SelectionDAG.cpp revision c9f8f416800784ca6453222b307bc44ad24739b0
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Target/MRegisterInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringExtras.h"
28#include <iostream>
29#include <set>
30#include <cmath>
31#include <algorithm>
32using namespace llvm;
33
34static bool isCommutativeBinOp(unsigned Opcode) {
35  switch (Opcode) {
36  case ISD::ADD:
37  case ISD::MUL:
38  case ISD::MULHU:
39  case ISD::MULHS:
40  case ISD::FADD:
41  case ISD::FMUL:
42  case ISD::AND:
43  case ISD::OR:
44  case ISD::XOR: return true;
45  default: return false; // FIXME: Need commutative info for user ops!
46  }
47}
48
49// isInvertibleForFree - Return true if there is no cost to emitting the logical
50// inverse of this node.
51static bool isInvertibleForFree(SDOperand N) {
52  if (isa<ConstantSDNode>(N.Val)) return true;
53  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
54    return true;
55  return false;
56}
57
58//===----------------------------------------------------------------------===//
59//                              ConstantFPSDNode Class
60//===----------------------------------------------------------------------===//
61
62/// isExactlyValue - We don't rely on operator== working on double values, as
63/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
64/// As such, this method can be used to do an exact bit-for-bit comparison of
65/// two floating point values.
66bool ConstantFPSDNode::isExactlyValue(double V) const {
67  return DoubleToBits(V) == DoubleToBits(Value);
68}
69
70//===----------------------------------------------------------------------===//
71//                              ISD Namespace
72//===----------------------------------------------------------------------===//
73
74/// isBuildVectorAllOnes - Return true if the specified node is a
75/// BUILD_VECTOR where all of the elements are ~0 or undef.
76bool ISD::isBuildVectorAllOnes(const SDNode *N) {
77  // Look through a bit convert.
78  if (N->getOpcode() == ISD::BIT_CONVERT)
79    N = N->getOperand(0).Val;
80
81  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
82
83  unsigned i = 0, e = N->getNumOperands();
84
85  // Skip over all of the undef values.
86  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
87    ++i;
88
89  // Do not accept an all-undef vector.
90  if (i == e) return false;
91
92  // Do not accept build_vectors that aren't all constants or which have non-~0
93  // elements.
94  SDOperand NotZero = N->getOperand(i);
95  if (isa<ConstantSDNode>(NotZero)) {
96    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
97      return false;
98  } else if (isa<ConstantFPSDNode>(NotZero)) {
99    MVT::ValueType VT = NotZero.getValueType();
100    if (VT== MVT::f64) {
101      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
102          (uint64_t)-1)
103        return false;
104    } else {
105      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
106          (uint32_t)-1)
107        return false;
108    }
109  } else
110    return false;
111
112  // Okay, we have at least one ~0 value, check to see if the rest match or are
113  // undefs.
114  for (++i; i != e; ++i)
115    if (N->getOperand(i) != NotZero &&
116        N->getOperand(i).getOpcode() != ISD::UNDEF)
117      return false;
118  return true;
119}
120
121
122/// isBuildVectorAllZeros - Return true if the specified node is a
123/// BUILD_VECTOR where all of the elements are 0 or undef.
124bool ISD::isBuildVectorAllZeros(const SDNode *N) {
125  // Look through a bit convert.
126  if (N->getOpcode() == ISD::BIT_CONVERT)
127    N = N->getOperand(0).Val;
128
129  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
130
131  unsigned i = 0, e = N->getNumOperands();
132
133  // Skip over all of the undef values.
134  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
135    ++i;
136
137  // Do not accept an all-undef vector.
138  if (i == e) return false;
139
140  // Do not accept build_vectors that aren't all constants or which have non-~0
141  // elements.
142  SDOperand Zero = N->getOperand(i);
143  if (isa<ConstantSDNode>(Zero)) {
144    if (!cast<ConstantSDNode>(Zero)->isNullValue())
145      return false;
146  } else if (isa<ConstantFPSDNode>(Zero)) {
147    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
148      return false;
149  } else
150    return false;
151
152  // Okay, we have at least one ~0 value, check to see if the rest match or are
153  // undefs.
154  for (++i; i != e; ++i)
155    if (N->getOperand(i) != Zero &&
156        N->getOperand(i).getOpcode() != ISD::UNDEF)
157      return false;
158  return true;
159}
160
161/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
162/// when given the operation for (X op Y).
163ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
164  // To perform this operation, we just need to swap the L and G bits of the
165  // operation.
166  unsigned OldL = (Operation >> 2) & 1;
167  unsigned OldG = (Operation >> 1) & 1;
168  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
169                       (OldL << 1) |       // New G bit
170                       (OldG << 2));        // New L bit.
171}
172
173/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
174/// 'op' is a valid SetCC operation.
175ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
176  unsigned Operation = Op;
177  if (isInteger)
178    Operation ^= 7;   // Flip L, G, E bits, but not U.
179  else
180    Operation ^= 15;  // Flip all of the condition bits.
181  if (Operation > ISD::SETTRUE2)
182    Operation &= ~8;     // Don't let N and U bits get set.
183  return ISD::CondCode(Operation);
184}
185
186
187/// isSignedOp - For an integer comparison, return 1 if the comparison is a
188/// signed operation and 2 if the result is an unsigned comparison.  Return zero
189/// if the operation does not depend on the sign of the input (setne and seteq).
190static int isSignedOp(ISD::CondCode Opcode) {
191  switch (Opcode) {
192  default: assert(0 && "Illegal integer setcc operation!");
193  case ISD::SETEQ:
194  case ISD::SETNE: return 0;
195  case ISD::SETLT:
196  case ISD::SETLE:
197  case ISD::SETGT:
198  case ISD::SETGE: return 1;
199  case ISD::SETULT:
200  case ISD::SETULE:
201  case ISD::SETUGT:
202  case ISD::SETUGE: return 2;
203  }
204}
205
206/// getSetCCOrOperation - Return the result of a logical OR between different
207/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
208/// returns SETCC_INVALID if it is not possible to represent the resultant
209/// comparison.
210ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
211                                       bool isInteger) {
212  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
213    // Cannot fold a signed integer setcc with an unsigned integer setcc.
214    return ISD::SETCC_INVALID;
215
216  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
217
218  // If the N and U bits get set then the resultant comparison DOES suddenly
219  // care about orderedness, and is true when ordered.
220  if (Op > ISD::SETTRUE2)
221    Op &= ~16;     // Clear the U bit if the N bit is set.
222
223  // Canonicalize illegal integer setcc's.
224  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
225    Op = ISD::SETNE;
226
227  return ISD::CondCode(Op);
228}
229
230/// getSetCCAndOperation - Return the result of a logical AND between different
231/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
232/// function returns zero if it is not possible to represent the resultant
233/// comparison.
234ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
235                                        bool isInteger) {
236  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
237    // Cannot fold a signed setcc with an unsigned setcc.
238    return ISD::SETCC_INVALID;
239
240  // Combine all of the condition bits.
241  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
242
243  // Canonicalize illegal integer setcc's.
244  if (isInteger) {
245    switch (Result) {
246    default: break;
247    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
248    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
249    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
250    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
251    }
252  }
253
254  return Result;
255}
256
257const TargetMachine &SelectionDAG::getTarget() const {
258  return TLI.getTargetMachine();
259}
260
261//===----------------------------------------------------------------------===//
262//                              SelectionDAG Class
263//===----------------------------------------------------------------------===//
264
265/// RemoveDeadNodes - This method deletes all unreachable nodes in the
266/// SelectionDAG.
267void SelectionDAG::RemoveDeadNodes() {
268  // Create a dummy node (which is not added to allnodes), that adds a reference
269  // to the root node, preventing it from being deleted.
270  HandleSDNode Dummy(getRoot());
271
272  SmallVector<SDNode*, 128> DeadNodes;
273
274  // Add all obviously-dead nodes to the DeadNodes worklist.
275  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
276    if (I->use_empty())
277      DeadNodes.push_back(I);
278
279  // Process the worklist, deleting the nodes and adding their uses to the
280  // worklist.
281  while (!DeadNodes.empty()) {
282    SDNode *N = DeadNodes.back();
283    DeadNodes.pop_back();
284
285    // Take the node out of the appropriate CSE map.
286    RemoveNodeFromCSEMaps(N);
287
288    // Next, brutally remove the operand list.  This is safe to do, as there are
289    // no cycles in the graph.
290    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
291      SDNode *Operand = I->Val;
292      Operand->removeUser(N);
293
294      // Now that we removed this operand, see if there are no uses of it left.
295      if (Operand->use_empty())
296        DeadNodes.push_back(Operand);
297    }
298    delete[] N->OperandList;
299    N->OperandList = 0;
300    N->NumOperands = 0;
301
302    // Finally, remove N itself.
303    AllNodes.erase(N);
304  }
305
306  // If the root changed (e.g. it was a dead load, update the root).
307  setRoot(Dummy.getValue());
308}
309
310void SelectionDAG::DeleteNode(SDNode *N) {
311  assert(N->use_empty() && "Cannot delete a node that is not dead!");
312
313  // First take this out of the appropriate CSE map.
314  RemoveNodeFromCSEMaps(N);
315
316  // Finally, remove uses due to operands of this node, remove from the
317  // AllNodes list, and delete the node.
318  DeleteNodeNotInCSEMaps(N);
319}
320
321void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
322
323  // Remove it from the AllNodes list.
324  AllNodes.remove(N);
325
326  // Drop all of the operands and decrement used nodes use counts.
327  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
328    I->Val->removeUser(N);
329  delete[] N->OperandList;
330  N->OperandList = 0;
331  N->NumOperands = 0;
332
333  delete N;
334}
335
336/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
337/// correspond to it.  This is useful when we're about to delete or repurpose
338/// the node.  We don't want future request for structurally identical nodes
339/// to return N anymore.
340void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
341  bool Erased = false;
342  switch (N->getOpcode()) {
343  case ISD::HANDLENODE: return;  // noop.
344  case ISD::STRING:
345    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
346    break;
347  case ISD::CONDCODE:
348    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
349           "Cond code doesn't exist!");
350    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
351    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
352    break;
353  case ISD::ExternalSymbol:
354    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
355    break;
356  case ISD::TargetExternalSymbol:
357    Erased =
358      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
359    break;
360  case ISD::VALUETYPE:
361    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
362    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
363    break;
364  default:
365    // Remove it from the CSE Map.
366    Erased = CSEMap.RemoveNode(N);
367    break;
368  }
369#ifndef NDEBUG
370  // Verify that the node was actually in one of the CSE maps, unless it has a
371  // flag result (which cannot be CSE'd) or is one of the special cases that are
372  // not subject to CSE.
373  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
374      !N->isTargetOpcode()) {
375    N->dump();
376    std::cerr << "\n";
377    assert(0 && "Node is not in map!");
378  }
379#endif
380}
381
382/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
383/// has been taken out and modified in some way.  If the specified node already
384/// exists in the CSE maps, do not modify the maps, but return the existing node
385/// instead.  If it doesn't exist, add it and return null.
386///
387SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
388  assert(N->getNumOperands() && "This is a leaf node!");
389  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
390    return 0;    // Never add these nodes.
391
392  // Check that remaining values produced are not flags.
393  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
394    if (N->getValueType(i) == MVT::Flag)
395      return 0;   // Never CSE anything that produces a flag.
396
397  SDNode *New = CSEMap.GetOrInsertNode(N);
398  if (New != N) return New;  // Node already existed.
399  return 0;
400}
401
402/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
403/// were replaced with those specified.  If this node is never memoized,
404/// return null, otherwise return a pointer to the slot it would take.  If a
405/// node already exists with these operands, the slot will be non-null.
406SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
407                                           void *&InsertPos) {
408  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
409    return 0;    // Never add these nodes.
