SelectionDAG.cpp revision bfdf7f38523bd38ae0538861a2bfd8bdc46e5c33
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/System/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f32:     return &APFloat::IEEEsingle;
66  case MVT::f64:     return &APFloat::IEEEdouble;
67  case MVT::f80:     return &APFloat::x87DoubleExtended;
68  case MVT::f128:    return &APFloat::IEEEquad;
69  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70  }
71}
72
73SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74
75//===----------------------------------------------------------------------===//
76//                              ConstantFPSDNode Class
77//===----------------------------------------------------------------------===//
78
79/// isExactlyValue - We don't rely on operator== working on double values, as
80/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81/// As such, this method can be used to do an exact bit-for-bit comparison of
82/// two floating point values.
83bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84  return getValueAPF().bitwiseIsEqual(V);
85}
86
87bool ConstantFPSDNode::isValueValidForType(EVT VT,
88                                           const APFloat& Val) {
89  assert(VT.isFloatingPoint() && "Can only convert between FP types");
90
91  // PPC long double cannot be converted to any other type.
92  if (VT == MVT::ppcf128 ||
93      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94    return false;
95
96  // convert modifies in place, so make a copy.
97  APFloat Val2 = APFloat(Val);
98  bool losesInfo;
99  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100                      &losesInfo);
101  return !losesInfo;
102}
103
104//===----------------------------------------------------------------------===//
105//                              ISD Namespace
106//===----------------------------------------------------------------------===//
107
108/// isBuildVectorAllOnes - Return true if the specified node is a
109/// BUILD_VECTOR where all of the elements are ~0 or undef.
110bool ISD::isBuildVectorAllOnes(const SDNode *N) {
111  // Look through a bit convert.
112  if (N->getOpcode() == ISD::BIT_CONVERT)
113    N = N->getOperand(0).getNode();
114
115  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116
117  unsigned i = 0, e = N->getNumOperands();
118
119  // Skip over all of the undef values.
120  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121    ++i;
122
123  // Do not accept an all-undef vector.
124  if (i == e) return false;
125
126  // Do not accept build_vectors that aren't all constants or which have non-~0
127  // elements.
128  SDValue NotZero = N->getOperand(i);
129  if (isa<ConstantSDNode>(NotZero)) {
130    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131      return false;
132  } else if (isa<ConstantFPSDNode>(NotZero)) {
133    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134                bitcastToAPInt().isAllOnesValue())
135      return false;
136  } else
137    return false;
138
139  // Okay, we have at least one ~0 value, check to see if the rest match or are
140  // undefs.
141  for (++i; i != e; ++i)
142    if (N->getOperand(i) != NotZero &&
143        N->getOperand(i).getOpcode() != ISD::UNDEF)
144      return false;
145  return true;
146}
147
148
149/// isBuildVectorAllZeros - Return true if the specified node is a
150/// BUILD_VECTOR where all of the elements are 0 or undef.
151bool ISD::isBuildVectorAllZeros(const SDNode *N) {
152  // Look through a bit convert.
153  if (N->getOpcode() == ISD::BIT_CONVERT)
154    N = N->getOperand(0).getNode();
155
156  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157
158  unsigned i = 0, e = N->getNumOperands();
159
160  // Skip over all of the undef values.
161  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162    ++i;
163
164  // Do not accept an all-undef vector.
165  if (i == e) return false;
166
167  // Do not accept build_vectors that aren't all constants or which have non-0
168  // elements.
169  SDValue Zero = N->getOperand(i);
170  if (isa<ConstantSDNode>(Zero)) {
171    if (!cast<ConstantSDNode>(Zero)->isNullValue())
172      return false;
173  } else if (isa<ConstantFPSDNode>(Zero)) {
174    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175      return false;
176  } else
177    return false;
178
179  // Okay, we have at least one 0 value, check to see if the rest match or are
180  // undefs.
181  for (++i; i != e; ++i)
182    if (N->getOperand(i) != Zero &&
183        N->getOperand(i).getOpcode() != ISD::UNDEF)
184      return false;
185  return true;
186}
187
188/// isScalarToVector - Return true if the specified node is a
189/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190/// element is not an undef.
191bool ISD::isScalarToVector(const SDNode *N) {
192  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193    return true;
194
195  if (N->getOpcode() != ISD::BUILD_VECTOR)
196    return false;
197  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198    return false;
199  unsigned NumElems = N->getNumOperands();
200  for (unsigned i = 1; i < NumElems; ++i) {
201    SDValue V = N->getOperand(i);
202    if (V.getOpcode() != ISD::UNDEF)
203      return false;
204  }
205  return true;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211  // To perform this operation, we just need to swap the L and G bits of the
212  // operation.
213  unsigned OldL = (Operation >> 2) & 1;
214  unsigned OldG = (Operation >> 1) & 1;
215  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216                       (OldL << 1) |       // New G bit
217                       (OldG << 2));       // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223  unsigned Operation = Op;
224  if (isInteger)
225    Operation ^= 7;   // Flip L, G, E bits, but not U.
226  else
227    Operation ^= 15;  // Flip all of the condition bits.
228
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;  // Don't let N and U bits get set.
231
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: llvm_unreachable("Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return MF->getTarget();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getNode());
343    ID.AddInteger(Ops->getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356/// the NodeID data.
357static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358  switch (N->getOpcode()) {
359  case ISD::TargetExternalSymbol:
360  case ISD::ExternalSymbol:
361    llvm_unreachable("Should only be used on nodes with operands");
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::TargetConstant:
364  case ISD::Constant:
365    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366    break;
367  case ISD::TargetConstantFP:
368  case ISD::ConstantFP: {
369    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370    break;
371  }
372  case ISD::TargetGlobalAddress:
373  case ISD::GlobalAddress:
374  case ISD::TargetGlobalTLSAddress:
375  case ISD::GlobalTLSAddress: {
376    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377    ID.AddPointer(GA->getGlobal());
378    ID.AddInteger(GA->getOffset());
379    ID.AddInteger(GA->getTargetFlags());
380    break;
381  }
382  case ISD::BasicBlock:
383    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384    break;
385  case ISD::Register:
386    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387    break;
388
389  case ISD::SRCVALUE:
390    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391    break;
392  case ISD::FrameIndex:
393  case ISD::TargetFrameIndex:
394    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395    break;
396  case ISD::JumpTable:
397  case ISD::TargetJumpTable:
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    ID.AddInteger(CP->getTargetFlags());
411    break;
412  }
413  case ISD::LOAD: {
414    const LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getMemoryVT().getRawBits());
416    ID.AddInteger(LD->getRawSubclassData());
417    break;
418  }
419  case ISD::STORE: {
420    const StoreSDNode *ST = cast<StoreSDNode>(N);
421    ID.AddInteger(ST->getMemoryVT().getRawBits());
422    ID.AddInteger(ST->getRawSubclassData());
423    break;
424  }
425  case ISD::ATOMIC_CMP_SWAP:
426  case ISD::ATOMIC_SWAP:
427  case ISD::ATOMIC_LOAD_ADD:
428  case ISD::ATOMIC_LOAD_SUB:
429  case ISD::ATOMIC_LOAD_AND:
430  case ISD::ATOMIC_LOAD_OR:
431  case ISD::ATOMIC_LOAD_XOR:
432  case ISD::ATOMIC_LOAD_NAND:
433  case ISD::ATOMIC_LOAD_MIN:
434  case ISD::ATOMIC_LOAD_MAX:
435  case ISD::ATOMIC_LOAD_UMIN:
436  case ISD::ATOMIC_LOAD_UMAX: {
437    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438    ID.AddInteger(AT->getMemoryVT().getRawBits());
439    ID.AddInteger(AT->getRawSubclassData());
440    break;
441  }
442  case ISD::VECTOR_SHUFFLE: {
443    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445         i != e; ++i)
446      ID.AddInteger(SVN->getMaskElt(i));
447    break;
448  }
449  case ISD::TargetBlockAddress:
450  case ISD::BlockAddress: {
451    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453    break;
454  }
455  } // end switch (N->getOpcode())
456}
457
458/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459/// data.
460static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461  AddNodeIDOpcode(ID, N->getOpcode());
462  // Add the return value info.
463  AddNodeIDValueTypes(ID, N->getVTList());
464  // Add the operand info.
465  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466
467  // Handle SDNode leafs with special info.
468  AddNodeIDCustom(ID, N);
469}
470
471/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472/// the CSE map that carries volatility, temporalness, indexing mode, and
473/// extension/truncation information.
474///
475static inline unsigned
476encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477                     bool isNonTemporal) {
478  assert((ConvType & 3) == ConvType &&
479         "ConvType may not require more than 2 bits!");
480  assert((AM & 7) == AM &&
481         "AM may not require more than 3 bits!");
482  return ConvType |
483         (AM << 2) |
484         (isVolatile << 5) |
485         (isNonTemporal << 6);
486}
487
488//===----------------------------------------------------------------------===//
489//                              SelectionDAG Class
490//===----------------------------------------------------------------------===//
491
492/// doNotCSE - Return true if CSE should not be performed for this node.
493static bool doNotCSE(SDNode *N) {
494  if (N->getValueType(0) == MVT::Flag)
495    return true; // Never CSE anything that produces a flag.
496
497  switch (N->getOpcode()) {
498  default: break;
499  case ISD::HANDLENODE:
500  case ISD::EH_LABEL:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.pop_back_val();
541
542    if (UpdateListener)
543      UpdateListener->NodeDeleted(N, 0);
544
545    // Take the node out of the appropriate CSE map.
546    RemoveNodeFromCSEMaps(N);
547
548    // Next, brutally remove the operand list.  This is safe to do, as there are
549    // no cycles in the graph.
550    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551      SDUse &Use = *I++;
552      SDNode *Operand = Use.getNode();
553      Use.set(SDValue());
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  // First take this out of the appropriate CSE map.
571  RemoveNodeFromCSEMaps(N);
572
573  // Finally, remove uses due to operands of this node, remove from the
574  // AllNodes list, and delete the node.
575  DeleteNodeNotInCSEMaps(N);
576}
577
578void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581
582  // Drop all of the operands and decrement used node's use counts.
583  N->DropOperands();
584
585  DeallocateNode(N);
586}
587
588void SelectionDAG::DeallocateNode(SDNode *N) {
589  if (N->OperandsNeedDelete)
590    delete[] N->OperandList;
591
592  // Set the opcode to DELETED_NODE to help catch bugs when node
593  // memory is reallocated.
594  N->NodeType = ISD::DELETED_NODE;
595
596  NodeAllocator.Deallocate(AllNodes.remove(N));
597
598  // Remove the ordering of this node.
599  Ordering->remove(N);
600
601  // And its entry in the debug info table, if any.
602  DbgInfo->remove(N);
603}
604
605/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
606/// correspond to it.  This is useful when we're about to delete or repurpose
607/// the node.  We don't want future request for structurally identical nodes
608/// to return N anymore.
609bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
610  bool Erased = false;
611  switch (N->getOpcode()) {
612  case ISD::EntryToken:
613    llvm_unreachable("EntryToken should not be in CSEMaps!");
614    return false;
615  case ISD::HANDLENODE: return false;  // noop.
616  case ISD::CONDCODE:
617    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618           "Cond code doesn't exist!");
619    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621    break;
622  case ISD::ExternalSymbol:
623    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::TargetExternalSymbol: {
626    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627    Erased = TargetExternalSymbols.erase(
628               std::pair<std::string,unsigned char>(ESN->getSymbol(),
629                                                    ESN->getTargetFlags()));
630    break;
631  }
632  case ISD::VALUETYPE: {
633    EVT VT = cast<VTSDNode>(N)->getVT();
634    if (VT.isExtended()) {
635      Erased = ExtendedValueTypeNodes.erase(VT);
636    } else {
637      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639    }
640    break;
641  }
642  default:
643    // Remove it from the CSE Map.
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
747void SelectionDAG::VerifyNode(SDNode *N) {
748  switch (N->getOpcode()) {
749  default:
750    break;
751  case ISD::BUILD_PAIR: {
752    EVT VT = N->getValueType(0);
753    assert(N->getNumValues() == 1 && "Too many results!");
754    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
755           "Wrong return type!");
756    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
757    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
758           "Mismatched operand types!");
759    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
760           "Wrong operand type!");
761    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
762           "Wrong return type size");
763    break;
764  }
765  case ISD::BUILD_VECTOR: {
766    assert(N->getNumValues() == 1 && "Too many results!");
767    assert(N->getValueType(0).isVector() && "Wrong return type!");
768    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
769           "Wrong number of operands!");
770    EVT EltVT = N->getValueType(0).getVectorElementType();
771    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
772      assert((I->getValueType() == EltVT ||
773             (EltVT.isInteger() && I->getValueType().isInteger() &&
774              EltVT.bitsLE(I->getValueType()))) &&
775            "Wrong operand type!");
776    break;
777  }
778  }
779}
780
781/// getEVTAlignment - Compute the default alignment value for the
782/// given type.
783///
784unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
785  const Type *Ty = VT == MVT::iPTR ?
786                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
787                   VT.getTypeForEVT(*getContext());
788
789  return TLI.getTargetData()->getABITypeAlignment(Ty);
790}
791
792// EntryNode could meaningfully have debug info if we can find it...
793SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
794  : TLI(tli), FLI(fli), DW(0),
795    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
796              getVTList(MVT::Other)),
797    Root(getEntryNode()), Ordering(0) {
798  AllNodes.push_back(&EntryNode);
799  Ordering = new SDNodeOrdering();
800  DbgInfo = new SDDbgInfo();
801}
802
803void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
804                        DwarfWriter *dw) {
805  MF = &mf;
806  MMI = mmi;
807  DW = dw;
808  Context = &mf.getFunction()->getContext();
809}
810
811SelectionDAG::~SelectionDAG() {
812  allnodes_clear();
813  delete Ordering;
814  delete DbgInfo;
815}
816
817void SelectionDAG::allnodes_clear() {
818  assert(&*AllNodes.begin() == &EntryNode);
819  AllNodes.remove(AllNodes.begin());
820  while (!AllNodes.empty())
821    DeallocateNode(AllNodes.begin());
822}
823
824void SelectionDAG::clear() {
825  allnodes_clear();
826  OperandAllocator.Reset();
827  CSEMap.clear();
828
829  ExtendedValueTypeNodes.clear();
830  ExternalSymbols.clear();
831  TargetExternalSymbols.clear();
832  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
833            static_cast<CondCodeSDNode*>(0));
834  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
835            static_cast<SDNode*>(0));
836
837  EntryNode.UseList = 0;
838  AllNodes.push_back(&EntryNode);
839  Root = getEntryNode();
840  delete Ordering;
841  Ordering = new SDNodeOrdering();
842  delete DbgInfo;
843  DbgInfo = new SDDbgInfo();
844}
845
846SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
847  return VT.bitsGT(Op.getValueType()) ?
848    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
849    getNode(ISD::TRUNCATE, DL, VT, Op);
850}
851
852SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
853  return VT.bitsGT(Op.getValueType()) ?
854    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
855    getNode(ISD::TRUNCATE, DL, VT, Op);
856}
857
858SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
859  assert(!VT.isVector() &&
860         "getZeroExtendInReg should use the vector element type instead of "
861         "the vector type!");
862  if (Op.getValueType() == VT) return Op;
863  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
864  APInt Imm = APInt::getLowBitsSet(BitWidth,
865                                   VT.getSizeInBits());
866  return getNode(ISD::AND, DL, Op.getValueType(), Op,
867                 getConstant(Imm, Op.getValueType()));
868}
869
870/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
871///
872SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
873  EVT EltVT = VT.getScalarType();
874  SDValue NegOne =
875    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
876  return getNode(ISD::XOR, DL, VT, Val, NegOne);
877}
878
879SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
880  EVT EltVT = VT.getScalarType();
881  assert((EltVT.getSizeInBits() >= 64 ||
882         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
883         "getConstant with a uint64_t value that doesn't fit in the type!");
884  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
885}
886
887SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
888  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
889}
890
891SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
892  assert(VT.isInteger() && "Cannot create FP integer constant!");
893
894  EVT EltVT = VT.getScalarType();
895  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
896         "APInt size does not match type size!");
897
898  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
899  FoldingSetNodeID ID;
900  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
901  ID.AddPointer(&Val);
902  void *IP = 0;
903  SDNode *N = NULL;
904  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
905    if (!VT.isVector())
906      return SDValue(N, 0);
907
908  if (!N) {
909    N = NodeAllocator.Allocate<ConstantSDNode>();
910    new (N) ConstantSDNode(isT, &Val, EltVT);
911    CSEMap.InsertNode(N, IP);
912    AllNodes.push_back(N);
913  }
914
915  SDValue Result(N, 0);
916  if (VT.isVector()) {
917    SmallVector<SDValue, 8> Ops;
918    Ops.assign(VT.getVectorNumElements(), Result);
919    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
920                     VT, &Ops[0], Ops.size());
921  }
922  return Result;
923}
924
925SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
926  return getConstant(Val, TLI.getPointerTy(), isTarget);
927}
928
929
930SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
931  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
932}
933
934SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
935  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
936
937  EVT EltVT = VT.getScalarType();
938
939  // Do the map lookup using the actual bit pattern for the floating point
940  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
941  // we don't have issues with SNANs.
942  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
943  FoldingSetNodeID ID;
944  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
945  ID.AddPointer(&V);
946  void *IP = 0;
947  SDNode *N = NULL;
948  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
949    if (!VT.isVector())
950      return SDValue(N, 0);
951
952  if (!N) {
953    N = NodeAllocator.Allocate<ConstantFPSDNode>();
954    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
955    CSEMap.InsertNode(N, IP);
956    AllNodes.push_back(N);
957  }
958
959  SDValue Result(N, 0);
960  if (VT.isVector()) {
961    SmallVector<SDValue, 8> Ops;
962    Ops.assign(VT.getVectorNumElements(), Result);
963    // FIXME DebugLoc info might be appropriate here
964    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
965                     VT, &Ops[0], Ops.size());
966  }
967  return Result;
968}
969
970SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
971  EVT EltVT = VT.getScalarType();
972  if (EltVT==MVT::f32)
973    return getConstantFP(APFloat((float)Val), VT, isTarget);
974  else
975    return getConstantFP(APFloat(Val), VT, isTarget);
976}
977
978SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
979                                       EVT VT, int64_t Offset,
980                                       bool isTargetGA,
981                                       unsigned char TargetFlags) {
982  assert((TargetFlags == 0 || isTargetGA) &&
983         "Cannot set target flags on target-independent globals");
984
985  // Truncate (with sign-extension) the offset value to the pointer size.
986  EVT PTy = TLI.getPointerTy();
987  unsigned BitWidth = PTy.getSizeInBits();
988  if (BitWidth < 64)
989    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
990
991  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
992  if (!GVar) {
993    // If GV is an alias then use the aliasee for determining thread-localness.
994    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
995      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
996  }
997
998  unsigned Opc;
999  if (GVar && GVar->isThreadLocal())
1000    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1001  else
1002    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1003
1004  FoldingSetNodeID ID;
1005  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1006  ID.AddPointer(GV);
1007  ID.AddInteger(Offset);
1008  ID.AddInteger(TargetFlags);
1009  void *IP = 0;
1010  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1011    return SDValue(E, 0);
1012
1013  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1014  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1015  CSEMap.InsertNode(N, IP);
1016  AllNodes.push_back(N);
1017  return SDValue(N, 0);
1018}
1019
1020SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1021  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1022  FoldingSetNodeID ID;
1023  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1024  ID.AddInteger(FI);
1025  void *IP = 0;
1026  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1027    return SDValue(E, 0);
1028
1029  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1030  new (N) FrameIndexSDNode(FI, VT, isTarget);
1031  CSEMap.InsertNode(N, IP);
1032  AllNodes.push_back(N);
1033  return SDValue(N, 0);
1034}
1035
1036SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1037                                   unsigned char TargetFlags) {
1038  assert((TargetFlags == 0 || isTarget) &&
1039         "Cannot set target flags on target-independent jump tables");
1040  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1041  FoldingSetNodeID ID;
1042  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1043  ID.AddInteger(JTI);
1044  ID.AddInteger(TargetFlags);
1045  void *IP = 0;
1046  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1047    return SDValue(E, 0);
1048
1049  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1050  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1051  CSEMap.InsertNode(N, IP);
1052  AllNodes.push_back(N);
1053  return SDValue(N, 0);
1054}
1055
1056SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1057                                      unsigned Alignment, int Offset,
1058                                      bool isTarget,
1059                                      unsigned char TargetFlags) {
1060  assert((TargetFlags == 0 || isTarget) &&
1061         "Cannot set target flags on target-independent globals");
1062  if (Alignment == 0)
1063    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1064  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1065  FoldingSetNodeID ID;
1066  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1067  ID.AddInteger(Alignment);
1068  ID.AddInteger(Offset);
1069  ID.AddPointer(C);
1070  ID.AddInteger(TargetFlags);
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDValue(E, 0);
1074
1075  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1076  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1077  CSEMap.InsertNode(N, IP);
1078  AllNodes.push_back(N);
1079  return SDValue(N, 0);
1080}
1081
1082
1083SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1084                                      unsigned Alignment, int Offset,
1085                                      bool isTarget,
1086                                      unsigned char TargetFlags) {
1087  assert((TargetFlags == 0 || isTarget) &&
1088         "Cannot set target flags on target-independent globals");
1089  if (Alignment == 0)
1090    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1091  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1092  FoldingSetNodeID ID;
1093  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1094  ID.AddInteger(Alignment);
1095  ID.AddInteger(Offset);
1096  C->AddSelectionDAGCSEId(ID);
1097  ID.AddInteger(TargetFlags);
1098  void *IP = 0;
1099  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1100    return SDValue(E, 0);
1101
1102  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1103  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1104  CSEMap.InsertNode(N, IP);
1105  AllNodes.push_back(N);
1106  return SDValue(N, 0);
1107}
1108
1109SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1110  FoldingSetNodeID ID;
1111  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1112  ID.AddPointer(MBB);
1113  void *IP = 0;
1114  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1115    return SDValue(E, 0);
1116
1117  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1118  new (N) BasicBlockSDNode(MBB);
1119  CSEMap.InsertNode(N, IP);
1120  AllNodes.push_back(N);
1121  return SDValue(N, 0);
1122}
1123
1124SDValue SelectionDAG::getValueType(EVT VT) {
1125  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1126      ValueTypeNodes.size())
1127    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1128
1129  SDNode *&N = VT.isExtended() ?
1130    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1131
1132  if (N) return SDValue(N, 0);
1133  N = NodeAllocator.Allocate<VTSDNode>();
1134  new (N) VTSDNode(VT);
1135  AllNodes.push_back(N);
1136  return SDValue(N, 0);
1137}
1138
1139SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1140  SDNode *&N = ExternalSymbols[Sym];
1141  if (N) return SDValue(N, 0);
1142  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1143  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1144  AllNodes.push_back(N);
1145  return SDValue(N, 0);
1146}
1147
1148SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1149                                              unsigned char TargetFlags) {
1150  SDNode *&N =
1151    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1152                                                               TargetFlags)];
1153  if (N) return SDValue(N, 0);
1154  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1155  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1156  AllNodes.push_back(N);
1157  return SDValue(N, 0);
1158}
1159
1160SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1161  if ((unsigned)Cond >= CondCodeNodes.size())
1162    CondCodeNodes.resize(Cond+1);
1163
1164  if (CondCodeNodes[Cond] == 0) {
1165    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1166    new (N) CondCodeSDNode(Cond);
1167    CondCodeNodes[Cond] = N;
1168    AllNodes.push_back(N);
1169  }
1170
1171  return SDValue(CondCodeNodes[Cond], 0);
1172}
1173
1174// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1175// the shuffle mask M that point at N1 to point at N2, and indices that point
1176// N2 to point at N1.
