
2201        bool ignored;
2202        assert(integerPartWidth >= 64);
2203        // FIXME need to be more flexible about rounding mode.
2204        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2205                              Opcode==ISD::FP_TO_SINT,
2206                              APFloat::rmTowardZero, &ignored);
2207        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2208          break;
2209        return getConstant(x, VT);
2210      }
2211      case ISD::BIT_CONVERT:
2212        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2213          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2214        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2215          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2216        break;
2217      }
2218    }
2219  }
2220
2221  unsigned OpOpcode = Operand.getNode()->getOpcode();
2222  switch (Opcode) {
2223  case ISD::TokenFactor:
2224  case ISD::MERGE_VALUES:
2225  case ISD::CONCAT_VECTORS:
2226    return Operand;         // Factor, merge or concat of one node?  No need.
2227  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2228  case ISD::FP_EXTEND:
2229    assert(VT.isFloatingPoint() &&
2230           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2231    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2232    if (Operand.getOpcode() == ISD::UNDEF)
2233      return getUNDEF(VT);
2234    break;
2235  case ISD::SIGN_EXTEND:
2236    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2237           "Invalid SIGN_EXTEND!");
2238    if (Operand.getValueType() == VT) return Operand;   // noop extension
2239    assert(Operand.getValueType().bitsLT(VT)
2240           && "Invalid sext node, dst < src!");
2241    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2242      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2243    break;
2244  case ISD::ZERO_EXTEND:
2245    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2246           "Invalid ZERO_EXTEND!");
2247    if (Operand.getValueType() == VT) return Operand;   // noop extension
2248    assert(Operand.getValueType().bitsLT(VT)
2249           && "Invalid zext node, dst < src!");
2250    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2251      return getNode(ISD::ZERO_EXTEND, DL, VT,
2252                     Operand.getNode()->getOperand(0));
2253    break;
2254  case ISD::ANY_EXTEND:
2255    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2256           "Invalid ANY_EXTEND!");
2257    if (Operand.getValueType() == VT) return Operand;   // noop extension
2258    assert(Operand.getValueType().bitsLT(VT)
2259           && "Invalid anyext node, dst < src!");
2260    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2261      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2262      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2263    break;
2264  case ISD::TRUNCATE:
2265    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2266           "Invalid TRUNCATE!");
2267    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2268    assert(Operand.getValueType().bitsGT(VT)
2269           && "Invalid truncate node, src < dst!");
2270    if (OpOpcode == ISD::TRUNCATE)
2271      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2272    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2273             OpOpcode == ISD::ANY_EXTEND) {
2274      // If the source is smaller than the dest, we still need an extend.
2275      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2276        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2277      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2278        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2279      else
2280        return Operand.getNode()->getOperand(0);
2281    }
2282    break;
2283  case ISD::BIT_CONVERT:
2284    // Basic sanity checking.
2285    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2286           && "Cannot BIT_CONVERT between types of different sizes!");
2287    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2288    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2289      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2290    if (OpOpcode == ISD::UNDEF)
2291      return getUNDEF(VT);
2292    break;
2293  case ISD::SCALAR_TO_VECTOR:
2294    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2295           (VT.getVectorElementType() == Operand.getValueType() ||
2296            (VT.getVectorElementType().isInteger() &&
2297             Operand.getValueType().isInteger() &&
2298             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2299           "Illegal SCALAR_TO_VECTOR node!");
2300    if (OpOpcode == ISD::UNDEF)
2301      return getUNDEF(VT);
2302    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2303    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2304        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2305        Operand.getConstantOperandVal(1) == 0 &&
2306        Operand.getOperand(0).getValueType() == VT)
2307      return Operand.getOperand(0);
2308    break;
2309  case ISD::FNEG:
2310    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2311    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2312      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2313                     Operand.getNode()->getOperand(0));
2314    if (OpOpcode == ISD::FNEG)  // --X -> X
2315      return Operand.getNode()->getOperand(0);
2316    break;
2317  case ISD::FABS:
2318    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2319      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2320    break;
2321  }
2322
2323  SDNode *N;
2324  SDVTList VTs = getVTList(VT);
2325  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2326    FoldingSetNodeID ID;
2327    SDValue Ops[1] = { Operand };
2328    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2329    void *IP = 0;
2330    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2331      return SDValue(E, 0);
2332    N = NodeAllocator.Allocate<UnarySDNode>();
2333    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2334    CSEMap.InsertNode(N, IP);
2335  } else {
2336    N = NodeAllocator.Allocate<UnarySDNode>();
2337    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2338  }
2339
2340  AllNodes.push_back(N);
2341#ifndef NDEBUG
2342  VerifyNode(N);
2343#endif
2344  return SDValue(N, 0);
2345}
2346
2347SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2348                                             MVT VT,
2349                                             ConstantSDNode *Cst1,
2350                                             ConstantSDNode *Cst2) {
2351  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2352
2353  switch (Opcode) {
2354  case ISD::ADD:  return getConstant(C1 + C2, VT);
2355  case ISD::SUB:  return getConstant(C1 - C2, VT);
2356  case ISD::MUL:  return getConstant(C1 * C2, VT);
2357  case ISD::UDIV:
2358    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2359    break;
2360  case ISD::UREM:
2361    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2362    break;
2363  case ISD::SDIV:
2364    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2365    break;
2366  case ISD::SREM:
2367    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2368    break;
2369  case ISD::AND:  return getConstant(C1 & C2, VT);
2370  case ISD::OR:   return getConstant(C1 | C2, VT);
2371  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2372  case ISD::SHL:  return getConstant(C1 << C2, VT);
2373  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2374  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2375  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2376  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2377  default: break;
2378  }
2379
2380  return SDValue();
2381}
2382
2383SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2384                              SDValue N1, SDValue N2) {
2385  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2386  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2387  switch (Opcode) {
2388  default: break;
2389  case ISD::TokenFactor:
2390    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2391           N2.getValueType() == MVT::Other && "Invalid token factor!");
2392    // Fold trivial token factors.
2393    if (N1.getOpcode() == ISD::EntryToken) return N2;
2394    if (N2.getOpcode() == ISD::EntryToken) return N1;
2395    if (N1 == N2) return N1;
2396    break;
2397  case ISD::CONCAT_VECTORS:
2398    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2399    // one big BUILD_VECTOR.
2400    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2401        N2.getOpcode() == ISD::BUILD_VECTOR) {
2402      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2403      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2404      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2405    }
2406    break;
2407  case ISD::AND:
2408    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2409           N1.getValueType() == VT && "Binary operator types must match!");
2410    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2411    // worth handling here.
2412    if (N2C && N2C->isNullValue())
2413      return N2;
2414    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2415      return N1;
2416    break;
2417  case ISD::OR:
2418  case ISD::XOR:
2419  case ISD::ADD:
2420  case ISD::SUB:
2421    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2422           N1.getValueType() == VT && "Binary operator types must match!");
2423    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2424    // it's worth handling here.
2425    if (N2C && N2C->isNullValue())
2426      return N1;
2427    break;
2428  case ISD::UDIV:
2429  case ISD::UREM:
2430  case ISD::MULHU:
2431  case ISD::MULHS:
2432  case ISD::MUL:
2433  case ISD::SDIV:
2434  case ISD::SREM:
2435    assert(VT.isInteger() && "This operator does not apply to FP types!");
2436    // fall through
2437  case ISD::FADD:
2438  case ISD::FSUB:
2439  case ISD::FMUL:
2440  case ISD::FDIV:
2441  case ISD::FREM:
2442    if (UnsafeFPMath) {
2443      if (Opcode == ISD::FADD) {
2444        // 0+x --> x
2445        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2446          if (CFP->getValueAPF().isZero())
2447            return N2;
2448        // x+0 --> x
2449        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2450          if (CFP->getValueAPF().isZero())
2451            return N1;
2452      } else if (Opcode == ISD::FSUB) {
2453        // x-0 --> x
2454        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2455          if (CFP->getValueAPF().isZero())
2456            return N1;
2457      }
2458    }
2459    assert(N1.getValueType() == N2.getValueType() &&
2460           N1.getValueType() == VT && "Binary operator types must match!");
2461    break;
2462  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2463    assert(N1.getValueType() == VT &&
2464           N1.getValueType().isFloatingPoint() &&
2465           N2.getValueType().isFloatingPoint() &&
2466           "Invalid FCOPYSIGN!");
2467    break;
2468  case ISD::SHL:
2469  case ISD::SRA:
2470  case ISD::SRL:
2471  case ISD::ROTL:
2472  case ISD::ROTR:
2473    assert(VT == N1.getValueType() &&
2474           "Shift operators return type must be the same as their first arg");
2475    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2476           "Shifts only work on integers");
2477
2478    // Always fold shifts of i1 values so the code generator doesn't need to
2479    // handle them.  Since we know the size of the shift has to be less than the
2480    // size of the value, the shift/rotate count is guaranteed to be zero.
2481    if (VT == MVT::i1)
2482      return N1;
2483    break;
2484  case ISD::FP_ROUND_INREG: {
2485    MVT EVT = cast<VTSDNode>(N2)->getVT();
2486    assert(VT == N1.getValueType() && "Not an inreg round!");
2487    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2488           "Cannot FP_ROUND_INREG integer types");
2489    assert(EVT.bitsLE(VT) && "Not rounding down!");
2490    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2491    break;
2492  }
2493  case ISD::FP_ROUND:
2494    assert(VT.isFloatingPoint() &&
2495           N1.getValueType().isFloatingPoint() &&
2496           VT.bitsLE(N1.getValueType()) &&
2497           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2498    if (N1.getValueType() == VT) return N1;  // noop conversion.
2499    break;
2500  case ISD::AssertSext:
2501  case ISD::AssertZext: {
2502    MVT EVT = cast<VTSDNode>(N2)->getVT();
2503    assert(VT == N1.getValueType() && "Not an inreg extend!");
2504    assert(VT.isInteger() && EVT.isInteger() &&
2505           "Cannot *_EXTEND_INREG FP types");
2506    assert(EVT.bitsLE(VT) && "Not extending!");
2507    if (VT == EVT) return N1; // noop assertion.
2508    break;
2509  }
2510  case ISD::SIGN_EXTEND_INREG: {
2511    MVT EVT = cast<VTSDNode>(N2)->getVT();
2512    assert(VT == N1.getValueType() && "Not an inreg extend!");
2513    assert(VT.isInteger() && EVT.isInteger() &&
2514           "Cannot *_EXTEND_INREG FP types");
2515    assert(EVT.bitsLE(VT) && "Not extending!");
2516    if (EVT == VT) return N1;  // Not actually extending
2517
2518    if (N1C) {
2519      APInt Val = N1C->getAPIntValue();
2520      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2521      Val <<= Val.getBitWidth()-FromBits;
2522      Val = Val.ashr(Val.getBitWidth()-FromBits);
2523      return getConstant(Val, VT);
2524    }
2525    break;
2526  }
2527  case ISD::EXTRACT_VECTOR_ELT:
2528    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2529    if (N1.getOpcode() == ISD::UNDEF)
2530      return getUNDEF(VT);
2531
2532    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2533    // expanding copies of large vectors from registers.
2534    if (N2C &&
2535        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2536        N1.getNumOperands() > 0) {
2537      unsigned Factor =
2538        N1.getOperand(0).getValueType().getVectorNumElements();
2539      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2540                     N1.getOperand(N2C->getZExtValue() / Factor),
2541                     getConstant(N2C->getZExtValue() % Factor,
2542                                 N2.getValueType()));
2543    }
2544
2545    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2546    // expanding large vector constants.
2547    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2548      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2549      if (Elt.getValueType() != VT) {
2550        // If the vector element type is not legal, the BUILD_VECTOR operands
2551        // are promoted and implicitly truncated.  Make that explicit here.
2552        assert(VT.isInteger() && Elt.getValueType().isInteger() &&
2553               VT.bitsLE(Elt.getValueType()) &&
2554               "Bad type for BUILD_VECTOR operand");
2555        Elt = getNode(ISD::TRUNCATE, DL, VT, Elt);
2556      }
2557      return Elt;
2558    }
2559
2560    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2561    // operations are lowered to scalars.
2562    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2563      // If the indices are the same, return the inserted element.
2564      if (N1.getOperand(2) == N2)
2565        return N1.getOperand(1);
2566      // If the indices are known different, extract the element from
2567      // the original vector.
2568      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2569               isa<ConstantSDNode>(N2))
2570        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2571    }
2572    break;
2573  case ISD::EXTRACT_ELEMENT:
2574    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2575    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2576           (N1.getValueType().isInteger() == VT.isInteger()) &&
2577           "Wrong types for EXTRACT_ELEMENT!");
2578
2579    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2580    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2581    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2582    if (N1.getOpcode() == ISD::BUILD_PAIR)
2583      return N1.getOperand(N2C->getZExtValue());
2584
2585    // EXTRACT_ELEMENT of a constant int is also very common.
2586    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2587      unsigned ElementSize = VT.getSizeInBits();
2588      unsigned Shift = ElementSize * N2C->getZExtValue();
2589      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2590      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2591    }
2592    break;
2593  case ISD::EXTRACT_SUBVECTOR:
2594    if (N1.getValueType() == VT) // Trivial extraction.
2595      return N1;
2596    break;
2597  }
2598
2599  if (N1C) {
2600    if (N2C) {
2601      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2602      if (SV.getNode()) return SV;
2603    } else {      // Cannonicalize constant to RHS if commutative
2604      if (isCommutativeBinOp(Opcode)) {
2605        std::swap(N1C, N2C);
2606        std::swap(N1, N2);
2607      }
2608    }
2609  }
2610
2611  // Constant fold FP operations.
