SelectionDAG.cpp revision c76909abfec876c6b751d693ebd3df07df686aa0
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Function.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CallingConv.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/ManagedStatic.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/System/Mutex.h"
40#include "llvm/ADT/SetVector.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/StringExtras.h"
45#include <algorithm>
46#include <cmath>
47using namespace llvm;
48
49/// makeVTList - Return an instance of the SDVTList struct initialized with the
50/// specified members.
51static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
52  SDVTList Res = {VTs, NumVTs};
53  return Res;
54}
55
56static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
57  switch (VT.getSimpleVT().SimpleTy) {
58  default: llvm_unreachable("Unknown FP format");
59  case MVT::f32:     return &APFloat::IEEEsingle;
60  case MVT::f64:     return &APFloat::IEEEdouble;
61  case MVT::f80:     return &APFloat::x87DoubleExtended;
62  case MVT::f128:    return &APFloat::IEEEquad;
63  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
64  }
65}
66
67SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
68
69//===----------------------------------------------------------------------===//
70//                              ConstantFPSDNode Class
71//===----------------------------------------------------------------------===//
72
73/// isExactlyValue - We don't rely on operator== working on double values, as
74/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
75/// As such, this method can be used to do an exact bit-for-bit comparison of
76/// two floating point values.
77bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
78  return getValueAPF().bitwiseIsEqual(V);
79}
80
81bool ConstantFPSDNode::isValueValidForType(EVT VT,
82                                           const APFloat& Val) {
83  assert(VT.isFloatingPoint() && "Can only convert between FP types");
84
85  // PPC long double cannot be converted to any other type.
86  if (VT == MVT::ppcf128 ||
87      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
88    return false;
89
90  // convert modifies in place, so make a copy.
91  APFloat Val2 = APFloat(Val);
92  bool losesInfo;
93  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
94                      &losesInfo);
95  return !losesInfo;
96}
97
98//===----------------------------------------------------------------------===//
99//                              ISD Namespace
100//===----------------------------------------------------------------------===//
101
102/// isBuildVectorAllOnes - Return true if the specified node is a
103/// BUILD_VECTOR where all of the elements are ~0 or undef.
104bool ISD::isBuildVectorAllOnes(const SDNode *N) {
105  // Look through a bit convert.
106  if (N->getOpcode() == ISD::BIT_CONVERT)
107    N = N->getOperand(0).getNode();
108
109  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
110
111  unsigned i = 0, e = N->getNumOperands();
112
113  // Skip over all of the undef values.
114  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
115    ++i;
116
117  // Do not accept an all-undef vector.
118  if (i == e) return false;
119
120  // Do not accept build_vectors that aren't all constants or which have non-~0
121  // elements.
122  SDValue NotZero = N->getOperand(i);
123  if (isa<ConstantSDNode>(NotZero)) {
124    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
125      return false;
126  } else if (isa<ConstantFPSDNode>(NotZero)) {
127    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
128                bitcastToAPInt().isAllOnesValue())
129      return false;
130  } else
131    return false;
132
133  // Okay, we have at least one ~0 value, check to see if the rest match or are
134  // undefs.
135  for (++i; i != e; ++i)
136    if (N->getOperand(i) != NotZero &&
137        N->getOperand(i).getOpcode() != ISD::UNDEF)
138      return false;
139  return true;
140}
141
142
143/// isBuildVectorAllZeros - Return true if the specified node is a
144/// BUILD_VECTOR where all of the elements are 0 or undef.
145bool ISD::isBuildVectorAllZeros(const SDNode *N) {
146  // Look through a bit convert.
147  if (N->getOpcode() == ISD::BIT_CONVERT)
148    N = N->getOperand(0).getNode();
149
150  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
151
152  unsigned i = 0, e = N->getNumOperands();
153
154  // Skip over all of the undef values.
155  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
156    ++i;
157
158  // Do not accept an all-undef vector.
159  if (i == e) return false;
160
161  // Do not accept build_vectors that aren't all constants or which have non-0
162  // elements.
163  SDValue Zero = N->getOperand(i);
164  if (isa<ConstantSDNode>(Zero)) {
165    if (!cast<ConstantSDNode>(Zero)->isNullValue())
166      return false;
167  } else if (isa<ConstantFPSDNode>(Zero)) {
168    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
169      return false;
170  } else
171    return false;
172
173  // Okay, we have at least one 0 value, check to see if the rest match or are
174  // undefs.
175  for (++i; i != e; ++i)
176    if (N->getOperand(i) != Zero &&
177        N->getOperand(i).getOpcode() != ISD::UNDEF)
178      return false;
179  return true;
180}
181
182/// isScalarToVector - Return true if the specified node is a
183/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
184/// element is not an undef.
185bool ISD::isScalarToVector(const SDNode *N) {
186  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
187    return true;
188
189  if (N->getOpcode() != ISD::BUILD_VECTOR)
190    return false;
191  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
192    return false;
193  unsigned NumElems = N->getNumOperands();
194  for (unsigned i = 1; i < NumElems; ++i) {
195    SDValue V = N->getOperand(i);
196    if (V.getOpcode() != ISD::UNDEF)
197      return false;
198  }
199  return true;
200}
201
202
203/// isDebugLabel - Return true if the specified node represents a debug
204/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
205bool ISD::isDebugLabel(const SDNode *N) {
206  SDValue Zero;
207  if (N->getOpcode() == ISD::DBG_LABEL)
208    return true;
209  if (N->isMachineOpcode() &&
210      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
211    return true;
212  return false;
213}
214
215/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
216/// when given the operation for (X op Y).
217ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
218  // To perform this operation, we just need to swap the L and G bits of the
219  // operation.
220  unsigned OldL = (Operation >> 2) & 1;
221  unsigned OldG = (Operation >> 1) & 1;
222  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
223                       (OldL << 1) |       // New G bit
224                       (OldG << 2));       // New L bit.
225}
226
227/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
228/// 'op' is a valid SetCC operation.
229ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
230  unsigned Operation = Op;
231  if (isInteger)
232    Operation ^= 7;   // Flip L, G, E bits, but not U.
233  else
234    Operation ^= 15;  // Flip all of the condition bits.
235
236  if (Operation > ISD::SETTRUE2)
237    Operation &= ~8;  // Don't let N and U bits get set.
238
239  return ISD::CondCode(Operation);
240}
241
242
243/// isSignedOp - For an integer comparison, return 1 if the comparison is a
244/// signed operation and 2 if the result is an unsigned comparison.  Return zero
245/// if the operation does not depend on the sign of the input (setne and seteq).
246static int isSignedOp(ISD::CondCode Opcode) {
247  switch (Opcode) {
248  default: llvm_unreachable("Illegal integer setcc operation!");
249  case ISD::SETEQ:
250  case ISD::SETNE: return 0;
251  case ISD::SETLT:
252  case ISD::SETLE:
253  case ISD::SETGT:
254  case ISD::SETGE: return 1;
255  case ISD::SETULT:
256  case ISD::SETULE:
257  case ISD::SETUGT:
258  case ISD::SETUGE: return 2;
259  }
260}
261
262/// getSetCCOrOperation - Return the result of a logical OR between different
263/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
264/// returns SETCC_INVALID if it is not possible to represent the resultant
265/// comparison.
266ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
267                                       bool isInteger) {
268  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
269    // Cannot fold a signed integer setcc with an unsigned integer setcc.
270    return ISD::SETCC_INVALID;
271
272  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
273
274  // If the N and U bits get set then the resultant comparison DOES suddenly
275  // care about orderedness, and is true when ordered.
276  if (Op > ISD::SETTRUE2)
277    Op &= ~16;     // Clear the U bit if the N bit is set.
278
279  // Canonicalize illegal integer setcc's.
280  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
281    Op = ISD::SETNE;
282
283  return ISD::CondCode(Op);
284}
285
286/// getSetCCAndOperation - Return the result of a logical AND between different
287/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
288/// function returns zero if it is not possible to represent the resultant
289/// comparison.
290ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
291                                        bool isInteger) {
292  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
293    // Cannot fold a signed setcc with an unsigned setcc.
294    return ISD::SETCC_INVALID;
295
296  // Combine all of the condition bits.
297  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
298
299  // Canonicalize illegal integer setcc's.
300  if (isInteger) {
301    switch (Result) {
302    default: break;
303    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
304    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
305    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
306    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
307    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
308    }
309  }
310
311  return Result;
312}
313
314const TargetMachine &SelectionDAG::getTarget() const {
315  return MF->getTarget();
316}
317
318//===----------------------------------------------------------------------===//
319//                           SDNode Profile Support
320//===----------------------------------------------------------------------===//
321
322/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
323///
324static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
325  ID.AddInteger(OpC);
326}
327
328/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
329/// solely with their pointer.
330static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
331  ID.AddPointer(VTList.VTs);
332}
333
334/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
335///
336static void AddNodeIDOperands(FoldingSetNodeID &ID,
337                              const SDValue *Ops, unsigned NumOps) {
338  for (; NumOps; --NumOps, ++Ops) {
339    ID.AddPointer(Ops->getNode());
340    ID.AddInteger(Ops->getResNo());
341  }
342}
343
344/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
345///
346static void AddNodeIDOperands(FoldingSetNodeID &ID,
347                              const SDUse *Ops, unsigned NumOps) {
348  for (; NumOps; --NumOps, ++Ops) {
349    ID.AddPointer(Ops->getNode());
350    ID.AddInteger(Ops->getResNo());
351  }
352}
353
354static void AddNodeIDNode(FoldingSetNodeID &ID,
355                          unsigned short OpC, SDVTList VTList,
356                          const SDValue *OpList, unsigned N) {
357  AddNodeIDOpcode(ID, OpC);
358  AddNodeIDValueTypes(ID, VTList);
359  AddNodeIDOperands(ID, OpList, N);
360}
361
362/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
363/// the NodeID data.
364static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
365  switch (N->getOpcode()) {
366  case ISD::TargetExternalSymbol:
367  case ISD::ExternalSymbol:
368    llvm_unreachable("Should only be used on nodes with operands");
369  default: break;  // Normal nodes don't need extra info.
370  case ISD::TargetConstant:
371  case ISD::Constant:
372    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
373    break;
374  case ISD::TargetConstantFP:
375  case ISD::ConstantFP: {
376    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
377    break;
378  }
379  case ISD::TargetGlobalAddress:
380  case ISD::GlobalAddress:
381  case ISD::TargetGlobalTLSAddress:
382  case ISD::GlobalTLSAddress: {
383    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
384    ID.AddPointer(GA->getGlobal());
385    ID.AddInteger(GA->getOffset());
386    ID.AddInteger(GA->getTargetFlags());
387    break;
388  }
389  case ISD::BasicBlock:
390    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
391    break;
392  case ISD::Register:
393    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
394    break;
395  case ISD::DBG_STOPPOINT: {
396    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
397    ID.AddInteger(DSP->getLine());
398    ID.AddInteger(DSP->getColumn());
399    ID.AddPointer(DSP->getCompileUnit());
400    break;
401  }
402  case ISD::SRCVALUE:
403    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
404    break;
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
413    break;
414  case ISD::ConstantPool:
415  case ISD::TargetConstantPool: {
416    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
417    ID.AddInteger(CP->getAlignment());
418    ID.AddInteger(CP->getOffset());
419    if (CP->isMachineConstantPoolEntry())
420      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
421    else
422      ID.AddPointer(CP->getConstVal());
423    ID.AddInteger(CP->getTargetFlags());
424    break;
425  }
426  case ISD::LOAD: {
427    const LoadSDNode *LD = cast<LoadSDNode>(N);
428    ID.AddInteger(LD->getMemoryVT().getRawBits());
429    ID.AddInteger(LD->getRawSubclassData());
430    break;
431  }
432  case ISD::STORE: {
433    const StoreSDNode *ST = cast<StoreSDNode>(N);
434    ID.AddInteger(ST->getMemoryVT().getRawBits());
435    ID.AddInteger(ST->getRawSubclassData());
436    break;
437  }
438  case ISD::ATOMIC_CMP_SWAP:
439  case ISD::ATOMIC_SWAP:
440  case ISD::ATOMIC_LOAD_ADD:
441  case ISD::ATOMIC_LOAD_SUB:
442  case ISD::ATOMIC_LOAD_AND:
443  case ISD::ATOMIC_LOAD_OR:
444  case ISD::ATOMIC_LOAD_XOR:
445  case ISD::ATOMIC_LOAD_NAND:
446  case ISD::ATOMIC_LOAD_MIN:
447  case ISD::ATOMIC_LOAD_MAX:
448  case ISD::ATOMIC_LOAD_UMIN:
449  case ISD::ATOMIC_LOAD_UMAX: {
450    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
451    ID.AddInteger(AT->getMemoryVT().getRawBits());
452    ID.AddInteger(AT->getRawSubclassData());
453    break;
454  }
455  case ISD::VECTOR_SHUFFLE: {
456    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
457    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
458         i != e; ++i)
459      ID.AddInteger(SVN->getMaskElt(i));
460    break;
461  }
462  } // end switch (N->getOpcode())
463}
464
465/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
466/// data.
467static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
468  AddNodeIDOpcode(ID, N->getOpcode());
469  // Add the return value info.
470  AddNodeIDValueTypes(ID, N->getVTList());
471  // Add the operand info.
472  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
473
474  // Handle SDNode leafs with special info.
475  AddNodeIDCustom(ID, N);
476}
477
478/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
479/// the CSE map that carries volatility, indexing mode, and
480/// extension/truncation information.
481///
482static inline unsigned
483encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
484  assert((ConvType & 3) == ConvType &&
485         "ConvType may not require more than 2 bits!");
486  assert((AM & 7) == AM &&
487         "AM may not require more than 3 bits!");
488  return ConvType |
489         (AM << 2) |
490         (isVolatile << 5);
491}
492
493//===----------------------------------------------------------------------===//
494//                              SelectionDAG Class
495//===----------------------------------------------------------------------===//
496
497/// doNotCSE - Return true if CSE should not be performed for this node.
498static bool doNotCSE(SDNode *N) {
499  if (N->getValueType(0) == MVT::Flag)
500    return true; // Never CSE anything that produces a flag.
501
502  switch (N->getOpcode()) {
503  default: break;
504  case ISD::HANDLENODE:
505  case ISD::DBG_LABEL:
506  case ISD::DBG_STOPPOINT:
507  case ISD::EH_LABEL:
508    return true;   // Never CSE these nodes.
509  }
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return true; // Never CSE anything that produces a flag.
515
516  return false;
517}
518
519/// RemoveDeadNodes - This method deletes all unreachable nodes in the
520/// SelectionDAG.
521void SelectionDAG::RemoveDeadNodes() {
522  // Create a dummy node (which is not added to allnodes), that adds a reference
523  // to the root node, preventing it from being deleted.
524  HandleSDNode Dummy(getRoot());
525
526  SmallVector<SDNode*, 128> DeadNodes;
527
528  // Add all obviously-dead nodes to the DeadNodes worklist.
529  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530    if (I->use_empty())
531      DeadNodes.push_back(I);
532
533  RemoveDeadNodes(DeadNodes);
534
535  // If the root changed (e.g. it was a dead load, update the root).
536  setRoot(Dummy.getValue());
537}
538
539/// RemoveDeadNodes - This method deletes the unreachable nodes in the
540/// given list, and any nodes that become unreachable as a result.
541void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542                                   DAGUpdateListener *UpdateListener) {
543
544  // Process the worklist, deleting the nodes and adding their uses to the
545  // worklist.
546  while (!DeadNodes.empty()) {
547    SDNode *N = DeadNodes.pop_back_val();
548
549    if (UpdateListener)
550      UpdateListener->NodeDeleted(N, 0);
551
552    // Take the node out of the appropriate CSE map.
553    RemoveNodeFromCSEMaps(N);
554
555    // Next, brutally remove the operand list.  This is safe to do, as there are
556    // no cycles in the graph.
557    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558      SDUse &Use = *I++;
559      SDNode *Operand = Use.getNode();
560      Use.set(SDValue());
561
562      // Now that we removed this operand, see if there are no uses of it left.
563      if (Operand->use_empty())
564        DeadNodes.push_back(Operand);
565    }
566
567    DeallocateNode(N);
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  // First take this out of the appropriate CSE map.
578  RemoveNodeFromCSEMaps(N);
579
580  // Finally, remove uses due to operands of this node, remove from the
581  // AllNodes list, and delete the node.
582  DeleteNodeNotInCSEMaps(N);
583}
584
585void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587  assert(N->use_empty() && "Cannot delete a node that is not dead!");
588
589  // Drop all of the operands and decrement used node's use counts.
590  N->DropOperands();
591
592  DeallocateNode(N);
593}
594
595void SelectionDAG::DeallocateNode(SDNode *N) {
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  // Set the opcode to DELETED_NODE to help catch bugs when node
600  // memory is reallocated.
601  N->NodeType = ISD::DELETED_NODE;
602
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::EntryToken:
614    llvm_unreachable("EntryToken should not be in CSEMaps!");
615    return false;
616  case ISD::HANDLENODE: return false;  // noop.
617  case ISD::CONDCODE:
618    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619           "Cond code doesn't exist!");
620    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622    break;
623  case ISD::ExternalSymbol:
624    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::TargetExternalSymbol: {
627    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
628    Erased = TargetExternalSymbols.erase(
629               std::pair<std::string,unsigned char>(ESN->getSymbol(),
630                                                    ESN->getTargetFlags()));
631    break;
632  }
633  case ISD::VALUETYPE: {
634    EVT VT = cast<VTSDNode>(N)->getVT();
635    if (VT.isExtended()) {
636      Erased = ExtendedValueTypeNodes.erase(VT);
637    } else {
638      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
639      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
640    }
641    break;
642  }
643  default:
644    // Remove it from the CSE Map.
645    Erased = CSEMap.RemoveNode(N);
646    break;
647  }
648#ifndef NDEBUG
649  // Verify that the node was actually in one of the CSE maps, unless it has a
650  // flag result (which cannot be CSE'd) or is one of the special cases that are
651  // not subject to CSE.
652  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
653      !N->isMachineOpcode() && !doNotCSE(N)) {
654    N->dump(this);
655    errs() << "\n";
656    llvm_unreachable("Node is not in map!");
657  }
658#endif
659  return Erased;
660}
661
662/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
663/// maps and modified in place. Add it back to the CSE maps, unless an identical
664/// node already exists, in which case transfer all its users to the existing
665/// node. This transfer can potentially trigger recursive merging.
666///
667void
668SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
669                                       DAGUpdateListener *UpdateListener) {
670  // For node types that aren't CSE'd, just act as if no identical node
671  // already exists.
672  if (!doNotCSE(N)) {
673    SDNode *Existing = CSEMap.GetOrInsertNode(N);
674    if (Existing != N) {
675      // If there was already an existing matching node, use ReplaceAllUsesWith
676      // to replace the dead one with the existing one.  This can cause
677      // recursive merging of other unrelated nodes down the line.
678      ReplaceAllUsesWith(N, Existing, UpdateListener);
679
680      // N is now dead.  Inform the listener if it exists and delete it.
681      if (UpdateListener)
682        UpdateListener->NodeDeleted(N, Existing);
683      DeleteNodeNotInCSEMaps(N);
684      return;
685    }
686  }
687
688  // If the node doesn't already exist, we updated it.  Inform a listener if
689  // it exists.
690  if (UpdateListener)
691    UpdateListener->NodeUpdated(N);
692}
693
694/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
695/// were replaced with those specified.  If this node is never memoized,
696/// return null, otherwise return a pointer to the slot it would take.  If a
697/// node already exists with these operands, the slot will be non-null.
698SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
699                                           void *&InsertPos) {
700  if (doNotCSE(N))
701    return 0;
702
703  SDValue Ops[] = { Op };
704  FoldingSetNodeID ID;
705  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
706  AddNodeIDCustom(ID, N);
707  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725}
726
727
728/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
729/// were replaced with those specified.  If this node is never memoized,
730/// return null, otherwise return a pointer to the slot it would take.  If a
731/// node already exists with these operands, the slot will be non-null.
732SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
733                                           const SDValue *Ops,unsigned NumOps,
734                                           void *&InsertPos) {
735  if (doNotCSE(N))
736    return 0;
737
738  FoldingSetNodeID ID;
739  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
740  AddNodeIDCustom(ID, N);
741  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
742}
743
744/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
745void SelectionDAG::VerifyNode(SDNode *N) {
746  switch (N->getOpcode()) {
747  default:
748    break;
749  case ISD::BUILD_PAIR: {
750    EVT VT = N->getValueType(0);
751    assert(N->getNumValues() == 1 && "Too many results!");
752    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
753           "Wrong return type!");
754    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
755    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
756           "Mismatched operand types!");
757    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
758           "Wrong operand type!");
759    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
760           "Wrong return type size");
761    break;
762  }
763  case ISD::BUILD_VECTOR: {
764    assert(N->getNumValues() == 1 && "Too many results!");
765    assert(N->getValueType(0).isVector() && "Wrong return type!");
766    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
767           "Wrong number of operands!");
768    EVT EltVT = N->getValueType(0).getVectorElementType();
769    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
770      assert((I->getValueType() == EltVT ||
771             (EltVT.isInteger() && I->getValueType().isInteger() &&
772              EltVT.bitsLE(I->getValueType()))) &&
773            "Wrong operand type!");
774    break;
775  }
776  }
777}
778
779/// getEVTAlignment - Compute the default alignment value for the
780/// given type.
781///
782unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
783  const Type *Ty = VT == MVT::iPTR ?
784                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
785                   VT.getTypeForEVT(*getContext());
786
787  return TLI.getTargetData()->getABITypeAlignment(Ty);
788}
789
790// EntryNode could meaningfully have debug info if we can find it...
791SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
792  : TLI(tli), FLI(fli), DW(0),
793    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
794    getVTList(MVT::Other)), Root(getEntryNode()) {
795  AllNodes.push_back(&EntryNode);
796}
797
798void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
799                        DwarfWriter *dw) {
800  MF = &mf;
801  MMI = mmi;
802  DW = dw;
803  Context = &mf.getFunction()->getContext();
804}
805
806SelectionDAG::~SelectionDAG() {
807  allnodes_clear();
808}
809
810void SelectionDAG::allnodes_clear() {
811  assert(&*AllNodes.begin() == &EntryNode);
812  AllNodes.remove(AllNodes.begin());
813  while (!AllNodes.empty())
814    DeallocateNode(AllNodes.begin());
815}
816
817void SelectionDAG::clear() {
818  allnodes_clear();
819  OperandAllocator.Reset();
820  CSEMap.clear();
821
822  ExtendedValueTypeNodes.clear();
823  ExternalSymbols.clear();
824  TargetExternalSymbols.clear();
825  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
826            static_cast<CondCodeSDNode*>(0));
827  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
828            static_cast<SDNode*>(0));
829
830  EntryNode.UseList = 0;
831  AllNodes.push_back(&EntryNode);
832  Root = getEntryNode();
833}
834
835SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
836  if (Op.getValueType() == VT) return Op;
837  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
838                                   VT.getSizeInBits());
839  return getNode(ISD::AND, DL, Op.getValueType(), Op,
840                 getConstant(Imm, Op.getValueType()));
841}
842
843/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
844///
845SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
846  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
847  SDValue NegOne =
848    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
849  return getNode(ISD::XOR, DL, VT, Val, NegOne);
850}
851
852SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
853  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
854  assert((EltVT.getSizeInBits() >= 64 ||
855         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
856         "getConstant with a uint64_t value that doesn't fit in the type!");
857  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
858}
859
860SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
861  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
862}
863
864SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
865  assert(VT.isInteger() && "Cannot create FP integer constant!");
866
867  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
868  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
869         "APInt size does not match type size!");
870
871  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
872  FoldingSetNodeID ID;
873  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
874  ID.AddPointer(&Val);
875  void *IP = 0;
876  SDNode *N = NULL;
877  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
878    if (!VT.isVector())
879      return SDValue(N, 0);
880  if (!N) {
881    N = NodeAllocator.Allocate<ConstantSDNode>();
882    new (N) ConstantSDNode(isT, &Val, EltVT);
883    CSEMap.InsertNode(N, IP);
884    AllNodes.push_back(N);
885  }
886
887  SDValue Result(N, 0);
888  if (VT.isVector()) {
889    SmallVector<SDValue, 8> Ops;
890    Ops.assign(VT.getVectorNumElements(), Result);
891    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
892                     VT, &Ops[0], Ops.size());
893  }
894  return Result;
895}
896
897SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
898  return getConstant(Val, TLI.getPointerTy(), isTarget);
899}
900
901
902SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
903  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
904}
905
906SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
907  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
908
909  EVT EltVT =
910    VT.isVector() ? VT.getVectorElementType() : VT;
911
912  // Do the map lookup using the actual bit pattern for the floating point
913  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
914  // we don't have issues with SNANs.
915  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
916  FoldingSetNodeID ID;
917  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
918  ID.AddPointer(&V);
919  void *IP = 0;
920  SDNode *N = NULL;
921  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
922    if (!VT.isVector())
923      return SDValue(N, 0);
924  if (!N) {
925    N = NodeAllocator.Allocate<ConstantFPSDNode>();
926    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
927    CSEMap.InsertNode(N, IP);
928    AllNodes.push_back(N);
929  }
930
931  SDValue Result(N, 0);
932  if (VT.isVector()) {
933    SmallVector<SDValue, 8> Ops;
934    Ops.assign(VT.getVectorNumElements(), Result);
935    // FIXME DebugLoc info might be appropriate here
936    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
937                     VT, &Ops[0], Ops.size());
938  }
939  return Result;
940}
941
942SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
943  EVT EltVT =
944    VT.isVector() ? VT.getVectorElementType() : VT;
945  if (EltVT==MVT::f32)
946    return getConstantFP(APFloat((float)Val), VT, isTarget);
947  else
948    return getConstantFP(APFloat(Val), VT, isTarget);
949}
950
951SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
952                                       EVT VT, int64_t Offset,
953                                       bool isTargetGA,
954                                       unsigned char TargetFlags) {
955  assert((TargetFlags == 0 || isTargetGA) &&
956         "Cannot set target flags on target-independent globals");
957
958  // Truncate (with sign-extension) the offset value to the pointer size.
959  EVT PTy = TLI.getPointerTy();
960  unsigned BitWidth = PTy.getSizeInBits();
961  if (BitWidth < 64)
962    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
963
964  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
965  if (!GVar) {
966    // If GV is an alias then use the aliasee for determining thread-localness.
967    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
968      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
969  }
970
971  unsigned Opc;
972  if (GVar && GVar->isThreadLocal())
973    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
974  else
975    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
976
977  FoldingSetNodeID ID;
978  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
979  ID.AddPointer(GV);
980  ID.AddInteger(Offset);
981  ID.AddInteger(TargetFlags);
982  void *IP = 0;
983  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
984    return SDValue(E, 0);
985  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
986  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
987  CSEMap.InsertNode(N, IP);
988  AllNodes.push_back(N);
989  return SDValue(N, 0);
990}
991
992SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
993  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
994  FoldingSetNodeID ID;
995  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
996  ID.AddInteger(FI);
997  void *IP = 0;
998  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
999    return SDValue(E, 0);
1000  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1001  new (N) FrameIndexSDNode(FI, VT, isTarget);
1002  CSEMap.InsertNode(N, IP);
1003  AllNodes.push_back(N);
1004  return SDValue(N, 0);
1005}
1006
1007SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1008                                   unsigned char TargetFlags) {
1009  assert((TargetFlags == 0 || isTarget) &&
1010         "Cannot set target flags on target-independent jump tables");
1011  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1012  FoldingSetNodeID ID;
1013  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1014  ID.AddInteger(JTI);
1015  ID.AddInteger(TargetFlags);
1016  void *IP = 0;
1017  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1018    return SDValue(E, 0);
1019  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1020  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1021  CSEMap.InsertNode(N, IP);
1022  AllNodes.push_back(N);
1023  return SDValue(N, 0);
1024}
1025
1026SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1027                                      unsigned Alignment, int Offset,
1028                                      bool isTarget,
1029                                      unsigned char TargetFlags) {
1030  assert((TargetFlags == 0 || isTarget) &&
1031         "Cannot set target flags on target-independent globals");
1032  if (Alignment == 0)
1033    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1034  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1035  FoldingSetNodeID ID;
1036  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1037  ID.AddInteger(Alignment);
1038  ID.AddInteger(Offset);
1039  ID.AddPointer(C);
1040  ID.AddInteger(TargetFlags);
1041  void *IP = 0;
1042  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1043    return SDValue(E, 0);
1044  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1045  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1046  CSEMap.InsertNode(N, IP);
1047  AllNodes.push_back(N);
1048  return SDValue(N, 0);
1049}
1050
1051
1052SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1053                                      unsigned Alignment, int Offset,
1054                                      bool isTarget,
1055                                      unsigned char TargetFlags) {
1056  assert((TargetFlags == 0 || isTarget) &&
1057         "Cannot set target flags on target-independent globals");
1058  if (Alignment == 0)
1059    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1060  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1061  FoldingSetNodeID ID;
1062  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1063  ID.AddInteger(Alignment);
1064  ID.AddInteger(Offset);
1065  C->AddSelectionDAGCSEId(ID);
1066  ID.AddInteger(TargetFlags);
1067  void *IP = 0;
1068  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1069    return SDValue(E, 0);
1070  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1071  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1072  CSEMap.InsertNode(N, IP);
1073  AllNodes.push_back(N);
1074  return SDValue(N, 0);
1075}
1076
1077SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1078  FoldingSetNodeID ID;
1079  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1080  ID.AddPointer(MBB);
1081  void *IP = 0;
1082  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1083    return SDValue(E, 0);
1084  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1085  new (N) BasicBlockSDNode(MBB);
1086  CSEMap.InsertNode(N, IP);
1087  AllNodes.push_back(N);
1088  return SDValue(N, 0);
1089}
1090
1091SDValue SelectionDAG::getValueType(EVT VT) {
1092  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1093      ValueTypeNodes.size())
1094    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1095
1096  SDNode *&N = VT.isExtended() ?
1097    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1098
1099  if (N) return SDValue(N, 0);
1100  N = NodeAllocator.Allocate<VTSDNode>();
1101  new (N) VTSDNode(VT);
1102  AllNodes.push_back(N);
1103  return SDValue(N, 0);
1104}
1105
1106SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1107  SDNode *&N = ExternalSymbols[Sym];
1108  if (N) return SDValue(N, 0);
1109  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1110  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1111  AllNodes.push_back(N);
1112  return SDValue(N, 0);
1113}
1114
1115SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1116                                              unsigned char TargetFlags) {
1117  SDNode *&N =
1118    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1119                                                               TargetFlags)];
1120  if (N) return SDValue(N, 0);
1121  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1122  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1123  AllNodes.push_back(N);
1124  return SDValue(N, 0);
1125}
1126
1127SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1128  if ((unsigned)Cond >= CondCodeNodes.size())
1129    CondCodeNodes.resize(Cond+1);
1130
1131  if (CondCodeNodes[Cond] == 0) {
1132    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1133    new (N) CondCodeSDNode(Cond);
1134    CondCodeNodes[Cond] = N;
1135    AllNodes.push_back(N);
1136  }
1137  return SDValue(CondCodeNodes[Cond], 0);
1138}
1139
1140// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1141// the shuffle mask M that point at N1 to point at N2, and indices that point
1142// N2 to point at N1.
1143static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1144  std::swap(N1, N2);
1145  int NElts = M.size();
1146  for (int i = 0; i != NElts; ++i) {
1147    if (M[i] >= NElts)
1148      M[i] -= NElts;
1149    else if (M[i] >= 0)
1150      M[i] += NElts;
1151  }
1152}
1153
1154SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1155                                       SDValue N2, const int *Mask) {
1156  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1157  assert(VT.isVector() && N1.getValueType().isVector() &&
1158         "Vector Shuffle VTs must be a vectors");
1159  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1160         && "Vector Shuffle VTs must have same element type");
1161
1162  // Canonicalize shuffle undef, undef -> undef
1163  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1164    return getUNDEF(VT);
1165
1166  // Validate that all indices in Mask are within the range of the elements
1167  // input to the shuffle.
1168  unsigned NElts = VT.getVectorNumElements();
1169  SmallVector<int, 8> MaskVec;
1170  for (unsigned i = 0; i != NElts; ++i) {
1171    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1172    MaskVec.push_back(Mask[i]);
1173  }
1174
1175  // Canonicalize shuffle v, v -> v, undef
1176  if (N1 == N2) {
1177    N2 = getUNDEF(VT);
1178    for (unsigned i = 0; i != NElts; ++i)
1179      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1180  }
1181
1182  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1183  if (N1.getOpcode() == ISD::UNDEF)
1184    commuteShuffle(N1, N2, MaskVec);
1185
1186  // Canonicalize all index into lhs, -> shuffle lhs, undef
1187  // Canonicalize all index into rhs, -> shuffle rhs, undef
1188  bool AllLHS = true, AllRHS = true;
1189  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1190  for (unsigned i = 0; i != NElts; ++i) {
1191    if (MaskVec[i] >= (int)NElts) {
1192      if (N2Undef)
1193        MaskVec[i] = -1;
1194      else
1195        AllLHS = false;
1196    } else if (MaskVec[i] >= 0) {
1197      AllRHS = false;
1198    }
1199  }
1200  if (AllLHS && AllRHS)
1201    return getUNDEF(VT);
1202  if (AllLHS && !N2Undef)
1203    N2 = getUNDEF(VT);
1204  if (AllRHS) {
1205    N1 = getUNDEF(VT);
1206    commuteShuffle(N1, N2, MaskVec);
1207  }
1208
1209  // If Identity shuffle, or all shuffle in to undef, return that node.
1210  bool AllUndef = true;
1211  bool Identity = true;
1212  for (unsigned i = 0; i != NElts; ++i) {
1213    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1214    if (MaskVec[i] >= 0) AllUndef = false;
1215  }
1216  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1217    return N1;
1218  if (AllUndef)
1219    return getUNDEF(VT);
1220
1221  FoldingSetNodeID ID;
1222  SDValue Ops[2] = { N1, N2 };
1223  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1224  for (unsigned i = 0; i != NElts; ++i)
1225    ID.AddInteger(MaskVec[i]);
1226
1227  void* IP = 0;
1228  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1229    return SDValue(E, 0);
1230
1231  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1232  // SDNode doesn't have access to it.  This memory will be "leaked" when
1233  // the node is deallocated, but recovered when the NodeAllocator is released.
1234  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1235  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1236
1237  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1238  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1239  CSEMap.InsertNode(N, IP);
1240  AllNodes.push_back(N);
1241  return SDValue(N, 0);
1242}
1243
1244SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1245                                       SDValue Val, SDValue DTy,
1246                                       SDValue STy, SDValue Rnd, SDValue Sat,
1247                                       ISD::CvtCode Code) {
1248  // If the src and dest types are the same and the conversion is between
1249  // integer types of the same sign or two floats, no conversion is necessary.
1250  if (DTy == STy &&
1251      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1252    return Val;
1253
1254  FoldingSetNodeID ID;
1255  void* IP = 0;
1256  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1257    return SDValue(E, 0);
1258  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1259  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1260  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1261  CSEMap.InsertNode(N, IP);
1262  AllNodes.push_back(N);
1263  return SDValue(N, 0);
1264}
1265
1266SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1267  FoldingSetNodeID ID;
1268  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1269  ID.AddInteger(RegNo);
1270  void *IP = 0;
1271  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1272    return SDValue(E, 0);
1273  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1274  new (N) RegisterSDNode(RegNo, VT);
1275  CSEMap.InsertNode(N, IP);
1276  AllNodes.push_back(N);
1277  return SDValue(N, 0);
1278}
1279
1280SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1281                                      unsigned Line, unsigned Col,
1282                                      MDNode *CU) {
1283  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1284  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1285  N->setDebugLoc(DL);
1286  AllNodes.push_back(N);
1287  return SDValue(N, 0);
1288}
1289
1290SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1291                               SDValue Root,
1292                               unsigned LabelID) {
1293  FoldingSetNodeID ID;
1294  SDValue Ops[] = { Root };
1295  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1296  ID.AddInteger(LabelID);
1297  void *IP = 0;
1298  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1299    return SDValue(E, 0);
1300  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1301  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1302  CSEMap.InsertNode(N, IP);
1303  AllNodes.push_back(N);
1304  return SDValue(N, 0);
1305}
1306
1307SDValue SelectionDAG::getSrcValue(const Value *V) {
1308  assert((!V || isa<PointerType>(V->getType())) &&
1309         "SrcValue is not a pointer?");
1310
1311  FoldingSetNodeID ID;
1312  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1313  ID.AddPointer(V);
1314
1315  void *IP = 0;
1316  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1317    return SDValue(E, 0);
1318
1319  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1320  new (N) SrcValueSDNode(V);
1321  CSEMap.InsertNode(N, IP);
1322  AllNodes.push_back(N);
1323  return SDValue(N, 0);
1324}
1325
1326/// getShiftAmountOperand - Return the specified value casted to
1327/// the target's desired shift amount type.
1328SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1329  EVT OpTy = Op.getValueType();
1330  MVT ShTy = TLI.getShiftAmountTy();
1331  if (OpTy == ShTy || OpTy.isVector()) return Op;
1332
1333  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1334  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1335}
1336
1337/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1338/// specified value type.
1339SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1340  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1341  unsigned ByteSize = VT.getStoreSize();
1342  const Type *Ty = VT.getTypeForEVT(*getContext());
1343  unsigned StackAlign =
1344  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1345
1346  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1347  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1348}
1349
1350/// CreateStackTemporary - Create a stack temporary suitable for holding
1351/// either of the specified value types.
1352SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1353  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1354                            VT2.getStoreSizeInBits())/8;
1355  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1356  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1357  const TargetData *TD = TLI.getTargetData();
1358  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1359                            TD->getPrefTypeAlignment(Ty2));
1360
1361  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1362  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1363  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1364}
1365
1366SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1367                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1368  // These setcc operations always fold.
1369  switch (Cond) {
1370  default: break;
1371  case ISD::SETFALSE:
1372  case ISD::SETFALSE2: return getConstant(0, VT);
1373  case ISD::SETTRUE:
1374  case ISD::SETTRUE2:  return getConstant(1, VT);
1375
1376  case ISD::SETOEQ:
1377  case ISD::SETOGT:
1378  case ISD::SETOGE:
1379  case ISD::SETOLT:
1380  case ISD::SETOLE:
1381  case ISD::SETONE:
1382  case ISD::SETO:
1383  case ISD::SETUO:
1384  case ISD::SETUEQ:
1385  case ISD::SETUNE:
1386    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1387    break;
1388  }
1389
1390  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1391    const APInt &C2 = N2C->getAPIntValue();
1392    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1393      const APInt &C1 = N1C->getAPIntValue();
1394
1395      switch (Cond) {
1396      default: llvm_unreachable("Unknown integer setcc!");
1397      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1398      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1399      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1400      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1401      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1402      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1403      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1404      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1405      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1406      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1407      }
1408    }
1409  }
1410  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1411    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1412      // No compile time operations on this type yet.
1413      if (N1C->getValueType(0) == MVT::ppcf128)
1414        return SDValue();
1415
1416      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1417      switch (Cond) {
1418      default: break;
1419      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1420                          return getUNDEF(VT);
1421                        // fall through
1422      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1423      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1424                          return getUNDEF(VT);
1425                        // fall through
1426      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1427                                           R==APFloat::cmpLessThan, VT);
1428      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1429                          return getUNDEF(VT);
1430                        // fall through
1431      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1432      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1433                          return getUNDEF(VT);
1434                        // fall through
1435      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1436      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1437                          return getUNDEF(VT);
1438                        // fall through
1439      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1440                                           R==APFloat::cmpEqual, VT);
1441      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1442                          return getUNDEF(VT);
1443                        // fall through
1444      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1445                                           R==APFloat::cmpEqual, VT);
1446      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1447      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1448      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1449                                           R==APFloat::cmpEqual, VT);
1450      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1451      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1452                                           R==APFloat::cmpLessThan, VT);
1453      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1454                                           R==APFloat::cmpUnordered, VT);
1455      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1456      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1457      }
1458    } else {
1459      // Ensure that the constant occurs on the RHS.
1460      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1461    }
1462  }
1463
1464  // Could not fold it.
1465  return SDValue();
1466}
1467
1468/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1469/// use this predicate to simplify operations downstream.
1470bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1471  // This predicate is not safe for vector operations.
1472  if (Op.getValueType().isVector())
1473    return false;
1474
1475  unsigned BitWidth = Op.getValueSizeInBits();
1476  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1477}
1478
1479/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1480/// this predicate to simplify operations downstream.  Mask is known to be zero
1481/// for bits that V cannot have.
1482bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1483                                     unsigned Depth) const {
1484  APInt KnownZero, KnownOne;
1485  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1486  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1487  return (KnownZero & Mask) == Mask;
1488}
1489
1490/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1491/// known to be either zero or one and return them in the KnownZero/KnownOne
1492/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1493/// processing.
1494void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1495                                     APInt &KnownZero, APInt &KnownOne,
1496                                     unsigned Depth) const {
1497  unsigned BitWidth = Mask.getBitWidth();
1498  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1499         "Mask size mismatches value type size!");
1500
1501  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1502  if (Depth == 6 || Mask == 0)
1503    return;  // Limit search depth.
1504
1505  APInt KnownZero2, KnownOne2;
1506
1507  switch (Op.getOpcode()) {
1508  case ISD::Constant:
1509    // We know all of the bits for a constant!
1510    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1511    KnownZero = ~KnownOne & Mask;
1512    return;
1513  case ISD::AND:
1514    // If either the LHS or the RHS are Zero, the result is zero.
1515    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1516    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1517                      KnownZero2, KnownOne2, Depth+1);
1518    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1519    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1520
1521    // Output known-1 bits are only known if set in both the LHS & RHS.
1522    KnownOne &= KnownOne2;
1523    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1524    KnownZero |= KnownZero2;
1525    return;
1526  case ISD::OR:
1527    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1528    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1529                      KnownZero2, KnownOne2, Depth+1);
1530    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1531    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1532
1533    // Output known-0 bits are only known if clear in both the LHS & RHS.
1534    KnownZero &= KnownZero2;
1535    // Output known-1 are known to be set if set in either the LHS | RHS.
1536    KnownOne |= KnownOne2;
1537    return;
1538  case ISD::XOR: {
1539    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1540    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1541    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1542    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1543
1544    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1545    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1546    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1547    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1548    KnownZero = KnownZeroOut;
1549    return;
1550  }
1551  case ISD::MUL: {
1552    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1553    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1554    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1555    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1556    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1557
1558    // If low bits are zero in either operand, output low known-0 bits.
1559    // Also compute a conserative estimate for high known-0 bits.
1560    // More trickiness is possible, but this is sufficient for the
1561    // interesting case of alignment computation.
1562    KnownOne.clear();
1563    unsigned TrailZ = KnownZero.countTrailingOnes() +
1564                      KnownZero2.countTrailingOnes();
1565    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1566                               KnownZero2.countLeadingOnes(),
1567                               BitWidth) - BitWidth;
1568
1569    TrailZ = std::min(TrailZ, BitWidth);
1570    LeadZ = std::min(LeadZ, BitWidth);
1571    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1572                APInt::getHighBitsSet(BitWidth, LeadZ);
1573    KnownZero &= Mask;
1574    return;
1575  }
1576  case ISD::UDIV: {
1577    // For the purposes of computing leading zeros we can conservatively
1578    // treat a udiv as a logical right shift by the power of 2 known to
1579    // be less than the denominator.
1580    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1581    ComputeMaskedBits(Op.getOperand(0),
1582                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1583    unsigned LeadZ = KnownZero2.countLeadingOnes();
1584
1585    KnownOne2.clear();
1586    KnownZero2.clear();
1587    ComputeMaskedBits(Op.getOperand(1),
1588                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1589    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1590    if (RHSUnknownLeadingOnes != BitWidth)
1591      LeadZ = std::min(BitWidth,
1592                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1593
1594    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1595    return;
1596  }
1597  case ISD::SELECT:
1598    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1599    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1600    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1601    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1602
1603    // Only known if known in both the LHS and RHS.
1604    KnownOne &= KnownOne2;
1605    KnownZero &= KnownZero2;
1606    return;
1607  case ISD::SELECT_CC:
1608    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1609    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1610    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1611    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1612
1613    // Only known if known in both the LHS and RHS.
1614    KnownOne &= KnownOne2;
1615    KnownZero &= KnownZero2;
1616    return;
1617  case ISD::SADDO:
1618  case ISD::UADDO:
1619  case ISD::SSUBO:
1620  case ISD::USUBO:
1621  case ISD::SMULO:
1622  case ISD::UMULO:
1623    if (Op.getResNo() != 1)
1624      return;
1625    // The boolean result conforms to getBooleanContents.  Fall through.
1626  case ISD::SETCC:
1627    // If we know the result of a setcc has the top bits zero, use this info.
1628    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1629        BitWidth > 1)
1630      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1631    return;
1632  case ISD::SHL:
1633    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1634    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1635      unsigned ShAmt = SA->getZExtValue();
1636
1637      // If the shift count is an invalid immediate, don't do anything.
1638      if (ShAmt >= BitWidth)
1639        return;
1640
1641      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1642                        KnownZero, KnownOne, Depth+1);
1643      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1644      KnownZero <<= ShAmt;
1645      KnownOne  <<= ShAmt;
1646      // low bits known zero.
1647      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1648    }
1649    return;
1650  case ISD::SRL:
1651    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1652    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1653      unsigned ShAmt = SA->getZExtValue();
1654
1655      // If the shift count is an invalid immediate, don't do anything.
1656      if (ShAmt >= BitWidth)
1657        return;
1658
1659      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1660                        KnownZero, KnownOne, Depth+1);
1661      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1662      KnownZero = KnownZero.lshr(ShAmt);
1663      KnownOne  = KnownOne.lshr(ShAmt);
1664
1665      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1666      KnownZero |= HighBits;  // High bits known zero.
