SelectionDAG.cpp revision bd564bfc63163e31f320c3da9749db70992dc35e
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Target/MRegisterInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringExtras.h"
28#include <iostream>
29#include <set>
30#include <cmath>
31#include <algorithm>
32using namespace llvm;
33
34static bool isCommutativeBinOp(unsigned Opcode) {
35  switch (Opcode) {
36  case ISD::ADD:
37  case ISD::MUL:
38  case ISD::MULHU:
39  case ISD::MULHS:
40  case ISD::FADD:
41  case ISD::FMUL:
42  case ISD::AND:
43  case ISD::OR:
44  case ISD::XOR: return true;
45  default: return false; // FIXME: Need commutative info for user ops!
46  }
47}
48
49// isInvertibleForFree - Return true if there is no cost to emitting the logical
50// inverse of this node.
51static bool isInvertibleForFree(SDOperand N) {
52  if (isa<ConstantSDNode>(N.Val)) return true;
53  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
54    return true;
55  return false;
56}
57
58//===----------------------------------------------------------------------===//
59//                              ConstantFPSDNode Class
60//===----------------------------------------------------------------------===//
61
62/// isExactlyValue - We don't rely on operator== working on double values, as
63/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
64/// As such, this method can be used to do an exact bit-for-bit comparison of
65/// two floating point values.
66bool ConstantFPSDNode::isExactlyValue(double V) const {
67  return DoubleToBits(V) == DoubleToBits(Value);
68}
69
70//===----------------------------------------------------------------------===//
71//                              ISD Namespace
72//===----------------------------------------------------------------------===//
73
74/// isBuildVectorAllOnes - Return true if the specified node is a
75/// BUILD_VECTOR where all of the elements are ~0 or undef.
76bool ISD::isBuildVectorAllOnes(const SDNode *N) {
77  // Look through a bit convert.
78  if (N->getOpcode() == ISD::BIT_CONVERT)
79    N = N->getOperand(0).Val;
80
81  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
82
83  unsigned i = 0, e = N->getNumOperands();
84
85  // Skip over all of the undef values.
86  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
87    ++i;
88
89  // Do not accept an all-undef vector.
90  if (i == e) return false;
91
92  // Do not accept build_vectors that aren't all constants or which have non-~0
93  // elements.
94  SDOperand NotZero = N->getOperand(i);
95  if (isa<ConstantSDNode>(NotZero)) {
96    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
97      return false;
98  } else if (isa<ConstantFPSDNode>(NotZero)) {
99    MVT::ValueType VT = NotZero.getValueType();
100    if (VT== MVT::f64) {
101      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
102          (uint64_t)-1)
103        return false;
104    } else {
105      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
106          (uint32_t)-1)
107        return false;
108    }
109  } else
110    return false;
111
112  // Okay, we have at least one ~0 value, check to see if the rest match or are
113  // undefs.
114  for (++i; i != e; ++i)
115    if (N->getOperand(i) != NotZero &&
116        N->getOperand(i).getOpcode() != ISD::UNDEF)
117      return false;
118  return true;
119}
120
121
122/// isBuildVectorAllZeros - Return true if the specified node is a
123/// BUILD_VECTOR where all of the elements are 0 or undef.
124bool ISD::isBuildVectorAllZeros(const SDNode *N) {
125  // Look through a bit convert.
126  if (N->getOpcode() == ISD::BIT_CONVERT)
127    N = N->getOperand(0).Val;
128
129  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
130
131  unsigned i = 0, e = N->getNumOperands();
132
133  // Skip over all of the undef values.
134  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
135    ++i;
136
137  // Do not accept an all-undef vector.
138  if (i == e) return false;
139
140  // Do not accept build_vectors that aren't all constants or which have non-~0
141  // elements.
142  SDOperand Zero = N->getOperand(i);
143  if (isa<ConstantSDNode>(Zero)) {
144    if (!cast<ConstantSDNode>(Zero)->isNullValue())
145      return false;
146  } else if (isa<ConstantFPSDNode>(Zero)) {
147    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
148      return false;
149  } else
150    return false;
151
152  // Okay, we have at least one ~0 value, check to see if the rest match or are
153  // undefs.
154  for (++i; i != e; ++i)
155    if (N->getOperand(i) != Zero &&
156        N->getOperand(i).getOpcode() != ISD::UNDEF)
157      return false;
158  return true;
159}
160
161/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
162/// when given the operation for (X op Y).
163ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
164  // To perform this operation, we just need to swap the L and G bits of the
165  // operation.
166  unsigned OldL = (Operation >> 2) & 1;
167  unsigned OldG = (Operation >> 1) & 1;
168  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
169                       (OldL << 1) |       // New G bit
170                       (OldG << 2));        // New L bit.
171}
172
173/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
174/// 'op' is a valid SetCC operation.
175ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
176  unsigned Operation = Op;
177  if (isInteger)
178    Operation ^= 7;   // Flip L, G, E bits, but not U.
179  else
180    Operation ^= 15;  // Flip all of the condition bits.
181  if (Operation > ISD::SETTRUE2)
182    Operation &= ~8;     // Don't let N and U bits get set.
183  return ISD::CondCode(Operation);
184}
185
186
187/// isSignedOp - For an integer comparison, return 1 if the comparison is a
188/// signed operation and 2 if the result is an unsigned comparison.  Return zero
189/// if the operation does not depend on the sign of the input (setne and seteq).
190static int isSignedOp(ISD::CondCode Opcode) {
191  switch (Opcode) {
192  default: assert(0 && "Illegal integer setcc operation!");
193  case ISD::SETEQ:
194  case ISD::SETNE: return 0;
195  case ISD::SETLT:
196  case ISD::SETLE:
197  case ISD::SETGT:
198  case ISD::SETGE: return 1;
199  case ISD::SETULT:
200  case ISD::SETULE:
201  case ISD::SETUGT:
202  case ISD::SETUGE: return 2;
203  }
204}
205
206/// getSetCCOrOperation - Return the result of a logical OR between different
207/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
208/// returns SETCC_INVALID if it is not possible to represent the resultant
209/// comparison.
210ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
211                                       bool isInteger) {
212  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
213    // Cannot fold a signed integer setcc with an unsigned integer setcc.
214    return ISD::SETCC_INVALID;
215
216  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
217
218  // If the N and U bits get set then the resultant comparison DOES suddenly
219  // care about orderedness, and is true when ordered.
220  if (Op > ISD::SETTRUE2)
221    Op &= ~16;     // Clear the U bit if the N bit is set.
222
223  // Canonicalize illegal integer setcc's.
224  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
225    Op = ISD::SETNE;
226
227  return ISD::CondCode(Op);
228}
229
230/// getSetCCAndOperation - Return the result of a logical AND between different
231/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
232/// function returns zero if it is not possible to represent the resultant
233/// comparison.
234ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
235                                        bool isInteger) {
236  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
237    // Cannot fold a signed setcc with an unsigned setcc.
238    return ISD::SETCC_INVALID;
239
240  // Combine all of the condition bits.
241  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
242
243  // Canonicalize illegal integer setcc's.
244  if (isInteger) {
245    switch (Result) {
246    default: break;
247    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
248    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
249    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
250    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
251    }
252  }
253
254  return Result;
255}
256
257const TargetMachine &SelectionDAG::getTarget() const {
258  return TLI.getTargetMachine();
259}
260
261//===----------------------------------------------------------------------===//
262//                              SelectionDAG Class
263//===----------------------------------------------------------------------===//
264
265/// RemoveDeadNodes - This method deletes all unreachable nodes in the
266/// SelectionDAG.
267void SelectionDAG::RemoveDeadNodes() {
268  // Create a dummy node (which is not added to allnodes), that adds a reference
269  // to the root node, preventing it from being deleted.
270  HandleSDNode Dummy(getRoot());
271
272  SmallVector<SDNode*, 128> DeadNodes;
273
274  // Add all obviously-dead nodes to the DeadNodes worklist.
275  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
276    if (I->use_empty())
277      DeadNodes.push_back(I);
278
279  // Process the worklist, deleting the nodes and adding their uses to the
280  // worklist.
281  while (!DeadNodes.empty()) {
282    SDNode *N = DeadNodes.back();
283    DeadNodes.pop_back();
284
285    // Take the node out of the appropriate CSE map.
286    RemoveNodeFromCSEMaps(N);
287
288    // Next, brutally remove the operand list.  This is safe to do, as there are
289    // no cycles in the graph.
290    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
291      SDNode *Operand = I->Val;
292      Operand->removeUser(N);
293
294      // Now that we removed this operand, see if there are no uses of it left.
295      if (Operand->use_empty())
296        DeadNodes.push_back(Operand);
297    }
298    delete[] N->OperandList;
299    N->OperandList = 0;
300    N->NumOperands = 0;
301
302    // Finally, remove N itself.
303    AllNodes.erase(N);
304  }
305
306  // If the root changed (e.g. it was a dead load, update the root).
307  setRoot(Dummy.getValue());
308}
309
310void SelectionDAG::DeleteNode(SDNode *N) {
311  assert(N->use_empty() && "Cannot delete a node that is not dead!");
312
313  // First take this out of the appropriate CSE map.
314  RemoveNodeFromCSEMaps(N);
315
316  // Finally, remove uses due to operands of this node, remove from the
317  // AllNodes list, and delete the node.
318  DeleteNodeNotInCSEMaps(N);
319}
320
321void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
322
323  // Remove it from the AllNodes list.
324  AllNodes.remove(N);
325
326  // Drop all of the operands and decrement used nodes use counts.
327  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
328    I->Val->removeUser(N);
329  delete[] N->OperandList;
330  N->OperandList = 0;
331  N->NumOperands = 0;
332
333  delete N;
334}
335
336/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
337/// correspond to it.  This is useful when we're about to delete or repurpose
338/// the node.  We don't want future request for structurally identical nodes
339/// to return N anymore.
340void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
341  bool Erased = false;
342  switch (N->getOpcode()) {
343  case ISD::HANDLENODE: return;  // noop.
344  case ISD::Constant:
345    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
346                                            N->getValueType(0)));
347    break;
348  case ISD::TargetConstant:
349    Erased = TargetConstants.erase(std::make_pair(
350                                    cast<ConstantSDNode>(N)->getValue(),
351                                                  N->getValueType(0)));
352    break;
353  case ISD::ConstantFP: {
354    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
355    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
356    break;
357  }
358  case ISD::TargetConstantFP: {
359    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
360    Erased = TargetConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
361    break;
362  }
363  case ISD::STRING:
364    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
365    break;
366  case ISD::CONDCODE:
367    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
368           "Cond code doesn't exist!");
369    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
370    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
371    break;
372  case ISD::GlobalAddress: {
373    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
374    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
375                                               GN->getOffset()));
376    break;
377  }
378  case ISD::TargetGlobalAddress: {
379    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
380    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
381                                                    GN->getOffset()));
382    break;
383  }
384  case ISD::FrameIndex:
385    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
386    break;
387  case ISD::TargetFrameIndex:
388    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
389    break;
390  case ISD::JumpTable:
391    Erased = JumpTableIndices.erase(cast<JumpTableSDNode>(N)->getIndex());
392    break;
393  case ISD::TargetJumpTable:
394    Erased =
395      TargetJumpTableIndices.erase(cast<JumpTableSDNode>(N)->getIndex());
396    break;
397  case ISD::ConstantPool:
398    Erased = ConstantPoolIndices.
399      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
400                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
401                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
402    break;
403  case ISD::TargetConstantPool:
404    Erased = TargetConstantPoolIndices.
405      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
406                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
407                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
408    break;
409  case ISD::BasicBlock:
410    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
411    break;
412  case ISD::ExternalSymbol:
413    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
414    break;
415  case ISD::TargetExternalSymbol:
416    Erased =
417      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
418    break;
419  case ISD::VALUETYPE:
420    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
421    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
422    break;
423  case ISD::Register:
424    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
425                                           N->getValueType(0)));
426    break;
427  case ISD::SRCVALUE: {
428    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
429    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
430    break;
431  }
432  default:
433    if (N->getNumValues() == 1) {
434      if (N->getNumOperands() == 0) {
435        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
436                                                 N->getValueType(0)));
437      } else {
438        // Remove it from the CSE Map.