1177static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1178  std::swap(N1, N2);
1179  int NElts = M.size();
1180  for (int i = 0; i != NElts; ++i) {
1181    if (M[i] >= NElts)
1182      M[i] -= NElts;
1183    else if (M[i] >= 0)
1184      M[i] += NElts;
1185  }
1186}
1187
1188SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1189                                       SDValue N2, const int *Mask) {
1190  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1191  assert(VT.isVector() && N1.getValueType().isVector() &&
1192         "Vector Shuffle VTs must be a vectors");
1193  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1194         && "Vector Shuffle VTs must have same element type");
1195
1196  // Canonicalize shuffle undef, undef -> undef
1197  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1198    return getUNDEF(VT);
1199
1200  // Validate that all indices in Mask are within the range of the elements
1201  // input to the shuffle.
1202  unsigned NElts = VT.getVectorNumElements();
1203  SmallVector<int, 8> MaskVec;
1204  for (unsigned i = 0; i != NElts; ++i) {
1205    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1206    MaskVec.push_back(Mask[i]);
1207  }
1208
1209  // Canonicalize shuffle v, v -> v, undef
1210  if (N1 == N2) {
1211    N2 = getUNDEF(VT);
1212    for (unsigned i = 0; i != NElts; ++i)
1213      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1214  }
1215
1216  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1217  if (N1.getOpcode() == ISD::UNDEF)
1218    commuteShuffle(N1, N2, MaskVec);
1219
1220  // Canonicalize all index into lhs, -> shuffle lhs, undef
1221  // Canonicalize all index into rhs, -> shuffle rhs, undef
1222  bool AllLHS = true, AllRHS = true;
1223  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1224  for (unsigned i = 0; i != NElts; ++i) {
1225    if (MaskVec[i] >= (int)NElts) {
1226      if (N2Undef)
1227        MaskVec[i] = -1;
1228      else
1229        AllLHS = false;
1230    } else if (MaskVec[i] >= 0) {
1231      AllRHS = false;
1232    }
1233  }
1234  if (AllLHS && AllRHS)
1235    return getUNDEF(VT);
1236  if (AllLHS && !N2Undef)
1237    N2 = getUNDEF(VT);
1238  if (AllRHS) {
1239    N1 = getUNDEF(VT);
1240    commuteShuffle(N1, N2, MaskVec);
1241  }
1242
1243  // If Identity shuffle, or all shuffle in to undef, return that node.
1244  bool AllUndef = true;
1245  bool Identity = true;
1246  for (unsigned i = 0; i != NElts; ++i) {
1247    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1248    if (MaskVec[i] >= 0) AllUndef = false;
1249  }
1250  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1251    return N1;
1252  if (AllUndef)
1253    return getUNDEF(VT);
1254
1255  FoldingSetNodeID ID;
1256  SDValue Ops[2] = { N1, N2 };
1257  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1258  for (unsigned i = 0; i != NElts; ++i)
1259    ID.AddInteger(MaskVec[i]);
1260
1261  void* IP = 0;
1262  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1263    return SDValue(E, 0);
1264
1265  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1266  // SDNode doesn't have access to it.  This memory will be "leaked" when
1267  // the node is deallocated, but recovered when the NodeAllocator is released.
1268  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1269  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1270
1271  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1272  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1273  CSEMap.InsertNode(N, IP);
1274  AllNodes.push_back(N);
1275  return SDValue(N, 0);
1276}
1277
1278SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1279                                       SDValue Val, SDValue DTy,
1280                                       SDValue STy, SDValue Rnd, SDValue Sat,
1281                                       ISD::CvtCode Code) {
1282  // If the src and dest types are the same and the conversion is between
1283  // integer types of the same sign or two floats, no conversion is necessary.
1284  if (DTy == STy &&
1285      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1286    return Val;
1287
1288  FoldingSetNodeID ID;
1289  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1290  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1291  void* IP = 0;
1292  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1293    return SDValue(E, 0);
1294
1295  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1296  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1297  CSEMap.InsertNode(N, IP);
1298  AllNodes.push_back(N);
1299  return SDValue(N, 0);
1300}
1301
1302SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1303  FoldingSetNodeID ID;
1304  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1305  ID.AddInteger(RegNo);
1306  void *IP = 0;
1307  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1308    return SDValue(E, 0);
1309
1310  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1311  new (N) RegisterSDNode(RegNo, VT);
1312  CSEMap.InsertNode(N, IP);
1313  AllNodes.push_back(N);
1314  return SDValue(N, 0);
1315}
1316
1317SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1318                               SDValue Root,
1319                               unsigned LabelID) {
1320  FoldingSetNodeID ID;
1321  SDValue Ops[] = { Root };
1322  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1323  ID.AddInteger(LabelID);
1324  void *IP = 0;
1325  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1326    return SDValue(E, 0);
1327
1328  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1329  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1330  CSEMap.InsertNode(N, IP);
1331  AllNodes.push_back(N);
1332  return SDValue(N, 0);
1333}
1334
1335SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1336                                      bool isTarget,
1337                                      unsigned char TargetFlags) {
1338  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1339
1340  FoldingSetNodeID ID;
1341  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1342  ID.AddPointer(BA);
1343  ID.AddInteger(TargetFlags);
1344  void *IP = 0;
1345  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1346    return SDValue(E, 0);
1347
1348  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1349  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1350  CSEMap.InsertNode(N, IP);
1351  AllNodes.push_back(N);
1352  return SDValue(N, 0);
1353}
1354
1355SDValue SelectionDAG::getSrcValue(const Value *V) {
1356  assert((!V || V->getType()->isPointerTy()) &&
1357         "SrcValue is not a pointer?");
1358
1359  FoldingSetNodeID ID;
1360  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1361  ID.AddPointer(V);
1362
1363  void *IP = 0;
1364  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1365    return SDValue(E, 0);
1366
1367  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1368  new (N) SrcValueSDNode(V);
1369  CSEMap.InsertNode(N, IP);
1370  AllNodes.push_back(N);
1371  return SDValue(N, 0);
1372}
1373
1374/// getShiftAmountOperand - Return the specified value casted to
1375/// the target's desired shift amount type.
1376SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1377  EVT OpTy = Op.getValueType();
1378  MVT ShTy = TLI.getShiftAmountTy();
1379  if (OpTy == ShTy || OpTy.isVector()) return Op;
1380
1381  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1382  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1383}
1384
1385/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1386/// specified value type.
1387SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1388  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1389  unsigned ByteSize = VT.getStoreSize();
1390  const Type *Ty = VT.getTypeForEVT(*getContext());
1391  unsigned StackAlign =
1392  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1393
1394  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1395  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1396}
1397
1398/// CreateStackTemporary - Create a stack temporary suitable for holding
1399/// either of the specified value types.
1400SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1401  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1402                            VT2.getStoreSizeInBits())/8;
1403  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1404  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1405  const TargetData *TD = TLI.getTargetData();
1406  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1407                            TD->getPrefTypeAlignment(Ty2));
1408
1409  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1410  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1411  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1412}
1413
1414SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1415                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1416  // These setcc operations always fold.
1417  switch (Cond) {
1418  default: break;
1419  case ISD::SETFALSE:
1420  case ISD::SETFALSE2: return getConstant(0, VT);
1421  case ISD::SETTRUE:
1422  case ISD::SETTRUE2:  return getConstant(1, VT);
1423
1424  case ISD::SETOEQ:
1425  case ISD::SETOGT:
1426  case ISD::SETOGE:
1427  case ISD::SETOLT:
1428  case ISD::SETOLE:
1429  case ISD::SETONE:
1430  case ISD::SETO:
1431  case ISD::SETUO:
1432  case ISD::SETUEQ:
1433  case ISD::SETUNE:
1434    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1435    break;
1436  }
1437
1438  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1439    const APInt &C2 = N2C->getAPIntValue();
1440    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1441      const APInt &C1 = N1C->getAPIntValue();
1442
1443      switch (Cond) {
1444      default: llvm_unreachable("Unknown integer setcc!");
1445      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1446      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1447      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1448      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1449      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1450      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1451      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1452      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1453      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1454      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1455      }
1456    }
1457  }
1458  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1459    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1460      // No compile time operations on this type yet.
1461      if (N1C->getValueType(0) == MVT::ppcf128)
1462        return SDValue();
1463
1464      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1465      switch (Cond) {
1466      default: break;
1467      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1468                          return getUNDEF(VT);
1469                        // fall through
1470      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1471      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1472                          return getUNDEF(VT);
1473                        // fall through
1474      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1475                                           R==APFloat::cmpLessThan, VT);
1476      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1477                          return getUNDEF(VT);
1478                        // fall through
1479      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1480      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1481                          return getUNDEF(VT);
1482                        // fall through
1483      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1484      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1485                          return getUNDEF(VT);
1486                        // fall through
1487      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1488                                           R==APFloat::cmpEqual, VT);
1489      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1490                          return getUNDEF(VT);
1491                        // fall through
1492      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1493                                           R==APFloat::cmpEqual, VT);
1494      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1495      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1496      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1497                                           R==APFloat::cmpEqual, VT);
1498      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1499      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1500                                           R==APFloat::cmpLessThan, VT);
1501      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1502                                           R==APFloat::cmpUnordered, VT);
1503      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1504      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1505      }
1506    } else {
1507      // Ensure that the constant occurs on the RHS.
1508      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1509    }
1510  }
1511
1512  // Could not fold it.
1513  return SDValue();
1514}
1515
1516/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1517/// use this predicate to simplify operations downstream.
1518bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1519  // This predicate is not safe for vector operations.
1520  if (Op.getValueType().isVector())
1521    return false;
1522
1523  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1524  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1525}
1526
1527/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1528/// this predicate to simplify operations downstream.  Mask is known to be zero
1529/// for bits that V cannot have.
1530bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1531                                     unsigned Depth) const {
1532  APInt KnownZero, KnownOne;
1533  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1534  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1535  return (KnownZero & Mask) == Mask;
1536}
1537
1538/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1539/// known to be either zero or one and return them in the KnownZero/KnownOne
1540/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1541/// processing.
1542void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1543                                     APInt &KnownZero, APInt &KnownOne,
1544                                     unsigned Depth) const {
1545  unsigned BitWidth = Mask.getBitWidth();
1546  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1547         "Mask size mismatches value type size!");
1548
1549  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1550  if (Depth == 6 || Mask == 0)
1551    return;  // Limit search depth.
1552
1553  APInt KnownZero2, KnownOne2;
1554
1555  switch (Op.getOpcode()) {
1556  case ISD::Constant:
1557    // We know all of the bits for a constant!
1558    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1559    KnownZero = ~KnownOne & Mask;
1560    return;
1561  case ISD::AND:
1562    // If either the LHS or the RHS are Zero, the result is zero.
1563    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1564    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1565                      KnownZero2, KnownOne2, Depth+1);
1566    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1567    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1568
1569    // Output known-1 bits are only known if set in both the LHS & RHS.
1570    KnownOne &= KnownOne2;
1571    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1572    KnownZero |= KnownZero2;
1573    return;
1574  case ISD::OR:
1575    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1576    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1577                      KnownZero2, KnownOne2, Depth+1);
1578    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1579    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1580
1581    // Output known-0 bits are only known if clear in both the LHS & RHS.
1582    KnownZero &= KnownZero2;
1583    // Output known-1 are known to be set if set in either the LHS | RHS.
1584    KnownOne |= KnownOne2;
1585    return;
1586  case ISD::XOR: {
1587    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1588    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1589    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1590    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1591
1592    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1593    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1594    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1595    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1596    KnownZero = KnownZeroOut;
1597    return;
1598  }
1599  case ISD::MUL: {
1600    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1601    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1602    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1603    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1604    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1605
1606    // If low bits are zero in either operand, output low known-0 bits.
1607    // Also compute a conserative estimate for high known-0 bits.
1608    // More trickiness is possible, but this is sufficient for the
1609    // interesting case of alignment computation.
1610    KnownOne.clear();
1611    unsigned TrailZ = KnownZero.countTrailingOnes() +
1612                      KnownZero2.countTrailingOnes();
1613    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1614                               KnownZero2.countLeadingOnes(),
1615                               BitWidth) - BitWidth;
1616
1617    TrailZ = std::min(TrailZ, BitWidth);
1618    LeadZ = std::min(LeadZ, BitWidth);
1619    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1620                APInt::getHighBitsSet(BitWidth, LeadZ);
1621    KnownZero &= Mask;
1622    return;
1623  }
1624  case ISD::UDIV: {
1625    // For the purposes of computing leading zeros we can conservatively
1626    // treat a udiv as a logical right shift by the power of 2 known to
1627    // be less than the denominator.
1628    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1629    ComputeMaskedBits(Op.getOperand(0),
1630                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1631    unsigned LeadZ = KnownZero2.countLeadingOnes();
1632
1633    KnownOne2.clear();
1634    KnownZero2.clear();
1635    ComputeMaskedBits(Op.getOperand(1),
1636                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1637    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1638    if (RHSUnknownLeadingOnes != BitWidth)
1639      LeadZ = std::min(BitWidth,
1640                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1641
1642    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1643    return;
1644  }
1645  case ISD::SELECT:
1646    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1647    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1648    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1649    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1650
1651    // Only known if known in both the LHS and RHS.
1652    KnownOne &= KnownOne2;
1653    KnownZero &= KnownZero2;
1654    return;
1655  case ISD::SELECT_CC:
1656    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1657    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1658    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1659    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1660
1661    // Only known if known in both the LHS and RHS.
1662    KnownOne &= KnownOne2;
1663    KnownZero &= KnownZero2;
1664    return;
1665  case ISD::SADDO:
1666  case ISD::UADDO:
1667  case ISD::SSUBO:
1668  case ISD::USUBO:
1669  case ISD::SMULO:
1670  case ISD::UMULO:
1671    if (Op.getResNo() != 1)
1672      return;
1673    // The boolean result conforms to getBooleanContents.  Fall through.
1674  case ISD::SETCC:
1675    // If we know the result of a setcc has the top bits zero, use this info.
1676    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1677        BitWidth > 1)
1678      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1679    return;
1680  case ISD::SHL:
1681    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1682    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1683      unsigned ShAmt = SA->getZExtValue();
1684
1685      // If the shift count is an invalid immediate, don't do anything.
1686      if (ShAmt >= BitWidth)
1687        return;
1688
1689      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1690                        KnownZero, KnownOne, Depth+1);
1691      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1692      KnownZero <<= ShAmt;
1693      KnownOne  <<= ShAmt;
1694      // low bits known zero.
1695      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1696    }
1697    return;
1698  case ISD::SRL:
1699    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1700    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1701      unsigned ShAmt = SA->getZExtValue();
1702
1703      // If the shift count is an invalid immediate, don't do anything.
1704      if (ShAmt >= BitWidth)
1705        return;
1706
1707      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1708                        KnownZero, KnownOne, Depth+1);
1709      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1710      KnownZero = KnownZero.lshr(ShAmt);
1711      KnownOne  = KnownOne.lshr(ShAmt);
1712
1713      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1714      KnownZero |= HighBits;  // High bits known zero.
1715    }
1716    return;
1717  case ISD::SRA:
1718    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1719      unsigned ShAmt = SA->getZExtValue();
1720
1721      // If the shift count is an invalid immediate, don't do anything.
1722      if (ShAmt >= BitWidth)
1723        return;
1724
1725      APInt InDemandedMask = (Mask << ShAmt);
1726      // If any of the demanded bits are produced by the sign extension, we also
1727      // demand the input sign bit.
1728      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1729      if (HighBits.getBoolValue())
1730        InDemandedMask |= APInt::getSignBit(BitWidth);
1731
1732      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1733                        Depth+1);
1734      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1735      KnownZero = KnownZero.lshr(ShAmt);
1736      KnownOne  = KnownOne.lshr(ShAmt);
1737
1738      // Handle the sign bits.
1739      APInt SignBit = APInt::getSignBit(BitWidth);
1740      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1741
1742      if (KnownZero.intersects(SignBit)) {
1743        KnownZero |= HighBits;  // New bits are known zero.
1744      } else if (KnownOne.intersects(SignBit)) {
1745        KnownOne  |= HighBits;  // New bits are known one.
1746      }
1747    }
1748    return;
1749  case ISD::SIGN_EXTEND_INREG: {
1750    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1751    unsigned EBits = EVT.getScalarType().getSizeInBits();
1752
1753    // Sign extension.  Compute the demanded bits in the result that are not
1754    // present in the input.
1755    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1756
1757    APInt InSignBit = APInt::getSignBit(EBits);
1758    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1759
1760    // If the sign extended bits are demanded, we know that the sign
1761    // bit is demanded.
1762    InSignBit.zext(BitWidth);
1763    if (NewBits.getBoolValue())
1764      InputDemandedBits |= InSignBit;
1765
1766    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1767                      KnownZero, KnownOne, Depth+1);
1768    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1769
1770    // If the sign bit of the input is known set or clear, then we know the
1771    // top bits of the result.
1772    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1773      KnownZero |= NewBits;
1774      KnownOne  &= ~NewBits;
1775    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1776      KnownOne  |= NewBits;
1777      KnownZero &= ~NewBits;
1778    } else {                              // Input sign bit unknown
1779      KnownZero &= ~NewBits;
1780      KnownOne  &= ~NewBits;
1781    }
1782    return;
1783  }
1784  case ISD::CTTZ:
1785  case ISD::CTLZ:
1786  case ISD::CTPOP: {
1787    unsigned LowBits = Log2_32(BitWidth)+1;
1788    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1789    KnownOne.clear();
1790    return;
1791  }
1792  case ISD::LOAD: {
1793    if (ISD::isZEXTLoad(Op.getNode())) {
1794      LoadSDNode *LD = cast<LoadSDNode>(Op);
1795      EVT VT = LD->getMemoryVT();
1796      unsigned MemBits = VT.getScalarType().getSizeInBits();
1797      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1798    }
1799    return;
1800  }
1801  case ISD::ZERO_EXTEND: {
1802    EVT InVT = Op.getOperand(0).getValueType();
1803    unsigned InBits = InVT.getScalarType().getSizeInBits();
1804    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1805    APInt InMask    = Mask;
1806    InMask.trunc(InBits);
1807    KnownZero.trunc(InBits);
1808    KnownOne.trunc(InBits);
1809    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1810    KnownZero.zext(BitWidth);
1811    KnownOne.zext(BitWidth);
1812    KnownZero |= NewBits;
1813    return;
1814  }
1815  case ISD::SIGN_EXTEND: {
1816    EVT InVT = Op.getOperand(0).getValueType();
1817    unsigned InBits = InVT.getScalarType().getSizeInBits();
1818    APInt InSignBit = APInt::getSignBit(InBits);
1819    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1820    APInt InMask = Mask;
1821    InMask.trunc(InBits);
1822
1823    // If any of the sign extended bits are demanded, we know that the sign
1824    // bit is demanded. Temporarily set this bit in the mask for our callee.
1825    if (NewBits.getBoolValue())
1826      InMask |= InSignBit;
1827
1828    KnownZero.trunc(InBits);
1829    KnownOne.trunc(InBits);
1830    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1831
1832    // Note if the sign bit is known to be zero or one.
1833    bool SignBitKnownZero = KnownZero.isNegative();
1834    bool SignBitKnownOne  = KnownOne.isNegative();
1835    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1836           "Sign bit can't be known to be both zero and one!");
1837
1838    // If the sign bit wasn't actually demanded by our caller, we don't
1839    // want it set in the KnownZero and KnownOne result values. Reset the
1840    // mask and reapply it to the result values.
1841    InMask = Mask;
1842    InMask.trunc(InBits);
1843    KnownZero &= InMask;
1844    KnownOne  &= InMask;
1845
1846    KnownZero.zext(BitWidth);
1847    KnownOne.zext(BitWidth);
1848
1849    // If the sign bit is known zero or one, the top bits match.
1850    if (SignBitKnownZero)
1851      KnownZero |= NewBits;
1852    else if (SignBitKnownOne)
1853      KnownOne  |= NewBits;
1854    return;
1855  }
1856  case ISD::ANY_EXTEND: {
1857    EVT InVT = Op.getOperand(0).getValueType();
1858    unsigned InBits = InVT.getScalarType().getSizeInBits();
1859    APInt InMask = Mask;
1860    InMask.trunc(InBits);
1861    KnownZero.trunc(InBits);
1862    KnownOne.trunc(InBits);
1863    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1864    KnownZero.zext(BitWidth);
1865    KnownOne.zext(BitWidth);
1866    return;
1867  }
1868  case ISD::TRUNCATE: {
1869    EVT InVT = Op.getOperand(0).getValueType();
1870    unsigned InBits = InVT.getScalarType().getSizeInBits();
1871    APInt InMask = Mask;
1872    InMask.zext(InBits);
1873    KnownZero.zext(InBits);
1874    KnownOne.zext(InBits);
1875    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1876    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1877    KnownZero.trunc(BitWidth);
1878    KnownOne.trunc(BitWidth);
1879    break;
1880  }
1881  case ISD::AssertZext: {
1882    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1883    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1884    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1885                      KnownOne, Depth+1);
1886    KnownZero |= (~InMask) & Mask;
1887    return;
1888  }
1889  case ISD::FGETSIGN:
1890    // All bits are zero except the low bit.
1891    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1892    return;
1893
1894  case ISD::SUB: {
1895    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1896      // We know that the top bits of C-X are clear if X contains less bits
1897      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1898      // positive if we can prove that X is >= 0 and < 16.
1899      if (CLHS->getAPIntValue().isNonNegative()) {
1900        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1901        // NLZ can't be BitWidth with no sign bit
1902        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1903        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1904                          Depth+1);
1905
1906        // If all of the MaskV bits are known to be zero, then we know the
1907        // output top bits are zero, because we now know that the output is
1908        // from [0-C].
1909        if ((KnownZero2 & MaskV) == MaskV) {
1910          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1911          // Top bits known zero.
1912          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1913        }
1914      }
1915    }
1916  }
1917  // fall through
1918  case ISD::ADD: {
1919    // Output known-0 bits are known if clear or set in both the low clear bits
1920    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1921    // low 3 bits clear.
1922    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1923    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1924    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1925    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1926
1927    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1928    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1929    KnownZeroOut = std::min(KnownZeroOut,
1930                            KnownZero2.countTrailingOnes());
1931
1932    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1933    return;
1934  }
1935  case ISD::SREM:
1936    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1937      const APInt &RA = Rem->getAPIntValue().abs();
1938      if (RA.isPowerOf2()) {
1939        APInt LowBits = RA - 1;
1940        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1941        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1942
1943        // The low bits of the first operand are unchanged by the srem.
1944        KnownZero = KnownZero2 & LowBits;
1945        KnownOne = KnownOne2 & LowBits;
1946
1947        // If the first operand is non-negative or has all low bits zero, then
1948        // the upper bits are all zero.
1949        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1950          KnownZero |= ~LowBits;
1951
1952        // If the first operand is negative and not all low bits are zero, then
1953        // the upper bits are all one.
1954        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1955          KnownOne |= ~LowBits;
1956
1957        KnownZero &= Mask;
1958        KnownOne &= Mask;
1959
1960        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1961      }
1962    }
1963    return;
1964  case ISD::UREM: {
1965    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1966      const APInt &RA = Rem->getAPIntValue();
1967      if (RA.isPowerOf2()) {
1968        APInt LowBits = (RA - 1);
1969        APInt Mask2 = LowBits & Mask;
1970        KnownZero |= ~LowBits & Mask;
1971        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1972        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1973        break;
1974      }
1975    }
1976
1977    // Since the result is less than or equal to either operand, any leading
1978    // zero bits in either operand must also exist in the result.