1667    }
1668    return;
1669  case ISD::SRA:
1670    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1671      unsigned ShAmt = SA->getZExtValue();
1672
1673      // If the shift count is an invalid immediate, don't do anything.
1674      if (ShAmt >= BitWidth)
1675        return;
1676
1677      APInt InDemandedMask = (Mask << ShAmt);
1678      // If any of the demanded bits are produced by the sign extension, we also
1679      // demand the input sign bit.
1680      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1681      if (HighBits.getBoolValue())
1682        InDemandedMask |= APInt::getSignBit(BitWidth);
1683
1684      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1685                        Depth+1);
1686      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1687      KnownZero = KnownZero.lshr(ShAmt);
1688      KnownOne  = KnownOne.lshr(ShAmt);
1689
1690      // Handle the sign bits.
1691      APInt SignBit = APInt::getSignBit(BitWidth);
1692      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1693
1694      if (KnownZero.intersects(SignBit)) {
1695        KnownZero |= HighBits;  // New bits are known zero.
1696      } else if (KnownOne.intersects(SignBit)) {
1697        KnownOne  |= HighBits;  // New bits are known one.
1698      }
1699    }
1700    return;
1701  case ISD::SIGN_EXTEND_INREG: {
1702    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1703    unsigned EBits = EVT.getSizeInBits();
1704
1705    // Sign extension.  Compute the demanded bits in the result that are not
1706    // present in the input.
1707    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1708
1709    APInt InSignBit = APInt::getSignBit(EBits);
1710    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1711
1712    // If the sign extended bits are demanded, we know that the sign
1713    // bit is demanded.
1714    InSignBit.zext(BitWidth);
1715    if (NewBits.getBoolValue())
1716      InputDemandedBits |= InSignBit;
1717
1718    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1719                      KnownZero, KnownOne, Depth+1);
1720    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1721
1722    // If the sign bit of the input is known set or clear, then we know the
1723    // top bits of the result.
1724    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1725      KnownZero |= NewBits;
1726      KnownOne  &= ~NewBits;
1727    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1728      KnownOne  |= NewBits;
1729      KnownZero &= ~NewBits;
1730    } else {                              // Input sign bit unknown
1731      KnownZero &= ~NewBits;
1732      KnownOne  &= ~NewBits;
1733    }
1734    return;
1735  }
1736  case ISD::CTTZ:
1737  case ISD::CTLZ:
1738  case ISD::CTPOP: {
1739    unsigned LowBits = Log2_32(BitWidth)+1;
1740    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1741    KnownOne.clear();
1742    return;
1743  }
1744  case ISD::LOAD: {
1745    if (ISD::isZEXTLoad(Op.getNode())) {
1746      LoadSDNode *LD = cast<LoadSDNode>(Op);
1747      EVT VT = LD->getMemoryVT();
1748      unsigned MemBits = VT.getSizeInBits();
1749      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1750    }
1751    return;
1752  }
1753  case ISD::ZERO_EXTEND: {
1754    EVT InVT = Op.getOperand(0).getValueType();
1755    unsigned InBits = InVT.getSizeInBits();
1756    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1757    APInt InMask    = Mask;
1758    InMask.trunc(InBits);
1759    KnownZero.trunc(InBits);
1760    KnownOne.trunc(InBits);
1761    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1762    KnownZero.zext(BitWidth);
1763    KnownOne.zext(BitWidth);
1764    KnownZero |= NewBits;
1765    return;
1766  }
1767  case ISD::SIGN_EXTEND: {
1768    EVT InVT = Op.getOperand(0).getValueType();
1769    unsigned InBits = InVT.getSizeInBits();
1770    APInt InSignBit = APInt::getSignBit(InBits);
1771    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1772    APInt InMask = Mask;
1773    InMask.trunc(InBits);
1774
1775    // If any of the sign extended bits are demanded, we know that the sign
1776    // bit is demanded. Temporarily set this bit in the mask for our callee.
1777    if (NewBits.getBoolValue())
1778      InMask |= InSignBit;
1779
1780    KnownZero.trunc(InBits);
1781    KnownOne.trunc(InBits);
1782    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1783
1784    // Note if the sign bit is known to be zero or one.
1785    bool SignBitKnownZero = KnownZero.isNegative();
1786    bool SignBitKnownOne  = KnownOne.isNegative();
1787    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1788           "Sign bit can't be known to be both zero and one!");
1789
1790    // If the sign bit wasn't actually demanded by our caller, we don't
1791    // want it set in the KnownZero and KnownOne result values. Reset the
1792    // mask and reapply it to the result values.
1793    InMask = Mask;
1794    InMask.trunc(InBits);
1795    KnownZero &= InMask;
1796    KnownOne  &= InMask;
1797
1798    KnownZero.zext(BitWidth);
1799    KnownOne.zext(BitWidth);
1800
1801    // If the sign bit is known zero or one, the top bits match.
1802    if (SignBitKnownZero)
1803      KnownZero |= NewBits;
1804    else if (SignBitKnownOne)
1805      KnownOne  |= NewBits;
1806    return;
1807  }
1808  case ISD::ANY_EXTEND: {
1809    EVT InVT = Op.getOperand(0).getValueType();
1810    unsigned InBits = InVT.getSizeInBits();
1811    APInt InMask = Mask;
1812    InMask.trunc(InBits);
1813    KnownZero.trunc(InBits);
1814    KnownOne.trunc(InBits);
1815    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1816    KnownZero.zext(BitWidth);
1817    KnownOne.zext(BitWidth);
1818    return;
1819  }
1820  case ISD::TRUNCATE: {
1821    EVT InVT = Op.getOperand(0).getValueType();
1822    unsigned InBits = InVT.getSizeInBits();
1823    APInt InMask = Mask;
1824    InMask.zext(InBits);
1825    KnownZero.zext(InBits);
1826    KnownOne.zext(InBits);
1827    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1828    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1829    KnownZero.trunc(BitWidth);
1830    KnownOne.trunc(BitWidth);
1831    break;
1832  }
1833  case ISD::AssertZext: {
1834    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1835    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1836    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1837                      KnownOne, Depth+1);
1838    KnownZero |= (~InMask) & Mask;
1839    return;
1840  }
1841  case ISD::FGETSIGN:
1842    // All bits are zero except the low bit.
1843    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1844    return;
1845
1846  case ISD::SUB: {
1847    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1848      // We know that the top bits of C-X are clear if X contains less bits
1849      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1850      // positive if we can prove that X is >= 0 and < 16.
1851      if (CLHS->getAPIntValue().isNonNegative()) {
1852        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1853        // NLZ can't be BitWidth with no sign bit
1854        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1855        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1856                          Depth+1);
1857
1858        // If all of the MaskV bits are known to be zero, then we know the
1859        // output top bits are zero, because we now know that the output is
1860        // from [0-C].
1861        if ((KnownZero2 & MaskV) == MaskV) {
1862          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1863          // Top bits known zero.
1864          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1865        }
1866      }
1867    }
1868  }
1869  // fall through
1870  case ISD::ADD: {
1871    // Output known-0 bits are known if clear or set in both the low clear bits
1872    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1873    // low 3 bits clear.
1874    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1875    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1876    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1877    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1878
1879    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1880    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1881    KnownZeroOut = std::min(KnownZeroOut,
1882                            KnownZero2.countTrailingOnes());
1883
1884    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1885    return;
1886  }
1887  case ISD::SREM:
1888    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1889      const APInt &RA = Rem->getAPIntValue();
1890      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1891        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1892        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1893        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1894
1895        // If the sign bit of the first operand is zero, the sign bit of
1896        // the result is zero. If the first operand has no one bits below
1897        // the second operand's single 1 bit, its sign will be zero.
1898        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1899          KnownZero2 |= ~LowBits;
1900
1901        KnownZero |= KnownZero2 & Mask;
1902
1903        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1904      }
1905    }
1906    return;
1907  case ISD::UREM: {
1908    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1909      const APInt &RA = Rem->getAPIntValue();
1910      if (RA.isPowerOf2()) {
1911        APInt LowBits = (RA - 1);
1912        APInt Mask2 = LowBits & Mask;
1913        KnownZero |= ~LowBits & Mask;
1914        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1915        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1916        break;
1917      }
1918    }
1919
1920    // Since the result is less than or equal to either operand, any leading
1921    // zero bits in either operand must also exist in the result.
1922    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1923    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1924                      Depth+1);
1925    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1926                      Depth+1);
1927
1928    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1929                                KnownZero2.countLeadingOnes());
1930    KnownOne.clear();
1931    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1932    return;
1933  }
1934  default:
1935    // Allow the target to implement this method for its nodes.
1936    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1937  case ISD::INTRINSIC_WO_CHAIN:
1938  case ISD::INTRINSIC_W_CHAIN:
1939  case ISD::INTRINSIC_VOID:
1940      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1941                                         Depth);
1942    }
1943    return;
1944  }
1945}
1946
1947/// ComputeNumSignBits - Return the number of times the sign bit of the
1948/// register is replicated into the other bits.  We know that at least 1 bit
1949/// is always equal to the sign bit (itself), but other cases can give us
1950/// information.  For example, immediately after an "SRA X, 2", we know that
1951/// the top 3 bits are all equal to each other, so we return 3.
1952unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1953  EVT VT = Op.getValueType();
1954  assert(VT.isInteger() && "Invalid VT!");
1955  unsigned VTBits = VT.getSizeInBits();
1956  unsigned Tmp, Tmp2;
1957  unsigned FirstAnswer = 1;
1958
1959  if (Depth == 6)
1960    return 1;  // Limit search depth.
1961
1962  switch (Op.getOpcode()) {
1963  default: break;
1964  case ISD::AssertSext:
1965    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1966    return VTBits-Tmp+1;
1967  case ISD::AssertZext:
1968    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1969    return VTBits-Tmp;
1970
1971  case ISD::Constant: {
1972    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1973    // If negative, return # leading ones.
1974    if (Val.isNegative())
1975      return Val.countLeadingOnes();
1976
1977    // Return # leading zeros.
1978    return Val.countLeadingZeros();
1979  }
1980
1981  case ISD::SIGN_EXTEND:
1982    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1983    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1984
1985  case ISD::SIGN_EXTEND_INREG:
1986    // Max of the input and what this extends.
1987    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1988    Tmp = VTBits-Tmp+1;
1989
1990    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1991    return std::max(Tmp, Tmp2);
1992
1993  case ISD::SRA:
1994    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1995    // SRA X, C   -> adds C sign bits.
1996    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1997      Tmp += C->getZExtValue();
1998      if (Tmp > VTBits) Tmp = VTBits;
1999    }
2000    return Tmp;
2001  case ISD::SHL:
2002    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2003      // shl destroys sign bits.
2004      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2005      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2006          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2007      return Tmp - C->getZExtValue();
2008    }
2009    break;
2010  case ISD::AND:
2011  case ISD::OR:
2012  case ISD::XOR:    // NOT is handled here.
2013    // Logical binary ops preserve the number of sign bits at the worst.
2014    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2015    if (Tmp != 1) {
2016      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2017      FirstAnswer = std::min(Tmp, Tmp2);
2018      // We computed what we know about the sign bits as our first
2019      // answer. Now proceed to the generic code that uses
2020      // ComputeMaskedBits, and pick whichever answer is better.
2021    }
2022    break;
2023
2024  case ISD::SELECT:
2025    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2026    if (Tmp == 1) return 1;  // Early out.
2027    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2028    return std::min(Tmp, Tmp2);
2029
2030  case ISD::SADDO:
2031  case ISD::UADDO:
2032  case ISD::SSUBO:
2033  case ISD::USUBO:
2034  case ISD::SMULO:
2035  case ISD::UMULO:
2036    if (Op.getResNo() != 1)
2037      break;
2038    // The boolean result conforms to getBooleanContents.  Fall through.
2039  case ISD::SETCC:
2040    // If setcc returns 0/-1, all bits are sign bits.
2041    if (TLI.getBooleanContents() ==
2042        TargetLowering::ZeroOrNegativeOneBooleanContent)
2043      return VTBits;
2044    break;
2045  case ISD::ROTL:
2046  case ISD::ROTR:
2047    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2048      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2049
2050      // Handle rotate right by N like a rotate left by 32-N.
2051      if (Op.getOpcode() == ISD::ROTR)
2052        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2053
2054      // If we aren't rotating out all of the known-in sign bits, return the
2055      // number that are left.  This handles rotl(sext(x), 1) for example.
2056      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2057      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2058    }
2059    break;
2060  case ISD::ADD:
2061    // Add can have at most one carry bit.  Thus we know that the output
2062    // is, at worst, one more bit than the inputs.
2063    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2064    if (Tmp == 1) return 1;  // Early out.
2065
2066    // Special case decrementing a value (ADD X, -1):
2067    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2068      if (CRHS->isAllOnesValue()) {
2069        APInt KnownZero, KnownOne;
2070        APInt Mask = APInt::getAllOnesValue(VTBits);
2071        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2072
2073        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2074        // sign bits set.
2075        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2076          return VTBits;
2077
2078        // If we are subtracting one from a positive number, there is no carry
2079        // out of the result.
2080        if (KnownZero.isNegative())
2081          return Tmp;
2082      }
2083
2084    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2085    if (Tmp2 == 1) return 1;
2086      return std::min(Tmp, Tmp2)-1;
2087    break;
2088
2089  case ISD::SUB:
2090    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2091    if (Tmp2 == 1) return 1;
2092
2093    // Handle NEG.
2094    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2095      if (CLHS->isNullValue()) {
2096        APInt KnownZero, KnownOne;
2097        APInt Mask = APInt::getAllOnesValue(VTBits);
2098        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2099        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2100        // sign bits set.
2101        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2102          return VTBits;
2103
2104        // If the input is known to be positive (the sign bit is known clear),
2105        // the output of the NEG has the same number of sign bits as the input.
2106        if (KnownZero.isNegative())
2107          return Tmp2;
2108
2109        // Otherwise, we treat this like a SUB.
2110      }
2111
2112    // Sub can have at most one carry bit.  Thus we know that the output
2113    // is, at worst, one more bit than the inputs.
2114    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2115    if (Tmp == 1) return 1;  // Early out.
2116      return std::min(Tmp, Tmp2)-1;
2117    break;
2118  case ISD::TRUNCATE:
2119    // FIXME: it's tricky to do anything useful for this, but it is an important
2120    // case for targets like X86.
2121    break;
2122  }
2123
2124  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2125  if (Op.getOpcode() == ISD::LOAD) {
2126    LoadSDNode *LD = cast<LoadSDNode>(Op);
2127    unsigned ExtType = LD->getExtensionType();
2128    switch (ExtType) {
2129    default: break;
2130    case ISD::SEXTLOAD:    // '17' bits known
2131      Tmp = LD->getMemoryVT().getSizeInBits();
2132      return VTBits-Tmp+1;
2133    case ISD::ZEXTLOAD:    // '16' bits known
2134      Tmp = LD->getMemoryVT().getSizeInBits();
2135      return VTBits-Tmp;
2136    }
2137  }
2138
2139  // Allow the target to implement this method for its nodes.
2140  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2141      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2142      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2143      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2144    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2145    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2146  }
2147
2148  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2149  // use this information.
2150  APInt KnownZero, KnownOne;
2151  APInt Mask = APInt::getAllOnesValue(VTBits);
2152  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2153
2154  if (KnownZero.isNegative()) {        // sign bit is 0
2155    Mask = KnownZero;
2156  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2157    Mask = KnownOne;
2158  } else {
2159    // Nothing known.
2160    return FirstAnswer;
2161  }
2162
2163  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2164  // the number of identical bits in the top of the input value.
2165  Mask = ~Mask;
2166  Mask <<= Mask.getBitWidth()-VTBits;
2167  // Return # leading zeros.  We use 'min' here in case Val was zero before
2168  // shifting.  We don't want to return '64' as for an i32 "0".
2169  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2170}
2171
2172bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2173  // If we're told that NaNs won't happen, assume they won't.
2174  if (FiniteOnlyFPMath())
2175    return true;
2176
2177  // If the value is a constant, we can obviously see if it is a NaN or not.
2178  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2179    return !C->getValueAPF().isNaN();
2180
2181  // TODO: Recognize more cases here.
2182
2183  return false;
2184}
2185
2186bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2187  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2188  if (!GA) return false;
2189  if (GA->getOffset() != 0) return false;
2190  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2191  if (!GV) return false;
2192  MachineModuleInfo *MMI = getMachineModuleInfo();
2193  return MMI && MMI->hasDebugInfo();
2194}
2195
2196
2197/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2198/// element of the result of the vector shuffle.
2199SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2200                                          unsigned i) {
2201  EVT VT = N->getValueType(0);
2202  DebugLoc dl = N->getDebugLoc();
2203  if (N->getMaskElt(i) < 0)
2204    return getUNDEF(VT.getVectorElementType());
2205  unsigned Index = N->getMaskElt(i);
2206  unsigned NumElems = VT.getVectorNumElements();
2207  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2208  Index %= NumElems;
2209
2210  if (V.getOpcode() == ISD::BIT_CONVERT) {
2211    V = V.getOperand(0);
2212    EVT VVT = V.getValueType();
2213    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2214      return SDValue();
2215  }
2216  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2217    return (Index == 0) ? V.getOperand(0)
2218                      : getUNDEF(VT.getVectorElementType());
2219  if (V.getOpcode() == ISD::BUILD_VECTOR)
2220    return V.getOperand(Index);
2221  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2222    return getShuffleScalarElt(SVN, Index);
2223  return SDValue();
2224}
2225
2226
2227/// getNode - Gets or creates the specified node.
2228///
2229SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2230  FoldingSetNodeID ID;
2231  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2232  void *IP = 0;
2233  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2234    return SDValue(E, 0);
2235  SDNode *N = NodeAllocator.Allocate<SDNode>();
2236  new (N) SDNode(Opcode, DL, getVTList(VT));
2237  CSEMap.InsertNode(N, IP);
2238
2239  AllNodes.push_back(N);
2240#ifndef NDEBUG
2241  VerifyNode(N);
2242#endif
2243  return SDValue(N, 0);
2244}
2245
2246SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2247                              EVT VT, SDValue Operand) {
2248  // Constant fold unary operations with an integer constant operand.
2249  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2250    const APInt &Val = C->getAPIntValue();
2251    unsigned BitWidth = VT.getSizeInBits();
2252    switch (Opcode) {
2253    default: break;
2254    case ISD::SIGN_EXTEND:
2255      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2256    case ISD::ANY_EXTEND:
2257    case ISD::ZERO_EXTEND:
2258    case ISD::TRUNCATE:
2259      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2260    case ISD::UINT_TO_FP:
2261    case ISD::SINT_TO_FP: {
2262      const uint64_t zero[] = {0, 0};
2263      // No compile time operations on this type.
2264      if (VT==MVT::ppcf128)
2265        break;
2266      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2267      (void)apf.convertFromAPInt(Val,
2268                                 Opcode==ISD::SINT_TO_FP,
2269                                 APFloat::rmNearestTiesToEven);
2270      return getConstantFP(apf, VT);
2271    }
2272    case ISD::BIT_CONVERT:
2273      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2274        return getConstantFP(Val.bitsToFloat(), VT);
2275      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2276        return getConstantFP(Val.bitsToDouble(), VT);
2277      break;
2278    case ISD::BSWAP:
2279      return getConstant(Val.byteSwap(), VT);
2280    case ISD::CTPOP:
2281      return getConstant(Val.countPopulation(), VT);
2282    case ISD::CTLZ:
2283      return getConstant(Val.countLeadingZeros(), VT);
2284    case ISD::CTTZ:
2285      return getConstant(Val.countTrailingZeros(), VT);
2286    }
2287  }
2288
2289  // Constant fold unary operations with a floating point constant operand.
2290  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2291    APFloat V = C->getValueAPF();    // make copy
2292    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2293      switch (Opcode) {
2294      case ISD::FNEG:
2295        V.changeSign();
2296        return getConstantFP(V, VT);
2297      case ISD::FABS:
2298        V.clearSign();
2299        return getConstantFP(V, VT);
2300      case ISD::FP_ROUND:
2301      case ISD::FP_EXTEND: {
2302        bool ignored;
2303        // This can return overflow, underflow, or inexact; we don't care.
2304        // FIXME need to be more flexible about rounding mode.
2305        (void)V.convert(*EVTToAPFloatSemantics(VT),
2306                        APFloat::rmNearestTiesToEven, &ignored);
2307        return getConstantFP(V, VT);
2308      }
2309      case ISD::FP_TO_SINT:
2310      case ISD::FP_TO_UINT: {
2311        integerPart x[2];
2312        bool ignored;
2313        assert(integerPartWidth >= 64);
2314        // FIXME need to be more flexible about rounding mode.
2315        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2316                              Opcode==ISD::FP_TO_SINT,
2317                              APFloat::rmTowardZero, &ignored);
2318        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2319          break;
2320        APInt api(VT.getSizeInBits(), 2, x);
2321        return getConstant(api, VT);
2322      }
2323      case ISD::BIT_CONVERT:
2324        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2325          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2326        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2327          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2328        break;
2329      }
2330    }
2331  }
2332
2333  unsigned OpOpcode = Operand.getNode()->getOpcode();
2334  switch (Opcode) {
2335  case ISD::TokenFactor:
2336  case ISD::MERGE_VALUES:
2337  case ISD::CONCAT_VECTORS:
2338    return Operand;         // Factor, merge or concat of one node?  No need.
2339  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2340  case ISD::FP_EXTEND:
2341    assert(VT.isFloatingPoint() &&
2342           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2343    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2344    if (Operand.getOpcode() == ISD::UNDEF)
2345      return getUNDEF(VT);
2346    break;
2347  case ISD::SIGN_EXTEND:
2348    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2349           "Invalid SIGN_EXTEND!");
2350    if (Operand.getValueType() == VT) return Operand;   // noop extension
2351    assert(Operand.getValueType().bitsLT(VT)
2352           && "Invalid sext node, dst < src!");
2353    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2354      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2355    break;
2356  case ISD::ZERO_EXTEND:
2357    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2358           "Invalid ZERO_EXTEND!");
2359    if (Operand.getValueType() == VT) return Operand;   // noop extension
2360    assert(Operand.getValueType().bitsLT(VT)
2361           && "Invalid zext node, dst < src!");
2362    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2363      return getNode(ISD::ZERO_EXTEND, DL, VT,
2364                     Operand.getNode()->getOperand(0));
2365    break;
2366  case ISD::ANY_EXTEND:
2367    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2368           "Invalid ANY_EXTEND!");
2369    if (Operand.getValueType() == VT) return Operand;   // noop extension
2370    assert(Operand.getValueType().bitsLT(VT)
2371           && "Invalid anyext node, dst < src!");
2372    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2373      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2374      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2375    break;
2376  case ISD::TRUNCATE:
2377    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2378           "Invalid TRUNCATE!");
2379    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2380    assert(Operand.getValueType().bitsGT(VT)
2381           && "Invalid truncate node, src < dst!");
2382    if (OpOpcode == ISD::TRUNCATE)
2383      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2384    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2385             OpOpcode == ISD::ANY_EXTEND) {
2386      // If the source is smaller than the dest, we still need an extend.