439        Erased = CSEMap.RemoveNode(N);
440      }
441    } else {
442      // Remove it from the CSE Map.
443      Erased = CSEMap.RemoveNode(N);
444    }
445    break;
446  }
447#ifndef NDEBUG
448  // Verify that the node was actually in one of the CSE maps, unless it has a
449  // flag result (which cannot be CSE'd) or is one of the special cases that are
450  // not subject to CSE.
451  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
452      !N->isTargetOpcode()) {
453    N->dump();
454    std::cerr << "\n";
455    assert(0 && "Node is not in map!");
456  }
457#endif
458}
459
460/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
461/// has been taken out and modified in some way.  If the specified node already
462/// exists in the CSE maps, do not modify the maps, but return the existing node
463/// instead.  If it doesn't exist, add it and return null.
464///
465SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
466  assert(N->getNumOperands() && "This is a leaf node!");
467  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
468    return 0;    // Never add these nodes.
469
470  // Check that remaining values produced are not flags.
471  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
472    if (N->getValueType(i) == MVT::Flag)
473      return 0;   // Never CSE anything that produces a flag.
474
475  SDNode *New = CSEMap.GetOrInsertNode(N);
476  if (New != N) return New;  // Node already existed.
477  return 0;
478}
479
480/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
481/// were replaced with those specified.  If this node is never memoized,
482/// return null, otherwise return a pointer to the slot it would take.  If a
483/// node already exists with these operands, the slot will be non-null.
484SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
485                                           void *&InsertPos) {
486  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
487    return 0;    // Never add these nodes.
488
489  // Check that remaining values produced are not flags.
490  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
491    if (N->getValueType(i) == MVT::Flag)
492      return 0;   // Never CSE anything that produces a flag.
493
494  SelectionDAGCSEMap::NodeID ID;
495  ID.SetOpcode(N->getOpcode());
496  ID.SetValueTypes(N->value_begin());
497  ID.SetOperands(Op);
498  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
499}
500
501/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
502/// were replaced with those specified.  If this node is never memoized,
503/// return null, otherwise return a pointer to the slot it would take.  If a
504/// node already exists with these operands, the slot will be non-null.
505SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
506                                           SDOperand Op1, SDOperand Op2,
507                                           void *&InsertPos) {
508  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
509    return 0;    // Never add these nodes.
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return 0;   // Never CSE anything that produces a flag.
515
516  SelectionDAGCSEMap::NodeID ID;
517  ID.SetOpcode(N->getOpcode());
518  ID.SetValueTypes(N->value_begin());
519  ID.SetOperands(Op1, Op2);
520  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
521}
522
523
524/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
525/// were replaced with those specified.  If this node is never memoized,
526/// return null, otherwise return a pointer to the slot it would take.  If a
527/// node already exists with these operands, the slot will be non-null.
528SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
529                                           const SDOperand *Ops,unsigned NumOps,
530                                           void *&InsertPos) {
531  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
532    return 0;    // Never add these nodes.
533
534  // Check that remaining values produced are not flags.
535  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
536    if (N->getValueType(i) == MVT::Flag)
537      return 0;   // Never CSE anything that produces a flag.
538
539  SelectionDAGCSEMap::NodeID ID;
540  ID.SetOpcode(N->getOpcode());
541  ID.SetValueTypes(N->value_begin());
542  ID.SetOperands(Ops, NumOps);
543  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
544}
545
546
547SelectionDAG::~SelectionDAG() {
548  while (!AllNodes.empty()) {
549    SDNode *N = AllNodes.begin();
550    delete [] N->OperandList;
551    N->OperandList = 0;
552    N->NumOperands = 0;
553    AllNodes.pop_front();
554  }
555}
556
557SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
558  if (Op.getValueType() == VT) return Op;
559  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
560  return getNode(ISD::AND, Op.getValueType(), Op,
561                 getConstant(Imm, Op.getValueType()));
562}
563
564SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
565  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
566  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
567
568  // Mask out any bits that are not valid for this constant.
569  if (VT != MVT::i64)
570    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
571
572  SDNode *&N = Constants[std::make_pair(Val, VT)];
573  if (N) return SDOperand(N, 0);
574  N = new ConstantSDNode(false, Val, VT);
575  AllNodes.push_back(N);
576  return SDOperand(N, 0);
577}
578
579SDOperand SelectionDAG::getString(const std::string &Val) {
580  StringSDNode *&N = StringNodes[Val];
581  if (!N) {
582    N = new StringSDNode(Val);
583    AllNodes.push_back(N);
584  }
585  return SDOperand(N, 0);
586}
587
588SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
589  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
590  // Mask out any bits that are not valid for this constant.
591  if (VT != MVT::i64)
592    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
593
594  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
595  if (N) return SDOperand(N, 0);
596  N = new ConstantSDNode(true, Val, VT);
597  AllNodes.push_back(N);
598  return SDOperand(N, 0);
599}
600
601SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
602  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
603  if (VT == MVT::f32)
604    Val = (float)Val;  // Mask out extra precision.
605
606  // Do the map lookup using the actual bit pattern for the floating point
607  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
608  // we don't have issues with SNANs.
609  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
610  if (N) return SDOperand(N, 0);
611  N = new ConstantFPSDNode(false, Val, VT);
612  AllNodes.push_back(N);
613  return SDOperand(N, 0);
614}
615
616SDOperand SelectionDAG::getTargetConstantFP(double Val, MVT::ValueType VT) {
617  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
618  if (VT == MVT::f32)
619    Val = (float)Val;  // Mask out extra precision.
620
621  // Do the map lookup using the actual bit pattern for the floating point
622  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
623  // we don't have issues with SNANs.
624  SDNode *&N = TargetConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
625  if (N) return SDOperand(N, 0);
626  N = new ConstantFPSDNode(true, Val, VT);
627  AllNodes.push_back(N);
628  return SDOperand(N, 0);
629}
630
631SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
632                                         MVT::ValueType VT, int offset) {
633  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
634  if (N) return SDOperand(N, 0);
635  N = new GlobalAddressSDNode(false, GV, VT, offset);
636  AllNodes.push_back(N);
637  return SDOperand(N, 0);
638}
639
640SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
641                                               MVT::ValueType VT, int offset) {
642  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
643  if (N) return SDOperand(N, 0);
644  N = new GlobalAddressSDNode(true, GV, VT, offset);
645  AllNodes.push_back(N);
646  return SDOperand(N, 0);
647}
648
649SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
650  SDNode *&N = FrameIndices[FI];
651  if (N) return SDOperand(N, 0);
652  N = new FrameIndexSDNode(FI, VT, false);
653  AllNodes.push_back(N);
654  return SDOperand(N, 0);
655}
656
657SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
658  SDNode *&N = TargetFrameIndices[FI];
659  if (N) return SDOperand(N, 0);
660  N = new FrameIndexSDNode(FI, VT, true);
661  AllNodes.push_back(N);
662  return SDOperand(N, 0);
663}
664
665SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT) {
666  SDNode *&N = JumpTableIndices[JTI];
667  if (N) return SDOperand(N, 0);
668  N = new JumpTableSDNode(JTI, VT, false);
669  AllNodes.push_back(N);
670  return SDOperand(N, 0);
671}
672
673SDOperand SelectionDAG::getTargetJumpTable(int JTI, MVT::ValueType VT) {
674  SDNode *&N = TargetJumpTableIndices[JTI];
675  if (N) return SDOperand(N, 0);
676  N = new JumpTableSDNode(JTI, VT, true);
677  AllNodes.push_back(N);
678  return SDOperand(N, 0);
679}
680
681SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
682                                        unsigned Alignment,  int Offset) {
683  SDNode *&N = ConstantPoolIndices[std::make_pair(C,
684                                            std::make_pair(Offset, Alignment))];
685  if (N) return SDOperand(N, 0);
686  N = new ConstantPoolSDNode(false, C, VT, Offset, Alignment);
687  AllNodes.push_back(N);
688  return SDOperand(N, 0);
689}
690
691SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT,
692                                             unsigned Alignment,  int Offset) {
693  SDNode *&N = TargetConstantPoolIndices[std::make_pair(C,
694                                            std::make_pair(Offset, Alignment))];
695  if (N) return SDOperand(N, 0);
696  N = new ConstantPoolSDNode(true, C, VT, Offset, Alignment);
697  AllNodes.push_back(N);
698  return SDOperand(N, 0);
699}
700
701SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
702  SDNode *&N = BBNodes[MBB];
703  if (N) return SDOperand(N, 0);
704  N = new BasicBlockSDNode(MBB);
705  AllNodes.push_back(N);
706  return SDOperand(N, 0);
707}
708
709SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
710  if ((unsigned)VT >= ValueTypeNodes.size())
711    ValueTypeNodes.resize(VT+1);
712  if (ValueTypeNodes[VT] == 0) {
713    ValueTypeNodes[VT] = new VTSDNode(VT);
714    AllNodes.push_back(ValueTypeNodes[VT]);
715  }
716
717  return SDOperand(ValueTypeNodes[VT], 0);
718}
719
720SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
721  SDNode *&N = ExternalSymbols[Sym];
722  if (N) return SDOperand(N, 0);
723  N = new ExternalSymbolSDNode(false, Sym, VT);
724  AllNodes.push_back(N);
725  return SDOperand(N, 0);
726}
727
728SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
729                                                MVT::ValueType VT) {
730  SDNode *&N = TargetExternalSymbols[Sym];
731  if (N) return SDOperand(N, 0);
732  N = new ExternalSymbolSDNode(true, Sym, VT);
733  AllNodes.push_back(N);
734  return SDOperand(N, 0);
735}
736
737SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
738  if ((unsigned)Cond >= CondCodeNodes.size())
739    CondCodeNodes.resize(Cond+1);
740
741  if (CondCodeNodes[Cond] == 0) {
742    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
743    AllNodes.push_back(CondCodeNodes[Cond]);
744  }
745  return SDOperand(CondCodeNodes[Cond], 0);
746}
747
748SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
749  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
750  if (!Reg) {
751    Reg = new RegisterSDNode(RegNo, VT);
752    AllNodes.push_back(Reg);
753  }
754  return SDOperand(Reg, 0);
755}
756
757SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
758                                      SDOperand N2, ISD::CondCode Cond) {
759  // These setcc operations always fold.
760  switch (Cond) {
761  default: break;
762  case ISD::SETFALSE:
763  case ISD::SETFALSE2: return getConstant(0, VT);
764  case ISD::SETTRUE:
765  case ISD::SETTRUE2:  return getConstant(1, VT);
766
767  case ISD::SETOEQ:
768  case ISD::SETOGT:
769  case ISD::SETOGE:
770  case ISD::SETOLT:
771  case ISD::SETOLE:
772  case ISD::SETONE:
773  case ISD::SETO:
774  case ISD::SETUO:
775  case ISD::SETUEQ:
776  case ISD::SETUNE:
777    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
778    break;
779  }
780
781  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
782    uint64_t C2 = N2C->getValue();
783    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
784      uint64_t C1 = N1C->getValue();
785
786      // Sign extend the operands if required
787      if (ISD::isSignedIntSetCC(Cond)) {
788        C1 = N1C->getSignExtended();
789        C2 = N2C->getSignExtended();
790      }
791
792      switch (Cond) {
793      default: assert(0 && "Unknown integer setcc!");
794      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
795      case ISD::SETNE:  return getConstant(C1 != C2, VT);
796      case ISD::SETULT: return getConstant(C1 <  C2, VT);
797      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
798      case ISD::SETULE: return getConstant(C1 <= C2, VT);
799      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
800      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
801      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
802      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
803      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
804      }
805    } else {
806      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
807      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
808        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
809
810        // If the comparison constant has bits in the upper part, the
811        // zero-extended value could never match.