1979    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1980    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1981                      Depth+1);
1982    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1983                      Depth+1);
1984
1985    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1986                                KnownZero2.countLeadingOnes());
1987    KnownOne.clear();
1988    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1989    return;
1990  }
1991  default:
1992    // Allow the target to implement this method for its nodes.
1993    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1994  case ISD::INTRINSIC_WO_CHAIN:
1995  case ISD::INTRINSIC_W_CHAIN:
1996  case ISD::INTRINSIC_VOID:
1997      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1998                                         Depth);
1999    }
2000    return;
2001  }
2002}
2003
2004/// ComputeNumSignBits - Return the number of times the sign bit of the
2005/// register is replicated into the other bits.  We know that at least 1 bit
2006/// is always equal to the sign bit (itself), but other cases can give us
2007/// information.  For example, immediately after an "SRA X, 2", we know that
2008/// the top 3 bits are all equal to each other, so we return 3.
2009unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2010  EVT VT = Op.getValueType();
2011  assert(VT.isInteger() && "Invalid VT!");
2012  unsigned VTBits = VT.getScalarType().getSizeInBits();
2013  unsigned Tmp, Tmp2;
2014  unsigned FirstAnswer = 1;
2015
2016  if (Depth == 6)
2017    return 1;  // Limit search depth.
2018
2019  switch (Op.getOpcode()) {
2020  default: break;
2021  case ISD::AssertSext:
2022    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2023    return VTBits-Tmp+1;
2024  case ISD::AssertZext:
2025    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2026    return VTBits-Tmp;
2027
2028  case ISD::Constant: {
2029    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2030    // If negative, return # leading ones.
2031    if (Val.isNegative())
2032      return Val.countLeadingOnes();
2033
2034    // Return # leading zeros.
2035    return Val.countLeadingZeros();
2036  }
2037
2038  case ISD::SIGN_EXTEND:
2039    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2040    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2041
2042  case ISD::SIGN_EXTEND_INREG:
2043    // Max of the input and what this extends.
2044    Tmp =
2045      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2046    Tmp = VTBits-Tmp+1;
2047
2048    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2049    return std::max(Tmp, Tmp2);
2050
2051  case ISD::SRA:
2052    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2053    // SRA X, C   -> adds C sign bits.
2054    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2055      Tmp += C->getZExtValue();
2056      if (Tmp > VTBits) Tmp = VTBits;
2057    }
2058    return Tmp;
2059  case ISD::SHL:
2060    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2061      // shl destroys sign bits.
2062      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2063      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2064          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2065      return Tmp - C->getZExtValue();
2066    }
2067    break;
2068  case ISD::AND:
2069  case ISD::OR:
2070  case ISD::XOR:    // NOT is handled here.
2071    // Logical binary ops preserve the number of sign bits at the worst.
2072    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2073    if (Tmp != 1) {
2074      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2075      FirstAnswer = std::min(Tmp, Tmp2);
2076      // We computed what we know about the sign bits as our first
2077      // answer. Now proceed to the generic code that uses
2078      // ComputeMaskedBits, and pick whichever answer is better.
2079    }
2080    break;
2081
2082  case ISD::SELECT:
2083    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2084    if (Tmp == 1) return 1;  // Early out.
2085    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2086    return std::min(Tmp, Tmp2);
2087
2088  case ISD::SADDO:
2089  case ISD::UADDO:
2090  case ISD::SSUBO:
2091  case ISD::USUBO:
2092  case ISD::SMULO:
2093  case ISD::UMULO:
2094    if (Op.getResNo() != 1)
2095      break;
2096    // The boolean result conforms to getBooleanContents.  Fall through.
2097  case ISD::SETCC:
2098    // If setcc returns 0/-1, all bits are sign bits.
2099    if (TLI.getBooleanContents() ==
2100        TargetLowering::ZeroOrNegativeOneBooleanContent)
2101      return VTBits;
2102    break;
2103  case ISD::ROTL:
2104  case ISD::ROTR:
2105    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2106      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2107
2108      // Handle rotate right by N like a rotate left by 32-N.
2109      if (Op.getOpcode() == ISD::ROTR)
2110        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2111
2112      // If we aren't rotating out all of the known-in sign bits, return the
2113      // number that are left.  This handles rotl(sext(x), 1) for example.
2114      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2115      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2116    }
2117    break;
2118  case ISD::ADD:
2119    // Add can have at most one carry bit.  Thus we know that the output
2120    // is, at worst, one more bit than the inputs.
2121    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2122    if (Tmp == 1) return 1;  // Early out.
2123
2124    // Special case decrementing a value (ADD X, -1):
2125    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2126      if (CRHS->isAllOnesValue()) {
2127        APInt KnownZero, KnownOne;
2128        APInt Mask = APInt::getAllOnesValue(VTBits);
2129        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2130
2131        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2132        // sign bits set.
2133        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2134          return VTBits;
2135
2136        // If we are subtracting one from a positive number, there is no carry
2137        // out of the result.
2138        if (KnownZero.isNegative())
2139          return Tmp;
2140      }
2141
2142    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2143    if (Tmp2 == 1) return 1;
2144      return std::min(Tmp, Tmp2)-1;
2145    break;
2146
2147  case ISD::SUB:
2148    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2149    if (Tmp2 == 1) return 1;
2150
2151    // Handle NEG.
2152    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2153      if (CLHS->isNullValue()) {
2154        APInt KnownZero, KnownOne;
2155        APInt Mask = APInt::getAllOnesValue(VTBits);
2156        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2157        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2158        // sign bits set.
2159        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2160          return VTBits;
2161
2162        // If the input is known to be positive (the sign bit is known clear),
2163        // the output of the NEG has the same number of sign bits as the input.
2164        if (KnownZero.isNegative())
2165          return Tmp2;
2166
2167        // Otherwise, we treat this like a SUB.
2168      }
2169
2170    // Sub can have at most one carry bit.  Thus we know that the output
2171    // is, at worst, one more bit than the inputs.
2172    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2173    if (Tmp == 1) return 1;  // Early out.
2174      return std::min(Tmp, Tmp2)-1;
2175    break;
2176  case ISD::TRUNCATE:
2177    // FIXME: it's tricky to do anything useful for this, but it is an important
2178    // case for targets like X86.
2179    break;
2180  }
2181
2182  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2183  if (Op.getOpcode() == ISD::LOAD) {
2184    LoadSDNode *LD = cast<LoadSDNode>(Op);
2185    unsigned ExtType = LD->getExtensionType();
2186    switch (ExtType) {
2187    default: break;
2188    case ISD::SEXTLOAD:    // '17' bits known
2189      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2190      return VTBits-Tmp+1;
2191    case ISD::ZEXTLOAD:    // '16' bits known
2192      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2193      return VTBits-Tmp;
2194    }
2195  }
2196
2197  // Allow the target to implement this method for its nodes.
2198  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2199      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2200      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2201      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2202    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2203    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2204  }
2205
2206  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2207  // use this information.
2208  APInt KnownZero, KnownOne;
2209  APInt Mask = APInt::getAllOnesValue(VTBits);
2210  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2211
2212  if (KnownZero.isNegative()) {        // sign bit is 0
2213    Mask = KnownZero;
2214  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2215    Mask = KnownOne;
2216  } else {
2217    // Nothing known.
2218    return FirstAnswer;
2219  }
2220
2221  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2222  // the number of identical bits in the top of the input value.
2223  Mask = ~Mask;
2224  Mask <<= Mask.getBitWidth()-VTBits;
2225  // Return # leading zeros.  We use 'min' here in case Val was zero before
2226  // shifting.  We don't want to return '64' as for an i32 "0".
2227  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2228}
2229
2230bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2231  // If we're told that NaNs won't happen, assume they won't.
2232  if (FiniteOnlyFPMath())
2233    return true;
2234
2235  // If the value is a constant, we can obviously see if it is a NaN or not.
2236  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2237    return !C->getValueAPF().isNaN();
2238
2239  // TODO: Recognize more cases here.
2240
2241  return false;
2242}
2243
2244bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2245  // If the value is a constant, we can obviously see if it is a zero or not.
2246  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2247    return !C->isZero();
2248
2249  // TODO: Recognize more cases here.
2250
2251  return false;
2252}
2253
2254bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2255  // Check the obvious case.
2256  if (A == B) return true;
2257
2258  // For for negative and positive zero.
2259  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2260    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2261      if (CA->isZero() && CB->isZero()) return true;
2262
2263  // Otherwise they may not be equal.
2264  return false;
2265}
2266
2267bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2268  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2269  if (!GA) return false;
2270  if (GA->getOffset() != 0) return false;
2271  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2272  if (!GV) return false;
2273  MachineModuleInfo *MMI = getMachineModuleInfo();
2274  return MMI && MMI->hasDebugInfo();
2275}
2276
2277
2278/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2279/// element of the result of the vector shuffle.
2280SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2281                                          unsigned i) {
2282  EVT VT = N->getValueType(0);
2283  DebugLoc dl = N->getDebugLoc();
2284  if (N->getMaskElt(i) < 0)
2285    return getUNDEF(VT.getVectorElementType());
2286  unsigned Index = N->getMaskElt(i);
2287  unsigned NumElems = VT.getVectorNumElements();
2288  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2289  Index %= NumElems;
2290
2291  if (V.getOpcode() == ISD::BIT_CONVERT) {
2292    V = V.getOperand(0);
2293    EVT VVT = V.getValueType();
2294    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2295      return SDValue();
2296  }
2297  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2298    return (Index == 0) ? V.getOperand(0)
2299                      : getUNDEF(VT.getVectorElementType());
2300  if (V.getOpcode() == ISD::BUILD_VECTOR)
2301    return V.getOperand(Index);
2302  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2303    return getShuffleScalarElt(SVN, Index);
2304  return SDValue();
2305}
2306
2307
2308/// getNode - Gets or creates the specified node.
2309///
2310SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2311  FoldingSetNodeID ID;
2312  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2313  void *IP = 0;
2314  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2315    return SDValue(E, 0);
2316
2317  SDNode *N = NodeAllocator.Allocate<SDNode>();
2318  new (N) SDNode(Opcode, DL, getVTList(VT));
2319  CSEMap.InsertNode(N, IP);
2320
2321  AllNodes.push_back(N);
2322#ifndef NDEBUG
2323  VerifyNode(N);
2324#endif
2325  return SDValue(N, 0);
2326}
2327
2328SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2329                              EVT VT, SDValue Operand) {
2330  // Constant fold unary operations with an integer constant operand.
2331  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2332    const APInt &Val = C->getAPIntValue();
2333    unsigned BitWidth = VT.getSizeInBits();
2334    switch (Opcode) {
2335    default: break;
2336    case ISD::SIGN_EXTEND:
2337      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2338    case ISD::ANY_EXTEND:
2339    case ISD::ZERO_EXTEND:
2340    case ISD::TRUNCATE:
2341      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2342    case ISD::UINT_TO_FP:
2343    case ISD::SINT_TO_FP: {
2344      const uint64_t zero[] = {0, 0};
2345      // No compile time operations on this type.
2346      if (VT==MVT::ppcf128)
2347        break;
2348      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2349      (void)apf.convertFromAPInt(Val,
2350                                 Opcode==ISD::SINT_TO_FP,
2351                                 APFloat::rmNearestTiesToEven);
2352      return getConstantFP(apf, VT);
2353    }
2354    case ISD::BIT_CONVERT:
2355      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2356        return getConstantFP(Val.bitsToFloat(), VT);
2357      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2358        return getConstantFP(Val.bitsToDouble(), VT);
2359      break;
2360    case ISD::BSWAP:
2361      return getConstant(Val.byteSwap(), VT);
2362    case ISD::CTPOP:
2363      return getConstant(Val.countPopulation(), VT);
2364    case ISD::CTLZ:
2365      return getConstant(Val.countLeadingZeros(), VT);
2366    case ISD::CTTZ:
2367      return getConstant(Val.countTrailingZeros(), VT);
2368    }
2369  }
2370
2371  // Constant fold unary operations with a floating point constant operand.
2372  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2373    APFloat V = C->getValueAPF();    // make copy
2374    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2375      switch (Opcode) {
2376      case ISD::FNEG:
2377        V.changeSign();
2378        return getConstantFP(V, VT);
2379      case ISD::FABS:
2380        V.clearSign();
2381        return getConstantFP(V, VT);
2382      case ISD::FP_ROUND:
2383      case ISD::FP_EXTEND: {
2384        bool ignored;
2385        // This can return overflow, underflow, or inexact; we don't care.
2386        // FIXME need to be more flexible about rounding mode.
2387        (void)V.convert(*EVTToAPFloatSemantics(VT),
2388                        APFloat::rmNearestTiesToEven, &ignored);
2389        return getConstantFP(V, VT);
2390      }
2391      case ISD::FP_TO_SINT:
2392      case ISD::FP_TO_UINT: {
2393        integerPart x[2];
2394        bool ignored;
2395        assert(integerPartWidth >= 64);
2396        // FIXME need to be more flexible about rounding mode.
2397        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2398                              Opcode==ISD::FP_TO_SINT,
2399                              APFloat::rmTowardZero, &ignored);
2400        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2401          break;
2402        APInt api(VT.getSizeInBits(), 2, x);
2403        return getConstant(api, VT);
2404      }
2405      case ISD::BIT_CONVERT:
2406        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2407          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2408        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2409          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2410        break;
2411      }
2412    }
2413  }
2414
2415  unsigned OpOpcode = Operand.getNode()->getOpcode();
2416  switch (Opcode) {
2417  case ISD::TokenFactor:
2418  case ISD::MERGE_VALUES:
2419  case ISD::CONCAT_VECTORS:
2420    return Operand;         // Factor, merge or concat of one node?  No need.
2421  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2422  case ISD::FP_EXTEND:
2423    assert(VT.isFloatingPoint() &&
2424           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2425    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2426    assert((!VT.isVector() ||
2427            VT.getVectorNumElements() ==
2428            Operand.getValueType().getVectorNumElements()) &&
2429           "Vector element count mismatch!");
2430    if (Operand.getOpcode() == ISD::UNDEF)
2431      return getUNDEF(VT);
2432    break;
2433  case ISD::SIGN_EXTEND:
2434    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2435           "Invalid SIGN_EXTEND!");
2436    if (Operand.getValueType() == VT) return Operand;   // noop extension
2437    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2438           "Invalid sext node, dst < src!");
2439    assert((!VT.isVector() ||
2440            VT.getVectorNumElements() ==
2441            Operand.getValueType().getVectorNumElements()) &&
2442           "Vector element count mismatch!");
2443    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2444      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2445    break;
2446  case ISD::ZERO_EXTEND:
2447    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2448           "Invalid ZERO_EXTEND!");
2449    if (Operand.getValueType() == VT) return Operand;   // noop extension
2450    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2451           "Invalid zext node, dst < src!");
2452    assert((!VT.isVector() ||
2453            VT.getVectorNumElements() ==
2454            Operand.getValueType().getVectorNumElements()) &&
2455           "Vector element count mismatch!");
2456    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2457      return getNode(ISD::ZERO_EXTEND, DL, VT,
2458                     Operand.getNode()->getOperand(0));
2459    break;
2460  case ISD::ANY_EXTEND:
2461    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2462           "Invalid ANY_EXTEND!");
2463    if (Operand.getValueType() == VT) return Operand;   // noop extension
2464    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2465           "Invalid anyext node, dst < src!");
2466    assert((!VT.isVector() ||
2467            VT.getVectorNumElements() ==
2468            Operand.getValueType().getVectorNumElements()) &&
2469           "Vector element count mismatch!");
2470    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2471      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2472      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2473    break;
2474  case ISD::TRUNCATE:
2475    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2476           "Invalid TRUNCATE!");
2477    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2478    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2479           "Invalid truncate node, src < dst!");
2480    assert((!VT.isVector() ||
2481            VT.getVectorNumElements() ==
2482            Operand.getValueType().getVectorNumElements()) &&
2483           "Vector element count mismatch!");
2484    if (OpOpcode == ISD::TRUNCATE)
2485      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2486    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2487             OpOpcode == ISD::ANY_EXTEND) {
2488      // If the source is smaller than the dest, we still need an extend.
2489      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2490            .bitsLT(VT.getScalarType()))
2491        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2492      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2493        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2494      else
2495        return Operand.getNode()->getOperand(0);
2496    }
2497    break;
2498  case ISD::BIT_CONVERT:
2499    // Basic sanity checking.
2500    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2501           && "Cannot BIT_CONVERT between types of different sizes!");
2502    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2503    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2504      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2505    if (OpOpcode == ISD::UNDEF)
2506      return getUNDEF(VT);
2507    break;
2508  case ISD::SCALAR_TO_VECTOR:
2509    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2510           (VT.getVectorElementType() == Operand.getValueType() ||
2511            (VT.getVectorElementType().isInteger() &&
2512             Operand.getValueType().isInteger() &&
2513             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2514           "Illegal SCALAR_TO_VECTOR node!");
2515    if (OpOpcode == ISD::UNDEF)
2516      return getUNDEF(VT);
2517    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2518    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2519        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2520        Operand.getConstantOperandVal(1) == 0 &&
2521        Operand.getOperand(0).getValueType() == VT)
2522      return Operand.getOperand(0);
2523    break;
2524  case ISD::FNEG:
2525    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2526    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2527      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2528                     Operand.getNode()->getOperand(0));
2529    if (OpOpcode == ISD::FNEG)  // --X -> X
2530      return Operand.getNode()->getOperand(0);
2531    break;
2532  case ISD::FABS:
2533    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2534      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2535    break;
2536  }
2537
2538  SDNode *N;
2539  SDVTList VTs = getVTList(VT);
2540  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2541    FoldingSetNodeID ID;
2542    SDValue Ops[1] = { Operand };
2543    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2544    void *IP = 0;
2545    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2546      return SDValue(E, 0);
2547
2548    N = NodeAllocator.Allocate<UnarySDNode>();
2549    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2550    CSEMap.InsertNode(N, IP);
2551  } else {
2552    N = NodeAllocator.Allocate<UnarySDNode>();
2553    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2554  }
2555
2556  AllNodes.push_back(N);
2557#ifndef NDEBUG
2558  VerifyNode(N);
2559#endif
2560  return SDValue(N, 0);
2561}
2562
2563SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2564                                             EVT VT,
2565                                             ConstantSDNode *Cst1,
2566                                             ConstantSDNode *Cst2) {
2567  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2568
2569  switch (Opcode) {
2570  case ISD::ADD:  return getConstant(C1 + C2, VT);
2571  case ISD::SUB:  return getConstant(C1 - C2, VT);
2572  case ISD::MUL:  return getConstant(C1 * C2, VT);
2573  case ISD::UDIV:
2574    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2575    break;
2576  case ISD::UREM:
2577    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2578    break;
2579  case ISD::SDIV:
2580    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2581    break;
2582  case ISD::SREM:
2583    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2584    break;
2585  case ISD::AND:  return getConstant(C1 & C2, VT);
2586  case ISD::OR:   return getConstant(C1 | C2, VT);
2587  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2588  case ISD::SHL:  return getConstant(C1 << C2, VT);
2589  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2590  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2591  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2592  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2593  default: break;
2594  }
2595
2596  return SDValue();
2597}
2598
2599SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2600                              SDValue N1, SDValue N2) {
2601  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2602  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2603  switch (Opcode) {
2604  default: break;
2605  case ISD::TokenFactor:
2606    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2607           N2.getValueType() == MVT::Other && "Invalid token factor!");
2608    // Fold trivial token factors.
2609    if (N1.getOpcode() == ISD::EntryToken) return N2;
2610    if (N2.getOpcode() == ISD::EntryToken) return N1;
2611    if (N1 == N2) return N1;
2612    break;
2613  case ISD::CONCAT_VECTORS:
2614    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2615    // one big BUILD_VECTOR.
2616    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2617        N2.getOpcode() == ISD::BUILD_VECTOR) {
2618      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2619      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2620      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2621    }
2622    break;
2623  case ISD::AND:
2624    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2625           N1.getValueType() == VT && "Binary operator types must match!");
2626    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2627    // worth handling here.
2628    if (N2C && N2C->isNullValue())
2629      return N2;
2630    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2631      return N1;
2632    break;
2633  case ISD::OR:
2634  case ISD::XOR:
2635  case ISD::ADD:
2636  case ISD::SUB:
2637    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2638           N1.getValueType() == VT && "Binary operator types must match!");
2639    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2640    // it's worth handling here.
2641    if (N2C && N2C->isNullValue())
2642      return N1;
2643    break;
2644  case ISD::UDIV:
2645  case ISD::UREM:
2646  case ISD::MULHU:
2647  case ISD::MULHS:
2648  case ISD::MUL:
2649  case ISD::SDIV:
2650  case ISD::SREM:
2651    assert(VT.isInteger() && "This operator does not apply to FP types!");
2652    // fall through
2653  case ISD::FADD:
2654  case ISD::FSUB:
2655  case ISD::FMUL:
2656  case ISD::FDIV:
2657  case ISD::FREM:
2658    if (UnsafeFPMath) {
2659      if (Opcode == ISD::FADD) {
2660        // 0+x --> x
2661        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2662          if (CFP->getValueAPF().isZero())
2663            return N2;
2664        // x+0 --> x
2665        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2666          if (CFP->getValueAPF().isZero())
2667            return N1;
2668      } else if (Opcode == ISD::FSUB) {
2669        // x-0 --> x
2670        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2671          if (CFP->getValueAPF().isZero())
2672            return N1;
2673      }
2674    }
2675    assert(N1.getValueType() == N2.getValueType() &&
2676           N1.getValueType() == VT && "Binary operator types must match!");
2677    break;
2678  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2679    assert(N1.getValueType() == VT &&
2680           N1.getValueType().isFloatingPoint() &&
2681           N2.getValueType().isFloatingPoint() &&
2682           "Invalid FCOPYSIGN!");
2683    break;
2684  case ISD::SHL:
2685  case ISD::SRA:
2686  case ISD::SRL:
2687  case ISD::ROTL:
2688  case ISD::ROTR:
2689    assert(VT == N1.getValueType() &&
2690           "Shift operators return type must be the same as their first arg");
2691    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2692           "Shifts only work on integers");
2693
2694    // Always fold shifts of i1 values so the code generator doesn't need to
2695    // handle them.  Since we know the size of the shift has to be less than the
2696    // size of the value, the shift/rotate count is guaranteed to be zero.
2697    if (VT == MVT::i1)
2698      return N1;
2699    if (N2C && N2C->isNullValue())
2700      return N1;
2701    break;
2702  case ISD::FP_ROUND_INREG: {
2703    EVT EVT = cast<VTSDNode>(N2)->getVT();
2704    assert(VT == N1.getValueType() && "Not an inreg round!");
2705    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2706           "Cannot FP_ROUND_INREG integer types");
2707    assert(EVT.isVector() == VT.isVector() &&
2708           "FP_ROUND_INREG type should be vector iff the operand "
2709           "type is vector!");
2710    assert((!EVT.isVector() ||
2711            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2712           "Vector element counts must match in FP_ROUND_INREG");
2713    assert(EVT.bitsLE(VT) && "Not rounding down!");
2714    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2715    break;
2716  }
2717  case ISD::FP_ROUND:
2718    assert(VT.isFloatingPoint() &&
2719           N1.getValueType().isFloatingPoint() &&
2720           VT.bitsLE(N1.getValueType()) &&
2721           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2722    if (N1.getValueType() == VT) return N1;  // noop conversion.