2612  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2613  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2614  if (N1CFP) {
2615    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2616      // Cannonicalize constant to RHS if commutative
2617      std::swap(N1CFP, N2CFP);
2618      std::swap(N1, N2);
2619    } else if (N2CFP && VT != MVT::ppcf128) {
2620      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2621      APFloat::opStatus s;
2622      switch (Opcode) {
2623      case ISD::FADD:
2624        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2625        if (s != APFloat::opInvalidOp)
2626          return getConstantFP(V1, VT);
2627        break;
2628      case ISD::FSUB:
2629        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2630        if (s!=APFloat::opInvalidOp)
2631          return getConstantFP(V1, VT);
2632        break;
2633      case ISD::FMUL:
2634        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2635        if (s!=APFloat::opInvalidOp)
2636          return getConstantFP(V1, VT);
2637        break;
2638      case ISD::FDIV:
2639        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2640        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2641          return getConstantFP(V1, VT);
2642        break;
2643      case ISD::FREM :
2644        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2645        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2646          return getConstantFP(V1, VT);
2647        break;
2648      case ISD::FCOPYSIGN:
2649        V1.copySign(V2);
2650        return getConstantFP(V1, VT);
2651      default: break;
2652      }
2653    }
2654  }
2655
2656  // Canonicalize an UNDEF to the RHS, even over a constant.
2657  if (N1.getOpcode() == ISD::UNDEF) {
2658    if (isCommutativeBinOp(Opcode)) {
2659      std::swap(N1, N2);
2660    } else {
2661      switch (Opcode) {
2662      case ISD::FP_ROUND_INREG:
2663      case ISD::SIGN_EXTEND_INREG:
2664      case ISD::SUB:
2665      case ISD::FSUB:
2666      case ISD::FDIV:
2667      case ISD::FREM:
2668      case ISD::SRA:
2669        return N1;     // fold op(undef, arg2) -> undef
2670      case ISD::UDIV:
2671      case ISD::SDIV:
2672      case ISD::UREM:
2673      case ISD::SREM:
2674      case ISD::SRL:
2675      case ISD::SHL:
2676        if (!VT.isVector())
2677          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2678        // For vectors, we can't easily build an all zero vector, just return
2679        // the LHS.
2680        return N2;
2681      }
2682    }
2683  }
2684
2685  // Fold a bunch of operators when the RHS is undef.
2686  if (N2.getOpcode() == ISD::UNDEF) {
2687    switch (Opcode) {
2688    case ISD::XOR:
2689      if (N1.getOpcode() == ISD::UNDEF)
2690        // Handle undef ^ undef -> 0 special case. This is a common
2691        // idiom (misuse).
2692        return getConstant(0, VT);
2693      // fallthrough
2694    case ISD::ADD:
2695    case ISD::ADDC:
2696    case ISD::ADDE:
2697    case ISD::SUB:
2698    case ISD::FADD:
2699    case ISD::FSUB:
2700    case ISD::FMUL:
2701    case ISD::FDIV:
2702    case ISD::FREM:
2703    case ISD::UDIV:
2704    case ISD::SDIV:
2705    case ISD::UREM:
2706    case ISD::SREM:
2707      return N2;       // fold op(arg1, undef) -> undef
2708    case ISD::MUL:
2709    case ISD::AND:
2710    case ISD::SRL:
2711    case ISD::SHL:
2712      if (!VT.isVector())
2713        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2714      // For vectors, we can't easily build an all zero vector, just return
2715      // the LHS.
2716      return N1;
2717    case ISD::OR:
2718      if (!VT.isVector())
2719        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2720      // For vectors, we can't easily build an all one vector, just return
2721      // the LHS.
2722      return N1;
2723    case ISD::SRA:
2724      return N1;
2725    }
2726  }
2727
2728  // Memoize this node if possible.
2729  SDNode *N;
2730  SDVTList VTs = getVTList(VT);
2731  if (VT != MVT::Flag) {
2732    SDValue Ops[] = { N1, N2 };
2733    FoldingSetNodeID ID;
2734    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2735    void *IP = 0;
2736    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2737      return SDValue(E, 0);
2738    N = NodeAllocator.Allocate<BinarySDNode>();
2739    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2740    CSEMap.InsertNode(N, IP);
2741  } else {
2742    N = NodeAllocator.Allocate<BinarySDNode>();
2743    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2744  }
2745
2746  AllNodes.push_back(N);
2747#ifndef NDEBUG
2748  VerifyNode(N);
2749#endif
2750  return SDValue(N, 0);
2751}
2752
2753SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2754                              SDValue N1, SDValue N2, SDValue N3) {
2755  // Perform various simplifications.
2756  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2757  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2758  switch (Opcode) {
2759  case ISD::CONCAT_VECTORS:
2760    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2761    // one big BUILD_VECTOR.
2762    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2763        N2.getOpcode() == ISD::BUILD_VECTOR &&
2764        N3.getOpcode() == ISD::BUILD_VECTOR) {
2765      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2766      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2767      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2768      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2769    }
2770    break;
2771  case ISD::SETCC: {
2772    // Use FoldSetCC to simplify SETCC's.
2773    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2774    if (Simp.getNode()) return Simp;
2775    break;
2776  }
2777  case ISD::SELECT:
2778    if (N1C) {
2779     if (N1C->getZExtValue())
2780        return N2;             // select true, X, Y -> X
2781      else
2782        return N3;             // select false, X, Y -> Y
2783    }
2784
2785    if (N2 == N3) return N2;   // select C, X, X -> X
2786    break;
2787  case ISD::BRCOND:
2788    if (N2C) {
2789      if (N2C->getZExtValue()) // Unconditional branch
2790        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2791      else
2792        return N1;         // Never-taken branch
2793    }
2794    break;
2795  case ISD::VECTOR_SHUFFLE:
2796    assert(N1.getValueType() == N2.getValueType() &&
2797           N1.getValueType().isVector() &&
2798           VT.isVector() && N3.getValueType().isVector() &&
2799           N3.getOpcode() == ISD::BUILD_VECTOR &&
2800           VT.getVectorNumElements() == N3.getNumOperands() &&
2801           "Illegal VECTOR_SHUFFLE node!");
2802    break;
2803  case ISD::BIT_CONVERT:
2804    // Fold bit_convert nodes from a type to themselves.
2805    if (N1.getValueType() == VT)
2806      return N1;
2807    break;
2808  }
2809
2810  // Memoize node if it doesn't produce a flag.
2811  SDNode *N;
2812  SDVTList VTs = getVTList(VT);
2813  if (VT != MVT::Flag) {
2814    SDValue Ops[] = { N1, N2, N3 };
2815    FoldingSetNodeID ID;
2816    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2817    void *IP = 0;
2818    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2819      return SDValue(E, 0);
2820    N = NodeAllocator.Allocate<TernarySDNode>();
2821    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2822    CSEMap.InsertNode(N, IP);
2823  } else {
2824    N = NodeAllocator.Allocate<TernarySDNode>();
2825    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2826  }
2827  AllNodes.push_back(N);
2828#ifndef NDEBUG
2829  VerifyNode(N);
2830#endif
2831  return SDValue(N, 0);
2832}
2833
2834SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2835                              SDValue N1, SDValue N2, SDValue N3,
2836                              SDValue N4) {
2837  SDValue Ops[] = { N1, N2, N3, N4 };
2838  return getNode(Opcode, DL, VT, Ops, 4);
2839}
2840
2841SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2842                              SDValue N1, SDValue N2, SDValue N3,
2843                              SDValue N4, SDValue N5) {
2844  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2845  return getNode(Opcode, DL, VT, Ops, 5);
2846}
2847
2848/// getMemsetValue - Vectorized representation of the memset value
2849/// operand.
2850static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2851                              DebugLoc dl) {
2852  unsigned NumBits = VT.isVector() ?
2853    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2854  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2855    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2856    unsigned Shift = 8;
2857    for (unsigned i = NumBits; i > 8; i >>= 1) {
2858      Val = (Val << Shift) | Val;
2859      Shift <<= 1;
2860    }
2861    if (VT.isInteger())
2862      return DAG.getConstant(Val, VT);
2863    return DAG.getConstantFP(APFloat(Val), VT);
2864  }
2865
2866  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2867  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2868  unsigned Shift = 8;
2869  for (unsigned i = NumBits; i > 8; i >>= 1) {
2870    Value = DAG.getNode(ISD::OR, dl, VT,
2871                        DAG.getNode(ISD::SHL, dl, VT, Value,
2872                                    DAG.getConstant(Shift,
2873                                                    TLI.getShiftAmountTy())),
2874                        Value);
2875    Shift <<= 1;
2876  }
2877
2878  return Value;
2879}
2880
2881/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2882/// used when a memcpy is turned into a memset when the source is a constant
2883/// string ptr.
2884static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2885                                    const TargetLowering &TLI,
2886                                    std::string &Str, unsigned Offset) {
2887  // Handle vector with all elements zero.
2888  if (Str.empty()) {
2889    if (VT.isInteger())
2890      return DAG.getConstant(0, VT);
2891    unsigned NumElts = VT.getVectorNumElements();
2892    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2893    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
2894                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2895  }
2896
2897  assert(!VT.isVector() && "Can't handle vector type here!");
2898  unsigned NumBits = VT.getSizeInBits();
2899  unsigned MSB = NumBits / 8;
2900  uint64_t Val = 0;
2901  if (TLI.isLittleEndian())
2902    Offset = Offset + MSB - 1;
2903  for (unsigned i = 0; i != MSB; ++i) {
2904    Val = (Val << 8) | (unsigned char)Str[Offset];
2905    Offset += TLI.isLittleEndian() ? -1 : 1;
2906  }
2907  return DAG.getConstant(Val, VT);
2908}
2909
2910/// getMemBasePlusOffset - Returns base and offset node for the
2911///
2912static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2913                                      SelectionDAG &DAG) {
2914  MVT VT = Base.getValueType();
2915  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
2916                     VT, Base, DAG.getConstant(Offset, VT));
2917}
2918
2919/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2920///
2921static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2922  unsigned SrcDelta = 0;
2923  GlobalAddressSDNode *G = NULL;
2924  if (Src.getOpcode() == ISD::GlobalAddress)
2925    G = cast<GlobalAddressSDNode>(Src);
2926  else if (Src.getOpcode() == ISD::ADD &&
2927           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2928           Src.getOperand(1).getOpcode() == ISD::Constant) {
2929    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2930    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2931  }
2932  if (!G)
2933    return false;
2934
2935  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2936  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2937    return true;
2938
2939  return false;
2940}
2941
2942/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2943/// to replace the memset / memcpy is below the threshold. It also returns the
2944/// types of the sequence of memory ops to perform memset / memcpy.
2945static
2946bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2947                              SDValue Dst, SDValue Src,
2948                              unsigned Limit, uint64_t Size, unsigned &Align,
2949                              std::string &Str, bool &isSrcStr,
2950                              SelectionDAG &DAG,
2951                              const TargetLowering &TLI) {
2952  isSrcStr = isMemSrcFromString(Src, Str);
2953  bool isSrcConst = isa<ConstantSDNode>(Src);
2954  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2955  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2956  if (VT != MVT::iAny) {
2957    unsigned NewAlign = (unsigned)
2958      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2959    // If source is a string constant, this will require an unaligned load.
2960    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2961      if (Dst.getOpcode() != ISD::FrameIndex) {
2962        // Can't change destination alignment. It requires a unaligned store.
2963        if (AllowUnalign)
2964          VT = MVT::iAny;
2965      } else {
2966        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2967        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2968        if (MFI->isFixedObjectIndex(FI)) {
2969          // Can't change destination alignment. It requires a unaligned store.
2970          if (AllowUnalign)
2971            VT = MVT::iAny;
2972        } else {
2973          // Give the stack frame object a larger alignment if needed.
2974          if (MFI->getObjectAlignment(FI) < NewAlign)
2975            MFI->setObjectAlignment(FI, NewAlign);
2976          Align = NewAlign;
2977        }
2978      }
2979    }
2980  }
2981
2982  if (VT == MVT::iAny) {
2983    if (AllowUnalign) {
2984      VT = MVT::i64;
2985    } else {
2986      switch (Align & 7) {
2987      case 0:  VT = MVT::i64; break;
2988      case 4:  VT = MVT::i32; break;
2989      case 2:  VT = MVT::i16; break;
2990      default: VT = MVT::i8;  break;
2991      }
2992    }
2993
2994    MVT LVT = MVT::i64;
2995    while (!TLI.isTypeLegal(LVT))
2996      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2997    assert(LVT.isInteger());
2998
2999    if (VT.bitsGT(LVT))
3000      VT = LVT;
3001  }
3002
3003  unsigned NumMemOps = 0;
3004  while (Size != 0) {
3005    unsigned VTSize = VT.getSizeInBits() / 8;
3006    while (VTSize > Size) {
3007      // For now, only use non-vector load / store's for the left-over pieces.
3008      if (VT.isVector()) {
3009        VT = MVT::i64;
3010        while (!TLI.isTypeLegal(VT))
3011          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3012        VTSize = VT.getSizeInBits() / 8;
3013      } else {
3014        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3015        VTSize >>= 1;
3016      }
3017    }
3018
3019    if (++NumMemOps > Limit)
3020      return false;
3021    MemOps.push_back(VT);
3022    Size -= VTSize;
3023  }
3024
3025  return true;
3026}
3027
3028static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3029                                         SDValue Chain, SDValue Dst,
3030                                         SDValue Src, uint64_t Size,
3031                                         unsigned Align, bool AlwaysInline,
3032                                         const Value *DstSV, uint64_t DstSVOff,
3033                                         const Value *SrcSV, uint64_t SrcSVOff){
3034  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3035
3036  // Expand memcpy to a series of load and store ops if the size operand falls
3037  // below a certain threshold.
3038  std::vector<MVT> MemOps;
3039  uint64_t Limit = -1ULL;
3040  if (!AlwaysInline)
3041    Limit = TLI.getMaxStoresPerMemcpy();
3042  unsigned DstAlign = Align;  // Destination alignment can change.
3043  std::string Str;
3044  bool CopyFromStr;
3045  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3046                                Str, CopyFromStr, DAG, TLI))
3047    return SDValue();
3048
3049
3050  bool isZeroStr = CopyFromStr && Str.empty();
3051  SmallVector<SDValue, 8> OutChains;
3052  unsigned NumMemOps = MemOps.size();
3053  uint64_t SrcOff = 0, DstOff = 0;
3054  for (unsigned i = 0; i < NumMemOps; i++) {
3055    MVT VT = MemOps[i];
3056    unsigned VTSize = VT.getSizeInBits() / 8;
3057    SDValue Value, Store;
3058
3059    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3060      // It's unlikely a store of a vector immediate can be done in a single
3061      // instruction. It would require a load from a constantpool first.