812        if (C2 & (~0ULL << InSize)) {
813          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
814          switch (Cond) {
815          case ISD::SETUGT:
816          case ISD::SETUGE:
817          case ISD::SETEQ: return getConstant(0, VT);
818          case ISD::SETULT:
819          case ISD::SETULE:
820          case ISD::SETNE: return getConstant(1, VT);
821          case ISD::SETGT:
822          case ISD::SETGE:
823            // True if the sign bit of C2 is set.
824            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
825          case ISD::SETLT:
826          case ISD::SETLE:
827            // True if the sign bit of C2 isn't set.
828            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
829          default:
830            break;
831          }
832        }
833
834        // Otherwise, we can perform the comparison with the low bits.
835        switch (Cond) {
836        case ISD::SETEQ:
837        case ISD::SETNE:
838        case ISD::SETUGT:
839        case ISD::SETUGE:
840        case ISD::SETULT:
841        case ISD::SETULE:
842          return getSetCC(VT, N1.getOperand(0),
843                          getConstant(C2, N1.getOperand(0).getValueType()),
844                          Cond);
845        default:
846          break;   // todo, be more careful with signed comparisons
847        }
848      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
849                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
850        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
851        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
852        MVT::ValueType ExtDstTy = N1.getValueType();
853        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
854
855        // If the extended part has any inconsistent bits, it cannot ever
856        // compare equal.  In other words, they have to be all ones or all
857        // zeros.
858        uint64_t ExtBits =
859          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
860        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
861          return getConstant(Cond == ISD::SETNE, VT);
862
863        // Otherwise, make this a use of a zext.
864        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
865                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
866                        Cond);
867      }
868
869      uint64_t MinVal, MaxVal;
870      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
871      if (ISD::isSignedIntSetCC(Cond)) {
872        MinVal = 1ULL << (OperandBitSize-1);
873        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
874          MaxVal = ~0ULL >> (65-OperandBitSize);
875        else
876          MaxVal = 0;
877      } else {
878        MinVal = 0;
879        MaxVal = ~0ULL >> (64-OperandBitSize);
880      }
881
882      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
883      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
884        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
885        --C2;                                          // X >= C1 --> X > (C1-1)
886        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
887                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
888      }
889
890      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
891        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
892        ++C2;                                          // X <= C1 --> X < (C1+1)
893        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
894                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
895      }
896
897      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
898        return getConstant(0, VT);      // X < MIN --> false
899
900      // Canonicalize setgt X, Min --> setne X, Min
901      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
902        return getSetCC(VT, N1, N2, ISD::SETNE);
903
904      // If we have setult X, 1, turn it into seteq X, 0
905      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
906        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
907                        ISD::SETEQ);
908      // If we have setugt X, Max-1, turn it into seteq X, Max
909      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
910        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
911                        ISD::SETEQ);
912
913      // If we have "setcc X, C1", check to see if we can shrink the immediate
914      // by changing cc.
915
916      // SETUGT X, SINTMAX  -> SETLT X, 0
917      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
918          C2 == (~0ULL >> (65-OperandBitSize)))
919        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
920
921      // FIXME: Implement the rest of these.
922
923
924      // Fold bit comparisons when we can.
925      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
926          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
927        if (ConstantSDNode *AndRHS =
928                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
929          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
930            // Perform the xform if the AND RHS is a single bit.
931            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
932              return getNode(ISD::SRL, VT, N1,
933                             getConstant(Log2_64(AndRHS->getValue()),
934                                                   TLI.getShiftAmountTy()));
935            }
936          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
937            // (X & 8) == 8  -->  (X & 8) >> 3
938            // Perform the xform if C2 is a single bit.
939            if ((C2 & (C2-1)) == 0) {
940              return getNode(ISD::SRL, VT, N1,
941                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
942            }
943          }
944        }
945    }
946  } else if (isa<ConstantSDNode>(N1.Val)) {
947      // Ensure that the constant occurs on the RHS.
948    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
949  }
950
951  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
952    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
953      double C1 = N1C->getValue(), C2 = N2C->getValue();
954
955      switch (Cond) {
956      default: break; // FIXME: Implement the rest of these!
957      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
958      case ISD::SETNE:  return getConstant(C1 != C2, VT);
959      case ISD::SETLT:  return getConstant(C1 < C2, VT);
960      case ISD::SETGT:  return getConstant(C1 > C2, VT);
961      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
962      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
963      }
964    } else {
965      // Ensure that the constant occurs on the RHS.
966      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
967    }
968
969  // Could not fold it.
970  return SDOperand();
971}
972
973/// getNode - Gets or creates the specified node.
974///
975SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
976  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
977  if (!N) {
978    N = new SDNode(Opcode, VT);
979    AllNodes.push_back(N);
980  }
981  return SDOperand(N, 0);
982}
983
984SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
985                                SDOperand Operand) {
986  unsigned Tmp1;
987  // Constant fold unary operations with an integer constant operand.
988  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
989    uint64_t Val = C->getValue();
990    switch (Opcode) {
991    default: break;
992    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
993    case ISD::ANY_EXTEND:
994    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
995    case ISD::TRUNCATE:    return getConstant(Val, VT);
996    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
997    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
998    case ISD::BIT_CONVERT:
999      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1000        return getConstantFP(BitsToFloat(Val), VT);
1001      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1002        return getConstantFP(BitsToDouble(Val), VT);
1003      break;
1004    case ISD::BSWAP:
1005      switch(VT) {
1006      default: assert(0 && "Invalid bswap!"); break;
1007      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1008      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1009      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1010      }
1011      break;
1012    case ISD::CTPOP:
1013      switch(VT) {
1014      default: assert(0 && "Invalid ctpop!"); break;
1015      case MVT::i1: return getConstant(Val != 0, VT);
1016      case MVT::i8:
1017        Tmp1 = (unsigned)Val & 0xFF;
1018        return getConstant(CountPopulation_32(Tmp1), VT);
1019      case MVT::i16:
1020        Tmp1 = (unsigned)Val & 0xFFFF;
1021        return getConstant(CountPopulation_32(Tmp1), VT);
1022      case MVT::i32:
1023        return getConstant(CountPopulation_32((unsigned)Val), VT);
1024      case MVT::i64:
1025        return getConstant(CountPopulation_64(Val), VT);
1026      }
1027    case ISD::CTLZ:
1028      switch(VT) {
1029      default: assert(0 && "Invalid ctlz!"); break;
1030      case MVT::i1: return getConstant(Val == 0, VT);
1031      case MVT::i8:
1032        Tmp1 = (unsigned)Val & 0xFF;
1033        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1034      case MVT::i16:
1035        Tmp1 = (unsigned)Val & 0xFFFF;
1036        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1037      case MVT::i32:
1038        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1039      case MVT::i64:
1040        return getConstant(CountLeadingZeros_64(Val), VT);
1041      }
1042    case ISD::CTTZ:
1043      switch(VT) {
1044      default: assert(0 && "Invalid cttz!"); break;
1045      case MVT::i1: return getConstant(Val == 0, VT);
1046      case MVT::i8:
1047        Tmp1 = (unsigned)Val | 0x100;
1048        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1049      case MVT::i16:
1050        Tmp1 = (unsigned)Val | 0x10000;
1051        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1052      case MVT::i32:
1053        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1054      case MVT::i64:
1055        return getConstant(CountTrailingZeros_64(Val), VT);
1056      }
1057    }
1058  }
1059
1060  // Constant fold unary operations with an floating point constant operand.
1061  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1062    switch (Opcode) {
1063    case ISD::FNEG:
1064      return getConstantFP(-C->getValue(), VT);
1065    case ISD::FABS:
1066      return getConstantFP(fabs(C->getValue()), VT);
1067    case ISD::FP_ROUND:
1068    case ISD::FP_EXTEND:
1069      return getConstantFP(C->getValue(), VT);
1070    case ISD::FP_TO_SINT:
1071      return getConstant((int64_t)C->getValue(), VT);
1072    case ISD::FP_TO_UINT:
1073      return getConstant((uint64_t)C->getValue(), VT);
1074    case ISD::BIT_CONVERT:
1075      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1076        return getConstant(FloatToBits(C->getValue()), VT);
1077      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1078        return getConstant(DoubleToBits(C->getValue()), VT);
1079      break;
1080    }
1081
1082  unsigned OpOpcode = Operand.Val->getOpcode();
1083  switch (Opcode) {
1084  case ISD::TokenFactor:
1085    return Operand;         // Factor of one node?  No factor.
1086  case ISD::SIGN_EXTEND:
1087    if (Operand.getValueType() == VT) return Operand;   // noop extension
1088    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1089    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1090      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1091    break;
1092  case ISD::ZERO_EXTEND:
1093    if (Operand.getValueType() == VT) return Operand;   // noop extension
1094    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1095    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1096      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1097    break;
1098  case ISD::ANY_EXTEND:
1099    if (Operand.getValueType() == VT) return Operand;   // noop extension
1100    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1101    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1102      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1103      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1104    break;
1105  case ISD::TRUNCATE:
1106    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1107    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1108    if (OpOpcode == ISD::TRUNCATE)
1109      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1110    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1111             OpOpcode == ISD::ANY_EXTEND) {
1112      // If the source is smaller than the dest, we still need an extend.
1113      if (Operand.Val->getOperand(0).getValueType() < VT)
1114        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1115      else if (Operand.Val->getOperand(0).getValueType() > VT)
1116        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1117      else
1118        return Operand.Val->getOperand(0);
1119    }
1120    break;
1121  case ISD::BIT_CONVERT:
1122    // Basic sanity checking.
1123    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1124           && "Cannot BIT_CONVERT between two different types!");
1125    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1126    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1127      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1128    if (OpOpcode == ISD::UNDEF)
1129      return getNode(ISD::UNDEF, VT);
1130    break;
1131  case ISD::SCALAR_TO_VECTOR:
1132    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1133           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1134           "Illegal SCALAR_TO_VECTOR node!");
1135    break;
1136  case ISD::FNEG:
1137    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1138      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1139                     Operand.Val->getOperand(0));
1140    if (OpOpcode == ISD::FNEG)  // --X -> X
1141      return Operand.Val->getOperand(0);
1142    break;
1143  case ISD::FABS:
1144    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1145      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1146    break;
1147  }
1148
1149  SDNode *N;
1150  MVT::ValueType *VTs = getNodeValueTypes(VT);
1151  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1152    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Operand);
1153    void *IP = 0;
1154    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1155      return SDOperand(E, 0);
1156    N = new SDNode(Opcode, Operand);
1157    N->setValueTypes(VTs, 1);
1158    CSEMap.InsertNode(N, IP);
1159  } else {
1160    N = new SDNode(Opcode, Operand);
1161    N->setValueTypes(VTs, 1);
1162  }
1163  AllNodes.push_back(N);
1164  return SDOperand(N, 0);
1165}
1166
1167
1168
1169SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1170                                SDOperand N1, SDOperand N2) {
1171#ifndef NDEBUG
1172  switch (Opcode) {
1173  case ISD::TokenFactor:
1174    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1175           N2.getValueType() == MVT::Other && "Invalid token factor!");
1176    break;
1177  case ISD::AND:
1178  case ISD::OR:
1179  case ISD::XOR:
1180  case ISD::UDIV:
1181  case ISD::UREM:
1182  case ISD::MULHU:
1183  case ISD::MULHS:
1184    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1185    // fall through
1186  case ISD::ADD:
1187  case ISD::SUB:
1188  case ISD::MUL:
1189  case ISD::SDIV:
1190  case ISD::SREM:
1191    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1192    // fall through.