2723    break;
2724  case ISD::AssertSext:
2725  case ISD::AssertZext: {
2726    EVT EVT = cast<VTSDNode>(N2)->getVT();
2727    assert(VT == N1.getValueType() && "Not an inreg extend!");
2728    assert(VT.isInteger() && EVT.isInteger() &&
2729           "Cannot *_EXTEND_INREG FP types");
2730    assert(!EVT.isVector() &&
2731           "AssertSExt/AssertZExt type should be the vector element type "
2732           "rather than the vector type!");
2733    assert(EVT.bitsLE(VT) && "Not extending!");
2734    if (VT == EVT) return N1; // noop assertion.
2735    break;
2736  }
2737  case ISD::SIGN_EXTEND_INREG: {
2738    EVT EVT = cast<VTSDNode>(N2)->getVT();
2739    assert(VT == N1.getValueType() && "Not an inreg extend!");
2740    assert(VT.isInteger() && EVT.isInteger() &&
2741           "Cannot *_EXTEND_INREG FP types");
2742    assert(EVT.isVector() == VT.isVector() &&
2743           "SIGN_EXTEND_INREG type should be vector iff the operand "
2744           "type is vector!");
2745    assert((!EVT.isVector() ||
2746            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2747           "Vector element counts must match in SIGN_EXTEND_INREG");
2748    assert(EVT.bitsLE(VT) && "Not extending!");
2749    if (EVT == VT) return N1;  // Not actually extending
2750
2751    if (N1C) {
2752      APInt Val = N1C->getAPIntValue();
2753      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2754      Val <<= Val.getBitWidth()-FromBits;
2755      Val = Val.ashr(Val.getBitWidth()-FromBits);
2756      return getConstant(Val, VT);
2757    }
2758    break;
2759  }
2760  case ISD::EXTRACT_VECTOR_ELT:
2761    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2762    if (N1.getOpcode() == ISD::UNDEF)
2763      return getUNDEF(VT);
2764
2765    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2766    // expanding copies of large vectors from registers.
2767    if (N2C &&
2768        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2769        N1.getNumOperands() > 0) {
2770      unsigned Factor =
2771        N1.getOperand(0).getValueType().getVectorNumElements();
2772      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2773                     N1.getOperand(N2C->getZExtValue() / Factor),
2774                     getConstant(N2C->getZExtValue() % Factor,
2775                                 N2.getValueType()));
2776    }
2777
2778    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2779    // expanding large vector constants.
2780    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2781      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2782      EVT VEltTy = N1.getValueType().getVectorElementType();
2783      if (Elt.getValueType() != VEltTy) {
2784        // If the vector element type is not legal, the BUILD_VECTOR operands
2785        // are promoted and implicitly truncated.  Make that explicit here.
2786        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2787      }
2788      if (VT != VEltTy) {
2789        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2790        // result is implicitly extended.
2791        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2792      }
2793      return Elt;
2794    }
2795
2796    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2797    // operations are lowered to scalars.
2798    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2799      // If the indices are the same, return the inserted element else
2800      // if the indices are known different, extract the element from
2801      // the original vector.
2802      if (N1.getOperand(2) == N2) {
2803        if (VT == N1.getOperand(1).getValueType())
2804          return N1.getOperand(1);
2805        else
2806          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2807      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2808                 isa<ConstantSDNode>(N2))
2809        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2810    }
2811    break;
2812  case ISD::EXTRACT_ELEMENT:
2813    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2814    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2815           (N1.getValueType().isInteger() == VT.isInteger()) &&
2816           "Wrong types for EXTRACT_ELEMENT!");
2817
2818    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2819    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2820    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2821    if (N1.getOpcode() == ISD::BUILD_PAIR)
2822      return N1.getOperand(N2C->getZExtValue());
2823
2824    // EXTRACT_ELEMENT of a constant int is also very common.
2825    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2826      unsigned ElementSize = VT.getSizeInBits();
2827      unsigned Shift = ElementSize * N2C->getZExtValue();
2828      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2829      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2830    }
2831    break;
2832  case ISD::EXTRACT_SUBVECTOR:
2833    if (N1.getValueType() == VT) // Trivial extraction.
2834      return N1;
2835    break;
2836  }
2837
2838  if (N1C) {
2839    if (N2C) {
2840      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2841      if (SV.getNode()) return SV;
2842    } else {      // Cannonicalize constant to RHS if commutative
2843      if (isCommutativeBinOp(Opcode)) {
2844        std::swap(N1C, N2C);
2845        std::swap(N1, N2);
2846      }
2847    }
2848  }
2849
2850  // Constant fold FP operations.
2851  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2852  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2853  if (N1CFP) {
2854    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2855      // Cannonicalize constant to RHS if commutative
2856      std::swap(N1CFP, N2CFP);
2857      std::swap(N1, N2);
2858    } else if (N2CFP && VT != MVT::ppcf128) {
2859      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2860      APFloat::opStatus s;
2861      switch (Opcode) {
2862      case ISD::FADD:
2863        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2864        if (s != APFloat::opInvalidOp)
2865          return getConstantFP(V1, VT);
2866        break;
2867      case ISD::FSUB:
2868        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2869        if (s!=APFloat::opInvalidOp)
2870          return getConstantFP(V1, VT);
2871        break;
2872      case ISD::FMUL:
2873        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2874        if (s!=APFloat::opInvalidOp)
2875          return getConstantFP(V1, VT);
2876        break;
2877      case ISD::FDIV:
2878        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2879        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2880          return getConstantFP(V1, VT);
2881        break;
2882      case ISD::FREM :
2883        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2884        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2885          return getConstantFP(V1, VT);
2886        break;
2887      case ISD::FCOPYSIGN:
2888        V1.copySign(V2);
2889        return getConstantFP(V1, VT);
2890      default: break;
2891      }
2892    }
2893  }
2894
2895  // Canonicalize an UNDEF to the RHS, even over a constant.
2896  if (N1.getOpcode() == ISD::UNDEF) {
2897    if (isCommutativeBinOp(Opcode)) {
2898      std::swap(N1, N2);
2899    } else {
2900      switch (Opcode) {
2901      case ISD::FP_ROUND_INREG:
2902      case ISD::SIGN_EXTEND_INREG:
2903      case ISD::SUB:
2904      case ISD::FSUB:
2905      case ISD::FDIV:
2906      case ISD::FREM:
2907      case ISD::SRA:
2908        return N1;     // fold op(undef, arg2) -> undef
2909      case ISD::UDIV:
2910      case ISD::SDIV:
2911      case ISD::UREM:
2912      case ISD::SREM:
2913      case ISD::SRL:
2914      case ISD::SHL:
2915        if (!VT.isVector())
2916          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2917        // For vectors, we can't easily build an all zero vector, just return
2918        // the LHS.
2919        return N2;
2920      }
2921    }
2922  }
2923
2924  // Fold a bunch of operators when the RHS is undef.
2925  if (N2.getOpcode() == ISD::UNDEF) {
2926    switch (Opcode) {
2927    case ISD::XOR:
2928      if (N1.getOpcode() == ISD::UNDEF)
2929        // Handle undef ^ undef -> 0 special case. This is a common
2930        // idiom (misuse).
2931        return getConstant(0, VT);
2932      // fallthrough
2933    case ISD::ADD:
2934    case ISD::ADDC:
2935    case ISD::ADDE:
2936    case ISD::SUB:
2937    case ISD::UDIV:
2938    case ISD::SDIV:
2939    case ISD::UREM:
2940    case ISD::SREM:
2941      return N2;       // fold op(arg1, undef) -> undef
2942    case ISD::FADD:
2943    case ISD::FSUB:
2944    case ISD::FMUL:
2945    case ISD::FDIV:
2946    case ISD::FREM:
2947      if (UnsafeFPMath)
2948        return N2;
2949      break;
2950    case ISD::MUL:
2951    case ISD::AND:
2952    case ISD::SRL:
2953    case ISD::SHL:
2954      if (!VT.isVector())
2955        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2956      // For vectors, we can't easily build an all zero vector, just return
2957      // the LHS.
2958      return N1;
2959    case ISD::OR:
2960      if (!VT.isVector())
2961        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2962      // For vectors, we can't easily build an all one vector, just return
2963      // the LHS.
2964      return N1;
2965    case ISD::SRA:
2966      return N1;
2967    }
2968  }
2969
2970  // Memoize this node if possible.
2971  SDNode *N;
2972  SDVTList VTs = getVTList(VT);
2973  if (VT != MVT::Flag) {
2974    SDValue Ops[] = { N1, N2 };
2975    FoldingSetNodeID ID;
2976    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2977    void *IP = 0;
2978    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2979      return SDValue(E, 0);
2980
2981    N = NodeAllocator.Allocate<BinarySDNode>();
2982    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2983    CSEMap.InsertNode(N, IP);
2984  } else {
2985    N = NodeAllocator.Allocate<BinarySDNode>();
2986    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2987  }
2988
2989  AllNodes.push_back(N);
2990#ifndef NDEBUG
2991  VerifyNode(N);
2992#endif
2993  return SDValue(N, 0);
2994}
2995
2996SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2997                              SDValue N1, SDValue N2, SDValue N3) {
2998  // Perform various simplifications.
2999  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3000  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
3001  switch (Opcode) {
3002  case ISD::CONCAT_VECTORS:
3003    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3004    // one big BUILD_VECTOR.
3005    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3006        N2.getOpcode() == ISD::BUILD_VECTOR &&
3007        N3.getOpcode() == ISD::BUILD_VECTOR) {
3008      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3009      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3010      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3011      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3012    }
3013    break;
3014  case ISD::SETCC: {
3015    // Use FoldSetCC to simplify SETCC's.
3016    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3017    if (Simp.getNode()) return Simp;
3018    break;
3019  }
3020  case ISD::SELECT:
3021    if (N1C) {
3022     if (N1C->getZExtValue())
3023        return N2;             // select true, X, Y -> X
3024      else
3025        return N3;             // select false, X, Y -> Y
3026    }
3027
3028    if (N2 == N3) return N2;   // select C, X, X -> X
3029    break;
3030  case ISD::BRCOND:
3031    if (N2C) {
3032      if (N2C->getZExtValue()) // Unconditional branch
3033        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3034      else
3035        return N1;         // Never-taken branch
3036    }
3037    break;
3038  case ISD::VECTOR_SHUFFLE:
3039    llvm_unreachable("should use getVectorShuffle constructor!");
3040    break;
3041  case ISD::BIT_CONVERT:
3042    // Fold bit_convert nodes from a type to themselves.
3043    if (N1.getValueType() == VT)
3044      return N1;
3045    break;
3046  }
3047
3048  // Memoize node if it doesn't produce a flag.
3049  SDNode *N;
3050  SDVTList VTs = getVTList(VT);
3051  if (VT != MVT::Flag) {
3052    SDValue Ops[] = { N1, N2, N3 };
3053    FoldingSetNodeID ID;
3054    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3055    void *IP = 0;
3056    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3057      return SDValue(E, 0);
3058
3059    N = NodeAllocator.Allocate<TernarySDNode>();
3060    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3061    CSEMap.InsertNode(N, IP);
3062  } else {
3063    N = NodeAllocator.Allocate<TernarySDNode>();
3064    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3065  }
3066
3067  AllNodes.push_back(N);
3068#ifndef NDEBUG
3069  VerifyNode(N);
3070#endif
3071  return SDValue(N, 0);
3072}
3073
3074SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3075                              SDValue N1, SDValue N2, SDValue N3,
3076                              SDValue N4) {
3077  SDValue Ops[] = { N1, N2, N3, N4 };
3078  return getNode(Opcode, DL, VT, Ops, 4);
3079}
3080
3081SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3082                              SDValue N1, SDValue N2, SDValue N3,
3083                              SDValue N4, SDValue N5) {
3084  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3085  return getNode(Opcode, DL, VT, Ops, 5);
3086}
3087
3088/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3089/// the incoming stack arguments to be loaded from the stack.
3090SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3091  SmallVector<SDValue, 8> ArgChains;
3092
3093  // Include the original chain at the beginning of the list. When this is
3094  // used by target LowerCall hooks, this helps legalize find the
3095  // CALLSEQ_BEGIN node.
3096  ArgChains.push_back(Chain);
3097
3098  // Add a chain value for each stack argument.
3099  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3100       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3101    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3102      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3103        if (FI->getIndex() < 0)
3104          ArgChains.push_back(SDValue(L, 1));
3105
3106  // Build a tokenfactor for all the chains.
3107  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3108                 &ArgChains[0], ArgChains.size());
3109}
3110
3111/// getMemsetValue - Vectorized representation of the memset value
3112/// operand.
3113static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3114                              DebugLoc dl) {
3115  unsigned NumBits = VT.getScalarType().getSizeInBits();
3116  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3117    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3118    unsigned Shift = 8;
3119    for (unsigned i = NumBits; i > 8; i >>= 1) {
3120      Val = (Val << Shift) | Val;
3121      Shift <<= 1;
3122    }
3123    if (VT.isInteger())
3124      return DAG.getConstant(Val, VT);
3125    return DAG.getConstantFP(APFloat(Val), VT);
3126  }
3127
3128  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3129  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3130  unsigned Shift = 8;
3131  for (unsigned i = NumBits; i > 8; i >>= 1) {
3132    Value = DAG.getNode(ISD::OR, dl, VT,
3133                        DAG.getNode(ISD::SHL, dl, VT, Value,
3134                                    DAG.getConstant(Shift,
3135                                                    TLI.getShiftAmountTy())),
3136                        Value);
3137    Shift <<= 1;
3138  }
3139
3140  return Value;
3141}
3142
3143/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3144/// used when a memcpy is turned into a memset when the source is a constant
3145/// string ptr.
3146static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3147                                  const TargetLowering &TLI,
3148                                  std::string &Str, unsigned Offset) {
3149  // Handle vector with all elements zero.
3150  if (Str.empty()) {
3151    if (VT.isInteger())
3152      return DAG.getConstant(0, VT);
3153    unsigned NumElts = VT.getVectorNumElements();
3154    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3155    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3156                       DAG.getConstant(0,
3157                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3158  }
3159
3160  assert(!VT.isVector() && "Can't handle vector type here!");
3161  unsigned NumBits = VT.getSizeInBits();
3162  unsigned MSB = NumBits / 8;
3163  uint64_t Val = 0;
3164  if (TLI.isLittleEndian())
3165    Offset = Offset + MSB - 1;
3166  for (unsigned i = 0; i != MSB; ++i) {
3167    Val = (Val << 8) | (unsigned char)Str[Offset];
3168    Offset += TLI.isLittleEndian() ? -1 : 1;
3169  }
3170  return DAG.getConstant(Val, VT);
3171}
3172
3173/// getMemBasePlusOffset - Returns base and offset node for the
3174///
3175static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3176                                      SelectionDAG &DAG) {
3177  EVT VT = Base.getValueType();
3178  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3179                     VT, Base, DAG.getConstant(Offset, VT));
3180}
3181
3182/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3183///
3184static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3185  unsigned SrcDelta = 0;
3186  GlobalAddressSDNode *G = NULL;
3187  if (Src.getOpcode() == ISD::GlobalAddress)
3188    G = cast<GlobalAddressSDNode>(Src);
3189  else if (Src.getOpcode() == ISD::ADD &&
3190           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3191           Src.getOperand(1).getOpcode() == ISD::Constant) {
3192    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3193    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3194  }
3195  if (!G)
3196    return false;
3197
3198  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3199  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3200    return true;
3201
3202  return false;
3203}
3204
3205/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3206/// to replace the memset / memcpy is below the threshold. It also returns the
3207/// types of the sequence of memory ops to perform memset / memcpy.
3208static
3209bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3210                              SDValue Dst, SDValue Src,
3211                              unsigned Limit, uint64_t Size, unsigned &Align,
3212                              std::string &Str, bool &isSrcStr,
3213                              SelectionDAG &DAG,
3214                              const TargetLowering &TLI) {
3215  isSrcStr = isMemSrcFromString(Src, Str);
3216  bool isSrcConst = isa<ConstantSDNode>(Src);
3217  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3218  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3219  if (VT != MVT::Other) {
3220    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3221    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3222    // If source is a string constant, this will require an unaligned load.
3223    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3224      if (Dst.getOpcode() != ISD::FrameIndex) {
3225        // Can't change destination alignment. It requires a unaligned store.
3226        if (AllowUnalign)
3227          VT = MVT::Other;
3228      } else {
3229        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3230        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3231        if (MFI->isFixedObjectIndex(FI)) {
3232          // Can't change destination alignment. It requires a unaligned store.
3233          if (AllowUnalign)
3234            VT = MVT::Other;
3235        } else {
3236          // Give the stack frame object a larger alignment if needed.
3237          if (MFI->getObjectAlignment(FI) < NewAlign)
3238            MFI->setObjectAlignment(FI, NewAlign);
3239          Align = NewAlign;
3240        }
3241      }
3242    }
3243  }
3244
3245  if (VT == MVT::Other) {
3246    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3247      VT = MVT::i64;
3248    } else {
3249      switch (Align & 7) {
3250      case 0:  VT = MVT::i64; break;
3251      case 4:  VT = MVT::i32; break;
3252      case 2:  VT = MVT::i16; break;
3253      default: VT = MVT::i8;  break;
3254      }
3255    }
3256
3257    MVT LVT = MVT::i64;
3258    while (!TLI.isTypeLegal(LVT))
3259      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3260    assert(LVT.isInteger());
3261
3262    if (VT.bitsGT(LVT))
3263      VT = LVT;
3264  }
3265
3266  unsigned NumMemOps = 0;
3267  while (Size != 0) {
3268    unsigned VTSize = VT.getSizeInBits() / 8;
3269    while (VTSize > Size) {
3270      // For now, only use non-vector load / store's for the left-over pieces.
3271      if (VT.isVector()) {
3272        VT = MVT::i64;
3273        while (!TLI.isTypeLegal(VT))
3274          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3275        VTSize = VT.getSizeInBits() / 8;
3276      } else {
3277        // This can result in a type that is not legal on the target, e.g.
3278        // 1 or 2 bytes on PPC.
3279        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3280        VTSize >>= 1;
3281      }
3282    }
3283
3284    if (++NumMemOps > Limit)
3285      return false;
3286    MemOps.push_back(VT);
3287    Size -= VTSize;
3288  }
3289
3290  return true;
3291}
3292
3293static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3294                                         SDValue Chain, SDValue Dst,
3295                                         SDValue Src, uint64_t Size,
3296                                         unsigned Align, bool AlwaysInline,
3297                                         const Value *DstSV, uint64_t DstSVOff,
3298                                         const Value *SrcSV, uint64_t SrcSVOff){
3299  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3300
3301  // Expand memcpy to a series of load and store ops if the size operand falls
3302  // below a certain threshold.
3303  std::vector<EVT> MemOps;
3304  uint64_t Limit = -1ULL;
3305  if (!AlwaysInline)
3306    Limit = TLI.getMaxStoresPerMemcpy();
3307  unsigned DstAlign = Align;  // Destination alignment can change.
3308  std::string Str;
3309  bool CopyFromStr;
3310  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3311                                Str, CopyFromStr, DAG, TLI))
3312    return SDValue();
3313
3314
3315  bool isZeroStr = CopyFromStr && Str.empty();
3316  SmallVector<SDValue, 8> OutChains;
3317  unsigned NumMemOps = MemOps.size();
3318  uint64_t SrcOff = 0, DstOff = 0;
3319  for (unsigned i = 0; i != NumMemOps; ++i) {
3320    EVT VT = MemOps[i];
3321    unsigned VTSize = VT.getSizeInBits() / 8;
3322    SDValue Value, Store;
3323
3324    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3325      // It's unlikely a store of a vector immediate can be done in a single
3326      // instruction. It would require a load from a constantpool first.
3327      // We also handle store a vector with all zero's.
3328      // FIXME: Handle other cases where store of vector immediate is done in
3329      // a single instruction.
3330      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3331      Store = DAG.getStore(Chain, dl, Value,
3332                           getMemBasePlusOffset(Dst, DstOff, DAG),
3333                           DstSV, DstSVOff + DstOff, false, false, DstAlign);
3334    } else {
3335      // The type might not be legal for the target.  This should only happen
3336      // if the type is smaller than a legal type, as on PPC, so the right
3337      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3338      // to Load/Store if NVT==VT.
3339      // FIXME does the case above also need this?
3340      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3341      assert(NVT.bitsGE(VT));
3342      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3343                             getMemBasePlusOffset(Src, SrcOff, DAG),
3344                             SrcSV, SrcSVOff + SrcOff, VT, false, false, Align);
3345      Store = DAG.getTruncStore(Chain, dl, Value,
3346                                getMemBasePlusOffset(Dst, DstOff, DAG),
3347                                DstSV, DstSVOff + DstOff, VT, false, false,
3348                                DstAlign);
3349    }
3350    OutChains.push_back(Store);
3351    SrcOff += VTSize;
3352    DstOff += VTSize;
3353  }
3354
3355  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3356                     &OutChains[0], OutChains.size());
3357}
3358
3359static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3360                                          SDValue Chain, SDValue Dst,
3361                                          SDValue Src, uint64_t Size,
3362                                          unsigned Align, bool AlwaysInline,
3363                                          const Value *DstSV, uint64_t DstSVOff,
3364                                          const Value *SrcSV, uint64_t SrcSVOff){
3365  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3366
3367  // Expand memmove to a series of load and store ops if the size operand falls
3368  // below a certain threshold.
3369  std::vector<EVT> MemOps;
3370  uint64_t Limit = -1ULL;
3371  if (!AlwaysInline)
3372    Limit = TLI.getMaxStoresPerMemmove();
3373  unsigned DstAlign = Align;  // Destination alignment can change.
3374  std::string Str;
3375  bool CopyFromStr;
3376  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3377                                Str, CopyFromStr, DAG, TLI))
3378    return SDValue();
3379
3380  uint64_t SrcOff = 0, DstOff = 0;
3381
3382  SmallVector<SDValue, 8> LoadValues;
3383  SmallVector<SDValue, 8> LoadChains;
3384  SmallVector<SDValue, 8> OutChains;
3385  unsigned NumMemOps = MemOps.size();
3386  for (unsigned i = 0; i < NumMemOps; i++) {
3387    EVT VT = MemOps[i];
3388    unsigned VTSize = VT.getSizeInBits() / 8;
3389    SDValue Value, Store;
3390
3391    Value = DAG.getLoad(VT, dl, Chain,
3392                        getMemBasePlusOffset(Src, SrcOff, DAG),
3393                        SrcSV, SrcSVOff + SrcOff, false, false, Align);
3394    LoadValues.push_back(Value);
3395    LoadChains.push_back(Value.getValue(1));
3396    SrcOff += VTSize;
3397  }
3398  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3399                      &LoadChains[0], LoadChains.size());
3400  OutChains.clear();
3401  for (unsigned i = 0; i < NumMemOps; i++) {
3402    EVT VT = MemOps[i];
3403    unsigned VTSize = VT.getSizeInBits() / 8;
3404    SDValue Value, Store;
3405
3406    Store = DAG.getStore(Chain, dl, LoadValues[i],
3407                         getMemBasePlusOffset(Dst, DstOff, DAG),
3408                         DstSV, DstSVOff + DstOff, false, false, DstAlign);
3409    OutChains.push_back(Store);
3410    DstOff += VTSize;
3411  }
3412
3413  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3414                     &OutChains[0], OutChains.size());
3415}
3416
3417static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3418                                 SDValue Chain, SDValue Dst,
3419                                 SDValue Src, uint64_t Size,
3420                                 unsigned Align,
3421                                 const Value *DstSV, uint64_t DstSVOff) {
3422  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3423
3424  // Expand memset to a series of load/store ops if the size operand
3425  // falls below a certain threshold.