2387      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2388        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2389      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2390        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2391      else
2392        return Operand.getNode()->getOperand(0);
2393    }
2394    break;
2395  case ISD::BIT_CONVERT:
2396    // Basic sanity checking.
2397    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2398           && "Cannot BIT_CONVERT between types of different sizes!");
2399    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2400    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2401      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2402    if (OpOpcode == ISD::UNDEF)
2403      return getUNDEF(VT);
2404    break;
2405  case ISD::SCALAR_TO_VECTOR:
2406    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2407           (VT.getVectorElementType() == Operand.getValueType() ||
2408            (VT.getVectorElementType().isInteger() &&
2409             Operand.getValueType().isInteger() &&
2410             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2411           "Illegal SCALAR_TO_VECTOR node!");
2412    if (OpOpcode == ISD::UNDEF)
2413      return getUNDEF(VT);
2414    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2415    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2416        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2417        Operand.getConstantOperandVal(1) == 0 &&
2418        Operand.getOperand(0).getValueType() == VT)
2419      return Operand.getOperand(0);
2420    break;
2421  case ISD::FNEG:
2422    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2423    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2424      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2425                     Operand.getNode()->getOperand(0));
2426    if (OpOpcode == ISD::FNEG)  // --X -> X
2427      return Operand.getNode()->getOperand(0);
2428    break;
2429  case ISD::FABS:
2430    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2431      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2432    break;
2433  }
2434
2435  SDNode *N;
2436  SDVTList VTs = getVTList(VT);
2437  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2438    FoldingSetNodeID ID;
2439    SDValue Ops[1] = { Operand };
2440    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2441    void *IP = 0;
2442    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2443      return SDValue(E, 0);
2444    N = NodeAllocator.Allocate<UnarySDNode>();
2445    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2446    CSEMap.InsertNode(N, IP);
2447  } else {
2448    N = NodeAllocator.Allocate<UnarySDNode>();
2449    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2450  }
2451
2452  AllNodes.push_back(N);
2453#ifndef NDEBUG
2454  VerifyNode(N);
2455#endif
2456  return SDValue(N, 0);
2457}
2458
2459SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2460                                             EVT VT,
2461                                             ConstantSDNode *Cst1,
2462                                             ConstantSDNode *Cst2) {
2463  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2464
2465  switch (Opcode) {
2466  case ISD::ADD:  return getConstant(C1 + C2, VT);
2467  case ISD::SUB:  return getConstant(C1 - C2, VT);
2468  case ISD::MUL:  return getConstant(C1 * C2, VT);
2469  case ISD::UDIV:
2470    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2471    break;
2472  case ISD::UREM:
2473    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2474    break;
2475  case ISD::SDIV:
2476    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2477    break;
2478  case ISD::SREM:
2479    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2480    break;
2481  case ISD::AND:  return getConstant(C1 & C2, VT);
2482  case ISD::OR:   return getConstant(C1 | C2, VT);
2483  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2484  case ISD::SHL:  return getConstant(C1 << C2, VT);
2485  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2486  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2487  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2488  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2489  default: break;
2490  }
2491
2492  return SDValue();
2493}
2494
2495SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2496                              SDValue N1, SDValue N2) {
2497  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2498  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2499  switch (Opcode) {
2500  default: break;
2501  case ISD::TokenFactor:
2502    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2503           N2.getValueType() == MVT::Other && "Invalid token factor!");
2504    // Fold trivial token factors.
2505    if (N1.getOpcode() == ISD::EntryToken) return N2;
2506    if (N2.getOpcode() == ISD::EntryToken) return N1;
2507    if (N1 == N2) return N1;
2508    break;
2509  case ISD::CONCAT_VECTORS:
2510    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2511    // one big BUILD_VECTOR.
2512    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2513        N2.getOpcode() == ISD::BUILD_VECTOR) {
2514      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2515      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2516      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2517    }
2518    break;
2519  case ISD::AND:
2520    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2521           N1.getValueType() == VT && "Binary operator types must match!");
2522    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2523    // worth handling here.
2524    if (N2C && N2C->isNullValue())
2525      return N2;
2526    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2527      return N1;
2528    break;
2529  case ISD::OR:
2530  case ISD::XOR:
2531  case ISD::ADD:
2532  case ISD::SUB:
2533    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2534           N1.getValueType() == VT && "Binary operator types must match!");
2535    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2536    // it's worth handling here.
2537    if (N2C && N2C->isNullValue())
2538      return N1;
2539    break;
2540  case ISD::UDIV:
2541  case ISD::UREM:
2542  case ISD::MULHU:
2543  case ISD::MULHS:
2544  case ISD::MUL:
2545  case ISD::SDIV:
2546  case ISD::SREM:
2547    assert(VT.isInteger() && "This operator does not apply to FP types!");
2548    // fall through
2549  case ISD::FADD:
2550  case ISD::FSUB:
2551  case ISD::FMUL:
2552  case ISD::FDIV:
2553  case ISD::FREM:
2554    if (UnsafeFPMath) {
2555      if (Opcode == ISD::FADD) {
2556        // 0+x --> x
2557        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2558          if (CFP->getValueAPF().isZero())
2559            return N2;
2560        // x+0 --> x
2561        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2562          if (CFP->getValueAPF().isZero())
2563            return N1;
2564      } else if (Opcode == ISD::FSUB) {
2565        // x-0 --> x
2566        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2567          if (CFP->getValueAPF().isZero())
2568            return N1;
2569      }
2570    }
2571    assert(N1.getValueType() == N2.getValueType() &&
2572           N1.getValueType() == VT && "Binary operator types must match!");
2573    break;
2574  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2575    assert(N1.getValueType() == VT &&
2576           N1.getValueType().isFloatingPoint() &&
2577           N2.getValueType().isFloatingPoint() &&
2578           "Invalid FCOPYSIGN!");
2579    break;
2580  case ISD::SHL:
2581  case ISD::SRA:
2582  case ISD::SRL:
2583  case ISD::ROTL:
2584  case ISD::ROTR:
2585    assert(VT == N1.getValueType() &&
2586           "Shift operators return type must be the same as their first arg");
2587    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2588           "Shifts only work on integers");
2589
2590    // Always fold shifts of i1 values so the code generator doesn't need to
2591    // handle them.  Since we know the size of the shift has to be less than the
2592    // size of the value, the shift/rotate count is guaranteed to be zero.
2593    if (VT == MVT::i1)
2594      return N1;
2595    break;
2596  case ISD::FP_ROUND_INREG: {
2597    EVT EVT = cast<VTSDNode>(N2)->getVT();
2598    assert(VT == N1.getValueType() && "Not an inreg round!");
2599    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2600           "Cannot FP_ROUND_INREG integer types");
2601    assert(EVT.bitsLE(VT) && "Not rounding down!");
2602    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2603    break;
2604  }
2605  case ISD::FP_ROUND:
2606    assert(VT.isFloatingPoint() &&
2607           N1.getValueType().isFloatingPoint() &&
2608           VT.bitsLE(N1.getValueType()) &&
2609           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2610    if (N1.getValueType() == VT) return N1;  // noop conversion.
2611    break;
2612  case ISD::AssertSext:
2613  case ISD::AssertZext: {
2614    EVT EVT = cast<VTSDNode>(N2)->getVT();
2615    assert(VT == N1.getValueType() && "Not an inreg extend!");
2616    assert(VT.isInteger() && EVT.isInteger() &&
2617           "Cannot *_EXTEND_INREG FP types");
2618    assert(EVT.bitsLE(VT) && "Not extending!");
2619    if (VT == EVT) return N1; // noop assertion.
2620    break;
2621  }
2622  case ISD::SIGN_EXTEND_INREG: {
2623    EVT EVT = cast<VTSDNode>(N2)->getVT();
2624    assert(VT == N1.getValueType() && "Not an inreg extend!");
2625    assert(VT.isInteger() && EVT.isInteger() &&
2626           "Cannot *_EXTEND_INREG FP types");
2627    assert(EVT.bitsLE(VT) && "Not extending!");
2628    if (EVT == VT) return N1;  // Not actually extending
2629
2630    if (N1C) {
2631      APInt Val = N1C->getAPIntValue();
2632      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2633      Val <<= Val.getBitWidth()-FromBits;
2634      Val = Val.ashr(Val.getBitWidth()-FromBits);
2635      return getConstant(Val, VT);
2636    }
2637    break;
2638  }
2639  case ISD::EXTRACT_VECTOR_ELT:
2640    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2641    if (N1.getOpcode() == ISD::UNDEF)
2642      return getUNDEF(VT);
2643
2644    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2645    // expanding copies of large vectors from registers.
2646    if (N2C &&
2647        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2648        N1.getNumOperands() > 0) {
2649      unsigned Factor =
2650        N1.getOperand(0).getValueType().getVectorNumElements();
2651      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2652                     N1.getOperand(N2C->getZExtValue() / Factor),
2653                     getConstant(N2C->getZExtValue() % Factor,
2654                                 N2.getValueType()));
2655    }
2656
2657    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2658    // expanding large vector constants.
2659    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2660      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2661      EVT VEltTy = N1.getValueType().getVectorElementType();
2662      if (Elt.getValueType() != VEltTy) {
2663        // If the vector element type is not legal, the BUILD_VECTOR operands
2664        // are promoted and implicitly truncated.  Make that explicit here.
2665        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2666      }
2667      if (VT != VEltTy) {
2668        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2669        // result is implicitly extended.
2670        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2671      }
2672      return Elt;
2673    }
2674
2675    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2676    // operations are lowered to scalars.
2677    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2678      // If the indices are the same, return the inserted element.
2679      if (N1.getOperand(2) == N2)
2680        return N1.getOperand(1);
2681      // If the indices are known different, extract the element from
2682      // the original vector.
2683      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2684               isa<ConstantSDNode>(N2))
2685        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2686    }
2687    break;
2688  case ISD::EXTRACT_ELEMENT:
2689    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2690    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2691           (N1.getValueType().isInteger() == VT.isInteger()) &&
2692           "Wrong types for EXTRACT_ELEMENT!");
2693
2694    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2695    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2696    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2697    if (N1.getOpcode() == ISD::BUILD_PAIR)
2698      return N1.getOperand(N2C->getZExtValue());
2699
2700    // EXTRACT_ELEMENT of a constant int is also very common.
2701    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2702      unsigned ElementSize = VT.getSizeInBits();
2703      unsigned Shift = ElementSize * N2C->getZExtValue();
2704      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2705      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2706    }
2707    break;
2708  case ISD::EXTRACT_SUBVECTOR:
2709    if (N1.getValueType() == VT) // Trivial extraction.
2710      return N1;
2711    break;
2712  }
2713
2714  if (N1C) {
2715    if (N2C) {
2716      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2717      if (SV.getNode()) return SV;
2718    } else {      // Cannonicalize constant to RHS if commutative
2719      if (isCommutativeBinOp(Opcode)) {
2720        std::swap(N1C, N2C);
2721        std::swap(N1, N2);
2722      }
2723    }
2724  }
2725
2726  // Constant fold FP operations.
2727  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2728  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2729  if (N1CFP) {
2730    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2731      // Cannonicalize constant to RHS if commutative
2732      std::swap(N1CFP, N2CFP);
2733      std::swap(N1, N2);
2734    } else if (N2CFP && VT != MVT::ppcf128) {
2735      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2736      APFloat::opStatus s;
2737      switch (Opcode) {
2738      case ISD::FADD:
2739        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2740        if (s != APFloat::opInvalidOp)
2741          return getConstantFP(V1, VT);
2742        break;
2743      case ISD::FSUB:
2744        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2745        if (s!=APFloat::opInvalidOp)
2746          return getConstantFP(V1, VT);
2747        break;
2748      case ISD::FMUL:
2749        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2750        if (s!=APFloat::opInvalidOp)
2751          return getConstantFP(V1, VT);
2752        break;
2753      case ISD::FDIV:
2754        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2755        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2756          return getConstantFP(V1, VT);
2757        break;
2758      case ISD::FREM :
2759        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2760        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2761          return getConstantFP(V1, VT);
2762        break;
2763      case ISD::FCOPYSIGN:
2764        V1.copySign(V2);
2765        return getConstantFP(V1, VT);
2766      default: break;
2767      }
2768    }
2769  }
2770
2771  // Canonicalize an UNDEF to the RHS, even over a constant.
2772  if (N1.getOpcode() == ISD::UNDEF) {
2773    if (isCommutativeBinOp(Opcode)) {
2774      std::swap(N1, N2);
2775    } else {
2776      switch (Opcode) {
2777      case ISD::FP_ROUND_INREG:
2778      case ISD::SIGN_EXTEND_INREG:
2779      case ISD::SUB:
2780      case ISD::FSUB:
2781      case ISD::FDIV:
2782      case ISD::FREM:
2783      case ISD::SRA:
2784        return N1;     // fold op(undef, arg2) -> undef
2785      case ISD::UDIV:
2786      case ISD::SDIV:
2787      case ISD::UREM:
2788      case ISD::SREM:
2789      case ISD::SRL:
2790      case ISD::SHL:
2791        if (!VT.isVector())
2792          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2793        // For vectors, we can't easily build an all zero vector, just return
2794        // the LHS.
2795        return N2;
2796      }
2797    }
2798  }
2799
2800  // Fold a bunch of operators when the RHS is undef.
2801  if (N2.getOpcode() == ISD::UNDEF) {
2802    switch (Opcode) {
2803    case ISD::XOR:
2804      if (N1.getOpcode() == ISD::UNDEF)
2805        // Handle undef ^ undef -> 0 special case. This is a common
2806        // idiom (misuse).
2807        return getConstant(0, VT);
2808      // fallthrough
2809    case ISD::ADD:
2810    case ISD::ADDC:
2811    case ISD::ADDE:
2812    case ISD::SUB:
2813    case ISD::UDIV:
2814    case ISD::SDIV:
2815    case ISD::UREM:
2816    case ISD::SREM:
2817      return N2;       // fold op(arg1, undef) -> undef
2818    case ISD::FADD:
2819    case ISD::FSUB:
2820    case ISD::FMUL:
2821    case ISD::FDIV:
2822    case ISD::FREM:
2823      if (UnsafeFPMath)
2824        return N2;
2825      break;
2826    case ISD::MUL:
2827    case ISD::AND:
2828    case ISD::SRL:
2829    case ISD::SHL:
2830      if (!VT.isVector())
2831        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2832      // For vectors, we can't easily build an all zero vector, just return
2833      // the LHS.
2834      return N1;
2835    case ISD::OR:
2836      if (!VT.isVector())
2837        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2838      // For vectors, we can't easily build an all one vector, just return
2839      // the LHS.
2840      return N1;
2841    case ISD::SRA:
2842      return N1;
2843    }
2844  }
2845
2846  // Memoize this node if possible.
2847  SDNode *N;
2848  SDVTList VTs = getVTList(VT);
2849  if (VT != MVT::Flag) {
2850    SDValue Ops[] = { N1, N2 };
2851    FoldingSetNodeID ID;
2852    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2853    void *IP = 0;
2854    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2855      return SDValue(E, 0);
2856    N = NodeAllocator.Allocate<BinarySDNode>();
2857    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2858    CSEMap.InsertNode(N, IP);
2859  } else {
2860    N = NodeAllocator.Allocate<BinarySDNode>();
2861    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2862  }
2863
2864  AllNodes.push_back(N);
2865#ifndef NDEBUG
2866  VerifyNode(N);
2867#endif
2868  return SDValue(N, 0);
2869}
2870
2871SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2872                              SDValue N1, SDValue N2, SDValue N3) {
2873  // Perform various simplifications.
2874  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2875  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2876  switch (Opcode) {
2877  case ISD::CONCAT_VECTORS:
2878    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2879    // one big BUILD_VECTOR.
2880    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2881        N2.getOpcode() == ISD::BUILD_VECTOR &&
2882        N3.getOpcode() == ISD::BUILD_VECTOR) {
2883      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2884      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2885      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2886      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2887    }
2888    break;
2889  case ISD::SETCC: {
2890    // Use FoldSetCC to simplify SETCC's.
2891    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2892    if (Simp.getNode()) return Simp;
2893    break;
2894  }
2895  case ISD::SELECT:
2896    if (N1C) {
2897     if (N1C->getZExtValue())
2898        return N2;             // select true, X, Y -> X
2899      else
2900        return N3;             // select false, X, Y -> Y
2901    }
2902
2903    if (N2 == N3) return N2;   // select C, X, X -> X
2904    break;
2905  case ISD::BRCOND:
2906    if (N2C) {
2907      if (N2C->getZExtValue()) // Unconditional branch
2908        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2909      else
2910        return N1;         // Never-taken branch
2911    }
2912    break;
2913  case ISD::VECTOR_SHUFFLE:
2914    llvm_unreachable("should use getVectorShuffle constructor!");
2915    break;
2916  case ISD::BIT_CONVERT:
2917    // Fold bit_convert nodes from a type to themselves.
2918    if (N1.getValueType() == VT)
2919      return N1;
2920    break;
2921  }
2922
2923  // Memoize node if it doesn't produce a flag.
2924  SDNode *N;
2925  SDVTList VTs = getVTList(VT);
2926  if (VT != MVT::Flag) {
2927    SDValue Ops[] = { N1, N2, N3 };
2928    FoldingSetNodeID ID;
2929    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2930    void *IP = 0;
2931    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2932      return SDValue(E, 0);
2933    N = NodeAllocator.Allocate<TernarySDNode>();
2934    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2935    CSEMap.InsertNode(N, IP);
2936  } else {
2937    N = NodeAllocator.Allocate<TernarySDNode>();
2938    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2939  }
2940  AllNodes.push_back(N);
2941#ifndef NDEBUG
2942  VerifyNode(N);
2943#endif
2944  return SDValue(N, 0);
2945}
2946
2947SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2948                              SDValue N1, SDValue N2, SDValue N3,
2949                              SDValue N4) {
2950  SDValue Ops[] = { N1, N2, N3, N4 };
2951  return getNode(Opcode, DL, VT, Ops, 4);
2952}
2953
2954SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2955                              SDValue N1, SDValue N2, SDValue N3,
2956                              SDValue N4, SDValue N5) {
2957  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2958  return getNode(Opcode, DL, VT, Ops, 5);
2959}
2960
2961/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
2962/// the incoming stack arguments to be loaded from the stack.
2963SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
2964  SmallVector<SDValue, 8> ArgChains;
2965
2966  // Include the original chain at the beginning of the list. When this is
2967  // used by target LowerCall hooks, this helps legalize find the
2968  // CALLSEQ_BEGIN node.
2969  ArgChains.push_back(Chain);
2970
2971  // Add a chain value for each stack argument.
2972  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
2973       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
2974    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2975      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2976        if (FI->getIndex() < 0)
2977          ArgChains.push_back(SDValue(L, 1));
2978
2979  // Build a tokenfactor for all the chains.
2980  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
2981                 &ArgChains[0], ArgChains.size());
2982}
2983
2984/// getMemsetValue - Vectorized representation of the memset value
2985/// operand.
2986static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
2987                              DebugLoc dl) {
2988  unsigned NumBits = VT.isVector() ?
2989    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2990  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2991    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2992    unsigned Shift = 8;
2993    for (unsigned i = NumBits; i > 8; i >>= 1) {
2994      Val = (Val << Shift) | Val;
2995      Shift <<= 1;
2996    }
2997    if (VT.isInteger())
2998      return DAG.getConstant(Val, VT);
2999    return DAG.getConstantFP(APFloat(Val), VT);
3000  }
3001
3002  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3003  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3004  unsigned Shift = 8;
3005  for (unsigned i = NumBits; i > 8; i >>= 1) {
3006    Value = DAG.getNode(ISD::OR, dl, VT,
3007                        DAG.getNode(ISD::SHL, dl, VT, Value,
3008                                    DAG.getConstant(Shift,
3009                                                    TLI.getShiftAmountTy())),
3010                        Value);
3011    Shift <<= 1;
3012  }
3013
3014  return Value;
3015}
3016
3017/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3018/// used when a memcpy is turned into a memset when the source is a constant
3019/// string ptr.
3020static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3021                                  const TargetLowering &TLI,
3022                                  std::string &Str, unsigned Offset) {
3023  // Handle vector with all elements zero.
3024  if (Str.empty()) {
3025    if (VT.isInteger())
3026      return DAG.getConstant(0, VT);
3027    unsigned NumElts = VT.getVectorNumElements();
3028    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3029    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3030                       DAG.getConstant(0,
3031                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3032  }
3033
3034  assert(!VT.isVector() && "Can't handle vector type here!");
3035  unsigned NumBits = VT.getSizeInBits();
3036  unsigned MSB = NumBits / 8;
3037  uint64_t Val = 0;
3038  if (TLI.isLittleEndian())
3039    Offset = Offset + MSB - 1;
3040  for (unsigned i = 0; i != MSB; ++i) {
3041    Val = (Val << 8) | (unsigned char)Str[Offset];
3042    Offset += TLI.isLittleEndian() ? -1 : 1;
3043  }
3044  return DAG.getConstant(Val, VT);
3045}
3046
3047/// getMemBasePlusOffset - Returns base and offset node for the
3048///
3049static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3050                                      SelectionDAG &DAG) {
3051  EVT VT = Base.getValueType();
3052  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3053                     VT, Base, DAG.getConstant(Offset, VT));
3054}
3055
3056/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3057///
3058static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3059  unsigned SrcDelta = 0;
3060  GlobalAddressSDNode *G = NULL;
3061  if (Src.getOpcode() == ISD::GlobalAddress)
3062    G = cast<GlobalAddressSDNode>(Src);
3063  else if (Src.getOpcode() == ISD::ADD &&
3064           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3065           Src.getOperand(1).getOpcode() == ISD::Constant) {
3066    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3067    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3068  }
3069  if (!G)
3070    return false;
3071
3072  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3073  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3074    return true;
3075
3076  return false;
3077}
3078
3079/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3080/// to replace the memset / memcpy is below the threshold. It also returns the
3081/// types of the sequence of memory ops to perform memset / memcpy.
3082static
3083bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3084                              SDValue Dst, SDValue Src,
3085                              unsigned Limit, uint64_t Size, unsigned &Align,
3086                              std::string &Str, bool &isSrcStr,
3087                              SelectionDAG &DAG,
3088                              const TargetLowering &TLI) {
3089  isSrcStr = isMemSrcFromString(Src, Str);
3090  bool isSrcConst = isa<ConstantSDNode>(Src);
3091  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3092  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3093  if (VT != MVT::iAny) {
3094    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3095    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3096    // If source is a string constant, this will require an unaligned load.
3097    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3098      if (Dst.getOpcode() != ISD::FrameIndex) {
3099        // Can't change destination alignment. It requires a unaligned store.
3100        if (AllowUnalign)
3101          VT = MVT::iAny;
3102      } else {
3103        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3104        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3105        if (MFI->isFixedObjectIndex(FI)) {
3106          // Can't change destination alignment. It requires a unaligned store.
