SelectionDAG.cpp revision cab98e3168558a40675a06bc830eb87b8e40070e
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetSelectionDAGInfo.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/ManagedStatic.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/System/Mutex.h"
48#include "llvm/ADT/SetVector.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/SmallVector.h"
52#include "llvm/ADT/StringExtras.h"
53#include <algorithm>
54#include <cmath>
55using namespace llvm;
56
57/// makeVTList - Return an instance of the SDVTList struct initialized with the
58/// specified members.
59static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
60  SDVTList Res = {VTs, NumVTs};
61  return Res;
62}
63
64static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
65  switch (VT.getSimpleVT().SimpleTy) {
66  default: llvm_unreachable("Unknown FP format");
67  case MVT::f32:     return &APFloat::IEEEsingle;
68  case MVT::f64:     return &APFloat::IEEEdouble;
69  case MVT::f80:     return &APFloat::x87DoubleExtended;
70  case MVT::f128:    return &APFloat::IEEEquad;
71  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
72  }
73}
74
75SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
76
77//===----------------------------------------------------------------------===//
78//                              ConstantFPSDNode Class
79//===----------------------------------------------------------------------===//
80
81/// isExactlyValue - We don't rely on operator== working on double values, as
82/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
83/// As such, this method can be used to do an exact bit-for-bit comparison of
84/// two floating point values.
85bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
86  return getValueAPF().bitwiseIsEqual(V);
87}
88
89bool ConstantFPSDNode::isValueValidForType(EVT VT,
90                                           const APFloat& Val) {
91  assert(VT.isFloatingPoint() && "Can only convert between FP types");
92
93  // PPC long double cannot be converted to any other type.
94  if (VT == MVT::ppcf128 ||
95      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
96    return false;
97
98  // convert modifies in place, so make a copy.
99  APFloat Val2 = APFloat(Val);
100  bool losesInfo;
101  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
102                      &losesInfo);
103  return !losesInfo;
104}
105
106//===----------------------------------------------------------------------===//
107//                              ISD Namespace
108//===----------------------------------------------------------------------===//
109
110/// isBuildVectorAllOnes - Return true if the specified node is a
111/// BUILD_VECTOR where all of the elements are ~0 or undef.
112bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113  // Look through a bit convert.
114  if (N->getOpcode() == ISD::BIT_CONVERT)
115    N = N->getOperand(0).getNode();
116
117  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118
119  unsigned i = 0, e = N->getNumOperands();
120
121  // Skip over all of the undef values.
122  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
123    ++i;
124
125  // Do not accept an all-undef vector.
126  if (i == e) return false;
127
128  // Do not accept build_vectors that aren't all constants or which have non-~0
129  // elements.
130  SDValue NotZero = N->getOperand(i);
131  if (isa<ConstantSDNode>(NotZero)) {
132    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
133      return false;
134  } else if (isa<ConstantFPSDNode>(NotZero)) {
135    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
136                bitcastToAPInt().isAllOnesValue())
137      return false;
138  } else
139    return false;
140
141  // Okay, we have at least one ~0 value, check to see if the rest match or are
142  // undefs.
143  for (++i; i != e; ++i)
144    if (N->getOperand(i) != NotZero &&
145        N->getOperand(i).getOpcode() != ISD::UNDEF)
146      return false;
147  return true;
148}
149
150
151/// isBuildVectorAllZeros - Return true if the specified node is a
152/// BUILD_VECTOR where all of the elements are 0 or undef.
153bool ISD::isBuildVectorAllZeros(const SDNode *N) {
154  // Look through a bit convert.
155  if (N->getOpcode() == ISD::BIT_CONVERT)
156    N = N->getOperand(0).getNode();
157
158  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
159
160  unsigned i = 0, e = N->getNumOperands();
161
162  // Skip over all of the undef values.
163  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
164    ++i;
165
166  // Do not accept an all-undef vector.
167  if (i == e) return false;
168
169  // Do not accept build_vectors that aren't all constants or which have non-0
170  // elements.
171  SDValue Zero = N->getOperand(i);
172  if (isa<ConstantSDNode>(Zero)) {
173    if (!cast<ConstantSDNode>(Zero)->isNullValue())
174      return false;
175  } else if (isa<ConstantFPSDNode>(Zero)) {
176    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
177      return false;
178  } else
179    return false;
180
181  // Okay, we have at least one 0 value, check to see if the rest match or are
182  // undefs.
183  for (++i; i != e; ++i)
184    if (N->getOperand(i) != Zero &&
185        N->getOperand(i).getOpcode() != ISD::UNDEF)
186      return false;
187  return true;
188}
189
190/// isScalarToVector - Return true if the specified node is a
191/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
192/// element is not an undef.
193bool ISD::isScalarToVector(const SDNode *N) {
194  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
195    return true;
196
197  if (N->getOpcode() != ISD::BUILD_VECTOR)
198    return false;
199  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
200    return false;
201  unsigned NumElems = N->getNumOperands();
202  if (NumElems == 1)
203    return false;
204  for (unsigned i = 1; i < NumElems; ++i) {
205    SDValue V = N->getOperand(i);
206    if (V.getOpcode() != ISD::UNDEF)
207      return false;
208  }
209  return true;
210}
211
212/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
213/// when given the operation for (X op Y).
214ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
215  // To perform this operation, we just need to swap the L and G bits of the
216  // operation.
217  unsigned OldL = (Operation >> 2) & 1;
218  unsigned OldG = (Operation >> 1) & 1;
219  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
220                       (OldL << 1) |       // New G bit
221                       (OldG << 2));       // New L bit.
222}
223
224/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
225/// 'op' is a valid SetCC operation.
226ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
227  unsigned Operation = Op;
228  if (isInteger)
229    Operation ^= 7;   // Flip L, G, E bits, but not U.
230  else
231    Operation ^= 15;  // Flip all of the condition bits.
232
233  if (Operation > ISD::SETTRUE2)
234    Operation &= ~8;  // Don't let N and U bits get set.
235
236  return ISD::CondCode(Operation);
237}
238
239
240/// isSignedOp - For an integer comparison, return 1 if the comparison is a
241/// signed operation and 2 if the result is an unsigned comparison.  Return zero
242/// if the operation does not depend on the sign of the input (setne and seteq).
243static int isSignedOp(ISD::CondCode Opcode) {
244  switch (Opcode) {
245  default: llvm_unreachable("Illegal integer setcc operation!");
246  case ISD::SETEQ:
247  case ISD::SETNE: return 0;
248  case ISD::SETLT:
249  case ISD::SETLE:
250  case ISD::SETGT:
251  case ISD::SETGE: return 1;
252  case ISD::SETULT:
253  case ISD::SETULE:
254  case ISD::SETUGT:
255  case ISD::SETUGE: return 2;
256  }
257}
258
259/// getSetCCOrOperation - Return the result of a logical OR between different
260/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
261/// returns SETCC_INVALID if it is not possible to represent the resultant
262/// comparison.
263ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
264                                       bool isInteger) {
265  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
266    // Cannot fold a signed integer setcc with an unsigned integer setcc.
267    return ISD::SETCC_INVALID;
268
269  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
270
271  // If the N and U bits get set then the resultant comparison DOES suddenly
272  // care about orderedness, and is true when ordered.
273  if (Op > ISD::SETTRUE2)
274    Op &= ~16;     // Clear the U bit if the N bit is set.
275
276  // Canonicalize illegal integer setcc's.
277  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
278    Op = ISD::SETNE;
279
280  return ISD::CondCode(Op);
281}
282
283/// getSetCCAndOperation - Return the result of a logical AND between different
284/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
285/// function returns zero if it is not possible to represent the resultant
286/// comparison.
287ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
288                                        bool isInteger) {
289  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
290    // Cannot fold a signed setcc with an unsigned setcc.
291    return ISD::SETCC_INVALID;
292
293  // Combine all of the condition bits.
294  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
295
296  // Canonicalize illegal integer setcc's.
297  if (isInteger) {
298    switch (Result) {
299    default: break;
300    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
301    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
302    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
303    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
304    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
305    }
306  }
307
308  return Result;
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getNode());
343    ID.AddInteger(Ops->getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356/// the NodeID data.
357static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358  switch (N->getOpcode()) {
359  case ISD::TargetExternalSymbol:
360  case ISD::ExternalSymbol:
361    llvm_unreachable("Should only be used on nodes with operands");
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::TargetConstant:
364  case ISD::Constant:
365    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366    break;
367  case ISD::TargetConstantFP:
368  case ISD::ConstantFP: {
369    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370    break;
371  }
372  case ISD::TargetGlobalAddress:
373  case ISD::GlobalAddress:
374  case ISD::TargetGlobalTLSAddress:
375  case ISD::GlobalTLSAddress: {
376    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377    ID.AddPointer(GA->getGlobal());
378    ID.AddInteger(GA->getOffset());
379    ID.AddInteger(GA->getTargetFlags());
380    break;
381  }
382  case ISD::BasicBlock:
383    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384    break;
385  case ISD::Register:
386    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387    break;
388
389  case ISD::SRCVALUE:
390    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391    break;
392  case ISD::FrameIndex:
393  case ISD::TargetFrameIndex:
394    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395    break;
396  case ISD::JumpTable:
397  case ISD::TargetJumpTable:
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    ID.AddInteger(CP->getTargetFlags());
411    break;
412  }
413  case ISD::LOAD: {
414    const LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getMemoryVT().getRawBits());
416    ID.AddInteger(LD->getRawSubclassData());
417    break;
418  }
419  case ISD::STORE: {
420    const StoreSDNode *ST = cast<StoreSDNode>(N);
421    ID.AddInteger(ST->getMemoryVT().getRawBits());
422    ID.AddInteger(ST->getRawSubclassData());
423    break;
424  }
425  case ISD::ATOMIC_CMP_SWAP:
426  case ISD::ATOMIC_SWAP:
427  case ISD::ATOMIC_LOAD_ADD:
428  case ISD::ATOMIC_LOAD_SUB:
429  case ISD::ATOMIC_LOAD_AND:
430  case ISD::ATOMIC_LOAD_OR:
431  case ISD::ATOMIC_LOAD_XOR:
432  case ISD::ATOMIC_LOAD_NAND:
433  case ISD::ATOMIC_LOAD_MIN:
434  case ISD::ATOMIC_LOAD_MAX:
435  case ISD::ATOMIC_LOAD_UMIN:
436  case ISD::ATOMIC_LOAD_UMAX: {
437    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438    ID.AddInteger(AT->getMemoryVT().getRawBits());
439    ID.AddInteger(AT->getRawSubclassData());
440    break;
441  }
442  case ISD::VECTOR_SHUFFLE: {
443    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445         i != e; ++i)
446      ID.AddInteger(SVN->getMaskElt(i));
447    break;
448  }
449  case ISD::TargetBlockAddress:
450  case ISD::BlockAddress: {
451    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453    break;
454  }
455  } // end switch (N->getOpcode())
456}
457
458/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459/// data.
460static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461  AddNodeIDOpcode(ID, N->getOpcode());
462  // Add the return value info.
463  AddNodeIDValueTypes(ID, N->getVTList());
464  // Add the operand info.
465  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466
467  // Handle SDNode leafs with special info.
468  AddNodeIDCustom(ID, N);
469}
470
471/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472/// the CSE map that carries volatility, temporalness, indexing mode, and
473/// extension/truncation information.
474///
475static inline unsigned
476encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477                     bool isNonTemporal) {
478  assert((ConvType & 3) == ConvType &&
479         "ConvType may not require more than 2 bits!");
480  assert((AM & 7) == AM &&
481         "AM may not require more than 3 bits!");
482  return ConvType |
483         (AM << 2) |
484         (isVolatile << 5) |
485         (isNonTemporal << 6);
486}
487
488//===----------------------------------------------------------------------===//
489//                              SelectionDAG Class
490//===----------------------------------------------------------------------===//
491
492/// doNotCSE - Return true if CSE should not be performed for this node.
493static bool doNotCSE(SDNode *N) {
494  if (N->getValueType(0) == MVT::Flag)
495    return true; // Never CSE anything that produces a flag.
496
497  switch (N->getOpcode()) {
498  default: break;
499  case ISD::HANDLENODE:
500  case ISD::EH_LABEL:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.pop_back_val();
541
542    if (UpdateListener)
543      UpdateListener->NodeDeleted(N, 0);
544
545    // Take the node out of the appropriate CSE map.
546    RemoveNodeFromCSEMaps(N);
547
548    // Next, brutally remove the operand list.  This is safe to do, as there are
549    // no cycles in the graph.
550    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551      SDUse &Use = *I++;
552      SDNode *Operand = Use.getNode();
553      Use.set(SDValue());
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  // First take this out of the appropriate CSE map.
571  RemoveNodeFromCSEMaps(N);
572
573  // Finally, remove uses due to operands of this node, remove from the
574  // AllNodes list, and delete the node.
575  DeleteNodeNotInCSEMaps(N);
576}
577
578void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581
582  // Drop all of the operands and decrement used node's use counts.
583  N->DropOperands();
584
585  DeallocateNode(N);
586}
587
588void SelectionDAG::DeallocateNode(SDNode *N) {
589  if (N->OperandsNeedDelete)
590    delete[] N->OperandList;
591
592  // Set the opcode to DELETED_NODE to help catch bugs when node
593  // memory is reallocated.
594  N->NodeType = ISD::DELETED_NODE;
595
596  NodeAllocator.Deallocate(AllNodes.remove(N));
597
598  // Remove the ordering of this node.
599  Ordering->remove(N);
600
601  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
602  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
603  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
604    DbgVals[i]->setIsInvalidated();
605}
606
607/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
608/// correspond to it.  This is useful when we're about to delete or repurpose
609/// the node.  We don't want future request for structurally identical nodes
610/// to return N anymore.
611bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
612  bool Erased = false;
613  switch (N->getOpcode()) {
614  case ISD::EntryToken:
615    llvm_unreachable("EntryToken should not be in CSEMaps!");
616    return false;
617  case ISD::HANDLENODE: return false;  // noop.