410
411  // Check that remaining values produced are not flags.
412  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
413    if (N->getValueType(i) == MVT::Flag)
414      return 0;   // Never CSE anything that produces a flag.
415
416  SelectionDAGCSEMap::NodeID ID;
417  ID.SetOpcode(N->getOpcode());
418  ID.SetValueTypes(N->value_begin());
419  ID.SetOperands(Op);
420  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
421}
422
423/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
424/// were replaced with those specified.  If this node is never memoized,
425/// return null, otherwise return a pointer to the slot it would take.  If a
426/// node already exists with these operands, the slot will be non-null.
427SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
428                                           SDOperand Op1, SDOperand Op2,
429                                           void *&InsertPos) {
430  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
431    return 0;    // Never add these nodes.
432
433  // Check that remaining values produced are not flags.
434  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
435    if (N->getValueType(i) == MVT::Flag)
436      return 0;   // Never CSE anything that produces a flag.
437
438  SelectionDAGCSEMap::NodeID ID;
439  ID.SetOpcode(N->getOpcode());
440  ID.SetValueTypes(N->value_begin());
441  ID.SetOperands(Op1, Op2);
442  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
443}
444
445
446/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
447/// were replaced with those specified.  If this node is never memoized,
448/// return null, otherwise return a pointer to the slot it would take.  If a
449/// node already exists with these operands, the slot will be non-null.
450SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
451                                           const SDOperand *Ops,unsigned NumOps,
452                                           void *&InsertPos) {
453  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
454    return 0;    // Never add these nodes.
455
456  // Check that remaining values produced are not flags.
457  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
458    if (N->getValueType(i) == MVT::Flag)
459      return 0;   // Never CSE anything that produces a flag.
460
461  SelectionDAGCSEMap::NodeID ID;
462  ID.SetOpcode(N->getOpcode());
463  ID.SetValueTypes(N->value_begin());
464  ID.SetOperands(Ops, NumOps);
465  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
466}
467
468
469SelectionDAG::~SelectionDAG() {
470  while (!AllNodes.empty()) {
471    SDNode *N = AllNodes.begin();
472    delete [] N->OperandList;
473    N->OperandList = 0;
474    N->NumOperands = 0;
475    AllNodes.pop_front();
476  }
477}
478
479SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
480  if (Op.getValueType() == VT) return Op;
481  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
482  return getNode(ISD::AND, Op.getValueType(), Op,
483                 getConstant(Imm, Op.getValueType()));
484}
485
486SDOperand SelectionDAG::getString(const std::string &Val) {
487  StringSDNode *&N = StringNodes[Val];
488  if (!N) {
489    N = new StringSDNode(Val);
490    AllNodes.push_back(N);
491  }
492  return SDOperand(N, 0);
493}
494
495SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
496  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
497  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
498
499  // Mask out any bits that are not valid for this constant.
500  Val &= MVT::getIntVTBitMask(VT);
501
502  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
503  SelectionDAGCSEMap::NodeID ID(Opc, getNodeValueTypes(VT));
504  ID.AddInteger(Val);
505  void *IP = 0;
506  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
507    return SDOperand(E, 0);
508  SDNode *N = new ConstantSDNode(isT, Val, VT);
509  CSEMap.InsertNode(N, IP);
510  AllNodes.push_back(N);
511  return SDOperand(N, 0);
512}
513
514
515SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
516                                      bool isTarget) {
517  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
518  if (VT == MVT::f32)
519    Val = (float)Val;  // Mask out extra precision.
520
521  // Do the map lookup using the actual bit pattern for the floating point
522  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
523  // we don't have issues with SNANs.
524  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
525  SelectionDAGCSEMap::NodeID ID(Opc, getNodeValueTypes(VT));
526  ID.AddInteger(DoubleToBits(Val));
527  void *IP = 0;
528  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
529    return SDOperand(E, 0);
530  SDNode *N = new ConstantFPSDNode(isTarget, Val, VT);
531  CSEMap.InsertNode(N, IP);
532  AllNodes.push_back(N);
533  return SDOperand(N, 0);
534}
535
536SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
537                                         MVT::ValueType VT, int Offset,
538                                         bool isTargetGA) {
539  unsigned Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
540  SelectionDAGCSEMap::NodeID ID(Opc, getNodeValueTypes(VT));
541  ID.AddPointer(GV);
542  ID.AddInteger(Offset);
543  void *IP = 0;
544  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
545   return SDOperand(E, 0);
546  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
547  CSEMap.InsertNode(N, IP);
548  AllNodes.push_back(N);
549  return SDOperand(N, 0);
550}
551
552SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
553                                      bool isTarget) {
554  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
555  SelectionDAGCSEMap::NodeID ID(Opc, getNodeValueTypes(VT));
556  ID.AddInteger(FI);
557  void *IP = 0;
558  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
559    return SDOperand(E, 0);
560  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
561  CSEMap.InsertNode(N, IP);
562  AllNodes.push_back(N);
563  return SDOperand(N, 0);
564}
565
566SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
567  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
568  SelectionDAGCSEMap::NodeID ID(Opc, getNodeValueTypes(VT));
569  ID.AddInteger(JTI);
570  void *IP = 0;
571  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
572    return SDOperand(E, 0);
573  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
574  CSEMap.InsertNode(N, IP);
575  AllNodes.push_back(N);
576  return SDOperand(N, 0);
577}
578
579SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
580                                        unsigned Alignment, int Offset,
581                                        bool isTarget) {
582  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
583  SelectionDAGCSEMap::NodeID ID(Opc, getNodeValueTypes(VT));
584  ID.AddInteger(Alignment);
585  ID.AddInteger(Offset);
586  void *IP = 0;
587  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
588    return SDOperand(E, 0);
589  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
590  CSEMap.InsertNode(N, IP);
591  AllNodes.push_back(N);
592  return SDOperand(N, 0);
593}
594
595
596SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
597  SelectionDAGCSEMap::NodeID ID(ISD::BasicBlock, getNodeValueTypes(MVT::Other));
598  ID.AddPointer(MBB);
599  void *IP = 0;
600  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
601    return SDOperand(E, 0);
602  SDNode *N = new BasicBlockSDNode(MBB);
603  CSEMap.InsertNode(N, IP);
604  AllNodes.push_back(N);
605  return SDOperand(N, 0);
606}
607
608SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
609  if ((unsigned)VT >= ValueTypeNodes.size())
610    ValueTypeNodes.resize(VT+1);
611  if (ValueTypeNodes[VT] == 0) {
612    ValueTypeNodes[VT] = new VTSDNode(VT);
613    AllNodes.push_back(ValueTypeNodes[VT]);
614  }
615
616  return SDOperand(ValueTypeNodes[VT], 0);
617}
618
619SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
620  SDNode *&N = ExternalSymbols[Sym];
621  if (N) return SDOperand(N, 0);
622  N = new ExternalSymbolSDNode(false, Sym, VT);
623  AllNodes.push_back(N);
624  return SDOperand(N, 0);
625}
626
627SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
628                                                MVT::ValueType VT) {
629  SDNode *&N = TargetExternalSymbols[Sym];
630  if (N) return SDOperand(N, 0);
631  N = new ExternalSymbolSDNode(true, Sym, VT);
632  AllNodes.push_back(N);
633  return SDOperand(N, 0);
634}
635
636SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
637  if ((unsigned)Cond >= CondCodeNodes.size())
638    CondCodeNodes.resize(Cond+1);
639
640  if (CondCodeNodes[Cond] == 0) {
641    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
642    AllNodes.push_back(CondCodeNodes[Cond]);
643  }
644  return SDOperand(CondCodeNodes[Cond], 0);
645}
646
647SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
648  SelectionDAGCSEMap::NodeID ID(ISD::Register, getNodeValueTypes(VT));
649  ID.AddInteger(RegNo);
650  void *IP = 0;
651  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
652    return SDOperand(E, 0);
653  SDNode *N = new RegisterSDNode(RegNo, VT);
654  CSEMap.InsertNode(N, IP);
655  AllNodes.push_back(N);
656  return SDOperand(N, 0);
657}
658
659SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
660  assert((!V || isa<PointerType>(V->getType())) &&
661         "SrcValue is not a pointer?");
662
663  SelectionDAGCSEMap::NodeID ID(ISD::SRCVALUE, getNodeValueTypes(MVT::Other));
664  ID.AddPointer(V);
665  ID.AddInteger(Offset);
666  void *IP = 0;
667  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
668    return SDOperand(E, 0);
669  SDNode *N = new SrcValueSDNode(V, Offset);
670  CSEMap.InsertNode(N, IP);
671  AllNodes.push_back(N);
672  return SDOperand(N, 0);
673}
674
675SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
676                                      SDOperand N2, ISD::CondCode Cond) {
677  // These setcc operations always fold.
678  switch (Cond) {
679  default: break;
680  case ISD::SETFALSE:
681  case ISD::SETFALSE2: return getConstant(0, VT);
682  case ISD::SETTRUE:
683  case ISD::SETTRUE2:  return getConstant(1, VT);
684
685  case ISD::SETOEQ:
686  case ISD::SETOGT:
687  case ISD::SETOGE:
688  case ISD::SETOLT:
689  case ISD::SETOLE:
690  case ISD::SETONE:
691  case ISD::SETO:
692  case ISD::SETUO:
693  case ISD::SETUEQ:
694  case ISD::SETUNE:
695    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
696    break;
697  }
698
699  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
700    uint64_t C2 = N2C->getValue();
701    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
702      uint64_t C1 = N1C->getValue();
703
704      // Sign extend the operands if required
705      if (ISD::isSignedIntSetCC(Cond)) {
706        C1 = N1C->getSignExtended();
707        C2 = N2C->getSignExtended();
708      }
709
710      switch (Cond) {
711      default: assert(0 && "Unknown integer setcc!");
712      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
713      case ISD::SETNE:  return getConstant(C1 != C2, VT);
714      case ISD::SETULT: return getConstant(C1 <  C2, VT);
715      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
716      case ISD::SETULE: return getConstant(C1 <= C2, VT);
717      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
718      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
719      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
720      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
721      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
722      }
723    } else {
724      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
725      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
726        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
727
728        // If the comparison constant has bits in the upper part, the
729        // zero-extended value could never match.
730        if (C2 & (~0ULL << InSize)) {
731          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
732          switch (Cond) {
733          case ISD::SETUGT:
734          case ISD::SETUGE:
735          case ISD::SETEQ: return getConstant(0, VT);
736          case ISD::SETULT:
737          case ISD::SETULE:
738          case ISD::SETNE: return getConstant(1, VT);
739          case ISD::SETGT:
740          case ISD::SETGE:
741            // True if the sign bit of C2 is set.
742            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
743          case ISD::SETLT:
744          case ISD::SETLE:
745            // True if the sign bit of C2 isn't set.
746            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
747          default:
748            break;
749          }
750        }
751
752        // Otherwise, we can perform the comparison with the low bits.
753        switch (Cond) {
754        case ISD::SETEQ:
755        case ISD::SETNE:
756        case ISD::SETUGT:
757        case ISD::SETUGE:
758        case ISD::SETULT:
759        case ISD::SETULE:
760          return getSetCC(VT, N1.getOperand(0),
761                          getConstant(C2, N1.getOperand(0).getValueType()),
762                          Cond);
763        default:
764          break;   // todo, be more careful with signed comparisons
765        }
766      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
767                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
768        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
769        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
770        MVT::ValueType ExtDstTy = N1.getValueType();
771        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
772
773        // If the extended part has any inconsistent bits, it cannot ever
774        // compare equal.  In other words, they have to be all ones or all
775        // zeros.
776        uint64_t ExtBits =
777          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
778        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
779          return getConstant(Cond == ISD::SETNE, VT);
780
781        // Otherwise, make this a use of a zext.