3062      // We also handle store a vector with all zero's.
3063      // FIXME: Handle other cases where store of vector immediate is done in
3064      // a single instruction.
3065      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3066      Store = DAG.getStore(Chain, dl, Value,
3067                           getMemBasePlusOffset(Dst, DstOff, DAG),
3068                           DstSV, DstSVOff + DstOff, false, DstAlign);
3069    } else {
3070      Value = DAG.getLoad(VT, dl, Chain,
3071                          getMemBasePlusOffset(Src, SrcOff, DAG),
3072                          SrcSV, SrcSVOff + SrcOff, false, Align);
3073      Store = DAG.getStore(Chain, dl, Value,
3074                           getMemBasePlusOffset(Dst, DstOff, DAG),
3075                           DstSV, DstSVOff + DstOff, false, DstAlign);
3076    }
3077    OutChains.push_back(Store);
3078    SrcOff += VTSize;
3079    DstOff += VTSize;
3080  }
3081
3082  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3083                     &OutChains[0], OutChains.size());
3084}
3085
3086static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3087                                          SDValue Chain, SDValue Dst,
3088                                          SDValue Src, uint64_t Size,
3089                                          unsigned Align, bool AlwaysInline,
3090                                          const Value *DstSV, uint64_t DstSVOff,
3091                                          const Value *SrcSV, uint64_t SrcSVOff){
3092  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3093
3094  // Expand memmove to a series of load and store ops if the size operand falls
3095  // below a certain threshold.
3096  std::vector<MVT> MemOps;
3097  uint64_t Limit = -1ULL;
3098  if (!AlwaysInline)
3099    Limit = TLI.getMaxStoresPerMemmove();
3100  unsigned DstAlign = Align;  // Destination alignment can change.
3101  std::string Str;
3102  bool CopyFromStr;
3103  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3104                                Str, CopyFromStr, DAG, TLI))
3105    return SDValue();
3106
3107  uint64_t SrcOff = 0, DstOff = 0;
3108
3109  SmallVector<SDValue, 8> LoadValues;
3110  SmallVector<SDValue, 8> LoadChains;
3111  SmallVector<SDValue, 8> OutChains;
3112  unsigned NumMemOps = MemOps.size();
3113  for (unsigned i = 0; i < NumMemOps; i++) {
3114    MVT VT = MemOps[i];
3115    unsigned VTSize = VT.getSizeInBits() / 8;
3116    SDValue Value, Store;
3117
3118    Value = DAG.getLoad(VT, dl, Chain,
3119                        getMemBasePlusOffset(Src, SrcOff, DAG),
3120                        SrcSV, SrcSVOff + SrcOff, false, Align);
3121    LoadValues.push_back(Value);
3122    LoadChains.push_back(Value.getValue(1));
3123    SrcOff += VTSize;
3124  }
3125  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3126                      &LoadChains[0], LoadChains.size());
3127  OutChains.clear();
3128  for (unsigned i = 0; i < NumMemOps; i++) {
3129    MVT VT = MemOps[i];
3130    unsigned VTSize = VT.getSizeInBits() / 8;
3131    SDValue Value, Store;
3132
3133    Store = DAG.getStore(Chain, dl, LoadValues[i],
3134                         getMemBasePlusOffset(Dst, DstOff, DAG),
3135                         DstSV, DstSVOff + DstOff, false, DstAlign);
3136    OutChains.push_back(Store);
3137    DstOff += VTSize;
3138  }
3139
3140  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3141                     &OutChains[0], OutChains.size());
3142}
3143
3144static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3145                                 SDValue Chain, SDValue Dst,
3146                                 SDValue Src, uint64_t Size,
3147                                 unsigned Align,
3148                                 const Value *DstSV, uint64_t DstSVOff) {
3149  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3150
3151  // Expand memset to a series of load/store ops if the size operand
3152  // falls below a certain threshold.
3153  std::vector<MVT> MemOps;
3154  std::string Str;
3155  bool CopyFromStr;
3156  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3157                                Size, Align, Str, CopyFromStr, DAG, TLI))
3158    return SDValue();
3159
3160  SmallVector<SDValue, 8> OutChains;
3161  uint64_t DstOff = 0;
3162
3163  unsigned NumMemOps = MemOps.size();
3164  for (unsigned i = 0; i < NumMemOps; i++) {
3165    MVT VT = MemOps[i];
3166    unsigned VTSize = VT.getSizeInBits() / 8;
3167    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3168    SDValue Store = DAG.getStore(Chain, dl, Value,
3169                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3170                                 DstSV, DstSVOff + DstOff);
3171    OutChains.push_back(Store);
3172    DstOff += VTSize;
3173  }
3174
3175  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3176                     &OutChains[0], OutChains.size());
3177}
3178
3179SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3180                                SDValue Src, SDValue Size,
3181                                unsigned Align, bool AlwaysInline,
3182                                const Value *DstSV, uint64_t DstSVOff,
3183                                const Value *SrcSV, uint64_t SrcSVOff) {
3184
3185  // Check to see if we should lower the memcpy to loads and stores first.
3186  // For cases within the target-specified limits, this is the best choice.
3187  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3188  if (ConstantSize) {
3189    // Memcpy with size zero? Just return the original chain.
3190    if (ConstantSize->isNullValue())
3191      return Chain;
3192
3193    SDValue Result =
3194      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3195                              ConstantSize->getZExtValue(),
3196                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3197    if (Result.getNode())
3198      return Result;
3199  }
3200
3201  // Then check to see if we should lower the memcpy with target-specific
3202  // code. If the target chooses to do this, this is the next best.
3203  SDValue Result =
3204    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3205                                AlwaysInline,
3206                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3207  if (Result.getNode())
3208    return Result;
3209
3210  // If we really need inline code and the target declined to provide it,
3211  // use a (potentially long) sequence of loads and stores.
3212  if (AlwaysInline) {
3213    assert(ConstantSize && "AlwaysInline requires a constant size!");
3214    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3215                                   ConstantSize->getZExtValue(), Align, true,
3216                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3217  }
3218
3219  // Emit a library call.
3220  TargetLowering::ArgListTy Args;
3221  TargetLowering::ArgListEntry Entry;
3222  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3223  Entry.Node = Dst; Args.push_back(Entry);
3224  Entry.Node = Src; Args.push_back(Entry);
3225  Entry.Node = Size; Args.push_back(Entry);
3226  // FIXME: pass in DebugLoc
3227  std::pair<SDValue,SDValue> CallResult =
3228    TLI.LowerCallTo(Chain, Type::VoidTy,
3229                    false, false, false, false, CallingConv::C, false,
3230                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3231                    Args, *this, dl);
3232  return CallResult.second;
3233}
3234
3235SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3236                                 SDValue Src, SDValue Size,
3237                                 unsigned Align,
3238                                 const Value *DstSV, uint64_t DstSVOff,
3239                                 const Value *SrcSV, uint64_t SrcSVOff) {
3240
3241  // Check to see if we should lower the memmove to loads and stores first.
3242  // For cases within the target-specified limits, this is the best choice.
3243  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3244  if (ConstantSize) {
3245    // Memmove with size zero? Just return the original chain.
3246    if (ConstantSize->isNullValue())
3247      return Chain;
3248
3249    SDValue Result =
3250      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3251                               ConstantSize->getZExtValue(),
3252                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3253    if (Result.getNode())
3254      return Result;
3255  }
3256
3257  // Then check to see if we should lower the memmove with target-specific
3258  // code. If the target chooses to do this, this is the next best.
3259  SDValue Result =
3260    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3261                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3262  if (Result.getNode())
3263    return Result;
3264
3265  // Emit a library call.
3266  TargetLowering::ArgListTy Args;
3267  TargetLowering::ArgListEntry Entry;
3268  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3269  Entry.Node = Dst; Args.push_back(Entry);
3270  Entry.Node = Src; Args.push_back(Entry);
3271  Entry.Node = Size; Args.push_back(Entry);
3272  // FIXME:  pass in DebugLoc
3273  std::pair<SDValue,SDValue> CallResult =
3274    TLI.LowerCallTo(Chain, Type::VoidTy,
3275                    false, false, false, false, CallingConv::C, false,
3276                    getExternalSymbol("memmove", TLI.getPointerTy()),
3277                    Args, *this, dl);
3278  return CallResult.second;
3279}
3280
3281SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3282                                SDValue Src, SDValue Size,
3283                                unsigned Align,
3284                                const Value *DstSV, uint64_t DstSVOff) {
3285
3286  // Check to see if we should lower the memset to stores first.
3287  // For cases within the target-specified limits, this is the best choice.
3288  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3289  if (ConstantSize) {
3290    // Memset with size zero? Just return the original chain.
3291    if (ConstantSize->isNullValue())
3292      return Chain;
3293
3294    SDValue Result =
3295      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3296                      Align, DstSV, DstSVOff);
3297    if (Result.getNode())
3298      return Result;
3299  }
3300
3301  // Then check to see if we should lower the memset with target-specific
3302  // code. If the target chooses to do this, this is the next best.
3303  SDValue Result =
3304    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3305                                DstSV, DstSVOff);
3306  if (Result.getNode())
3307    return Result;
3308
3309  // Emit a library call.
3310  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3311  TargetLowering::ArgListTy Args;
3312  TargetLowering::ArgListEntry Entry;
3313  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3314  Args.push_back(Entry);
3315  // Extend or truncate the argument to be an i32 value for the call.
3316  if (Src.getValueType().bitsGT(MVT::i32))
3317    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3318  else
3319    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3320  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3321  Args.push_back(Entry);
3322  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3323  Args.push_back(Entry);
3324  // FIXME: pass in DebugLoc
3325  std::pair<SDValue,SDValue> CallResult =
3326    TLI.LowerCallTo(Chain, Type::VoidTy,
3327                    false, false, false, false, CallingConv::C, false,
3328                    getExternalSymbol("memset", TLI.getPointerTy()),
3329                    Args, *this, dl);
3330  return CallResult.second;
3331}
3332
3333SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3334                                SDValue Chain,
3335                                SDValue Ptr, SDValue Cmp,
3336                                SDValue Swp, const Value* PtrVal,
3337                                unsigned Alignment) {
3338  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3339  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3340
3341  MVT VT = Cmp.getValueType();
3342
3343  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3344    Alignment = getMVTAlignment(MemVT);
3345
3346  SDVTList VTs = getVTList(VT, MVT::Other);
3347  FoldingSetNodeID ID;
3348  ID.AddInteger(MemVT.getRawBits());
3349  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3350  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3351  void* IP = 0;
3352  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3353    return SDValue(E, 0);
3354  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3355  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3356                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3357  CSEMap.InsertNode(N, IP);
3358  AllNodes.push_back(N);
3359  return SDValue(N, 0);
3360}
3361
3362SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3363                                SDValue Chain,
3364                                SDValue Ptr, SDValue Val,
3365                                const Value* PtrVal,
3366                                unsigned Alignment) {
3367  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3368          Opcode == ISD::ATOMIC_LOAD_SUB ||
3369          Opcode == ISD::ATOMIC_LOAD_AND ||
3370          Opcode == ISD::ATOMIC_LOAD_OR ||
3371          Opcode == ISD::ATOMIC_LOAD_XOR ||
3372          Opcode == ISD::ATOMIC_LOAD_NAND ||
3373          Opcode == ISD::ATOMIC_LOAD_MIN ||
3374          Opcode == ISD::ATOMIC_LOAD_MAX ||
3375          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3376          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3377          Opcode == ISD::ATOMIC_SWAP) &&
3378         "Invalid Atomic Op");
3379
3380  MVT VT = Val.getValueType();
3381
3382  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3383    Alignment = getMVTAlignment(MemVT);
3384
3385  SDVTList VTs = getVTList(VT, MVT::Other);
3386  FoldingSetNodeID ID;
3387  ID.AddInteger(MemVT.getRawBits());
3388  SDValue Ops[] = {Chain, Ptr, Val};
3389  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3390  void* IP = 0;
3391  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3392    return SDValue(E, 0);
3393  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3394  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3395                       Chain, Ptr, Val, PtrVal, Alignment);
3396  CSEMap.InsertNode(N, IP);
3397  AllNodes.push_back(N);
3398  return SDValue(N, 0);
3399}
3400
3401/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3402/// Allowed to return something different (and simpler) if Simplify is true.
3403SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3404                                     DebugLoc dl) {
3405  if (NumOps == 1)
3406    return Ops[0];
3407
3408  SmallVector<MVT, 4> VTs;
3409  VTs.reserve(NumOps);
3410  for (unsigned i = 0; i < NumOps; ++i)
3411    VTs.push_back(Ops[i].getValueType());
3412  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3413                 Ops, NumOps);
3414}
3415
3416SDValue
3417SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3418                                  const MVT *VTs, unsigned NumVTs,
3419                                  const SDValue *Ops, unsigned NumOps,
3420                                  MVT MemVT, const Value *srcValue, int SVOff,
3421                                  unsigned Align, bool Vol,
3422                                  bool ReadMem, bool WriteMem) {
3423  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3424                             MemVT, srcValue, SVOff, Align, Vol,
3425                             ReadMem, WriteMem);
3426}
3427
3428SDValue
3429SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3430                                  const SDValue *Ops, unsigned NumOps,
3431                                  MVT MemVT, const Value *srcValue, int SVOff,
3432                                  unsigned Align, bool Vol,
3433                                  bool ReadMem, bool WriteMem) {
3434  // Memoize the node unless it returns a flag.
3435  MemIntrinsicSDNode *N;
3436  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3437    FoldingSetNodeID ID;
3438    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3439    void *IP = 0;
3440    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3441      return SDValue(E, 0);
3442
3443    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3444    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3445                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3446    CSEMap.InsertNode(N, IP);
3447  } else {
3448    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3449    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3450                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3451  }
3452  AllNodes.push_back(N);
3453  return SDValue(N, 0);
3454}
3455
3456SDValue
3457SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3458                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3459                      const SDValue *Operands, unsigned NumOperands) {
3460  // Do not include isTailCall in the folding set profile.