618  case ISD::CONDCODE:
619    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
620           "Cond code doesn't exist!");
621    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
622    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
623    break;
624  case ISD::ExternalSymbol:
625    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
626    break;
627  case ISD::TargetExternalSymbol: {
628    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
629    Erased = TargetExternalSymbols.erase(
630               std::pair<std::string,unsigned char>(ESN->getSymbol(),
631                                                    ESN->getTargetFlags()));
632    break;
633  }
634  case ISD::VALUETYPE: {
635    EVT VT = cast<VTSDNode>(N)->getVT();
636    if (VT.isExtended()) {
637      Erased = ExtendedValueTypeNodes.erase(VT);
638    } else {
639      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
640      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
641    }
642    break;
643  }
644  default:
645    // Remove it from the CSE Map.
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
749void SelectionDAG::VerifyNode(SDNode *N) {
750  switch (N->getOpcode()) {
751  default:
752    break;
753  case ISD::BUILD_PAIR: {
754    EVT VT = N->getValueType(0);
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757           "Wrong return type!");
758    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760           "Mismatched operand types!");
761    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762           "Wrong operand type!");
763    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764           "Wrong return type size");
765    break;
766  }
767  case ISD::BUILD_VECTOR: {
768    assert(N->getNumValues() == 1 && "Too many results!");
769    assert(N->getValueType(0).isVector() && "Wrong return type!");
770    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771           "Wrong number of operands!");
772    EVT EltVT = N->getValueType(0).getVectorElementType();
773    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774      assert((I->getValueType() == EltVT ||
775             (EltVT.isInteger() && I->getValueType().isInteger() &&
776              EltVT.bitsLE(I->getValueType()))) &&
777            "Wrong operand type!");
778    break;
779  }
780  }
781}
782
783/// getEVTAlignment - Compute the default alignment value for the
784/// given type.
785///
786unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
787  const Type *Ty = VT == MVT::iPTR ?
788                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
789                   VT.getTypeForEVT(*getContext());
790
791  return TLI.getTargetData()->getABITypeAlignment(Ty);
792}
793
794// EntryNode could meaningfully have debug info if we can find it...
795SelectionDAG::SelectionDAG(const TargetMachine &tm)
796  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
797    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
798    Root(getEntryNode()), Ordering(0) {
799  AllNodes.push_back(&EntryNode);
800  Ordering = new SDNodeOrdering();
801  DbgInfo = new SDDbgInfo();
802}
803
804void SelectionDAG::init(MachineFunction &mf) {
805  MF = &mf;
806  Context = &mf.getFunction()->getContext();
807}
808
809SelectionDAG::~SelectionDAG() {
810  allnodes_clear();
811  delete Ordering;
812  delete DbgInfo;
813}
814
815void SelectionDAG::allnodes_clear() {
816  assert(&*AllNodes.begin() == &EntryNode);
817  AllNodes.remove(AllNodes.begin());
818  while (!AllNodes.empty())
819    DeallocateNode(AllNodes.begin());
820}
821
822void SelectionDAG::clear() {
823  allnodes_clear();
824  OperandAllocator.Reset();
825  CSEMap.clear();
826
827  ExtendedValueTypeNodes.clear();
828  ExternalSymbols.clear();
829  TargetExternalSymbols.clear();
830  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
831            static_cast<CondCodeSDNode*>(0));
832  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
833            static_cast<SDNode*>(0));
834
835  EntryNode.UseList = 0;
836  AllNodes.push_back(&EntryNode);
837  Root = getEntryNode();
838  Ordering->clear();
839  DbgInfo->clear();
840}
841
842SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
843  return VT.bitsGT(Op.getValueType()) ?
844    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
845    getNode(ISD::TRUNCATE, DL, VT, Op);
846}
847
848SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
849  return VT.bitsGT(Op.getValueType()) ?
850    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
851    getNode(ISD::TRUNCATE, DL, VT, Op);
852}
853
854SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
855  assert(!VT.isVector() &&
856         "getZeroExtendInReg should use the vector element type instead of "
857         "the vector type!");
858  if (Op.getValueType() == VT) return Op;
859  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
860  APInt Imm = APInt::getLowBitsSet(BitWidth,
861                                   VT.getSizeInBits());
862  return getNode(ISD::AND, DL, Op.getValueType(), Op,
863                 getConstant(Imm, Op.getValueType()));
864}
865
866/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
867///
868SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
869  EVT EltVT = VT.getScalarType();
870  SDValue NegOne =
871    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
872  return getNode(ISD::XOR, DL, VT, Val, NegOne);
873}
874
875SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
876  EVT EltVT = VT.getScalarType();
877  assert((EltVT.getSizeInBits() >= 64 ||
878         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
879         "getConstant with a uint64_t value that doesn't fit in the type!");
880  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
881}
882
883SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
884  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
885}
886
887SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
888  assert(VT.isInteger() && "Cannot create FP integer constant!");
889
890  EVT EltVT = VT.getScalarType();
891  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
892         "APInt size does not match type size!");
893
894  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
895  FoldingSetNodeID ID;
896  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
897  ID.AddPointer(&Val);
898  void *IP = 0;
899  SDNode *N = NULL;
900  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
901    if (!VT.isVector())
902      return SDValue(N, 0);
903
904  if (!N) {
905    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
906    CSEMap.InsertNode(N, IP);
907    AllNodes.push_back(N);
908  }
909
910  SDValue Result(N, 0);
911  if (VT.isVector()) {
912    SmallVector<SDValue, 8> Ops;
913    Ops.assign(VT.getVectorNumElements(), Result);
914    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
915  }
916  return Result;
917}
918
919SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
920  return getConstant(Val, TLI.getPointerTy(), isTarget);
921}
922
923
924SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
925  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
926}
927
928SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
929  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
930
931  EVT EltVT = VT.getScalarType();
932
933  // Do the map lookup using the actual bit pattern for the floating point
934  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
935  // we don't have issues with SNANs.
936  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
937  FoldingSetNodeID ID;
938  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
939  ID.AddPointer(&V);
940  void *IP = 0;
941  SDNode *N = NULL;
942  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
943    if (!VT.isVector())
944      return SDValue(N, 0);
945
946  if (!N) {
947    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
948    CSEMap.InsertNode(N, IP);
949    AllNodes.push_back(N);
950  }
951
952  SDValue Result(N, 0);
953  if (VT.isVector()) {
954    SmallVector<SDValue, 8> Ops;
955    Ops.assign(VT.getVectorNumElements(), Result);
956    // FIXME DebugLoc info might be appropriate here
957    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
958  }
959  return Result;
960}
961
962SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
963  EVT EltVT = VT.getScalarType();
964  if (EltVT==MVT::f32)
965    return getConstantFP(APFloat((float)Val), VT, isTarget);
966  else if (EltVT==MVT::f64)
967    return getConstantFP(APFloat(Val), VT, isTarget);
968  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
969    bool ignored;
970    APFloat apf = APFloat(Val);
971    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
972                &ignored);
973    return getConstantFP(apf, VT, isTarget);
974  } else {
975    assert(0 && "Unsupported type in getConstantFP");
976    return SDValue();
977  }
978}
979
980SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
981                                       EVT VT, int64_t Offset,
982                                       bool isTargetGA,
983                                       unsigned char TargetFlags) {
984  assert((TargetFlags == 0 || isTargetGA) &&
985         "Cannot set target flags on target-independent globals");
986
987  // Truncate (with sign-extension) the offset value to the pointer size.
988  EVT PTy = TLI.getPointerTy();
989  unsigned BitWidth = PTy.getSizeInBits();
990  if (BitWidth < 64)
991    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
992
993  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
994  if (!GVar) {
995    // If GV is an alias then use the aliasee for determining thread-localness.
996    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
997      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
998  }
999
1000  unsigned Opc;
1001  if (GVar && GVar->isThreadLocal())
1002    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1003  else
1004    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1005
1006  FoldingSetNodeID ID;
1007  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1008  ID.AddPointer(GV);
1009  ID.AddInteger(Offset);
1010  ID.AddInteger(TargetFlags);
1011  void *IP = 0;
1012  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1013    return SDValue(E, 0);
1014
1015  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1016                                                      Offset, TargetFlags);
1017  CSEMap.InsertNode(N, IP);
1018  AllNodes.push_back(N);
1019  return SDValue(N, 0);
1020}
1021
1022SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1023  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1024  FoldingSetNodeID ID;
1025  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1026  ID.AddInteger(FI);
1027  void *IP = 0;
1028  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1029    return SDValue(E, 0);
1030
1031  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1032  CSEMap.InsertNode(N, IP);
1033  AllNodes.push_back(N);
1034  return SDValue(N, 0);
1035}
1036
1037SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1038                                   unsigned char TargetFlags) {
1039  assert((TargetFlags == 0 || isTarget) &&
1040         "Cannot set target flags on target-independent jump tables");
1041  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1042  FoldingSetNodeID ID;
1043  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1044  ID.AddInteger(JTI);
1045  ID.AddInteger(TargetFlags);
1046  void *IP = 0;
1047  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1048    return SDValue(E, 0);
1049
1050  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1051                                                  TargetFlags);
1052  CSEMap.InsertNode(N, IP);
1053  AllNodes.push_back(N);
1054  return SDValue(N, 0);
1055}
1056
1057SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1058                                      unsigned Alignment, int Offset,
1059                                      bool isTarget,
1060                                      unsigned char TargetFlags) {
1061  assert((TargetFlags == 0 || isTarget) &&
1062         "Cannot set target flags on target-independent globals");
1063  if (Alignment == 0)
1064    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1065  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1066  FoldingSetNodeID ID;
1067  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1068  ID.AddInteger(Alignment);
1069  ID.AddInteger(Offset);
1070  ID.AddPointer(C);
1071  ID.AddInteger(TargetFlags);
1072  void *IP = 0;
1073  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1074    return SDValue(E, 0);
1075
1076  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1077                                                     Alignment, TargetFlags);
1078  CSEMap.InsertNode(N, IP);
1079  AllNodes.push_back(N);
1080  return SDValue(N, 0);
1081}
1082
1083
1084SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1085                                      unsigned Alignment, int Offset,
1086                                      bool isTarget,
1087                                      unsigned char TargetFlags) {
1088  assert((TargetFlags == 0 || isTarget) &&
1089         "Cannot set target flags on target-independent globals");
1090  if (Alignment == 0)
1091    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1092  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1093  FoldingSetNodeID ID;
1094  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1095  ID.AddInteger(Alignment);
1096  ID.AddInteger(Offset);
1097  C->AddSelectionDAGCSEId(ID);
1098  ID.AddInteger(TargetFlags);
1099  void *IP = 0;
1100  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1101    return SDValue(E, 0);
1102
1103  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1104                                                     Alignment, TargetFlags);
1105  CSEMap.InsertNode(N, IP);
1106  AllNodes.push_back(N);
1107  return SDValue(N, 0);
1108}
1109
1110SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1111  FoldingSetNodeID ID;
1112  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1113  ID.AddPointer(MBB);
1114  void *IP = 0;
1115  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1116    return SDValue(E, 0);
1117
1118  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1119  CSEMap.InsertNode(N, IP);
1120  AllNodes.push_back(N);
1121  return SDValue(N, 0);
1122}
1123
1124SDValue SelectionDAG::getValueType(EVT VT) {
1125  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1126      ValueTypeNodes.size())
1127    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1128
1129  SDNode *&N = VT.isExtended() ?
1130    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1131
1132  if (N) return SDValue(N, 0);
1133  N = new (NodeAllocator) VTSDNode(VT);
1134  AllNodes.push_back(N);
1135  return SDValue(N, 0);
1136}
1137
1138SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1139  SDNode *&N = ExternalSymbols[Sym];
1140  if (N) return SDValue(N, 0);
1141  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1142  AllNodes.push_back(N);
1143  return SDValue(N, 0);
1144}
1145
1146SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1147                                              unsigned char TargetFlags) {
1148  SDNode *&N =
1149    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1150                                                               TargetFlags)];
1151  if (N) return SDValue(N, 0);
1152  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1153  AllNodes.push_back(N);
1154  return SDValue(N, 0);
1155}
1156
1157SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1158  if ((unsigned)Cond >= CondCodeNodes.size())
1159    CondCodeNodes.resize(Cond+1);
1160
1161  if (CondCodeNodes[Cond] == 0) {
1162    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1163    CondCodeNodes[Cond] = N;
1164    AllNodes.push_back(N);
1165  }
1166
1167  return SDValue(CondCodeNodes[Cond], 0);
1168}
1169
1170// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1171// the shuffle mask M that point at N1 to point at N2, and indices that point
1172// N2 to point at N1.
1173static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1174  std::swap(N1, N2);
1175  int NElts = M.size();
1176  for (int i = 0; i != NElts; ++i) {
1177    if (M[i] >= NElts)
1178      M[i] -= NElts;
1179    else if (M[i] >= 0)
1180      M[i] += NElts;
1181  }
1182}
1183
1184SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1185                                       SDValue N2, const int *Mask) {
1186  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1187  assert(VT.isVector() && N1.getValueType().isVector() &&
1188         "Vector Shuffle VTs must be a vectors");
1189  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1190         && "Vector Shuffle VTs must have same element type");
1191
1192  // Canonicalize shuffle undef, undef -> undef
1193  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1194    return getUNDEF(VT);
1195
1196  // Validate that all indices in Mask are within the range of the elements
1197  // input to the shuffle.