3426  std::vector<EVT> MemOps;
3427  std::string Str;
3428  bool CopyFromStr;
3429  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3430                                Size, Align, Str, CopyFromStr, DAG, TLI))
3431    return SDValue();
3432
3433  SmallVector<SDValue, 8> OutChains;
3434  uint64_t DstOff = 0;
3435
3436  unsigned NumMemOps = MemOps.size();
3437  for (unsigned i = 0; i < NumMemOps; i++) {
3438    EVT VT = MemOps[i];
3439    unsigned VTSize = VT.getSizeInBits() / 8;
3440    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3441    SDValue Store = DAG.getStore(Chain, dl, Value,
3442                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3443                                 DstSV, DstSVOff + DstOff, false, false, 0);
3444    OutChains.push_back(Store);
3445    DstOff += VTSize;
3446  }
3447
3448  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3449                     &OutChains[0], OutChains.size());
3450}
3451
3452SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3453                                SDValue Src, SDValue Size,
3454                                unsigned Align, bool AlwaysInline,
3455                                const Value *DstSV, uint64_t DstSVOff,
3456                                const Value *SrcSV, uint64_t SrcSVOff) {
3457
3458  // Check to see if we should lower the memcpy to loads and stores first.
3459  // For cases within the target-specified limits, this is the best choice.
3460  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3461  if (ConstantSize) {
3462    // Memcpy with size zero? Just return the original chain.
3463    if (ConstantSize->isNullValue())
3464      return Chain;
3465
3466    SDValue Result =
3467      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3468                              ConstantSize->getZExtValue(),
3469                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3470    if (Result.getNode())
3471      return Result;
3472  }
3473
3474  // Then check to see if we should lower the memcpy with target-specific
3475  // code. If the target chooses to do this, this is the next best.
3476  SDValue Result =
3477    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3478                                AlwaysInline,
3479                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3480  if (Result.getNode())
3481    return Result;
3482
3483  // If we really need inline code and the target declined to provide it,
3484  // use a (potentially long) sequence of loads and stores.
3485  if (AlwaysInline) {
3486    assert(ConstantSize && "AlwaysInline requires a constant size!");
3487    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3488                                   ConstantSize->getZExtValue(), Align, true,
3489                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3490  }
3491
3492  // Emit a library call.
3493  TargetLowering::ArgListTy Args;
3494  TargetLowering::ArgListEntry Entry;
3495  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3496  Entry.Node = Dst; Args.push_back(Entry);
3497  Entry.Node = Src; Args.push_back(Entry);
3498  Entry.Node = Size; Args.push_back(Entry);
3499  // FIXME: pass in DebugLoc
3500  std::pair<SDValue,SDValue> CallResult =
3501    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3502                    false, false, false, false, 0,
3503                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3504                    /*isReturnValueUsed=*/false,
3505                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3506                                      TLI.getPointerTy()),
3507                    Args, *this, dl);
3508  return CallResult.second;
3509}
3510
3511SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3512                                 SDValue Src, SDValue Size,
3513                                 unsigned Align,
3514                                 const Value *DstSV, uint64_t DstSVOff,
3515                                 const Value *SrcSV, uint64_t SrcSVOff) {
3516
3517  // Check to see if we should lower the memmove to loads and stores first.
3518  // For cases within the target-specified limits, this is the best choice.
3519  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3520  if (ConstantSize) {
3521    // Memmove with size zero? Just return the original chain.
3522    if (ConstantSize->isNullValue())
3523      return Chain;
3524
3525    SDValue Result =
3526      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3527                               ConstantSize->getZExtValue(),
3528                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3529    if (Result.getNode())
3530      return Result;
3531  }
3532
3533  // Then check to see if we should lower the memmove with target-specific
3534  // code. If the target chooses to do this, this is the next best.
3535  SDValue Result =
3536    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3537                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3538  if (Result.getNode())
3539    return Result;
3540
3541  // Emit a library call.
3542  TargetLowering::ArgListTy Args;
3543  TargetLowering::ArgListEntry Entry;
3544  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3545  Entry.Node = Dst; Args.push_back(Entry);
3546  Entry.Node = Src; Args.push_back(Entry);
3547  Entry.Node = Size; Args.push_back(Entry);
3548  // FIXME:  pass in DebugLoc
3549  std::pair<SDValue,SDValue> CallResult =
3550    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3551                    false, false, false, false, 0,
3552                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3553                    /*isReturnValueUsed=*/false,
3554                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3555                                      TLI.getPointerTy()),
3556                    Args, *this, dl);
3557  return CallResult.second;
3558}
3559
3560SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3561                                SDValue Src, SDValue Size,
3562                                unsigned Align,
3563                                const Value *DstSV, uint64_t DstSVOff) {
3564
3565  // Check to see if we should lower the memset to stores first.
3566  // For cases within the target-specified limits, this is the best choice.
3567  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3568  if (ConstantSize) {
3569    // Memset with size zero? Just return the original chain.
3570    if (ConstantSize->isNullValue())
3571      return Chain;
3572
3573    SDValue Result =
3574      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3575                      Align, DstSV, DstSVOff);
3576    if (Result.getNode())
3577      return Result;
3578  }
3579
3580  // Then check to see if we should lower the memset with target-specific
3581  // code. If the target chooses to do this, this is the next best.
3582  SDValue Result =
3583    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3584                                DstSV, DstSVOff);
3585  if (Result.getNode())
3586    return Result;
3587
3588  // Emit a library call.
3589  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3590  TargetLowering::ArgListTy Args;
3591  TargetLowering::ArgListEntry Entry;
3592  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3593  Args.push_back(Entry);
3594  // Extend or truncate the argument to be an i32 value for the call.
3595  if (Src.getValueType().bitsGT(MVT::i32))
3596    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3597  else
3598    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3599  Entry.Node = Src;
3600  Entry.Ty = Type::getInt32Ty(*getContext());
3601  Entry.isSExt = true;
3602  Args.push_back(Entry);
3603  Entry.Node = Size;
3604  Entry.Ty = IntPtrTy;
3605  Entry.isSExt = false;
3606  Args.push_back(Entry);
3607  // FIXME: pass in DebugLoc
3608  std::pair<SDValue,SDValue> CallResult =
3609    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3610                    false, false, false, false, 0,
3611                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3612                    /*isReturnValueUsed=*/false,
3613                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3614                                      TLI.getPointerTy()),
3615                    Args, *this, dl);
3616  return CallResult.second;
3617}
3618
3619SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3620                                SDValue Chain,
3621                                SDValue Ptr, SDValue Cmp,
3622                                SDValue Swp, const Value* PtrVal,
3623                                unsigned Alignment) {
3624  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3625    Alignment = getEVTAlignment(MemVT);
3626
3627  // Check if the memory reference references a frame index
3628  if (!PtrVal)
3629    if (const FrameIndexSDNode *FI =
3630          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3631      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3632
3633  MachineFunction &MF = getMachineFunction();
3634  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3635
3636  // For now, atomics are considered to be volatile always.
3637  Flags |= MachineMemOperand::MOVolatile;
3638
3639  MachineMemOperand *MMO =
3640    MF.getMachineMemOperand(PtrVal, Flags, 0,
3641                            MemVT.getStoreSize(), Alignment);
3642
3643  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3644}
3645
3646SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3647                                SDValue Chain,
3648                                SDValue Ptr, SDValue Cmp,
3649                                SDValue Swp, MachineMemOperand *MMO) {
3650  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3651  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3652
3653  EVT VT = Cmp.getValueType();
3654
3655  SDVTList VTs = getVTList(VT, MVT::Other);
3656  FoldingSetNodeID ID;
3657  ID.AddInteger(MemVT.getRawBits());
3658  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3659  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3660  void* IP = 0;
3661  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3662    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3663    return SDValue(E, 0);
3664  }
3665  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3666  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3667  CSEMap.InsertNode(N, IP);
3668  AllNodes.push_back(N);
3669  return SDValue(N, 0);
3670}
3671
3672SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3673                                SDValue Chain,
3674                                SDValue Ptr, SDValue Val,
3675                                const Value* PtrVal,
3676                                unsigned Alignment) {
3677  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3678    Alignment = getEVTAlignment(MemVT);
3679
3680  // Check if the memory reference references a frame index
3681  if (!PtrVal)
3682    if (const FrameIndexSDNode *FI =
3683          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3684      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3685
3686  MachineFunction &MF = getMachineFunction();
3687  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3688
3689  // For now, atomics are considered to be volatile always.
3690  Flags |= MachineMemOperand::MOVolatile;
3691
3692  MachineMemOperand *MMO =
3693    MF.getMachineMemOperand(PtrVal, Flags, 0,
3694                            MemVT.getStoreSize(), Alignment);
3695
3696  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3697}
3698
3699SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3700                                SDValue Chain,
3701                                SDValue Ptr, SDValue Val,
3702                                MachineMemOperand *MMO) {
3703  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3704          Opcode == ISD::ATOMIC_LOAD_SUB ||
3705          Opcode == ISD::ATOMIC_LOAD_AND ||
3706          Opcode == ISD::ATOMIC_LOAD_OR ||
3707          Opcode == ISD::ATOMIC_LOAD_XOR ||
3708          Opcode == ISD::ATOMIC_LOAD_NAND ||
3709          Opcode == ISD::ATOMIC_LOAD_MIN ||
3710          Opcode == ISD::ATOMIC_LOAD_MAX ||
3711          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3712          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3713          Opcode == ISD::ATOMIC_SWAP) &&
3714         "Invalid Atomic Op");
3715
3716  EVT VT = Val.getValueType();
3717
3718  SDVTList VTs = getVTList(VT, MVT::Other);
3719  FoldingSetNodeID ID;
3720  ID.AddInteger(MemVT.getRawBits());
3721  SDValue Ops[] = {Chain, Ptr, Val};
3722  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3723  void* IP = 0;
3724  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3725    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3726    return SDValue(E, 0);
3727  }
3728  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3729  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3730  CSEMap.InsertNode(N, IP);
3731  AllNodes.push_back(N);
3732  return SDValue(N, 0);
3733}
3734
3735/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3736/// Allowed to return something different (and simpler) if Simplify is true.
3737SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3738                                     DebugLoc dl) {
3739  if (NumOps == 1)
3740    return Ops[0];
3741
3742  SmallVector<EVT, 4> VTs;
3743  VTs.reserve(NumOps);
3744  for (unsigned i = 0; i < NumOps; ++i)
3745    VTs.push_back(Ops[i].getValueType());
3746  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3747                 Ops, NumOps);
3748}
3749
3750SDValue
3751SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3752                                  const EVT *VTs, unsigned NumVTs,
3753                                  const SDValue *Ops, unsigned NumOps,
3754                                  EVT MemVT, const Value *srcValue, int SVOff,
3755                                  unsigned Align, bool Vol,
3756                                  bool ReadMem, bool WriteMem) {
3757  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3758                             MemVT, srcValue, SVOff, Align, Vol,
3759                             ReadMem, WriteMem);
3760}
3761
3762SDValue
3763SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3764                                  const SDValue *Ops, unsigned NumOps,
3765                                  EVT MemVT, const Value *srcValue, int SVOff,
3766                                  unsigned Align, bool Vol,
3767                                  bool ReadMem, bool WriteMem) {
3768  if (Align == 0)  // Ensure that codegen never sees alignment 0
3769    Align = getEVTAlignment(MemVT);
3770
3771  MachineFunction &MF = getMachineFunction();
3772  unsigned Flags = 0;
3773  if (WriteMem)
3774    Flags |= MachineMemOperand::MOStore;
3775  if (ReadMem)
3776    Flags |= MachineMemOperand::MOLoad;
3777  if (Vol)
3778    Flags |= MachineMemOperand::MOVolatile;
3779  MachineMemOperand *MMO =
3780    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3781                            MemVT.getStoreSize(), Align);
3782
3783  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3784}
3785
3786SDValue
3787SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3788                                  const SDValue *Ops, unsigned NumOps,
3789                                  EVT MemVT, MachineMemOperand *MMO) {
3790  assert((Opcode == ISD::INTRINSIC_VOID ||
3791          Opcode == ISD::INTRINSIC_W_CHAIN ||
3792          (Opcode <= INT_MAX &&
3793           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3794         "Opcode is not a memory-accessing opcode!");
3795
3796  // Memoize the node unless it returns a flag.
3797  MemIntrinsicSDNode *N;
3798  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3799    FoldingSetNodeID ID;
3800    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3801    void *IP = 0;
3802    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3803      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3804      return SDValue(E, 0);
3805    }
3806
3807    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3808    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3809    CSEMap.InsertNode(N, IP);
3810  } else {
3811    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3812    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3813  }
3814  AllNodes.push_back(N);
3815  return SDValue(N, 0);
3816}
3817
3818SDValue
3819SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3820                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3821                      SDValue Ptr, SDValue Offset,
3822                      const Value *SV, int SVOffset, EVT MemVT,
3823                      bool isVolatile, bool isNonTemporal,
3824                      unsigned Alignment) {
3825  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3826    Alignment = getEVTAlignment(VT);
3827
3828  // Check if the memory reference references a frame index
3829  if (!SV)
3830    if (const FrameIndexSDNode *FI =
3831          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3832      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3833
3834  MachineFunction &MF = getMachineFunction();
3835  unsigned Flags = MachineMemOperand::MOLoad;
3836  if (isVolatile)
3837    Flags |= MachineMemOperand::MOVolatile;
3838  if (isNonTemporal)
3839    Flags |= MachineMemOperand::MONonTemporal;
3840  MachineMemOperand *MMO =
3841    MF.getMachineMemOperand(SV, Flags, SVOffset,
3842                            MemVT.getStoreSize(), Alignment);
3843  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3844}
3845
3846SDValue
3847SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3848                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3849                      SDValue Ptr, SDValue Offset, EVT MemVT,
3850                      MachineMemOperand *MMO) {
3851  if (VT == MemVT) {
3852    ExtType = ISD::NON_EXTLOAD;
3853  } else if (ExtType == ISD::NON_EXTLOAD) {
3854    assert(VT == MemVT && "Non-extending load from different memory type!");
3855  } else {
3856    // Extending load.
3857    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3858           "Should only be an extending load, not truncating!");
3859    assert(VT.isInteger() == MemVT.isInteger() &&
3860           "Cannot convert from FP to Int or Int -> FP!");
3861    assert(VT.isVector() == MemVT.isVector() &&
3862           "Cannot use trunc store to convert to or from a vector!");
3863    assert((!VT.isVector() ||
3864            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3865           "Cannot use trunc store to change the number of vector elements!");
3866  }
3867
3868  bool Indexed = AM != ISD::UNINDEXED;
3869  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3870         "Unindexed load with an offset!");
3871
3872  SDVTList VTs = Indexed ?
3873    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3874  SDValue Ops[] = { Chain, Ptr, Offset };
3875  FoldingSetNodeID ID;
3876  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3877  ID.AddInteger(MemVT.getRawBits());
3878  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3879                                     MMO->isNonTemporal()));
3880  void *IP = 0;
3881  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3882    cast<LoadSDNode>(E)->refineAlignment(MMO);
3883    return SDValue(E, 0);
3884  }
3885  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3886  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3887  CSEMap.InsertNode(N, IP);
3888  AllNodes.push_back(N);
3889  return SDValue(N, 0);
3890}
3891
3892SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3893                              SDValue Chain, SDValue Ptr,
3894                              const Value *SV, int SVOffset,
3895                              bool isVolatile, bool isNonTemporal,
3896                              unsigned Alignment) {
3897  SDValue Undef = getUNDEF(Ptr.getValueType());
3898  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3899                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3900}
3901
3902SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3903                                 SDValue Chain, SDValue Ptr,
3904                                 const Value *SV,
3905                                 int SVOffset, EVT MemVT,
3906                                 bool isVolatile, bool isNonTemporal,
3907                                 unsigned Alignment) {
3908  SDValue Undef = getUNDEF(Ptr.getValueType());
3909  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3910                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3911}
3912
3913SDValue
3914SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3915                             SDValue Offset, ISD::MemIndexedMode AM) {
3916  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3917  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3918         "Load is already a indexed load!");
3919  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3920                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3921                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3922                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3923}
3924
3925SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3926                               SDValue Ptr, const Value *SV, int SVOffset,
3927                               bool isVolatile, bool isNonTemporal,
3928                               unsigned Alignment) {
3929  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3930    Alignment = getEVTAlignment(Val.getValueType());
3931
3932  // Check if the memory reference references a frame index
3933  if (!SV)
3934    if (const FrameIndexSDNode *FI =
3935          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3936      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3937
3938  MachineFunction &MF = getMachineFunction();
3939  unsigned Flags = MachineMemOperand::MOStore;
3940  if (isVolatile)
3941    Flags |= MachineMemOperand::MOVolatile;
3942  if (isNonTemporal)
3943    Flags |= MachineMemOperand::MONonTemporal;
3944  MachineMemOperand *MMO =
3945    MF.getMachineMemOperand(SV, Flags, SVOffset,
3946                            Val.getValueType().getStoreSize(), Alignment);
3947
3948  return getStore(Chain, dl, Val, Ptr, MMO);
3949}
3950
3951SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3952                               SDValue Ptr, MachineMemOperand *MMO) {
3953  EVT VT = Val.getValueType();
3954  SDVTList VTs = getVTList(MVT::Other);
3955  SDValue Undef = getUNDEF(Ptr.getValueType());
3956  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3957  FoldingSetNodeID ID;
3958  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3959  ID.AddInteger(VT.getRawBits());
3960  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
3961                                     MMO->isNonTemporal()));
3962  void *IP = 0;
3963  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3964    cast<StoreSDNode>(E)->refineAlignment(MMO);
3965    return SDValue(E, 0);
3966  }
3967  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3968  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3969  CSEMap.InsertNode(N, IP);
3970  AllNodes.push_back(N);
3971  return SDValue(N, 0);
3972}
3973
3974SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3975                                    SDValue Ptr, const Value *SV,
3976                                    int SVOffset, EVT SVT,
3977                                    bool isVolatile, bool isNonTemporal,
3978                                    unsigned Alignment) {
3979  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3980    Alignment = getEVTAlignment(SVT);
3981
3982  // Check if the memory reference references a frame index
3983  if (!SV)
3984    if (const FrameIndexSDNode *FI =
3985          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3986      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3987
3988  MachineFunction &MF = getMachineFunction();
3989  unsigned Flags = MachineMemOperand::MOStore;
3990  if (isVolatile)
3991    Flags |= MachineMemOperand::MOVolatile;
3992  if (isNonTemporal)
3993    Flags |= MachineMemOperand::MONonTemporal;
3994  MachineMemOperand *MMO =
3995    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3996
3997  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3998}
3999
4000SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4001                                    SDValue Ptr, EVT SVT,
4002                                    MachineMemOperand *MMO) {
4003  EVT VT = Val.getValueType();
4004
4005  if (VT == SVT)
4006    return getStore(Chain, dl, Val, Ptr, MMO);
4007
4008  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4009         "Should only be a truncating store, not extending!");
4010  assert(VT.isInteger() == SVT.isInteger() &&
4011         "Can't do FP-INT conversion!");
4012  assert(VT.isVector() == SVT.isVector() &&
4013         "Cannot use trunc store to convert to or from a vector!");
4014  assert((!VT.isVector() ||
4015          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4016         "Cannot use trunc store to change the number of vector elements!");
4017
4018  SDVTList VTs = getVTList(MVT::Other);
4019  SDValue Undef = getUNDEF(Ptr.getValueType());
4020  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4021  FoldingSetNodeID ID;
4022  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4023  ID.AddInteger(SVT.getRawBits());
4024  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4025                                     MMO->isNonTemporal()));
4026  void *IP = 0;
4027  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4028    cast<StoreSDNode>(E)->refineAlignment(MMO);
4029    return SDValue(E, 0);
4030  }
4031  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4032  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
4033  CSEMap.InsertNode(N, IP);
4034  AllNodes.push_back(N);
4035  return SDValue(N, 0);
4036}
4037
4038SDValue
4039SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4040                              SDValue Offset, ISD::MemIndexedMode AM) {
4041  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4042  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4043         "Store is already a indexed store!");
4044  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4045  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4046  FoldingSetNodeID ID;
4047  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4048  ID.AddInteger(ST->getMemoryVT().getRawBits());
4049  ID.AddInteger(ST->getRawSubclassData());
4050  void *IP = 0;
4051  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4052    return SDValue(E, 0);
4053
4054  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4055  new (N) StoreSDNode(Ops, dl, VTs, AM,
4056                      ST->isTruncatingStore(), ST->getMemoryVT(),
4057                      ST->getMemOperand());
4058  CSEMap.InsertNode(N, IP);
4059  AllNodes.push_back(N);
4060  return SDValue(N, 0);
4061}
4062
4063SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4064                               SDValue Chain, SDValue Ptr,
4065                               SDValue SV) {
4066  SDValue Ops[] = { Chain, Ptr, SV };
4067  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4068}
4069
4070SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4071                              const SDUse *Ops, unsigned NumOps) {
4072  switch (NumOps) {
4073  case 0: return getNode(Opcode, DL, VT);
4074  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4075  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4076  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4077  default: break;
4078  }
4079
4080  // Copy from an SDUse array into an SDValue array for use with
4081  // the regular getNode logic.
4082  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4083  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4084}
4085
4086SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4087                              const SDValue *Ops, unsigned NumOps) {
4088  switch (NumOps) {
4089  case 0: return getNode(Opcode, DL, VT);
4090  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4091  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4092  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4093  default: break;
4094  }
4095
4096  switch (Opcode) {
4097  default: break;
4098  case ISD::SELECT_CC: {
4099    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4100    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4101           "LHS and RHS of condition must have same type!");
4102    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4103           "True and False arms of SelectCC must have same type!");
4104    assert(Ops[2].getValueType() == VT &&
4105           "select_cc node must be of same type as true and false value!");
4106    break;
4107  }
4108  case ISD::BR_CC: {
4109    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4110    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4111           "LHS/RHS of comparison should match types!");
4112    break;
4113  }
4114  }
4115
4116  // Memoize nodes.
4117  SDNode *N;
4118  SDVTList VTs = getVTList(VT);
4119
4120  if (VT != MVT::Flag) {
4121    FoldingSetNodeID ID;
4122    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4123    void *IP = 0;
4124
4125    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4126      return SDValue(E, 0);
4127
4128    N = NodeAllocator.Allocate<SDNode>();
4129    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4130    CSEMap.InsertNode(N, IP);
4131  } else {
4132    N = NodeAllocator.Allocate<SDNode>();
4133    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4134  }
4135
4136  AllNodes.push_back(N);
4137#ifndef NDEBUG
4138  VerifyNode(N);
4139#endif
4140  return SDValue(N, 0);
4141}
4142
4143SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4144                              const std::vector<EVT> &ResultTys,
4145                              const SDValue *Ops, unsigned NumOps) {
4146  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4147                 Ops, NumOps);
4148}
4149
4150SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4151                              const EVT *VTs, unsigned NumVTs,
4152                              const SDValue *Ops, unsigned NumOps) {
4153  if (NumVTs == 1)
4154    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4155  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4156}
4157
4158SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4159                              const SDValue *Ops, unsigned NumOps) {
4160  if (VTList.NumVTs == 1)
4161    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4162
4163#if 0
4164  switch (Opcode) {
4165  // FIXME: figure out how to safely handle things like
4166  // int foo(int x) { return 1 << (x & 255); }
4167  // int bar() { return foo(256); }
4168  case ISD::SRA_PARTS:
4169  case ISD::SRL_PARTS:
4170  case ISD::SHL_PARTS:
4171    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4172        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4173      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4174    else if (N3.getOpcode() == ISD::AND)
4175      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4176        // If the and is only masking out bits that cannot effect the shift,
4177        // eliminate the and.