3461  FoldingSetNodeID ID;
3462  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3463  ID.AddInteger(CallingConv);
3464  ID.AddInteger(IsVarArgs);
3465  void *IP = 0;
3466  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3467    // Instead of including isTailCall in the folding set, we just
3468    // set the flag of the existing node.
3469    if (!IsTailCall)
3470      cast<CallSDNode>(E)->setNotTailCall();
3471    return SDValue(E, 0);
3472  }
3473  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3474  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3475                     VTs, Operands, NumOperands);
3476  CSEMap.InsertNode(N, IP);
3477  AllNodes.push_back(N);
3478  return SDValue(N, 0);
3479}
3480
3481SDValue
3482SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3483                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3484                      SDValue Ptr, SDValue Offset,
3485                      const Value *SV, int SVOffset, MVT EVT,
3486                      bool isVolatile, unsigned Alignment) {
3487  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3488    Alignment = getMVTAlignment(VT);
3489
3490  if (VT == EVT) {
3491    ExtType = ISD::NON_EXTLOAD;
3492  } else if (ExtType == ISD::NON_EXTLOAD) {
3493    assert(VT == EVT && "Non-extending load from different memory type!");
3494  } else {
3495    // Extending load.
3496    if (VT.isVector())
3497      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3498             "Invalid vector extload!");
3499    else
3500      assert(EVT.bitsLT(VT) &&
3501             "Should only be an extending load, not truncating!");
3502    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3503           "Cannot sign/zero extend a FP/Vector load!");
3504    assert(VT.isInteger() == EVT.isInteger() &&
3505           "Cannot convert from FP to Int or Int -> FP!");
3506  }
3507
3508  bool Indexed = AM != ISD::UNINDEXED;
3509  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3510         "Unindexed load with an offset!");
3511
3512  SDVTList VTs = Indexed ?
3513    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3514  SDValue Ops[] = { Chain, Ptr, Offset };
3515  FoldingSetNodeID ID;
3516  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3517  ID.AddInteger(EVT.getRawBits());
3518  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3519  void *IP = 0;
3520  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3521    return SDValue(E, 0);
3522  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3523  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3524                     Alignment, isVolatile);
3525  CSEMap.InsertNode(N, IP);
3526  AllNodes.push_back(N);
3527  return SDValue(N, 0);
3528}
3529
3530SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3531                              SDValue Chain, SDValue Ptr,
3532                              const Value *SV, int SVOffset,
3533                              bool isVolatile, unsigned Alignment) {
3534  SDValue Undef = getUNDEF(Ptr.getValueType());
3535  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3536                 SV, SVOffset, VT, isVolatile, Alignment);
3537}
3538
3539SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3540                                 SDValue Chain, SDValue Ptr,
3541                                 const Value *SV,
3542                                 int SVOffset, MVT EVT,
3543                                 bool isVolatile, unsigned Alignment) {
3544  SDValue Undef = getUNDEF(Ptr.getValueType());
3545  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3546                 SV, SVOffset, EVT, isVolatile, Alignment);
3547}
3548
3549SDValue
3550SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3551                             SDValue Offset, ISD::MemIndexedMode AM) {
3552  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3553  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3554         "Load is already a indexed load!");
3555  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3556                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3557                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3558                 LD->isVolatile(), LD->getAlignment());
3559}
3560
3561SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3562                               SDValue Ptr, const Value *SV, int SVOffset,
3563                               bool isVolatile, unsigned Alignment) {
3564  MVT VT = Val.getValueType();
3565
3566  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3567    Alignment = getMVTAlignment(VT);
3568
3569  SDVTList VTs = getVTList(MVT::Other);
3570  SDValue Undef = getUNDEF(Ptr.getValueType());
3571  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3572  FoldingSetNodeID ID;
3573  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3574  ID.AddInteger(VT.getRawBits());
3575  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3576                                     isVolatile, Alignment));
3577  void *IP = 0;
3578  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3579    return SDValue(E, 0);
3580  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3581  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3582                      VT, SV, SVOffset, Alignment, isVolatile);
3583  CSEMap.InsertNode(N, IP);
3584  AllNodes.push_back(N);
3585  return SDValue(N, 0);
3586}
3587
3588SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3589                                    SDValue Ptr, const Value *SV,
3590                                    int SVOffset, MVT SVT,
3591                                    bool isVolatile, unsigned Alignment) {
3592  MVT VT = Val.getValueType();
3593
3594  if (VT == SVT)
3595    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3596
3597  assert(VT.bitsGT(SVT) && "Not a truncation?");
3598  assert(VT.isInteger() == SVT.isInteger() &&
3599         "Can't do FP-INT conversion!");
3600
3601  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3602    Alignment = getMVTAlignment(VT);
3603
3604  SDVTList VTs = getVTList(MVT::Other);
3605  SDValue Undef = getUNDEF(Ptr.getValueType());
3606  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3607  FoldingSetNodeID ID;
3608  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3609  ID.AddInteger(SVT.getRawBits());
3610  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3611                                     isVolatile, Alignment));
3612  void *IP = 0;
3613  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3614    return SDValue(E, 0);
3615  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3616  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3617                      SVT, SV, SVOffset, Alignment, isVolatile);
3618  CSEMap.InsertNode(N, IP);
3619  AllNodes.push_back(N);
3620  return SDValue(N, 0);
3621}
3622
3623SDValue
3624SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3625                              SDValue Offset, ISD::MemIndexedMode AM) {
3626  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3627  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3628         "Store is already a indexed store!");
3629  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3630  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3631  FoldingSetNodeID ID;
3632  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3633  ID.AddInteger(ST->getMemoryVT().getRawBits());
3634  ID.AddInteger(ST->getRawSubclassData());
3635  void *IP = 0;
3636  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3637    return SDValue(E, 0);
3638  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3639  new (N) StoreSDNode(Ops, dl, VTs, AM,
3640                      ST->isTruncatingStore(), ST->getMemoryVT(),
3641                      ST->getSrcValue(), ST->getSrcValueOffset(),
3642                      ST->getAlignment(), ST->isVolatile());
3643  CSEMap.InsertNode(N, IP);
3644  AllNodes.push_back(N);
3645  return SDValue(N, 0);
3646}
3647
3648SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3649                               SDValue Chain, SDValue Ptr,
3650                               SDValue SV) {
3651  SDValue Ops[] = { Chain, Ptr, SV };
3652  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3653}
3654
3655SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3656                              const SDUse *Ops, unsigned NumOps) {
3657  switch (NumOps) {
3658  case 0: return getNode(Opcode, DL, VT);
3659  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3660  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3661  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3662  default: break;
3663  }
3664
3665  // Copy from an SDUse array into an SDValue array for use with
3666  // the regular getNode logic.
3667  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3668  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3669}
3670
3671SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3672                              const SDValue *Ops, unsigned NumOps) {
3673  switch (NumOps) {
3674  case 0: return getNode(Opcode, DL, VT);
3675  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3676  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3677  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3678  default: break;
3679  }
3680
3681  switch (Opcode) {
3682  default: break;
3683  case ISD::SELECT_CC: {
3684    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3685    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3686           "LHS and RHS of condition must have same type!");
3687    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3688           "True and False arms of SelectCC must have same type!");
3689    assert(Ops[2].getValueType() == VT &&
3690           "select_cc node must be of same type as true and false value!");
3691    break;
3692  }
3693  case ISD::BR_CC: {
3694    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3695    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3696           "LHS/RHS of comparison should match types!");
3697    break;
3698  }
3699  }
3700
3701  // Memoize nodes.
3702  SDNode *N;
3703  SDVTList VTs = getVTList(VT);
3704
3705  if (VT != MVT::Flag) {
3706    FoldingSetNodeID ID;
3707    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3708    void *IP = 0;
3709
3710    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3711      return SDValue(E, 0);
3712
3713    N = NodeAllocator.Allocate<SDNode>();
3714    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3715    CSEMap.InsertNode(N, IP);
3716  } else {
3717    N = NodeAllocator.Allocate<SDNode>();
3718    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3719  }
3720
3721  AllNodes.push_back(N);
3722#ifndef NDEBUG
3723  VerifyNode(N);
3724#endif
3725  return SDValue(N, 0);
3726}
3727
3728SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3729                              const std::vector<MVT> &ResultTys,
3730                              const SDValue *Ops, unsigned NumOps) {
3731  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3732                 Ops, NumOps);
3733}
3734
3735SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3736                              const MVT *VTs, unsigned NumVTs,
3737                              const SDValue *Ops, unsigned NumOps) {
3738  if (NumVTs == 1)
3739    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3740  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3741}
3742
3743SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3744                              const SDValue *Ops, unsigned NumOps) {
3745  if (VTList.NumVTs == 1)
3746    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3747
3748  switch (Opcode) {
3749  // FIXME: figure out how to safely handle things like
3750  // int foo(int x) { return 1 << (x & 255); }
3751  // int bar() { return foo(256); }
3752#if 0
3753  case ISD::SRA_PARTS:
3754  case ISD::SRL_PARTS:
3755  case ISD::SHL_PARTS:
3756    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3757        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3758      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3759    else if (N3.getOpcode() == ISD::AND)
3760      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3761        // If the and is only masking out bits that cannot effect the shift,
3762        // eliminate the and.
3763        unsigned NumBits = VT.getSizeInBits()*2;
3764        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3765          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3766      }
3767    break;
3768#endif
3769  }
3770
3771  // Memoize the node unless it returns a flag.
3772  SDNode *N;
3773  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3774    FoldingSetNodeID ID;
3775    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3776    void *IP = 0;
3777    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3778      return SDValue(E, 0);
3779    if (NumOps == 1) {
3780      N = NodeAllocator.Allocate<UnarySDNode>();
3781      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3782    } else if (NumOps == 2) {
3783      N = NodeAllocator.Allocate<BinarySDNode>();
3784      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3785    } else if (NumOps == 3) {
3786      N = NodeAllocator.Allocate<TernarySDNode>();
3787      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3788    } else {
3789      N = NodeAllocator.Allocate<SDNode>();
3790      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3791    }
3792    CSEMap.InsertNode(N, IP);
3793  } else {
3794    if (NumOps == 1) {
3795      N = NodeAllocator.Allocate<UnarySDNode>();
3796      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3797    } else if (NumOps == 2) {
3798      N = NodeAllocator.Allocate<BinarySDNode>();
3799      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3800    } else if (NumOps == 3) {
3801      N = NodeAllocator.Allocate<TernarySDNode>();
3802      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3803    } else {
3804      N = NodeAllocator.Allocate<SDNode>();
3805      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3806    }
3807  }
3808  AllNodes.push_back(N);
3809#ifndef NDEBUG
3810  VerifyNode(N);
3811#endif
3812  return SDValue(N, 0);
3813}
3814
3815SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3816  return getNode(Opcode, DL, VTList, 0, 0);
3817}
3818
3819SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3820                              SDValue N1) {
3821  SDValue Ops[] = { N1 };
3822  return getNode(Opcode, DL, VTList, Ops, 1);
3823}
3824
3825SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3826                              SDValue N1, SDValue N2) {
3827  SDValue Ops[] = { N1, N2 };
3828  return getNode(Opcode, DL, VTList, Ops, 2);
3829}
3830
3831SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3832                              SDValue N1, SDValue N2, SDValue N3) {
3833  SDValue Ops[] = { N1, N2, N3 };
3834  return getNode(Opcode, DL, VTList, Ops, 3);
3835}
3836
3837SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3838                              SDValue N1, SDValue N2, SDValue N3,
3839                              SDValue N4) {
3840  SDValue Ops[] = { N1, N2, N3, N4 };
3841  return getNode(Opcode, DL, VTList, Ops, 4);
3842}
3843
3844SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3845                              SDValue N1, SDValue N2, SDValue N3,
3846                              SDValue N4, SDValue N5) {
3847  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3848  return getNode(Opcode, DL, VTList, Ops, 5);
3849}
3850
3851SDVTList SelectionDAG::getVTList(MVT VT) {
3852  return makeVTList(SDNode::getValueTypeList(VT), 1);
3853}
3854
3855SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3856  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3857       E = VTList.rend(); I != E; ++I)
3858    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3859      return *I;
3860
3861  MVT *Array = Allocator.Allocate<MVT>(2);
3862  Array[0] = VT1;
3863  Array[1] = VT2;
3864  SDVTList Result = makeVTList(Array, 2);
3865  VTList.push_back(Result);
3866  return Result;
3867}
3868
3869SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3870  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3871       E = VTList.rend(); I != E; ++I)
3872    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3873                          I->VTs[2] == VT3)
3874      return *I;
3875
3876  MVT *Array = Allocator.Allocate<MVT>(3);
3877  Array[0] = VT1;
3878  Array[1] = VT2;
3879  Array[2] = VT3;
3880  SDVTList Result = makeVTList(Array, 3);
3881  VTList.push_back(Result);
3882  return Result;
3883}
3884
3885SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3886  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3887       E = VTList.rend(); I != E; ++I)
3888    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3889                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3890      return *I;
3891
3892  MVT *Array = Allocator.Allocate<MVT>(3);
3893  Array[0] = VT1;
3894  Array[1] = VT2;
3895  Array[2] = VT3;
3896  Array[3] = VT4;
3897  SDVTList Result = makeVTList(Array, 4);
3898  VTList.push_back(Result);
3899  return Result;
3900}
3901
3902SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3903  switch (NumVTs) {
3904    case 0: assert(0 && "Cannot have nodes without results!");
3905    case 1: return getVTList(VTs[0]);
3906    case 2: return getVTList(VTs[0], VTs[1]);
3907    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3908    default: break;
3909  }
3910
3911  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3912       E = VTList.rend(); I != E; ++I) {
3913    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3914      continue;
3915
3916    bool NoMatch = false;
3917    for (unsigned i = 2; i != NumVTs; ++i)
3918      if (VTs[i] != I->VTs[i]) {
3919        NoMatch = true;
3920        break;
3921      }
3922    if (!NoMatch)
3923      return *I;
3924  }
3925
3926  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3927  std::copy(VTs, VTs+NumVTs, Array);
3928  SDVTList Result = makeVTList(Array, NumVTs);
3929  VTList.push_back(Result);
3930  return Result;
3931}
3932
3933
3934/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3935/// specified operands.  If the resultant node already exists in the DAG,
3936/// this does not modify the specified node, instead it returns the node that
3937/// already exists.  If the resultant node does not exist in the DAG, the
3938/// input node is returned.  As a degenerate case, if you specify the same
3939/// input operands as the node already has, the input node is returned.