1198  unsigned NElts = VT.getVectorNumElements();
1199  SmallVector<int, 8> MaskVec;
1200  for (unsigned i = 0; i != NElts; ++i) {
1201    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1202    MaskVec.push_back(Mask[i]);
1203  }
1204
1205  // Canonicalize shuffle v, v -> v, undef
1206  if (N1 == N2) {
1207    N2 = getUNDEF(VT);
1208    for (unsigned i = 0; i != NElts; ++i)
1209      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1210  }
1211
1212  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1213  if (N1.getOpcode() == ISD::UNDEF)
1214    commuteShuffle(N1, N2, MaskVec);
1215
1216  // Canonicalize all index into lhs, -> shuffle lhs, undef
1217  // Canonicalize all index into rhs, -> shuffle rhs, undef
1218  bool AllLHS = true, AllRHS = true;
1219  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1220  for (unsigned i = 0; i != NElts; ++i) {
1221    if (MaskVec[i] >= (int)NElts) {
1222      if (N2Undef)
1223        MaskVec[i] = -1;
1224      else
1225        AllLHS = false;
1226    } else if (MaskVec[i] >= 0) {
1227      AllRHS = false;
1228    }
1229  }
1230  if (AllLHS && AllRHS)
1231    return getUNDEF(VT);
1232  if (AllLHS && !N2Undef)
1233    N2 = getUNDEF(VT);
1234  if (AllRHS) {
1235    N1 = getUNDEF(VT);
1236    commuteShuffle(N1, N2, MaskVec);
1237  }
1238
1239  // If Identity shuffle, or all shuffle in to undef, return that node.
1240  bool AllUndef = true;
1241  bool Identity = true;
1242  for (unsigned i = 0; i != NElts; ++i) {
1243    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1244    if (MaskVec[i] >= 0) AllUndef = false;
1245  }
1246  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1247    return N1;
1248  if (AllUndef)
1249    return getUNDEF(VT);
1250
1251  FoldingSetNodeID ID;
1252  SDValue Ops[2] = { N1, N2 };
1253  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1254  for (unsigned i = 0; i != NElts; ++i)
1255    ID.AddInteger(MaskVec[i]);
1256
1257  void* IP = 0;
1258  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1259    return SDValue(E, 0);
1260
1261  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1262  // SDNode doesn't have access to it.  This memory will be "leaked" when
1263  // the node is deallocated, but recovered when the NodeAllocator is released.
1264  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1265  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1266
1267  ShuffleVectorSDNode *N =
1268    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1269  CSEMap.InsertNode(N, IP);
1270  AllNodes.push_back(N);
1271  return SDValue(N, 0);
1272}
1273
1274SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1275                                       SDValue Val, SDValue DTy,
1276                                       SDValue STy, SDValue Rnd, SDValue Sat,
1277                                       ISD::CvtCode Code) {
1278  // If the src and dest types are the same and the conversion is between
1279  // integer types of the same sign or two floats, no conversion is necessary.
1280  if (DTy == STy &&
1281      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1282    return Val;
1283
1284  FoldingSetNodeID ID;
1285  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1286  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1287  void* IP = 0;
1288  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1289    return SDValue(E, 0);
1290
1291  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1292                                                           Code);
1293  CSEMap.InsertNode(N, IP);
1294  AllNodes.push_back(N);
1295  return SDValue(N, 0);
1296}
1297
1298SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1299  FoldingSetNodeID ID;
1300  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1301  ID.AddInteger(RegNo);
1302  void *IP = 0;
1303  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1304    return SDValue(E, 0);
1305
1306  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1307  CSEMap.InsertNode(N, IP);
1308  AllNodes.push_back(N);
1309  return SDValue(N, 0);
1310}
1311
1312SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1313  FoldingSetNodeID ID;
1314  SDValue Ops[] = { Root };
1315  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1316  ID.AddPointer(Label);
1317  void *IP = 0;
1318  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1319    return SDValue(E, 0);
1320
1321  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1322  CSEMap.InsertNode(N, IP);
1323  AllNodes.push_back(N);
1324  return SDValue(N, 0);
1325}
1326
1327
1328SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1329                                      bool isTarget,
1330                                      unsigned char TargetFlags) {
1331  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1332
1333  FoldingSetNodeID ID;
1334  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1335  ID.AddPointer(BA);
1336  ID.AddInteger(TargetFlags);
1337  void *IP = 0;
1338  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1339    return SDValue(E, 0);
1340
1341  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1342  CSEMap.InsertNode(N, IP);
1343  AllNodes.push_back(N);
1344  return SDValue(N, 0);
1345}
1346
1347SDValue SelectionDAG::getSrcValue(const Value *V) {
1348  assert((!V || V->getType()->isPointerTy()) &&
1349         "SrcValue is not a pointer?");
1350
1351  FoldingSetNodeID ID;
1352  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1353  ID.AddPointer(V);
1354
1355  void *IP = 0;
1356  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1357    return SDValue(E, 0);
1358
1359  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1360  CSEMap.InsertNode(N, IP);
1361  AllNodes.push_back(N);
1362  return SDValue(N, 0);
1363}
1364
1365/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1366SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1367  FoldingSetNodeID ID;
1368  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1369  ID.AddPointer(MD);
1370
1371  void *IP = 0;
1372  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1373    return SDValue(E, 0);
1374
1375  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1376  CSEMap.InsertNode(N, IP);
1377  AllNodes.push_back(N);
1378  return SDValue(N, 0);
1379}
1380
1381
1382/// getShiftAmountOperand - Return the specified value casted to
1383/// the target's desired shift amount type.
1384SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1385  EVT OpTy = Op.getValueType();
1386  MVT ShTy = TLI.getShiftAmountTy();
1387  if (OpTy == ShTy || OpTy.isVector()) return Op;
1388
1389  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1390  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1391}
1392
1393/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1394/// specified value type.
1395SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1396  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1397  unsigned ByteSize = VT.getStoreSize();
1398  const Type *Ty = VT.getTypeForEVT(*getContext());
1399  unsigned StackAlign =
1400  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1401
1402  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1403  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1404}
1405
1406/// CreateStackTemporary - Create a stack temporary suitable for holding
1407/// either of the specified value types.
1408SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1409  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1410                            VT2.getStoreSizeInBits())/8;
1411  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1412  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1413  const TargetData *TD = TLI.getTargetData();
1414  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1415                            TD->getPrefTypeAlignment(Ty2));
1416
1417  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1418  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1419  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1420}
1421
1422SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1423                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1424  // These setcc operations always fold.
1425  switch (Cond) {
1426  default: break;
1427  case ISD::SETFALSE:
1428  case ISD::SETFALSE2: return getConstant(0, VT);
1429  case ISD::SETTRUE:
1430  case ISD::SETTRUE2:  return getConstant(1, VT);
1431
1432  case ISD::SETOEQ:
1433  case ISD::SETOGT:
1434  case ISD::SETOGE:
1435  case ISD::SETOLT:
1436  case ISD::SETOLE:
1437  case ISD::SETONE:
1438  case ISD::SETO:
1439  case ISD::SETUO:
1440  case ISD::SETUEQ:
1441  case ISD::SETUNE:
1442    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1443    break;
1444  }
1445
1446  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1447    const APInt &C2 = N2C->getAPIntValue();
1448    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1449      const APInt &C1 = N1C->getAPIntValue();
1450
1451      switch (Cond) {
1452      default: llvm_unreachable("Unknown integer setcc!");
1453      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1454      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1455      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1456      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1457      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1458      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1459      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1460      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1461      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1462      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1463      }
1464    }
1465  }
1466  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1467    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1468      // No compile time operations on this type yet.
1469      if (N1C->getValueType(0) == MVT::ppcf128)
1470        return SDValue();
1471
1472      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1473      switch (Cond) {
1474      default: break;
1475      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1476                          return getUNDEF(VT);
1477                        // fall through
1478      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1479      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1480                          return getUNDEF(VT);
1481                        // fall through
1482      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1483                                           R==APFloat::cmpLessThan, VT);
1484      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1485                          return getUNDEF(VT);
1486                        // fall through
1487      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1488      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1489                          return getUNDEF(VT);
1490                        // fall through
1491      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1492      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1493                          return getUNDEF(VT);
1494                        // fall through
1495      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1496                                           R==APFloat::cmpEqual, VT);
1497      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1498                          return getUNDEF(VT);
1499                        // fall through
1500      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1501                                           R==APFloat::cmpEqual, VT);
1502      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1503      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1504      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1505                                           R==APFloat::cmpEqual, VT);
1506      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1507      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1508                                           R==APFloat::cmpLessThan, VT);
1509      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1510                                           R==APFloat::cmpUnordered, VT);
1511      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1512      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1513      }
1514    } else {
1515      // Ensure that the constant occurs on the RHS.
1516      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1517    }
1518  }
1519
1520  // Could not fold it.
1521  return SDValue();
1522}
1523
1524/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1525/// use this predicate to simplify operations downstream.
1526bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1527  // This predicate is not safe for vector operations.
1528  if (Op.getValueType().isVector())
1529    return false;
1530
1531  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1532  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1533}
1534
1535/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1536/// this predicate to simplify operations downstream.  Mask is known to be zero
1537/// for bits that V cannot have.
1538bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1539                                     unsigned Depth) const {
1540  APInt KnownZero, KnownOne;
1541  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1542  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1543  return (KnownZero & Mask) == Mask;
1544}
1545
1546/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1547/// known to be either zero or one and return them in the KnownZero/KnownOne
1548/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1549/// processing.
1550void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1551                                     APInt &KnownZero, APInt &KnownOne,
1552                                     unsigned Depth) const {
1553  unsigned BitWidth = Mask.getBitWidth();
1554  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1555         "Mask size mismatches value type size!");
1556
1557  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1558  if (Depth == 6 || Mask == 0)
1559    return;  // Limit search depth.
1560
1561  APInt KnownZero2, KnownOne2;
1562
1563  switch (Op.getOpcode()) {
1564  case ISD::Constant:
1565    // We know all of the bits for a constant!
1566    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1567    KnownZero = ~KnownOne & Mask;
1568    return;
1569  case ISD::AND:
1570    // If either the LHS or the RHS are Zero, the result is zero.
1571    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1572    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1573                      KnownZero2, KnownOne2, Depth+1);
1574    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1575    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1576
1577    // Output known-1 bits are only known if set in both the LHS & RHS.
1578    KnownOne &= KnownOne2;
1579    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1580    KnownZero |= KnownZero2;
1581    return;
1582  case ISD::OR:
1583    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1584    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1585                      KnownZero2, KnownOne2, Depth+1);
1586    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1587    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1588
1589    // Output known-0 bits are only known if clear in both the LHS & RHS.
1590    KnownZero &= KnownZero2;
1591    // Output known-1 are known to be set if set in either the LHS | RHS.
1592    KnownOne |= KnownOne2;
1593    return;
1594  case ISD::XOR: {
1595    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1596    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1597    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1598    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1599
1600    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1601    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1602    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1603    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1604    KnownZero = KnownZeroOut;
1605    return;
1606  }
1607  case ISD::MUL: {
1608    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1609    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1610    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1611    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1612    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1613
1614    // If low bits are zero in either operand, output low known-0 bits.
1615    // Also compute a conserative estimate for high known-0 bits.
1616    // More trickiness is possible, but this is sufficient for the
1617    // interesting case of alignment computation.
1618    KnownOne.clear();
1619    unsigned TrailZ = KnownZero.countTrailingOnes() +
1620                      KnownZero2.countTrailingOnes();
1621    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1622                               KnownZero2.countLeadingOnes(),
1623                               BitWidth) - BitWidth;
1624
1625    TrailZ = std::min(TrailZ, BitWidth);
1626    LeadZ = std::min(LeadZ, BitWidth);
1627    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1628                APInt::getHighBitsSet(BitWidth, LeadZ);
1629    KnownZero &= Mask;
1630    return;
1631  }
1632  case ISD::UDIV: {
1633    // For the purposes of computing leading zeros we can conservatively
1634    // treat a udiv as a logical right shift by the power of 2 known to
1635    // be less than the denominator.
1636    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1637    ComputeMaskedBits(Op.getOperand(0),
1638                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1639    unsigned LeadZ = KnownZero2.countLeadingOnes();
1640
1641    KnownOne2.clear();
1642    KnownZero2.clear();
1643    ComputeMaskedBits(Op.getOperand(1),
1644                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1645    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1646    if (RHSUnknownLeadingOnes != BitWidth)
1647      LeadZ = std::min(BitWidth,
1648                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1649
1650    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1651    return;
1652  }
1653  case ISD::SELECT:
1654    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1655    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1656    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1657    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1658
1659    // Only known if known in both the LHS and RHS.
1660    KnownOne &= KnownOne2;
1661    KnownZero &= KnownZero2;
1662    return;
1663  case ISD::SELECT_CC:
1664    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1665    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1666    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1667    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1668
1669    // Only known if known in both the LHS and RHS.
1670    KnownOne &= KnownOne2;
1671    KnownZero &= KnownZero2;
1672    return;
1673  case ISD::SADDO:
1674  case ISD::UADDO:
1675  case ISD::SSUBO:
1676  case ISD::USUBO:
1677  case ISD::SMULO:
1678  case ISD::UMULO:
1679    if (Op.getResNo() != 1)
1680      return;
1681    // The boolean result conforms to getBooleanContents.  Fall through.
1682  case ISD::SETCC:
1683    // If we know the result of a setcc has the top bits zero, use this info.
1684    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1685        BitWidth > 1)
1686      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1687    return;
1688  case ISD::SHL:
1689    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1690    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1691      unsigned ShAmt = SA->getZExtValue();
1692
1693      // If the shift count is an invalid immediate, don't do anything.
1694      if (ShAmt >= BitWidth)
1695        return;
1696
1697      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1698                        KnownZero, KnownOne, Depth+1);
1699      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1700      KnownZero <<= ShAmt;
1701      KnownOne  <<= ShAmt;
1702      // low bits known zero.
1703      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1704    }
1705    return;
1706  case ISD::SRL:
1707    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1708    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1709      unsigned ShAmt = SA->getZExtValue();
1710
1711      // If the shift count is an invalid immediate, don't do anything.
1712      if (ShAmt >= BitWidth)
1713        return;
1714
1715      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1716                        KnownZero, KnownOne, Depth+1);
1717      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1718      KnownZero = KnownZero.lshr(ShAmt);
1719      KnownOne  = KnownOne.lshr(ShAmt);
1720
1721      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1722      KnownZero |= HighBits;  // High bits known zero.
1723    }
1724    return;
1725  case ISD::SRA:
1726    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1727      unsigned ShAmt = SA->getZExtValue();
1728
1729      // If the shift count is an invalid immediate, don't do anything.
1730      if (ShAmt >= BitWidth)
1731        return;
1732
1733      APInt InDemandedMask = (Mask << ShAmt);
1734      // If any of the demanded bits are produced by the sign extension, we also
1735      // demand the input sign bit.