782        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
783                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
784                        Cond);
785      }
786
787      uint64_t MinVal, MaxVal;
788      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
789      if (ISD::isSignedIntSetCC(Cond)) {
790        MinVal = 1ULL << (OperandBitSize-1);
791        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
792          MaxVal = ~0ULL >> (65-OperandBitSize);
793        else
794          MaxVal = 0;
795      } else {
796        MinVal = 0;
797        MaxVal = ~0ULL >> (64-OperandBitSize);
798      }
799
800      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
801      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
802        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
803        --C2;                                          // X >= C1 --> X > (C1-1)
804        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
805                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
806      }
807
808      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
809        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
810        ++C2;                                          // X <= C1 --> X < (C1+1)
811        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
812                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
813      }
814
815      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
816        return getConstant(0, VT);      // X < MIN --> false
817
818      // Canonicalize setgt X, Min --> setne X, Min
819      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
820        return getSetCC(VT, N1, N2, ISD::SETNE);
821
822      // If we have setult X, 1, turn it into seteq X, 0
823      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
824        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
825                        ISD::SETEQ);
826      // If we have setugt X, Max-1, turn it into seteq X, Max
827      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
828        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
829                        ISD::SETEQ);
830
831      // If we have "setcc X, C1", check to see if we can shrink the immediate
832      // by changing cc.
833
834      // SETUGT X, SINTMAX  -> SETLT X, 0
835      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
836          C2 == (~0ULL >> (65-OperandBitSize)))
837        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
838
839      // FIXME: Implement the rest of these.
840
841
842      // Fold bit comparisons when we can.
843      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
844          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
845        if (ConstantSDNode *AndRHS =
846                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
847          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
848            // Perform the xform if the AND RHS is a single bit.
849            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
850              return getNode(ISD::SRL, VT, N1,
851                             getConstant(Log2_64(AndRHS->getValue()),
852                                                   TLI.getShiftAmountTy()));
853            }
854          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
855            // (X & 8) == 8  -->  (X & 8) >> 3
856            // Perform the xform if C2 is a single bit.
857            if ((C2 & (C2-1)) == 0) {
858              return getNode(ISD::SRL, VT, N1,
859                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
860            }
861          }
862        }
863    }
864  } else if (isa<ConstantSDNode>(N1.Val)) {
865      // Ensure that the constant occurs on the RHS.
866    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
867  }
868
869  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
870    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
871      double C1 = N1C->getValue(), C2 = N2C->getValue();
872
873      switch (Cond) {
874      default: break; // FIXME: Implement the rest of these!
875      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
876      case ISD::SETNE:  return getConstant(C1 != C2, VT);
877      case ISD::SETLT:  return getConstant(C1 < C2, VT);
878      case ISD::SETGT:  return getConstant(C1 > C2, VT);
879      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
880      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
881      }
882    } else {
883      // Ensure that the constant occurs on the RHS.
884      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
885    }
886
887  // Could not fold it.
888  return SDOperand();
889}
890
891/// getNode - Gets or creates the specified node.
892///
893SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
894  MVT::ValueType *VTs = getNodeValueTypes(VT);
895  SelectionDAGCSEMap::NodeID ID(Opcode, VTs);
896  void *IP = 0;
897  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
898    return SDOperand(E, 0);
899  SDNode *N = new SDNode(Opcode, VT);
900  CSEMap.InsertNode(N, IP);
901
902  AllNodes.push_back(N);
903  return SDOperand(N, 0);
904}
905
906SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
907                                SDOperand Operand) {
908  unsigned Tmp1;
909  // Constant fold unary operations with an integer constant operand.
910  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
911    uint64_t Val = C->getValue();
912    switch (Opcode) {
913    default: break;
914    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
915    case ISD::ANY_EXTEND:
916    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
917    case ISD::TRUNCATE:    return getConstant(Val, VT);
918    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
919    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
920    case ISD::BIT_CONVERT:
921      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
922        return getConstantFP(BitsToFloat(Val), VT);
923      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
924        return getConstantFP(BitsToDouble(Val), VT);
925      break;
926    case ISD::BSWAP:
927      switch(VT) {
928      default: assert(0 && "Invalid bswap!"); break;
929      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
930      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
931      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
932      }
933      break;
934    case ISD::CTPOP:
935      switch(VT) {
936      default: assert(0 && "Invalid ctpop!"); break;
937      case MVT::i1: return getConstant(Val != 0, VT);
938      case MVT::i8:
939        Tmp1 = (unsigned)Val & 0xFF;
940        return getConstant(CountPopulation_32(Tmp1), VT);
941      case MVT::i16:
942        Tmp1 = (unsigned)Val & 0xFFFF;
943        return getConstant(CountPopulation_32(Tmp1), VT);
944      case MVT::i32:
945        return getConstant(CountPopulation_32((unsigned)Val), VT);
946      case MVT::i64:
947        return getConstant(CountPopulation_64(Val), VT);
948      }
949    case ISD::CTLZ:
950      switch(VT) {
951      default: assert(0 && "Invalid ctlz!"); break;
952      case MVT::i1: return getConstant(Val == 0, VT);
953      case MVT::i8:
954        Tmp1 = (unsigned)Val & 0xFF;
955        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
956      case MVT::i16:
957        Tmp1 = (unsigned)Val & 0xFFFF;
958        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
959      case MVT::i32:
960        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
961      case MVT::i64:
962        return getConstant(CountLeadingZeros_64(Val), VT);
963      }
964    case ISD::CTTZ:
965      switch(VT) {
966      default: assert(0 && "Invalid cttz!"); break;
967      case MVT::i1: return getConstant(Val == 0, VT);
968      case MVT::i8:
969        Tmp1 = (unsigned)Val | 0x100;
970        return getConstant(CountTrailingZeros_32(Tmp1), VT);
971      case MVT::i16:
972        Tmp1 = (unsigned)Val | 0x10000;
973        return getConstant(CountTrailingZeros_32(Tmp1), VT);
974      case MVT::i32:
975        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
976      case MVT::i64:
977        return getConstant(CountTrailingZeros_64(Val), VT);
978      }
979    }
980  }
981
982  // Constant fold unary operations with an floating point constant operand.
983  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
984    switch (Opcode) {
985    case ISD::FNEG:
986      return getConstantFP(-C->getValue(), VT);
987    case ISD::FABS:
988      return getConstantFP(fabs(C->getValue()), VT);
989    case ISD::FP_ROUND:
990    case ISD::FP_EXTEND:
991      return getConstantFP(C->getValue(), VT);
992    case ISD::FP_TO_SINT:
993      return getConstant((int64_t)C->getValue(), VT);
994    case ISD::FP_TO_UINT:
995      return getConstant((uint64_t)C->getValue(), VT);
996    case ISD::BIT_CONVERT:
997      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
998        return getConstant(FloatToBits(C->getValue()), VT);
999      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1000        return getConstant(DoubleToBits(C->getValue()), VT);
1001      break;
1002    }
1003
1004  unsigned OpOpcode = Operand.Val->getOpcode();
1005  switch (Opcode) {
1006  case ISD::TokenFactor:
1007    return Operand;         // Factor of one node?  No factor.
1008  case ISD::SIGN_EXTEND:
1009    if (Operand.getValueType() == VT) return Operand;   // noop extension
1010    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1011    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1012      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1013    break;
1014  case ISD::ZERO_EXTEND:
1015    if (Operand.getValueType() == VT) return Operand;   // noop extension
1016    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1017    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1018      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1019    break;
1020  case ISD::ANY_EXTEND:
1021    if (Operand.getValueType() == VT) return Operand;   // noop extension
1022    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1023    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1024      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1025      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1026    break;
1027  case ISD::TRUNCATE:
1028    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1029    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1030    if (OpOpcode == ISD::TRUNCATE)
1031      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1032    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1033             OpOpcode == ISD::ANY_EXTEND) {
1034      // If the source is smaller than the dest, we still need an extend.
1035      if (Operand.Val->getOperand(0).getValueType() < VT)
1036        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1037      else if (Operand.Val->getOperand(0).getValueType() > VT)
1038        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1039      else
1040        return Operand.Val->getOperand(0);
1041    }
1042    break;
1043  case ISD::BIT_CONVERT:
1044    // Basic sanity checking.
1045    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1046           && "Cannot BIT_CONVERT between two different types!");
1047    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1048    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1049      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1050    if (OpOpcode == ISD::UNDEF)
1051      return getNode(ISD::UNDEF, VT);
1052    break;
1053  case ISD::SCALAR_TO_VECTOR:
1054    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1055           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1056           "Illegal SCALAR_TO_VECTOR node!");
1057    break;
1058  case ISD::FNEG:
1059    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1060      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1061                     Operand.Val->getOperand(0));
1062    if (OpOpcode == ISD::FNEG)  // --X -> X
1063      return Operand.Val->getOperand(0);
1064    break;
1065  case ISD::FABS:
1066    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1067      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1068    break;
1069  }
1070
1071  SDNode *N;
1072  MVT::ValueType *VTs = getNodeValueTypes(VT);
1073  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1074    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Operand);
1075    void *IP = 0;
1076    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1077      return SDOperand(E, 0);
1078    N = new SDNode(Opcode, Operand);
1079    N->setValueTypes(VTs, 1);
1080    CSEMap.InsertNode(N, IP);
1081  } else {
1082    N = new SDNode(Opcode, Operand);
1083    N->setValueTypes(VTs, 1);
1084  }
1085  AllNodes.push_back(N);
1086  return SDOperand(N, 0);
1087}
1088
1089
1090
1091SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1092                                SDOperand N1, SDOperand N2) {
1093#ifndef NDEBUG
1094  switch (Opcode) {
1095  case ISD::TokenFactor:
1096    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1097           N2.getValueType() == MVT::Other && "Invalid token factor!");
1098    break;
1099  case ISD::AND:
1100  case ISD::OR:
1101  case ISD::XOR:
1102  case ISD::UDIV:
1103  case ISD::UREM:
1104  case ISD::MULHU:
1105  case ISD::MULHS:
1106    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1107    // fall through
1108  case ISD::ADD:
1109  case ISD::SUB:
1110  case ISD::MUL:
1111  case ISD::SDIV:
1112  case ISD::SREM:
1113    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1114    // fall through.