1193  case ISD::FADD:
1194  case ISD::FSUB:
1195  case ISD::FMUL:
1196  case ISD::FDIV:
1197  case ISD::FREM:
1198    assert(N1.getValueType() == N2.getValueType() &&
1199           N1.getValueType() == VT && "Binary operator types must match!");
1200    break;
1201  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1202    assert(N1.getValueType() == VT &&
1203           MVT::isFloatingPoint(N1.getValueType()) &&
1204           MVT::isFloatingPoint(N2.getValueType()) &&
1205           "Invalid FCOPYSIGN!");
1206    break;
1207  case ISD::SHL:
1208  case ISD::SRA:
1209  case ISD::SRL:
1210  case ISD::ROTL:
1211  case ISD::ROTR:
1212    assert(VT == N1.getValueType() &&
1213           "Shift operators return type must be the same as their first arg");
1214    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1215           VT != MVT::i1 && "Shifts only work on integers");
1216    break;
1217  case ISD::FP_ROUND_INREG: {
1218    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1219    assert(VT == N1.getValueType() && "Not an inreg round!");
1220    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1221           "Cannot FP_ROUND_INREG integer types");
1222    assert(EVT <= VT && "Not rounding down!");
1223    break;
1224  }
1225  case ISD::AssertSext:
1226  case ISD::AssertZext:
1227  case ISD::SIGN_EXTEND_INREG: {
1228    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1229    assert(VT == N1.getValueType() && "Not an inreg extend!");
1230    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1231           "Cannot *_EXTEND_INREG FP types");
1232    assert(EVT <= VT && "Not extending!");
1233  }
1234
1235  default: break;
1236  }
1237#endif
1238
1239  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1240  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1241  if (N1C) {
1242    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1243      int64_t Val = N1C->getValue();
1244      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1245      Val <<= 64-FromBits;
1246      Val >>= 64-FromBits;
1247      return getConstant(Val, VT);
1248    }
1249
1250    if (N2C) {
1251      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1252      switch (Opcode) {
1253      case ISD::ADD: return getConstant(C1 + C2, VT);
1254      case ISD::SUB: return getConstant(C1 - C2, VT);
1255      case ISD::MUL: return getConstant(C1 * C2, VT);
1256      case ISD::UDIV:
1257        if (C2) return getConstant(C1 / C2, VT);
1258        break;
1259      case ISD::UREM :
1260        if (C2) return getConstant(C1 % C2, VT);
1261        break;
1262      case ISD::SDIV :
1263        if (C2) return getConstant(N1C->getSignExtended() /
1264                                   N2C->getSignExtended(), VT);
1265        break;
1266      case ISD::SREM :
1267        if (C2) return getConstant(N1C->getSignExtended() %
1268                                   N2C->getSignExtended(), VT);
1269        break;
1270      case ISD::AND  : return getConstant(C1 & C2, VT);
1271      case ISD::OR   : return getConstant(C1 | C2, VT);
1272      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1273      case ISD::SHL  : return getConstant(C1 << C2, VT);
1274      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1275      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1276      case ISD::ROTL :
1277        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1278                           VT);
1279      case ISD::ROTR :
1280        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1281                           VT);
1282      default: break;
1283      }
1284    } else {      // Cannonicalize constant to RHS if commutative
1285      if (isCommutativeBinOp(Opcode)) {
1286        std::swap(N1C, N2C);
1287        std::swap(N1, N2);
1288      }
1289    }
1290  }
1291
1292  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1293  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1294  if (N1CFP) {
1295    if (N2CFP) {
1296      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1297      switch (Opcode) {
1298      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1299      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1300      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1301      case ISD::FDIV:
1302        if (C2) return getConstantFP(C1 / C2, VT);
1303        break;
1304      case ISD::FREM :
1305        if (C2) return getConstantFP(fmod(C1, C2), VT);
1306        break;
1307      case ISD::FCOPYSIGN: {
1308        union {
1309          double   F;
1310          uint64_t I;
1311        } u1;
1312        union {
1313          double  F;
1314          int64_t I;
1315        } u2;
1316        u1.F = C1;
1317        u2.F = C2;
1318        if (u2.I < 0)  // Sign bit of RHS set?
1319          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1320        else
1321          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1322        return getConstantFP(u1.F, VT);
1323      }
1324      default: break;
1325      }
1326    } else {      // Cannonicalize constant to RHS if commutative
1327      if (isCommutativeBinOp(Opcode)) {
1328        std::swap(N1CFP, N2CFP);
1329        std::swap(N1, N2);
1330      }
1331    }
1332  }
1333
1334  // Canonicalize an UNDEF to the RHS, even over a constant.
1335  if (N1.getOpcode() == ISD::UNDEF) {
1336    if (isCommutativeBinOp(Opcode)) {
1337      std::swap(N1, N2);
1338    } else {
1339      switch (Opcode) {
1340      case ISD::FP_ROUND_INREG:
1341      case ISD::SIGN_EXTEND_INREG:
1342      case ISD::SUB:
1343      case ISD::FSUB:
1344      case ISD::FDIV:
1345      case ISD::FREM:
1346      case ISD::SRA:
1347        return N1;     // fold op(undef, arg2) -> undef
1348      case ISD::UDIV:
1349      case ISD::SDIV:
1350      case ISD::UREM:
1351      case ISD::SREM:
1352      case ISD::SRL:
1353      case ISD::SHL:
1354        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1355      }
1356    }
1357  }
1358
1359  // Fold a bunch of operators when the RHS is undef.
1360  if (N2.getOpcode() == ISD::UNDEF) {
1361    switch (Opcode) {
1362    case ISD::ADD:
1363    case ISD::SUB:
1364    case ISD::FADD:
1365    case ISD::FSUB:
1366    case ISD::FMUL:
1367    case ISD::FDIV:
1368    case ISD::FREM:
1369    case ISD::UDIV:
1370    case ISD::SDIV:
1371    case ISD::UREM:
1372    case ISD::SREM:
1373    case ISD::XOR:
1374      return N2;       // fold op(arg1, undef) -> undef
1375    case ISD::MUL:
1376    case ISD::AND:
1377    case ISD::SRL:
1378    case ISD::SHL:
1379      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1380    case ISD::OR:
1381      return getConstant(MVT::getIntVTBitMask(VT), VT);
1382    case ISD::SRA:
1383      return N1;
1384    }
1385  }
1386
1387  // Finally, fold operations that do not require constants.
1388  switch (Opcode) {
1389  case ISD::FP_ROUND_INREG:
1390    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1391    break;
1392  case ISD::SIGN_EXTEND_INREG: {
1393    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1394    if (EVT == VT) return N1;  // Not actually extending
1395    break;
1396  }
1397
1398  // FIXME: figure out how to safely handle things like
1399  // int foo(int x) { return 1 << (x & 255); }
1400  // int bar() { return foo(256); }
1401#if 0
1402  case ISD::SHL:
1403  case ISD::SRL:
1404  case ISD::SRA:
1405    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1406        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1407      return getNode(Opcode, VT, N1, N2.getOperand(0));
1408    else if (N2.getOpcode() == ISD::AND)
1409      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1410        // If the and is only masking out bits that cannot effect the shift,
1411        // eliminate the and.
1412        unsigned NumBits = MVT::getSizeInBits(VT);
1413        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1414          return getNode(Opcode, VT, N1, N2.getOperand(0));
1415      }
1416    break;
1417#endif
1418  }
1419
1420  // Memoize this node if possible.
1421  SDNode *N;
1422  MVT::ValueType *VTs = getNodeValueTypes(VT);
1423  if (VT != MVT::Flag) {
1424    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2);
1425    void *IP = 0;
1426    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1427      return SDOperand(E, 0);
1428    N = new SDNode(Opcode, N1, N2);
1429    N->setValueTypes(VTs, 1);
1430    CSEMap.InsertNode(N, IP);
1431  } else {
1432    N = new SDNode(Opcode, N1, N2);
1433    N->setValueTypes(VTs, 1);
1434  }
1435
1436  AllNodes.push_back(N);
1437  return SDOperand(N, 0);
1438}
1439
1440SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1441                                SDOperand N1, SDOperand N2, SDOperand N3) {
1442  // Perform various simplifications.
1443  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1444  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1445  //ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1446  switch (Opcode) {
1447  case ISD::SETCC: {
1448    // Use SimplifySetCC  to simplify SETCC's.
1449    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1450    if (Simp.Val) return Simp;
1451    break;
1452  }
1453  case ISD::SELECT:
1454    if (N1C)
1455      if (N1C->getValue())
1456        return N2;             // select true, X, Y -> X
1457      else
1458        return N3;             // select false, X, Y -> Y
1459
1460    if (N2 == N3) return N2;   // select C, X, X -> X
1461    break;
1462  case ISD::BRCOND:
1463    if (N2C)
1464      if (N2C->getValue()) // Unconditional branch
1465        return getNode(ISD::BR, MVT::Other, N1, N3);
1466      else
1467        return N1;         // Never-taken branch
1468    break;
1469  case ISD::VECTOR_SHUFFLE:
1470    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1471           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1472           N3.getOpcode() == ISD::BUILD_VECTOR &&
1473           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1474           "Illegal VECTOR_SHUFFLE node!");
1475    break;
1476  }
1477
1478  // Memoize node if it doesn't produce a flag.
1479  SDNode *N;
1480  MVT::ValueType *VTs = getNodeValueTypes(VT);
1481
1482  if (VT != MVT::Flag) {
1483    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2, N3);
1484    void *IP = 0;
1485    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1486      return SDOperand(E, 0);
1487    N = new SDNode(Opcode, N1, N2, N3);
1488    N->setValueTypes(VTs, 1);
1489    CSEMap.InsertNode(N, IP);
1490  } else {
1491    N = new SDNode(Opcode, N1, N2, N3);
1492    N->setValueTypes(VTs, 1);
1493  }
1494  AllNodes.push_back(N);
1495  return SDOperand(N, 0);
1496}
1497
1498SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1499                                SDOperand N1, SDOperand N2, SDOperand N3,
1500                                SDOperand N4) {
1501  SDOperand Ops[] = { N1, N2, N3, N4 };
1502  return getNode(Opcode, VT, Ops, 4);
1503}
1504
1505SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1506                                SDOperand N1, SDOperand N2, SDOperand N3,
1507                                SDOperand N4, SDOperand N5) {
1508  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1509  return getNode(Opcode, VT, Ops, 5);
1510}
1511
1512SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1513                                SDOperand Chain, SDOperand Ptr,
1514                                SDOperand SV) {
1515  MVT::ValueType *VTs = getNodeValueTypes(VT, MVT::Other);
1516
1517  SelectionDAGCSEMap::NodeID ID(ISD::LOAD, VTs, Chain, Ptr, SV);
1518  void *IP = 0;
1519  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1520    return SDOperand(E, 0);
1521  SDNode *N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1522  N->setValueTypes(VTs, 2);
1523  CSEMap.InsertNode(N, IP);
1524  AllNodes.push_back(N);
1525  return SDOperand(N, 0);
1526}
1527
1528SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1529                                   SDOperand Chain, SDOperand Ptr,
1530                                   SDOperand SV) {
1531  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1532                      getValueType(EVT) };
1533  std::vector<MVT::ValueType> VTs;
1534  VTs.reserve(2);
1535  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1536  return getNode(ISD::VLOAD, VTs, Ops, 5);
1537}
1538
1539SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1540                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1541                                   MVT::ValueType EVT) {
1542  SDOperand Ops[] = { Chain, Ptr, SV, getValueType(EVT) };
1543  std::vector<MVT::ValueType> VTs;
1544  VTs.reserve(2);
1545  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1546  return getNode(Opcode, VTs, Ops, 4);
1547}
1548
1549SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1550  assert((!V || isa<PointerType>(V->getType())) &&
1551         "SrcValue is not a pointer?");
1552  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1553  if (N) return SDOperand(N, 0);
1554
1555  N = new SrcValueSDNode(V, Offset);
1556  AllNodes.push_back(N);
1557  return SDOperand(N, 0);
1558}
1559
1560SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1561                                 SDOperand Chain, SDOperand Ptr,
1562                                 SDOperand SV) {
1563  SDOperand Ops[] = { Chain, Ptr, SV };
1564  std::vector<MVT::ValueType> VTs;
1565  VTs.reserve(2);
1566  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1567  return getNode(ISD::VAARG, VTs, Ops, 3);
1568}
1569
1570SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1571                                const SDOperand *Ops, unsigned NumOps) {
1572  switch (NumOps) {
1573  case 0: return getNode(Opcode, VT);
1574  case 1: return getNode(Opcode, VT, Ops[0]);
1575  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1576  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1577  default: break;
1578  }
1579
1580  switch (Opcode) {
1581  default: break;
1582  case ISD::TRUNCSTORE: {
1583    assert(NumOps == 5 && "TRUNCSTORE takes 5 operands!");
1584    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1585#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1586    // If this is a truncating store of a constant, convert to the desired type
1587    // and store it instead.