1736      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1737      if (HighBits.getBoolValue())
1738        InDemandedMask |= APInt::getSignBit(BitWidth);
1739
1740      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1741                        Depth+1);
1742      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1743      KnownZero = KnownZero.lshr(ShAmt);
1744      KnownOne  = KnownOne.lshr(ShAmt);
1745
1746      // Handle the sign bits.
1747      APInt SignBit = APInt::getSignBit(BitWidth);
1748      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1749
1750      if (KnownZero.intersects(SignBit)) {
1751        KnownZero |= HighBits;  // New bits are known zero.
1752      } else if (KnownOne.intersects(SignBit)) {
1753        KnownOne  |= HighBits;  // New bits are known one.
1754      }
1755    }
1756    return;
1757  case ISD::SIGN_EXTEND_INREG: {
1758    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1759    unsigned EBits = EVT.getScalarType().getSizeInBits();
1760
1761    // Sign extension.  Compute the demanded bits in the result that are not
1762    // present in the input.
1763    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1764
1765    APInt InSignBit = APInt::getSignBit(EBits);
1766    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1767
1768    // If the sign extended bits are demanded, we know that the sign
1769    // bit is demanded.
1770    InSignBit.zext(BitWidth);
1771    if (NewBits.getBoolValue())
1772      InputDemandedBits |= InSignBit;
1773
1774    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1775                      KnownZero, KnownOne, Depth+1);
1776    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1777
1778    // If the sign bit of the input is known set or clear, then we know the
1779    // top bits of the result.
1780    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1781      KnownZero |= NewBits;
1782      KnownOne  &= ~NewBits;
1783    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1784      KnownOne  |= NewBits;
1785      KnownZero &= ~NewBits;
1786    } else {                              // Input sign bit unknown
1787      KnownZero &= ~NewBits;
1788      KnownOne  &= ~NewBits;
1789    }
1790    return;
1791  }
1792  case ISD::CTTZ:
1793  case ISD::CTLZ:
1794  case ISD::CTPOP: {
1795    unsigned LowBits = Log2_32(BitWidth)+1;
1796    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1797    KnownOne.clear();
1798    return;
1799  }
1800  case ISD::LOAD: {
1801    if (ISD::isZEXTLoad(Op.getNode())) {
1802      LoadSDNode *LD = cast<LoadSDNode>(Op);
1803      EVT VT = LD->getMemoryVT();
1804      unsigned MemBits = VT.getScalarType().getSizeInBits();
1805      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1806    }
1807    return;
1808  }
1809  case ISD::ZERO_EXTEND: {
1810    EVT InVT = Op.getOperand(0).getValueType();
1811    unsigned InBits = InVT.getScalarType().getSizeInBits();
1812    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1813    APInt InMask    = Mask;
1814    InMask.trunc(InBits);
1815    KnownZero.trunc(InBits);
1816    KnownOne.trunc(InBits);
1817    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1818    KnownZero.zext(BitWidth);
1819    KnownOne.zext(BitWidth);
1820    KnownZero |= NewBits;
1821    return;
1822  }
1823  case ISD::SIGN_EXTEND: {
1824    EVT InVT = Op.getOperand(0).getValueType();
1825    unsigned InBits = InVT.getScalarType().getSizeInBits();
1826    APInt InSignBit = APInt::getSignBit(InBits);
1827    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1828    APInt InMask = Mask;
1829    InMask.trunc(InBits);
1830
1831    // If any of the sign extended bits are demanded, we know that the sign
1832    // bit is demanded. Temporarily set this bit in the mask for our callee.
1833    if (NewBits.getBoolValue())
1834      InMask |= InSignBit;
1835
1836    KnownZero.trunc(InBits);
1837    KnownOne.trunc(InBits);
1838    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1839
1840    // Note if the sign bit is known to be zero or one.
1841    bool SignBitKnownZero = KnownZero.isNegative();
1842    bool SignBitKnownOne  = KnownOne.isNegative();
1843    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1844           "Sign bit can't be known to be both zero and one!");
1845
1846    // If the sign bit wasn't actually demanded by our caller, we don't
1847    // want it set in the KnownZero and KnownOne result values. Reset the
1848    // mask and reapply it to the result values.
1849    InMask = Mask;
1850    InMask.trunc(InBits);
1851    KnownZero &= InMask;
1852    KnownOne  &= InMask;
1853
1854    KnownZero.zext(BitWidth);
1855    KnownOne.zext(BitWidth);
1856
1857    // If the sign bit is known zero or one, the top bits match.
1858    if (SignBitKnownZero)
1859      KnownZero |= NewBits;
1860    else if (SignBitKnownOne)
1861      KnownOne  |= NewBits;
1862    return;
1863  }
1864  case ISD::ANY_EXTEND: {
1865    EVT InVT = Op.getOperand(0).getValueType();
1866    unsigned InBits = InVT.getScalarType().getSizeInBits();
1867    APInt InMask = Mask;
1868    InMask.trunc(InBits);
1869    KnownZero.trunc(InBits);
1870    KnownOne.trunc(InBits);
1871    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1872    KnownZero.zext(BitWidth);
1873    KnownOne.zext(BitWidth);
1874    return;
1875  }
1876  case ISD::TRUNCATE: {
1877    EVT InVT = Op.getOperand(0).getValueType();
1878    unsigned InBits = InVT.getScalarType().getSizeInBits();
1879    APInt InMask = Mask;
1880    InMask.zext(InBits);
1881    KnownZero.zext(InBits);
1882    KnownOne.zext(InBits);
1883    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1884    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1885    KnownZero.trunc(BitWidth);
1886    KnownOne.trunc(BitWidth);
1887    break;
1888  }
1889  case ISD::AssertZext: {
1890    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1891    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1892    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1893                      KnownOne, Depth+1);
1894    KnownZero |= (~InMask) & Mask;
1895    return;
1896  }
1897  case ISD::FGETSIGN:
1898    // All bits are zero except the low bit.
1899    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1900    return;
1901
1902  case ISD::SUB: {
1903    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1904      // We know that the top bits of C-X are clear if X contains less bits
1905      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1906      // positive if we can prove that X is >= 0 and < 16.
1907      if (CLHS->getAPIntValue().isNonNegative()) {
1908        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1909        // NLZ can't be BitWidth with no sign bit
1910        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1911        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1912                          Depth+1);
1913
1914        // If all of the MaskV bits are known to be zero, then we know the
1915        // output top bits are zero, because we now know that the output is
1916        // from [0-C].
1917        if ((KnownZero2 & MaskV) == MaskV) {
1918          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1919          // Top bits known zero.
1920          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1921        }
1922      }
1923    }
1924  }
1925  // fall through
1926  case ISD::ADD: {
1927    // Output known-0 bits are known if clear or set in both the low clear bits
1928    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1929    // low 3 bits clear.
1930    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1931                                       BitWidth - Mask.countLeadingZeros());
1932    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1933    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1934    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1935
1936    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1937    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1938    KnownZeroOut = std::min(KnownZeroOut,
1939                            KnownZero2.countTrailingOnes());
1940
1941    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1942    return;
1943  }
1944  case ISD::SREM:
1945    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1946      const APInt &RA = Rem->getAPIntValue().abs();
1947      if (RA.isPowerOf2()) {
1948        APInt LowBits = RA - 1;
1949        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1950        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1951
1952        // The low bits of the first operand are unchanged by the srem.
1953        KnownZero = KnownZero2 & LowBits;
1954        KnownOne = KnownOne2 & LowBits;
1955
1956        // If the first operand is non-negative or has all low bits zero, then
1957        // the upper bits are all zero.
1958        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1959          KnownZero |= ~LowBits;
1960
1961        // If the first operand is negative and not all low bits are zero, then
1962        // the upper bits are all one.
1963        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1964          KnownOne |= ~LowBits;
1965
1966        KnownZero &= Mask;
1967        KnownOne &= Mask;
1968
1969        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1970      }
1971    }
1972    return;
1973  case ISD::UREM: {
1974    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1975      const APInt &RA = Rem->getAPIntValue();
1976      if (RA.isPowerOf2()) {
1977        APInt LowBits = (RA - 1);
1978        APInt Mask2 = LowBits & Mask;
1979        KnownZero |= ~LowBits & Mask;
1980        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1981        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1982        break;
1983      }
1984    }
1985
1986    // Since the result is less than or equal to either operand, any leading
1987    // zero bits in either operand must also exist in the result.
1988    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1989    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1990                      Depth+1);
1991    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1992                      Depth+1);
1993
1994    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1995                                KnownZero2.countLeadingOnes());
1996    KnownOne.clear();
1997    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1998    return;
1999  }
2000  default:
2001    // Allow the target to implement this method for its nodes.
2002    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2003  case ISD::INTRINSIC_WO_CHAIN:
2004  case ISD::INTRINSIC_W_CHAIN:
2005  case ISD::INTRINSIC_VOID:
2006      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2007                                         Depth);
2008    }
2009    return;
2010  }
2011}
2012
2013/// ComputeNumSignBits - Return the number of times the sign bit of the
2014/// register is replicated into the other bits.  We know that at least 1 bit
2015/// is always equal to the sign bit (itself), but other cases can give us
2016/// information.  For example, immediately after an "SRA X, 2", we know that
2017/// the top 3 bits are all equal to each other, so we return 3.
2018unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2019  EVT VT = Op.getValueType();
2020  assert(VT.isInteger() && "Invalid VT!");
2021  unsigned VTBits = VT.getScalarType().getSizeInBits();
2022  unsigned Tmp, Tmp2;
2023  unsigned FirstAnswer = 1;
2024
2025  if (Depth == 6)
2026    return 1;  // Limit search depth.
2027
2028  switch (Op.getOpcode()) {
2029  default: break;
2030  case ISD::AssertSext:
2031    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2032    return VTBits-Tmp+1;
2033  case ISD::AssertZext:
2034    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2035    return VTBits-Tmp;
2036
2037  case ISD::Constant: {
2038    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2039    // If negative, return # leading ones.
2040    if (Val.isNegative())
2041      return Val.countLeadingOnes();
2042
2043    // Return # leading zeros.
2044    return Val.countLeadingZeros();
2045  }
2046
2047  case ISD::SIGN_EXTEND:
2048    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2049    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2050
2051  case ISD::SIGN_EXTEND_INREG:
2052    // Max of the input and what this extends.
2053    Tmp =
2054      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2055    Tmp = VTBits-Tmp+1;
2056
2057    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2058    return std::max(Tmp, Tmp2);
2059
2060  case ISD::SRA:
2061    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2062    // SRA X, C   -> adds C sign bits.
2063    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2064      Tmp += C->getZExtValue();
2065      if (Tmp > VTBits) Tmp = VTBits;
2066    }
2067    return Tmp;
2068  case ISD::SHL:
2069    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2070      // shl destroys sign bits.
2071      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2072      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2073          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2074      return Tmp - C->getZExtValue();
2075    }
2076    break;
2077  case ISD::AND:
2078  case ISD::OR:
2079  case ISD::XOR:    // NOT is handled here.
2080    // Logical binary ops preserve the number of sign bits at the worst.
2081    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2082    if (Tmp != 1) {
2083      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2084      FirstAnswer = std::min(Tmp, Tmp2);
2085      // We computed what we know about the sign bits as our first
2086      // answer. Now proceed to the generic code that uses
2087      // ComputeMaskedBits, and pick whichever answer is better.
2088    }
2089    break;
2090
2091  case ISD::SELECT:
2092    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2093    if (Tmp == 1) return 1;  // Early out.
2094    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2095    return std::min(Tmp, Tmp2);
2096
2097  case ISD::SADDO:
2098  case ISD::UADDO:
2099  case ISD::SSUBO:
2100  case ISD::USUBO:
2101  case ISD::SMULO:
2102  case ISD::UMULO:
2103    if (Op.getResNo() != 1)
2104      break;
2105    // The boolean result conforms to getBooleanContents.  Fall through.
2106  case ISD::SETCC:
2107    // If setcc returns 0/-1, all bits are sign bits.
2108    if (TLI.getBooleanContents() ==
2109        TargetLowering::ZeroOrNegativeOneBooleanContent)
2110      return VTBits;
2111    break;
2112  case ISD::ROTL:
2113  case ISD::ROTR:
2114    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2115      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2116
2117      // Handle rotate right by N like a rotate left by 32-N.
2118      if (Op.getOpcode() == ISD::ROTR)
2119        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2120
2121      // If we aren't rotating out all of the known-in sign bits, return the
2122      // number that are left.  This handles rotl(sext(x), 1) for example.
2123      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2124      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2125    }
2126    break;
2127  case ISD::ADD:
2128    // Add can have at most one carry bit.  Thus we know that the output
2129    // is, at worst, one more bit than the inputs.
2130    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2131    if (Tmp == 1) return 1;  // Early out.
2132
2133    // Special case decrementing a value (ADD X, -1):
2134    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2135      if (CRHS->isAllOnesValue()) {
2136        APInt KnownZero, KnownOne;
2137        APInt Mask = APInt::getAllOnesValue(VTBits);
2138        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2139
2140        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2141        // sign bits set.
2142        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2143          return VTBits;
2144
2145        // If we are subtracting one from a positive number, there is no carry
2146        // out of the result.
2147        if (KnownZero.isNegative())
2148          return Tmp;
2149      }
2150
2151    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2152    if (Tmp2 == 1) return 1;
2153      return std::min(Tmp, Tmp2)-1;
2154    break;
2155
2156  case ISD::SUB:
2157    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2158    if (Tmp2 == 1) return 1;
2159
2160    // Handle NEG.
2161    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2162      if (CLHS->isNullValue()) {
2163        APInt KnownZero, KnownOne;
2164        APInt Mask = APInt::getAllOnesValue(VTBits);
2165        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2166        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2167        // sign bits set.
2168        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2169          return VTBits;
2170
2171        // If the input is known to be positive (the sign bit is known clear),
2172        // the output of the NEG has the same number of sign bits as the input.
2173        if (KnownZero.isNegative())
2174          return Tmp2;
2175
2176        // Otherwise, we treat this like a SUB.