3107          if (AllowUnalign)
3108            VT = MVT::iAny;
3109        } else {
3110          // Give the stack frame object a larger alignment if needed.
3111          if (MFI->getObjectAlignment(FI) < NewAlign)
3112            MFI->setObjectAlignment(FI, NewAlign);
3113          Align = NewAlign;
3114        }
3115      }
3116    }
3117  }
3118
3119  if (VT == MVT::iAny) {
3120    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3121      VT = MVT::i64;
3122    } else {
3123      switch (Align & 7) {
3124      case 0:  VT = MVT::i64; break;
3125      case 4:  VT = MVT::i32; break;
3126      case 2:  VT = MVT::i16; break;
3127      default: VT = MVT::i8;  break;
3128      }
3129    }
3130
3131    MVT LVT = MVT::i64;
3132    while (!TLI.isTypeLegal(LVT))
3133      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3134    assert(LVT.isInteger());
3135
3136    if (VT.bitsGT(LVT))
3137      VT = LVT;
3138  }
3139
3140  unsigned NumMemOps = 0;
3141  while (Size != 0) {
3142    unsigned VTSize = VT.getSizeInBits() / 8;
3143    while (VTSize > Size) {
3144      // For now, only use non-vector load / store's for the left-over pieces.
3145      if (VT.isVector()) {
3146        VT = MVT::i64;
3147        while (!TLI.isTypeLegal(VT))
3148          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3149        VTSize = VT.getSizeInBits() / 8;
3150      } else {
3151        // This can result in a type that is not legal on the target, e.g.
3152        // 1 or 2 bytes on PPC.
3153        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3154        VTSize >>= 1;
3155      }
3156    }
3157
3158    if (++NumMemOps > Limit)
3159      return false;
3160    MemOps.push_back(VT);
3161    Size -= VTSize;
3162  }
3163
3164  return true;
3165}
3166
3167static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3168                                         SDValue Chain, SDValue Dst,
3169                                         SDValue Src, uint64_t Size,
3170                                         unsigned Align, bool AlwaysInline,
3171                                         const Value *DstSV, uint64_t DstSVOff,
3172                                         const Value *SrcSV, uint64_t SrcSVOff){
3173  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3174
3175  // Expand memcpy to a series of load and store ops if the size operand falls
3176  // below a certain threshold.
3177  std::vector<EVT> MemOps;
3178  uint64_t Limit = -1ULL;
3179  if (!AlwaysInline)
3180    Limit = TLI.getMaxStoresPerMemcpy();
3181  unsigned DstAlign = Align;  // Destination alignment can change.
3182  std::string Str;
3183  bool CopyFromStr;
3184  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3185                                Str, CopyFromStr, DAG, TLI))
3186    return SDValue();
3187
3188
3189  bool isZeroStr = CopyFromStr && Str.empty();
3190  SmallVector<SDValue, 8> OutChains;
3191  unsigned NumMemOps = MemOps.size();
3192  uint64_t SrcOff = 0, DstOff = 0;
3193  for (unsigned i = 0; i != NumMemOps; ++i) {
3194    EVT VT = MemOps[i];
3195    unsigned VTSize = VT.getSizeInBits() / 8;
3196    SDValue Value, Store;
3197
3198    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3199      // It's unlikely a store of a vector immediate can be done in a single
3200      // instruction. It would require a load from a constantpool first.
3201      // We also handle store a vector with all zero's.
3202      // FIXME: Handle other cases where store of vector immediate is done in
3203      // a single instruction.
3204      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3205      Store = DAG.getStore(Chain, dl, Value,
3206                           getMemBasePlusOffset(Dst, DstOff, DAG),
3207                           DstSV, DstSVOff + DstOff, false, DstAlign);
3208    } else {
3209      // The type might not be legal for the target.  This should only happen
3210      // if the type is smaller than a legal type, as on PPC, so the right
3211      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3212      // to Load/Store if NVT==VT.
3213      // FIXME does the case above also need this?
3214      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3215      assert(NVT.bitsGE(VT));
3216      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3217                             getMemBasePlusOffset(Src, SrcOff, DAG),
3218                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3219      Store = DAG.getTruncStore(Chain, dl, Value,
3220                             getMemBasePlusOffset(Dst, DstOff, DAG),
3221                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3222    }
3223    OutChains.push_back(Store);
3224    SrcOff += VTSize;
3225    DstOff += VTSize;
3226  }
3227
3228  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3229                     &OutChains[0], OutChains.size());
3230}
3231
3232static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3233                                          SDValue Chain, SDValue Dst,
3234                                          SDValue Src, uint64_t Size,
3235                                          unsigned Align, bool AlwaysInline,
3236                                          const Value *DstSV, uint64_t DstSVOff,
3237                                          const Value *SrcSV, uint64_t SrcSVOff){
3238  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3239
3240  // Expand memmove to a series of load and store ops if the size operand falls
3241  // below a certain threshold.
3242  std::vector<EVT> MemOps;
3243  uint64_t Limit = -1ULL;
3244  if (!AlwaysInline)
3245    Limit = TLI.getMaxStoresPerMemmove();
3246  unsigned DstAlign = Align;  // Destination alignment can change.
3247  std::string Str;
3248  bool CopyFromStr;
3249  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3250                                Str, CopyFromStr, DAG, TLI))
3251    return SDValue();
3252
3253  uint64_t SrcOff = 0, DstOff = 0;
3254
3255  SmallVector<SDValue, 8> LoadValues;
3256  SmallVector<SDValue, 8> LoadChains;
3257  SmallVector<SDValue, 8> OutChains;
3258  unsigned NumMemOps = MemOps.size();
3259  for (unsigned i = 0; i < NumMemOps; i++) {
3260    EVT VT = MemOps[i];
3261    unsigned VTSize = VT.getSizeInBits() / 8;
3262    SDValue Value, Store;
3263
3264    Value = DAG.getLoad(VT, dl, Chain,
3265                        getMemBasePlusOffset(Src, SrcOff, DAG),
3266                        SrcSV, SrcSVOff + SrcOff, false, Align);
3267    LoadValues.push_back(Value);
3268    LoadChains.push_back(Value.getValue(1));
3269    SrcOff += VTSize;
3270  }
3271  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3272                      &LoadChains[0], LoadChains.size());
3273  OutChains.clear();
3274  for (unsigned i = 0; i < NumMemOps; i++) {
3275    EVT VT = MemOps[i];
3276    unsigned VTSize = VT.getSizeInBits() / 8;
3277    SDValue Value, Store;
3278
3279    Store = DAG.getStore(Chain, dl, LoadValues[i],
3280                         getMemBasePlusOffset(Dst, DstOff, DAG),
3281                         DstSV, DstSVOff + DstOff, false, DstAlign);
3282    OutChains.push_back(Store);
3283    DstOff += VTSize;
3284  }
3285
3286  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3287                     &OutChains[0], OutChains.size());
3288}
3289
3290static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3291                                 SDValue Chain, SDValue Dst,
3292                                 SDValue Src, uint64_t Size,
3293                                 unsigned Align,
3294                                 const Value *DstSV, uint64_t DstSVOff) {
3295  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3296
3297  // Expand memset to a series of load/store ops if the size operand
3298  // falls below a certain threshold.
3299  std::vector<EVT> MemOps;
3300  std::string Str;
3301  bool CopyFromStr;
3302  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3303                                Size, Align, Str, CopyFromStr, DAG, TLI))
3304    return SDValue();
3305
3306  SmallVector<SDValue, 8> OutChains;
3307  uint64_t DstOff = 0;
3308
3309  unsigned NumMemOps = MemOps.size();
3310  for (unsigned i = 0; i < NumMemOps; i++) {
3311    EVT VT = MemOps[i];
3312    unsigned VTSize = VT.getSizeInBits() / 8;
3313    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3314    SDValue Store = DAG.getStore(Chain, dl, Value,
3315                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3316                                 DstSV, DstSVOff + DstOff);
3317    OutChains.push_back(Store);
3318    DstOff += VTSize;
3319  }
3320
3321  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3322                     &OutChains[0], OutChains.size());
3323}
3324
3325SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3326                                SDValue Src, SDValue Size,
3327                                unsigned Align, bool AlwaysInline,
3328                                const Value *DstSV, uint64_t DstSVOff,
3329                                const Value *SrcSV, uint64_t SrcSVOff) {
3330
3331  // Check to see if we should lower the memcpy to loads and stores first.
3332  // For cases within the target-specified limits, this is the best choice.
3333  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3334  if (ConstantSize) {
3335    // Memcpy with size zero? Just return the original chain.
3336    if (ConstantSize->isNullValue())
3337      return Chain;
3338
3339    SDValue Result =
3340      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3341                              ConstantSize->getZExtValue(),
3342                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3343    if (Result.getNode())
3344      return Result;
3345  }
3346
3347  // Then check to see if we should lower the memcpy with target-specific
3348  // code. If the target chooses to do this, this is the next best.
3349  SDValue Result =
3350    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3351                                AlwaysInline,
3352                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3353  if (Result.getNode())
3354    return Result;
3355
3356  // If we really need inline code and the target declined to provide it,
3357  // use a (potentially long) sequence of loads and stores.
3358  if (AlwaysInline) {
3359    assert(ConstantSize && "AlwaysInline requires a constant size!");
3360    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3361                                   ConstantSize->getZExtValue(), Align, true,
3362                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3363  }
3364
3365  // Emit a library call.
3366  TargetLowering::ArgListTy Args;
3367  TargetLowering::ArgListEntry Entry;
3368  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3369  Entry.Node = Dst; Args.push_back(Entry);
3370  Entry.Node = Src; Args.push_back(Entry);
3371  Entry.Node = Size; Args.push_back(Entry);
3372  // FIXME: pass in DebugLoc
3373  std::pair<SDValue,SDValue> CallResult =
3374    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3375                    false, false, false, false, 0,
3376                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3377                    /*isReturnValueUsed=*/false,
3378                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3379                                      TLI.getPointerTy()),
3380                    Args, *this, dl);
3381  return CallResult.second;
3382}
3383
3384SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3385                                 SDValue Src, SDValue Size,
3386                                 unsigned Align,
3387                                 const Value *DstSV, uint64_t DstSVOff,
3388                                 const Value *SrcSV, uint64_t SrcSVOff) {
3389
3390  // Check to see if we should lower the memmove to loads and stores first.
3391  // For cases within the target-specified limits, this is the best choice.
3392  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3393  if (ConstantSize) {
3394    // Memmove with size zero? Just return the original chain.
3395    if (ConstantSize->isNullValue())
3396      return Chain;
3397
3398    SDValue Result =
3399      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3400                               ConstantSize->getZExtValue(),
3401                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3402    if (Result.getNode())
3403      return Result;
3404  }
3405
3406  // Then check to see if we should lower the memmove with target-specific
3407  // code. If the target chooses to do this, this is the next best.
3408  SDValue Result =
3409    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3410                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3411  if (Result.getNode())
3412    return Result;
3413
3414  // Emit a library call.
3415  TargetLowering::ArgListTy Args;
3416  TargetLowering::ArgListEntry Entry;
3417  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3418  Entry.Node = Dst; Args.push_back(Entry);
3419  Entry.Node = Src; Args.push_back(Entry);
3420  Entry.Node = Size; Args.push_back(Entry);
3421  // FIXME:  pass in DebugLoc
3422  std::pair<SDValue,SDValue> CallResult =
3423    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3424                    false, false, false, false, 0,
3425                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3426                    /*isReturnValueUsed=*/false,
3427                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3428                                      TLI.getPointerTy()),
3429                    Args, *this, dl);
3430  return CallResult.second;
3431}
3432
3433SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3434                                SDValue Src, SDValue Size,
3435                                unsigned Align,
3436                                const Value *DstSV, uint64_t DstSVOff) {
3437
3438  // Check to see if we should lower the memset to stores first.
3439  // For cases within the target-specified limits, this is the best choice.
3440  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3441  if (ConstantSize) {
3442    // Memset with size zero? Just return the original chain.
3443    if (ConstantSize->isNullValue())
3444      return Chain;
3445
3446    SDValue Result =
3447      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3448                      Align, DstSV, DstSVOff);
3449    if (Result.getNode())
3450      return Result;
3451  }
3452
3453  // Then check to see if we should lower the memset with target-specific
3454  // code. If the target chooses to do this, this is the next best.
3455  SDValue Result =
3456    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3457                                DstSV, DstSVOff);
3458  if (Result.getNode())
3459    return Result;
3460
3461  // Emit a library call.
3462  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3463  TargetLowering::ArgListTy Args;
3464  TargetLowering::ArgListEntry Entry;
3465  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3466  Args.push_back(Entry);
3467  // Extend or truncate the argument to be an i32 value for the call.
3468  if (Src.getValueType().bitsGT(MVT::i32))
3469    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3470  else
3471    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3472  Entry.Node = Src;
3473  Entry.Ty = Type::getInt32Ty(*getContext());
3474  Entry.isSExt = true;
3475  Args.push_back(Entry);
3476  Entry.Node = Size;
3477  Entry.Ty = IntPtrTy;
3478  Entry.isSExt = false;
3479  Args.push_back(Entry);
3480  // FIXME: pass in DebugLoc
3481  std::pair<SDValue,SDValue> CallResult =
3482    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3483                    false, false, false, false, 0,
3484                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3485                    /*isReturnValueUsed=*/false,
3486                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3487                                      TLI.getPointerTy()),
3488                    Args, *this, dl);
3489  return CallResult.second;
3490}
3491
3492SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3493                                SDValue Chain,
3494                                SDValue Ptr, SDValue Cmp,
3495                                SDValue Swp, const Value* PtrVal,
3496                                unsigned Alignment) {
3497  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3498    Alignment = getEVTAlignment(MemVT);
3499
3500  // Check if the memory reference references a frame index
3501  if (!PtrVal)
3502    if (const FrameIndexSDNode *FI =
3503          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3504      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3505
3506  MachineFunction &MF = getMachineFunction();
3507  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3508
3509  // For now, atomics are considered to be volatile always.
3510  Flags |= MachineMemOperand::MOVolatile;
3511
3512  MachineMemOperand *MMO =
3513    MF.getMachineMemOperand(PtrVal, Flags, 0,
3514                            MemVT.getStoreSize(), Alignment);
3515
3516  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3517}
3518
3519SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3520                                SDValue Chain,
3521                                SDValue Ptr, SDValue Cmp,
3522                                SDValue Swp, MachineMemOperand *MMO) {
3523  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3524  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3525
3526  EVT VT = Cmp.getValueType();
3527
3528  SDVTList VTs = getVTList(VT, MVT::Other);
3529  FoldingSetNodeID ID;
3530  ID.AddInteger(MemVT.getRawBits());
3531  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3532  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3533  void* IP = 0;
3534  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3535    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3536    return SDValue(E, 0);
3537  }
3538  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3539  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3540  CSEMap.InsertNode(N, IP);
3541  AllNodes.push_back(N);
3542  return SDValue(N, 0);
3543}
3544
3545SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3546                                SDValue Chain,
3547                                SDValue Ptr, SDValue Val,
3548                                const Value* PtrVal,
3549                                unsigned Alignment) {
3550  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3551    Alignment = getEVTAlignment(MemVT);
3552
3553  // Check if the memory reference references a frame index
3554  if (!PtrVal)
3555    if (const FrameIndexSDNode *FI =
3556          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3557      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3558
3559  MachineFunction &MF = getMachineFunction();
3560  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3561
3562  // For now, atomics are considered to be volatile always.
3563  Flags |= MachineMemOperand::MOVolatile;
3564
3565  MachineMemOperand *MMO =
3566    MF.getMachineMemOperand(PtrVal, Flags, 0,
3567                            MemVT.getStoreSize(), Alignment);
3568
3569  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3570}
3571
3572SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3573                                SDValue Chain,
3574                                SDValue Ptr, SDValue Val,
3575                                MachineMemOperand *MMO) {
3576  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3577          Opcode == ISD::ATOMIC_LOAD_SUB ||
3578          Opcode == ISD::ATOMIC_LOAD_AND ||
3579          Opcode == ISD::ATOMIC_LOAD_OR ||
3580          Opcode == ISD::ATOMIC_LOAD_XOR ||
3581          Opcode == ISD::ATOMIC_LOAD_NAND ||
3582          Opcode == ISD::ATOMIC_LOAD_MIN ||
3583          Opcode == ISD::ATOMIC_LOAD_MAX ||
3584          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3585          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3586          Opcode == ISD::ATOMIC_SWAP) &&
3587         "Invalid Atomic Op");
3588
3589  EVT VT = Val.getValueType();
3590
3591  SDVTList VTs = getVTList(VT, MVT::Other);
3592  FoldingSetNodeID ID;
3593  ID.AddInteger(MemVT.getRawBits());
3594  SDValue Ops[] = {Chain, Ptr, Val};
3595  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3596  void* IP = 0;
3597  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3598    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3599    return SDValue(E, 0);
3600  }
3601  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3602  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3603  CSEMap.InsertNode(N, IP);
3604  AllNodes.push_back(N);
3605  return SDValue(N, 0);
3606}
3607
3608/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3609/// Allowed to return something different (and simpler) if Simplify is true.
3610SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3611                                     DebugLoc dl) {
3612  if (NumOps == 1)
3613    return Ops[0];
3614
3615  SmallVector<EVT, 4> VTs;
3616  VTs.reserve(NumOps);
3617  for (unsigned i = 0; i < NumOps; ++i)
3618    VTs.push_back(Ops[i].getValueType());
3619  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3620                 Ops, NumOps);
3621}
3622
3623SDValue
3624SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3625                                  const EVT *VTs, unsigned NumVTs,
3626                                  const SDValue *Ops, unsigned NumOps,
3627                                  EVT MemVT, const Value *srcValue, int SVOff,
3628                                  unsigned Align, bool Vol,
3629                                  bool ReadMem, bool WriteMem) {
3630  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3631                             MemVT, srcValue, SVOff, Align, Vol,
3632                             ReadMem, WriteMem);
3633}
3634
3635SDValue
3636SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3637                                  const SDValue *Ops, unsigned NumOps,
3638                                  EVT MemVT, const Value *srcValue, int SVOff,
3639                                  unsigned Align, bool Vol,
3640                                  bool ReadMem, bool WriteMem) {
3641  if (Align == 0)  // Ensure that codegen never sees alignment 0
3642    Align = getEVTAlignment(MemVT);
3643
3644  MachineFunction &MF = getMachineFunction();
3645  unsigned Flags = 0;
3646  if (WriteMem)
3647    Flags |= MachineMemOperand::MOStore;
3648  if (ReadMem)
3649    Flags |= MachineMemOperand::MOLoad;
3650  if (Vol)
3651    Flags |= MachineMemOperand::MOVolatile;
3652  MachineMemOperand *MMO =
3653    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3654                            MemVT.getStoreSize(), Align);
3655
3656  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3657}
3658
3659SDValue
3660SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3661                                  const SDValue *Ops, unsigned NumOps,
3662                                  EVT MemVT, MachineMemOperand *MMO) {
3663  assert((Opcode == ISD::INTRINSIC_VOID ||
3664          Opcode == ISD::INTRINSIC_W_CHAIN ||
3665          (Opcode <= INT_MAX &&
3666           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3667         "Opcode is not a memory-accessing opcode!");
3668
3669  // Memoize the node unless it returns a flag.
3670  MemIntrinsicSDNode *N;
3671  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3672    FoldingSetNodeID ID;
3673    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3674    void *IP = 0;
3675    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3676      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3677      return SDValue(E, 0);
3678    }
3679
3680    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3681    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3682    CSEMap.InsertNode(N, IP);
3683  } else {
3684    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3685    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3686  }
3687  AllNodes.push_back(N);
3688  return SDValue(N, 0);
3689}
3690
3691SDValue
3692SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3693                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3694                      SDValue Ptr, SDValue Offset,
3695                      const Value *SV, int SVOffset, EVT MemVT,
3696                      bool isVolatile, unsigned Alignment) {
3697  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3698    Alignment = getEVTAlignment(VT);
3699
3700  // Check if the memory reference references a frame index
3701  if (!SV)
3702    if (const FrameIndexSDNode *FI =
3703          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3704      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3705
3706  MachineFunction &MF = getMachineFunction();
3707  unsigned Flags = MachineMemOperand::MOLoad;
3708  if (isVolatile)
3709    Flags |= MachineMemOperand::MOVolatile;
3710  MachineMemOperand *MMO =
3711    MF.getMachineMemOperand(SV, Flags, SVOffset,
3712                            MemVT.getStoreSize(), Alignment);
3713  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3714}
3715
3716SDValue
3717SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3718                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3719                      SDValue Ptr, SDValue Offset, EVT MemVT,
3720                      MachineMemOperand *MMO) {
3721  if (VT == MemVT) {
3722    ExtType = ISD::NON_EXTLOAD;
3723  } else if (ExtType == ISD::NON_EXTLOAD) {
3724    assert(VT == MemVT && "Non-extending load from different memory type!");
3725  } else {
3726    // Extending load.