4178        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4179        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4180          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4181      }
4182    break;
4183  }
4184#endif
4185
4186  // Memoize the node unless it returns a flag.
4187  SDNode *N;
4188  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4189    FoldingSetNodeID ID;
4190    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4191    void *IP = 0;
4192    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4193      return SDValue(E, 0);
4194
4195    if (NumOps == 1) {
4196      N = NodeAllocator.Allocate<UnarySDNode>();
4197      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4198    } else if (NumOps == 2) {
4199      N = NodeAllocator.Allocate<BinarySDNode>();
4200      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4201    } else if (NumOps == 3) {
4202      N = NodeAllocator.Allocate<TernarySDNode>();
4203      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4204    } else {
4205      N = NodeAllocator.Allocate<SDNode>();
4206      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4207    }
4208    CSEMap.InsertNode(N, IP);
4209  } else {
4210    if (NumOps == 1) {
4211      N = NodeAllocator.Allocate<UnarySDNode>();
4212      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4213    } else if (NumOps == 2) {
4214      N = NodeAllocator.Allocate<BinarySDNode>();
4215      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4216    } else if (NumOps == 3) {
4217      N = NodeAllocator.Allocate<TernarySDNode>();
4218      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4219    } else {
4220      N = NodeAllocator.Allocate<SDNode>();
4221      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4222    }
4223  }
4224  AllNodes.push_back(N);
4225#ifndef NDEBUG
4226  VerifyNode(N);
4227#endif
4228  return SDValue(N, 0);
4229}
4230
4231SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4232  return getNode(Opcode, DL, VTList, 0, 0);
4233}
4234
4235SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4236                              SDValue N1) {
4237  SDValue Ops[] = { N1 };
4238  return getNode(Opcode, DL, VTList, Ops, 1);
4239}
4240
4241SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4242                              SDValue N1, SDValue N2) {
4243  SDValue Ops[] = { N1, N2 };
4244  return getNode(Opcode, DL, VTList, Ops, 2);
4245}
4246
4247SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4248                              SDValue N1, SDValue N2, SDValue N3) {
4249  SDValue Ops[] = { N1, N2, N3 };
4250  return getNode(Opcode, DL, VTList, Ops, 3);
4251}
4252
4253SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4254                              SDValue N1, SDValue N2, SDValue N3,
4255                              SDValue N4) {
4256  SDValue Ops[] = { N1, N2, N3, N4 };
4257  return getNode(Opcode, DL, VTList, Ops, 4);
4258}
4259
4260SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4261                              SDValue N1, SDValue N2, SDValue N3,
4262                              SDValue N4, SDValue N5) {
4263  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4264  return getNode(Opcode, DL, VTList, Ops, 5);
4265}
4266
4267SDVTList SelectionDAG::getVTList(EVT VT) {
4268  return makeVTList(SDNode::getValueTypeList(VT), 1);
4269}
4270
4271SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4272  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4273       E = VTList.rend(); I != E; ++I)
4274    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4275      return *I;
4276
4277  EVT *Array = Allocator.Allocate<EVT>(2);
4278  Array[0] = VT1;
4279  Array[1] = VT2;
4280  SDVTList Result = makeVTList(Array, 2);
4281  VTList.push_back(Result);
4282  return Result;
4283}
4284
4285SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4286  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4287       E = VTList.rend(); I != E; ++I)
4288    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4289                          I->VTs[2] == VT3)
4290      return *I;
4291
4292  EVT *Array = Allocator.Allocate<EVT>(3);
4293  Array[0] = VT1;
4294  Array[1] = VT2;
4295  Array[2] = VT3;
4296  SDVTList Result = makeVTList(Array, 3);
4297  VTList.push_back(Result);
4298  return Result;
4299}
4300
4301SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4302  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4303       E = VTList.rend(); I != E; ++I)
4304    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4305                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4306      return *I;
4307
4308  EVT *Array = Allocator.Allocate<EVT>(4);
4309  Array[0] = VT1;
4310  Array[1] = VT2;
4311  Array[2] = VT3;
4312  Array[3] = VT4;
4313  SDVTList Result = makeVTList(Array, 4);
4314  VTList.push_back(Result);
4315  return Result;
4316}
4317
4318SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4319  switch (NumVTs) {
4320    case 0: llvm_unreachable("Cannot have nodes without results!");
4321    case 1: return getVTList(VTs[0]);
4322    case 2: return getVTList(VTs[0], VTs[1]);
4323    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4324    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4325    default: break;
4326  }
4327
4328  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4329       E = VTList.rend(); I != E; ++I) {
4330    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4331      continue;
4332
4333    bool NoMatch = false;
4334    for (unsigned i = 2; i != NumVTs; ++i)
4335      if (VTs[i] != I->VTs[i]) {
4336        NoMatch = true;
4337        break;
4338      }
4339    if (!NoMatch)
4340      return *I;
4341  }
4342
4343  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4344  std::copy(VTs, VTs+NumVTs, Array);
4345  SDVTList Result = makeVTList(Array, NumVTs);
4346  VTList.push_back(Result);
4347  return Result;
4348}
4349
4350
4351/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4352/// specified operands.  If the resultant node already exists in the DAG,
4353/// this does not modify the specified node, instead it returns the node that
4354/// already exists.  If the resultant node does not exist in the DAG, the
4355/// input node is returned.  As a degenerate case, if you specify the same
4356/// input operands as the node already has, the input node is returned.
4357SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4358  SDNode *N = InN.getNode();
4359  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4360
4361  // Check to see if there is no change.
4362  if (Op == N->getOperand(0)) return InN;
4363
4364  // See if the modified node already exists.
4365  void *InsertPos = 0;
4366  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4367    return SDValue(Existing, InN.getResNo());
4368
4369  // Nope it doesn't.  Remove the node from its current place in the maps.
4370  if (InsertPos)
4371    if (!RemoveNodeFromCSEMaps(N))
4372      InsertPos = 0;
4373
4374  // Now we update the operands.
4375  N->OperandList[0].set(Op);
4376
4377  // If this gets put into a CSE map, add it.
4378  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4379  return InN;
4380}
4381
4382SDValue SelectionDAG::
4383UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4384  SDNode *N = InN.getNode();
4385  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4386
4387  // Check to see if there is no change.
4388  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4389    return InN;   // No operands changed, just return the input node.
4390
4391  // See if the modified node already exists.
4392  void *InsertPos = 0;
4393  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4394    return SDValue(Existing, InN.getResNo());
4395
4396  // Nope it doesn't.  Remove the node from its current place in the maps.
4397  if (InsertPos)
4398    if (!RemoveNodeFromCSEMaps(N))
4399      InsertPos = 0;
4400
4401  // Now we update the operands.
4402  if (N->OperandList[0] != Op1)
4403    N->OperandList[0].set(Op1);
4404  if (N->OperandList[1] != Op2)
4405    N->OperandList[1].set(Op2);
4406
4407  // If this gets put into a CSE map, add it.
4408  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4409  return InN;
4410}
4411
4412SDValue SelectionDAG::
4413UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4414  SDValue Ops[] = { Op1, Op2, Op3 };
4415  return UpdateNodeOperands(N, Ops, 3);
4416}
4417
4418SDValue SelectionDAG::
4419UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4420                   SDValue Op3, SDValue Op4) {
4421  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4422  return UpdateNodeOperands(N, Ops, 4);
4423}
4424
4425SDValue SelectionDAG::
4426UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4427                   SDValue Op3, SDValue Op4, SDValue Op5) {
4428  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4429  return UpdateNodeOperands(N, Ops, 5);
4430}
4431
4432SDValue SelectionDAG::
4433UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4434  SDNode *N = InN.getNode();
4435  assert(N->getNumOperands() == NumOps &&
4436         "Update with wrong number of operands");
4437
4438  // Check to see if there is no change.
4439  bool AnyChange = false;
4440  for (unsigned i = 0; i != NumOps; ++i) {
4441    if (Ops[i] != N->getOperand(i)) {
4442      AnyChange = true;
4443      break;
4444    }
4445  }
4446
4447  // No operands changed, just return the input node.
4448  if (!AnyChange) return InN;
4449
4450  // See if the modified node already exists.
4451  void *InsertPos = 0;
4452  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4453    return SDValue(Existing, InN.getResNo());
4454
4455  // Nope it doesn't.  Remove the node from its current place in the maps.
4456  if (InsertPos)
4457    if (!RemoveNodeFromCSEMaps(N))
4458      InsertPos = 0;
4459
4460  // Now we update the operands.
4461  for (unsigned i = 0; i != NumOps; ++i)
4462    if (N->OperandList[i] != Ops[i])
4463      N->OperandList[i].set(Ops[i]);
4464
4465  // If this gets put into a CSE map, add it.
4466  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4467  return InN;
4468}
4469
4470/// DropOperands - Release the operands and set this node to have
4471/// zero operands.
4472void SDNode::DropOperands() {
4473  // Unlike the code in MorphNodeTo that does this, we don't need to
4474  // watch for dead nodes here.
4475  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4476    SDUse &Use = *I++;
4477    Use.set(SDValue());
4478  }
4479}
4480
4481/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4482/// machine opcode.
4483///
4484SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4485                                   EVT VT) {
4486  SDVTList VTs = getVTList(VT);
4487  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4488}
4489
4490SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4491                                   EVT VT, SDValue Op1) {
4492  SDVTList VTs = getVTList(VT);
4493  SDValue Ops[] = { Op1 };
4494  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4495}
4496
4497SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4498                                   EVT VT, SDValue Op1,
4499                                   SDValue Op2) {
4500  SDVTList VTs = getVTList(VT);
4501  SDValue Ops[] = { Op1, Op2 };
4502  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4503}
4504
4505SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4506                                   EVT VT, SDValue Op1,
4507                                   SDValue Op2, SDValue Op3) {
4508  SDVTList VTs = getVTList(VT);
4509  SDValue Ops[] = { Op1, Op2, Op3 };
4510  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4511}
4512
4513SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4514                                   EVT VT, const SDValue *Ops,
4515                                   unsigned NumOps) {
4516  SDVTList VTs = getVTList(VT);
4517  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4518}
4519
4520SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4521                                   EVT VT1, EVT VT2, const SDValue *Ops,
4522                                   unsigned NumOps) {
4523  SDVTList VTs = getVTList(VT1, VT2);
4524  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4525}
4526
4527SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4528                                   EVT VT1, EVT VT2) {
4529  SDVTList VTs = getVTList(VT1, VT2);
4530  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4531}
4532
4533SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4534                                   EVT VT1, EVT VT2, EVT VT3,
4535                                   const SDValue *Ops, unsigned NumOps) {
4536  SDVTList VTs = getVTList(VT1, VT2, VT3);
4537  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4538}
4539
4540SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4541                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4542                                   const SDValue *Ops, unsigned NumOps) {
4543  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4544  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4545}
4546
4547SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4548                                   EVT VT1, EVT VT2,
4549                                   SDValue Op1) {
4550  SDVTList VTs = getVTList(VT1, VT2);
4551  SDValue Ops[] = { Op1 };
4552  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4553}
4554
4555SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4556                                   EVT VT1, EVT VT2,
4557                                   SDValue Op1, SDValue Op2) {
4558  SDVTList VTs = getVTList(VT1, VT2);
4559  SDValue Ops[] = { Op1, Op2 };
4560  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4561}
4562
4563SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4564                                   EVT VT1, EVT VT2,
4565                                   SDValue Op1, SDValue Op2,
4566                                   SDValue Op3) {
4567  SDVTList VTs = getVTList(VT1, VT2);
4568  SDValue Ops[] = { Op1, Op2, Op3 };
4569  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4570}
4571
4572SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4573                                   EVT VT1, EVT VT2, EVT VT3,
4574                                   SDValue Op1, SDValue Op2,
4575                                   SDValue Op3) {
4576  SDVTList VTs = getVTList(VT1, VT2, VT3);
4577  SDValue Ops[] = { Op1, Op2, Op3 };
4578  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4579}
4580
4581SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4582                                   SDVTList VTs, const SDValue *Ops,
4583                                   unsigned NumOps) {
4584  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4585  // Reset the NodeID to -1.
4586  N->setNodeId(-1);
4587  return N;
4588}
4589
4590/// MorphNodeTo - This *mutates* the specified node to have the specified
4591/// return type, opcode, and operands.
4592///
4593/// Note that MorphNodeTo returns the resultant node.  If there is already a
4594/// node of the specified opcode and operands, it returns that node instead of
4595/// the current one.  Note that the DebugLoc need not be the same.
4596///
4597/// Using MorphNodeTo is faster than creating a new node and swapping it in
4598/// with ReplaceAllUsesWith both because it often avoids allocating a new
4599/// node, and because it doesn't require CSE recalculation for any of
4600/// the node's users.
4601///
4602SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4603                                  SDVTList VTs, const SDValue *Ops,
4604                                  unsigned NumOps) {
4605  // If an identical node already exists, use it.
4606  void *IP = 0;
4607  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4608    FoldingSetNodeID ID;
4609    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4610    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4611      return ON;
4612  }
4613
4614  if (!RemoveNodeFromCSEMaps(N))
4615    IP = 0;
4616
4617  // Start the morphing.
4618  N->NodeType = Opc;
4619  N->ValueList = VTs.VTs;
4620  N->NumValues = VTs.NumVTs;
4621
4622  // Clear the operands list, updating used nodes to remove this from their
4623  // use list.  Keep track of any operands that become dead as a result.
4624  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4625  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4626    SDUse &Use = *I++;
4627    SDNode *Used = Use.getNode();
4628    Use.set(SDValue());
4629    if (Used->use_empty())
4630      DeadNodeSet.insert(Used);
4631  }
4632
4633  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4634    // Initialize the memory references information.
4635    MN->setMemRefs(0, 0);
4636    // If NumOps is larger than the # of operands we can have in a
4637    // MachineSDNode, reallocate the operand list.
4638    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4639      if (MN->OperandsNeedDelete)
4640        delete[] MN->OperandList;
4641      if (NumOps > array_lengthof(MN->LocalOperands))
4642        // We're creating a final node that will live unmorphed for the
4643        // remainder of the current SelectionDAG iteration, so we can allocate
4644        // the operands directly out of a pool with no recycling metadata.
4645        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4646                        Ops, NumOps);
4647      else
4648        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4649      MN->OperandsNeedDelete = false;
4650    } else
4651      MN->InitOperands(MN->OperandList, Ops, NumOps);
4652  } else {
4653    // If NumOps is larger than the # of operands we currently have, reallocate
4654    // the operand list.
4655    if (NumOps > N->NumOperands) {
4656      if (N->OperandsNeedDelete)
4657        delete[] N->OperandList;
4658      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4659      N->OperandsNeedDelete = true;
4660    } else
4661      N->InitOperands(N->OperandList, Ops, NumOps);
4662  }
4663
4664  // Delete any nodes that are still dead after adding the uses for the
4665  // new operands.
4666  if (!DeadNodeSet.empty()) {
4667    SmallVector<SDNode *, 16> DeadNodes;
4668    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4669         E = DeadNodeSet.end(); I != E; ++I)
4670      if ((*I)->use_empty())
4671        DeadNodes.push_back(*I);
4672    RemoveDeadNodes(DeadNodes);
4673  }
4674
4675  if (IP)
4676    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4677  return N;
4678}
4679
4680
4681/// getMachineNode - These are used for target selectors to create a new node
4682/// with specified return type(s), MachineInstr opcode, and operands.
4683///
4684/// Note that getMachineNode returns the resultant node.  If there is already a
4685/// node of the specified opcode and operands, it returns that node instead of
4686/// the current one.
4687MachineSDNode *
4688SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4689  SDVTList VTs = getVTList(VT);
4690  return getMachineNode(Opcode, dl, VTs, 0, 0);
4691}
4692
4693MachineSDNode *
4694SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4695  SDVTList VTs = getVTList(VT);
4696  SDValue Ops[] = { Op1 };
4697  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4698}
4699
4700MachineSDNode *
4701SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4702                             SDValue Op1, SDValue Op2) {
4703  SDVTList VTs = getVTList(VT);
4704  SDValue Ops[] = { Op1, Op2 };
4705  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4706}
4707
4708MachineSDNode *
4709SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4710                             SDValue Op1, SDValue Op2, SDValue Op3) {
4711  SDVTList VTs = getVTList(VT);
4712  SDValue Ops[] = { Op1, Op2, Op3 };
4713  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4714}
4715
4716MachineSDNode *
4717SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4718                             const SDValue *Ops, unsigned NumOps) {
4719  SDVTList VTs = getVTList(VT);
4720  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4721}
4722
4723MachineSDNode *
4724SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4725  SDVTList VTs = getVTList(VT1, VT2);
4726  return getMachineNode(Opcode, dl, VTs, 0, 0);
4727}
4728
4729MachineSDNode *
4730SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4731                             EVT VT1, EVT VT2, SDValue Op1) {
4732  SDVTList VTs = getVTList(VT1, VT2);
4733  SDValue Ops[] = { Op1 };
4734  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4735}
4736
4737MachineSDNode *
4738SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4739                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4740  SDVTList VTs = getVTList(VT1, VT2);
4741  SDValue Ops[] = { Op1, Op2 };
4742  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4743}
4744
4745MachineSDNode *
4746SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4747                             EVT VT1, EVT VT2, SDValue Op1,
4748                             SDValue Op2, SDValue Op3) {
4749  SDVTList VTs = getVTList(VT1, VT2);
4750  SDValue Ops[] = { Op1, Op2, Op3 };
4751  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4752}
4753
4754MachineSDNode *
4755SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4756                             EVT VT1, EVT VT2,
4757                             const SDValue *Ops, unsigned NumOps) {
4758  SDVTList VTs = getVTList(VT1, VT2);
4759  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4760}
4761
4762MachineSDNode *
4763SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4764                             EVT VT1, EVT VT2, EVT VT3,
4765                             SDValue Op1, SDValue Op2) {
4766  SDVTList VTs = getVTList(VT1, VT2, VT3);
4767  SDValue Ops[] = { Op1, Op2 };
4768  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4769}
4770
4771MachineSDNode *
4772SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4773                             EVT VT1, EVT VT2, EVT VT3,
4774                             SDValue Op1, SDValue Op2, SDValue Op3) {
4775  SDVTList VTs = getVTList(VT1, VT2, VT3);
4776  SDValue Ops[] = { Op1, Op2, Op3 };
4777  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4778}
4779
4780MachineSDNode *
4781SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4782                             EVT VT1, EVT VT2, EVT VT3,
4783                             const SDValue *Ops, unsigned NumOps) {
4784  SDVTList VTs = getVTList(VT1, VT2, VT3);
4785  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4786}
4787
4788MachineSDNode *
4789SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4790                             EVT VT2, EVT VT3, EVT VT4,
4791                             const SDValue *Ops, unsigned NumOps) {
4792  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4793  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4794}
4795
4796MachineSDNode *
4797SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4798                             const std::vector<EVT> &ResultTys,
4799                             const SDValue *Ops, unsigned NumOps) {
4800  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4801  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4802}
4803
4804MachineSDNode *
4805SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4806                             const SDValue *Ops, unsigned NumOps) {
4807  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4808  MachineSDNode *N;
4809  void *IP;
4810
4811  if (DoCSE) {
4812    FoldingSetNodeID ID;
4813    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4814    IP = 0;
4815    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4816      return cast<MachineSDNode>(E);
4817  }
4818
4819  // Allocate a new MachineSDNode.
4820  N = NodeAllocator.Allocate<MachineSDNode>();
4821  new (N) MachineSDNode(~Opcode, DL, VTs);
4822
4823  // Initialize the operands list.
4824  if (NumOps > array_lengthof(N->LocalOperands))
4825    // We're creating a final node that will live unmorphed for the
4826    // remainder of the current SelectionDAG iteration, so we can allocate
4827    // the operands directly out of a pool with no recycling metadata.
4828    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4829                    Ops, NumOps);
4830  else
4831    N->InitOperands(N->LocalOperands, Ops, NumOps);
4832  N->OperandsNeedDelete = false;
4833
4834  if (DoCSE)
4835    CSEMap.InsertNode(N, IP);
4836
4837  AllNodes.push_back(N);
4838#ifndef NDEBUG
4839  VerifyNode(N);
4840#endif
4841  return N;
4842}
4843
4844/// getTargetExtractSubreg - A convenience function for creating
4845/// TargetOpcode::EXTRACT_SUBREG nodes.
4846SDValue
4847SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4848                                     SDValue Operand) {
4849  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4850  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4851                                  VT, Operand, SRIdxVal);
4852  return SDValue(Subreg, 0);
4853}
4854
4855/// getTargetInsertSubreg - A convenience function for creating
4856/// TargetOpcode::INSERT_SUBREG nodes.
4857SDValue
4858SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4859                                    SDValue Operand, SDValue Subreg) {
4860  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4861  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4862                                  VT, Operand, Subreg, SRIdxVal);
4863  return SDValue(Result, 0);
4864}
4865
4866/// getNodeIfExists - Get the specified node if it's already available, or
4867/// else return NULL.
4868SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4869                                      const SDValue *Ops, unsigned NumOps) {
4870  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4871    FoldingSetNodeID ID;
4872    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4873    void *IP = 0;
4874    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4875      return E;
4876  }
4877  return NULL;
4878}
4879
4880namespace {
4881
4882/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4883/// pointed to by a use iterator is deleted, increment the use iterator
4884/// so that it doesn't dangle.
4885///
4886/// This class also manages a "downlink" DAGUpdateListener, to forward
4887/// messages to ReplaceAllUsesWith's callers.
4888///
4889class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4890  SelectionDAG::DAGUpdateListener *DownLink;
4891  SDNode::use_iterator &UI;
4892  SDNode::use_iterator &UE;
4893
4894  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4895    // Increment the iterator as needed.
4896    while (UI != UE && N == *UI)
4897      ++UI;
4898
4899    // Then forward the message.
4900    if (DownLink) DownLink->NodeDeleted(N, E);
4901  }
4902
4903  virtual void NodeUpdated(SDNode *N) {
4904    // Just forward the message.
4905    if (DownLink) DownLink->NodeUpdated(N);
4906  }
4907
4908public:
4909  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4910                     SDNode::use_iterator &ui,
4911                     SDNode::use_iterator &ue)
4912    : DownLink(dl), UI(ui), UE(ue) {}
4913};
4914
4915}
4916
4917/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4918/// This can cause recursive merging of nodes in the DAG.
4919///
4920/// This version assumes From has a single result value.
4921///
4922void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4923                                      DAGUpdateListener *UpdateListener) {
4924  SDNode *From = FromN.getNode();
4925  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4926         "Cannot replace with this method!");
4927  assert(From != To.getNode() && "Cannot replace uses of with self");
4928
4929  // Iterate over all the existing uses of From. New uses will be added
4930  // to the beginning of the use list, which we avoid visiting.
4931  // This specifically avoids visiting uses of From that arise while the
4932  // replacement is happening, because any such uses would be the result
4933  // of CSE: If an existing node looks like From after one of its operands
4934  // is replaced by To, we don't want to replace of all its users with To
4935  // too. See PR3018 for more info.
4936  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4937  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4938  while (UI != UE) {
4939    SDNode *User = *UI;
4940
4941    // This node is about to morph, remove its old self from the CSE maps.
4942    RemoveNodeFromCSEMaps(User);
4943
4944    // A user can appear in a use list multiple times, and when this
4945    // happens the uses are usually next to each other in the list.
4946    // To help reduce the number of CSE recomputations, process all
4947    // the uses of this user that we can find this way.