1115  case ISD::FADD:
1116  case ISD::FSUB:
1117  case ISD::FMUL:
1118  case ISD::FDIV:
1119  case ISD::FREM:
1120    assert(N1.getValueType() == N2.getValueType() &&
1121           N1.getValueType() == VT && "Binary operator types must match!");
1122    break;
1123  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1124    assert(N1.getValueType() == VT &&
1125           MVT::isFloatingPoint(N1.getValueType()) &&
1126           MVT::isFloatingPoint(N2.getValueType()) &&
1127           "Invalid FCOPYSIGN!");
1128    break;
1129  case ISD::SHL:
1130  case ISD::SRA:
1131  case ISD::SRL:
1132  case ISD::ROTL:
1133  case ISD::ROTR:
1134    assert(VT == N1.getValueType() &&
1135           "Shift operators return type must be the same as their first arg");
1136    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1137           VT != MVT::i1 && "Shifts only work on integers");
1138    break;
1139  case ISD::FP_ROUND_INREG: {
1140    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1141    assert(VT == N1.getValueType() && "Not an inreg round!");
1142    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1143           "Cannot FP_ROUND_INREG integer types");
1144    assert(EVT <= VT && "Not rounding down!");
1145    break;
1146  }
1147  case ISD::AssertSext:
1148  case ISD::AssertZext:
1149  case ISD::SIGN_EXTEND_INREG: {
1150    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1151    assert(VT == N1.getValueType() && "Not an inreg extend!");
1152    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1153           "Cannot *_EXTEND_INREG FP types");
1154    assert(EVT <= VT && "Not extending!");
1155  }
1156
1157  default: break;
1158  }
1159#endif
1160
1161  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1162  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1163  if (N1C) {
1164    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1165      int64_t Val = N1C->getValue();
1166      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1167      Val <<= 64-FromBits;
1168      Val >>= 64-FromBits;
1169      return getConstant(Val, VT);
1170    }
1171
1172    if (N2C) {
1173      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1174      switch (Opcode) {
1175      case ISD::ADD: return getConstant(C1 + C2, VT);
1176      case ISD::SUB: return getConstant(C1 - C2, VT);
1177      case ISD::MUL: return getConstant(C1 * C2, VT);
1178      case ISD::UDIV:
1179        if (C2) return getConstant(C1 / C2, VT);
1180        break;
1181      case ISD::UREM :
1182        if (C2) return getConstant(C1 % C2, VT);
1183        break;
1184      case ISD::SDIV :
1185        if (C2) return getConstant(N1C->getSignExtended() /
1186                                   N2C->getSignExtended(), VT);
1187        break;
1188      case ISD::SREM :
1189        if (C2) return getConstant(N1C->getSignExtended() %
1190                                   N2C->getSignExtended(), VT);
1191        break;
1192      case ISD::AND  : return getConstant(C1 & C2, VT);
1193      case ISD::OR   : return getConstant(C1 | C2, VT);
1194      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1195      case ISD::SHL  : return getConstant(C1 << C2, VT);
1196      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1197      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1198      case ISD::ROTL :
1199        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1200                           VT);
1201      case ISD::ROTR :
1202        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1203                           VT);
1204      default: break;
1205      }
1206    } else {      // Cannonicalize constant to RHS if commutative
1207      if (isCommutativeBinOp(Opcode)) {
1208        std::swap(N1C, N2C);
1209        std::swap(N1, N2);
1210      }
1211    }
1212  }
1213
1214  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1215  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1216  if (N1CFP) {
1217    if (N2CFP) {
1218      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1219      switch (Opcode) {
1220      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1221      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1222      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1223      case ISD::FDIV:
1224        if (C2) return getConstantFP(C1 / C2, VT);
1225        break;
1226      case ISD::FREM :
1227        if (C2) return getConstantFP(fmod(C1, C2), VT);
1228        break;
1229      case ISD::FCOPYSIGN: {
1230        union {
1231          double   F;
1232          uint64_t I;
1233        } u1;
1234        union {
1235          double  F;
1236          int64_t I;
1237        } u2;
1238        u1.F = C1;
1239        u2.F = C2;
1240        if (u2.I < 0)  // Sign bit of RHS set?
1241          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1242        else
1243          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1244        return getConstantFP(u1.F, VT);
1245      }
1246      default: break;
1247      }
1248    } else {      // Cannonicalize constant to RHS if commutative
1249      if (isCommutativeBinOp(Opcode)) {
1250        std::swap(N1CFP, N2CFP);
1251        std::swap(N1, N2);
1252      }
1253    }
1254  }
1255
1256  // Canonicalize an UNDEF to the RHS, even over a constant.
1257  if (N1.getOpcode() == ISD::UNDEF) {
1258    if (isCommutativeBinOp(Opcode)) {
1259      std::swap(N1, N2);
1260    } else {
1261      switch (Opcode) {
1262      case ISD::FP_ROUND_INREG:
1263      case ISD::SIGN_EXTEND_INREG:
1264      case ISD::SUB:
1265      case ISD::FSUB:
1266      case ISD::FDIV:
1267      case ISD::FREM:
1268      case ISD::SRA:
1269        return N1;     // fold op(undef, arg2) -> undef
1270      case ISD::UDIV:
1271      case ISD::SDIV:
1272      case ISD::UREM:
1273      case ISD::SREM:
1274      case ISD::SRL:
1275      case ISD::SHL:
1276        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1277      }
1278    }
1279  }
1280
1281  // Fold a bunch of operators when the RHS is undef.
1282  if (N2.getOpcode() == ISD::UNDEF) {
1283    switch (Opcode) {
1284    case ISD::ADD:
1285    case ISD::SUB:
1286    case ISD::FADD:
1287    case ISD::FSUB:
1288    case ISD::FMUL:
1289    case ISD::FDIV:
1290    case ISD::FREM:
1291    case ISD::UDIV:
1292    case ISD::SDIV:
1293    case ISD::UREM:
1294    case ISD::SREM:
1295    case ISD::XOR:
1296      return N2;       // fold op(arg1, undef) -> undef
1297    case ISD::MUL:
1298    case ISD::AND:
1299    case ISD::SRL:
1300    case ISD::SHL:
1301      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1302    case ISD::OR:
1303      return getConstant(MVT::getIntVTBitMask(VT), VT);
1304    case ISD::SRA:
1305      return N1;
1306    }
1307  }
1308
1309  // Finally, fold operations that do not require constants.
1310  switch (Opcode) {
1311  case ISD::FP_ROUND_INREG:
1312    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1313    break;
1314  case ISD::SIGN_EXTEND_INREG: {
1315    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1316    if (EVT == VT) return N1;  // Not actually extending
1317    break;
1318  }
1319
1320  // FIXME: figure out how to safely handle things like
1321  // int foo(int x) { return 1 << (x & 255); }
1322  // int bar() { return foo(256); }
1323#if 0
1324  case ISD::SHL:
1325  case ISD::SRL:
1326  case ISD::SRA:
1327    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1328        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1329      return getNode(Opcode, VT, N1, N2.getOperand(0));
1330    else if (N2.getOpcode() == ISD::AND)
1331      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1332        // If the and is only masking out bits that cannot effect the shift,
1333        // eliminate the and.
1334        unsigned NumBits = MVT::getSizeInBits(VT);
1335        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1336          return getNode(Opcode, VT, N1, N2.getOperand(0));
1337      }
1338    break;
1339#endif
1340  }
1341
1342  // Memoize this node if possible.
1343  SDNode *N;
1344  MVT::ValueType *VTs = getNodeValueTypes(VT);
1345  if (VT != MVT::Flag) {
1346    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2);
1347    void *IP = 0;
1348    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1349      return SDOperand(E, 0);
1350    N = new SDNode(Opcode, N1, N2);
1351    N->setValueTypes(VTs, 1);
1352    CSEMap.InsertNode(N, IP);
1353  } else {
1354    N = new SDNode(Opcode, N1, N2);
1355    N->setValueTypes(VTs, 1);
1356  }
1357
1358  AllNodes.push_back(N);
1359  return SDOperand(N, 0);
1360}
1361
1362SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1363                                SDOperand N1, SDOperand N2, SDOperand N3) {
1364  // Perform various simplifications.
1365  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1366  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1367  //ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1368  switch (Opcode) {
1369  case ISD::SETCC: {
1370    // Use SimplifySetCC  to simplify SETCC's.
1371    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1372    if (Simp.Val) return Simp;
1373    break;
1374  }
1375  case ISD::SELECT:
1376    if (N1C)
1377      if (N1C->getValue())
1378        return N2;             // select true, X, Y -> X
1379      else
1380        return N3;             // select false, X, Y -> Y
1381
1382    if (N2 == N3) return N2;   // select C, X, X -> X
1383    break;
1384  case ISD::BRCOND:
1385    if (N2C)
1386      if (N2C->getValue()) // Unconditional branch
1387        return getNode(ISD::BR, MVT::Other, N1, N3);
1388      else
1389        return N1;         // Never-taken branch
1390    break;
1391  case ISD::VECTOR_SHUFFLE:
1392    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1393           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1394           N3.getOpcode() == ISD::BUILD_VECTOR &&
1395           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1396           "Illegal VECTOR_SHUFFLE node!");
1397    break;
1398  }
1399
1400  // Memoize node if it doesn't produce a flag.
1401  SDNode *N;
1402  MVT::ValueType *VTs = getNodeValueTypes(VT);
1403
1404  if (VT != MVT::Flag) {
1405    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2, N3);
1406    void *IP = 0;
1407    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1408      return SDOperand(E, 0);
1409    N = new SDNode(Opcode, N1, N2, N3);
1410    N->setValueTypes(VTs, 1);
1411    CSEMap.InsertNode(N, IP);
1412  } else {
1413    N = new SDNode(Opcode, N1, N2, N3);
1414    N->setValueTypes(VTs, 1);
1415  }
1416  AllNodes.push_back(N);
1417  return SDOperand(N, 0);
1418}
1419
1420SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1421                                SDOperand N1, SDOperand N2, SDOperand N3,
1422                                SDOperand N4) {
1423  SDOperand Ops[] = { N1, N2, N3, N4 };
1424  return getNode(Opcode, VT, Ops, 4);
1425}
1426
1427SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1428                                SDOperand N1, SDOperand N2, SDOperand N3,
1429                                SDOperand N4, SDOperand N5) {
1430  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1431  return getNode(Opcode, VT, Ops, 5);
1432}
1433
1434SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1435                                SDOperand Chain, SDOperand Ptr,
1436                                SDOperand SV) {
1437  MVT::ValueType *VTs = getNodeValueTypes(VT, MVT::Other);
1438
1439  SelectionDAGCSEMap::NodeID ID(ISD::LOAD, VTs, Chain, Ptr, SV);
1440  void *IP = 0;
1441  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1442    return SDOperand(E, 0);
1443  SDNode *N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1444  N->setValueTypes(VTs, 2);
1445  CSEMap.InsertNode(N, IP);
1446  AllNodes.push_back(N);
1447  return SDOperand(N, 0);
1448}
1449
1450SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1451                                   SDOperand Chain, SDOperand Ptr,
1452                                   SDOperand SV) {
1453  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1454                      getValueType(EVT) };
1455  std::vector<MVT::ValueType> VTs;
1456  VTs.reserve(2);
1457  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1458  return getNode(ISD::VLOAD, VTs, Ops, 5);
1459}
1460
1461SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1462                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1463                                   MVT::ValueType EVT) {
1464  SDOperand Ops[] = { Chain, Ptr, SV, getValueType(EVT) };
1465  std::vector<MVT::ValueType> VTs;
1466  VTs.reserve(2);
1467  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1468  return getNode(Opcode, VTs, Ops, 4);
1469}
1470
1471SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1472                                 SDOperand Chain, SDOperand Ptr,
1473                                 SDOperand SV) {
1474  SDOperand Ops[] = { Chain, Ptr, SV };
1475  std::vector<MVT::ValueType> VTs;
1476  VTs.reserve(2);
1477  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1478  return getNode(ISD::VAARG, VTs, Ops, 3);
1479}
1480
1481SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1482                                const SDOperand *Ops, unsigned NumOps) {
1483  switch (NumOps) {
1484  case 0: return getNode(Opcode, VT);
1485  case 1: return getNode(Opcode, VT, Ops[0]);
1486  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1487  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1488  default: break;
1489  }
1490
1491  switch (Opcode) {
1492  default: break;
1493  case ISD::TRUNCSTORE: {
1494    assert(NumOps == 5 && "TRUNCSTORE takes 5 operands!");
1495    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1496#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1497    // If this is a truncating store of a constant, convert to the desired type
1498    // and store it instead.
1499    if (isa<Constant>(Ops[0])) {
1500      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1501      if (isa<Constant>(Op))
1502        N1 = Op;
1503    }
1504    // Also for ConstantFP?
1505#endif
1506    if (Ops[0].getValueType() == EVT)       // Normal store?
1507      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1508    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1509    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1510           "Can't do FP-INT conversion!");
1511    break;
1512  }
1513  case ISD::SELECT_CC: {
1514    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1515    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1516           "LHS and RHS of condition must have same type!");
1517    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1518           "True and False arms of SelectCC must have same type!");
1519    assert(Ops[2].getValueType() == VT &&
1520           "select_cc node must be of same type as true and false value!");
1521    break;
1522  }
1523  case ISD::BR_CC: {
1524    assert(NumOps == 5 && "BR_CC takes 5 operands!");
1525    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1526           "LHS/RHS of comparison should match types!");
1527    break;
1528  }
1529  }
1530
1531  // Memoize nodes.