1588    if (isa<Constant>(Ops[0])) {
1589      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1590      if (isa<Constant>(Op))
1591        N1 = Op;
1592    }
1593    // Also for ConstantFP?
1594#endif
1595    if (Ops[0].getValueType() == EVT)       // Normal store?
1596      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1597    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1598    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1599           "Can't do FP-INT conversion!");
1600    break;
1601  }
1602  case ISD::SELECT_CC: {
1603    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1604    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1605           "LHS and RHS of condition must have same type!");
1606    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1607           "True and False arms of SelectCC must have same type!");
1608    assert(Ops[2].getValueType() == VT &&
1609           "select_cc node must be of same type as true and false value!");
1610    break;
1611  }
1612  case ISD::BR_CC: {
1613    assert(NumOps == 5 && "BR_CC takes 5 operands!");
1614    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1615           "LHS/RHS of comparison should match types!");
1616    break;
1617  }
1618  }
1619
1620  // Memoize nodes.
1621  SDNode *N;
1622  MVT::ValueType *VTs = getNodeValueTypes(VT);
1623  if (VT != MVT::Flag) {
1624    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Ops, NumOps);
1625    void *IP = 0;
1626    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1627      return SDOperand(E, 0);
1628    N = new SDNode(Opcode, Ops, NumOps);
1629    N->setValueTypes(VTs, 1);
1630    CSEMap.InsertNode(N, IP);
1631  } else {
1632    N = new SDNode(Opcode, Ops, NumOps);
1633    N->setValueTypes(VTs, 1);
1634  }
1635  AllNodes.push_back(N);
1636  return SDOperand(N, 0);
1637}
1638
1639SDOperand SelectionDAG::getNode(unsigned Opcode,
1640                                std::vector<MVT::ValueType> &ResultTys,
1641                                const SDOperand *Ops, unsigned NumOps) {
1642  if (ResultTys.size() == 1)
1643    return getNode(Opcode, ResultTys[0], Ops, NumOps);
1644
1645  switch (Opcode) {
1646  case ISD::EXTLOAD:
1647  case ISD::SEXTLOAD:
1648  case ISD::ZEXTLOAD: {
1649    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1650    assert(NumOps == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1651    // If they are asking for an extending load from/to the same thing, return a
1652    // normal load.
1653    if (ResultTys[0] == EVT)
1654      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1655    if (MVT::isVector(ResultTys[0])) {
1656      assert(EVT == MVT::getVectorBaseType(ResultTys[0]) &&
1657             "Invalid vector extload!");
1658    } else {
1659      assert(EVT < ResultTys[0] &&
1660             "Should only be an extending load, not truncating!");
1661    }
1662    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1663           "Cannot sign/zero extend a FP/Vector load!");
1664    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1665           "Cannot convert from FP to Int or Int -> FP!");
1666    break;
1667  }
1668
1669  // FIXME: figure out how to safely handle things like
1670  // int foo(int x) { return 1 << (x & 255); }
1671  // int bar() { return foo(256); }
1672#if 0
1673  case ISD::SRA_PARTS:
1674  case ISD::SRL_PARTS:
1675  case ISD::SHL_PARTS:
1676    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1677        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1678      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1679    else if (N3.getOpcode() == ISD::AND)
1680      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1681        // If the and is only masking out bits that cannot effect the shift,
1682        // eliminate the and.
1683        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1684        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1685          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1686      }
1687    break;
1688#endif
1689  }
1690
1691  // Memoize the node unless it returns a flag.
1692  SDNode *N;
1693  MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
1694  if (ResultTys.back() != MVT::Flag) {
1695    SelectionDAGCSEMap::NodeID ID;
1696    ID.SetOpcode(Opcode);
1697    ID.SetValueTypes(VTs);
1698    ID.SetOperands(&Ops[0], NumOps);
1699    void *IP = 0;
1700    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1701      return SDOperand(E, 0);
1702    N = new SDNode(Opcode, Ops, NumOps);
1703    N->setValueTypes(VTs, ResultTys.size());
1704    CSEMap.InsertNode(N, IP);
1705  } else {
1706    N = new SDNode(Opcode, Ops, NumOps);
1707    N->setValueTypes(VTs, ResultTys.size());
1708  }
1709  AllNodes.push_back(N);
1710  return SDOperand(N, 0);
1711}
1712
1713
1714MVT::ValueType *SelectionDAG::getNodeValueTypes(MVT::ValueType VT) {
1715  return SDNode::getValueTypeList(VT);
1716}
1717
1718MVT::ValueType *SelectionDAG::getNodeValueTypes(
1719                                        std::vector<MVT::ValueType> &RetVals) {
1720  switch (RetVals.size()) {
1721  case 0: assert(0 && "Cannot have nodes without results!");
1722  case 1: return SDNode::getValueTypeList(RetVals[0]);
1723  case 2: return getNodeValueTypes(RetVals[0], RetVals[1]);
1724  default: break;
1725  }
1726
1727  std::list<std::vector<MVT::ValueType> >::iterator I =
1728    std::find(VTList.begin(), VTList.end(), RetVals);
1729  if (I == VTList.end()) {
1730    VTList.push_front(RetVals);
1731    I = VTList.begin();
1732  }
1733
1734  return &(*I)[0];
1735}
1736
1737MVT::ValueType *SelectionDAG::getNodeValueTypes(MVT::ValueType VT1,
1738                                                MVT::ValueType VT2) {
1739  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1740       E = VTList.end(); I != E; ++I) {
1741    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1742      return &(*I)[0];
1743  }
1744  std::vector<MVT::ValueType> V;
1745  V.push_back(VT1);
1746  V.push_back(VT2);
1747  VTList.push_front(V);
1748  return &(*VTList.begin())[0];
1749}
1750
1751/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1752/// specified operands.  If the resultant node already exists in the DAG,
1753/// this does not modify the specified node, instead it returns the node that
1754/// already exists.  If the resultant node does not exist in the DAG, the
1755/// input node is returned.  As a degenerate case, if you specify the same
1756/// input operands as the node already has, the input node is returned.
1757SDOperand SelectionDAG::
1758UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1759  SDNode *N = InN.Val;
1760  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1761
1762  // Check to see if there is no change.
1763  if (Op == N->getOperand(0)) return InN;
1764
1765  // See if the modified node already exists.
1766  void *InsertPos = 0;
1767  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1768    return SDOperand(Existing, InN.ResNo);
1769
1770  // Nope it doesn't.  Remove the node from it's current place in the maps.
1771  if (InsertPos)
1772    RemoveNodeFromCSEMaps(N);
1773
1774  // Now we update the operands.
1775  N->OperandList[0].Val->removeUser(N);
1776  Op.Val->addUser(N);
1777  N->OperandList[0] = Op;
1778
1779  // If this gets put into a CSE map, add it.
1780  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1781  return InN;
1782}
1783
1784SDOperand SelectionDAG::
1785UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1786  SDNode *N = InN.Val;
1787  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1788
1789  // Check to see if there is no change.
1790  bool AnyChange = false;
1791  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1792    return InN;   // No operands changed, just return the input node.
1793
1794  // See if the modified node already exists.
1795  void *InsertPos = 0;
1796  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
1797    return SDOperand(Existing, InN.ResNo);
1798
1799  // Nope it doesn't.  Remove the node from it's current place in the maps.
1800  if (InsertPos)
1801    RemoveNodeFromCSEMaps(N);
1802
1803  // Now we update the operands.
1804  if (N->OperandList[0] != Op1) {
1805    N->OperandList[0].Val->removeUser(N);
1806    Op1.Val->addUser(N);
1807    N->OperandList[0] = Op1;
1808  }
1809  if (N->OperandList[1] != Op2) {
1810    N->OperandList[1].Val->removeUser(N);
1811    Op2.Val->addUser(N);
1812    N->OperandList[1] = Op2;
1813  }
1814
1815  // If this gets put into a CSE map, add it.
1816  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1817  return InN;
1818}
1819
1820SDOperand SelectionDAG::
1821UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1822  SDOperand Ops[] = { Op1, Op2, Op3 };
1823  return UpdateNodeOperands(N, Ops, 3);
1824}
1825
1826SDOperand SelectionDAG::
1827UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1828                   SDOperand Op3, SDOperand Op4) {
1829  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
1830  return UpdateNodeOperands(N, Ops, 4);
1831}
1832
1833SDOperand SelectionDAG::
1834UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1835                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1836  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
1837  return UpdateNodeOperands(N, Ops, 5);
1838}
1839
1840
1841SDOperand SelectionDAG::
1842UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
1843  SDNode *N = InN.Val;
1844  assert(N->getNumOperands() == NumOps &&
1845         "Update with wrong number of operands");
1846
1847  // Check to see if there is no change.
1848  bool AnyChange = false;
1849  for (unsigned i = 0; i != NumOps; ++i) {
1850    if (Ops[i] != N->getOperand(i)) {
1851      AnyChange = true;
1852      break;
1853    }
1854  }
1855
1856  // No operands changed, just return the input node.
1857  if (!AnyChange) return InN;
1858
1859  // See if the modified node already exists.
1860  void *InsertPos = 0;
1861  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
1862    return SDOperand(Existing, InN.ResNo);
1863
1864  // Nope it doesn't.  Remove the node from it's current place in the maps.
1865  if (InsertPos)
1866    RemoveNodeFromCSEMaps(N);
1867
1868  // Now we update the operands.
1869  for (unsigned i = 0; i != NumOps; ++i) {
1870    if (N->OperandList[i] != Ops[i]) {
1871      N->OperandList[i].Val->removeUser(N);
1872      Ops[i].Val->addUser(N);
1873      N->OperandList[i] = Ops[i];
1874    }
1875  }
1876
1877  // If this gets put into a CSE map, add it.
1878  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1879  return InN;
1880}
1881
1882
1883
1884
1885/// SelectNodeTo - These are used for target selectors to *mutate* the
1886/// specified node to have the specified return type, Target opcode, and
1887/// operands.  Note that target opcodes are stored as
1888/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1889///
1890/// Note that SelectNodeTo returns the resultant node.  If there is already a
1891/// node of the specified opcode and operands, it returns that node instead of
1892/// the current one.
1893SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1894                                     MVT::ValueType VT) {
1895  // If an identical node already exists, use it.
1896  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1897  if (ON) return SDOperand(ON, 0);
1898
1899  RemoveNodeFromCSEMaps(N);
1900
1901  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1902  N->setValueTypes(getNodeValueTypes(VT), 1);
1903
1904  ON = N;   // Memoize the new node.
1905  return SDOperand(N, 0);
1906}
1907
1908SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1909                                     MVT::ValueType VT, SDOperand Op1) {
1910  // If an identical node already exists, use it.
1911  MVT::ValueType *VTs = getNodeValueTypes(VT);
1912  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1);
1913  void *IP = 0;
1914  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1915    return SDOperand(ON, 0);
1916
1917  RemoveNodeFromCSEMaps(N);
1918  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1919  N->setValueTypes(getNodeValueTypes(VT), 1);
1920  N->setOperands(Op1);
1921  CSEMap.InsertNode(N, IP);
1922  return SDOperand(N, 0);
1923}
1924
1925SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1926                                     MVT::ValueType VT, SDOperand Op1,
1927                                     SDOperand Op2) {
1928  // If an identical node already exists, use it.
1929  MVT::ValueType *VTs = getNodeValueTypes(VT);
1930  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
1931  void *IP = 0;
1932  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1933    return SDOperand(ON, 0);
1934
1935  RemoveNodeFromCSEMaps(N);
1936  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1937  N->setValueTypes(VTs, 1);
1938  N->setOperands(Op1, Op2);
1939
1940  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1941  return SDOperand(N, 0);
1942}
1943
1944SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1945                                     MVT::ValueType VT, SDOperand Op1,
1946                                     SDOperand Op2, SDOperand Op3) {
1947  // If an identical node already exists, use it.