3727    if (VT.isVector())
3728      assert(MemVT.getVectorNumElements() == VT.getVectorNumElements() &&
3729             "Invalid vector extload!");
3730    else
3731      assert(MemVT.bitsLT(VT) &&
3732             "Should only be an extending load, not truncating!");
3733    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3734           "Cannot sign/zero extend a FP/Vector load!");
3735    assert(VT.isInteger() == MemVT.isInteger() &&
3736           "Cannot convert from FP to Int or Int -> FP!");
3737  }
3738
3739  bool Indexed = AM != ISD::UNINDEXED;
3740  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3741         "Unindexed load with an offset!");
3742
3743  SDVTList VTs = Indexed ?
3744    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3745  SDValue Ops[] = { Chain, Ptr, Offset };
3746  FoldingSetNodeID ID;
3747  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3748  ID.AddInteger(MemVT.getRawBits());
3749  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
3750  void *IP = 0;
3751  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3752    cast<LoadSDNode>(E)->refineAlignment(MMO);
3753    return SDValue(E, 0);
3754  }
3755  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3756  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3757  CSEMap.InsertNode(N, IP);
3758  AllNodes.push_back(N);
3759  return SDValue(N, 0);
3760}
3761
3762SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3763                              SDValue Chain, SDValue Ptr,
3764                              const Value *SV, int SVOffset,
3765                              bool isVolatile, unsigned Alignment) {
3766  SDValue Undef = getUNDEF(Ptr.getValueType());
3767  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3768                 SV, SVOffset, VT, isVolatile, Alignment);
3769}
3770
3771SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3772                                 SDValue Chain, SDValue Ptr,
3773                                 const Value *SV,
3774                                 int SVOffset, EVT MemVT,
3775                                 bool isVolatile, unsigned Alignment) {
3776  SDValue Undef = getUNDEF(Ptr.getValueType());
3777  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3778                 SV, SVOffset, MemVT, isVolatile, Alignment);
3779}
3780
3781SDValue
3782SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3783                             SDValue Offset, ISD::MemIndexedMode AM) {
3784  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3785  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3786         "Load is already a indexed load!");
3787  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3788                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3789                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3790                 LD->isVolatile(), LD->getAlignment());
3791}
3792
3793SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3794                               SDValue Ptr, const Value *SV, int SVOffset,
3795                               bool isVolatile, unsigned Alignment) {
3796  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3797    Alignment = getEVTAlignment(Val.getValueType());
3798
3799  // Check if the memory reference references a frame index
3800  if (!SV)
3801    if (const FrameIndexSDNode *FI =
3802          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3803      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3804
3805  MachineFunction &MF = getMachineFunction();
3806  unsigned Flags = MachineMemOperand::MOStore;
3807  if (isVolatile)
3808    Flags |= MachineMemOperand::MOVolatile;
3809  MachineMemOperand *MMO =
3810    MF.getMachineMemOperand(SV, Flags, SVOffset,
3811                            Val.getValueType().getStoreSize(), Alignment);
3812
3813  return getStore(Chain, dl, Val, Ptr, MMO);
3814}
3815
3816SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3817                               SDValue Ptr, MachineMemOperand *MMO) {
3818  EVT VT = Val.getValueType();
3819  SDVTList VTs = getVTList(MVT::Other);
3820  SDValue Undef = getUNDEF(Ptr.getValueType());
3821  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3822  FoldingSetNodeID ID;
3823  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3824  ID.AddInteger(VT.getRawBits());
3825  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
3826  void *IP = 0;
3827  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3828    cast<StoreSDNode>(E)->refineAlignment(MMO);
3829    return SDValue(E, 0);
3830  }
3831  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3832  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3833  CSEMap.InsertNode(N, IP);
3834  AllNodes.push_back(N);
3835  return SDValue(N, 0);
3836}
3837
3838SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3839                                    SDValue Ptr, const Value *SV,
3840                                    int SVOffset, EVT SVT,
3841                                    bool isVolatile, unsigned Alignment) {
3842  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3843    Alignment = getEVTAlignment(SVT);
3844
3845  // Check if the memory reference references a frame index
3846  if (!SV)
3847    if (const FrameIndexSDNode *FI =
3848          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3849      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3850
3851  MachineFunction &MF = getMachineFunction();
3852  unsigned Flags = MachineMemOperand::MOStore;
3853  if (isVolatile)
3854    Flags |= MachineMemOperand::MOVolatile;
3855  MachineMemOperand *MMO =
3856    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3857
3858  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3859}
3860
3861SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3862                                    SDValue Ptr, EVT SVT,
3863                                    MachineMemOperand *MMO) {
3864  EVT VT = Val.getValueType();
3865
3866  if (VT == SVT)
3867    return getStore(Chain, dl, Val, Ptr, MMO);
3868
3869  assert(VT.bitsGT(SVT) && "Not a truncation?");
3870  assert(VT.isInteger() == SVT.isInteger() &&
3871         "Can't do FP-INT conversion!");
3872
3873
3874  SDVTList VTs = getVTList(MVT::Other);
3875  SDValue Undef = getUNDEF(Ptr.getValueType());
3876  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3877  FoldingSetNodeID ID;
3878  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3879  ID.AddInteger(SVT.getRawBits());
3880  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
3881  void *IP = 0;
3882  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3883    cast<StoreSDNode>(E)->refineAlignment(MMO);
3884    return SDValue(E, 0);
3885  }
3886  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3887  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
3888  CSEMap.InsertNode(N, IP);
3889  AllNodes.push_back(N);
3890  return SDValue(N, 0);
3891}
3892
3893SDValue
3894SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3895                              SDValue Offset, ISD::MemIndexedMode AM) {
3896  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3897  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3898         "Store is already a indexed store!");
3899  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3900  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3901  FoldingSetNodeID ID;
3902  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3903  ID.AddInteger(ST->getMemoryVT().getRawBits());
3904  ID.AddInteger(ST->getRawSubclassData());
3905  void *IP = 0;
3906  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3907    return SDValue(E, 0);
3908  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3909  new (N) StoreSDNode(Ops, dl, VTs, AM,
3910                      ST->isTruncatingStore(), ST->getMemoryVT(),
3911                      ST->getMemOperand());
3912  CSEMap.InsertNode(N, IP);
3913  AllNodes.push_back(N);
3914  return SDValue(N, 0);
3915}
3916
3917SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
3918                               SDValue Chain, SDValue Ptr,
3919                               SDValue SV) {
3920  SDValue Ops[] = { Chain, Ptr, SV };
3921  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3922}
3923
3924SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3925                              const SDUse *Ops, unsigned NumOps) {
3926  switch (NumOps) {
3927  case 0: return getNode(Opcode, DL, VT);
3928  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3929  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3930  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3931  default: break;
3932  }
3933
3934  // Copy from an SDUse array into an SDValue array for use with
3935  // the regular getNode logic.
3936  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3937  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3938}
3939
3940SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3941                              const SDValue *Ops, unsigned NumOps) {
3942  switch (NumOps) {
3943  case 0: return getNode(Opcode, DL, VT);
3944  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3945  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3946  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3947  default: break;
3948  }
3949
3950  switch (Opcode) {
3951  default: break;
3952  case ISD::SELECT_CC: {
3953    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3954    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3955           "LHS and RHS of condition must have same type!");
3956    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3957           "True and False arms of SelectCC must have same type!");
3958    assert(Ops[2].getValueType() == VT &&
3959           "select_cc node must be of same type as true and false value!");
3960    break;
3961  }
3962  case ISD::BR_CC: {
3963    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3964    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3965           "LHS/RHS of comparison should match types!");
3966    break;
3967  }
3968  }
3969
3970  // Memoize nodes.
3971  SDNode *N;
3972  SDVTList VTs = getVTList(VT);
3973
3974  if (VT != MVT::Flag) {
3975    FoldingSetNodeID ID;
3976    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3977    void *IP = 0;
3978
3979    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3980      return SDValue(E, 0);
3981
3982    N = NodeAllocator.Allocate<SDNode>();
3983    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3984    CSEMap.InsertNode(N, IP);
3985  } else {
3986    N = NodeAllocator.Allocate<SDNode>();
3987    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3988  }
3989
3990  AllNodes.push_back(N);
3991#ifndef NDEBUG
3992  VerifyNode(N);
3993#endif
3994  return SDValue(N, 0);
3995}
3996
3997SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3998                              const std::vector<EVT> &ResultTys,
3999                              const SDValue *Ops, unsigned NumOps) {
4000  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4001                 Ops, NumOps);
4002}
4003
4004SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4005                              const EVT *VTs, unsigned NumVTs,
4006                              const SDValue *Ops, unsigned NumOps) {
4007  if (NumVTs == 1)
4008    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4009  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4010}
4011
4012SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4013                              const SDValue *Ops, unsigned NumOps) {
4014  if (VTList.NumVTs == 1)
4015    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4016
4017#if 0
4018  switch (Opcode) {
4019  // FIXME: figure out how to safely handle things like
4020  // int foo(int x) { return 1 << (x & 255); }
4021  // int bar() { return foo(256); }
4022  case ISD::SRA_PARTS:
4023  case ISD::SRL_PARTS:
4024  case ISD::SHL_PARTS:
4025    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4026        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4027      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4028    else if (N3.getOpcode() == ISD::AND)
4029      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4030        // If the and is only masking out bits that cannot effect the shift,
4031        // eliminate the and.
4032        unsigned NumBits = VT.getSizeInBits()*2;
4033        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4034          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4035      }
4036    break;
4037  }
4038#endif
4039
4040  // Memoize the node unless it returns a flag.
4041  SDNode *N;
4042  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4043    FoldingSetNodeID ID;
4044    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4045    void *IP = 0;
4046    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4047      return SDValue(E, 0);
4048    if (NumOps == 1) {
4049      N = NodeAllocator.Allocate<UnarySDNode>();
4050      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4051    } else if (NumOps == 2) {
4052      N = NodeAllocator.Allocate<BinarySDNode>();
4053      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4054    } else if (NumOps == 3) {
4055      N = NodeAllocator.Allocate<TernarySDNode>();
4056      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4057    } else {
4058      N = NodeAllocator.Allocate<SDNode>();
4059      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4060    }
4061    CSEMap.InsertNode(N, IP);
4062  } else {
4063    if (NumOps == 1) {
4064      N = NodeAllocator.Allocate<UnarySDNode>();
4065      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4066    } else if (NumOps == 2) {
4067      N = NodeAllocator.Allocate<BinarySDNode>();
4068      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4069    } else if (NumOps == 3) {
4070      N = NodeAllocator.Allocate<TernarySDNode>();
4071      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4072    } else {
4073      N = NodeAllocator.Allocate<SDNode>();
4074      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4075    }
4076  }
4077  AllNodes.push_back(N);
4078#ifndef NDEBUG
4079  VerifyNode(N);
4080#endif
4081  return SDValue(N, 0);
4082}
4083
4084SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4085  return getNode(Opcode, DL, VTList, 0, 0);
4086}
4087
4088SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4089                              SDValue N1) {
4090  SDValue Ops[] = { N1 };
4091  return getNode(Opcode, DL, VTList, Ops, 1);
4092}
4093
4094SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4095                              SDValue N1, SDValue N2) {
4096  SDValue Ops[] = { N1, N2 };
4097  return getNode(Opcode, DL, VTList, Ops, 2);
4098}
4099
4100SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4101                              SDValue N1, SDValue N2, SDValue N3) {
4102  SDValue Ops[] = { N1, N2, N3 };
4103  return getNode(Opcode, DL, VTList, Ops, 3);
4104}
4105
4106SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4107                              SDValue N1, SDValue N2, SDValue N3,
4108                              SDValue N4) {
4109  SDValue Ops[] = { N1, N2, N3, N4 };
4110  return getNode(Opcode, DL, VTList, Ops, 4);
4111}
4112
4113SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4114                              SDValue N1, SDValue N2, SDValue N3,
4115                              SDValue N4, SDValue N5) {
4116  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4117  return getNode(Opcode, DL, VTList, Ops, 5);
4118}
4119
4120SDVTList SelectionDAG::getVTList(EVT VT) {
4121  return makeVTList(SDNode::getValueTypeList(VT), 1);
4122}
4123
4124SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4125  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4126       E = VTList.rend(); I != E; ++I)
4127    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4128      return *I;
4129
4130  EVT *Array = Allocator.Allocate<EVT>(2);
4131  Array[0] = VT1;
4132  Array[1] = VT2;
4133  SDVTList Result = makeVTList(Array, 2);
4134  VTList.push_back(Result);
4135  return Result;
4136}
4137
4138SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4139  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4140       E = VTList.rend(); I != E; ++I)
4141    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4142                          I->VTs[2] == VT3)
4143      return *I;
4144
4145  EVT *Array = Allocator.Allocate<EVT>(3);
4146  Array[0] = VT1;
4147  Array[1] = VT2;
4148  Array[2] = VT3;
4149  SDVTList Result = makeVTList(Array, 3);
4150  VTList.push_back(Result);
4151  return Result;
4152}
4153
4154SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4155  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4156       E = VTList.rend(); I != E; ++I)
4157    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4158                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4159      return *I;
4160
4161  EVT *Array = Allocator.Allocate<EVT>(3);
4162  Array[0] = VT1;
4163  Array[1] = VT2;
4164  Array[2] = VT3;
4165  Array[3] = VT4;
4166  SDVTList Result = makeVTList(Array, 4);
4167  VTList.push_back(Result);
4168  return Result;
4169}
4170
4171SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4172  switch (NumVTs) {
4173    case 0: llvm_unreachable("Cannot have nodes without results!");
4174    case 1: return getVTList(VTs[0]);
4175    case 2: return getVTList(VTs[0], VTs[1]);
4176    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4177    default: break;
4178  }
4179
4180  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4181       E = VTList.rend(); I != E; ++I) {
4182    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4183      continue;
4184
4185    bool NoMatch = false;
4186    for (unsigned i = 2; i != NumVTs; ++i)
4187      if (VTs[i] != I->VTs[i]) {
4188        NoMatch = true;
4189        break;
4190      }
4191    if (!NoMatch)
4192      return *I;
4193  }
4194
4195  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4196  std::copy(VTs, VTs+NumVTs, Array);
4197  SDVTList Result = makeVTList(Array, NumVTs);
4198  VTList.push_back(Result);
4199  return Result;
4200}
4201
4202
4203/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4204/// specified operands.  If the resultant node already exists in the DAG,
4205/// this does not modify the specified node, instead it returns the node that
4206/// already exists.  If the resultant node does not exist in the DAG, the
4207/// input node is returned.  As a degenerate case, if you specify the same
4208/// input operands as the node already has, the input node is returned.
4209SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4210  SDNode *N = InN.getNode();
4211  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4212
4213  // Check to see if there is no change.
4214  if (Op == N->getOperand(0)) return InN;
4215
4216  // See if the modified node already exists.
4217  void *InsertPos = 0;
4218  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4219    return SDValue(Existing, InN.getResNo());
4220
4221  // Nope it doesn't.  Remove the node from its current place in the maps.
4222  if (InsertPos)
4223    if (!RemoveNodeFromCSEMaps(N))
4224      InsertPos = 0;
4225
4226  // Now we update the operands.
4227  N->OperandList[0].set(Op);
4228
4229  // If this gets put into a CSE map, add it.
4230  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4231  return InN;
4232}
4233
4234SDValue SelectionDAG::
4235UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4236  SDNode *N = InN.getNode();
4237  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4238
4239  // Check to see if there is no change.
4240  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4241    return InN;   // No operands changed, just return the input node.
4242
4243  // See if the modified node already exists.
4244  void *InsertPos = 0;
4245  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4246    return SDValue(Existing, InN.getResNo());
4247
4248  // Nope it doesn't.  Remove the node from its current place in the maps.
4249  if (InsertPos)
4250    if (!RemoveNodeFromCSEMaps(N))
4251      InsertPos = 0;
4252
4253  // Now we update the operands.
4254  if (N->OperandList[0] != Op1)
4255    N->OperandList[0].set(Op1);
4256  if (N->OperandList[1] != Op2)
4257    N->OperandList[1].set(Op2);
4258
4259  // If this gets put into a CSE map, add it.
4260  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4261  return InN;
4262}
4263
4264SDValue SelectionDAG::
4265UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4266  SDValue Ops[] = { Op1, Op2, Op3 };
4267  return UpdateNodeOperands(N, Ops, 3);
4268}
4269
4270SDValue SelectionDAG::
4271UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4272                   SDValue Op3, SDValue Op4) {
4273  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4274  return UpdateNodeOperands(N, Ops, 4);
4275}
4276
4277SDValue SelectionDAG::
4278UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4279                   SDValue Op3, SDValue Op4, SDValue Op5) {
4280  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4281  return UpdateNodeOperands(N, Ops, 5);
4282}
4283
4284SDValue SelectionDAG::
4285UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4286  SDNode *N = InN.getNode();
4287  assert(N->getNumOperands() == NumOps &&
4288         "Update with wrong number of operands");
4289
4290  // Check to see if there is no change.
4291  bool AnyChange = false;
4292  for (unsigned i = 0; i != NumOps; ++i) {
4293    if (Ops[i] != N->getOperand(i)) {
4294      AnyChange = true;
4295      break;
4296    }
4297  }
4298
4299  // No operands changed, just return the input node.
4300  if (!AnyChange) return InN;
4301
4302  // See if the modified node already exists.
4303  void *InsertPos = 0;
4304  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4305    return SDValue(Existing, InN.getResNo());
4306
4307  // Nope it doesn't.  Remove the node from its current place in the maps.
4308  if (InsertPos)
4309    if (!RemoveNodeFromCSEMaps(N))
4310      InsertPos = 0;
4311
4312  // Now we update the operands.
4313  for (unsigned i = 0; i != NumOps; ++i)
4314    if (N->OperandList[i] != Ops[i])
4315      N->OperandList[i].set(Ops[i]);
4316
4317  // If this gets put into a CSE map, add it.
4318  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4319  return InN;
4320}
4321
4322/// DropOperands - Release the operands and set this node to have
4323/// zero operands.
4324void SDNode::DropOperands() {
4325  // Unlike the code in MorphNodeTo that does this, we don't need to
4326  // watch for dead nodes here.
4327  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4328    SDUse &Use = *I++;
4329    Use.set(SDValue());
4330  }
4331}
4332
4333/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4334/// machine opcode.
4335///
4336SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4337                                   EVT VT) {
4338  SDVTList VTs = getVTList(VT);
4339  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4340}
4341
4342SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4343                                   EVT VT, SDValue Op1) {
4344  SDVTList VTs = getVTList(VT);
4345  SDValue Ops[] = { Op1 };
4346  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4347}
4348
4349SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4350                                   EVT VT, SDValue Op1,
4351                                   SDValue Op2) {
4352  SDVTList VTs = getVTList(VT);
4353  SDValue Ops[] = { Op1, Op2 };
4354  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4355}
4356
4357SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4358                                   EVT VT, SDValue Op1,
4359                                   SDValue Op2, SDValue Op3) {
4360  SDVTList VTs = getVTList(VT);
4361  SDValue Ops[] = { Op1, Op2, Op3 };
4362  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4363}
4364
4365SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4366                                   EVT VT, const SDValue *Ops,
4367                                   unsigned NumOps) {
4368  SDVTList VTs = getVTList(VT);
4369  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4370}
4371
4372SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4373                                   EVT VT1, EVT VT2, const SDValue *Ops,
4374                                   unsigned NumOps) {
4375  SDVTList VTs = getVTList(VT1, VT2);
4376  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4377}
4378
4379SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4380                                   EVT VT1, EVT VT2) {
4381  SDVTList VTs = getVTList(VT1, VT2);
4382  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4383}
4384
4385SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4386                                   EVT VT1, EVT VT2, EVT VT3,
4387                                   const SDValue *Ops, unsigned NumOps) {
4388  SDVTList VTs = getVTList(VT1, VT2, VT3);
4389  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4390}
4391
4392SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4393                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4394                                   const SDValue *Ops, unsigned NumOps) {
4395  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4396  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4397}
4398
4399SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4400                                   EVT VT1, EVT VT2,
4401                                   SDValue Op1) {
4402  SDVTList VTs = getVTList(VT1, VT2);
4403  SDValue Ops[] = { Op1 };
4404  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4405}
4406
4407SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4408                                   EVT VT1, EVT VT2,
4409                                   SDValue Op1, SDValue Op2) {
4410  SDVTList VTs = getVTList(VT1, VT2);
4411  SDValue Ops[] = { Op1, Op2 };
4412  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4413}
4414
4415SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4416                                   EVT VT1, EVT VT2,
4417                                   SDValue Op1, SDValue Op2,
4418                                   SDValue Op3) {
4419  SDVTList VTs = getVTList(VT1, VT2);
4420  SDValue Ops[] = { Op1, Op2, Op3 };
4421  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4422}
4423
4424SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4425                                   EVT VT1, EVT VT2, EVT VT3,
4426                                   SDValue Op1, SDValue Op2,
4427                                   SDValue Op3) {
4428  SDVTList VTs = getVTList(VT1, VT2, VT3);
4429  SDValue Ops[] = { Op1, Op2, Op3 };
4430  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4431}
4432
4433SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4434                                   SDVTList VTs, const SDValue *Ops,
4435                                   unsigned NumOps) {
4436  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4437}
4438
4439SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4440                                  EVT VT) {
4441  SDVTList VTs = getVTList(VT);
4442  return MorphNodeTo(N, Opc, VTs, 0, 0);
4443}
4444
4445SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4446                                  EVT VT, SDValue Op1) {
4447  SDVTList VTs = getVTList(VT);
4448  SDValue Ops[] = { Op1 };
4449  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4450}
4451
4452SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4453                                  EVT VT, SDValue Op1,
4454                                  SDValue Op2) {
4455  SDVTList VTs = getVTList(VT);
4456  SDValue Ops[] = { Op1, Op2 };
4457  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4458}
4459
4460SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4461                                  EVT VT, SDValue Op1,
4462                                  SDValue Op2, SDValue Op3) {
4463  SDVTList VTs = getVTList(VT);
4464  SDValue Ops[] = { Op1, Op2, Op3 };
4465  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4466}
4467
4468SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4469                                  EVT VT, const SDValue *Ops,
4470                                  unsigned NumOps) {
4471  SDVTList VTs = getVTList(VT);
4472  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4473}
4474
4475SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4476                                  EVT VT1, EVT VT2, const SDValue *Ops,
4477                                  unsigned NumOps) {
4478  SDVTList VTs = getVTList(VT1, VT2);
4479  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4480}
4481
4482SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4483                                  EVT VT1, EVT VT2) {
4484  SDVTList VTs = getVTList(VT1, VT2);
4485  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4486}
4487
4488SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4489                                  EVT VT1, EVT VT2, EVT VT3,
4490                                  const SDValue *Ops, unsigned NumOps) {
4491  SDVTList VTs = getVTList(VT1, VT2, VT3);
4492  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4493}
4494
4495SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4496                                  EVT VT1, EVT VT2,
4497                                  SDValue Op1) {
4498  SDVTList VTs = getVTList(VT1, VT2);
4499  SDValue Ops[] = { Op1 };
4500  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4501}
4502
4503SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4504                                  EVT VT1, EVT VT2,
4505                                  SDValue Op1, SDValue Op2) {
4506  SDVTList VTs = getVTList(VT1, VT2);
4507  SDValue Ops[] = { Op1, Op2 };
4508  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4509}
4510
4511SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4512                                  EVT VT1, EVT VT2,
4513                                  SDValue Op1, SDValue Op2,
4514                                  SDValue Op3) {
4515  SDVTList VTs = getVTList(VT1, VT2);
4516  SDValue Ops[] = { Op1, Op2, Op3 };
4517  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4518}
4519
4520/// MorphNodeTo - These *mutate* the specified node to have the specified
4521/// return type, opcode, and operands.
4522///
4523/// Note that MorphNodeTo returns the resultant node.  If there is already a
4524/// node of the specified opcode and operands, it returns that node instead of
4525/// the current one.  Note that the DebugLoc need not be the same.
4526///
4527/// Using MorphNodeTo is faster than creating a new node and swapping it in
4528/// with ReplaceAllUsesWith both because it often avoids allocating a new
4529/// node, and because it doesn't require CSE recalculation for any of
4530/// the node's users.
4531///
4532SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4533                                  SDVTList VTs, const SDValue *Ops,
4534                                  unsigned NumOps) {
4535  // If an identical node already exists, use it.
4536  void *IP = 0;
4537  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4538    FoldingSetNodeID ID;
4539    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4540    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4541      return ON;
4542  }
4543
4544  if (!RemoveNodeFromCSEMaps(N))
4545    IP = 0;
4546
4547  // Start the morphing.
4548  N->NodeType = Opc;
4549  N->ValueList = VTs.VTs;
4550  N->NumValues = VTs.NumVTs;
4551
4552  // Clear the operands list, updating used nodes to remove this from their
4553  // use list.  Keep track of any operands that become dead as a result.
4554  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4555  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4556    SDUse &Use = *I++;
4557    SDNode *Used = Use.getNode();
4558    Use.set(SDValue());
4559    if (Used->use_empty())
4560      DeadNodeSet.insert(Used);
4561  }
4562
4563  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4564    // Initialize the memory references information.