1532  SDNode *N;
1533  MVT::ValueType *VTs = getNodeValueTypes(VT);
1534  if (VT != MVT::Flag) {
1535    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Ops, NumOps);
1536    void *IP = 0;
1537    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1538      return SDOperand(E, 0);
1539    N = new SDNode(Opcode, Ops, NumOps);
1540    N->setValueTypes(VTs, 1);
1541    CSEMap.InsertNode(N, IP);
1542  } else {
1543    N = new SDNode(Opcode, Ops, NumOps);
1544    N->setValueTypes(VTs, 1);
1545  }
1546  AllNodes.push_back(N);
1547  return SDOperand(N, 0);
1548}
1549
1550SDOperand SelectionDAG::getNode(unsigned Opcode,
1551                                std::vector<MVT::ValueType> &ResultTys,
1552                                const SDOperand *Ops, unsigned NumOps) {
1553  if (ResultTys.size() == 1)
1554    return getNode(Opcode, ResultTys[0], Ops, NumOps);
1555
1556  switch (Opcode) {
1557  case ISD::EXTLOAD:
1558  case ISD::SEXTLOAD:
1559  case ISD::ZEXTLOAD: {
1560    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1561    assert(NumOps == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1562    // If they are asking for an extending load from/to the same thing, return a
1563    // normal load.
1564    if (ResultTys[0] == EVT)
1565      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1566    if (MVT::isVector(ResultTys[0])) {
1567      assert(EVT == MVT::getVectorBaseType(ResultTys[0]) &&
1568             "Invalid vector extload!");
1569    } else {
1570      assert(EVT < ResultTys[0] &&
1571             "Should only be an extending load, not truncating!");
1572    }
1573    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1574           "Cannot sign/zero extend a FP/Vector load!");
1575    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1576           "Cannot convert from FP to Int or Int -> FP!");
1577    break;
1578  }
1579
1580  // FIXME: figure out how to safely handle things like
1581  // int foo(int x) { return 1 << (x & 255); }
1582  // int bar() { return foo(256); }
1583#if 0
1584  case ISD::SRA_PARTS:
1585  case ISD::SRL_PARTS:
1586  case ISD::SHL_PARTS:
1587    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1588        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1589      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1590    else if (N3.getOpcode() == ISD::AND)
1591      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1592        // If the and is only masking out bits that cannot effect the shift,
1593        // eliminate the and.
1594        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1595        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1596          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1597      }
1598    break;
1599#endif
1600  }
1601
1602  // Memoize the node unless it returns a flag.
1603  SDNode *N;
1604  MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
1605  if (ResultTys.back() != MVT::Flag) {
1606    SelectionDAGCSEMap::NodeID ID;
1607    ID.SetOpcode(Opcode);
1608    ID.SetValueTypes(VTs);
1609    ID.SetOperands(&Ops[0], NumOps);
1610    void *IP = 0;
1611    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1612      return SDOperand(E, 0);
1613    N = new SDNode(Opcode, Ops, NumOps);
1614    N->setValueTypes(VTs, ResultTys.size());
1615    CSEMap.InsertNode(N, IP);
1616  } else {
1617    N = new SDNode(Opcode, Ops, NumOps);
1618    N->setValueTypes(VTs, ResultTys.size());
1619  }
1620  AllNodes.push_back(N);
1621  return SDOperand(N, 0);
1622}
1623
1624
1625MVT::ValueType *SelectionDAG::getNodeValueTypes(MVT::ValueType VT) {
1626  return SDNode::getValueTypeList(VT);
1627}
1628
1629MVT::ValueType *SelectionDAG::getNodeValueTypes(
1630                                        std::vector<MVT::ValueType> &RetVals) {
1631  switch (RetVals.size()) {
1632  case 0: assert(0 && "Cannot have nodes without results!");
1633  case 1: return SDNode::getValueTypeList(RetVals[0]);
1634  case 2: return getNodeValueTypes(RetVals[0], RetVals[1]);
1635  default: break;
1636  }
1637
1638  std::list<std::vector<MVT::ValueType> >::iterator I =
1639    std::find(VTList.begin(), VTList.end(), RetVals);
1640  if (I == VTList.end()) {
1641    VTList.push_front(RetVals);
1642    I = VTList.begin();
1643  }
1644
1645  return &(*I)[0];
1646}
1647
1648MVT::ValueType *SelectionDAG::getNodeValueTypes(MVT::ValueType VT1,
1649                                                MVT::ValueType VT2) {
1650  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1651       E = VTList.end(); I != E; ++I) {
1652    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1653      return &(*I)[0];
1654  }
1655  std::vector<MVT::ValueType> V;
1656  V.push_back(VT1);
1657  V.push_back(VT2);
1658  VTList.push_front(V);
1659  return &(*VTList.begin())[0];
1660}
1661
1662/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1663/// specified operands.  If the resultant node already exists in the DAG,
1664/// this does not modify the specified node, instead it returns the node that
1665/// already exists.  If the resultant node does not exist in the DAG, the
1666/// input node is returned.  As a degenerate case, if you specify the same
1667/// input operands as the node already has, the input node is returned.
1668SDOperand SelectionDAG::
1669UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1670  SDNode *N = InN.Val;
1671  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1672
1673  // Check to see if there is no change.
1674  if (Op == N->getOperand(0)) return InN;
1675
1676  // See if the modified node already exists.
1677  void *InsertPos = 0;
1678  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1679    return SDOperand(Existing, InN.ResNo);
1680
1681  // Nope it doesn't.  Remove the node from it's current place in the maps.
1682  if (InsertPos)
1683    RemoveNodeFromCSEMaps(N);
1684
1685  // Now we update the operands.
1686  N->OperandList[0].Val->removeUser(N);
1687  Op.Val->addUser(N);
1688  N->OperandList[0] = Op;
1689
1690  // If this gets put into a CSE map, add it.
1691  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1692  return InN;
1693}
1694
1695SDOperand SelectionDAG::
1696UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1697  SDNode *N = InN.Val;
1698  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1699
1700  // Check to see if there is no change.
1701  bool AnyChange = false;
1702  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1703    return InN;   // No operands changed, just return the input node.
1704
1705  // See if the modified node already exists.
1706  void *InsertPos = 0;
1707  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
1708    return SDOperand(Existing, InN.ResNo);
1709
1710  // Nope it doesn't.  Remove the node from it's current place in the maps.
1711  if (InsertPos)
1712    RemoveNodeFromCSEMaps(N);
1713
1714  // Now we update the operands.
1715  if (N->OperandList[0] != Op1) {
1716    N->OperandList[0].Val->removeUser(N);
1717    Op1.Val->addUser(N);
1718    N->OperandList[0] = Op1;
1719  }
1720  if (N->OperandList[1] != Op2) {
1721    N->OperandList[1].Val->removeUser(N);
1722    Op2.Val->addUser(N);
1723    N->OperandList[1] = Op2;
1724  }
1725
1726  // If this gets put into a CSE map, add it.
1727  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1728  return InN;
1729}
1730
1731SDOperand SelectionDAG::
1732UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1733  SDOperand Ops[] = { Op1, Op2, Op3 };
1734  return UpdateNodeOperands(N, Ops, 3);
1735}
1736
1737SDOperand SelectionDAG::
1738UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1739                   SDOperand Op3, SDOperand Op4) {
1740  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
1741  return UpdateNodeOperands(N, Ops, 4);
1742}
1743
1744SDOperand SelectionDAG::
1745UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1746                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1747  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
1748  return UpdateNodeOperands(N, Ops, 5);
1749}
1750
1751
1752SDOperand SelectionDAG::
1753UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
1754  SDNode *N = InN.Val;
1755  assert(N->getNumOperands() == NumOps &&
1756         "Update with wrong number of operands");
1757
1758  // Check to see if there is no change.
1759  bool AnyChange = false;
1760  for (unsigned i = 0; i != NumOps; ++i) {
1761    if (Ops[i] != N->getOperand(i)) {
1762      AnyChange = true;
1763      break;
1764    }
1765  }
1766
1767  // No operands changed, just return the input node.
1768  if (!AnyChange) return InN;
1769
1770  // See if the modified node already exists.
1771  void *InsertPos = 0;
1772  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
1773    return SDOperand(Existing, InN.ResNo);
1774
1775  // Nope it doesn't.  Remove the node from it's current place in the maps.
1776  if (InsertPos)
1777    RemoveNodeFromCSEMaps(N);
1778
1779  // Now we update the operands.
1780  for (unsigned i = 0; i != NumOps; ++i) {
1781    if (N->OperandList[i] != Ops[i]) {
1782      N->OperandList[i].Val->removeUser(N);
1783      Ops[i].Val->addUser(N);
1784      N->OperandList[i] = Ops[i];
1785    }
1786  }
1787
1788  // If this gets put into a CSE map, add it.
1789  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1790  return InN;
1791}
1792
1793
1794
1795
1796/// SelectNodeTo - These are used for target selectors to *mutate* the
1797/// specified node to have the specified return type, Target opcode, and
1798/// operands.  Note that target opcodes are stored as
1799/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1800///
1801/// Note that SelectNodeTo returns the resultant node.  If there is already a
1802/// node of the specified opcode and operands, it returns that node instead of
1803/// the current one.
1804SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1805                                     MVT::ValueType VT) {
1806  MVT::ValueType *VTs = getNodeValueTypes(VT);
1807  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1808  void *IP = 0;
1809  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1810    return SDOperand(ON, 0);
1811
1812  RemoveNodeFromCSEMaps(N);
1813
1814  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1815  N->setValueTypes(getNodeValueTypes(VT), 1);
1816
1817  CSEMap.InsertNode(N, IP);
1818  return SDOperand(N, 0);
1819}
1820
1821SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1822                                     MVT::ValueType VT, SDOperand Op1) {
1823  // If an identical node already exists, use it.
1824  MVT::ValueType *VTs = getNodeValueTypes(VT);
1825  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1);
1826  void *IP = 0;
1827  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1828    return SDOperand(ON, 0);
1829
1830  RemoveNodeFromCSEMaps(N);
1831  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1832  N->setValueTypes(getNodeValueTypes(VT), 1);
1833  N->setOperands(Op1);
1834  CSEMap.InsertNode(N, IP);
1835  return SDOperand(N, 0);
1836}
1837
1838SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1839                                     MVT::ValueType VT, SDOperand Op1,
1840                                     SDOperand Op2) {
1841  // If an identical node already exists, use it.
1842  MVT::ValueType *VTs = getNodeValueTypes(VT);
1843  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
1844  void *IP = 0;
1845  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1846    return SDOperand(ON, 0);
1847
1848  RemoveNodeFromCSEMaps(N);
1849  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1850  N->setValueTypes(VTs, 1);
1851  N->setOperands(Op1, Op2);
1852
1853  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1854  return SDOperand(N, 0);
1855}
1856
1857SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1858                                     MVT::ValueType VT, SDOperand Op1,
1859                                     SDOperand Op2, SDOperand Op3) {
1860  // If an identical node already exists, use it.
1861  MVT::ValueType *VTs = getNodeValueTypes(VT);
1862  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2, Op3);
1863  void *IP = 0;
1864  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1865    return SDOperand(ON, 0);
1866
1867  RemoveNodeFromCSEMaps(N);
1868  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1869  N->setValueTypes(VTs, 1);
1870  N->setOperands(Op1, Op2, Op3);
1871
1872  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1873  return SDOperand(N, 0);
1874}
1875
1876SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1877                                     MVT::ValueType VT, SDOperand Op1,
1878                                     SDOperand Op2, SDOperand Op3,
1879                                     SDOperand Op4) {
1880  // If an identical node already exists, use it.