2177      }
2178
2179    // Sub can have at most one carry bit.  Thus we know that the output
2180    // is, at worst, one more bit than the inputs.
2181    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2182    if (Tmp == 1) return 1;  // Early out.
2183      return std::min(Tmp, Tmp2)-1;
2184    break;
2185  case ISD::TRUNCATE:
2186    // FIXME: it's tricky to do anything useful for this, but it is an important
2187    // case for targets like X86.
2188    break;
2189  }
2190
2191  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2192  if (Op.getOpcode() == ISD::LOAD) {
2193    LoadSDNode *LD = cast<LoadSDNode>(Op);
2194    unsigned ExtType = LD->getExtensionType();
2195    switch (ExtType) {
2196    default: break;
2197    case ISD::SEXTLOAD:    // '17' bits known
2198      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2199      return VTBits-Tmp+1;
2200    case ISD::ZEXTLOAD:    // '16' bits known
2201      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2202      return VTBits-Tmp;
2203    }
2204  }
2205
2206  // Allow the target to implement this method for its nodes.
2207  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2208      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2209      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2210      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2211    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2212    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2213  }
2214
2215  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2216  // use this information.
2217  APInt KnownZero, KnownOne;
2218  APInt Mask = APInt::getAllOnesValue(VTBits);
2219  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2220
2221  if (KnownZero.isNegative()) {        // sign bit is 0
2222    Mask = KnownZero;
2223  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2224    Mask = KnownOne;
2225  } else {
2226    // Nothing known.
2227    return FirstAnswer;
2228  }
2229
2230  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2231  // the number of identical bits in the top of the input value.
2232  Mask = ~Mask;
2233  Mask <<= Mask.getBitWidth()-VTBits;
2234  // Return # leading zeros.  We use 'min' here in case Val was zero before
2235  // shifting.  We don't want to return '64' as for an i32 "0".
2236  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2237}
2238
2239bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2240  // If we're told that NaNs won't happen, assume they won't.
2241  if (NoNaNsFPMath)
2242    return true;
2243
2244  // If the value is a constant, we can obviously see if it is a NaN or not.
2245  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2246    return !C->getValueAPF().isNaN();
2247
2248  // TODO: Recognize more cases here.
2249
2250  return false;
2251}
2252
2253bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2254  // If the value is a constant, we can obviously see if it is a zero or not.
2255  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2256    return !C->isZero();
2257
2258  // TODO: Recognize more cases here.
2259
2260  return false;
2261}
2262
2263bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2264  // Check the obvious case.
2265  if (A == B) return true;
2266
2267  // For for negative and positive zero.
2268  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2269    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2270      if (CA->isZero() && CB->isZero()) return true;
2271
2272  // Otherwise they may not be equal.
2273  return false;
2274}
2275
2276bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2277  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2278  if (!GA) return false;
2279  if (GA->getOffset() != 0) return false;
2280  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2281  if (!GV) return false;
2282  return MF->getMMI().hasDebugInfo();
2283}
2284
2285
2286/// getNode - Gets or creates the specified node.
2287///
2288SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2289  FoldingSetNodeID ID;
2290  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2291  void *IP = 0;
2292  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2293    return SDValue(E, 0);
2294
2295  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2296  CSEMap.InsertNode(N, IP);
2297
2298  AllNodes.push_back(N);
2299#ifndef NDEBUG
2300  VerifyNode(N);
2301#endif
2302  return SDValue(N, 0);
2303}
2304
2305SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2306                              EVT VT, SDValue Operand) {
2307  // Constant fold unary operations with an integer constant operand.
2308  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2309    const APInt &Val = C->getAPIntValue();
2310    switch (Opcode) {
2311    default: break;
2312    case ISD::SIGN_EXTEND:
2313      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2314    case ISD::ANY_EXTEND:
2315    case ISD::ZERO_EXTEND:
2316    case ISD::TRUNCATE:
2317      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2318    case ISD::UINT_TO_FP:
2319    case ISD::SINT_TO_FP: {
2320      const uint64_t zero[] = {0, 0};
2321      // No compile time operations on ppcf128.
2322      if (VT == MVT::ppcf128) break;
2323      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2324      (void)apf.convertFromAPInt(Val,
2325                                 Opcode==ISD::SINT_TO_FP,
2326                                 APFloat::rmNearestTiesToEven);
2327      return getConstantFP(apf, VT);
2328    }
2329    case ISD::BIT_CONVERT:
2330      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2331        return getConstantFP(Val.bitsToFloat(), VT);
2332      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2333        return getConstantFP(Val.bitsToDouble(), VT);
2334      break;
2335    case ISD::BSWAP:
2336      return getConstant(Val.byteSwap(), VT);
2337    case ISD::CTPOP:
2338      return getConstant(Val.countPopulation(), VT);
2339    case ISD::CTLZ:
2340      return getConstant(Val.countLeadingZeros(), VT);
2341    case ISD::CTTZ:
2342      return getConstant(Val.countTrailingZeros(), VT);
2343    }
2344  }
2345
2346  // Constant fold unary operations with a floating point constant operand.
2347  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2348    APFloat V = C->getValueAPF();    // make copy
2349    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2350      switch (Opcode) {
2351      case ISD::FNEG:
2352        V.changeSign();
2353        return getConstantFP(V, VT);
2354      case ISD::FABS:
2355        V.clearSign();
2356        return getConstantFP(V, VT);
2357      case ISD::FP_ROUND:
2358      case ISD::FP_EXTEND: {
2359        bool ignored;
2360        // This can return overflow, underflow, or inexact; we don't care.
2361        // FIXME need to be more flexible about rounding mode.
2362        (void)V.convert(*EVTToAPFloatSemantics(VT),
2363                        APFloat::rmNearestTiesToEven, &ignored);
2364        return getConstantFP(V, VT);
2365      }
2366      case ISD::FP_TO_SINT:
2367      case ISD::FP_TO_UINT: {
2368        integerPart x[2];
2369        bool ignored;
2370        assert(integerPartWidth >= 64);
2371        // FIXME need to be more flexible about rounding mode.
2372        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2373                              Opcode==ISD::FP_TO_SINT,
2374                              APFloat::rmTowardZero, &ignored);
2375        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2376          break;
2377        APInt api(VT.getSizeInBits(), 2, x);
2378        return getConstant(api, VT);
2379      }
2380      case ISD::BIT_CONVERT:
2381        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2382          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2383        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2384          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2385        break;
2386      }
2387    }
2388  }
2389
2390  unsigned OpOpcode = Operand.getNode()->getOpcode();
2391  switch (Opcode) {
2392  case ISD::TokenFactor:
2393  case ISD::MERGE_VALUES:
2394  case ISD::CONCAT_VECTORS:
2395    return Operand;         // Factor, merge or concat of one node?  No need.
2396  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2397  case ISD::FP_EXTEND:
2398    assert(VT.isFloatingPoint() &&
2399           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2400    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2401    assert((!VT.isVector() ||
2402            VT.getVectorNumElements() ==
2403            Operand.getValueType().getVectorNumElements()) &&
2404           "Vector element count mismatch!");
2405    if (Operand.getOpcode() == ISD::UNDEF)
2406      return getUNDEF(VT);
2407    break;
2408  case ISD::SIGN_EXTEND:
2409    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2410           "Invalid SIGN_EXTEND!");
2411    if (Operand.getValueType() == VT) return Operand;   // noop extension
2412    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2413           "Invalid sext node, dst < src!");
2414    assert((!VT.isVector() ||
2415            VT.getVectorNumElements() ==
2416            Operand.getValueType().getVectorNumElements()) &&
2417           "Vector element count mismatch!");
2418    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2419      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2420    break;
2421  case ISD::ZERO_EXTEND:
2422    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2423           "Invalid ZERO_EXTEND!");
2424    if (Operand.getValueType() == VT) return Operand;   // noop extension
2425    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2426           "Invalid zext node, dst < src!");
2427    assert((!VT.isVector() ||
2428            VT.getVectorNumElements() ==
2429            Operand.getValueType().getVectorNumElements()) &&
2430           "Vector element count mismatch!");
2431    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2432      return getNode(ISD::ZERO_EXTEND, DL, VT,
2433                     Operand.getNode()->getOperand(0));
2434    break;
2435  case ISD::ANY_EXTEND:
2436    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2437           "Invalid ANY_EXTEND!");
2438    if (Operand.getValueType() == VT) return Operand;   // noop extension
2439    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2440           "Invalid anyext node, dst < src!");
2441    assert((!VT.isVector() ||
2442            VT.getVectorNumElements() ==
2443            Operand.getValueType().getVectorNumElements()) &&
2444           "Vector element count mismatch!");
2445
2446    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2447        OpOpcode == ISD::ANY_EXTEND)
2448      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2449      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2450
2451    // (ext (trunx x)) -> x
2452    if (OpOpcode == ISD::TRUNCATE) {
2453      SDValue OpOp = Operand.getNode()->getOperand(0);
2454      if (OpOp.getValueType() == VT)
2455        return OpOp;
2456    }
2457    break;
2458  case ISD::TRUNCATE:
2459    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2460           "Invalid TRUNCATE!");
2461    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2462    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2463           "Invalid truncate node, src < dst!");
2464    assert((!VT.isVector() ||
2465            VT.getVectorNumElements() ==
2466            Operand.getValueType().getVectorNumElements()) &&
2467           "Vector element count mismatch!");
2468    if (OpOpcode == ISD::TRUNCATE)
2469      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2470    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2471             OpOpcode == ISD::ANY_EXTEND) {
2472      // If the source is smaller than the dest, we still need an extend.
2473      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2474            .bitsLT(VT.getScalarType()))
2475        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2476      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2477        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2478      else
2479        return Operand.getNode()->getOperand(0);
2480    }
2481    break;
2482  case ISD::BIT_CONVERT:
2483    // Basic sanity checking.
2484    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2485           && "Cannot BIT_CONVERT between types of different sizes!");
2486    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2487    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2488      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2489    if (OpOpcode == ISD::UNDEF)
2490      return getUNDEF(VT);
2491    break;
2492  case ISD::SCALAR_TO_VECTOR:
2493    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2494           (VT.getVectorElementType() == Operand.getValueType() ||
2495            (VT.getVectorElementType().isInteger() &&
2496             Operand.getValueType().isInteger() &&
2497             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2498           "Illegal SCALAR_TO_VECTOR node!");
2499    if (OpOpcode == ISD::UNDEF)
2500      return getUNDEF(VT);
2501    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2502    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2503        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2504        Operand.getConstantOperandVal(1) == 0 &&
2505        Operand.getOperand(0).getValueType() == VT)
2506      return Operand.getOperand(0);
2507    break;
2508  case ISD::FNEG:
2509    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2510    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2511      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2512                     Operand.getNode()->getOperand(0));
2513    if (OpOpcode == ISD::FNEG)  // --X -> X
2514      return Operand.getNode()->getOperand(0);
2515    break;
2516  case ISD::FABS:
2517    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2518      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2519    break;
2520  }
2521
2522  SDNode *N;
2523  SDVTList VTs = getVTList(VT);
2524  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2525    FoldingSetNodeID ID;
2526    SDValue Ops[1] = { Operand };
2527    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2528    void *IP = 0;
2529    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2530      return SDValue(E, 0);
2531
2532    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2533    CSEMap.InsertNode(N, IP);
2534  } else {
2535    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2536  }
2537
2538  AllNodes.push_back(N);
2539#ifndef NDEBUG
2540  VerifyNode(N);
2541#endif
2542  return SDValue(N, 0);
2543}
2544
2545SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2546                                             EVT VT,
2547                                             ConstantSDNode *Cst1,
2548                                             ConstantSDNode *Cst2) {
2549  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2550
2551  switch (Opcode) {
2552  case ISD::ADD:  return getConstant(C1 + C2, VT);
2553  case ISD::SUB:  return getConstant(C1 - C2, VT);
2554  case ISD::MUL:  return getConstant(C1 * C2, VT);
2555  case ISD::UDIV:
2556    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2557    break;
2558  case ISD::UREM:
2559    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2560    break;
2561  case ISD::SDIV:
2562    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2563    break;
2564  case ISD::SREM:
2565    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2566    break;
2567  case ISD::AND:  return getConstant(C1 & C2, VT);
2568  case ISD::OR:   return getConstant(C1 | C2, VT);
2569  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2570  case ISD::SHL:  return getConstant(C1 << C2, VT);
2571  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2572  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2573  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2574  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2575  default: break;
2576  }
2577
2578  return SDValue();
2579}
2580
2581SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2582                              SDValue N1, SDValue N2) {
2583  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2584  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2585  switch (Opcode) {
2586  default: break;
2587  case ISD::TokenFactor:
2588    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2589           N2.getValueType() == MVT::Other && "Invalid token factor!");
2590    // Fold trivial token factors.
2591    if (N1.getOpcode() == ISD::EntryToken) return N2;
2592    if (N2.getOpcode() == ISD::EntryToken) return N1;
2593    if (N1 == N2) return N1;
2594    break;
2595  case ISD::CONCAT_VECTORS:
2596    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2597    // one big BUILD_VECTOR.
2598    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2599        N2.getOpcode() == ISD::BUILD_VECTOR) {
2600      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2601                                    N1.getNode()->op_end());
2602      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2603      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2604    }
2605    break;
2606  case ISD::AND:
2607    assert(VT.isInteger() && "This operator does not apply to FP types!");
2608    assert(N1.getValueType() == N2.getValueType() &&
2609           N1.getValueType() == VT && "Binary operator types must match!");
2610    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2611    // worth handling here.
2612    if (N2C && N2C->isNullValue())
2613      return N2;
2614    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2615      return N1;
2616    break;
2617  case ISD::OR:
2618  case ISD::XOR:
2619  case ISD::ADD:
2620  case ISD::SUB:
2621    assert(VT.isInteger() && "This operator does not apply to FP types!");
2622    assert(N1.getValueType() == N2.getValueType() &&
2623           N1.getValueType() == VT && "Binary operator types must match!");
2624    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2625    // it's worth handling here.