1948  MVT::ValueType *VTs = getNodeValueTypes(VT);
1949  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2, Op3);
1950  void *IP = 0;
1951  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1952    return SDOperand(ON, 0);
1953
1954  RemoveNodeFromCSEMaps(N);
1955  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1956  N->setValueTypes(VTs, 1);
1957  N->setOperands(Op1, Op2, Op3);
1958
1959  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1960  return SDOperand(N, 0);
1961}
1962
1963SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1964                                     MVT::ValueType VT, SDOperand Op1,
1965                                     SDOperand Op2, SDOperand Op3,
1966                                     SDOperand Op4) {
1967  // If an identical node already exists, use it.
1968  MVT::ValueType *VTs = getNodeValueTypes(VT);
1969  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1970  ID.AddOperand(Op1);
1971  ID.AddOperand(Op2);
1972  ID.AddOperand(Op3);
1973  ID.AddOperand(Op4);
1974  void *IP = 0;
1975  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1976    return SDOperand(ON, 0);
1977
1978  RemoveNodeFromCSEMaps(N);
1979  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1980  N->setValueTypes(VTs, 1);
1981  N->setOperands(Op1, Op2, Op3, Op4);
1982
1983  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1984  return SDOperand(N, 0);
1985}
1986
1987SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1988                                     MVT::ValueType VT, SDOperand Op1,
1989                                     SDOperand Op2, SDOperand Op3,
1990                                     SDOperand Op4, SDOperand Op5) {
1991  MVT::ValueType *VTs = getNodeValueTypes(VT);
1992  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1993  ID.AddOperand(Op1);
1994  ID.AddOperand(Op2);
1995  ID.AddOperand(Op3);
1996  ID.AddOperand(Op4);
1997  ID.AddOperand(Op5);
1998  void *IP = 0;
1999  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2000    return SDOperand(ON, 0);
2001
2002  RemoveNodeFromCSEMaps(N);
2003  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2004  N->setValueTypes(VTs, 1);
2005  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2006
2007  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2008  return SDOperand(N, 0);
2009}
2010
2011SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2012                                     MVT::ValueType VT, SDOperand Op1,
2013                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2014                                     SDOperand Op5, SDOperand Op6) {
2015  MVT::ValueType *VTs = getNodeValueTypes(VT);
2016  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2017  ID.AddOperand(Op1);
2018  ID.AddOperand(Op2);
2019  ID.AddOperand(Op3);
2020  ID.AddOperand(Op4);
2021  ID.AddOperand(Op5);
2022  ID.AddOperand(Op6);
2023  void *IP = 0;
2024  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2025    return SDOperand(ON, 0);
2026
2027  RemoveNodeFromCSEMaps(N);
2028  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2029  N->setValueTypes(VTs, 1);
2030  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
2031
2032  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2033  return SDOperand(N, 0);
2034}
2035
2036SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2037                                     MVT::ValueType VT, SDOperand Op1,
2038                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2039                                     SDOperand Op5, SDOperand Op6,
2040				     SDOperand Op7) {
2041  MVT::ValueType *VTs = getNodeValueTypes(VT);
2042  // If an identical node already exists, use it.
2043  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2044  ID.AddOperand(Op1);
2045  ID.AddOperand(Op2);
2046  ID.AddOperand(Op3);
2047  ID.AddOperand(Op4);
2048  ID.AddOperand(Op5);
2049  ID.AddOperand(Op6);
2050  ID.AddOperand(Op7);
2051  void *IP = 0;
2052  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2053    return SDOperand(ON, 0);
2054
2055  RemoveNodeFromCSEMaps(N);
2056  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2057  N->setValueTypes(VTs, 1);
2058  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
2059
2060  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2061  return SDOperand(N, 0);
2062}
2063SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2064                                     MVT::ValueType VT, SDOperand Op1,
2065                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2066                                     SDOperand Op5, SDOperand Op6,
2067				     SDOperand Op7, SDOperand Op8) {
2068  // If an identical node already exists, use it.
2069  MVT::ValueType *VTs = getNodeValueTypes(VT);
2070  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2071  ID.AddOperand(Op1);
2072  ID.AddOperand(Op2);
2073  ID.AddOperand(Op3);
2074  ID.AddOperand(Op4);
2075  ID.AddOperand(Op5);
2076  ID.AddOperand(Op6);
2077  ID.AddOperand(Op7);
2078  ID.AddOperand(Op8);
2079  void *IP = 0;
2080  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2081    return SDOperand(ON, 0);
2082
2083  RemoveNodeFromCSEMaps(N);
2084  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2085  N->setValueTypes(VTs, 1);
2086  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
2087
2088  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2089  return SDOperand(N, 0);
2090}
2091
2092SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2093                                     MVT::ValueType VT1, MVT::ValueType VT2,
2094                                     SDOperand Op1, SDOperand Op2) {
2095  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2096  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
2097  void *IP = 0;
2098  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2099    return SDOperand(ON, 0);
2100
2101  RemoveNodeFromCSEMaps(N);
2102  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2103  N->setValueTypes(VTs, 2);
2104  N->setOperands(Op1, Op2);
2105
2106  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2107  return SDOperand(N, 0);
2108}
2109
2110SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2111                                     MVT::ValueType VT1, MVT::ValueType VT2,
2112                                     SDOperand Op1, SDOperand Op2,
2113                                     SDOperand Op3) {
2114  // If an identical node already exists, use it.
2115  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2116  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs,
2117                                Op1, Op2, Op3);
2118  void *IP = 0;
2119  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2120    return SDOperand(ON, 0);
2121
2122  RemoveNodeFromCSEMaps(N);
2123  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2124  N->setValueTypes(VTs, 2);
2125  N->setOperands(Op1, Op2, Op3);
2126
2127  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2128  return SDOperand(N, 0);
2129}
2130
2131SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2132                                     MVT::ValueType VT1, MVT::ValueType VT2,
2133                                     SDOperand Op1, SDOperand Op2,
2134                                     SDOperand Op3, SDOperand Op4) {
2135  // If an identical node already exists, use it.
2136  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2137  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2138  ID.AddOperand(Op1);
2139  ID.AddOperand(Op2);
2140  ID.AddOperand(Op3);
2141  ID.AddOperand(Op4);
2142  void *IP = 0;
2143  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2144    return SDOperand(ON, 0);
2145
2146  RemoveNodeFromCSEMaps(N);
2147  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2148  N->setValueTypes(VTs, 2);
2149  N->setOperands(Op1, Op2, Op3, Op4);
2150
2151  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2152  return SDOperand(N, 0);
2153}
2154
2155SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2156                                     MVT::ValueType VT1, MVT::ValueType VT2,
2157                                     SDOperand Op1, SDOperand Op2,
2158                                     SDOperand Op3, SDOperand Op4,
2159                                     SDOperand Op5) {
2160  // If an identical node already exists, use it.
2161  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2162  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2163  ID.AddOperand(Op1);
2164  ID.AddOperand(Op2);
2165  ID.AddOperand(Op3);
2166  ID.AddOperand(Op4);
2167  ID.AddOperand(Op5);
2168  void *IP = 0;
2169  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2170    return SDOperand(ON, 0);
2171
2172  RemoveNodeFromCSEMaps(N);
2173  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2174  N->setValueTypes(VTs, 2);
2175  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2176
2177  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2178  return SDOperand(N, 0);
2179}
2180
2181/// getTargetNode - These are used for target selectors to create a new node
2182/// with specified return type(s), target opcode, and operands.
2183///
2184/// Note that getTargetNode returns the resultant node.  If there is already a
2185/// node of the specified opcode and operands, it returns that node instead of
2186/// the current one.
2187SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2188  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2189}
2190SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2191                                    SDOperand Op1) {
2192  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2193}
2194SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2195                                    SDOperand Op1, SDOperand Op2) {
2196  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2197}
2198SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2199                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2200  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2201}
2202SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2203                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2204                                    SDOperand Op4) {
2205  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4).Val;
2206}
2207SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2208                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2209                                    SDOperand Op4, SDOperand Op5) {
2210  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4, Op5).Val;
2211}
2212SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2213                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2214                                    SDOperand Op4, SDOperand Op5,
2215                                    SDOperand Op6) {
2216  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6 };
2217  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, 6).Val;
2218}
2219SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2220                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2221                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2222                                    SDOperand Op7) {
2223  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6, Op7 };
2224  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, 7).Val;
2225}
2226SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2227                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2228                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2229                                    SDOperand Op7, SDOperand Op8) {
2230  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8 };
2231  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, 8).Val;
2232}
2233SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2234                                    const SDOperand *Ops, unsigned NumOps) {
2235  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2236}
2237SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2238                                    MVT::ValueType VT2, SDOperand Op1) {
2239  std::vector<MVT::ValueType> ResultTys;
2240  ResultTys.push_back(VT1);
2241  ResultTys.push_back(VT2);
2242  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, &Op1, 1).Val;
2243}
2244SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2245                                    MVT::ValueType VT2, SDOperand Op1,
2246                                    SDOperand Op2) {
2247  std::vector<MVT::ValueType> ResultTys;
2248  ResultTys.push_back(VT1);
2249  ResultTys.push_back(VT2);
2250  SDOperand Ops[] = { Op1, Op2 };
2251  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 2).Val;
2252}
2253SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2254                                    MVT::ValueType VT2, SDOperand Op1,
2255                                    SDOperand Op2, SDOperand Op3) {
2256  std::vector<MVT::ValueType> ResultTys;
2257  ResultTys.push_back(VT1);
2258  ResultTys.push_back(VT2);
2259  SDOperand Ops[] = { Op1, Op2, Op3 };
2260  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 3).Val;
2261}
2262SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2263                                    MVT::ValueType VT2, SDOperand Op1,
2264                                    SDOperand Op2, SDOperand Op3,
2265                                    SDOperand Op4) {
2266  std::vector<MVT::ValueType> ResultTys;
2267  ResultTys.push_back(VT1);
2268  ResultTys.push_back(VT2);
2269  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2270  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 4).Val;
2271}
2272SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2273                                    MVT::ValueType VT2, SDOperand Op1,
2274                                    SDOperand Op2, SDOperand Op3, SDOperand Op4,
2275                                    SDOperand Op5) {
2276  std::vector<MVT::ValueType> ResultTys;
2277  ResultTys.push_back(VT1);
2278  ResultTys.push_back(VT2);
2279  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2280  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 5).Val;
2281}
2282SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2283                                    MVT::ValueType VT2, SDOperand Op1,
2284                                    SDOperand Op2, SDOperand Op3, SDOperand Op4,
2285                                    SDOperand Op5, SDOperand Op6) {
2286  std::vector<MVT::ValueType> ResultTys;
2287  ResultTys.push_back(VT1);
2288  ResultTys.push_back(VT2);
2289  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6 };
2290  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 6).Val;
2291}
2292SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2293                                    MVT::ValueType VT2, SDOperand Op1,
2294                                    SDOperand Op2, SDOperand Op3, SDOperand Op4,
2295                                    SDOperand Op5, SDOperand Op6,
2296                                    SDOperand Op7) {
2297  std::vector<MVT::ValueType> ResultTys;
2298  ResultTys.push_back(VT1);
2299  ResultTys.push_back(VT2);
2300  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6, Op7 };
2301  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 7).Val;
2302}
2303SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2304                                    MVT::ValueType VT2, MVT::ValueType VT3,
2305                                    SDOperand Op1, SDOperand Op2) {
2306  std::vector<MVT::ValueType> ResultTys;
2307  ResultTys.push_back(VT1);
2308  ResultTys.push_back(VT2);
2309  ResultTys.push_back(VT3);
2310  SDOperand Ops[] = { Op1, Op2 };
2311  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 2).Val;
2312}
2313SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2314                                    MVT::ValueType VT2, MVT::ValueType VT3,
2315                                    SDOperand Op1, SDOperand Op2,
2316                                    SDOperand Op3, SDOperand Op4,
2317                                    SDOperand Op5) {
2318  std::vector<MVT::ValueType> ResultTys;
2319  ResultTys.push_back(VT1);
2320  ResultTys.push_back(VT2);
2321  ResultTys.push_back(VT3);
2322  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2323  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 5).Val;
2324}
2325SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2326                                    MVT::ValueType VT2, MVT::ValueType VT3,
2327                                    SDOperand Op1, SDOperand Op2,
2328                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2329                                    SDOperand Op6) {
2330  std::vector<MVT::ValueType> ResultTys;
2331  ResultTys.push_back(VT1);
2332  ResultTys.push_back(VT2);
2333  ResultTys.push_back(VT3);
2334  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6 };
2335  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 6).Val;
2336}
2337SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2338                                    MVT::ValueType VT2, MVT::ValueType VT3,
2339                                    SDOperand Op1, SDOperand Op2,
2340                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2341                                    SDOperand Op6, SDOperand Op7) {
2342  std::vector<MVT::ValueType> ResultTys;
2343  ResultTys.push_back(VT1);
2344  ResultTys.push_back(VT2);
2345  ResultTys.push_back(VT3);
2346  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6, Op7 };
2347  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 7).Val;
2348}
2349SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2350                                    MVT::ValueType VT2,
2351                                    const SDOperand *Ops, unsigned NumOps) {
2352  std::vector<MVT::ValueType> ResultTys;
2353  ResultTys.push_back(VT1);
2354  ResultTys.push_back(VT2);
2355  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, NumOps).Val;
2356}
2357
2358/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2359/// This can cause recursive merging of nodes in the DAG.