1881  MVT::ValueType *VTs = getNodeValueTypes(VT);
1882  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1883  ID.AddOperand(Op1);
1884  ID.AddOperand(Op2);
1885  ID.AddOperand(Op3);
1886  ID.AddOperand(Op4);
1887  void *IP = 0;
1888  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1889    return SDOperand(ON, 0);
1890
1891  RemoveNodeFromCSEMaps(N);
1892  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1893  N->setValueTypes(VTs, 1);
1894  N->setOperands(Op1, Op2, Op3, Op4);
1895
1896  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1897  return SDOperand(N, 0);
1898}
1899
1900SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1901                                     MVT::ValueType VT, SDOperand Op1,
1902                                     SDOperand Op2, SDOperand Op3,
1903                                     SDOperand Op4, SDOperand Op5) {
1904  MVT::ValueType *VTs = getNodeValueTypes(VT);
1905  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1906  ID.AddOperand(Op1);
1907  ID.AddOperand(Op2);
1908  ID.AddOperand(Op3);
1909  ID.AddOperand(Op4);
1910  ID.AddOperand(Op5);
1911  void *IP = 0;
1912  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1913    return SDOperand(ON, 0);
1914
1915  RemoveNodeFromCSEMaps(N);
1916  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1917  N->setValueTypes(VTs, 1);
1918  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1919
1920  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1921  return SDOperand(N, 0);
1922}
1923
1924SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1925                                     MVT::ValueType VT, SDOperand Op1,
1926                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1927                                     SDOperand Op5, SDOperand Op6) {
1928  MVT::ValueType *VTs = getNodeValueTypes(VT);
1929  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1930  ID.AddOperand(Op1);
1931  ID.AddOperand(Op2);
1932  ID.AddOperand(Op3);
1933  ID.AddOperand(Op4);
1934  ID.AddOperand(Op5);
1935  ID.AddOperand(Op6);
1936  void *IP = 0;
1937  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1938    return SDOperand(ON, 0);
1939
1940  RemoveNodeFromCSEMaps(N);
1941  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1942  N->setValueTypes(VTs, 1);
1943  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
1944
1945  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1946  return SDOperand(N, 0);
1947}
1948
1949SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1950                                     MVT::ValueType VT, SDOperand Op1,
1951                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1952                                     SDOperand Op5, SDOperand Op6,
1953				     SDOperand Op7) {
1954  MVT::ValueType *VTs = getNodeValueTypes(VT);
1955  // If an identical node already exists, use it.
1956  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1957  ID.AddOperand(Op1);
1958  ID.AddOperand(Op2);
1959  ID.AddOperand(Op3);
1960  ID.AddOperand(Op4);
1961  ID.AddOperand(Op5);
1962  ID.AddOperand(Op6);
1963  ID.AddOperand(Op7);
1964  void *IP = 0;
1965  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1966    return SDOperand(ON, 0);
1967
1968  RemoveNodeFromCSEMaps(N);
1969  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1970  N->setValueTypes(VTs, 1);
1971  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
1972
1973  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1974  return SDOperand(N, 0);
1975}
1976SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1977                                     MVT::ValueType VT, SDOperand Op1,
1978                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1979                                     SDOperand Op5, SDOperand Op6,
1980				     SDOperand Op7, SDOperand Op8) {
1981  // If an identical node already exists, use it.
1982  MVT::ValueType *VTs = getNodeValueTypes(VT);
1983  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1984  ID.AddOperand(Op1);
1985  ID.AddOperand(Op2);
1986  ID.AddOperand(Op3);
1987  ID.AddOperand(Op4);
1988  ID.AddOperand(Op5);
1989  ID.AddOperand(Op6);
1990  ID.AddOperand(Op7);
1991  ID.AddOperand(Op8);
1992  void *IP = 0;
1993  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1994    return SDOperand(ON, 0);
1995
1996  RemoveNodeFromCSEMaps(N);
1997  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1998  N->setValueTypes(VTs, 1);
1999  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
2000
2001  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2002  return SDOperand(N, 0);
2003}
2004
2005SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2006                                     MVT::ValueType VT1, MVT::ValueType VT2,
2007                                     SDOperand Op1, SDOperand Op2) {
2008  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2009  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
2010  void *IP = 0;
2011  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2012    return SDOperand(ON, 0);
2013
2014  RemoveNodeFromCSEMaps(N);
2015  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2016  N->setValueTypes(VTs, 2);
2017  N->setOperands(Op1, Op2);
2018
2019  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2020  return SDOperand(N, 0);
2021}
2022
2023SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2024                                     MVT::ValueType VT1, MVT::ValueType VT2,
2025                                     SDOperand Op1, SDOperand Op2,
2026                                     SDOperand Op3) {
2027  // If an identical node already exists, use it.
2028  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2029  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs,
2030                                Op1, Op2, Op3);
2031  void *IP = 0;
2032  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2033    return SDOperand(ON, 0);
2034
2035  RemoveNodeFromCSEMaps(N);
2036  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2037  N->setValueTypes(VTs, 2);
2038  N->setOperands(Op1, Op2, Op3);
2039
2040  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2041  return SDOperand(N, 0);
2042}
2043
2044SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2045                                     MVT::ValueType VT1, MVT::ValueType VT2,
2046                                     SDOperand Op1, SDOperand Op2,
2047                                     SDOperand Op3, SDOperand Op4) {
2048  // If an identical node already exists, use it.
2049  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2050  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2051  ID.AddOperand(Op1);
2052  ID.AddOperand(Op2);
2053  ID.AddOperand(Op3);
2054  ID.AddOperand(Op4);
2055  void *IP = 0;
2056  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2057    return SDOperand(ON, 0);
2058
2059  RemoveNodeFromCSEMaps(N);
2060  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2061  N->setValueTypes(VTs, 2);
2062  N->setOperands(Op1, Op2, Op3, Op4);
2063
2064  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2065  return SDOperand(N, 0);
2066}
2067
2068SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2069                                     MVT::ValueType VT1, MVT::ValueType VT2,
2070                                     SDOperand Op1, SDOperand Op2,
2071                                     SDOperand Op3, SDOperand Op4,
2072                                     SDOperand Op5) {
2073  // If an identical node already exists, use it.
2074  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2075  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2076  ID.AddOperand(Op1);
2077  ID.AddOperand(Op2);
2078  ID.AddOperand(Op3);
2079  ID.AddOperand(Op4);
2080  ID.AddOperand(Op5);
2081  void *IP = 0;
2082  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2083    return SDOperand(ON, 0);
2084
2085  RemoveNodeFromCSEMaps(N);
2086  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2087  N->setValueTypes(VTs, 2);
2088  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2089
2090  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2091  return SDOperand(N, 0);
2092}
2093
2094/// getTargetNode - These are used for target selectors to create a new node
2095/// with specified return type(s), target opcode, and operands.
2096///
2097/// Note that getTargetNode returns the resultant node.  If there is already a
2098/// node of the specified opcode and operands, it returns that node instead of
2099/// the current one.
2100SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2101  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2102}
2103SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2104                                    SDOperand Op1) {
2105  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2106}
2107SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2108                                    SDOperand Op1, SDOperand Op2) {
2109  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2110}
2111SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2112                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2113  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2114}
2115SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2116                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2117                                    SDOperand Op4) {
2118  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4).Val;
2119}
2120SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2121                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2122                                    SDOperand Op4, SDOperand Op5) {
2123  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4, Op5).Val;
2124}
2125SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2126                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2127                                    SDOperand Op4, SDOperand Op5,
2128                                    SDOperand Op6) {
2129  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6 };
2130  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, 6).Val;
2131}
2132SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2133                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2134                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2135                                    SDOperand Op7) {
2136  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6, Op7 };
2137  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, 7).Val;
2138}
2139SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2140                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2141                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2142                                    SDOperand Op7, SDOperand Op8) {
2143  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8 };
2144  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, 8).Val;
2145}
2146SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2147                                    const SDOperand *Ops, unsigned NumOps) {
2148  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2149}
2150SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2151                                    MVT::ValueType VT2, SDOperand Op1) {
2152  std::vector<MVT::ValueType> ResultTys;
2153  ResultTys.push_back(VT1);
2154  ResultTys.push_back(VT2);
2155  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, &Op1, 1).Val;
2156}
2157SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2158                                    MVT::ValueType VT2, SDOperand Op1,
2159                                    SDOperand Op2) {
2160  std::vector<MVT::ValueType> ResultTys;
2161  ResultTys.push_back(VT1);
2162  ResultTys.push_back(VT2);
2163  SDOperand Ops[] = { Op1, Op2 };
2164  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 2).Val;
2165}
2166SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2167                                    MVT::ValueType VT2, SDOperand Op1,
2168                                    SDOperand Op2, SDOperand Op3) {
2169  std::vector<MVT::ValueType> ResultTys;
2170  ResultTys.push_back(VT1);
2171  ResultTys.push_back(VT2);
2172  SDOperand Ops[] = { Op1, Op2, Op3 };
2173  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 3).Val;
2174}
2175SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2176                                    MVT::ValueType VT2, SDOperand Op1,
2177                                    SDOperand Op2, SDOperand Op3,
2178                                    SDOperand Op4) {
2179  std::vector<MVT::ValueType> ResultTys;
2180  ResultTys.push_back(VT1);
2181  ResultTys.push_back(VT2);
2182  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2183  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 4).Val;
2184}
2185SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2186                                    MVT::ValueType VT2, SDOperand Op1,
2187                                    SDOperand Op2, SDOperand Op3, SDOperand Op4,
2188                                    SDOperand Op5) {
2189  std::vector<MVT::ValueType> ResultTys;
2190  ResultTys.push_back(VT1);
2191  ResultTys.push_back(VT2);
2192  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2193  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 5).Val;
2194}
2195SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2196                                    MVT::ValueType VT2, SDOperand Op1,
2197                                    SDOperand Op2, SDOperand Op3, SDOperand Op4,
2198                                    SDOperand Op5, SDOperand Op6) {
2199  std::vector<MVT::ValueType> ResultTys;
2200  ResultTys.push_back(VT1);
2201  ResultTys.push_back(VT2);
2202  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6 };
2203  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 6).Val;
2204}
2205SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2206                                    MVT::ValueType VT2, SDOperand Op1,
2207                                    SDOperand Op2, SDOperand Op3, SDOperand Op4,
2208                                    SDOperand Op5, SDOperand Op6,
2209                                    SDOperand Op7) {
2210  std::vector<MVT::ValueType> ResultTys;
2211  ResultTys.push_back(VT1);
2212  ResultTys.push_back(VT2);
2213  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6, Op7 };
2214  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 7).Val;
2215}
2216SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2217                                    MVT::ValueType VT2, MVT::ValueType VT3,
2218                                    SDOperand Op1, SDOperand Op2) {
2219  std::vector<MVT::ValueType> ResultTys;
2220  ResultTys.push_back(VT1);
2221  ResultTys.push_back(VT2);
2222  ResultTys.push_back(VT3);
2223  SDOperand Ops[] = { Op1, Op2 };
2224  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 2).Val;
2225}
2226SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2227                                    MVT::ValueType VT2, MVT::ValueType VT3,
2228                                    SDOperand Op1, SDOperand Op2,
2229                                    SDOperand Op3, SDOperand Op4,
2230                                    SDOperand Op5) {
2231  std::vector<MVT::ValueType> ResultTys;
2232  ResultTys.push_back(VT1);
2233  ResultTys.push_back(VT2);
2234  ResultTys.push_back(VT3);
2235  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2236  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 5).Val;
2237}
2238SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2239                                    MVT::ValueType VT2, MVT::ValueType VT3,
2240                                    SDOperand Op1, SDOperand Op2,
2241                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2242                                    SDOperand Op6) {
2243  std::vector<MVT::ValueType> ResultTys;
2244  ResultTys.push_back(VT1);
2245  ResultTys.push_back(VT2);
2246  ResultTys.push_back(VT3);
2247  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6 };
2248  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 6).Val;
2249}
2250SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2251                                    MVT::ValueType VT2, MVT::ValueType VT3,
2252                                    SDOperand Op1, SDOperand Op2,
2253                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2254                                    SDOperand Op6, SDOperand Op7) {
2255  std::vector<MVT::ValueType> ResultTys;
2256  ResultTys.push_back(VT1);
2257  ResultTys.push_back(VT2);
2258  ResultTys.push_back(VT3);
2259  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6, Op7 };
2260  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, 7).Val;
2261}
2262SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2263                                    MVT::ValueType VT2,
2264                                    const SDOperand *Ops, unsigned NumOps) {
2265  std::vector<MVT::ValueType> ResultTys;
2266  ResultTys.push_back(VT1);
2267  ResultTys.push_back(VT2);
2268  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops, NumOps).Val;
2269}
2270
2271/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2272/// This can cause recursive merging of nodes in the DAG.