2626    if (N2C && N2C->isNullValue())
2627      return N1;
2628    break;
2629  case ISD::UDIV:
2630  case ISD::UREM:
2631  case ISD::MULHU:
2632  case ISD::MULHS:
2633  case ISD::MUL:
2634  case ISD::SDIV:
2635  case ISD::SREM:
2636    assert(VT.isInteger() && "This operator does not apply to FP types!");
2637    assert(N1.getValueType() == N2.getValueType() &&
2638           N1.getValueType() == VT && "Binary operator types must match!");
2639    break;
2640  case ISD::FADD:
2641  case ISD::FSUB:
2642  case ISD::FMUL:
2643  case ISD::FDIV:
2644  case ISD::FREM:
2645    if (UnsafeFPMath) {
2646      if (Opcode == ISD::FADD) {
2647        // 0+x --> x
2648        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2649          if (CFP->getValueAPF().isZero())
2650            return N2;
2651        // x+0 --> x
2652        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2653          if (CFP->getValueAPF().isZero())
2654            return N1;
2655      } else if (Opcode == ISD::FSUB) {
2656        // x-0 --> x
2657        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2658          if (CFP->getValueAPF().isZero())
2659            return N1;
2660      }
2661    }
2662    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2663    assert(N1.getValueType() == N2.getValueType() &&
2664           N1.getValueType() == VT && "Binary operator types must match!");
2665    break;
2666  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2667    assert(N1.getValueType() == VT &&
2668           N1.getValueType().isFloatingPoint() &&
2669           N2.getValueType().isFloatingPoint() &&
2670           "Invalid FCOPYSIGN!");
2671    break;
2672  case ISD::SHL:
2673  case ISD::SRA:
2674  case ISD::SRL:
2675  case ISD::ROTL:
2676  case ISD::ROTR:
2677    assert(VT == N1.getValueType() &&
2678           "Shift operators return type must be the same as their first arg");
2679    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2680           "Shifts only work on integers");
2681
2682    // Always fold shifts of i1 values so the code generator doesn't need to
2683    // handle them.  Since we know the size of the shift has to be less than the
2684    // size of the value, the shift/rotate count is guaranteed to be zero.
2685    if (VT == MVT::i1)
2686      return N1;
2687    if (N2C && N2C->isNullValue())
2688      return N1;
2689    break;
2690  case ISD::FP_ROUND_INREG: {
2691    EVT EVT = cast<VTSDNode>(N2)->getVT();
2692    assert(VT == N1.getValueType() && "Not an inreg round!");
2693    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2694           "Cannot FP_ROUND_INREG integer types");
2695    assert(EVT.isVector() == VT.isVector() &&
2696           "FP_ROUND_INREG type should be vector iff the operand "
2697           "type is vector!");
2698    assert((!EVT.isVector() ||
2699            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2700           "Vector element counts must match in FP_ROUND_INREG");
2701    assert(EVT.bitsLE(VT) && "Not rounding down!");
2702    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2703    break;
2704  }
2705  case ISD::FP_ROUND:
2706    assert(VT.isFloatingPoint() &&
2707           N1.getValueType().isFloatingPoint() &&
2708           VT.bitsLE(N1.getValueType()) &&
2709           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2710    if (N1.getValueType() == VT) return N1;  // noop conversion.
2711    break;
2712  case ISD::AssertSext:
2713  case ISD::AssertZext: {
2714    EVT EVT = cast<VTSDNode>(N2)->getVT();
2715    assert(VT == N1.getValueType() && "Not an inreg extend!");
2716    assert(VT.isInteger() && EVT.isInteger() &&
2717           "Cannot *_EXTEND_INREG FP types");
2718    assert(!EVT.isVector() &&
2719           "AssertSExt/AssertZExt type should be the vector element type "
2720           "rather than the vector type!");
2721    assert(EVT.bitsLE(VT) && "Not extending!");
2722    if (VT == EVT) return N1; // noop assertion.
2723    break;
2724  }
2725  case ISD::SIGN_EXTEND_INREG: {
2726    EVT EVT = cast<VTSDNode>(N2)->getVT();
2727    assert(VT == N1.getValueType() && "Not an inreg extend!");
2728    assert(VT.isInteger() && EVT.isInteger() &&
2729           "Cannot *_EXTEND_INREG FP types");
2730    assert(EVT.isVector() == VT.isVector() &&
2731           "SIGN_EXTEND_INREG type should be vector iff the operand "
2732           "type is vector!");
2733    assert((!EVT.isVector() ||
2734            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2735           "Vector element counts must match in SIGN_EXTEND_INREG");
2736    assert(EVT.bitsLE(VT) && "Not extending!");
2737    if (EVT == VT) return N1;  // Not actually extending
2738
2739    if (N1C) {
2740      APInt Val = N1C->getAPIntValue();
2741      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2742      Val <<= Val.getBitWidth()-FromBits;
2743      Val = Val.ashr(Val.getBitWidth()-FromBits);
2744      return getConstant(Val, VT);
2745    }
2746    break;
2747  }
2748  case ISD::EXTRACT_VECTOR_ELT:
2749    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2750    if (N1.getOpcode() == ISD::UNDEF)
2751      return getUNDEF(VT);
2752
2753    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2754    // expanding copies of large vectors from registers.
2755    if (N2C &&
2756        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2757        N1.getNumOperands() > 0) {
2758      unsigned Factor =
2759        N1.getOperand(0).getValueType().getVectorNumElements();
2760      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2761                     N1.getOperand(N2C->getZExtValue() / Factor),
2762                     getConstant(N2C->getZExtValue() % Factor,
2763                                 N2.getValueType()));
2764    }
2765
2766    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2767    // expanding large vector constants.
2768    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2769      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2770      EVT VEltTy = N1.getValueType().getVectorElementType();
2771      if (Elt.getValueType() != VEltTy) {
2772        // If the vector element type is not legal, the BUILD_VECTOR operands
2773        // are promoted and implicitly truncated.  Make that explicit here.
2774        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2775      }
2776      if (VT != VEltTy) {
2777        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2778        // result is implicitly extended.
2779        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2780      }
2781      return Elt;
2782    }
2783
2784    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2785    // operations are lowered to scalars.
2786    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2787      // If the indices are the same, return the inserted element else
2788      // if the indices are known different, extract the element from
2789      // the original vector.
2790      SDValue N1Op2 = N1.getOperand(2);
2791      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2792
2793      if (N1Op2C && N2C) {
2794        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2795          if (VT == N1.getOperand(1).getValueType())
2796            return N1.getOperand(1);
2797          else
2798            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2799        }
2800
2801        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2802      }
2803    }
2804    break;
2805  case ISD::EXTRACT_ELEMENT:
2806    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2807    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2808           (N1.getValueType().isInteger() == VT.isInteger()) &&
2809           "Wrong types for EXTRACT_ELEMENT!");
2810
2811    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2812    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2813    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2814    if (N1.getOpcode() == ISD::BUILD_PAIR)
2815      return N1.getOperand(N2C->getZExtValue());
2816
2817    // EXTRACT_ELEMENT of a constant int is also very common.
2818    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2819      unsigned ElementSize = VT.getSizeInBits();
2820      unsigned Shift = ElementSize * N2C->getZExtValue();
2821      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2822      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2823    }
2824    break;
2825  case ISD::EXTRACT_SUBVECTOR:
2826    if (N1.getValueType() == VT) // Trivial extraction.
2827      return N1;
2828    break;
2829  }
2830
2831  if (N1C) {
2832    if (N2C) {
2833      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2834      if (SV.getNode()) return SV;
2835    } else {      // Cannonicalize constant to RHS if commutative
2836      if (isCommutativeBinOp(Opcode)) {
2837        std::swap(N1C, N2C);
2838        std::swap(N1, N2);
2839      }
2840    }
2841  }
2842
2843  // Constant fold FP operations.
2844  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2845  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2846  if (N1CFP) {
2847    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2848      // Cannonicalize constant to RHS if commutative
2849      std::swap(N1CFP, N2CFP);
2850      std::swap(N1, N2);
2851    } else if (N2CFP && VT != MVT::ppcf128) {
2852      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2853      APFloat::opStatus s;
2854      switch (Opcode) {
2855      case ISD::FADD:
2856        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2857        if (s != APFloat::opInvalidOp)
2858          return getConstantFP(V1, VT);
2859        break;
2860      case ISD::FSUB:
2861        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2862        if (s!=APFloat::opInvalidOp)
2863          return getConstantFP(V1, VT);
2864        break;
2865      case ISD::FMUL:
2866        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2867        if (s!=APFloat::opInvalidOp)
2868          return getConstantFP(V1, VT);
2869        break;
2870      case ISD::FDIV:
2871        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2872        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2873          return getConstantFP(V1, VT);
2874        break;
2875      case ISD::FREM :
2876        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2877        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2878          return getConstantFP(V1, VT);
2879        break;
2880      case ISD::FCOPYSIGN:
2881        V1.copySign(V2);
2882        return getConstantFP(V1, VT);
2883      default: break;
2884      }
2885    }
2886  }
2887
2888  // Canonicalize an UNDEF to the RHS, even over a constant.
2889  if (N1.getOpcode() == ISD::UNDEF) {
2890    if (isCommutativeBinOp(Opcode)) {
2891      std::swap(N1, N2);
2892    } else {
2893      switch (Opcode) {
2894      case ISD::FP_ROUND_INREG:
2895      case ISD::SIGN_EXTEND_INREG:
2896      case ISD::SUB:
2897      case ISD::FSUB:
2898      case ISD::FDIV:
2899      case ISD::FREM:
2900      case ISD::SRA:
2901        return N1;     // fold op(undef, arg2) -> undef
2902      case ISD::UDIV:
2903      case ISD::SDIV:
2904      case ISD::UREM:
2905      case ISD::SREM:
2906      case ISD::SRL:
2907      case ISD::SHL:
2908        if (!VT.isVector())
2909          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2910        // For vectors, we can't easily build an all zero vector, just return
2911        // the LHS.
2912        return N2;
2913      }
2914    }
2915  }
2916
2917  // Fold a bunch of operators when the RHS is undef.
2918  if (N2.getOpcode() == ISD::UNDEF) {
2919    switch (Opcode) {
2920    case ISD::XOR:
2921      if (N1.getOpcode() == ISD::UNDEF)
2922        // Handle undef ^ undef -> 0 special case. This is a common
2923        // idiom (misuse).
2924        return getConstant(0, VT);
2925      // fallthrough
2926    case ISD::ADD:
2927    case ISD::ADDC:
2928    case ISD::ADDE:
2929    case ISD::SUB:
2930    case ISD::UDIV:
2931    case ISD::SDIV:
2932    case ISD::UREM:
2933    case ISD::SREM:
2934      return N2;       // fold op(arg1, undef) -> undef
2935    case ISD::FADD:
2936    case ISD::FSUB:
2937    case ISD::FMUL:
2938    case ISD::FDIV:
2939    case ISD::FREM:
2940      if (UnsafeFPMath)
2941        return N2;
2942      break;
2943    case ISD::MUL:
2944    case ISD::AND:
2945    case ISD::SRL:
2946    case ISD::SHL:
2947      if (!VT.isVector())
2948        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2949      // For vectors, we can't easily build an all zero vector, just return
2950      // the LHS.
2951      return N1;
2952    case ISD::OR:
2953      if (!VT.isVector())
2954        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2955      // For vectors, we can't easily build an all one vector, just return
2956      // the LHS.
2957      return N1;
2958    case ISD::SRA:
2959      return N1;
2960    }
2961  }
2962
2963  // Memoize this node if possible.
2964  SDNode *N;
2965  SDVTList VTs = getVTList(VT);
2966  if (VT != MVT::Flag) {
2967    SDValue Ops[] = { N1, N2 };
2968    FoldingSetNodeID ID;
2969    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2970    void *IP = 0;
2971    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2972      return SDValue(E, 0);
2973
2974    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2975    CSEMap.InsertNode(N, IP);
2976  } else {
2977    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2978  }
2979
2980  AllNodes.push_back(N);
2981#ifndef NDEBUG
2982  VerifyNode(N);
2983#endif
2984  return SDValue(N, 0);
2985}
2986
2987SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2988                              SDValue N1, SDValue N2, SDValue N3) {
2989  // Perform various simplifications.
2990  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2991  switch (Opcode) {
2992  case ISD::CONCAT_VECTORS:
2993    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2994    // one big BUILD_VECTOR.
2995    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2996        N2.getOpcode() == ISD::BUILD_VECTOR &&
2997        N3.getOpcode() == ISD::BUILD_VECTOR) {
2998      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2999                                    N1.getNode()->op_end());
3000      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3001      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3002      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3003    }
3004    break;
3005  case ISD::SETCC: {
3006    // Use FoldSetCC to simplify SETCC's.
3007    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3008    if (Simp.getNode()) return Simp;
3009    break;
3010  }
3011  case ISD::SELECT:
3012    if (N1C) {
3013     if (N1C->getZExtValue())
3014        return N2;             // select true, X, Y -> X
3015      else
3016        return N3;             // select false, X, Y -> Y
3017    }
3018
3019    if (N2 == N3) return N2;   // select C, X, X -> X
3020    break;
3021  case ISD::VECTOR_SHUFFLE:
3022    llvm_unreachable("should use getVectorShuffle constructor!");
3023    break;
3024  case ISD::BIT_CONVERT:
3025    // Fold bit_convert nodes from a type to themselves.
3026    if (N1.getValueType() == VT)
3027      return N1;
3028    break;
3029  }
3030
3031  // Memoize node if it doesn't produce a flag.