3940SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3941  SDNode *N = InN.getNode();
3942  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3943
3944  // Check to see if there is no change.
3945  if (Op == N->getOperand(0)) return InN;
3946
3947  // See if the modified node already exists.
3948  void *InsertPos = 0;
3949  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3950    return SDValue(Existing, InN.getResNo());
3951
3952  // Nope it doesn't.  Remove the node from its current place in the maps.
3953  if (InsertPos)
3954    if (!RemoveNodeFromCSEMaps(N))
3955      InsertPos = 0;
3956
3957  // Now we update the operands.
3958  N->OperandList[0].set(Op);
3959
3960  // If this gets put into a CSE map, add it.
3961  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3962  return InN;
3963}
3964
3965SDValue SelectionDAG::
3966UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3967  SDNode *N = InN.getNode();
3968  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3969
3970  // Check to see if there is no change.
3971  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3972    return InN;   // No operands changed, just return the input node.
3973
3974  // See if the modified node already exists.
3975  void *InsertPos = 0;
3976  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3977    return SDValue(Existing, InN.getResNo());
3978
3979  // Nope it doesn't.  Remove the node from its current place in the maps.
3980  if (InsertPos)
3981    if (!RemoveNodeFromCSEMaps(N))
3982      InsertPos = 0;
3983
3984  // Now we update the operands.
3985  if (N->OperandList[0] != Op1)
3986    N->OperandList[0].set(Op1);
3987  if (N->OperandList[1] != Op2)
3988    N->OperandList[1].set(Op2);
3989
3990  // If this gets put into a CSE map, add it.
3991  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3992  return InN;
3993}
3994
3995SDValue SelectionDAG::
3996UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3997  SDValue Ops[] = { Op1, Op2, Op3 };
3998  return UpdateNodeOperands(N, Ops, 3);
3999}
4000
4001SDValue SelectionDAG::
4002UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4003                   SDValue Op3, SDValue Op4) {
4004  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4005  return UpdateNodeOperands(N, Ops, 4);
4006}
4007
4008SDValue SelectionDAG::
4009UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4010                   SDValue Op3, SDValue Op4, SDValue Op5) {
4011  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4012  return UpdateNodeOperands(N, Ops, 5);
4013}
4014
4015SDValue SelectionDAG::
4016UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4017  SDNode *N = InN.getNode();
4018  assert(N->getNumOperands() == NumOps &&
4019         "Update with wrong number of operands");
4020
4021  // Check to see if there is no change.
4022  bool AnyChange = false;
4023  for (unsigned i = 0; i != NumOps; ++i) {
4024    if (Ops[i] != N->getOperand(i)) {
4025      AnyChange = true;
4026      break;
4027    }
4028  }
4029
4030  // No operands changed, just return the input node.
4031  if (!AnyChange) return InN;
4032
4033  // See if the modified node already exists.
4034  void *InsertPos = 0;
4035  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4036    return SDValue(Existing, InN.getResNo());
4037
4038  // Nope it doesn't.  Remove the node from its current place in the maps.
4039  if (InsertPos)
4040    if (!RemoveNodeFromCSEMaps(N))
4041      InsertPos = 0;
4042
4043  // Now we update the operands.
4044  for (unsigned i = 0; i != NumOps; ++i)
4045    if (N->OperandList[i] != Ops[i])
4046      N->OperandList[i].set(Ops[i]);
4047
4048  // If this gets put into a CSE map, add it.
4049  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4050  return InN;
4051}
4052
4053/// DropOperands - Release the operands and set this node to have
4054/// zero operands.
4055void SDNode::DropOperands() {
4056  // Unlike the code in MorphNodeTo that does this, we don't need to
4057  // watch for dead nodes here.
4058  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4059    SDUse &Use = *I++;
4060    Use.set(SDValue());
4061  }
4062}
4063
4064/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4065/// machine opcode.
4066///
4067SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4068                                   MVT VT) {
4069  SDVTList VTs = getVTList(VT);
4070  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4071}
4072
4073SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4074                                   MVT VT, SDValue Op1) {
4075  SDVTList VTs = getVTList(VT);
4076  SDValue Ops[] = { Op1 };
4077  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4078}
4079
4080SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4081                                   MVT VT, SDValue Op1,
4082                                   SDValue Op2) {
4083  SDVTList VTs = getVTList(VT);
4084  SDValue Ops[] = { Op1, Op2 };
4085  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4086}
4087
4088SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4089                                   MVT VT, SDValue Op1,
4090                                   SDValue Op2, SDValue Op3) {
4091  SDVTList VTs = getVTList(VT);
4092  SDValue Ops[] = { Op1, Op2, Op3 };
4093  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4094}
4095
4096SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4097                                   MVT VT, const SDValue *Ops,
4098                                   unsigned NumOps) {
4099  SDVTList VTs = getVTList(VT);
4100  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4101}
4102
4103SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4104                                   MVT VT1, MVT VT2, const SDValue *Ops,
4105                                   unsigned NumOps) {
4106  SDVTList VTs = getVTList(VT1, VT2);
4107  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4108}
4109
4110SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4111                                   MVT VT1, MVT VT2) {
4112  SDVTList VTs = getVTList(VT1, VT2);
4113  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4114}
4115
4116SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4117                                   MVT VT1, MVT VT2, MVT VT3,
4118                                   const SDValue *Ops, unsigned NumOps) {
4119  SDVTList VTs = getVTList(VT1, VT2, VT3);
4120  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4121}
4122
4123SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4124                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4125                                   const SDValue *Ops, unsigned NumOps) {
4126  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4127  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4128}
4129
4130SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4131                                   MVT VT1, MVT VT2,
4132                                   SDValue Op1) {
4133  SDVTList VTs = getVTList(VT1, VT2);
4134  SDValue Ops[] = { Op1 };
4135  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4136}
4137
4138SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4139                                   MVT VT1, MVT VT2,
4140                                   SDValue Op1, SDValue Op2) {
4141  SDVTList VTs = getVTList(VT1, VT2);
4142  SDValue Ops[] = { Op1, Op2 };
4143  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4144}
4145
4146SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4147                                   MVT VT1, MVT VT2,
4148                                   SDValue Op1, SDValue Op2,
4149                                   SDValue Op3) {
4150  SDVTList VTs = getVTList(VT1, VT2);
4151  SDValue Ops[] = { Op1, Op2, Op3 };
4152  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4153}
4154
4155SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4156                                   MVT VT1, MVT VT2, MVT VT3,
4157                                   SDValue Op1, SDValue Op2,
4158                                   SDValue Op3) {
4159  SDVTList VTs = getVTList(VT1, VT2, VT3);
4160  SDValue Ops[] = { Op1, Op2, Op3 };
4161  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4162}
4163
4164SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4165                                   SDVTList VTs, const SDValue *Ops,
4166                                   unsigned NumOps) {
4167  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4168}
4169
4170SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4171                                  MVT VT) {
4172  SDVTList VTs = getVTList(VT);
4173  return MorphNodeTo(N, Opc, VTs, 0, 0);
4174}
4175
4176SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4177                                  MVT VT, SDValue Op1) {
4178  SDVTList VTs = getVTList(VT);
4179  SDValue Ops[] = { Op1 };
4180  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4181}
4182
4183SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4184                                  MVT VT, SDValue Op1,
4185                                  SDValue Op2) {
4186  SDVTList VTs = getVTList(VT);
4187  SDValue Ops[] = { Op1, Op2 };
4188  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4189}
4190
4191SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4192                                  MVT VT, SDValue Op1,
4193                                  SDValue Op2, SDValue Op3) {
4194  SDVTList VTs = getVTList(VT);
4195  SDValue Ops[] = { Op1, Op2, Op3 };
4196  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4197}
4198
4199SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4200                                  MVT VT, const SDValue *Ops,
4201                                  unsigned NumOps) {
4202  SDVTList VTs = getVTList(VT);
4203  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4204}
4205
4206SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4207                                  MVT VT1, MVT VT2, const SDValue *Ops,
4208                                  unsigned NumOps) {
4209  SDVTList VTs = getVTList(VT1, VT2);
4210  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4211}
4212
4213SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4214                                  MVT VT1, MVT VT2) {
4215  SDVTList VTs = getVTList(VT1, VT2);
4216  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4217}
4218
4219SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4220                                  MVT VT1, MVT VT2, MVT VT3,
4221                                  const SDValue *Ops, unsigned NumOps) {
4222  SDVTList VTs = getVTList(VT1, VT2, VT3);
4223  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4224}
4225
4226SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4227                                  MVT VT1, MVT VT2,
4228                                  SDValue Op1) {
4229  SDVTList VTs = getVTList(VT1, VT2);
4230  SDValue Ops[] = { Op1 };
4231  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4232}
4233
4234SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4235                                  MVT VT1, MVT VT2,
4236                                  SDValue Op1, SDValue Op2) {
4237  SDVTList VTs = getVTList(VT1, VT2);
4238  SDValue Ops[] = { Op1, Op2 };
4239  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4240}
4241
4242SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4243                                  MVT VT1, MVT VT2,
4244                                  SDValue Op1, SDValue Op2,
4245                                  SDValue Op3) {
4246  SDVTList VTs = getVTList(VT1, VT2);
4247  SDValue Ops[] = { Op1, Op2, Op3 };
4248  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4249}
4250
4251/// MorphNodeTo - These *mutate* the specified node to have the specified
4252/// return type, opcode, and operands.
4253///
4254/// Note that MorphNodeTo returns the resultant node.  If there is already a
4255/// node of the specified opcode and operands, it returns that node instead of
4256/// the current one.  Note that the DebugLoc need not be the same.
4257///
4258/// Using MorphNodeTo is faster than creating a new node and swapping it in
4259/// with ReplaceAllUsesWith both because it often avoids allocating a new
4260/// node, and because it doesn't require CSE recalculation for any of
4261/// the node's users.
4262///
4263SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4264                                  SDVTList VTs, const SDValue *Ops,
4265                                  unsigned NumOps) {
4266  // If an identical node already exists, use it.
4267  void *IP = 0;
4268  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4269    FoldingSetNodeID ID;
4270    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4271    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4272      return ON;
4273  }
4274
4275  if (!RemoveNodeFromCSEMaps(N))
4276    IP = 0;
4277
4278  // Start the morphing.
4279  N->NodeType = Opc;
4280  N->ValueList = VTs.VTs;
4281  N->NumValues = VTs.NumVTs;
4282
4283  // Clear the operands list, updating used nodes to remove this from their
4284  // use list.  Keep track of any operands that become dead as a result.
4285  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4286  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4287    SDUse &Use = *I++;
4288    SDNode *Used = Use.getNode();
4289    Use.set(SDValue());
4290    if (Used->use_empty())
4291      DeadNodeSet.insert(Used);
4292  }
4293
4294  // If NumOps is larger than the # of operands we currently have, reallocate
4295  // the operand list.
4296  if (NumOps > N->NumOperands) {
4297    if (N->OperandsNeedDelete)
4298      delete[] N->OperandList;
4299
4300    if (N->isMachineOpcode()) {
4301      // We're creating a final node that will live unmorphed for the
4302      // remainder of the current SelectionDAG iteration, so we can allocate
4303      // the operands directly out of a pool with no recycling metadata.
4304      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4305      N->OperandsNeedDelete = false;
4306    } else {
4307      N->OperandList = new SDUse[NumOps];
4308      N->OperandsNeedDelete = true;
4309    }
4310  }
4311
4312  // Assign the new operands.
4313  N->NumOperands = NumOps;
4314  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4315    N->OperandList[i].setUser(N);
4316    N->OperandList[i].setInitial(Ops[i]);
4317  }
4318
4319  // Delete any nodes that are still dead after adding the uses for the
4320  // new operands.
4321  SmallVector<SDNode *, 16> DeadNodes;
4322  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4323       E = DeadNodeSet.end(); I != E; ++I)
4324    if ((*I)->use_empty())
4325      DeadNodes.push_back(*I);
4326  RemoveDeadNodes(DeadNodes);
4327
4328  if (IP)
4329    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4330  return N;
4331}
4332
4333
4334/// getTargetNode - These are used for target selectors to create a new node
4335/// with specified return type(s), target opcode, and operands.
4336///
4337/// Note that getTargetNode returns the resultant node.  If there is already a
4338/// node of the specified opcode and operands, it returns that node instead of
4339/// the current one.