2273///
2274/// This version assumes From/To have a single result value.
2275///
2276void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2277                                      std::vector<SDNode*> *Deleted) {
2278  SDNode *From = FromN.Val, *To = ToN.Val;
2279  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2280         "Cannot replace with this method!");
2281  assert(From != To && "Cannot replace uses of with self");
2282
2283  while (!From->use_empty()) {
2284    // Process users until they are all gone.
2285    SDNode *U = *From->use_begin();
2286
2287    // This node is about to morph, remove its old self from the CSE maps.
2288    RemoveNodeFromCSEMaps(U);
2289
2290    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2291         I != E; ++I)
2292      if (I->Val == From) {
2293        From->removeUser(U);
2294        I->Val = To;
2295        To->addUser(U);
2296      }
2297
2298    // Now that we have modified U, add it back to the CSE maps.  If it already
2299    // exists there, recursively merge the results together.
2300    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2301      ReplaceAllUsesWith(U, Existing, Deleted);
2302      // U is now dead.
2303      if (Deleted) Deleted->push_back(U);
2304      DeleteNodeNotInCSEMaps(U);
2305    }
2306  }
2307}
2308
2309/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2310/// This can cause recursive merging of nodes in the DAG.
2311///
2312/// This version assumes From/To have matching types and numbers of result
2313/// values.
2314///
2315void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2316                                      std::vector<SDNode*> *Deleted) {
2317  assert(From != To && "Cannot replace uses of with self");
2318  assert(From->getNumValues() == To->getNumValues() &&
2319         "Cannot use this version of ReplaceAllUsesWith!");
2320  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2321    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2322    return;
2323  }
2324
2325  while (!From->use_empty()) {
2326    // Process users until they are all gone.
2327    SDNode *U = *From->use_begin();
2328
2329    // This node is about to morph, remove its old self from the CSE maps.
2330    RemoveNodeFromCSEMaps(U);
2331
2332    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2333         I != E; ++I)
2334      if (I->Val == From) {
2335        From->removeUser(U);
2336        I->Val = To;
2337        To->addUser(U);
2338      }
2339
2340    // Now that we have modified U, add it back to the CSE maps.  If it already
2341    // exists there, recursively merge the results together.
2342    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2343      ReplaceAllUsesWith(U, Existing, Deleted);
2344      // U is now dead.
2345      if (Deleted) Deleted->push_back(U);
2346      DeleteNodeNotInCSEMaps(U);
2347    }
2348  }
2349}
2350
2351/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2352/// This can cause recursive merging of nodes in the DAG.
2353///
2354/// This version can replace From with any result values.  To must match the
2355/// number and types of values returned by From.
2356void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2357                                      const SDOperand *To,
2358                                      std::vector<SDNode*> *Deleted) {
2359  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
2360    // Degenerate case handled above.
2361    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2362    return;
2363  }
2364
2365  while (!From->use_empty()) {
2366    // Process users until they are all gone.
2367    SDNode *U = *From->use_begin();
2368
2369    // This node is about to morph, remove its old self from the CSE maps.
2370    RemoveNodeFromCSEMaps(U);
2371
2372    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2373         I != E; ++I)
2374      if (I->Val == From) {
2375        const SDOperand &ToOp = To[I->ResNo];
2376        From->removeUser(U);
2377        *I = ToOp;
2378        ToOp.Val->addUser(U);
2379      }
2380
2381    // Now that we have modified U, add it back to the CSE maps.  If it already
2382    // exists there, recursively merge the results together.
2383    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2384      ReplaceAllUsesWith(U, Existing, Deleted);
2385      // U is now dead.
2386      if (Deleted) Deleted->push_back(U);
2387      DeleteNodeNotInCSEMaps(U);
2388    }
2389  }
2390}
2391
2392/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2393/// uses of other values produced by From.Val alone.  The Deleted vector is
2394/// handled the same was as for ReplaceAllUsesWith.
2395void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2396                                             std::vector<SDNode*> &Deleted) {
2397  assert(From != To && "Cannot replace a value with itself");
2398  // Handle the simple, trivial, case efficiently.
2399  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2400    ReplaceAllUsesWith(From, To, &Deleted);
2401    return;
2402  }
2403
2404  // Get all of the users in a nice, deterministically ordered, uniqued set.
2405  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2406
2407  while (!Users.empty()) {
2408    // We know that this user uses some value of From.  If it is the right
2409    // value, update it.
2410    SDNode *User = Users.back();
2411    Users.pop_back();
2412
2413    for (SDOperand *Op = User->OperandList,
2414         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2415      if (*Op == From) {
2416        // Okay, we know this user needs to be updated.  Remove its old self
2417        // from the CSE maps.
2418        RemoveNodeFromCSEMaps(User);
2419
2420        // Update all operands that match "From".
2421        for (; Op != E; ++Op) {
2422          if (*Op == From) {
2423            From.Val->removeUser(User);
2424            *Op = To;
2425            To.Val->addUser(User);
2426          }
2427        }
2428
2429        // Now that we have modified User, add it back to the CSE maps.  If it
2430        // already exists there, recursively merge the results together.
2431        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2432          unsigned NumDeleted = Deleted.size();
2433          ReplaceAllUsesWith(User, Existing, &Deleted);
2434
2435          // User is now dead.
2436          Deleted.push_back(User);
2437          DeleteNodeNotInCSEMaps(User);
2438
2439          // We have to be careful here, because ReplaceAllUsesWith could have
2440          // deleted a user of From, which means there may be dangling pointers
2441          // in the "Users" setvector.  Scan over the deleted node pointers and
2442          // remove them from the setvector.
2443          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2444            Users.remove(Deleted[i]);
2445        }
2446        break;   // Exit the operand scanning loop.
2447      }
2448    }
2449  }
2450}
2451
2452
2453/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2454/// their allnodes order. It returns the maximum id.
2455unsigned SelectionDAG::AssignNodeIds() {
2456  unsigned Id = 0;
2457  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2458    SDNode *N = I;
2459    N->setNodeId(Id++);
2460  }
2461  return Id;
2462}
2463
2464/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2465/// based on their topological order. It returns the maximum id and a vector
2466/// of the SDNodes* in assigned order by reference.
2467unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2468  unsigned DAGSize = AllNodes.size();
2469  std::vector<unsigned> InDegree(DAGSize);
2470  std::vector<SDNode*> Sources;
2471
2472  // Use a two pass approach to avoid using a std::map which is slow.
2473  unsigned Id = 0;
2474  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2475    SDNode *N = I;
2476    N->setNodeId(Id++);
2477    unsigned Degree = N->use_size();
2478    InDegree[N->getNodeId()] = Degree;
2479    if (Degree == 0)
2480      Sources.push_back(N);
2481  }
2482
2483  TopOrder.clear();
2484  while (!Sources.empty()) {
2485    SDNode *N = Sources.back();
2486    Sources.pop_back();
2487    TopOrder.push_back(N);
2488    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2489      SDNode *P = I->Val;
2490      unsigned Degree = --InDegree[P->getNodeId()];
2491      if (Degree == 0)
2492        Sources.push_back(P);
2493    }
2494  }
2495
2496  // Second pass, assign the actual topological order as node ids.
2497  Id = 0;
2498  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2499       TI != TE; ++TI)
2500    (*TI)->setNodeId(Id++);
2501
2502  return Id;
2503}
2504
2505
2506
2507//===----------------------------------------------------------------------===//
2508//                              SDNode Class
2509//===----------------------------------------------------------------------===//
2510
2511// Out-of-line virtual method to give class a home.
2512void SDNode::ANCHOR() {
2513}
2514
2515/// getValueTypeList - Return a pointer to the specified value type.
2516///
2517MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2518  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2519  VTs[VT] = VT;
2520  return &VTs[VT];
2521}
2522
2523/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2524/// indicated value.  This method ignores uses of other values defined by this
2525/// operation.
2526bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2527  assert(Value < getNumValues() && "Bad value!");
2528
2529  // If there is only one value, this is easy.
2530  if (getNumValues() == 1)
2531    return use_size() == NUses;
2532  if (Uses.size() < NUses) return false;
2533
2534  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2535
2536  std::set<SDNode*> UsersHandled;
2537
2538  for (std::vector<SDNode*>::const_iterator UI = Uses.begin(), E = Uses.end();
2539       UI != E; ++UI) {
2540    SDNode *User = *UI;
2541    if (User->getNumOperands() == 1 ||
2542        UsersHandled.insert(User).second)     // First time we've seen this?
2543      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2544        if (User->getOperand(i) == TheValue) {
2545          if (NUses == 0)
2546            return false;   // too many uses
2547          --NUses;
2548        }
2549  }
2550
2551  // Found exactly the right number of uses?
2552  return NUses == 0;
2553}
2554
2555
2556// isOnlyUse - Return true if this node is the only use of N.
2557bool SDNode::isOnlyUse(SDNode *N) const {
2558  bool Seen = false;
2559  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2560    SDNode *User = *I;
2561    if (User == this)
2562      Seen = true;
2563    else
2564      return false;
2565  }
2566
2567  return Seen;
2568}
2569
2570// isOperand - Return true if this node is an operand of N.