3032  SDNode *N;
3033  SDVTList VTs = getVTList(VT);
3034  if (VT != MVT::Flag) {
3035    SDValue Ops[] = { N1, N2, N3 };
3036    FoldingSetNodeID ID;
3037    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3038    void *IP = 0;
3039    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3040      return SDValue(E, 0);
3041
3042    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3043    CSEMap.InsertNode(N, IP);
3044  } else {
3045    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3046  }
3047
3048  AllNodes.push_back(N);
3049#ifndef NDEBUG
3050  VerifyNode(N);
3051#endif
3052  return SDValue(N, 0);
3053}
3054
3055SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3056                              SDValue N1, SDValue N2, SDValue N3,
3057                              SDValue N4) {
3058  SDValue Ops[] = { N1, N2, N3, N4 };
3059  return getNode(Opcode, DL, VT, Ops, 4);
3060}
3061
3062SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3063                              SDValue N1, SDValue N2, SDValue N3,
3064                              SDValue N4, SDValue N5) {
3065  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3066  return getNode(Opcode, DL, VT, Ops, 5);
3067}
3068
3069/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3070/// the incoming stack arguments to be loaded from the stack.
3071SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3072  SmallVector<SDValue, 8> ArgChains;
3073
3074  // Include the original chain at the beginning of the list. When this is
3075  // used by target LowerCall hooks, this helps legalize find the
3076  // CALLSEQ_BEGIN node.
3077  ArgChains.push_back(Chain);
3078
3079  // Add a chain value for each stack argument.
3080  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3081       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3082    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3083      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3084        if (FI->getIndex() < 0)
3085          ArgChains.push_back(SDValue(L, 1));
3086
3087  // Build a tokenfactor for all the chains.
3088  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3089                 &ArgChains[0], ArgChains.size());
3090}
3091
3092/// getMemsetValue - Vectorized representation of the memset value
3093/// operand.
3094static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3095                              DebugLoc dl) {
3096  assert(Value.getOpcode() != ISD::UNDEF);
3097
3098  unsigned NumBits = VT.getScalarType().getSizeInBits();
3099  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3100    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3101    unsigned Shift = 8;
3102    for (unsigned i = NumBits; i > 8; i >>= 1) {
3103      Val = (Val << Shift) | Val;
3104      Shift <<= 1;
3105    }
3106    if (VT.isInteger())
3107      return DAG.getConstant(Val, VT);
3108    return DAG.getConstantFP(APFloat(Val), VT);
3109  }
3110
3111  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3112  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3113  unsigned Shift = 8;
3114  for (unsigned i = NumBits; i > 8; i >>= 1) {
3115    Value = DAG.getNode(ISD::OR, dl, VT,
3116                        DAG.getNode(ISD::SHL, dl, VT, Value,
3117                                    DAG.getConstant(Shift,
3118                                                    TLI.getShiftAmountTy())),
3119                        Value);
3120    Shift <<= 1;
3121  }
3122
3123  return Value;
3124}
3125
3126/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3127/// used when a memcpy is turned into a memset when the source is a constant
3128/// string ptr.
3129static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3130                                  const TargetLowering &TLI,
3131                                  std::string &Str, unsigned Offset) {
3132  // Handle vector with all elements zero.
3133  if (Str.empty()) {
3134    if (VT.isInteger())
3135      return DAG.getConstant(0, VT);
3136    else if (VT == MVT::f32 || VT == MVT::f64)
3137      return DAG.getConstantFP(0.0, VT);
3138    else if (VT.isVector()) {
3139      unsigned NumElts = VT.getVectorNumElements();
3140      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3141      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3142                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3143                                                             EltVT, NumElts)));
3144    } else
3145      llvm_unreachable("Expected type!");
3146  }
3147
3148  assert(!VT.isVector() && "Can't handle vector type here!");
3149  unsigned NumBits = VT.getSizeInBits();
3150  unsigned MSB = NumBits / 8;
3151  uint64_t Val = 0;
3152  if (TLI.isLittleEndian())
3153    Offset = Offset + MSB - 1;
3154  for (unsigned i = 0; i != MSB; ++i) {
3155    Val = (Val << 8) | (unsigned char)Str[Offset];
3156    Offset += TLI.isLittleEndian() ? -1 : 1;
3157  }
3158  return DAG.getConstant(Val, VT);
3159}
3160
3161/// getMemBasePlusOffset - Returns base and offset node for the
3162///
3163static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3164                                      SelectionDAG &DAG) {
3165  EVT VT = Base.getValueType();
3166  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3167                     VT, Base, DAG.getConstant(Offset, VT));
3168}
3169
3170/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3171///
3172static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3173  unsigned SrcDelta = 0;
3174  GlobalAddressSDNode *G = NULL;
3175  if (Src.getOpcode() == ISD::GlobalAddress)
3176    G = cast<GlobalAddressSDNode>(Src);
3177  else if (Src.getOpcode() == ISD::ADD &&
3178           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3179           Src.getOperand(1).getOpcode() == ISD::Constant) {
3180    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3181    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3182  }
3183  if (!G)
3184    return false;
3185
3186  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3187  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3188    return true;
3189
3190  return false;
3191}
3192
3193/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3194/// to replace the memset / memcpy. Return true if the number of memory ops
3195/// is below the threshold. It returns the types of the sequence of
3196/// memory ops to perform memset / memcpy by reference.
3197static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3198                                     unsigned Limit, uint64_t Size,
3199                                     unsigned DstAlign, unsigned SrcAlign,
3200                                     bool NonScalarIntSafe,
3201                                     bool MemcpyStrSrc,
3202                                     SelectionDAG &DAG,
3203                                     const TargetLowering &TLI) {
3204  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3205         "Expecting memcpy / memset source to meet alignment requirement!");
3206  // If 'SrcAlign' is zero, that means the memory operation does not need load
3207  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3208  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3209  // specified alignment of the memory operation. If it is zero, that means
3210  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3211  // indicates whether the memcpy source is constant so it does not need to be
3212  // loaded.
3213  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3214                                   NonScalarIntSafe, MemcpyStrSrc,
3215                                   DAG.getMachineFunction());
3216
3217  if (VT == MVT::Other) {
3218    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3219        TLI.allowsUnalignedMemoryAccesses(VT)) {
3220      VT = TLI.getPointerTy();
3221    } else {
3222      switch (DstAlign & 7) {
3223      case 0:  VT = MVT::i64; break;
3224      case 4:  VT = MVT::i32; break;
3225      case 2:  VT = MVT::i16; break;
3226      default: VT = MVT::i8;  break;
3227      }
3228    }
3229
3230    MVT LVT = MVT::i64;
3231    while (!TLI.isTypeLegal(LVT))
3232      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3233    assert(LVT.isInteger());
3234
3235    if (VT.bitsGT(LVT))
3236      VT = LVT;
3237  }
3238
3239  // If we're optimizing for size, and there is a limit, bump the maximum number
3240  // of operations inserted down to 4.  This is a wild guess that approximates
3241  // the size of a call to memcpy or memset (3 arguments + call).
3242  if (Limit != ~0U) {
3243    const Function *F = DAG.getMachineFunction().getFunction();
3244    if (F->hasFnAttr(Attribute::OptimizeForSize))
3245      Limit = 4;
3246  }
3247
3248  unsigned NumMemOps = 0;
3249  while (Size != 0) {
3250    unsigned VTSize = VT.getSizeInBits() / 8;
3251    while (VTSize > Size) {
3252      // For now, only use non-vector load / store's for the left-over pieces.
3253      if (VT.isVector() || VT.isFloatingPoint()) {
3254        VT = MVT::i64;
3255        while (!TLI.isTypeLegal(VT))
3256          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3257        VTSize = VT.getSizeInBits() / 8;
3258      } else {
3259        // This can result in a type that is not legal on the target, e.g.
3260        // 1 or 2 bytes on PPC.
3261        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3262        VTSize >>= 1;
3263      }
3264    }
3265
3266    if (++NumMemOps > Limit)
3267      return false;
3268    MemOps.push_back(VT);
3269    Size -= VTSize;
3270  }
3271
3272  return true;
3273}
3274
3275static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3276                                       SDValue Chain, SDValue Dst,
3277                                       SDValue Src, uint64_t Size,
3278                                       unsigned Align, bool isVol,
3279                                       bool AlwaysInline,
3280                                       MachinePointerInfo DstPtrInfo,
3281                                       MachinePointerInfo SrcPtrInfo) {
3282  // Turn a memcpy of undef to nop.
3283  if (Src.getOpcode() == ISD::UNDEF)
3284    return Chain;
3285
3286  // Expand memcpy to a series of load and store ops if the size operand falls
3287  // below a certain threshold.
3288  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3289  // rather than maybe a humongous number of loads and stores.
3290  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3291  std::vector<EVT> MemOps;
3292  bool DstAlignCanChange = false;
3293  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3294  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3295  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3296    DstAlignCanChange = true;
3297  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3298  if (Align > SrcAlign)
3299    SrcAlign = Align;
3300  std::string Str;
3301  bool CopyFromStr = isMemSrcFromString(Src, Str);
3302  bool isZeroStr = CopyFromStr && Str.empty();
3303  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy();
3304
3305  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3306                                (DstAlignCanChange ? 0 : Align),
3307                                (isZeroStr ? 0 : SrcAlign),
3308                                true, CopyFromStr, DAG, TLI))
3309    return SDValue();
3310
3311  if (DstAlignCanChange) {
3312    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3313    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3314    if (NewAlign > Align) {
3315      // Give the stack frame object a larger alignment if needed.
3316      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3317        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3318      Align = NewAlign;
3319    }
3320  }
3321
3322  SmallVector<SDValue, 8> OutChains;
3323  unsigned NumMemOps = MemOps.size();
3324  uint64_t SrcOff = 0, DstOff = 0;
3325  for (unsigned i = 0; i != NumMemOps; ++i) {
3326    EVT VT = MemOps[i];
3327    unsigned VTSize = VT.getSizeInBits() / 8;
3328    SDValue Value, Store;
3329
3330    if (CopyFromStr &&
3331        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3332      // It's unlikely a store of a vector immediate can be done in a single
3333      // instruction. It would require a load from a constantpool first.
3334      // We only handle zero vectors here.
3335      // FIXME: Handle other cases where store of vector immediate is done in
3336      // a single instruction.
3337      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3338      Store = DAG.getStore(Chain, dl, Value,
3339                           getMemBasePlusOffset(Dst, DstOff, DAG),
3340                           DstPtrInfo.getWithOffset(DstOff), isVol,
3341                           false, Align);
3342    } else {
3343      // The type might not be legal for the target.  This should only happen
3344      // if the type is smaller than a legal type, as on PPC, so the right
3345      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3346      // to Load/Store if NVT==VT.
3347      // FIXME does the case above also need this?
3348      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3349      assert(NVT.bitsGE(VT));
3350      Value = DAG.getExtLoad(ISD::EXTLOAD, NVT, dl, Chain,
3351                             getMemBasePlusOffset(Src, SrcOff, DAG),
3352                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3353                             MinAlign(SrcAlign, SrcOff));
3354      Store = DAG.getTruncStore(Chain, dl, Value,
3355                                getMemBasePlusOffset(Dst, DstOff, DAG),
3356                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3357                                false, Align);
3358    }
3359    OutChains.push_back(Store);
3360    SrcOff += VTSize;
3361    DstOff += VTSize;
3362  }
3363
3364  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3365                     &OutChains[0], OutChains.size());
3366}
3367
3368static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3369                                        SDValue Chain, SDValue Dst,
3370                                        SDValue Src, uint64_t Size,
3371                                        unsigned Align,  bool isVol,
3372                                        bool AlwaysInline,
3373                                        MachinePointerInfo DstPtrInfo,
3374                                        MachinePointerInfo SrcPtrInfo) {
3375  // Turn a memmove of undef to nop.
3376  if (Src.getOpcode() == ISD::UNDEF)
3377    return Chain;
3378
3379  // Expand memmove to a series of load and store ops if the size operand falls
3380  // below a certain threshold.
3381  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3382  std::vector<EVT> MemOps;
3383  bool DstAlignCanChange = false;
3384  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3385  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3386  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3387    DstAlignCanChange = true;
3388  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3389  if (Align > SrcAlign)
3390    SrcAlign = Align;
3391  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove();
3392
3393  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3394                                (DstAlignCanChange ? 0 : Align),
3395                                SrcAlign, true, false, DAG, TLI))
3396    return SDValue();
3397
3398  if (DstAlignCanChange) {
3399    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3400    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3401    if (NewAlign > Align) {
3402      // Give the stack frame object a larger alignment if needed.
3403      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3404        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3405      Align = NewAlign;
3406    }
3407  }
3408
3409  uint64_t SrcOff = 0, DstOff = 0;
3410  SmallVector<SDValue, 8> LoadValues;
3411  SmallVector<SDValue, 8> LoadChains;
3412  SmallVector<SDValue, 8> OutChains;
3413  unsigned NumMemOps = MemOps.size();
3414  for (unsigned i = 0; i < NumMemOps; i++) {
3415    EVT VT = MemOps[i];
3416    unsigned VTSize = VT.getSizeInBits() / 8;
3417    SDValue Value, Store;
3418
3419    Value = DAG.getLoad(VT, dl, Chain,
3420                        getMemBasePlusOffset(Src, SrcOff, DAG),
3421                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3422                        false, SrcAlign);
3423    LoadValues.push_back(Value);
3424    LoadChains.push_back(Value.getValue(1));
3425    SrcOff += VTSize;
3426  }
3427  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3428                      &LoadChains[0], LoadChains.size());
3429  OutChains.clear();
3430  for (unsigned i = 0; i < NumMemOps; i++) {
3431    EVT VT = MemOps[i];
3432    unsigned VTSize = VT.getSizeInBits() / 8;
3433    SDValue Value, Store;
3434
3435    Store = DAG.getStore(Chain, dl, LoadValues[i],
3436                         getMemBasePlusOffset(Dst, DstOff, DAG),
3437                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3438    OutChains.push_back(Store);
3439    DstOff += VTSize;
3440  }
3441
3442  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3443                     &OutChains[0], OutChains.size());
3444}
3445
3446static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3447                               SDValue Chain, SDValue Dst,
3448                               SDValue Src, uint64_t Size,
3449                               unsigned Align, bool isVol,
3450                               MachinePointerInfo DstPtrInfo) {
3451  // Turn a memset of undef to nop.
3452  if (Src.getOpcode() == ISD::UNDEF)
3453    return Chain;
3454
3455  // Expand memset to a series of load/store ops if the size operand
3456  // falls below a certain threshold.