4948    do {
4949      SDUse &Use = UI.getUse();
4950      ++UI;
4951      Use.set(To);
4952    } while (UI != UE && *UI == User);
4953
4954    // Now that we have modified User, add it back to the CSE maps.  If it
4955    // already exists there, recursively merge the results together.
4956    AddModifiedNodeToCSEMaps(User, &Listener);
4957  }
4958}
4959
4960/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4961/// This can cause recursive merging of nodes in the DAG.
4962///
4963/// This version assumes that for each value of From, there is a
4964/// corresponding value in To in the same position with the same type.
4965///
4966void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4967                                      DAGUpdateListener *UpdateListener) {
4968#ifndef NDEBUG
4969  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4970    assert((!From->hasAnyUseOfValue(i) ||
4971            From->getValueType(i) == To->getValueType(i)) &&
4972           "Cannot use this version of ReplaceAllUsesWith!");
4973#endif
4974
4975  // Handle the trivial case.
4976  if (From == To)
4977    return;
4978
4979  // Iterate over just the existing users of From. See the comments in
4980  // the ReplaceAllUsesWith above.
4981  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4982  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4983  while (UI != UE) {
4984    SDNode *User = *UI;
4985
4986    // This node is about to morph, remove its old self from the CSE maps.
4987    RemoveNodeFromCSEMaps(User);
4988
4989    // A user can appear in a use list multiple times, and when this
4990    // happens the uses are usually next to each other in the list.
4991    // To help reduce the number of CSE recomputations, process all
4992    // the uses of this user that we can find this way.
4993    do {
4994      SDUse &Use = UI.getUse();
4995      ++UI;
4996      Use.setNode(To);
4997    } while (UI != UE && *UI == User);
4998
4999    // Now that we have modified User, add it back to the CSE maps.  If it
5000    // already exists there, recursively merge the results together.
5001    AddModifiedNodeToCSEMaps(User, &Listener);
5002  }
5003}
5004
5005/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5006/// This can cause recursive merging of nodes in the DAG.
5007///
5008/// This version can replace From with any result values.  To must match the
5009/// number and types of values returned by From.
5010void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5011                                      const SDValue *To,
5012                                      DAGUpdateListener *UpdateListener) {
5013  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5014    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5015
5016  // Iterate over just the existing users of From. See the comments in
5017  // the ReplaceAllUsesWith above.
5018  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5019  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5020  while (UI != UE) {
5021    SDNode *User = *UI;
5022
5023    // This node is about to morph, remove its old self from the CSE maps.
5024    RemoveNodeFromCSEMaps(User);
5025
5026    // A user can appear in a use list multiple times, and when this
5027    // happens the uses are usually next to each other in the list.
5028    // To help reduce the number of CSE recomputations, process all
5029    // the uses of this user that we can find this way.
5030    do {
5031      SDUse &Use = UI.getUse();
5032      const SDValue &ToOp = To[Use.getResNo()];
5033      ++UI;
5034      Use.set(ToOp);
5035    } while (UI != UE && *UI == User);
5036
5037    // Now that we have modified User, add it back to the CSE maps.  If it
5038    // already exists there, recursively merge the results together.
5039    AddModifiedNodeToCSEMaps(User, &Listener);
5040  }
5041}
5042
5043/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5044/// uses of other values produced by From.getNode() alone.  The Deleted
5045/// vector is handled the same way as for ReplaceAllUsesWith.
5046void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5047                                             DAGUpdateListener *UpdateListener){
5048  // Handle the really simple, really trivial case efficiently.
5049  if (From == To) return;
5050
5051  // Handle the simple, trivial, case efficiently.
5052  if (From.getNode()->getNumValues() == 1) {
5053    ReplaceAllUsesWith(From, To, UpdateListener);
5054    return;
5055  }
5056
5057  // Iterate over just the existing users of From. See the comments in
5058  // the ReplaceAllUsesWith above.
5059  SDNode::use_iterator UI = From.getNode()->use_begin(),
5060                       UE = From.getNode()->use_end();
5061  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5062  while (UI != UE) {
5063    SDNode *User = *UI;
5064    bool UserRemovedFromCSEMaps = false;
5065
5066    // A user can appear in a use list multiple times, and when this
5067    // happens the uses are usually next to each other in the list.
5068    // To help reduce the number of CSE recomputations, process all
5069    // the uses of this user that we can find this way.
5070    do {
5071      SDUse &Use = UI.getUse();
5072
5073      // Skip uses of different values from the same node.
5074      if (Use.getResNo() != From.getResNo()) {
5075        ++UI;
5076        continue;
5077      }
5078
5079      // If this node hasn't been modified yet, it's still in the CSE maps,
5080      // so remove its old self from the CSE maps.
5081      if (!UserRemovedFromCSEMaps) {
5082        RemoveNodeFromCSEMaps(User);
5083        UserRemovedFromCSEMaps = true;
5084      }
5085
5086      ++UI;
5087      Use.set(To);
5088    } while (UI != UE && *UI == User);
5089
5090    // We are iterating over all uses of the From node, so if a use
5091    // doesn't use the specific value, no changes are made.
5092    if (!UserRemovedFromCSEMaps)
5093      continue;
5094
5095    // Now that we have modified User, add it back to the CSE maps.  If it
5096    // already exists there, recursively merge the results together.
5097    AddModifiedNodeToCSEMaps(User, &Listener);
5098  }
5099}
5100
5101namespace {
5102  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5103  /// to record information about a use.
5104  struct UseMemo {
5105    SDNode *User;
5106    unsigned Index;
5107    SDUse *Use;
5108  };
5109
5110  /// operator< - Sort Memos by User.
5111  bool operator<(const UseMemo &L, const UseMemo &R) {
5112    return (intptr_t)L.User < (intptr_t)R.User;
5113  }
5114}
5115
5116/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5117/// uses of other values produced by From.getNode() alone.  The same value
5118/// may appear in both the From and To list.  The Deleted vector is
5119/// handled the same way as for ReplaceAllUsesWith.
5120void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5121                                              const SDValue *To,
5122                                              unsigned Num,
5123                                              DAGUpdateListener *UpdateListener){
5124  // Handle the simple, trivial case efficiently.
5125  if (Num == 1)
5126    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5127
5128  // Read up all the uses and make records of them. This helps
5129  // processing new uses that are introduced during the
5130  // replacement process.
5131  SmallVector<UseMemo, 4> Uses;
5132  for (unsigned i = 0; i != Num; ++i) {
5133    unsigned FromResNo = From[i].getResNo();
5134    SDNode *FromNode = From[i].getNode();
5135    for (SDNode::use_iterator UI = FromNode->use_begin(),
5136         E = FromNode->use_end(); UI != E; ++UI) {
5137      SDUse &Use = UI.getUse();
5138      if (Use.getResNo() == FromResNo) {
5139        UseMemo Memo = { *UI, i, &Use };
5140        Uses.push_back(Memo);
5141      }
5142    }
5143  }
5144
5145  // Sort the uses, so that all the uses from a given User are together.
5146  std::sort(Uses.begin(), Uses.end());
5147
5148  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5149       UseIndex != UseIndexEnd; ) {
5150    // We know that this user uses some value of From.  If it is the right
5151    // value, update it.
5152    SDNode *User = Uses[UseIndex].User;
5153
5154    // This node is about to morph, remove its old self from the CSE maps.
5155    RemoveNodeFromCSEMaps(User);
5156
5157    // The Uses array is sorted, so all the uses for a given User
5158    // are next to each other in the list.
5159    // To help reduce the number of CSE recomputations, process all
5160    // the uses of this user that we can find this way.
5161    do {
5162      unsigned i = Uses[UseIndex].Index;
5163      SDUse &Use = *Uses[UseIndex].Use;
5164      ++UseIndex;
5165
5166      Use.set(To[i]);
5167    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5168
5169    // Now that we have modified User, add it back to the CSE maps.  If it
5170    // already exists there, recursively merge the results together.
5171    AddModifiedNodeToCSEMaps(User, UpdateListener);
5172  }
5173}
5174
5175/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5176/// based on their topological order. It returns the maximum id and a vector
5177/// of the SDNodes* in assigned order by reference.
5178unsigned SelectionDAG::AssignTopologicalOrder() {
5179
5180  unsigned DAGSize = 0;
5181
5182  // SortedPos tracks the progress of the algorithm. Nodes before it are
5183  // sorted, nodes after it are unsorted. When the algorithm completes
5184  // it is at the end of the list.
5185  allnodes_iterator SortedPos = allnodes_begin();
5186
5187  // Visit all the nodes. Move nodes with no operands to the front of
5188  // the list immediately. Annotate nodes that do have operands with their
5189  // operand count. Before we do this, the Node Id fields of the nodes
5190  // may contain arbitrary values. After, the Node Id fields for nodes
5191  // before SortedPos will contain the topological sort index, and the
5192  // Node Id fields for nodes At SortedPos and after will contain the
5193  // count of outstanding operands.
5194  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5195    SDNode *N = I++;
5196    checkForCycles(N);
5197    unsigned Degree = N->getNumOperands();
5198    if (Degree == 0) {
5199      // A node with no uses, add it to the result array immediately.
5200      N->setNodeId(DAGSize++);
5201      allnodes_iterator Q = N;
5202      if (Q != SortedPos)
5203        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5204      assert(SortedPos != AllNodes.end() && "Overran node list");
5205      ++SortedPos;
5206    } else {
5207      // Temporarily use the Node Id as scratch space for the degree count.
5208      N->setNodeId(Degree);
5209    }
5210  }
5211
5212  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5213  // such that by the time the end is reached all nodes will be sorted.
5214  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5215    SDNode *N = I;
5216    checkForCycles(N);
5217    // N is in sorted position, so all its uses have one less operand
5218    // that needs to be sorted.
5219    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5220         UI != UE; ++UI) {
5221      SDNode *P = *UI;
5222      unsigned Degree = P->getNodeId();
5223      assert(Degree != 0 && "Invalid node degree");
5224      --Degree;
5225      if (Degree == 0) {
5226        // All of P's operands are sorted, so P may sorted now.
5227        P->setNodeId(DAGSize++);
5228        if (P != SortedPos)
5229          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5230        assert(SortedPos != AllNodes.end() && "Overran node list");
5231        ++SortedPos;
5232      } else {
5233        // Update P's outstanding operand count.
5234        P->setNodeId(Degree);
5235      }
5236    }
5237    if (I == SortedPos) {
5238#ifndef NDEBUG
5239      SDNode *S = ++I;
5240      dbgs() << "Overran sorted position:\n";
5241      S->dumprFull();
5242#endif
5243      llvm_unreachable(0);
5244    }
5245  }
5246
5247  assert(SortedPos == AllNodes.end() &&
5248         "Topological sort incomplete!");
5249  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5250         "First node in topological sort is not the entry token!");
5251  assert(AllNodes.front().getNodeId() == 0 &&
5252         "First node in topological sort has non-zero id!");
5253  assert(AllNodes.front().getNumOperands() == 0 &&
5254         "First node in topological sort has operands!");
5255  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5256         "Last node in topologic sort has unexpected id!");
5257  assert(AllNodes.back().use_empty() &&
5258         "Last node in topologic sort has users!");
5259  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5260  return DAGSize;
5261}
5262
5263/// AssignOrdering - Assign an order to the SDNode.
5264void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5265  assert(SD && "Trying to assign an order to a null node!");
5266  Ordering->add(SD, Order);
5267}
5268
5269/// GetOrdering - Get the order for the SDNode.
5270unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5271  assert(SD && "Trying to get the order of a null node!");
5272  return Ordering->getOrder(SD);
5273}
5274
5275/// AssignDbgInfo - Assign debug info to the SDNode.
5276void SelectionDAG::AssignDbgInfo(SDNode* SD, SDDbgValue* db) {
5277  assert(SD && "Trying to assign dbg info to a null node!");
5278  DbgInfo->add(SD, db);
5279  SD->setHasDebugValue(true);
5280}
5281
5282/// RememberDbgInfo - Remember debug info which is not assigned to an SDNode.
5283void SelectionDAG::RememberDbgInfo(SDDbgValue* db) {
5284  DbgInfo->add(db);
5285}
5286
5287/// GetDbgInfo - Get the debug info, if any, for the SDNode.
5288SDDbgValue* SelectionDAG::GetDbgInfo(const SDNode *SD) {
5289  assert(SD && "Trying to get the order of a null node!");
5290  if (SD->getHasDebugValue())
5291    return DbgInfo->getSDDbgValue(SD);
5292  return 0;
5293}
5294
5295//===----------------------------------------------------------------------===//
5296//                              SDNode Class
5297//===----------------------------------------------------------------------===//
5298
5299HandleSDNode::~HandleSDNode() {
5300  DropOperands();
5301}
5302
5303GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5304                                         EVT VT, int64_t o, unsigned char TF)
5305  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5306    Offset(o), TargetFlags(TF) {
5307  TheGlobal = const_cast<GlobalValue*>(GA);
5308}
5309
5310MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5311                     MachineMemOperand *mmo)
5312 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5313  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5314                                      MMO->isNonTemporal());
5315  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5316  assert(isNonTemporal() == MMO->isNonTemporal() &&
5317         "Non-temporal encoding error!");
5318  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5319}
5320
5321MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5322                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5323                     MachineMemOperand *mmo)
5324   : SDNode(Opc, dl, VTs, Ops, NumOps),
5325     MemoryVT(memvt), MMO(mmo) {
5326  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5327                                      MMO->isNonTemporal());
5328  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5329  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5330}
5331
5332/// Profile - Gather unique data for the node.
5333///
5334void SDNode::Profile(FoldingSetNodeID &ID) const {
5335  AddNodeIDNode(ID, this);
5336}
5337
5338namespace {
5339  struct EVTArray {
5340    std::vector<EVT> VTs;
5341
5342    EVTArray() {
5343      VTs.reserve(MVT::LAST_VALUETYPE);
5344      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5345        VTs.push_back(MVT((MVT::SimpleValueType)i));
5346    }
5347  };
5348}
5349
5350static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5351static ManagedStatic<EVTArray> SimpleVTArray;
5352static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5353
5354/// getValueTypeList - Return a pointer to the specified value type.
5355///
5356const EVT *SDNode::getValueTypeList(EVT VT) {
5357  if (VT.isExtended()) {
5358    sys::SmartScopedLock<true> Lock(*VTMutex);
5359    return &(*EVTs->insert(VT).first);
5360  } else {
5361    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5362  }
5363}
5364
5365/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5366/// indicated value.  This method ignores uses of other values defined by this
5367/// operation.
5368bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5369  assert(Value < getNumValues() && "Bad value!");
5370
5371  // TODO: Only iterate over uses of a given value of the node
5372  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5373    if (UI.getUse().getResNo() == Value) {
5374      if (NUses == 0)
5375        return false;
5376      --NUses;
5377    }
5378  }
5379
5380  // Found exactly the right number of uses?
5381  return NUses == 0;
5382}
5383
5384
5385/// hasAnyUseOfValue - Return true if there are any use of the indicated
5386/// value. This method ignores uses of other values defined by this operation.
5387bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5388  assert(Value < getNumValues() && "Bad value!");
5389
5390  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5391    if (UI.getUse().getResNo() == Value)
5392      return true;
5393
5394  return false;
5395}
5396
5397
5398/// isOnlyUserOf - Return true if this node is the only use of N.
5399///
5400bool SDNode::isOnlyUserOf(SDNode *N) const {
5401  bool Seen = false;
5402  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5403    SDNode *User = *I;
5404    if (User == this)
5405      Seen = true;
5406    else
5407      return false;
5408  }
5409
5410  return Seen;
5411}
5412
5413/// isOperand - Return true if this node is an operand of N.
5414///
5415bool SDValue::isOperandOf(SDNode *N) const {
5416  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5417    if (*this == N->getOperand(i))
5418      return true;
5419  return false;
5420}
5421
5422bool SDNode::isOperandOf(SDNode *N) const {
5423  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5424    if (this == N->OperandList[i].getNode())
5425      return true;
5426  return false;
5427}
5428
5429/// reachesChainWithoutSideEffects - Return true if this operand (which must
5430/// be a chain) reaches the specified operand without crossing any
5431/// side-effecting instructions.  In practice, this looks through token
5432/// factors and non-volatile loads.  In order to remain efficient, this only
5433/// looks a couple of nodes in, it does not do an exhaustive search.
5434bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5435                                               unsigned Depth) const {
5436  if (*this == Dest) return true;
5437
5438  // Don't search too deeply, we just want to be able to see through
5439  // TokenFactor's etc.
5440  if (Depth == 0) return false;
5441
5442  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5443  // of the operands of the TF reach dest, then we can do the xform.
5444  if (getOpcode() == ISD::TokenFactor) {
5445    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5446      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5447        return true;
5448    return false;
5449  }
5450
5451  // Loads don't have side effects, look through them.
5452  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5453    if (!Ld->isVolatile())
5454      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5455  }
5456  return false;
5457}
5458
5459/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5460/// is either an operand of N or it can be reached by traversing up the operands.
5461/// NOTE: this is an expensive method. Use it carefully.
5462bool SDNode::isPredecessorOf(SDNode *N) const {
5463  SmallPtrSet<SDNode *, 32> Visited;
5464  SmallVector<SDNode *, 16> Worklist;
5465  Worklist.push_back(N);
5466
5467  do {
5468    N = Worklist.pop_back_val();
5469    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5470      SDNode *Op = N->getOperand(i).getNode();
5471      if (Op == this)
5472        return true;
5473      if (Visited.insert(Op))
5474        Worklist.push_back(Op);
5475    }
5476  } while (!Worklist.empty());
5477
5478  return false;
5479}
5480
5481uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5482  assert(Num < NumOperands && "Invalid child # of SDNode!");
5483  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5484}
5485
5486std::string SDNode::getOperationName(const SelectionDAG *G) const {
5487  switch (getOpcode()) {
5488  default:
5489    if (getOpcode() < ISD::BUILTIN_OP_END)
5490      return "<<Unknown DAG Node>>";
5491    if (isMachineOpcode()) {
5492      if (G)
5493        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5494          if (getMachineOpcode() < TII->getNumOpcodes())
5495            return TII->get(getMachineOpcode()).getName();
5496      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5497    }
5498    if (G) {
5499      const TargetLowering &TLI = G->getTargetLoweringInfo();
5500      const char *Name = TLI.getTargetNodeName(getOpcode());
5501      if (Name) return Name;
5502      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5503    }
5504    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5505
5506#ifndef NDEBUG
5507  case ISD::DELETED_NODE:
5508    return "<<Deleted Node!>>";
5509#endif
5510  case ISD::PREFETCH:      return "Prefetch";
5511  case ISD::MEMBARRIER:    return "MemBarrier";
5512  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5513  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5514  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5515  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5516  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5517  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5518  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5519  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5520  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5521  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5522  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5523  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5524  case ISD::PCMARKER:      return "PCMarker";
5525  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5526  case ISD::SRCVALUE:      return "SrcValue";
5527  case ISD::EntryToken:    return "EntryToken";
5528  case ISD::TokenFactor:   return "TokenFactor";
5529  case ISD::AssertSext:    return "AssertSext";
5530  case ISD::AssertZext:    return "AssertZext";
5531
5532  case ISD::BasicBlock:    return "BasicBlock";
5533  case ISD::VALUETYPE:     return "ValueType";
5534  case ISD::Register:      return "Register";
5535
5536  case ISD::Constant:      return "Constant";
5537  case ISD::ConstantFP:    return "ConstantFP";
5538  case ISD::GlobalAddress: return "GlobalAddress";
5539  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5540  case ISD::FrameIndex:    return "FrameIndex";
5541  case ISD::JumpTable:     return "JumpTable";
5542  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5543  case ISD::RETURNADDR: return "RETURNADDR";
5544  case ISD::FRAMEADDR: return "FRAMEADDR";
5545  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5546  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5547  case ISD::LSDAADDR: return "LSDAADDR";
5548  case ISD::EHSELECTION: return "EHSELECTION";
5549  case ISD::EH_RETURN: return "EH_RETURN";
5550  case ISD::ConstantPool:  return "ConstantPool";
5551  case ISD::ExternalSymbol: return "ExternalSymbol";
5552  case ISD::BlockAddress:  return "BlockAddress";
5553  case ISD::INTRINSIC_WO_CHAIN:
5554  case ISD::INTRINSIC_VOID:
5555  case ISD::INTRINSIC_W_CHAIN: {
5556    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5557    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5558    if (IID < Intrinsic::num_intrinsics)
5559      return Intrinsic::getName((Intrinsic::ID)IID);
5560    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5561      return TII->getName(IID);
5562    llvm_unreachable("Invalid intrinsic ID");
5563  }
5564
5565  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5566  case ISD::TargetConstant: return "TargetConstant";
5567  case ISD::TargetConstantFP:return "TargetConstantFP";
5568  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5569  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5570  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5571  case ISD::TargetJumpTable:  return "TargetJumpTable";
5572  case ISD::TargetConstantPool:  return "TargetConstantPool";
5573  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5574  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5575
5576  case ISD::CopyToReg:     return "CopyToReg";
5577  case ISD::CopyFromReg:   return "CopyFromReg";
5578  case ISD::UNDEF:         return "undef";
5579  case ISD::MERGE_VALUES:  return "merge_values";
5580  case ISD::INLINEASM:     return "inlineasm";
5581  case ISD::EH_LABEL:      return "eh_label";
5582  case ISD::HANDLENODE:    return "handlenode";
5583
5584  // Unary operators
5585  case ISD::FABS:   return "fabs";
5586  case ISD::FNEG:   return "fneg";
5587  case ISD::FSQRT:  return "fsqrt";
5588  case ISD::FSIN:   return "fsin";
5589  case ISD::FCOS:   return "fcos";
5590  case ISD::FPOWI:  return "fpowi";
5591  case ISD::FPOW:   return "fpow";
5592  case ISD::FTRUNC: return "ftrunc";
5593  case ISD::FFLOOR: return "ffloor";
5594  case ISD::FCEIL:  return "fceil";
5595  case ISD::FRINT:  return "frint";
5596  case ISD::FNEARBYINT: return "fnearbyint";
5597
5598  // Binary operators
5599  case ISD::ADD:    return "add";
5600  case ISD::SUB:    return "sub";
5601  case ISD::MUL:    return "mul";
5602  case ISD::MULHU:  return "mulhu";
5603  case ISD::MULHS:  return "mulhs";
5604  case ISD::SDIV:   return "sdiv";
5605  case ISD::UDIV:   return "udiv";
5606  case ISD::SREM:   return "srem";
5607  case ISD::UREM:   return "urem";
5608  case ISD::SMUL_LOHI:  return "smul_lohi";
5609  case ISD::UMUL_LOHI:  return "umul_lohi";
5610  case ISD::SDIVREM:    return "sdivrem";
5611  case ISD::UDIVREM:    return "udivrem";
5612  case ISD::AND:    return "and";
5613  case ISD::OR:     return "or";
5614  case ISD::XOR:    return "xor";
5615  case ISD::SHL:    return "shl";
5616  case ISD::SRA:    return "sra";
5617  case ISD::SRL:    return "srl";
5618  case ISD::ROTL:   return "rotl";
5619  case ISD::ROTR:   return "rotr";
5620  case ISD::FADD:   return "fadd";
5621  case ISD::FSUB:   return "fsub";
5622  case ISD::FMUL:   return "fmul";
5623  case ISD::FDIV:   return "fdiv";
5624  case ISD::FREM:   return "frem";
5625  case ISD::FCOPYSIGN: return "fcopysign";
5626  case ISD::FGETSIGN:  return "fgetsign";
5627
5628  case ISD::SETCC:       return "setcc";
5629  case ISD::VSETCC:      return "vsetcc";
5630  case ISD::SELECT:      return "select";
5631  case ISD::SELECT_CC:   return "select_cc";
5632  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5633  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5634  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5635  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5636  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5637  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5638  case ISD::CARRY_FALSE:         return "carry_false";
5639  case ISD::ADDC:        return "addc";
5640  case ISD::ADDE:        return "adde";
5641  case ISD::SADDO:       return "saddo";
5642  case ISD::UADDO:       return "uaddo";
5643  case ISD::SSUBO:       return "ssubo";
5644  case ISD::USUBO:       return "usubo";
5645  case ISD::SMULO:       return "smulo";
5646  case ISD::UMULO:       return "umulo";
5647  case ISD::SUBC:        return "subc";
5648  case ISD::SUBE:        return "sube";
5649  case ISD::SHL_PARTS:   return "shl_parts";
5650  case ISD::SRA_PARTS:   return "sra_parts";
5651  case ISD::SRL_PARTS:   return "srl_parts";
5652
5653  // Conversion operators.