2571bool SDOperand::isOperand(SDNode *N) const {
2572  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2573    if (*this == N->getOperand(i))
2574      return true;
2575  return false;
2576}
2577
2578bool SDNode::isOperand(SDNode *N) const {
2579  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2580    if (this == N->OperandList[i].Val)
2581      return true;
2582  return false;
2583}
2584
2585const char *SDNode::getOperationName(const SelectionDAG *G) const {
2586  switch (getOpcode()) {
2587  default:
2588    if (getOpcode() < ISD::BUILTIN_OP_END)
2589      return "<<Unknown DAG Node>>";
2590    else {
2591      if (G) {
2592        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2593          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2594            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2595
2596        TargetLowering &TLI = G->getTargetLoweringInfo();
2597        const char *Name =
2598          TLI.getTargetNodeName(getOpcode());
2599        if (Name) return Name;
2600      }
2601
2602      return "<<Unknown Target Node>>";
2603    }
2604
2605  case ISD::PCMARKER:      return "PCMarker";
2606  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2607  case ISD::SRCVALUE:      return "SrcValue";
2608  case ISD::EntryToken:    return "EntryToken";
2609  case ISD::TokenFactor:   return "TokenFactor";
2610  case ISD::AssertSext:    return "AssertSext";
2611  case ISD::AssertZext:    return "AssertZext";
2612
2613  case ISD::STRING:        return "String";
2614  case ISD::BasicBlock:    return "BasicBlock";
2615  case ISD::VALUETYPE:     return "ValueType";
2616  case ISD::Register:      return "Register";
2617
2618  case ISD::Constant:      return "Constant";
2619  case ISD::ConstantFP:    return "ConstantFP";
2620  case ISD::GlobalAddress: return "GlobalAddress";
2621  case ISD::FrameIndex:    return "FrameIndex";
2622  case ISD::JumpTable:     return "JumpTable";
2623  case ISD::ConstantPool:  return "ConstantPool";
2624  case ISD::ExternalSymbol: return "ExternalSymbol";
2625  case ISD::INTRINSIC_WO_CHAIN: {
2626    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2627    return Intrinsic::getName((Intrinsic::ID)IID);
2628  }
2629  case ISD::INTRINSIC_VOID:
2630  case ISD::INTRINSIC_W_CHAIN: {
2631    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2632    return Intrinsic::getName((Intrinsic::ID)IID);
2633  }
2634
2635  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2636  case ISD::TargetConstant: return "TargetConstant";
2637  case ISD::TargetConstantFP:return "TargetConstantFP";
2638  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2639  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2640  case ISD::TargetJumpTable:  return "TargetJumpTable";
2641  case ISD::TargetConstantPool:  return "TargetConstantPool";
2642  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2643
2644  case ISD::CopyToReg:     return "CopyToReg";
2645  case ISD::CopyFromReg:   return "CopyFromReg";
2646  case ISD::UNDEF:         return "undef";
2647  case ISD::MERGE_VALUES:  return "mergevalues";
2648  case ISD::INLINEASM:     return "inlineasm";
2649  case ISD::HANDLENODE:    return "handlenode";
2650  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2651  case ISD::CALL:          return "call";
2652
2653  // Unary operators
2654  case ISD::FABS:   return "fabs";
2655  case ISD::FNEG:   return "fneg";
2656  case ISD::FSQRT:  return "fsqrt";
2657  case ISD::FSIN:   return "fsin";
2658  case ISD::FCOS:   return "fcos";
2659
2660  // Binary operators
2661  case ISD::ADD:    return "add";
2662  case ISD::SUB:    return "sub";
2663  case ISD::MUL:    return "mul";
2664  case ISD::MULHU:  return "mulhu";
2665  case ISD::MULHS:  return "mulhs";
2666  case ISD::SDIV:   return "sdiv";
2667  case ISD::UDIV:   return "udiv";
2668  case ISD::SREM:   return "srem";
2669  case ISD::UREM:   return "urem";
2670  case ISD::AND:    return "and";
2671  case ISD::OR:     return "or";
2672  case ISD::XOR:    return "xor";
2673  case ISD::SHL:    return "shl";
2674  case ISD::SRA:    return "sra";
2675  case ISD::SRL:    return "srl";
2676  case ISD::ROTL:   return "rotl";
2677  case ISD::ROTR:   return "rotr";
2678  case ISD::FADD:   return "fadd";
2679  case ISD::FSUB:   return "fsub";
2680  case ISD::FMUL:   return "fmul";
2681  case ISD::FDIV:   return "fdiv";
2682  case ISD::FREM:   return "frem";
2683  case ISD::FCOPYSIGN: return "fcopysign";
2684  case ISD::VADD:   return "vadd";
2685  case ISD::VSUB:   return "vsub";
2686  case ISD::VMUL:   return "vmul";
2687  case ISD::VSDIV:  return "vsdiv";
2688  case ISD::VUDIV:  return "vudiv";
2689  case ISD::VAND:   return "vand";
2690  case ISD::VOR:    return "vor";
2691  case ISD::VXOR:   return "vxor";
2692
2693  case ISD::SETCC:       return "setcc";
2694  case ISD::SELECT:      return "select";
2695  case ISD::SELECT_CC:   return "select_cc";
2696  case ISD::VSELECT:     return "vselect";
2697  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2698  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2699  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2700  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2701  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2702  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2703  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2704  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2705  case ISD::VBIT_CONVERT:        return "vbit_convert";
2706  case ISD::ADDC:        return "addc";
2707  case ISD::ADDE:        return "adde";
2708  case ISD::SUBC:        return "subc";
2709  case ISD::SUBE:        return "sube";
2710  case ISD::SHL_PARTS:   return "shl_parts";
2711  case ISD::SRA_PARTS:   return "sra_parts";
2712  case ISD::SRL_PARTS:   return "srl_parts";
2713
2714  // Conversion operators.
2715  case ISD::SIGN_EXTEND: return "sign_extend";
2716  case ISD::ZERO_EXTEND: return "zero_extend";
2717  case ISD::ANY_EXTEND:  return "any_extend";
2718  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2719  case ISD::TRUNCATE:    return "truncate";
2720  case ISD::FP_ROUND:    return "fp_round";
2721  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2722  case ISD::FP_EXTEND:   return "fp_extend";
2723
2724  case ISD::SINT_TO_FP:  return "sint_to_fp";
2725  case ISD::UINT_TO_FP:  return "uint_to_fp";
2726  case ISD::FP_TO_SINT:  return "fp_to_sint";
2727  case ISD::FP_TO_UINT:  return "fp_to_uint";
2728  case ISD::BIT_CONVERT: return "bit_convert";
2729
2730    // Control flow instructions
2731  case ISD::BR:      return "br";
2732  case ISD::BRIND:   return "brind";
2733  case ISD::BRCOND:  return "brcond";
2734  case ISD::BR_CC:   return "br_cc";
2735  case ISD::RET:     return "ret";
2736  case ISD::CALLSEQ_START:  return "callseq_start";
2737  case ISD::CALLSEQ_END:    return "callseq_end";
2738
2739    // Other operators
2740  case ISD::LOAD:               return "load";
2741  case ISD::STORE:              return "store";
2742  case ISD::VLOAD:              return "vload";
2743  case ISD::EXTLOAD:            return "extload";
2744  case ISD::SEXTLOAD:           return "sextload";
2745  case ISD::ZEXTLOAD:           return "zextload";
2746  case ISD::TRUNCSTORE:         return "truncstore";
2747  case ISD::VAARG:              return "vaarg";
2748  case ISD::VACOPY:             return "vacopy";
2749  case ISD::VAEND:              return "vaend";
2750  case ISD::VASTART:            return "vastart";
2751  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2752  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2753  case ISD::BUILD_PAIR:         return "build_pair";
2754  case ISD::STACKSAVE:          return "stacksave";
2755  case ISD::STACKRESTORE:       return "stackrestore";
2756
2757  // Block memory operations.
2758  case ISD::MEMSET:  return "memset";
2759  case ISD::MEMCPY:  return "memcpy";
2760  case ISD::MEMMOVE: return "memmove";
2761
2762  // Bit manipulation
2763  case ISD::BSWAP:   return "bswap";
2764  case ISD::CTPOP:   return "ctpop";
2765  case ISD::CTTZ:    return "cttz";
2766  case ISD::CTLZ:    return "ctlz";
2767
2768  // Debug info
2769  case ISD::LOCATION: return "location";
2770  case ISD::DEBUG_LOC: return "debug_loc";
2771  case ISD::DEBUG_LABEL: return "debug_label";
2772
2773  case ISD::CONDCODE:
2774    switch (cast<CondCodeSDNode>(this)->get()) {
2775    default: assert(0 && "Unknown setcc condition!");
2776    case ISD::SETOEQ:  return "setoeq";
2777    case ISD::SETOGT:  return "setogt";
2778    case ISD::SETOGE:  return "setoge";
2779    case ISD::SETOLT:  return "setolt";
2780    case ISD::SETOLE:  return "setole";
2781    case ISD::SETONE:  return "setone";
2782
2783    case ISD::SETO:    return "seto";
2784    case ISD::SETUO:   return "setuo";
2785    case ISD::SETUEQ:  return "setue";
2786    case ISD::SETUGT:  return "setugt";
2787    case ISD::SETUGE:  return "setuge";
2788    case ISD::SETULT:  return "setult";
2789    case ISD::SETULE:  return "setule";
2790    case ISD::SETUNE:  return "setune";
2791
2792    case ISD::SETEQ:   return "seteq";
2793    case ISD::SETGT:   return "setgt";
2794    case ISD::SETGE:   return "setge";
2795    case ISD::SETLT:   return "setlt";
2796    case ISD::SETLE:   return "setle";
2797    case ISD::SETNE:   return "setne";
2798    }
2799  }
2800}
2801
2802void SDNode::dump() const { dump(0); }
2803void SDNode::dump(const SelectionDAG *G) const {
2804  std::cerr << (void*)this << ": ";
2805
2806  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2807    if (i) std::cerr << ",";
2808    if (getValueType(i) == MVT::Other)
2809      std::cerr << "ch";
2810    else
2811      std::cerr << MVT::getValueTypeString(getValueType(i));
2812  }
2813  std::cerr << " = " << getOperationName(G);
2814
2815  std::cerr << " ";
2816  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2817    if (i) std::cerr << ", ";
2818    std::cerr << (void*)getOperand(i).Val;
2819    if (unsigned RN = getOperand(i).ResNo)
2820      std::cerr << ":" << RN;
2821  }
2822
2823  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2824    std::cerr << "<" << CSDN->getValue() << ">";
2825  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2826    std::cerr << "<" << CSDN->getValue() << ">";
2827  } else if (const GlobalAddressSDNode *GADN =
2828             dyn_cast<GlobalAddressSDNode>(this)) {
2829    int offset = GADN->getOffset();
2830    std::cerr << "<";
2831    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2832    if (offset > 0)
2833      std::cerr << " + " << offset;
2834    else
2835      std::cerr << " " << offset;
2836  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2837    std::cerr << "<" << FIDN->getIndex() << ">";
2838  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2839    int offset = CP->getOffset();
2840    std::cerr << "<" << *CP->get() << ">";
2841    if (offset > 0)
2842      std::cerr << " + " << offset;
2843    else
2844      std::cerr << " " << offset;
2845  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2846    std::cerr << "<";
2847    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2848    if (LBB)
2849      std::cerr << LBB->getName() << " ";
2850    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2851  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2852    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2853      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2854    } else {
2855      std::cerr << " #" << R->getReg();
2856    }
2857  } else if (const ExternalSymbolSDNode *ES =
2858             dyn_cast<ExternalSymbolSDNode>(this)) {
2859    std::cerr << "'" << ES->getSymbol() << "'";
2860  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2861    if (M->getValue())
2862      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2863    else
2864      std::cerr << "<null:" << M->getOffset() << ">";
2865  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2866    std::cerr << ":" << getValueTypeString(N->getVT());
2867  }
2868}
2869
2870static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2871  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2872    if (N->getOperand(i).Val->hasOneUse())
2873      DumpNodes(N->getOperand(i).Val, indent+2, G);
2874    else
2875      std::cerr << "\n" << std::string(indent+2, ' ')
2876                << (void*)N->getOperand(i).Val << ": <multiple use>";
2877
2878
2879  std::cerr << "\n" << std::string(indent, ' ');
2880  N->dump(G);
2881}
2882
2883void SelectionDAG::dump() const {
2884  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2885  std::vector<const SDNode*> Nodes;
2886  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2887       I != E; ++I)
2888    Nodes.push_back(I);
2889
2890  std::sort(Nodes.begin(), Nodes.end());
2891
2892  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2893    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2894      DumpNodes(Nodes[i], 2, this);
2895  }
2896
2897  DumpNodes(getRoot().Val, 2, this);
2898
2899  std::cerr << "\n\n";
2900}
2901
2902/// InsertISelMapEntry - A helper function to insert a key / element pair
2903/// into a SDOperand to SDOperand map. This is added to avoid the map
2904/// insertion operator from being inlined.
2905void SelectionDAG::InsertISelMapEntry(std::map<SDOperand, SDOperand> &Map,
2906                                      SDNode *Key, unsigned KeyResNo,
2907                                      SDNode *Element, unsigned ElementResNo) {
2908  Map.insert(std::make_pair(SDOperand(Key, KeyResNo),
2909                            SDOperand(Element, ElementResNo)));
2910}
2911