4340SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4341  return getNode(~Opcode, dl, VT).getNode();
4342}
4343
4344SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4345                                    SDValue Op1) {
4346  return getNode(~Opcode, dl, VT, Op1).getNode();
4347}
4348
4349SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4350                                    SDValue Op1, SDValue Op2) {
4351  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4352}
4353
4354SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4355                                    SDValue Op1, SDValue Op2,
4356                                    SDValue Op3) {
4357  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4358}
4359
4360SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4361                                    const SDValue *Ops, unsigned NumOps) {
4362  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4363}
4364
4365SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4366                                    MVT VT1, MVT VT2) {
4367  SDVTList VTs = getVTList(VT1, VT2);
4368  SDValue Op;
4369  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4370}
4371
4372SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4373                                    MVT VT2, SDValue Op1) {
4374  SDVTList VTs = getVTList(VT1, VT2);
4375  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4376}
4377
4378SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4379                                    MVT VT2, SDValue Op1,
4380                                    SDValue Op2) {
4381  SDVTList VTs = getVTList(VT1, VT2);
4382  SDValue Ops[] = { Op1, Op2 };
4383  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4384}
4385
4386SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4387                                    MVT VT2, SDValue Op1,
4388                                    SDValue Op2, SDValue Op3) {
4389  SDVTList VTs = getVTList(VT1, VT2);
4390  SDValue Ops[] = { Op1, Op2, Op3 };
4391  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4392}
4393
4394SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4395                                    MVT VT1, MVT VT2,
4396                                    const SDValue *Ops, unsigned NumOps) {
4397  SDVTList VTs = getVTList(VT1, VT2);
4398  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4399}
4400
4401SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4402                                    MVT VT1, MVT VT2, MVT VT3,
4403                                    SDValue Op1, SDValue Op2) {
4404  SDVTList VTs = getVTList(VT1, VT2, VT3);
4405  SDValue Ops[] = { Op1, Op2 };
4406  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4407}
4408
4409SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4410                                    MVT VT1, MVT VT2, MVT VT3,
4411                                    SDValue Op1, SDValue Op2,
4412                                    SDValue Op3) {
4413  SDVTList VTs = getVTList(VT1, VT2, VT3);
4414  SDValue Ops[] = { Op1, Op2, Op3 };
4415  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4416}
4417
4418SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4419                                    MVT VT1, MVT VT2, MVT VT3,
4420                                    const SDValue *Ops, unsigned NumOps) {
4421  SDVTList VTs = getVTList(VT1, VT2, VT3);
4422  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4423}
4424
4425SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4426                                    MVT VT2, MVT VT3, MVT VT4,
4427                                    const SDValue *Ops, unsigned NumOps) {
4428  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4429  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4430}
4431
4432SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4433                                    const std::vector<MVT> &ResultTys,
4434                                    const SDValue *Ops, unsigned NumOps) {
4435  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4436}
4437
4438/// getNodeIfExists - Get the specified node if it's already available, or
4439/// else return NULL.
4440SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4441                                      const SDValue *Ops, unsigned NumOps) {
4442  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4443    FoldingSetNodeID ID;
4444    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4445    void *IP = 0;
4446    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4447      return E;
4448  }
4449  return NULL;
4450}
4451
4452/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4453/// This can cause recursive merging of nodes in the DAG.
4454///
4455/// This version assumes From has a single result value.
4456///
4457void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4458                                      DAGUpdateListener *UpdateListener) {
4459  SDNode *From = FromN.getNode();
4460  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4461         "Cannot replace with this method!");
4462  assert(From != To.getNode() && "Cannot replace uses of with self");
4463
4464  // Iterate over all the existing uses of From. New uses will be added
4465  // to the beginning of the use list, which we avoid visiting.
4466  // This specifically avoids visiting uses of From that arise while the
4467  // replacement is happening, because any such uses would be the result
4468  // of CSE: If an existing node looks like From after one of its operands
4469  // is replaced by To, we don't want to replace of all its users with To
4470  // too. See PR3018 for more info.
4471  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4472  while (UI != UE) {
4473    SDNode *User = *UI;
4474
4475    // This node is about to morph, remove its old self from the CSE maps.
4476    RemoveNodeFromCSEMaps(User);
4477
4478    // A user can appear in a use list multiple times, and when this
4479    // happens the uses are usually next to each other in the list.
4480    // To help reduce the number of CSE recomputations, process all
4481    // the uses of this user that we can find this way.
4482    do {
4483      SDUse &Use = UI.getUse();
4484      ++UI;
4485      Use.set(To);
4486    } while (UI != UE && *UI == User);
4487
4488    // Now that we have modified User, add it back to the CSE maps.  If it
4489    // already exists there, recursively merge the results together.
4490    AddModifiedNodeToCSEMaps(User, UpdateListener);
4491  }
4492}
4493
4494/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4495/// This can cause recursive merging of nodes in the DAG.
4496///
4497/// This version assumes that for each value of From, there is a
4498/// corresponding value in To in the same position with the same type.
4499///
4500void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4501                                      DAGUpdateListener *UpdateListener) {
4502#ifndef NDEBUG
4503  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4504    assert((!From->hasAnyUseOfValue(i) ||
4505            From->getValueType(i) == To->getValueType(i)) &&
4506           "Cannot use this version of ReplaceAllUsesWith!");
4507#endif
4508
4509  // Handle the trivial case.
4510  if (From == To)
4511    return;
4512
4513  // Iterate over just the existing users of From. See the comments in
4514  // the ReplaceAllUsesWith above.
4515  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4516  while (UI != UE) {
4517    SDNode *User = *UI;
4518
4519    // This node is about to morph, remove its old self from the CSE maps.
4520    RemoveNodeFromCSEMaps(User);
4521
4522    // A user can appear in a use list multiple times, and when this
4523    // happens the uses are usually next to each other in the list.
4524    // To help reduce the number of CSE recomputations, process all
4525    // the uses of this user that we can find this way.
4526    do {
4527      SDUse &Use = UI.getUse();
4528      ++UI;
4529      Use.setNode(To);
4530    } while (UI != UE && *UI == User);
4531
4532    // Now that we have modified User, add it back to the CSE maps.  If it
4533    // already exists there, recursively merge the results together.
4534    AddModifiedNodeToCSEMaps(User, UpdateListener);
4535  }
4536}
4537
4538/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4539/// This can cause recursive merging of nodes in the DAG.
4540///
4541/// This version can replace From with any result values.  To must match the
4542/// number and types of values returned by From.
4543void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4544                                      const SDValue *To,
4545                                      DAGUpdateListener *UpdateListener) {
4546  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4547    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4548
4549  // Iterate over just the existing users of From. See the comments in
4550  // the ReplaceAllUsesWith above.
4551  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4552  while (UI != UE) {
4553    SDNode *User = *UI;
4554
4555    // This node is about to morph, remove its old self from the CSE maps.
4556    RemoveNodeFromCSEMaps(User);
4557
4558    // A user can appear in a use list multiple times, and when this
4559    // happens the uses are usually next to each other in the list.
4560    // To help reduce the number of CSE recomputations, process all
4561    // the uses of this user that we can find this way.
4562    do {
4563      SDUse &Use = UI.getUse();
4564      const SDValue &ToOp = To[Use.getResNo()];
4565      ++UI;
4566      Use.set(ToOp);
4567    } while (UI != UE && *UI == User);
4568
4569    // Now that we have modified User, add it back to the CSE maps.  If it
4570    // already exists there, recursively merge the results together.
4571    AddModifiedNodeToCSEMaps(User, UpdateListener);
4572  }
4573}
4574
4575/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4576/// uses of other values produced by From.getNode() alone.  The Deleted
4577/// vector is handled the same way as for ReplaceAllUsesWith.
4578void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4579                                             DAGUpdateListener *UpdateListener){
4580  // Handle the really simple, really trivial case efficiently.
4581  if (From == To) return;
4582
4583  // Handle the simple, trivial, case efficiently.
4584  if (From.getNode()->getNumValues() == 1) {
4585    ReplaceAllUsesWith(From, To, UpdateListener);
4586    return;
4587  }
4588
4589  // Iterate over just the existing users of From. See the comments in
4590  // the ReplaceAllUsesWith above.
4591  SDNode::use_iterator UI = From.getNode()->use_begin(),
4592                       UE = From.getNode()->use_end();
4593  while (UI != UE) {
4594    SDNode *User = *UI;
4595    bool UserRemovedFromCSEMaps = false;
4596
4597    // A user can appear in a use list multiple times, and when this
4598    // happens the uses are usually next to each other in the list.
4599    // To help reduce the number of CSE recomputations, process all
4600    // the uses of this user that we can find this way.
4601    do {
4602      SDUse &Use = UI.getUse();
4603
4604      // Skip uses of different values from the same node.
4605      if (Use.getResNo() != From.getResNo()) {
4606        ++UI;
4607        continue;
4608      }
4609
4610      // If this node hasn't been modified yet, it's still in the CSE maps,
4611      // so remove its old self from the CSE maps.
4612      if (!UserRemovedFromCSEMaps) {
4613        RemoveNodeFromCSEMaps(User);
4614        UserRemovedFromCSEMaps = true;
4615      }
4616
4617      ++UI;
4618      Use.set(To);
4619    } while (UI != UE && *UI == User);
4620
4621    // We are iterating over all uses of the From node, so if a use
4622    // doesn't use the specific value, no changes are made.
4623    if (!UserRemovedFromCSEMaps)
4624      continue;
4625
4626    // Now that we have modified User, add it back to the CSE maps.  If it
4627    // already exists there, recursively merge the results together.
4628    AddModifiedNodeToCSEMaps(User, UpdateListener);
4629  }
4630}
4631
4632namespace {
4633  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4634  /// to record information about a use.
4635  struct UseMemo {
4636    SDNode *User;
4637    unsigned Index;
4638    SDUse *Use;
4639  };
4640
4641  /// operator< - Sort Memos by User.
4642  bool operator<(const UseMemo &L, const UseMemo &R) {
4643    return (intptr_t)L.User < (intptr_t)R.User;
4644  }
4645}
4646
4647/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4648/// uses of other values produced by From.getNode() alone.  The same value
4649/// may appear in both the From and To list.  The Deleted vector is
4650/// handled the same way as for ReplaceAllUsesWith.
4651void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4652                                              const SDValue *To,
4653                                              unsigned Num,
4654                                              DAGUpdateListener *UpdateListener){
4655  // Handle the simple, trivial case efficiently.
4656  if (Num == 1)
4657    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4658
4659  // Read up all the uses and make records of them. This helps
4660  // processing new uses that are introduced during the
4661  // replacement process.
4662  SmallVector<UseMemo, 4> Uses;
4663  for (unsigned i = 0; i != Num; ++i) {
4664    unsigned FromResNo = From[i].getResNo();
4665    SDNode *FromNode = From[i].getNode();
4666    for (SDNode::use_iterator UI = FromNode->use_begin(),
4667         E = FromNode->use_end(); UI != E; ++UI) {
4668      SDUse &Use = UI.getUse();
4669      if (Use.getResNo() == FromResNo) {
4670        UseMemo Memo = { *UI, i, &Use };
4671        Uses.push_back(Memo);
4672      }
4673    }
4674  }
4675
4676  // Sort the uses, so that all the uses from a given User are together.
4677  std::sort(Uses.begin(), Uses.end());
4678
4679  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4680       UseIndex != UseIndexEnd; ) {
4681    // We know that this user uses some value of From.  If it is the right
4682    // value, update it.
4683    SDNode *User = Uses[UseIndex].User;
4684
4685    // This node is about to morph, remove its old self from the CSE maps.
4686    RemoveNodeFromCSEMaps(User);
4687
4688    // The Uses array is sorted, so all the uses for a given User
4689    // are next to each other in the list.
4690    // To help reduce the number of CSE recomputations, process all
4691    // the uses of this user that we can find this way.
4692    do {
4693      unsigned i = Uses[UseIndex].Index;
4694      SDUse &Use = *Uses[UseIndex].Use;
4695      ++UseIndex;
4696
4697      Use.set(To[i]);
4698    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4699
4700    // Now that we have modified User, add it back to the CSE maps.  If it
4701    // already exists there, recursively merge the results together.
4702    AddModifiedNodeToCSEMaps(User, UpdateListener);
4703  }
4704}
4705
4706/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4707/// based on their topological order. It returns the maximum id and a vector
4708/// of the SDNodes* in assigned order by reference.
4709unsigned SelectionDAG::AssignTopologicalOrder() {
4710
4711  unsigned DAGSize = 0;
4712
4713  // SortedPos tracks the progress of the algorithm. Nodes before it are
4714  // sorted, nodes after it are unsorted. When the algorithm completes
4715  // it is at the end of the list.
4716  allnodes_iterator SortedPos = allnodes_begin();
4717
4718  // Visit all the nodes. Move nodes with no operands to the front of
4719  // the list immediately. Annotate nodes that do have operands with their
4720  // operand count. Before we do this, the Node Id fields of the nodes
4721  // may contain arbitrary values. After, the Node Id fields for nodes
4722  // before SortedPos will contain the topological sort index, and the
4723  // Node Id fields for nodes At SortedPos and after will contain the
4724  // count of outstanding operands.
4725  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4726    SDNode *N = I++;
4727    unsigned Degree = N->getNumOperands();
4728    if (Degree == 0) {
4729      // A node with no uses, add it to the result array immediately.
4730      N->setNodeId(DAGSize++);
4731      allnodes_iterator Q = N;
4732      if (Q != SortedPos)
4733        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4734      ++SortedPos;
4735    } else {
4736      // Temporarily use the Node Id as scratch space for the degree count.
4737      N->setNodeId(Degree);
4738    }
4739  }
4740
4741  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4742  // such that by the time the end is reached all nodes will be sorted.
4743  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4744    SDNode *N = I;
4745    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4746         UI != UE; ++UI) {
4747      SDNode *P = *UI;
4748      unsigned Degree = P->getNodeId();
4749      --Degree;
4750      if (Degree == 0) {
4751        // All of P's operands are sorted, so P may sorted now.
4752        P->setNodeId(DAGSize++);
4753        if (P != SortedPos)
4754          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4755        ++SortedPos;
4756      } else {
4757        // Update P's outstanding operand count.
4758        P->setNodeId(Degree);
4759      }
4760    }
4761  }
4762
4763  assert(SortedPos == AllNodes.end() &&
4764         "Topological sort incomplete!");
4765  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4766         "First node in topological sort is not the entry token!");
4767  assert(AllNodes.front().getNodeId() == 0 &&
4768         "First node in topological sort has non-zero id!");
4769  assert(AllNodes.front().getNumOperands() == 0 &&
4770         "First node in topological sort has operands!");
4771  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4772         "Last node in topologic sort has unexpected id!");
4773  assert(AllNodes.back().use_empty() &&
4774         "Last node in topologic sort has users!");
4775  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4776  return DAGSize;
4777}
4778
4779
4780
4781//===----------------------------------------------------------------------===//
4782//                              SDNode Class
4783//===----------------------------------------------------------------------===//
4784
4785HandleSDNode::~HandleSDNode() {
4786  DropOperands();
4787}
4788
4789GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4790                                         MVT VT, int64_t o)
4791  : SDNode(isa<GlobalVariable>(GA) &&
4792           cast<GlobalVariable>(GA)->isThreadLocal() ?