4565    MN->setMemRefs(0, 0);
4566    // If NumOps is larger than the # of operands we can have in a
4567    // MachineSDNode, reallocate the operand list.
4568    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4569      if (MN->OperandsNeedDelete)
4570        delete[] MN->OperandList;
4571      if (NumOps > array_lengthof(MN->LocalOperands))
4572        // We're creating a final node that will live unmorphed for the
4573        // remainder of the current SelectionDAG iteration, so we can allocate
4574        // the operands directly out of a pool with no recycling metadata.
4575        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4576                        Ops, NumOps);
4577      else
4578        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4579      MN->OperandsNeedDelete = false;
4580    } else
4581      MN->InitOperands(MN->OperandList, Ops, NumOps);
4582  } else {
4583    // If NumOps is larger than the # of operands we currently have, reallocate
4584    // the operand list.
4585    if (NumOps > N->NumOperands) {
4586      if (N->OperandsNeedDelete)
4587        delete[] N->OperandList;
4588      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4589      N->OperandsNeedDelete = true;
4590    } else
4591      MN->InitOperands(MN->OperandList, Ops, NumOps);
4592  }
4593
4594  // Delete any nodes that are still dead after adding the uses for the
4595  // new operands.
4596  SmallVector<SDNode *, 16> DeadNodes;
4597  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4598       E = DeadNodeSet.end(); I != E; ++I)
4599    if ((*I)->use_empty())
4600      DeadNodes.push_back(*I);
4601  RemoveDeadNodes(DeadNodes);
4602
4603  if (IP)
4604    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4605  return N;
4606}
4607
4608
4609/// getMachineNode - These are used for target selectors to create a new node
4610/// with specified return type(s), MachineInstr opcode, and operands.
4611///
4612/// Note that getMachineNode returns the resultant node.  If there is already a
4613/// node of the specified opcode and operands, it returns that node instead of
4614/// the current one.
4615SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4616  SDVTList VTs = getVTList(VT);
4617  return getMachineNode(Opcode, dl, VTs, 0, 0);
4618}
4619
4620SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4621                                     SDValue Op1) {
4622  SDVTList VTs = getVTList(VT);
4623  SDValue Ops[] = { Op1 };
4624  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4625}
4626
4627SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4628                                     SDValue Op1, SDValue Op2) {
4629  SDVTList VTs = getVTList(VT);
4630  SDValue Ops[] = { Op1, Op2 };
4631  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4632}
4633
4634SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4635                                     SDValue Op1, SDValue Op2,
4636                                     SDValue Op3) {
4637  SDVTList VTs = getVTList(VT);
4638  SDValue Ops[] = { Op1, Op2, Op3 };
4639  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4640}
4641
4642SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4643                                     const SDValue *Ops, unsigned NumOps) {
4644  SDVTList VTs = getVTList(VT);
4645  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4646}
4647
4648SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4649                                     EVT VT1, EVT VT2) {
4650  SDVTList VTs = getVTList(VT1, VT2);
4651  return getMachineNode(Opcode, dl, VTs, 0, 0);
4652}
4653
4654SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4655                                     EVT VT2, SDValue Op1) {
4656  SDVTList VTs = getVTList(VT1, VT2);
4657  SDValue Ops[] = { Op1 };
4658  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4659}
4660
4661SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4662                                     EVT VT2, SDValue Op1,
4663                                     SDValue Op2) {
4664  SDVTList VTs = getVTList(VT1, VT2);
4665  SDValue Ops[] = { Op1, Op2 };
4666  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4667}
4668
4669SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4670                                     EVT VT2, SDValue Op1,
4671                                     SDValue Op2, SDValue Op3) {
4672  SDVTList VTs = getVTList(VT1, VT2);
4673  SDValue Ops[] = { Op1, Op2, Op3 };
4674  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4675}
4676
4677SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4678                                     EVT VT1, EVT VT2,
4679                                     const SDValue *Ops, unsigned NumOps) {
4680  SDVTList VTs = getVTList(VT1, VT2);
4681  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4682}
4683
4684SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4685                                     EVT VT1, EVT VT2, EVT VT3,
4686                                     SDValue Op1, SDValue Op2) {
4687  SDVTList VTs = getVTList(VT1, VT2, VT3);
4688  SDValue Ops[] = { Op1, Op2 };
4689  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4690}
4691
4692SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4693                                     EVT VT1, EVT VT2, EVT VT3,
4694                                     SDValue Op1, SDValue Op2,
4695                                     SDValue Op3) {
4696  SDVTList VTs = getVTList(VT1, VT2, VT3);
4697  SDValue Ops[] = { Op1, Op2, Op3 };
4698  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4699}
4700
4701SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4702                                     EVT VT1, EVT VT2, EVT VT3,
4703                                     const SDValue *Ops, unsigned NumOps) {
4704  SDVTList VTs = getVTList(VT1, VT2, VT3);
4705  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4706}
4707
4708SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4709                                     EVT VT2, EVT VT3, EVT VT4,
4710                                     const SDValue *Ops, unsigned NumOps) {
4711  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4712  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4713}
4714
4715SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4716                                     const std::vector<EVT> &ResultTys,
4717                                     const SDValue *Ops, unsigned NumOps) {
4718  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4719  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4720}
4721
4722SDNode *SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4723                                     const SDValue *Ops, unsigned NumOps) {
4724  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4725  MachineSDNode *N;
4726  void *IP;
4727
4728  if (DoCSE) {
4729    FoldingSetNodeID ID;
4730    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4731    IP = 0;
4732    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4733      return E;
4734  }
4735
4736  // Allocate a new MachineSDNode.
4737  N = NodeAllocator.Allocate<MachineSDNode>();
4738  new (N) MachineSDNode(~Opcode, DL, VTs);
4739
4740  // Initialize the operands list.
4741  if (NumOps > array_lengthof(N->LocalOperands))
4742    // We're creating a final node that will live unmorphed for the
4743    // remainder of the current SelectionDAG iteration, so we can allocate
4744    // the operands directly out of a pool with no recycling metadata.
4745    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4746                    Ops, NumOps);
4747  else
4748    N->InitOperands(N->LocalOperands, Ops, NumOps);
4749  N->OperandsNeedDelete = false;
4750
4751  if (DoCSE)
4752    CSEMap.InsertNode(N, IP);
4753
4754  AllNodes.push_back(N);
4755#ifndef NDEBUG
4756  VerifyNode(N);
4757#endif
4758  return N;
4759}
4760
4761/// getTargetExtractSubreg - A convenience function for creating
4762/// TargetInstrInfo::EXTRACT_SUBREG nodes.
4763SDValue
4764SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4765                                     SDValue Operand) {
4766  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4767  SDNode *Subreg = getMachineNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4768                                  VT, Operand, SRIdxVal);
4769  return SDValue(Subreg, 0);
4770}
4771
4772/// getNodeIfExists - Get the specified node if it's already available, or
4773/// else return NULL.
4774SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4775                                      const SDValue *Ops, unsigned NumOps) {
4776  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4777    FoldingSetNodeID ID;
4778    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4779    void *IP = 0;
4780    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4781      return E;
4782  }
4783  return NULL;
4784}
4785
4786/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4787/// This can cause recursive merging of nodes in the DAG.
4788///
4789/// This version assumes From has a single result value.
4790///
4791void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4792                                      DAGUpdateListener *UpdateListener) {
4793  SDNode *From = FromN.getNode();
4794  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4795         "Cannot replace with this method!");
4796  assert(From != To.getNode() && "Cannot replace uses of with self");
4797
4798  // Iterate over all the existing uses of From. New uses will be added
4799  // to the beginning of the use list, which we avoid visiting.
4800  // This specifically avoids visiting uses of From that arise while the
4801  // replacement is happening, because any such uses would be the result
4802  // of CSE: If an existing node looks like From after one of its operands
4803  // is replaced by To, we don't want to replace of all its users with To
4804  // too. See PR3018 for more info.
4805  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4806  while (UI != UE) {
4807    SDNode *User = *UI;
4808
4809    // This node is about to morph, remove its old self from the CSE maps.
4810    RemoveNodeFromCSEMaps(User);
4811
4812    // A user can appear in a use list multiple times, and when this
4813    // happens the uses are usually next to each other in the list.
4814    // To help reduce the number of CSE recomputations, process all
4815    // the uses of this user that we can find this way.
4816    do {
4817      SDUse &Use = UI.getUse();
4818      ++UI;
4819      Use.set(To);
4820    } while (UI != UE && *UI == User);
4821
4822    // Now that we have modified User, add it back to the CSE maps.  If it
4823    // already exists there, recursively merge the results together.
4824    AddModifiedNodeToCSEMaps(User, UpdateListener);
4825  }
4826}
4827
4828/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4829/// This can cause recursive merging of nodes in the DAG.
4830///
4831/// This version assumes that for each value of From, there is a
4832/// corresponding value in To in the same position with the same type.
4833///
4834void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4835                                      DAGUpdateListener *UpdateListener) {
4836#ifndef NDEBUG
4837  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4838    assert((!From->hasAnyUseOfValue(i) ||
4839            From->getValueType(i) == To->getValueType(i)) &&
4840           "Cannot use this version of ReplaceAllUsesWith!");
4841#endif
4842
4843  // Handle the trivial case.
4844  if (From == To)
4845    return;
4846
4847  // Iterate over just the existing users of From. See the comments in
4848  // the ReplaceAllUsesWith above.
4849  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4850  while (UI != UE) {
4851    SDNode *User = *UI;
4852
4853    // This node is about to morph, remove its old self from the CSE maps.
4854    RemoveNodeFromCSEMaps(User);
4855
4856    // A user can appear in a use list multiple times, and when this
4857    // happens the uses are usually next to each other in the list.
4858    // To help reduce the number of CSE recomputations, process all
4859    // the uses of this user that we can find this way.
4860    do {
4861      SDUse &Use = UI.getUse();
4862      ++UI;
4863      Use.setNode(To);
4864    } while (UI != UE && *UI == User);
4865
4866    // Now that we have modified User, add it back to the CSE maps.  If it
4867    // already exists there, recursively merge the results together.
4868    AddModifiedNodeToCSEMaps(User, UpdateListener);
4869  }
4870}
4871
4872/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4873/// This can cause recursive merging of nodes in the DAG.
4874///
4875/// This version can replace From with any result values.  To must match the
4876/// number and types of values returned by From.
4877void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4878                                      const SDValue *To,
4879                                      DAGUpdateListener *UpdateListener) {
4880  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4881    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4882
4883  // Iterate over just the existing users of From. See the comments in
4884  // the ReplaceAllUsesWith above.
4885  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4886  while (UI != UE) {
4887    SDNode *User = *UI;
4888
4889    // This node is about to morph, remove its old self from the CSE maps.
4890    RemoveNodeFromCSEMaps(User);
4891
4892    // A user can appear in a use list multiple times, and when this
4893    // happens the uses are usually next to each other in the list.
4894    // To help reduce the number of CSE recomputations, process all
4895    // the uses of this user that we can find this way.
4896    do {
4897      SDUse &Use = UI.getUse();
4898      const SDValue &ToOp = To[Use.getResNo()];
4899      ++UI;
4900      Use.set(ToOp);
4901    } while (UI != UE && *UI == User);
4902
4903    // Now that we have modified User, add it back to the CSE maps.  If it
4904    // already exists there, recursively merge the results together.
4905    AddModifiedNodeToCSEMaps(User, UpdateListener);
4906  }
4907}
4908
4909/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4910/// uses of other values produced by From.getNode() alone.  The Deleted
4911/// vector is handled the same way as for ReplaceAllUsesWith.
4912void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4913                                             DAGUpdateListener *UpdateListener){
4914  // Handle the really simple, really trivial case efficiently.
4915  if (From == To) return;
4916
4917  // Handle the simple, trivial, case efficiently.
4918  if (From.getNode()->getNumValues() == 1) {
4919    ReplaceAllUsesWith(From, To, UpdateListener);
4920    return;
4921  }
4922
4923  // Iterate over just the existing users of From. See the comments in
4924  // the ReplaceAllUsesWith above.
4925  SDNode::use_iterator UI = From.getNode()->use_begin(),
4926                       UE = From.getNode()->use_end();
4927  while (UI != UE) {
4928    SDNode *User = *UI;
4929    bool UserRemovedFromCSEMaps = false;
4930
4931    // A user can appear in a use list multiple times, and when this
4932    // happens the uses are usually next to each other in the list.
4933    // To help reduce the number of CSE recomputations, process all
4934    // the uses of this user that we can find this way.
4935    do {
4936      SDUse &Use = UI.getUse();
4937
4938      // Skip uses of different values from the same node.
4939      if (Use.getResNo() != From.getResNo()) {
4940        ++UI;
4941        continue;
4942      }
4943
4944      // If this node hasn't been modified yet, it's still in the CSE maps,
4945      // so remove its old self from the CSE maps.
4946      if (!UserRemovedFromCSEMaps) {
4947        RemoveNodeFromCSEMaps(User);
4948        UserRemovedFromCSEMaps = true;
4949      }
4950
4951      ++UI;
4952      Use.set(To);
4953    } while (UI != UE && *UI == User);
4954
4955    // We are iterating over all uses of the From node, so if a use
4956    // doesn't use the specific value, no changes are made.
4957    if (!UserRemovedFromCSEMaps)
4958      continue;
4959
4960    // Now that we have modified User, add it back to the CSE maps.  If it
4961    // already exists there, recursively merge the results together.
4962    AddModifiedNodeToCSEMaps(User, UpdateListener);
4963  }
4964}
4965
4966namespace {
4967  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4968  /// to record information about a use.
4969  struct UseMemo {
4970    SDNode *User;
4971    unsigned Index;
4972    SDUse *Use;
4973  };
4974
4975  /// operator< - Sort Memos by User.
4976  bool operator<(const UseMemo &L, const UseMemo &R) {
4977    return (intptr_t)L.User < (intptr_t)R.User;
4978  }
4979}
4980
4981/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4982/// uses of other values produced by From.getNode() alone.  The same value
4983/// may appear in both the From and To list.  The Deleted vector is
4984/// handled the same way as for ReplaceAllUsesWith.
4985void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4986                                              const SDValue *To,
4987                                              unsigned Num,
4988                                              DAGUpdateListener *UpdateListener){
4989  // Handle the simple, trivial case efficiently.
4990  if (Num == 1)
4991    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4992
4993  // Read up all the uses and make records of them. This helps
4994  // processing new uses that are introduced during the
4995  // replacement process.
4996  SmallVector<UseMemo, 4> Uses;
4997  for (unsigned i = 0; i != Num; ++i) {
4998    unsigned FromResNo = From[i].getResNo();
4999    SDNode *FromNode = From[i].getNode();
5000    for (SDNode::use_iterator UI = FromNode->use_begin(),
5001         E = FromNode->use_end(); UI != E; ++UI) {
5002      SDUse &Use = UI.getUse();
5003      if (Use.getResNo() == FromResNo) {
5004        UseMemo Memo = { *UI, i, &Use };
5005        Uses.push_back(Memo);
5006      }
5007    }
5008  }
5009
5010  // Sort the uses, so that all the uses from a given User are together.
5011  std::sort(Uses.begin(), Uses.end());
5012
5013  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5014       UseIndex != UseIndexEnd; ) {
5015    // We know that this user uses some value of From.  If it is the right
5016    // value, update it.
5017    SDNode *User = Uses[UseIndex].User;
5018
5019    // This node is about to morph, remove its old self from the CSE maps.
5020    RemoveNodeFromCSEMaps(User);
5021
5022    // The Uses array is sorted, so all the uses for a given User
5023    // are next to each other in the list.
5024    // To help reduce the number of CSE recomputations, process all
5025    // the uses of this user that we can find this way.
5026    do {
5027      unsigned i = Uses[UseIndex].Index;
5028      SDUse &Use = *Uses[UseIndex].Use;
5029      ++UseIndex;
5030
5031      Use.set(To[i]);
5032    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5033
5034    // Now that we have modified User, add it back to the CSE maps.  If it
5035    // already exists there, recursively merge the results together.
5036    AddModifiedNodeToCSEMaps(User, UpdateListener);
5037  }
5038}
5039
5040/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5041/// based on their topological order. It returns the maximum id and a vector
5042/// of the SDNodes* in assigned order by reference.
5043unsigned SelectionDAG::AssignTopologicalOrder() {
5044
5045  unsigned DAGSize = 0;
5046
5047  // SortedPos tracks the progress of the algorithm. Nodes before it are
5048  // sorted, nodes after it are unsorted. When the algorithm completes
5049  // it is at the end of the list.
5050  allnodes_iterator SortedPos = allnodes_begin();
5051
5052  // Visit all the nodes. Move nodes with no operands to the front of
5053  // the list immediately. Annotate nodes that do have operands with their
5054  // operand count. Before we do this, the Node Id fields of the nodes
5055  // may contain arbitrary values. After, the Node Id fields for nodes
5056  // before SortedPos will contain the topological sort index, and the
5057  // Node Id fields for nodes At SortedPos and after will contain the
5058  // count of outstanding operands.
5059  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5060    SDNode *N = I++;
5061    unsigned Degree = N->getNumOperands();
5062    if (Degree == 0) {
5063      // A node with no uses, add it to the result array immediately.
5064      N->setNodeId(DAGSize++);
5065      allnodes_iterator Q = N;
5066      if (Q != SortedPos)
5067        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5068      ++SortedPos;
5069    } else {
5070      // Temporarily use the Node Id as scratch space for the degree count.
5071      N->setNodeId(Degree);
5072    }
5073  }
5074
5075  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5076  // such that by the time the end is reached all nodes will be sorted.
5077  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5078    SDNode *N = I;
5079    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5080         UI != UE; ++UI) {
5081      SDNode *P = *UI;
5082      unsigned Degree = P->getNodeId();
5083      --Degree;
5084      if (Degree == 0) {
5085        // All of P's operands are sorted, so P may sorted now.
5086        P->setNodeId(DAGSize++);
5087        if (P != SortedPos)
5088          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5089        ++SortedPos;
5090      } else {
5091        // Update P's outstanding operand count.
5092        P->setNodeId(Degree);
5093      }
5094    }
5095  }
5096
5097  assert(SortedPos == AllNodes.end() &&
5098         "Topological sort incomplete!");
5099  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5100         "First node in topological sort is not the entry token!");
5101  assert(AllNodes.front().getNodeId() == 0 &&
5102         "First node in topological sort has non-zero id!");
5103  assert(AllNodes.front().getNumOperands() == 0 &&
5104         "First node in topological sort has operands!");
5105  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5106         "Last node in topologic sort has unexpected id!");
5107  assert(AllNodes.back().use_empty() &&
5108         "Last node in topologic sort has users!");
5109  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5110  return DAGSize;
5111}
5112
5113
5114
5115//===----------------------------------------------------------------------===//
5116//                              SDNode Class
5117//===----------------------------------------------------------------------===//
5118
5119HandleSDNode::~HandleSDNode() {
5120  DropOperands();
5121}
5122
5123GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5124                                         EVT VT, int64_t o, unsigned char TF)
5125  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5126    Offset(o), TargetFlags(TF) {
5127  TheGlobal = const_cast<GlobalValue*>(GA);
5128}
5129
5130MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5131                     MachineMemOperand *mmo)
5132 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5133  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5134  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5135  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5136}
5137
5138MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5139                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5140                     MachineMemOperand *mmo)
5141   : SDNode(Opc, dl, VTs, Ops, NumOps),
5142     MemoryVT(memvt), MMO(mmo) {
5143  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5144  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5145  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5146}
5147
5148/// Profile - Gather unique data for the node.
5149///
5150void SDNode::Profile(FoldingSetNodeID &ID) const {
5151  AddNodeIDNode(ID, this);
5152}
5153
5154namespace {
5155  struct EVTArray {
5156    std::vector<EVT> VTs;
5157
5158    EVTArray() {
5159      VTs.reserve(MVT::LAST_VALUETYPE);
5160      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5161        VTs.push_back(MVT((MVT::SimpleValueType)i));
5162    }
5163  };
5164}
5165
5166static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5167static ManagedStatic<EVTArray> SimpleVTArray;
5168static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5169
5170/// getValueTypeList - Return a pointer to the specified value type.
5171///
5172const EVT *SDNode::getValueTypeList(EVT VT) {
5173  if (VT.isExtended()) {
5174    sys::SmartScopedLock<true> Lock(*VTMutex);
5175    return &(*EVTs->insert(VT).first);
5176  } else {
5177    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5178  }
5179}
5180
5181/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5182/// indicated value.  This method ignores uses of other values defined by this
5183/// operation.
5184bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5185  assert(Value < getNumValues() && "Bad value!");
5186
5187  // TODO: Only iterate over uses of a given value of the node
5188  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5189    if (UI.getUse().getResNo() == Value) {
5190      if (NUses == 0)
5191        return false;
5192      --NUses;
5193    }
5194  }
5195
5196  // Found exactly the right number of uses?
5197  return NUses == 0;
5198}
5199
5200
5201/// hasAnyUseOfValue - Return true if there are any use of the indicated
5202/// value. This method ignores uses of other values defined by this operation.
5203bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5204  assert(Value < getNumValues() && "Bad value!");
5205
5206  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5207    if (UI.getUse().getResNo() == Value)
5208      return true;
5209
5210  return false;
5211}
5212
5213
5214/// isOnlyUserOf - Return true if this node is the only use of N.
5215///
5216bool SDNode::isOnlyUserOf(SDNode *N) const {
5217  bool Seen = false;
5218  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5219    SDNode *User = *I;
5220    if (User == this)
5221      Seen = true;
5222    else
5223      return false;
5224  }
5225
5226  return Seen;
5227}
5228
5229/// isOperand - Return true if this node is an operand of N.
5230///
5231bool SDValue::isOperandOf(SDNode *N) const {
5232  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5233    if (*this == N->getOperand(i))
5234      return true;
5235  return false;
5236}
5237
5238bool SDNode::isOperandOf(SDNode *N) const {
5239  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5240    if (this == N->OperandList[i].getNode())
5241      return true;
5242  return false;
5243}
5244
5245/// reachesChainWithoutSideEffects - Return true if this operand (which must
5246/// be a chain) reaches the specified operand without crossing any
5247/// side-effecting instructions.  In practice, this looks through token
5248/// factors and non-volatile loads.  In order to remain efficient, this only
5249/// looks a couple of nodes in, it does not do an exhaustive search.
5250bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5251                                               unsigned Depth) const {
5252  if (*this == Dest) return true;
5253
5254  // Don't search too deeply, we just want to be able to see through
5255  // TokenFactor's etc.
5256  if (Depth == 0) return false;
5257
5258  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5259  // of the operands of the TF reach dest, then we can do the xform.
5260  if (getOpcode() == ISD::TokenFactor) {
5261    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5262      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5263        return true;
5264    return false;
5265  }
5266
5267  // Loads don't have side effects, look through them.