2360///
2361/// This version assumes From/To have a single result value.
2362///
2363void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2364                                      std::vector<SDNode*> *Deleted) {
2365  SDNode *From = FromN.Val, *To = ToN.Val;
2366  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2367         "Cannot replace with this method!");
2368  assert(From != To && "Cannot replace uses of with self");
2369
2370  while (!From->use_empty()) {
2371    // Process users until they are all gone.
2372    SDNode *U = *From->use_begin();
2373
2374    // This node is about to morph, remove its old self from the CSE maps.
2375    RemoveNodeFromCSEMaps(U);
2376
2377    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2378         I != E; ++I)
2379      if (I->Val == From) {
2380        From->removeUser(U);
2381        I->Val = To;
2382        To->addUser(U);
2383      }
2384
2385    // Now that we have modified U, add it back to the CSE maps.  If it already
2386    // exists there, recursively merge the results together.
2387    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2388      ReplaceAllUsesWith(U, Existing, Deleted);
2389      // U is now dead.
2390      if (Deleted) Deleted->push_back(U);
2391      DeleteNodeNotInCSEMaps(U);
2392    }
2393  }
2394}
2395
2396/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2397/// This can cause recursive merging of nodes in the DAG.
2398///
2399/// This version assumes From/To have matching types and numbers of result
2400/// values.
2401///
2402void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2403                                      std::vector<SDNode*> *Deleted) {
2404  assert(From != To && "Cannot replace uses of with self");
2405  assert(From->getNumValues() == To->getNumValues() &&
2406         "Cannot use this version of ReplaceAllUsesWith!");
2407  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2408    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2409    return;
2410  }
2411
2412  while (!From->use_empty()) {
2413    // Process users until they are all gone.
2414    SDNode *U = *From->use_begin();
2415
2416    // This node is about to morph, remove its old self from the CSE maps.
2417    RemoveNodeFromCSEMaps(U);
2418
2419    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2420         I != E; ++I)
2421      if (I->Val == From) {
2422        From->removeUser(U);
2423        I->Val = To;
2424        To->addUser(U);
2425      }
2426
2427    // Now that we have modified U, add it back to the CSE maps.  If it already
2428    // exists there, recursively merge the results together.
2429    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2430      ReplaceAllUsesWith(U, Existing, Deleted);
2431      // U is now dead.
2432      if (Deleted) Deleted->push_back(U);
2433      DeleteNodeNotInCSEMaps(U);
2434    }
2435  }
2436}
2437
2438/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2439/// This can cause recursive merging of nodes in the DAG.
2440///
2441/// This version can replace From with any result values.  To must match the
2442/// number and types of values returned by From.
2443void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2444                                      const std::vector<SDOperand> &To,
2445                                      std::vector<SDNode*> *Deleted) {
2446  assert(From->getNumValues() == To.size() &&
2447         "Incorrect number of values to replace with!");
2448  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2449    // Degenerate case handled above.
2450    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2451    return;
2452  }
2453
2454  while (!From->use_empty()) {
2455    // Process users until they are all gone.
2456    SDNode *U = *From->use_begin();
2457
2458    // This node is about to morph, remove its old self from the CSE maps.
2459    RemoveNodeFromCSEMaps(U);
2460
2461    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2462         I != E; ++I)
2463      if (I->Val == From) {
2464        const SDOperand &ToOp = To[I->ResNo];
2465        From->removeUser(U);
2466        *I = ToOp;
2467        ToOp.Val->addUser(U);
2468      }
2469
2470    // Now that we have modified U, add it back to the CSE maps.  If it already
2471    // exists there, recursively merge the results together.
2472    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2473      ReplaceAllUsesWith(U, Existing, Deleted);
2474      // U is now dead.
2475      if (Deleted) Deleted->push_back(U);
2476      DeleteNodeNotInCSEMaps(U);
2477    }
2478  }
2479}
2480
2481/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2482/// uses of other values produced by From.Val alone.  The Deleted vector is
2483/// handled the same was as for ReplaceAllUsesWith.
2484void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2485                                             std::vector<SDNode*> &Deleted) {
2486  assert(From != To && "Cannot replace a value with itself");
2487  // Handle the simple, trivial, case efficiently.
2488  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2489    ReplaceAllUsesWith(From, To, &Deleted);
2490    return;
2491  }
2492
2493  // Get all of the users in a nice, deterministically ordered, uniqued set.
2494  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2495
2496  while (!Users.empty()) {
2497    // We know that this user uses some value of From.  If it is the right
2498    // value, update it.
2499    SDNode *User = Users.back();
2500    Users.pop_back();
2501
2502    for (SDOperand *Op = User->OperandList,
2503         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2504      if (*Op == From) {
2505        // Okay, we know this user needs to be updated.  Remove its old self
2506        // from the CSE maps.
2507        RemoveNodeFromCSEMaps(User);
2508
2509        // Update all operands that match "From".
2510        for (; Op != E; ++Op) {
2511          if (*Op == From) {
2512            From.Val->removeUser(User);
2513            *Op = To;
2514            To.Val->addUser(User);
2515          }
2516        }
2517
2518        // Now that we have modified User, add it back to the CSE maps.  If it
2519        // already exists there, recursively merge the results together.
2520        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2521          unsigned NumDeleted = Deleted.size();
2522          ReplaceAllUsesWith(User, Existing, &Deleted);
2523
2524          // User is now dead.
2525          Deleted.push_back(User);
2526          DeleteNodeNotInCSEMaps(User);
2527
2528          // We have to be careful here, because ReplaceAllUsesWith could have
2529          // deleted a user of From, which means there may be dangling pointers
2530          // in the "Users" setvector.  Scan over the deleted node pointers and
2531          // remove them from the setvector.
2532          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2533            Users.remove(Deleted[i]);
2534        }
2535        break;   // Exit the operand scanning loop.
2536      }
2537    }
2538  }
2539}
2540
2541
2542/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2543/// their allnodes order. It returns the maximum id.
2544unsigned SelectionDAG::AssignNodeIds() {
2545  unsigned Id = 0;
2546  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2547    SDNode *N = I;
2548    N->setNodeId(Id++);
2549  }
2550  return Id;
2551}
2552
2553/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2554/// based on their topological order. It returns the maximum id and a vector
2555/// of the SDNodes* in assigned order by reference.
2556unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2557  unsigned DAGSize = AllNodes.size();
2558  std::vector<unsigned> InDegree(DAGSize);
2559  std::vector<SDNode*> Sources;
2560
2561  // Use a two pass approach to avoid using a std::map which is slow.
2562  unsigned Id = 0;
2563  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2564    SDNode *N = I;
2565    N->setNodeId(Id++);
2566    unsigned Degree = N->use_size();
2567    InDegree[N->getNodeId()] = Degree;
2568    if (Degree == 0)
2569      Sources.push_back(N);
2570  }
2571
2572  TopOrder.clear();
2573  while (!Sources.empty()) {
2574    SDNode *N = Sources.back();
2575    Sources.pop_back();
2576    TopOrder.push_back(N);
2577    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2578      SDNode *P = I->Val;
2579      unsigned Degree = --InDegree[P->getNodeId()];
2580      if (Degree == 0)
2581        Sources.push_back(P);
2582    }
2583  }
2584
2585  // Second pass, assign the actual topological order as node ids.
2586  Id = 0;
2587  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2588       TI != TE; ++TI)
2589    (*TI)->setNodeId(Id++);
2590
2591  return Id;
2592}
2593
2594
2595
2596//===----------------------------------------------------------------------===//
2597//                              SDNode Class
2598//===----------------------------------------------------------------------===//
2599
2600// Out-of-line virtual method to give class a home.
2601void SDNode::ANCHOR() {
2602}
2603
2604/// getValueTypeList - Return a pointer to the specified value type.
2605///
2606MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2607  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2608  VTs[VT] = VT;
2609  return &VTs[VT];
2610}
2611
2612/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2613/// indicated value.  This method ignores uses of other values defined by this
2614/// operation.
2615bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2616  assert(Value < getNumValues() && "Bad value!");
2617
2618  // If there is only one value, this is easy.
2619  if (getNumValues() == 1)
2620    return use_size() == NUses;
2621  if (Uses.size() < NUses) return false;
2622
2623  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2624
2625  std::set<SDNode*> UsersHandled;
2626
2627  for (std::vector<SDNode*>::const_iterator UI = Uses.begin(), E = Uses.end();
2628       UI != E; ++UI) {
2629    SDNode *User = *UI;
2630    if (User->getNumOperands() == 1 ||
2631        UsersHandled.insert(User).second)     // First time we've seen this?
2632      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2633        if (User->getOperand(i) == TheValue) {
2634          if (NUses == 0)
2635            return false;   // too many uses
2636          --NUses;
2637        }
2638  }
2639
2640  // Found exactly the right number of uses?
2641  return NUses == 0;
2642}
2643
2644
2645// isOnlyUse - Return true if this node is the only use of N.
2646bool SDNode::isOnlyUse(SDNode *N) const {
2647  bool Seen = false;
2648  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2649    SDNode *User = *I;
2650    if (User == this)
2651      Seen = true;
2652    else
2653      return false;
2654  }
2655
2656  return Seen;
2657}
2658
2659// isOperand - Return true if this node is an operand of N.