4793           // Thread Local
4794           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4795           // Non Thread Local
4796           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4797           DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o) {
4798  TheGlobal = const_cast<GlobalValue*>(GA);
4799}
4800
4801MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4802                     const Value *srcValue, int SVO,
4803                     unsigned alignment, bool vol)
4804 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4805  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4806  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4807  assert(getAlignment() == alignment && "Alignment representation error!");
4808  assert(isVolatile() == vol && "Volatile representation error!");
4809}
4810
4811MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4812                     const SDValue *Ops,
4813                     unsigned NumOps, MVT memvt, const Value *srcValue,
4814                     int SVO, unsigned alignment, bool vol)
4815   : SDNode(Opc, dl, VTs, Ops, NumOps),
4816     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4817  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4818  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4819  assert(getAlignment() == alignment && "Alignment representation error!");
4820  assert(isVolatile() == vol && "Volatile representation error!");
4821}
4822
4823/// getMemOperand - Return a MachineMemOperand object describing the memory
4824/// reference performed by this memory reference.
4825MachineMemOperand MemSDNode::getMemOperand() const {
4826  int Flags = 0;
4827  if (isa<LoadSDNode>(this))
4828    Flags = MachineMemOperand::MOLoad;
4829  else if (isa<StoreSDNode>(this))
4830    Flags = MachineMemOperand::MOStore;
4831  else if (isa<AtomicSDNode>(this)) {
4832    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4833  }
4834  else {
4835    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4836    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4837    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4838    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4839  }
4840
4841  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4842  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4843
4844  // Check if the memory reference references a frame index
4845  const FrameIndexSDNode *FI =
4846  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4847  if (!getSrcValue() && FI)
4848    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4849                             Flags, 0, Size, getAlignment());
4850  else
4851    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4852                             Size, getAlignment());
4853}
4854
4855/// Profile - Gather unique data for the node.
4856///
4857void SDNode::Profile(FoldingSetNodeID &ID) const {
4858  AddNodeIDNode(ID, this);
4859}
4860
4861/// getValueTypeList - Return a pointer to the specified value type.
4862///
4863const MVT *SDNode::getValueTypeList(MVT VT) {
4864  if (VT.isExtended()) {
4865    static std::set<MVT, MVT::compareRawBits> EVTs;
4866    return &(*EVTs.insert(VT).first);
4867  } else {
4868    static MVT VTs[MVT::LAST_VALUETYPE];
4869    VTs[VT.getSimpleVT()] = VT;
4870    return &VTs[VT.getSimpleVT()];
4871  }
4872}
4873
4874/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4875/// indicated value.  This method ignores uses of other values defined by this
4876/// operation.
4877bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4878  assert(Value < getNumValues() && "Bad value!");
4879
4880  // TODO: Only iterate over uses of a given value of the node
4881  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4882    if (UI.getUse().getResNo() == Value) {
4883      if (NUses == 0)
4884        return false;
4885      --NUses;
4886    }
4887  }
4888
4889  // Found exactly the right number of uses?
4890  return NUses == 0;
4891}
4892
4893
4894/// hasAnyUseOfValue - Return true if there are any use of the indicated
4895/// value. This method ignores uses of other values defined by this operation.
4896bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4897  assert(Value < getNumValues() && "Bad value!");
4898
4899  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4900    if (UI.getUse().getResNo() == Value)
4901      return true;
4902
4903  return false;
4904}
4905
4906
4907/// isOnlyUserOf - Return true if this node is the only use of N.
4908///
4909bool SDNode::isOnlyUserOf(SDNode *N) const {
4910  bool Seen = false;
4911  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4912    SDNode *User = *I;
4913    if (User == this)
4914      Seen = true;
4915    else
4916      return false;
4917  }
4918
4919  return Seen;
4920}
4921
4922/// isOperand - Return true if this node is an operand of N.
4923///
4924bool SDValue::isOperandOf(SDNode *N) const {
4925  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4926    if (*this == N->getOperand(i))
4927      return true;
4928  return false;
4929}
4930
4931bool SDNode::isOperandOf(SDNode *N) const {
4932  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4933    if (this == N->OperandList[i].getNode())
4934      return true;
4935  return false;
4936}
4937
4938/// reachesChainWithoutSideEffects - Return true if this operand (which must
4939/// be a chain) reaches the specified operand without crossing any
4940/// side-effecting instructions.  In practice, this looks through token
4941/// factors and non-volatile loads.  In order to remain efficient, this only
4942/// looks a couple of nodes in, it does not do an exhaustive search.
4943bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4944                                               unsigned Depth) const {
4945  if (*this == Dest) return true;
4946
4947  // Don't search too deeply, we just want to be able to see through
4948  // TokenFactor's etc.
4949  if (Depth == 0) return false;
4950
4951  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4952  // of the operands of the TF reach dest, then we can do the xform.
4953  if (getOpcode() == ISD::TokenFactor) {
4954    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4955      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4956        return true;
4957    return false;
4958  }
4959
4960  // Loads don't have side effects, look through them.
4961  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4962    if (!Ld->isVolatile())
4963      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4964  }
4965  return false;
4966}
4967
4968
4969static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4970                            SmallPtrSet<SDNode *, 32> &Visited) {
4971  if (found || !Visited.insert(N))
4972    return;
4973
4974  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4975    SDNode *Op = N->getOperand(i).getNode();
4976    if (Op == P) {
4977      found = true;
4978      return;
4979    }
4980    findPredecessor(Op, P, found, Visited);
4981  }
4982}
4983
4984/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4985/// is either an operand of N or it can be reached by recursively traversing
4986/// up the operands.
4987/// NOTE: this is an expensive method. Use it carefully.
4988bool SDNode::isPredecessorOf(SDNode *N) const {
4989  SmallPtrSet<SDNode *, 32> Visited;
4990  bool found = false;
4991  findPredecessor(N, this, found, Visited);
4992  return found;
4993}
4994
4995uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4996  assert(Num < NumOperands && "Invalid child # of SDNode!");
4997  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4998}
4999
5000std::string SDNode::getOperationName(const SelectionDAG *G) const {
5001  switch (getOpcode()) {
5002  default:
5003    if (getOpcode() < ISD::BUILTIN_OP_END)
5004      return "<<Unknown DAG Node>>";
5005    if (isMachineOpcode()) {
5006      if (G)
5007        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5008          if (getMachineOpcode() < TII->getNumOpcodes())
5009            return TII->get(getMachineOpcode()).getName();
5010      return "<<Unknown Machine Node>>";
5011    }
5012    if (G) {
5013      const TargetLowering &TLI = G->getTargetLoweringInfo();
5014      const char *Name = TLI.getTargetNodeName(getOpcode());
5015      if (Name) return Name;
5016      return "<<Unknown Target Node>>";
5017    }
5018    return "<<Unknown Node>>";
5019
5020#ifndef NDEBUG
5021  case ISD::DELETED_NODE:
5022    return "<<Deleted Node!>>";
5023#endif
5024  case ISD::PREFETCH:      return "Prefetch";
5025  case ISD::MEMBARRIER:    return "MemBarrier";
5026  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5027  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5028  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5029  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5030  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5031  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5032  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5033  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5034  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5035  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5036  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5037  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5038  case ISD::PCMARKER:      return "PCMarker";
5039  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5040  case ISD::SRCVALUE:      return "SrcValue";
5041  case ISD::MEMOPERAND:    return "MemOperand";
5042  case ISD::EntryToken:    return "EntryToken";
5043  case ISD::TokenFactor:   return "TokenFactor";
5044  case ISD::AssertSext:    return "AssertSext";
5045  case ISD::AssertZext:    return "AssertZext";
5046
5047  case ISD::BasicBlock:    return "BasicBlock";
5048  case ISD::ARG_FLAGS:     return "ArgFlags";
5049  case ISD::VALUETYPE:     return "ValueType";
5050  case ISD::Register:      return "Register";
5051
5052  case ISD::Constant:      return "Constant";
5053  case ISD::ConstantFP:    return "ConstantFP";
5054  case ISD::GlobalAddress: return "GlobalAddress";
5055  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5056  case ISD::FrameIndex:    return "FrameIndex";
5057  case ISD::JumpTable:     return "JumpTable";
5058  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5059  case ISD::RETURNADDR: return "RETURNADDR";
5060  case ISD::FRAMEADDR: return "FRAMEADDR";
5061  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5062  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5063  case ISD::EHSELECTION: return "EHSELECTION";
5064  case ISD::EH_RETURN: return "EH_RETURN";
5065  case ISD::ConstantPool:  return "ConstantPool";
5066  case ISD::ExternalSymbol: return "ExternalSymbol";
5067  case ISD::INTRINSIC_WO_CHAIN: {
5068    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5069    return Intrinsic::getName((Intrinsic::ID)IID);
5070  }
5071  case ISD::INTRINSIC_VOID:
5072  case ISD::INTRINSIC_W_CHAIN: {
5073    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5074    return Intrinsic::getName((Intrinsic::ID)IID);
5075  }
5076
5077  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5078  case ISD::TargetConstant: return "TargetConstant";
5079  case ISD::TargetConstantFP:return "TargetConstantFP";
5080  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5081  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5082  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5083  case ISD::TargetJumpTable:  return "TargetJumpTable";
5084  case ISD::TargetConstantPool:  return "TargetConstantPool";
5085  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5086
5087  case ISD::CopyToReg:     return "CopyToReg";
5088  case ISD::CopyFromReg:   return "CopyFromReg";
5089  case ISD::UNDEF:         return "undef";
5090  case ISD::MERGE_VALUES:  return "merge_values";
5091  case ISD::INLINEASM:     return "inlineasm";
5092  case ISD::DBG_LABEL:     return "dbg_label";
5093  case ISD::EH_LABEL:      return "eh_label";
5094  case ISD::DECLARE:       return "declare";
5095  case ISD::HANDLENODE:    return "handlenode";
5096  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5097  case ISD::CALL:          return "call";
5098
5099  // Unary operators
5100  case ISD::FABS:   return "fabs";
5101  case ISD::FNEG:   return "fneg";
5102  case ISD::FSQRT:  return "fsqrt";
5103  case ISD::FSIN:   return "fsin";
5104  case ISD::FCOS:   return "fcos";
5105  case ISD::FPOWI:  return "fpowi";
5106  case ISD::FPOW:   return "fpow";
5107  case ISD::FTRUNC: return "ftrunc";
5108  case ISD::FFLOOR: return "ffloor";
5109  case ISD::FCEIL:  return "fceil";
5110  case ISD::FRINT:  return "frint";
5111  case ISD::FNEARBYINT: return "fnearbyint";
5112
5113  // Binary operators
5114  case ISD::ADD:    return "add";
5115  case ISD::SUB:    return "sub";
5116  case ISD::MUL:    return "mul";
5117  case ISD::MULHU:  return "mulhu";
5118  case ISD::MULHS:  return "mulhs";
5119  case ISD::SDIV:   return "sdiv";
5120  case ISD::UDIV:   return "udiv";
5121  case ISD::SREM:   return "srem";
5122  case ISD::UREM:   return "urem";
5123  case ISD::SMUL_LOHI:  return "smul_lohi";
5124  case ISD::UMUL_LOHI:  return "umul_lohi";
5125  case ISD::SDIVREM:    return "sdivrem";
5126  case ISD::UDIVREM:    return "udivrem";
5127  case ISD::AND:    return "and";
5128  case ISD::OR:     return "or";
5129  case ISD::XOR:    return "xor";
5130  case ISD::SHL:    return "shl";
5131  case ISD::SRA:    return "sra";
5132  case ISD::SRL:    return "srl";
5133  case ISD::ROTL:   return "rotl";
5134  case ISD::ROTR:   return "rotr";
5135  case ISD::FADD:   return "fadd";
5136  case ISD::FSUB:   return "fsub";
5137  case ISD::FMUL:   return "fmul";
5138  case ISD::FDIV:   return "fdiv";
5139  case ISD::FREM:   return "frem";
5140  case ISD::FCOPYSIGN: return "fcopysign";
5141  case ISD::FGETSIGN:  return "fgetsign";
5142
5143  case ISD::SETCC:       return "setcc";
5144  case ISD::VSETCC:      return "vsetcc";
5145  case ISD::SELECT:      return "select";
5146  case ISD::SELECT_CC:   return "select_cc";
5147  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5148  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5149  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5150  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5151  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5152  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5153  case ISD::CARRY_FALSE:         return "carry_false";
5154  case ISD::ADDC:        return "addc";
5155  case ISD::ADDE:        return "adde";
5156  case ISD::SADDO:       return "saddo";
5157  case ISD::UADDO:       return "uaddo";
5158  case ISD::SSUBO:       return "ssubo";
5159  case ISD::USUBO:       return "usubo";
5160  case ISD::SMULO:       return "smulo";
5161  case ISD::UMULO:       return "umulo";
5162  case ISD::SUBC:        return "subc";
5163  case ISD::SUBE:        return "sube";
5164  case ISD::SHL_PARTS:   return "shl_parts";
5165  case ISD::SRA_PARTS:   return "sra_parts";
5166  case ISD::SRL_PARTS:   return "srl_parts";
5167
5168  // Conversion operators.