5268  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5269    if (!Ld->isVolatile())
5270      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5271  }
5272  return false;
5273}
5274
5275
5276static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5277                            SmallPtrSet<SDNode *, 32> &Visited) {
5278  if (found || !Visited.insert(N))
5279    return;
5280
5281  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5282    SDNode *Op = N->getOperand(i).getNode();
5283    if (Op == P) {
5284      found = true;
5285      return;
5286    }
5287    findPredecessor(Op, P, found, Visited);
5288  }
5289}
5290
5291/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5292/// is either an operand of N or it can be reached by recursively traversing
5293/// up the operands.
5294/// NOTE: this is an expensive method. Use it carefully.
5295bool SDNode::isPredecessorOf(SDNode *N) const {
5296  SmallPtrSet<SDNode *, 32> Visited;
5297  bool found = false;
5298  findPredecessor(N, this, found, Visited);
5299  return found;
5300}
5301
5302uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5303  assert(Num < NumOperands && "Invalid child # of SDNode!");
5304  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5305}
5306
5307std::string SDNode::getOperationName(const SelectionDAG *G) const {
5308  switch (getOpcode()) {
5309  default:
5310    if (getOpcode() < ISD::BUILTIN_OP_END)
5311      return "<<Unknown DAG Node>>";
5312    if (isMachineOpcode()) {
5313      if (G)
5314        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5315          if (getMachineOpcode() < TII->getNumOpcodes())
5316            return TII->get(getMachineOpcode()).getName();
5317      return "<<Unknown Machine Node>>";
5318    }
5319    if (G) {
5320      const TargetLowering &TLI = G->getTargetLoweringInfo();
5321      const char *Name = TLI.getTargetNodeName(getOpcode());
5322      if (Name) return Name;
5323      return "<<Unknown Target Node>>";
5324    }
5325    return "<<Unknown Node>>";
5326
5327#ifndef NDEBUG
5328  case ISD::DELETED_NODE:
5329    return "<<Deleted Node!>>";
5330#endif
5331  case ISD::PREFETCH:      return "Prefetch";
5332  case ISD::MEMBARRIER:    return "MemBarrier";
5333  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5334  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5335  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5336  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5337  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5338  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5339  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5340  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5341  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5342  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5343  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5344  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5345  case ISD::PCMARKER:      return "PCMarker";
5346  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5347  case ISD::SRCVALUE:      return "SrcValue";
5348  case ISD::EntryToken:    return "EntryToken";
5349  case ISD::TokenFactor:   return "TokenFactor";
5350  case ISD::AssertSext:    return "AssertSext";
5351  case ISD::AssertZext:    return "AssertZext";
5352
5353  case ISD::BasicBlock:    return "BasicBlock";
5354  case ISD::VALUETYPE:     return "ValueType";
5355  case ISD::Register:      return "Register";
5356
5357  case ISD::Constant:      return "Constant";
5358  case ISD::ConstantFP:    return "ConstantFP";
5359  case ISD::GlobalAddress: return "GlobalAddress";
5360  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5361  case ISD::FrameIndex:    return "FrameIndex";
5362  case ISD::JumpTable:     return "JumpTable";
5363  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5364  case ISD::RETURNADDR: return "RETURNADDR";
5365  case ISD::FRAMEADDR: return "FRAMEADDR";
5366  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5367  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5368  case ISD::LSDAADDR: return "LSDAADDR";
5369  case ISD::EHSELECTION: return "EHSELECTION";
5370  case ISD::EH_RETURN: return "EH_RETURN";
5371  case ISD::ConstantPool:  return "ConstantPool";
5372  case ISD::ExternalSymbol: return "ExternalSymbol";
5373  case ISD::INTRINSIC_WO_CHAIN: {
5374    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5375    return Intrinsic::getName((Intrinsic::ID)IID);
5376  }
5377  case ISD::INTRINSIC_VOID:
5378  case ISD::INTRINSIC_W_CHAIN: {
5379    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5380    return Intrinsic::getName((Intrinsic::ID)IID);
5381  }
5382
5383  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5384  case ISD::TargetConstant: return "TargetConstant";
5385  case ISD::TargetConstantFP:return "TargetConstantFP";
5386  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5387  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5388  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5389  case ISD::TargetJumpTable:  return "TargetJumpTable";
5390  case ISD::TargetConstantPool:  return "TargetConstantPool";
5391  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5392
5393  case ISD::CopyToReg:     return "CopyToReg";
5394  case ISD::CopyFromReg:   return "CopyFromReg";
5395  case ISD::UNDEF:         return "undef";
5396  case ISD::MERGE_VALUES:  return "merge_values";
5397  case ISD::INLINEASM:     return "inlineasm";
5398  case ISD::DBG_LABEL:     return "dbg_label";
5399  case ISD::EH_LABEL:      return "eh_label";
5400  case ISD::HANDLENODE:    return "handlenode";
5401
5402  // Unary operators
5403  case ISD::FABS:   return "fabs";
5404  case ISD::FNEG:   return "fneg";
5405  case ISD::FSQRT:  return "fsqrt";
5406  case ISD::FSIN:   return "fsin";
5407  case ISD::FCOS:   return "fcos";
5408  case ISD::FPOWI:  return "fpowi";
5409  case ISD::FPOW:   return "fpow";
5410  case ISD::FTRUNC: return "ftrunc";
5411  case ISD::FFLOOR: return "ffloor";
5412  case ISD::FCEIL:  return "fceil";
5413  case ISD::FRINT:  return "frint";
5414  case ISD::FNEARBYINT: return "fnearbyint";
5415
5416  // Binary operators
5417  case ISD::ADD:    return "add";
5418  case ISD::SUB:    return "sub";
5419  case ISD::MUL:    return "mul";
5420  case ISD::MULHU:  return "mulhu";
5421  case ISD::MULHS:  return "mulhs";
5422  case ISD::SDIV:   return "sdiv";
5423  case ISD::UDIV:   return "udiv";
5424  case ISD::SREM:   return "srem";
5425  case ISD::UREM:   return "urem";
5426  case ISD::SMUL_LOHI:  return "smul_lohi";
5427  case ISD::UMUL_LOHI:  return "umul_lohi";
5428  case ISD::SDIVREM:    return "sdivrem";
5429  case ISD::UDIVREM:    return "udivrem";
5430  case ISD::AND:    return "and";
5431  case ISD::OR:     return "or";
5432  case ISD::XOR:    return "xor";
5433  case ISD::SHL:    return "shl";
5434  case ISD::SRA:    return "sra";
5435  case ISD::SRL:    return "srl";
5436  case ISD::ROTL:   return "rotl";
5437  case ISD::ROTR:   return "rotr";
5438  case ISD::FADD:   return "fadd";
5439  case ISD::FSUB:   return "fsub";
5440  case ISD::FMUL:   return "fmul";
5441  case ISD::FDIV:   return "fdiv";
5442  case ISD::FREM:   return "frem";
5443  case ISD::FCOPYSIGN: return "fcopysign";
5444  case ISD::FGETSIGN:  return "fgetsign";
5445
5446  case ISD::SETCC:       return "setcc";
5447  case ISD::VSETCC:      return "vsetcc";
5448  case ISD::SELECT:      return "select";
5449  case ISD::SELECT_CC:   return "select_cc";
5450  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5451  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5452  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5453  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5454  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5455  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5456  case ISD::CARRY_FALSE:         return "carry_false";
5457  case ISD::ADDC:        return "addc";
5458  case ISD::ADDE:        return "adde";
5459  case ISD::SADDO:       return "saddo";
5460  case ISD::UADDO:       return "uaddo";
5461  case ISD::SSUBO:       return "ssubo";
5462  case ISD::USUBO:       return "usubo";
5463  case ISD::SMULO:       return "smulo";
5464  case ISD::UMULO:       return "umulo";
5465  case ISD::SUBC:        return "subc";
5466  case ISD::SUBE:        return "sube";
5467  case ISD::SHL_PARTS:   return "shl_parts";
5468  case ISD::SRA_PARTS:   return "sra_parts";
5469  case ISD::SRL_PARTS:   return "srl_parts";
5470
5471  // Conversion operators.
5472  case ISD::SIGN_EXTEND: return "sign_extend";
5473  case ISD::ZERO_EXTEND: return "zero_extend";
5474  case ISD::ANY_EXTEND:  return "any_extend";
5475  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5476  case ISD::TRUNCATE:    return "truncate";
5477  case ISD::FP_ROUND:    return "fp_round";
5478  case ISD::FLT_ROUNDS_: return "flt_rounds";
5479  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5480  case ISD::FP_EXTEND:   return "fp_extend";
5481
5482  case ISD::SINT_TO_FP:  return "sint_to_fp";
5483  case ISD::UINT_TO_FP:  return "uint_to_fp";
5484  case ISD::FP_TO_SINT:  return "fp_to_sint";
5485  case ISD::FP_TO_UINT:  return "fp_to_uint";
5486  case ISD::BIT_CONVERT: return "bit_convert";
5487
5488  case ISD::CONVERT_RNDSAT: {
5489    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5490    default: llvm_unreachable("Unknown cvt code!");
5491    case ISD::CVT_FF:  return "cvt_ff";
5492    case ISD::CVT_FS:  return "cvt_fs";
5493    case ISD::CVT_FU:  return "cvt_fu";
5494    case ISD::CVT_SF:  return "cvt_sf";
5495    case ISD::CVT_UF:  return "cvt_uf";
5496    case ISD::CVT_SS:  return "cvt_ss";
5497    case ISD::CVT_SU:  return "cvt_su";
5498    case ISD::CVT_US:  return "cvt_us";
5499    case ISD::CVT_UU:  return "cvt_uu";
5500    }
5501  }
5502
5503    // Control flow instructions
5504  case ISD::BR:      return "br";
5505  case ISD::BRIND:   return "brind";
5506  case ISD::BR_JT:   return "br_jt";
5507  case ISD::BRCOND:  return "brcond";
5508  case ISD::BR_CC:   return "br_cc";
5509  case ISD::CALLSEQ_START:  return "callseq_start";
5510  case ISD::CALLSEQ_END:    return "callseq_end";
5511
5512    // Other operators
5513  case ISD::LOAD:               return "load";
5514  case ISD::STORE:              return "store";
5515  case ISD::VAARG:              return "vaarg";
5516  case ISD::VACOPY:             return "vacopy";
5517  case ISD::VAEND:              return "vaend";
5518  case ISD::VASTART:            return "vastart";
5519  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5520  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5521  case ISD::BUILD_PAIR:         return "build_pair";
5522  case ISD::STACKSAVE:          return "stacksave";
5523  case ISD::STACKRESTORE:       return "stackrestore";
5524  case ISD::TRAP:               return "trap";
5525
5526  // Bit manipulation
5527  case ISD::BSWAP:   return "bswap";
5528  case ISD::CTPOP:   return "ctpop";
5529  case ISD::CTTZ:    return "cttz";
5530  case ISD::CTLZ:    return "ctlz";
5531
5532  // Debug info
5533  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5534  case ISD::DEBUG_LOC: return "debug_loc";
5535
5536  // Trampolines
5537  case ISD::TRAMPOLINE: return "trampoline";
5538
5539  case ISD::CONDCODE:
5540    switch (cast<CondCodeSDNode>(this)->get()) {
5541    default: llvm_unreachable("Unknown setcc condition!");
5542    case ISD::SETOEQ:  return "setoeq";
5543    case ISD::SETOGT:  return "setogt";
5544    case ISD::SETOGE:  return "setoge";
5545    case ISD::SETOLT:  return "setolt";
5546    case ISD::SETOLE:  return "setole";
5547    case ISD::SETONE:  return "setone";
5548
5549    case ISD::SETO:    return "seto";
5550    case ISD::SETUO:   return "setuo";
5551    case ISD::SETUEQ:  return "setue";
5552    case ISD::SETUGT:  return "setugt";
5553    case ISD::SETUGE:  return "setuge";
5554    case ISD::SETULT:  return "setult";
5555    case ISD::SETULE:  return "setule";
5556    case ISD::SETUNE:  return "setune";
5557
5558    case ISD::SETEQ:   return "seteq";
5559    case ISD::SETGT:   return "setgt";
5560    case ISD::SETGE:   return "setge";
5561    case ISD::SETLT:   return "setlt";
5562    case ISD::SETLE:   return "setle";
5563    case ISD::SETNE:   return "setne";
5564    }
5565  }
5566}
5567
5568const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5569  switch (AM) {
5570  default:
5571    return "";
5572  case ISD::PRE_INC:
5573    return "<pre-inc>";
5574  case ISD::PRE_DEC:
5575    return "<pre-dec>";
5576  case ISD::POST_INC:
5577    return "<post-inc>";
5578  case ISD::POST_DEC:
5579    return "<post-dec>";
5580  }
5581}
5582
5583std::string ISD::ArgFlagsTy::getArgFlagsString() {
5584  std::string S = "< ";
5585
5586  if (isZExt())
5587    S += "zext ";
5588  if (isSExt())
5589    S += "sext ";
5590  if (isInReg())
5591    S += "inreg ";
5592  if (isSRet())
5593    S += "sret ";
5594  if (isByVal())
5595    S += "byval ";
5596  if (isNest())
5597    S += "nest ";
5598  if (getByValAlign())
5599    S += "byval-align:" + utostr(getByValAlign()) + " ";
5600  if (getOrigAlign())
5601    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5602  if (getByValSize())
5603    S += "byval-size:" + utostr(getByValSize()) + " ";
5604  return S + ">";
5605}
5606
5607void SDNode::dump() const { dump(0); }
5608void SDNode::dump(const SelectionDAG *G) const {
5609  print(errs(), G);
5610}
5611
5612void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5613  OS << (void*)this << ": ";
5614
5615  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5616    if (i) OS << ",";
5617    if (getValueType(i) == MVT::Other)
5618      OS << "ch";
5619    else
5620      OS << getValueType(i).getEVTString();
5621  }
5622  OS << " = " << getOperationName(G);
5623}
5624
5625void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5626  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5627    if (!MN->memoperands_empty()) {
5628      OS << "<";
5629      OS << "Mem:";
5630      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5631           e = MN->memoperands_end(); i != e; ++i) {
5632        OS << **i;
5633        if (next(i) != e)
5634          OS << " ";
5635      }
5636      OS << ">";
5637    }
5638  } else if (const ShuffleVectorSDNode *SVN =
5639               dyn_cast<ShuffleVectorSDNode>(this)) {
5640    OS << "<";
5641    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5642      int Idx = SVN->getMaskElt(i);
5643      if (i) OS << ",";
5644      if (Idx < 0)
5645        OS << "u";
5646      else
5647        OS << Idx;
5648    }
5649    OS << ">";
5650  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5651    OS << '<' << CSDN->getAPIntValue() << '>';
5652  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5653    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5654      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5655    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5656      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5657    else {
5658      OS << "<APFloat(";
5659      CSDN->getValueAPF().bitcastToAPInt().dump();
5660      OS << ")>";
5661    }
5662  } else if (const GlobalAddressSDNode *GADN =
5663             dyn_cast<GlobalAddressSDNode>(this)) {
5664    int64_t offset = GADN->getOffset();
5665    OS << '<';
5666    WriteAsOperand(OS, GADN->getGlobal());
5667    OS << '>';
5668    if (offset > 0)
5669      OS << " + " << offset;
5670    else
5671      OS << " " << offset;
5672    if (unsigned int TF = GADN->getTargetFlags())
5673      OS << " [TF=" << TF << ']';
5674  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5675    OS << "<" << FIDN->getIndex() << ">";
5676  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5677    OS << "<" << JTDN->getIndex() << ">";
5678    if (unsigned int TF = JTDN->getTargetFlags())
5679      OS << " [TF=" << TF << ']';
5680  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5681    int offset = CP->getOffset();
5682    if (CP->isMachineConstantPoolEntry())
5683      OS << "<" << *CP->getMachineCPVal() << ">";
5684    else
5685      OS << "<" << *CP->getConstVal() << ">";
5686    if (offset > 0)
5687      OS << " + " << offset;
5688    else
5689      OS << " " << offset;
5690    if (unsigned int TF = CP->getTargetFlags())
5691      OS << " [TF=" << TF << ']';
5692  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5693    OS << "<";
5694    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5695    if (LBB)
5696      OS << LBB->getName() << " ";
5697    OS << (const void*)BBDN->getBasicBlock() << ">";
5698  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5699    if (G && R->getReg() &&
5700        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5701      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5702    } else {
5703      OS << " #" << R->getReg();
5704    }
5705  } else if (const ExternalSymbolSDNode *ES =
5706             dyn_cast<ExternalSymbolSDNode>(this)) {
5707    OS << "'" << ES->getSymbol() << "'";
5708    if (unsigned int TF = ES->getTargetFlags())
5709      OS << " [TF=" << TF << ']';
5710  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5711    if (M->getValue())
5712      OS << "<" << M->getValue() << ">";
5713    else
5714      OS << "<null>";
5715  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5716    OS << ":" << N->getVT().getEVTString();
5717  }
5718  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5719    OS << " <" << *LD->getMemOperand();
5720
5721    bool doExt = true;
5722    switch (LD->getExtensionType()) {
5723    default: doExt = false; break;
5724    case ISD::EXTLOAD: OS << ", anyext"; break;
5725    case ISD::SEXTLOAD: OS << ", sext"; break;
5726    case ISD::ZEXTLOAD: OS << ", zext"; break;
5727    }
5728    if (doExt)
5729      OS << " from " << LD->getMemoryVT().getEVTString();
5730
5731    const char *AM = getIndexedModeName(LD->getAddressingMode());
5732    if (*AM)
5733      OS << ", " << AM;
5734
5735    OS << ">";
5736  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5737    OS << " <" << *ST->getMemOperand();
5738
5739    if (ST->isTruncatingStore())
5740      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5741
5742    const char *AM = getIndexedModeName(ST->getAddressingMode());
5743    if (*AM)
5744      OS << ", " << AM;
5745
5746    OS << ">";
5747  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5748    OS << " <" << *M->getMemOperand() << ">";
5749  }
5750}
5751
5752void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5753  print_types(OS, G);
5754  OS << " ";
5755  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5756    if (i) OS << ", ";
5757    OS << (void*)getOperand(i).getNode();
5758    if (unsigned RN = getOperand(i).getResNo())
5759      OS << ":" << RN;
5760  }
5761  print_details(OS, G);
5762}
5763
5764static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5765  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5766    if (N->getOperand(i).getNode()->hasOneUse())
5767      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5768    else
5769      errs() << "\n" << std::string(indent+2, ' ')
5770             << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5771
5772
5773  errs() << "\n";
5774  errs().indent(indent);
5775  N->dump(G);
5776}
5777
5778void SelectionDAG::dump() const {
5779  errs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
5780
5781  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5782       I != E; ++I) {
5783    const SDNode *N = I;
5784    if (!N->hasOneUse() && N != getRoot().getNode())
5785      DumpNodes(N, 2, this);
5786  }
5787
5788  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5789
5790  errs() << "\n\n";
5791}
5792
5793void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5794  print_types(OS, G);
5795  print_details(OS, G);
5796}
5797
5798typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5799static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5800                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5801  if (!once.insert(N))          // If we've been here before, return now.
5802    return;
5803  // Dump the current SDNode, but don't end the line yet.
5804  OS << std::string(indent, ' ');
5805  N->printr(OS, G);
5806  // Having printed this SDNode, walk the children:
5807  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5808    const SDNode *child = N->getOperand(i).getNode();
5809    if (i) OS << ",";
5810    OS << " ";
5811    if (child->getNumOperands() == 0) {
5812      // This child has no grandchildren; print it inline right here.
5813      child->printr(OS, G);
5814      once.insert(child);
5815    } else {          // Just the address.  FIXME: also print the child's opcode
5816      OS << (void*)child;
5817      if (unsigned RN = N->getOperand(i).getResNo())
5818        OS << ":" << RN;
5819    }
5820  }
5821  OS << "\n";
5822  // Dump children that have grandchildren on their own line(s).
5823  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5824    const SDNode *child = N->getOperand(i).getNode();
5825    DumpNodesr(OS, child, indent+2, G, once);
5826  }
5827}
5828
5829void SDNode::dumpr() const {
5830  VisitedSDNodeSet once;
5831  DumpNodesr(errs(), this, 0, 0, once);
5832}
5833
5834void SDNode::dumpr(const SelectionDAG *G) const {
5835  VisitedSDNodeSet once;
5836  DumpNodesr(errs(), this, 0, G, once);
5837}
5838
5839
5840// getAddressSpace - Return the address space this GlobalAddress belongs to.
5841unsigned GlobalAddressSDNode::getAddressSpace() const {
5842  return getGlobal()->getType()->getAddressSpace();
5843}
5844
5845
5846const Type *ConstantPoolSDNode::getType() const {
5847  if (isMachineConstantPoolEntry())
5848    return Val.MachineCPVal->getType();
5849  return Val.ConstVal->getType();
5850}
5851
5852bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5853                                        APInt &SplatUndef,
5854                                        unsigned &SplatBitSize,
5855                                        bool &HasAnyUndefs,
5856                                        unsigned MinSplatBits) {
5857  EVT VT = getValueType(0);
5858  assert(VT.isVector() && "Expected a vector type");
5859  unsigned sz = VT.getSizeInBits();
5860  if (MinSplatBits > sz)
5861    return false;
5862
5863  SplatValue = APInt(sz, 0);
5864  SplatUndef = APInt(sz, 0);
5865
5866  // Get the bits.  Bits with undefined values (when the corresponding element
5867  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5868  // in SplatValue.  If any of the values are not constant, give up and return
5869  // false.
5870  unsigned int nOps = getNumOperands();
5871  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5872  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5873  for (unsigned i = 0; i < nOps; ++i) {
5874    SDValue OpVal = getOperand(i);
5875    unsigned BitPos = i * EltBitSize;
5876
5877    if (OpVal.getOpcode() == ISD::UNDEF)
5878      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5879    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5880      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5881                     zextOrTrunc(sz) << BitPos);
5882    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5883      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5884     else
5885      return false;
5886  }
5887
5888  // The build_vector is all constants or undefs.  Find the smallest element
5889  // size that splats the vector.
5890
5891  HasAnyUndefs = (SplatUndef != 0);
5892  while (sz > 8) {
5893
5894    unsigned HalfSize = sz / 2;
5895    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5896    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5897    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5898    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5899
5900    // If the two halves do not match (ignoring undef bits), stop here.
5901    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5902        MinSplatBits > HalfSize)
5903      break;
5904
5905    SplatValue = HighValue | LowValue;
5906    SplatUndef = HighUndef & LowUndef;
5907
5908    sz = HalfSize;
5909  }
5910
5911  SplatBitSize = sz;
5912  return true;
5913}
5914
5915bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
5916  // Find the first non-undef value in the shuffle mask.
5917  unsigned i, e;
5918  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5919    /* search */;
5920
5921  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5922
5923  // Make sure all remaining elements are either undef or the same as the first
5924  // non-undef value.
5925  for (int Idx = Mask[i]; i != e; ++i)
5926    if (Mask[i] >= 0 && Mask[i] != Idx)
5927      return false;
5928  return true;
5929}
5930