2660bool SDOperand::isOperand(SDNode *N) const {
2661  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2662    if (*this == N->getOperand(i))
2663      return true;
2664  return false;
2665}
2666
2667bool SDNode::isOperand(SDNode *N) const {
2668  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2669    if (this == N->OperandList[i].Val)
2670      return true;
2671  return false;
2672}
2673
2674const char *SDNode::getOperationName(const SelectionDAG *G) const {
2675  switch (getOpcode()) {
2676  default:
2677    if (getOpcode() < ISD::BUILTIN_OP_END)
2678      return "<<Unknown DAG Node>>";
2679    else {
2680      if (G) {
2681        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2682          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2683            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2684
2685        TargetLowering &TLI = G->getTargetLoweringInfo();
2686        const char *Name =
2687          TLI.getTargetNodeName(getOpcode());
2688        if (Name) return Name;
2689      }
2690
2691      return "<<Unknown Target Node>>";
2692    }
2693
2694  case ISD::PCMARKER:      return "PCMarker";
2695  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2696  case ISD::SRCVALUE:      return "SrcValue";
2697  case ISD::EntryToken:    return "EntryToken";
2698  case ISD::TokenFactor:   return "TokenFactor";
2699  case ISD::AssertSext:    return "AssertSext";
2700  case ISD::AssertZext:    return "AssertZext";
2701
2702  case ISD::STRING:        return "String";
2703  case ISD::BasicBlock:    return "BasicBlock";
2704  case ISD::VALUETYPE:     return "ValueType";
2705  case ISD::Register:      return "Register";
2706
2707  case ISD::Constant:      return "Constant";
2708  case ISD::ConstantFP:    return "ConstantFP";
2709  case ISD::GlobalAddress: return "GlobalAddress";
2710  case ISD::FrameIndex:    return "FrameIndex";
2711  case ISD::JumpTable:     return "JumpTable";
2712  case ISD::ConstantPool:  return "ConstantPool";
2713  case ISD::ExternalSymbol: return "ExternalSymbol";
2714  case ISD::INTRINSIC_WO_CHAIN: {
2715    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2716    return Intrinsic::getName((Intrinsic::ID)IID);
2717  }
2718  case ISD::INTRINSIC_VOID:
2719  case ISD::INTRINSIC_W_CHAIN: {
2720    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2721    return Intrinsic::getName((Intrinsic::ID)IID);
2722  }
2723
2724  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2725  case ISD::TargetConstant: return "TargetConstant";
2726  case ISD::TargetConstantFP:return "TargetConstantFP";
2727  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2728  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2729  case ISD::TargetJumpTable:  return "TargetJumpTable";
2730  case ISD::TargetConstantPool:  return "TargetConstantPool";
2731  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2732
2733  case ISD::CopyToReg:     return "CopyToReg";
2734  case ISD::CopyFromReg:   return "CopyFromReg";
2735  case ISD::UNDEF:         return "undef";
2736  case ISD::MERGE_VALUES:  return "mergevalues";
2737  case ISD::INLINEASM:     return "inlineasm";
2738  case ISD::HANDLENODE:    return "handlenode";
2739  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2740  case ISD::CALL:          return "call";
2741
2742  // Unary operators
2743  case ISD::FABS:   return "fabs";
2744  case ISD::FNEG:   return "fneg";
2745  case ISD::FSQRT:  return "fsqrt";
2746  case ISD::FSIN:   return "fsin";
2747  case ISD::FCOS:   return "fcos";
2748
2749  // Binary operators
2750  case ISD::ADD:    return "add";
2751  case ISD::SUB:    return "sub";
2752  case ISD::MUL:    return "mul";
2753  case ISD::MULHU:  return "mulhu";
2754  case ISD::MULHS:  return "mulhs";
2755  case ISD::SDIV:   return "sdiv";
2756  case ISD::UDIV:   return "udiv";
2757  case ISD::SREM:   return "srem";
2758  case ISD::UREM:   return "urem";
2759  case ISD::AND:    return "and";
2760  case ISD::OR:     return "or";
2761  case ISD::XOR:    return "xor";
2762  case ISD::SHL:    return "shl";
2763  case ISD::SRA:    return "sra";
2764  case ISD::SRL:    return "srl";
2765  case ISD::ROTL:   return "rotl";
2766  case ISD::ROTR:   return "rotr";
2767  case ISD::FADD:   return "fadd";
2768  case ISD::FSUB:   return "fsub";
2769  case ISD::FMUL:   return "fmul";
2770  case ISD::FDIV:   return "fdiv";
2771  case ISD::FREM:   return "frem";
2772  case ISD::FCOPYSIGN: return "fcopysign";
2773  case ISD::VADD:   return "vadd";
2774  case ISD::VSUB:   return "vsub";
2775  case ISD::VMUL:   return "vmul";
2776  case ISD::VSDIV:  return "vsdiv";
2777  case ISD::VUDIV:  return "vudiv";
2778  case ISD::VAND:   return "vand";
2779  case ISD::VOR:    return "vor";
2780  case ISD::VXOR:   return "vxor";
2781
2782  case ISD::SETCC:       return "setcc";
2783  case ISD::SELECT:      return "select";
2784  case ISD::SELECT_CC:   return "select_cc";
2785  case ISD::VSELECT:     return "vselect";
2786  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2787  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2788  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2789  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2790  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2791  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2792  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2793  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2794  case ISD::VBIT_CONVERT:        return "vbit_convert";
2795  case ISD::ADDC:        return "addc";
2796  case ISD::ADDE:        return "adde";
2797  case ISD::SUBC:        return "subc";
2798  case ISD::SUBE:        return "sube";
2799  case ISD::SHL_PARTS:   return "shl_parts";
2800  case ISD::SRA_PARTS:   return "sra_parts";
2801  case ISD::SRL_PARTS:   return "srl_parts";
2802
2803  // Conversion operators.
2804  case ISD::SIGN_EXTEND: return "sign_extend";
2805  case ISD::ZERO_EXTEND: return "zero_extend";
2806  case ISD::ANY_EXTEND:  return "any_extend";
2807  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2808  case ISD::TRUNCATE:    return "truncate";
2809  case ISD::FP_ROUND:    return "fp_round";
2810  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2811  case ISD::FP_EXTEND:   return "fp_extend";
2812
2813  case ISD::SINT_TO_FP:  return "sint_to_fp";
2814  case ISD::UINT_TO_FP:  return "uint_to_fp";
2815  case ISD::FP_TO_SINT:  return "fp_to_sint";
2816  case ISD::FP_TO_UINT:  return "fp_to_uint";
2817  case ISD::BIT_CONVERT: return "bit_convert";
2818
2819    // Control flow instructions
2820  case ISD::BR:      return "br";
2821  case ISD::BRIND:   return "brind";
2822  case ISD::BRCOND:  return "brcond";
2823  case ISD::BR_CC:   return "br_cc";
2824  case ISD::RET:     return "ret";
2825  case ISD::CALLSEQ_START:  return "callseq_start";
2826  case ISD::CALLSEQ_END:    return "callseq_end";
2827
2828    // Other operators
2829  case ISD::LOAD:               return "load";
2830  case ISD::STORE:              return "store";
2831  case ISD::VLOAD:              return "vload";
2832  case ISD::EXTLOAD:            return "extload";
2833  case ISD::SEXTLOAD:           return "sextload";
2834  case ISD::ZEXTLOAD:           return "zextload";
2835  case ISD::TRUNCSTORE:         return "truncstore";
2836  case ISD::VAARG:              return "vaarg";
2837  case ISD::VACOPY:             return "vacopy";
2838  case ISD::VAEND:              return "vaend";
2839  case ISD::VASTART:            return "vastart";
2840  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2841  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2842  case ISD::BUILD_PAIR:         return "build_pair";
2843  case ISD::STACKSAVE:          return "stacksave";
2844  case ISD::STACKRESTORE:       return "stackrestore";
2845
2846  // Block memory operations.
2847  case ISD::MEMSET:  return "memset";
2848  case ISD::MEMCPY:  return "memcpy";
2849  case ISD::MEMMOVE: return "memmove";
2850
2851  // Bit manipulation
2852  case ISD::BSWAP:   return "bswap";
2853  case ISD::CTPOP:   return "ctpop";
2854  case ISD::CTTZ:    return "cttz";
2855  case ISD::CTLZ:    return "ctlz";
2856
2857  // Debug info
2858  case ISD::LOCATION: return "location";
2859  case ISD::DEBUG_LOC: return "debug_loc";
2860  case ISD::DEBUG_LABEL: return "debug_label";
2861
2862  case ISD::CONDCODE:
2863    switch (cast<CondCodeSDNode>(this)->get()) {
2864    default: assert(0 && "Unknown setcc condition!");
2865    case ISD::SETOEQ:  return "setoeq";
2866    case ISD::SETOGT:  return "setogt";
2867    case ISD::SETOGE:  return "setoge";
2868    case ISD::SETOLT:  return "setolt";
2869    case ISD::SETOLE:  return "setole";
2870    case ISD::SETONE:  return "setone";
2871
2872    case ISD::SETO:    return "seto";
2873    case ISD::SETUO:   return "setuo";
2874    case ISD::SETUEQ:  return "setue";
2875    case ISD::SETUGT:  return "setugt";
2876    case ISD::SETUGE:  return "setuge";
2877    case ISD::SETULT:  return "setult";
2878    case ISD::SETULE:  return "setule";
2879    case ISD::SETUNE:  return "setune";
2880
2881    case ISD::SETEQ:   return "seteq";
2882    case ISD::SETGT:   return "setgt";
2883    case ISD::SETGE:   return "setge";
2884    case ISD::SETLT:   return "setlt";
2885    case ISD::SETLE:   return "setle";
2886    case ISD::SETNE:   return "setne";
2887    }
2888  }
2889}
2890
2891void SDNode::dump() const { dump(0); }
2892void SDNode::dump(const SelectionDAG *G) const {
2893  std::cerr << (void*)this << ": ";
2894
2895  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2896    if (i) std::cerr << ",";
2897    if (getValueType(i) == MVT::Other)
2898      std::cerr << "ch";
2899    else
2900      std::cerr << MVT::getValueTypeString(getValueType(i));
2901  }
2902  std::cerr << " = " << getOperationName(G);
2903
2904  std::cerr << " ";
2905  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2906    if (i) std::cerr << ", ";
2907    std::cerr << (void*)getOperand(i).Val;
2908    if (unsigned RN = getOperand(i).ResNo)
2909      std::cerr << ":" << RN;
2910  }
2911
2912  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2913    std::cerr << "<" << CSDN->getValue() << ">";
2914  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2915    std::cerr << "<" << CSDN->getValue() << ">";
2916  } else if (const GlobalAddressSDNode *GADN =
2917             dyn_cast<GlobalAddressSDNode>(this)) {
2918    int offset = GADN->getOffset();
2919    std::cerr << "<";
2920    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2921    if (offset > 0)
2922      std::cerr << " + " << offset;
2923    else
2924      std::cerr << " " << offset;
2925  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2926    std::cerr << "<" << FIDN->getIndex() << ">";
2927  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2928    int offset = CP->getOffset();
2929    std::cerr << "<" << *CP->get() << ">";
2930    if (offset > 0)
2931      std::cerr << " + " << offset;
2932    else
2933      std::cerr << " " << offset;
2934  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2935    std::cerr << "<";
2936    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2937    if (LBB)
2938      std::cerr << LBB->getName() << " ";
2939    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2940  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2941    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2942      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2943    } else {
2944      std::cerr << " #" << R->getReg();
2945    }
2946  } else if (const ExternalSymbolSDNode *ES =
2947             dyn_cast<ExternalSymbolSDNode>(this)) {
2948    std::cerr << "'" << ES->getSymbol() << "'";
2949  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2950    if (M->getValue())
2951      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2952    else
2953      std::cerr << "<null:" << M->getOffset() << ">";
2954  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2955    std::cerr << ":" << getValueTypeString(N->getVT());
2956  }
2957}
2958
2959static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2960  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2961    if (N->getOperand(i).Val->hasOneUse())
2962      DumpNodes(N->getOperand(i).Val, indent+2, G);
2963    else
2964      std::cerr << "\n" << std::string(indent+2, ' ')
2965                << (void*)N->getOperand(i).Val << ": <multiple use>";
2966
2967
2968  std::cerr << "\n" << std::string(indent, ' ');
2969  N->dump(G);
2970}
2971
2972void SelectionDAG::dump() const {
2973  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2974  std::vector<const SDNode*> Nodes;
2975  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2976       I != E; ++I)
2977    Nodes.push_back(I);
2978
2979  std::sort(Nodes.begin(), Nodes.end());
2980
2981  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2982    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2983      DumpNodes(Nodes[i], 2, this);
2984  }
2985
2986  DumpNodes(getRoot().Val, 2, this);
2987
2988  std::cerr << "\n\n";
2989}
2990
2991/// InsertISelMapEntry - A helper function to insert a key / element pair
2992/// into a SDOperand to SDOperand map. This is added to avoid the map
2993/// insertion operator from being inlined.
2994void SelectionDAG::InsertISelMapEntry(std::map<SDOperand, SDOperand> &Map,
2995                                      SDNode *Key, unsigned KeyResNo,
2996                                      SDNode *Element, unsigned ElementResNo) {
2997  Map.insert(std::make_pair(SDOperand(Key, KeyResNo),
2998                            SDOperand(Element, ElementResNo)));
2999}
3000