5169  case ISD::SIGN_EXTEND: return "sign_extend";
5170  case ISD::ZERO_EXTEND: return "zero_extend";
5171  case ISD::ANY_EXTEND:  return "any_extend";
5172  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5173  case ISD::TRUNCATE:    return "truncate";
5174  case ISD::FP_ROUND:    return "fp_round";
5175  case ISD::FLT_ROUNDS_: return "flt_rounds";
5176  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5177  case ISD::FP_EXTEND:   return "fp_extend";
5178
5179  case ISD::SINT_TO_FP:  return "sint_to_fp";
5180  case ISD::UINT_TO_FP:  return "uint_to_fp";
5181  case ISD::FP_TO_SINT:  return "fp_to_sint";
5182  case ISD::FP_TO_UINT:  return "fp_to_uint";
5183  case ISD::BIT_CONVERT: return "bit_convert";
5184
5185  case ISD::CONVERT_RNDSAT: {
5186    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5187    default: assert(0 && "Unknown cvt code!");
5188    case ISD::CVT_FF:  return "cvt_ff";
5189    case ISD::CVT_FS:  return "cvt_fs";
5190    case ISD::CVT_FU:  return "cvt_fu";
5191    case ISD::CVT_SF:  return "cvt_sf";
5192    case ISD::CVT_UF:  return "cvt_uf";
5193    case ISD::CVT_SS:  return "cvt_ss";
5194    case ISD::CVT_SU:  return "cvt_su";
5195    case ISD::CVT_US:  return "cvt_us";
5196    case ISD::CVT_UU:  return "cvt_uu";
5197    }
5198  }
5199
5200    // Control flow instructions
5201  case ISD::BR:      return "br";
5202  case ISD::BRIND:   return "brind";
5203  case ISD::BR_JT:   return "br_jt";
5204  case ISD::BRCOND:  return "brcond";
5205  case ISD::BR_CC:   return "br_cc";
5206  case ISD::RET:     return "ret";
5207  case ISD::CALLSEQ_START:  return "callseq_start";
5208  case ISD::CALLSEQ_END:    return "callseq_end";
5209
5210    // Other operators
5211  case ISD::LOAD:               return "load";
5212  case ISD::STORE:              return "store";
5213  case ISD::VAARG:              return "vaarg";
5214  case ISD::VACOPY:             return "vacopy";
5215  case ISD::VAEND:              return "vaend";
5216  case ISD::VASTART:            return "vastart";
5217  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5218  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5219  case ISD::BUILD_PAIR:         return "build_pair";
5220  case ISD::STACKSAVE:          return "stacksave";
5221  case ISD::STACKRESTORE:       return "stackrestore";
5222  case ISD::TRAP:               return "trap";
5223
5224  // Bit manipulation
5225  case ISD::BSWAP:   return "bswap";
5226  case ISD::CTPOP:   return "ctpop";
5227  case ISD::CTTZ:    return "cttz";
5228  case ISD::CTLZ:    return "ctlz";
5229
5230  // Debug info
5231  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5232  case ISD::DEBUG_LOC: return "debug_loc";
5233
5234  // Trampolines
5235  case ISD::TRAMPOLINE: return "trampoline";
5236
5237  case ISD::CONDCODE:
5238    switch (cast<CondCodeSDNode>(this)->get()) {
5239    default: assert(0 && "Unknown setcc condition!");
5240    case ISD::SETOEQ:  return "setoeq";
5241    case ISD::SETOGT:  return "setogt";
5242    case ISD::SETOGE:  return "setoge";
5243    case ISD::SETOLT:  return "setolt";
5244    case ISD::SETOLE:  return "setole";
5245    case ISD::SETONE:  return "setone";
5246
5247    case ISD::SETO:    return "seto";
5248    case ISD::SETUO:   return "setuo";
5249    case ISD::SETUEQ:  return "setue";
5250    case ISD::SETUGT:  return "setugt";
5251    case ISD::SETUGE:  return "setuge";
5252    case ISD::SETULT:  return "setult";
5253    case ISD::SETULE:  return "setule";
5254    case ISD::SETUNE:  return "setune";
5255
5256    case ISD::SETEQ:   return "seteq";
5257    case ISD::SETGT:   return "setgt";
5258    case ISD::SETGE:   return "setge";
5259    case ISD::SETLT:   return "setlt";
5260    case ISD::SETLE:   return "setle";
5261    case ISD::SETNE:   return "setne";
5262    }
5263  }
5264}
5265
5266const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5267  switch (AM) {
5268  default:
5269    return "";
5270  case ISD::PRE_INC:
5271    return "<pre-inc>";
5272  case ISD::PRE_DEC:
5273    return "<pre-dec>";
5274  case ISD::POST_INC:
5275    return "<post-inc>";
5276  case ISD::POST_DEC:
5277    return "<post-dec>";
5278  }
5279}
5280
5281std::string ISD::ArgFlagsTy::getArgFlagsString() {
5282  std::string S = "< ";
5283
5284  if (isZExt())
5285    S += "zext ";
5286  if (isSExt())
5287    S += "sext ";
5288  if (isInReg())
5289    S += "inreg ";
5290  if (isSRet())
5291    S += "sret ";
5292  if (isByVal())
5293    S += "byval ";
5294  if (isNest())
5295    S += "nest ";
5296  if (getByValAlign())
5297    S += "byval-align:" + utostr(getByValAlign()) + " ";
5298  if (getOrigAlign())
5299    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5300  if (getByValSize())
5301    S += "byval-size:" + utostr(getByValSize()) + " ";
5302  return S + ">";
5303}
5304
5305void SDNode::dump() const { dump(0); }
5306void SDNode::dump(const SelectionDAG *G) const {
5307  print(errs(), G);
5308}
5309
5310void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5311  OS << (void*)this << ": ";
5312
5313  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5314    if (i) OS << ",";
5315    if (getValueType(i) == MVT::Other)
5316      OS << "ch";
5317    else
5318      OS << getValueType(i).getMVTString();
5319  }
5320  OS << " = " << getOperationName(G);
5321}
5322
5323void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5324  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5325    SDNode *Mask = getOperand(2).getNode();
5326    OS << "<";
5327    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5328      if (i) OS << ",";
5329      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5330        OS << "u";
5331      else
5332        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5333    }
5334    OS << ">";
5335  }
5336
5337  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5338    OS << '<' << CSDN->getAPIntValue() << '>';
5339  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5340    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5341      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5342    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5343      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5344    else {
5345      OS << "<APFloat(";
5346      CSDN->getValueAPF().bitcastToAPInt().dump();
5347      OS << ")>";
5348    }
5349  } else if (const GlobalAddressSDNode *GADN =
5350             dyn_cast<GlobalAddressSDNode>(this)) {
5351    int64_t offset = GADN->getOffset();
5352    OS << '<';
5353    WriteAsOperand(OS, GADN->getGlobal());
5354    OS << '>';
5355    if (offset > 0)
5356      OS << " + " << offset;
5357    else
5358      OS << " " << offset;
5359  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5360    OS << "<" << FIDN->getIndex() << ">";
5361  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5362    OS << "<" << JTDN->getIndex() << ">";
5363  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5364    int offset = CP->getOffset();
5365    if (CP->isMachineConstantPoolEntry())
5366      OS << "<" << *CP->getMachineCPVal() << ">";
5367    else
5368      OS << "<" << *CP->getConstVal() << ">";
5369    if (offset > 0)
5370      OS << " + " << offset;
5371    else
5372      OS << " " << offset;
5373  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5374    OS << "<";
5375    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5376    if (LBB)
5377      OS << LBB->getName() << " ";
5378    OS << (const void*)BBDN->getBasicBlock() << ">";
5379  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5380    if (G && R->getReg() &&
5381        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5382      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5383    } else {
5384      OS << " #" << R->getReg();
5385    }
5386  } else if (const ExternalSymbolSDNode *ES =
5387             dyn_cast<ExternalSymbolSDNode>(this)) {
5388    OS << "'" << ES->getSymbol() << "'";
5389  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5390    if (M->getValue())
5391      OS << "<" << M->getValue() << ">";
5392    else
5393      OS << "<null>";
5394  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5395    if (M->MO.getValue())
5396      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5397    else
5398      OS << "<null:" << M->MO.getOffset() << ">";
5399  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5400    OS << N->getArgFlags().getArgFlagsString();
5401  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5402    OS << ":" << N->getVT().getMVTString();
5403  }
5404  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5405    const Value *SrcValue = LD->getSrcValue();
5406    int SrcOffset = LD->getSrcValueOffset();
5407    OS << " <";
5408    if (SrcValue)
5409      OS << SrcValue;
5410    else
5411      OS << "null";
5412    OS << ":" << SrcOffset << ">";
5413
5414    bool doExt = true;
5415    switch (LD->getExtensionType()) {
5416    default: doExt = false; break;
5417    case ISD::EXTLOAD: OS << " <anyext "; break;
5418    case ISD::SEXTLOAD: OS << " <sext "; break;
5419    case ISD::ZEXTLOAD: OS << " <zext "; break;
5420    }
5421    if (doExt)
5422      OS << LD->getMemoryVT().getMVTString() << ">";
5423
5424    const char *AM = getIndexedModeName(LD->getAddressingMode());
5425    if (*AM)
5426      OS << " " << AM;
5427    if (LD->isVolatile())
5428      OS << " <volatile>";
5429    OS << " alignment=" << LD->getAlignment();
5430  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5431    const Value *SrcValue = ST->getSrcValue();
5432    int SrcOffset = ST->getSrcValueOffset();
5433    OS << " <";
5434    if (SrcValue)
5435      OS << SrcValue;
5436    else
5437      OS << "null";
5438    OS << ":" << SrcOffset << ">";
5439
5440    if (ST->isTruncatingStore())
5441      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5442
5443    const char *AM = getIndexedModeName(ST->getAddressingMode());
5444    if (*AM)
5445      OS << " " << AM;
5446    if (ST->isVolatile())
5447      OS << " <volatile>";
5448    OS << " alignment=" << ST->getAlignment();
5449  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5450    const Value *SrcValue = AT->getSrcValue();
5451    int SrcOffset = AT->getSrcValueOffset();
5452    OS << " <";
5453    if (SrcValue)
5454      OS << SrcValue;
5455    else
5456      OS << "null";
5457    OS << ":" << SrcOffset << ">";
5458    if (AT->isVolatile())
5459      OS << " <volatile>";
5460    OS << " alignment=" << AT->getAlignment();
5461  }
5462}
5463
5464void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5465  print_types(OS, G);
5466  OS << " ";
5467  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5468    if (i) OS << ", ";
5469    OS << (void*)getOperand(i).getNode();
5470    if (unsigned RN = getOperand(i).getResNo())
5471      OS << ":" << RN;
5472  }
5473  print_details(OS, G);
5474}
5475
5476static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5477  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5478    if (N->getOperand(i).getNode()->hasOneUse())
5479      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5480    else
5481      cerr << "\n" << std::string(indent+2, ' ')
5482           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5483
5484
5485  cerr << "\n" << std::string(indent, ' ');
5486  N->dump(G);
5487}
5488
5489void SelectionDAG::dump() const {
5490  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5491
5492  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5493       I != E; ++I) {
5494    const SDNode *N = I;
5495    if (!N->hasOneUse() && N != getRoot().getNode())
5496      DumpNodes(N, 2, this);
5497  }
5498
5499  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5500
5501  cerr << "\n\n";
5502}
5503
5504void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5505  print_types(OS, G);
5506  print_details(OS, G);
5507}
5508
5509typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5510static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5511		       const SelectionDAG *G, VisitedSDNodeSet &once) {
5512  if (!once.insert(N))	// If we've been here before, return now.
5513    return;
5514  // Dump the current SDNode, but don't end the line yet.
5515  OS << std::string(indent, ' ');
5516  N->printr(OS, G);
5517  // Having printed this SDNode, walk the children:
5518  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5519    const SDNode *child = N->getOperand(i).getNode();
5520    if (i) OS << ",";
5521    OS << " ";
5522    if (child->getNumOperands() == 0) {
5523      // This child has no grandchildren; print it inline right here.
5524      child->printr(OS, G);
5525      once.insert(child);
5526    } else {	// Just the address.  FIXME: also print the child's opcode
5527      OS << (void*)child;
5528      if (unsigned RN = N->getOperand(i).getResNo())
5529	OS << ":" << RN;
5530    }
5531  }
5532  OS << "\n";
5533  // Dump children that have grandchildren on their own line(s).
5534  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5535    const SDNode *child = N->getOperand(i).getNode();
5536    DumpNodesr(OS, child, indent+2, G, once);
5537  }
5538}
5539
5540void SDNode::dumpr() const {
5541  VisitedSDNodeSet once;
5542  DumpNodesr(errs(), this, 0, 0, once);
5543}
5544
5545const Type *ConstantPoolSDNode::getType() const {
5546  if (isMachineConstantPoolEntry())
5547    return Val.MachineCPVal->getType();
5548  return Val.ConstVal->getType();
5549}
5550
5551bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5552                                        APInt &SplatUndef,
5553                                        unsigned &SplatBitSize,
5554                                        bool &HasAnyUndefs,
5555                                        unsigned MinSplatBits) {
5556  MVT VT = getValueType(0);
5557  assert(VT.isVector() && "Expected a vector type");
5558  unsigned sz = VT.getSizeInBits();
5559  if (MinSplatBits > sz)
5560    return false;
5561
5562  SplatValue = APInt(sz, 0);
5563  SplatUndef = APInt(sz, 0);
5564
5565  // Get the bits.  Bits with undefined values (when the corresponding element
5566  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5567  // in SplatValue.  If any of the values are not constant, give up and return
5568  // false.
5569  unsigned int nOps = getNumOperands();
5570  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5571  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5572  for (unsigned i = 0; i < nOps; ++i) {
5573    SDValue OpVal = getOperand(i);
5574    unsigned BitPos = i * EltBitSize;
5575
5576    if (OpVal.getOpcode() == ISD::UNDEF)
5577      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5578    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5579      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5580                     zextOrTrunc(sz) << BitPos);
5581    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5582      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5583     else
5584      return false;
5585  }
5586
5587  // The build_vector is all constants or undefs.  Find the smallest element
5588  // size that splats the vector.
5589
5590  HasAnyUndefs = (SplatUndef != 0);
5591  while (sz > 8) {
5592
5593    unsigned HalfSize = sz / 2;
5594    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5595    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5596    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5597    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5598
5599    // If the two halves do not match (ignoring undef bits), stop here.
5600    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5601        MinSplatBits > HalfSize)
5602      break;
5603
5604    SplatValue = HighValue | LowValue;
5605    SplatUndef = HighUndef & LowUndef;
5606
5607    sz = HalfSize;
5608  }
5609
5610  SplatBitSize = sz;
5611  return true;
5612}
5613