5654  case ISD::SIGN_EXTEND: return "sign_extend";
5655  case ISD::ZERO_EXTEND: return "zero_extend";
5656  case ISD::ANY_EXTEND:  return "any_extend";
5657  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5658  case ISD::TRUNCATE:    return "truncate";
5659  case ISD::FP_ROUND:    return "fp_round";
5660  case ISD::FLT_ROUNDS_: return "flt_rounds";
5661  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5662  case ISD::FP_EXTEND:   return "fp_extend";
5663
5664  case ISD::SINT_TO_FP:  return "sint_to_fp";
5665  case ISD::UINT_TO_FP:  return "uint_to_fp";
5666  case ISD::FP_TO_SINT:  return "fp_to_sint";
5667  case ISD::FP_TO_UINT:  return "fp_to_uint";
5668  case ISD::BIT_CONVERT: return "bit_convert";
5669
5670  case ISD::CONVERT_RNDSAT: {
5671    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5672    default: llvm_unreachable("Unknown cvt code!");
5673    case ISD::CVT_FF:  return "cvt_ff";
5674    case ISD::CVT_FS:  return "cvt_fs";
5675    case ISD::CVT_FU:  return "cvt_fu";
5676    case ISD::CVT_SF:  return "cvt_sf";
5677    case ISD::CVT_UF:  return "cvt_uf";
5678    case ISD::CVT_SS:  return "cvt_ss";
5679    case ISD::CVT_SU:  return "cvt_su";
5680    case ISD::CVT_US:  return "cvt_us";
5681    case ISD::CVT_UU:  return "cvt_uu";
5682    }
5683  }
5684
5685    // Control flow instructions
5686  case ISD::BR:      return "br";
5687  case ISD::BRIND:   return "brind";
5688  case ISD::BR_JT:   return "br_jt";
5689  case ISD::BRCOND:  return "brcond";
5690  case ISD::BR_CC:   return "br_cc";
5691  case ISD::CALLSEQ_START:  return "callseq_start";
5692  case ISD::CALLSEQ_END:    return "callseq_end";
5693
5694    // Other operators
5695  case ISD::LOAD:               return "load";
5696  case ISD::STORE:              return "store";
5697  case ISD::VAARG:              return "vaarg";
5698  case ISD::VACOPY:             return "vacopy";
5699  case ISD::VAEND:              return "vaend";
5700  case ISD::VASTART:            return "vastart";
5701  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5702  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5703  case ISD::BUILD_PAIR:         return "build_pair";
5704  case ISD::STACKSAVE:          return "stacksave";
5705  case ISD::STACKRESTORE:       return "stackrestore";
5706  case ISD::TRAP:               return "trap";
5707
5708  // Bit manipulation
5709  case ISD::BSWAP:   return "bswap";
5710  case ISD::CTPOP:   return "ctpop";
5711  case ISD::CTTZ:    return "cttz";
5712  case ISD::CTLZ:    return "ctlz";
5713
5714  // Trampolines
5715  case ISD::TRAMPOLINE: return "trampoline";
5716
5717  case ISD::CONDCODE:
5718    switch (cast<CondCodeSDNode>(this)->get()) {
5719    default: llvm_unreachable("Unknown setcc condition!");
5720    case ISD::SETOEQ:  return "setoeq";
5721    case ISD::SETOGT:  return "setogt";
5722    case ISD::SETOGE:  return "setoge";
5723    case ISD::SETOLT:  return "setolt";
5724    case ISD::SETOLE:  return "setole";
5725    case ISD::SETONE:  return "setone";
5726
5727    case ISD::SETO:    return "seto";
5728    case ISD::SETUO:   return "setuo";
5729    case ISD::SETUEQ:  return "setue";
5730    case ISD::SETUGT:  return "setugt";
5731    case ISD::SETUGE:  return "setuge";
5732    case ISD::SETULT:  return "setult";
5733    case ISD::SETULE:  return "setule";
5734    case ISD::SETUNE:  return "setune";
5735
5736    case ISD::SETEQ:   return "seteq";
5737    case ISD::SETGT:   return "setgt";
5738    case ISD::SETGE:   return "setge";
5739    case ISD::SETLT:   return "setlt";
5740    case ISD::SETLE:   return "setle";
5741    case ISD::SETNE:   return "setne";
5742    }
5743  }
5744}
5745
5746const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5747  switch (AM) {
5748  default:
5749    return "";
5750  case ISD::PRE_INC:
5751    return "<pre-inc>";
5752  case ISD::PRE_DEC:
5753    return "<pre-dec>";
5754  case ISD::POST_INC:
5755    return "<post-inc>";
5756  case ISD::POST_DEC:
5757    return "<post-dec>";
5758  }
5759}
5760
5761std::string ISD::ArgFlagsTy::getArgFlagsString() {
5762  std::string S = "< ";
5763
5764  if (isZExt())
5765    S += "zext ";
5766  if (isSExt())
5767    S += "sext ";
5768  if (isInReg())
5769    S += "inreg ";
5770  if (isSRet())
5771    S += "sret ";
5772  if (isByVal())
5773    S += "byval ";
5774  if (isNest())
5775    S += "nest ";
5776  if (getByValAlign())
5777    S += "byval-align:" + utostr(getByValAlign()) + " ";
5778  if (getOrigAlign())
5779    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5780  if (getByValSize())
5781    S += "byval-size:" + utostr(getByValSize()) + " ";
5782  return S + ">";
5783}
5784
5785void SDNode::dump() const { dump(0); }
5786void SDNode::dump(const SelectionDAG *G) const {
5787  print(dbgs(), G);
5788}
5789
5790void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5791  OS << (void*)this << ": ";
5792
5793  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5794    if (i) OS << ",";
5795    if (getValueType(i) == MVT::Other)
5796      OS << "ch";
5797    else
5798      OS << getValueType(i).getEVTString();
5799  }
5800  OS << " = " << getOperationName(G);
5801}
5802
5803void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5804  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5805    if (!MN->memoperands_empty()) {
5806      OS << "<";
5807      OS << "Mem:";
5808      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5809           e = MN->memoperands_end(); i != e; ++i) {
5810        OS << **i;
5811        if (next(i) != e)
5812          OS << " ";
5813      }
5814      OS << ">";
5815    }
5816  } else if (const ShuffleVectorSDNode *SVN =
5817               dyn_cast<ShuffleVectorSDNode>(this)) {
5818    OS << "<";
5819    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5820      int Idx = SVN->getMaskElt(i);
5821      if (i) OS << ",";
5822      if (Idx < 0)
5823        OS << "u";
5824      else
5825        OS << Idx;
5826    }
5827    OS << ">";
5828  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5829    OS << '<' << CSDN->getAPIntValue() << '>';
5830  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5831    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5832      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5833    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5834      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5835    else {
5836      OS << "<APFloat(";
5837      CSDN->getValueAPF().bitcastToAPInt().dump();
5838      OS << ")>";
5839    }
5840  } else if (const GlobalAddressSDNode *GADN =
5841             dyn_cast<GlobalAddressSDNode>(this)) {
5842    int64_t offset = GADN->getOffset();
5843    OS << '<';
5844    WriteAsOperand(OS, GADN->getGlobal());
5845    OS << '>';
5846    if (offset > 0)
5847      OS << " + " << offset;
5848    else
5849      OS << " " << offset;
5850    if (unsigned int TF = GADN->getTargetFlags())
5851      OS << " [TF=" << TF << ']';
5852  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5853    OS << "<" << FIDN->getIndex() << ">";
5854  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5855    OS << "<" << JTDN->getIndex() << ">";
5856    if (unsigned int TF = JTDN->getTargetFlags())
5857      OS << " [TF=" << TF << ']';
5858  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5859    int offset = CP->getOffset();
5860    if (CP->isMachineConstantPoolEntry())
5861      OS << "<" << *CP->getMachineCPVal() << ">";
5862    else
5863      OS << "<" << *CP->getConstVal() << ">";
5864    if (offset > 0)
5865      OS << " + " << offset;
5866    else
5867      OS << " " << offset;
5868    if (unsigned int TF = CP->getTargetFlags())
5869      OS << " [TF=" << TF << ']';
5870  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5871    OS << "<";
5872    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5873    if (LBB)
5874      OS << LBB->getName() << " ";
5875    OS << (const void*)BBDN->getBasicBlock() << ">";
5876  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5877    if (G && R->getReg() &&
5878        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5879      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5880    } else {
5881      OS << " %reg" << R->getReg();
5882    }
5883  } else if (const ExternalSymbolSDNode *ES =
5884             dyn_cast<ExternalSymbolSDNode>(this)) {
5885    OS << "'" << ES->getSymbol() << "'";
5886    if (unsigned int TF = ES->getTargetFlags())
5887      OS << " [TF=" << TF << ']';
5888  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5889    if (M->getValue())
5890      OS << "<" << M->getValue() << ">";
5891    else
5892      OS << "<null>";
5893  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5894    OS << ":" << N->getVT().getEVTString();
5895  }
5896  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5897    OS << "<" << *LD->getMemOperand();
5898
5899    bool doExt = true;
5900    switch (LD->getExtensionType()) {
5901    default: doExt = false; break;
5902    case ISD::EXTLOAD: OS << ", anyext"; break;
5903    case ISD::SEXTLOAD: OS << ", sext"; break;
5904    case ISD::ZEXTLOAD: OS << ", zext"; break;
5905    }
5906    if (doExt)
5907      OS << " from " << LD->getMemoryVT().getEVTString();
5908
5909    const char *AM = getIndexedModeName(LD->getAddressingMode());
5910    if (*AM)
5911      OS << ", " << AM;
5912
5913    OS << ">";
5914  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5915    OS << "<" << *ST->getMemOperand();
5916
5917    if (ST->isTruncatingStore())
5918      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5919
5920    const char *AM = getIndexedModeName(ST->getAddressingMode());
5921    if (*AM)
5922      OS << ", " << AM;
5923
5924    OS << ">";
5925  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5926    OS << "<" << *M->getMemOperand() << ">";
5927  } else if (const BlockAddressSDNode *BA =
5928               dyn_cast<BlockAddressSDNode>(this)) {
5929    OS << "<";
5930    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5931    OS << ", ";
5932    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5933    OS << ">";
5934    if (unsigned int TF = BA->getTargetFlags())
5935      OS << " [TF=" << TF << ']';
5936  }
5937
5938  if (G)
5939    if (unsigned Order = G->GetOrdering(this))
5940      OS << " [ORD=" << Order << ']';
5941
5942  if (getNodeId() != -1)
5943    OS << " [ID=" << getNodeId() << ']';
5944}
5945
5946void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5947  print_types(OS, G);
5948  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5949    if (i) OS << ", "; else OS << " ";
5950    OS << (void*)getOperand(i).getNode();
5951    if (unsigned RN = getOperand(i).getResNo())
5952      OS << ":" << RN;
5953  }
5954  print_details(OS, G);
5955}
5956
5957static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5958                                  const SelectionDAG *G, unsigned depth,
5959                                  unsigned indent)
5960{
5961  if (depth == 0)
5962    return;
5963
5964  OS.indent(indent);
5965
5966  N->print(OS, G);
5967
5968  if (depth < 1)
5969    return;
5970
5971  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5972    OS << '\n';
5973    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
5974  }
5975}
5976
5977void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
5978                            unsigned depth) const {
5979  printrWithDepthHelper(OS, this, G, depth, 0);
5980}
5981
5982void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
5983  // Don't print impossibly deep things.
5984  printrWithDepth(OS, G, 100);
5985}
5986
5987void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
5988  printrWithDepth(dbgs(), G, depth);
5989}
5990
5991void SDNode::dumprFull(const SelectionDAG *G) const {
5992  // Don't print impossibly deep things.
5993  dumprWithDepth(G, 100);
5994}
5995
5996static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5997  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5998    if (N->getOperand(i).getNode()->hasOneUse())
5999      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6000    else
6001      dbgs() << "\n" << std::string(indent+2, ' ')
6002           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6003
6004
6005  dbgs() << "\n";
6006  dbgs().indent(indent);
6007  N->dump(G);
6008}
6009
6010SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6011  assert(N->getNumValues() == 1 &&
6012         "Can't unroll a vector with multiple results!");
6013
6014  EVT VT = N->getValueType(0);
6015  unsigned NE = VT.getVectorNumElements();
6016  EVT EltVT = VT.getVectorElementType();
6017  DebugLoc dl = N->getDebugLoc();
6018
6019  SmallVector<SDValue, 8> Scalars;
6020  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6021
6022  // If ResNE is 0, fully unroll the vector op.
6023  if (ResNE == 0)
6024    ResNE = NE;
6025  else if (NE > ResNE)
6026    NE = ResNE;
6027
6028  unsigned i;
6029  for (i= 0; i != NE; ++i) {
6030    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6031      SDValue Operand = N->getOperand(j);
6032      EVT OperandVT = Operand.getValueType();
6033      if (OperandVT.isVector()) {
6034        // A vector operand; extract a single element.
6035        EVT OperandEltVT = OperandVT.getVectorElementType();
6036        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6037                              OperandEltVT,
6038                              Operand,
6039                              getConstant(i, MVT::i32));
6040      } else {
6041        // A scalar operand; just use it as is.
6042        Operands[j] = Operand;
6043      }
6044    }
6045
6046    switch (N->getOpcode()) {
6047    default:
6048      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6049                                &Operands[0], Operands.size()));
6050      break;
6051    case ISD::SHL:
6052    case ISD::SRA:
6053    case ISD::SRL:
6054    case ISD::ROTL:
6055    case ISD::ROTR:
6056      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6057                                getShiftAmountOperand(Operands[1])));
6058      break;
6059    case ISD::SIGN_EXTEND_INREG:
6060    case ISD::FP_ROUND_INREG: {
6061      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6062      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6063                                Operands[0],
6064                                getValueType(ExtVT)));
6065    }
6066    }
6067  }
6068
6069  for (; i < ResNE; ++i)
6070    Scalars.push_back(getUNDEF(EltVT));
6071
6072  return getNode(ISD::BUILD_VECTOR, dl,
6073                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6074                 &Scalars[0], Scalars.size());
6075}
6076
6077
6078/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6079/// location that is 'Dist' units away from the location that the 'Base' load
6080/// is loading from.
6081bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6082                                     unsigned Bytes, int Dist) const {
6083  if (LD->getChain() != Base->getChain())
6084    return false;
6085  EVT VT = LD->getValueType(0);
6086  if (VT.getSizeInBits() / 8 != Bytes)
6087    return false;
6088
6089  SDValue Loc = LD->getOperand(1);
6090  SDValue BaseLoc = Base->getOperand(1);
6091  if (Loc.getOpcode() == ISD::FrameIndex) {
6092    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6093      return false;
6094    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6095    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6096    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6097    int FS  = MFI->getObjectSize(FI);
6098    int BFS = MFI->getObjectSize(BFI);
6099    if (FS != BFS || FS != (int)Bytes) return false;
6100    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6101  }
6102  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6103    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6104    if (V && (V->getSExtValue() == Dist*Bytes))
6105      return true;
6106  }
6107
6108  GlobalValue *GV1 = NULL;
6109  GlobalValue *GV2 = NULL;
6110  int64_t Offset1 = 0;
6111  int64_t Offset2 = 0;
6112  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6113  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6114  if (isGA1 && isGA2 && GV1 == GV2)
6115    return Offset1 == (Offset2 + Dist*Bytes);
6116  return false;
6117}
6118
6119
6120/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6121/// it cannot be inferred.
6122unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6123  // If this is a GlobalAddress + cst, return the alignment.
6124  GlobalValue *GV;
6125  int64_t GVOffset = 0;
6126  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
6127    return MinAlign(GV->getAlignment(), GVOffset);
6128
6129  // If this is a direct reference to a stack slot, use information about the
6130  // stack slot's alignment.
6131  int FrameIdx = 1 << 31;
6132  int64_t FrameOffset = 0;
6133  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6134    FrameIdx = FI->getIndex();
6135  } else if (Ptr.getOpcode() == ISD::ADD &&
6136             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6137             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6138    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6139    FrameOffset = Ptr.getConstantOperandVal(1);
6140  }
6141
6142  if (FrameIdx != (1 << 31)) {
6143    // FIXME: Handle FI+CST.
6144    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6145    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6146                                    FrameOffset);
6147    if (MFI.isFixedObjectIndex(FrameIdx)) {
6148      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6149
6150      // The alignment of the frame index can be determined from its offset from
6151      // the incoming frame position.  If the frame object is at offset 32 and
6152      // the stack is guaranteed to be 16-byte aligned, then we know that the
6153      // object is 16-byte aligned.
6154      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6155      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6156
6157      // Finally, the frame object itself may have a known alignment.  Factor
6158      // the alignment + offset into a new alignment.  For example, if we know
6159      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6160      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6161      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6162      return std::max(Align, FIInfoAlign);
6163    }
6164    return FIInfoAlign;
6165  }
6166
6167  return 0;
6168}
6169
6170void SelectionDAG::dump() const {
6171  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6172
6173  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6174       I != E; ++I) {
6175    const SDNode *N = I;
6176    if (!N->hasOneUse() && N != getRoot().getNode())
6177      DumpNodes(N, 2, this);
6178  }
6179
6180  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6181
6182  dbgs() << "\n\n";
6183}
6184
6185void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6186  print_types(OS, G);
6187  print_details(OS, G);
6188}
6189
6190typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6191static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6192                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6193  if (!once.insert(N))          // If we've been here before, return now.
6194    return;
6195
6196  // Dump the current SDNode, but don't end the line yet.
6197  OS << std::string(indent, ' ');
6198  N->printr(OS, G);
6199
6200  // Having printed this SDNode, walk the children:
6201  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6202    const SDNode *child = N->getOperand(i).getNode();
6203
6204    if (i) OS << ",";
6205    OS << " ";
6206
6207    if (child->getNumOperands() == 0) {
6208      // This child has no grandchildren; print it inline right here.
6209      child->printr(OS, G);
6210      once.insert(child);
6211    } else {         // Just the address. FIXME: also print the child's opcode.
6212      OS << (void*)child;
6213      if (unsigned RN = N->getOperand(i).getResNo())
6214        OS << ":" << RN;
6215    }
6216  }
6217
6218  OS << "\n";
6219
6220  // Dump children that have grandchildren on their own line(s).
6221  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6222    const SDNode *child = N->getOperand(i).getNode();
6223    DumpNodesr(OS, child, indent+2, G, once);
6224  }
6225}
6226
6227void SDNode::dumpr() const {
6228  VisitedSDNodeSet once;
6229  DumpNodesr(dbgs(), this, 0, 0, once);
6230}
6231
6232void SDNode::dumpr(const SelectionDAG *G) const {
6233  VisitedSDNodeSet once;
6234  DumpNodesr(dbgs(), this, 0, G, once);
6235}
6236
6237
6238// getAddressSpace - Return the address space this GlobalAddress belongs to.
6239unsigned GlobalAddressSDNode::getAddressSpace() const {
6240  return getGlobal()->getType()->getAddressSpace();
6241}
6242
6243
6244const Type *ConstantPoolSDNode::getType() const {
6245  if (isMachineConstantPoolEntry())
6246    return Val.MachineCPVal->getType();
6247  return Val.ConstVal->getType();
6248}
6249
6250bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6251                                        APInt &SplatUndef,
6252                                        unsigned &SplatBitSize,
6253                                        bool &HasAnyUndefs,
6254                                        unsigned MinSplatBits,
6255                                        bool isBigEndian) {
6256  EVT VT = getValueType(0);
6257  assert(VT.isVector() && "Expected a vector type");
6258  unsigned sz = VT.getSizeInBits();
6259  if (MinSplatBits > sz)
6260    return false;
6261
6262  SplatValue = APInt(sz, 0);
6263  SplatUndef = APInt(sz, 0);
6264
6265  // Get the bits.  Bits with undefined values (when the corresponding element
6266  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6267  // in SplatValue.  If any of the values are not constant, give up and return
6268  // false.
6269  unsigned int nOps = getNumOperands();
6270  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6271  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6272
6273  for (unsigned j = 0; j < nOps; ++j) {
6274    unsigned i = isBigEndian ? nOps-1-j : j;
6275    SDValue OpVal = getOperand(i);
6276    unsigned BitPos = j * EltBitSize;
6277
6278    if (OpVal.getOpcode() == ISD::UNDEF)
6279      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6280    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6281      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6282                     zextOrTrunc(sz) << BitPos);
6283    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6284      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6285     else
6286      return false;
6287  }
6288
6289  // The build_vector is all constants or undefs.  Find the smallest element
6290  // size that splats the vector.
6291
6292  HasAnyUndefs = (SplatUndef != 0);
6293  while (sz > 8) {
6294
6295    unsigned HalfSize = sz / 2;
6296    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6297    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6298    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6299    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6300
6301    // If the two halves do not match (ignoring undef bits), stop here.
6302    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6303        MinSplatBits > HalfSize)
6304      break;
6305
6306    SplatValue = HighValue | LowValue;
6307    SplatUndef = HighUndef & LowUndef;
6308
6309    sz = HalfSize;
6310  }
6311
6312  SplatBitSize = sz;
6313  return true;
6314}
6315
6316bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6317  // Find the first non-undef value in the shuffle mask.
6318  unsigned i, e;
6319  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6320    /* search */;
6321
6322  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6323
6324  // Make sure all remaining elements are either undef or the same as the first
6325  // non-undef value.
6326  for (int Idx = Mask[i]; i != e; ++i)
6327    if (Mask[i] >= 0 && Mask[i] != Idx)
6328      return false;
6329  return true;
6330}
6331
6332#ifdef XDEBUG
6333static void checkForCyclesHelper(const SDNode *N,
6334                                 SmallPtrSet<const SDNode*, 32> &Visited,
6335                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6336  // If this node has already been checked, don't check it again.
6337  if (Checked.count(N))
6338    return;
6339
6340  // If a node has already been visited on this depth-first walk, reject it as
6341  // a cycle.
6342  if (!Visited.insert(N)) {
6343    dbgs() << "Offending node:\n";
6344    N->dumprFull();
6345    errs() << "Detected cycle in SelectionDAG\n";
6346    abort();
6347  }
6348
6349  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6350    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6351
6352  Checked.insert(N);
6353  Visited.erase(N);
6354}
6355#endif
6356
6357void llvm::checkForCycles(const llvm::SDNode *N) {
6358#ifdef XDEBUG
6359  assert(N && "Checking nonexistant SDNode");
6360  SmallPtrSet<const SDNode*, 32> visited;
6361  SmallPtrSet<const SDNode*, 32> checked;
6362  checkForCyclesHelper(N, visited, checked);
6363#endif
6364}
6365
6366void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6367  checkForCycles(DAG->getRoot().getNode());
6368}
6369