3457  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3458  std::vector<EVT> MemOps;
3459  bool DstAlignCanChange = false;
3460  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3461  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3462  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3463    DstAlignCanChange = true;
3464  bool NonScalarIntSafe =
3465    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3466  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3467                                Size, (DstAlignCanChange ? 0 : Align), 0,
3468                                NonScalarIntSafe, false, DAG, TLI))
3469    return SDValue();
3470
3471  if (DstAlignCanChange) {
3472    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3473    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3474    if (NewAlign > Align) {
3475      // Give the stack frame object a larger alignment if needed.
3476      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3477        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3478      Align = NewAlign;
3479    }
3480  }
3481
3482  SmallVector<SDValue, 8> OutChains;
3483  uint64_t DstOff = 0;
3484  unsigned NumMemOps = MemOps.size();
3485  for (unsigned i = 0; i < NumMemOps; i++) {
3486    EVT VT = MemOps[i];
3487    unsigned VTSize = VT.getSizeInBits() / 8;
3488    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3489    SDValue Store = DAG.getStore(Chain, dl, Value,
3490                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3491                                 DstPtrInfo.getWithOffset(DstOff),
3492                                 isVol, false, Align);
3493    OutChains.push_back(Store);
3494    DstOff += VTSize;
3495  }
3496
3497  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3498                     &OutChains[0], OutChains.size());
3499}
3500
3501SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3502                                SDValue Src, SDValue Size,
3503                                unsigned Align, bool isVol, bool AlwaysInline,
3504                                MachinePointerInfo DstPtrInfo,
3505                                MachinePointerInfo SrcPtrInfo) {
3506
3507  // Check to see if we should lower the memcpy to loads and stores first.
3508  // For cases within the target-specified limits, this is the best choice.
3509  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3510  if (ConstantSize) {
3511    // Memcpy with size zero? Just return the original chain.
3512    if (ConstantSize->isNullValue())
3513      return Chain;
3514
3515    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3516                                             ConstantSize->getZExtValue(),Align,
3517                                isVol, false, DstPtrInfo, SrcPtrInfo);
3518    if (Result.getNode())
3519      return Result;
3520  }
3521
3522  // Then check to see if we should lower the memcpy with target-specific
3523  // code. If the target chooses to do this, this is the next best.
3524  SDValue Result =
3525    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3526                                isVol, AlwaysInline,
3527                                DstPtrInfo, SrcPtrInfo);
3528  if (Result.getNode())
3529    return Result;
3530
3531  // If we really need inline code and the target declined to provide it,
3532  // use a (potentially long) sequence of loads and stores.
3533  if (AlwaysInline) {
3534    assert(ConstantSize && "AlwaysInline requires a constant size!");
3535    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3536                                   ConstantSize->getZExtValue(), Align, isVol,
3537                                   true, DstPtrInfo, SrcPtrInfo);
3538  }
3539
3540  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3541  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3542  // respect volatile, so they may do things like read or write memory
3543  // beyond the given memory regions. But fixing this isn't easy, and most
3544  // people don't care.
3545
3546  // Emit a library call.
3547  TargetLowering::ArgListTy Args;
3548  TargetLowering::ArgListEntry Entry;
3549  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3550  Entry.Node = Dst; Args.push_back(Entry);
3551  Entry.Node = Src; Args.push_back(Entry);
3552  Entry.Node = Size; Args.push_back(Entry);
3553  // FIXME: pass in DebugLoc
3554  std::pair<SDValue,SDValue> CallResult =
3555    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3556                    false, false, false, false, 0,
3557                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3558                    /*isReturnValueUsed=*/false,
3559                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3560                                      TLI.getPointerTy()),
3561                    Args, *this, dl);
3562  return CallResult.second;
3563}
3564
3565SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3566                                 SDValue Src, SDValue Size,
3567                                 unsigned Align, bool isVol,
3568                                 MachinePointerInfo DstPtrInfo,
3569                                 MachinePointerInfo SrcPtrInfo) {
3570
3571  // Check to see if we should lower the memmove to loads and stores first.
3572  // For cases within the target-specified limits, this is the best choice.
3573  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3574  if (ConstantSize) {
3575    // Memmove with size zero? Just return the original chain.
3576    if (ConstantSize->isNullValue())
3577      return Chain;
3578
3579    SDValue Result =
3580      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3581                               ConstantSize->getZExtValue(), Align, isVol,
3582                               false, DstPtrInfo, SrcPtrInfo);
3583    if (Result.getNode())
3584      return Result;
3585  }
3586
3587  // Then check to see if we should lower the memmove with target-specific
3588  // code. If the target chooses to do this, this is the next best.
3589  SDValue Result =
3590    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3591                                 DstPtrInfo, SrcPtrInfo);
3592  if (Result.getNode())
3593    return Result;
3594
3595  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3596  // not be safe.  See memcpy above for more details.
3597
3598  // Emit a library call.
3599  TargetLowering::ArgListTy Args;
3600  TargetLowering::ArgListEntry Entry;
3601  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3602  Entry.Node = Dst; Args.push_back(Entry);
3603  Entry.Node = Src; Args.push_back(Entry);
3604  Entry.Node = Size; Args.push_back(Entry);
3605  // FIXME:  pass in DebugLoc
3606  std::pair<SDValue,SDValue> CallResult =
3607    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3608                    false, false, false, false, 0,
3609                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3610                    /*isReturnValueUsed=*/false,
3611                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3612                                      TLI.getPointerTy()),
3613                    Args, *this, dl);
3614  return CallResult.second;
3615}
3616
3617SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3618                                SDValue Src, SDValue Size,
3619                                unsigned Align, bool isVol,
3620                                MachinePointerInfo DstPtrInfo) {
3621
3622  // Check to see if we should lower the memset to stores first.
3623  // For cases within the target-specified limits, this is the best choice.
3624  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3625  if (ConstantSize) {
3626    // Memset with size zero? Just return the original chain.
3627    if (ConstantSize->isNullValue())
3628      return Chain;
3629
3630    SDValue Result =
3631      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3632                      Align, isVol, DstPtrInfo);
3633
3634    if (Result.getNode())
3635      return Result;
3636  }
3637
3638  // Then check to see if we should lower the memset with target-specific
3639  // code. If the target chooses to do this, this is the next best.
3640  SDValue Result =
3641    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3642                                DstPtrInfo);
3643  if (Result.getNode())
3644    return Result;
3645
3646  // Emit a library call.
3647  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3648  TargetLowering::ArgListTy Args;
3649  TargetLowering::ArgListEntry Entry;
3650  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3651  Args.push_back(Entry);
3652  // Extend or truncate the argument to be an i32 value for the call.
3653  if (Src.getValueType().bitsGT(MVT::i32))
3654    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3655  else
3656    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3657  Entry.Node = Src;
3658  Entry.Ty = Type::getInt32Ty(*getContext());
3659  Entry.isSExt = true;
3660  Args.push_back(Entry);
3661  Entry.Node = Size;
3662  Entry.Ty = IntPtrTy;
3663  Entry.isSExt = false;
3664  Args.push_back(Entry);
3665  // FIXME: pass in DebugLoc
3666  std::pair<SDValue,SDValue> CallResult =
3667    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3668                    false, false, false, false, 0,
3669                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3670                    /*isReturnValueUsed=*/false,
3671                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3672                                      TLI.getPointerTy()),
3673                    Args, *this, dl);
3674  return CallResult.second;
3675}
3676
3677SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3678                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3679                                SDValue Swp, MachinePointerInfo PtrInfo,
3680                                unsigned Alignment) {
3681  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3682    Alignment = getEVTAlignment(MemVT);
3683
3684  MachineFunction &MF = getMachineFunction();
3685  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3686
3687  // For now, atomics are considered to be volatile always.
3688  Flags |= MachineMemOperand::MOVolatile;
3689
3690  MachineMemOperand *MMO =
3691    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3692
3693  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3694}
3695
3696SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3697                                SDValue Chain,
3698                                SDValue Ptr, SDValue Cmp,
3699                                SDValue Swp, MachineMemOperand *MMO) {
3700  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3701  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3702
3703  EVT VT = Cmp.getValueType();
3704
3705  SDVTList VTs = getVTList(VT, MVT::Other);
3706  FoldingSetNodeID ID;
3707  ID.AddInteger(MemVT.getRawBits());
3708  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3709  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3710  void* IP = 0;
3711  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3712    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3713    return SDValue(E, 0);
3714  }
3715  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3716                                               Ptr, Cmp, Swp, MMO);
3717  CSEMap.InsertNode(N, IP);
3718  AllNodes.push_back(N);
3719  return SDValue(N, 0);
3720}
3721
3722SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3723                                SDValue Chain,
3724                                SDValue Ptr, SDValue Val,
3725                                const Value* PtrVal,
3726                                unsigned Alignment) {
3727  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3728    Alignment = getEVTAlignment(MemVT);
3729
3730  MachineFunction &MF = getMachineFunction();
3731  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3732
3733  // For now, atomics are considered to be volatile always.
3734  Flags |= MachineMemOperand::MOVolatile;
3735
3736  MachineMemOperand *MMO =
3737    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3738                            MemVT.getStoreSize(), Alignment);
3739
3740  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3741}
3742
3743SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3744                                SDValue Chain,
3745                                SDValue Ptr, SDValue Val,
3746                                MachineMemOperand *MMO) {
3747  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3748          Opcode == ISD::ATOMIC_LOAD_SUB ||
3749          Opcode == ISD::ATOMIC_LOAD_AND ||
3750          Opcode == ISD::ATOMIC_LOAD_OR ||
3751          Opcode == ISD::ATOMIC_LOAD_XOR ||
3752          Opcode == ISD::ATOMIC_LOAD_NAND ||
3753          Opcode == ISD::ATOMIC_LOAD_MIN ||
3754          Opcode == ISD::ATOMIC_LOAD_MAX ||
3755          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3756          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3757          Opcode == ISD::ATOMIC_SWAP) &&
3758         "Invalid Atomic Op");
3759
3760  EVT VT = Val.getValueType();
3761
3762  SDVTList VTs = getVTList(VT, MVT::Other);
3763  FoldingSetNodeID ID;
3764  ID.AddInteger(MemVT.getRawBits());
3765  SDValue Ops[] = {Chain, Ptr, Val};
3766  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3767  void* IP = 0;
3768  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3769    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3770    return SDValue(E, 0);
3771  }
3772  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3773                                               Ptr, Val, MMO);
3774  CSEMap.InsertNode(N, IP);
3775  AllNodes.push_back(N);
3776  return SDValue(N, 0);
3777}
3778
3779/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3780/// Allowed to return something different (and simpler) if Simplify is true.
3781SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3782                                     DebugLoc dl) {
3783  if (NumOps == 1)
3784    return Ops[0];
3785
3786  SmallVector<EVT, 4> VTs;
3787  VTs.reserve(NumOps);
3788  for (unsigned i = 0; i < NumOps; ++i)
3789    VTs.push_back(Ops[i].getValueType());
3790  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3791                 Ops, NumOps);
3792}
3793
3794SDValue
3795SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3796                                  const EVT *VTs, unsigned NumVTs,
3797                                  const SDValue *Ops, unsigned NumOps,
3798                                  EVT MemVT, MachinePointerInfo PtrInfo,
3799                                  unsigned Align, bool Vol,
3800                                  bool ReadMem, bool WriteMem) {
3801  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3802                             MemVT, PtrInfo, Align, Vol,
3803                             ReadMem, WriteMem);
3804}
3805
3806SDValue
3807SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3808                                  const SDValue *Ops, unsigned NumOps,
3809                                  EVT MemVT, MachinePointerInfo PtrInfo,
3810                                  unsigned Align, bool Vol,
3811                                  bool ReadMem, bool WriteMem) {
3812  if (Align == 0)  // Ensure that codegen never sees alignment 0
3813    Align = getEVTAlignment(MemVT);
3814
3815  MachineFunction &MF = getMachineFunction();
3816  unsigned Flags = 0;
3817  if (WriteMem)
3818    Flags |= MachineMemOperand::MOStore;
3819  if (ReadMem)
3820    Flags |= MachineMemOperand::MOLoad;
3821  if (Vol)
3822    Flags |= MachineMemOperand::MOVolatile;
3823  MachineMemOperand *MMO =
3824    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3825
3826  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3827}
3828
3829SDValue
3830SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3831                                  const SDValue *Ops, unsigned NumOps,
3832                                  EVT MemVT, MachineMemOperand *MMO) {
3833  assert((Opcode == ISD::INTRINSIC_VOID ||
3834          Opcode == ISD::INTRINSIC_W_CHAIN ||
3835          Opcode == ISD::PREFETCH ||
3836          (Opcode <= INT_MAX &&
3837           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3838         "Opcode is not a memory-accessing opcode!");
3839
3840  // Memoize the node unless it returns a flag.
3841  MemIntrinsicSDNode *N;
3842  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3843    FoldingSetNodeID ID;
3844    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3845    void *IP = 0;
3846    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3847      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3848      return SDValue(E, 0);
3849    }
3850
3851    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3852                                               MemVT, MMO);
3853    CSEMap.InsertNode(N, IP);
3854  } else {
3855    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3856                                               MemVT, MMO);
3857  }
3858  AllNodes.push_back(N);
3859  return SDValue(N, 0);
3860}
3861
3862/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3863/// MachinePointerInfo record from it.  This is particularly useful because the
3864/// code generator has many cases where it doesn't bother passing in a
3865/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3866static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
3867  // If this is FI+Offset, we can model it.
3868  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
3869    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
3870
3871  // If this is (FI+Offset1)+Offset2, we can model it.
3872  if (Ptr.getOpcode() != ISD::ADD ||
3873      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
3874      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
3875    return MachinePointerInfo();
3876
3877  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3878  return MachinePointerInfo::getFixedStack(FI, Offset+
3879                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
3880}
3881
3882/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3883/// MachinePointerInfo record from it.  This is particularly useful because the
3884/// code generator has many cases where it doesn't bother passing in a
3885/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3886static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
3887  // If the 'Offset' value isn't a constant, we can't handle this.
3888  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
3889    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
3890  if (OffsetOp.getOpcode() == ISD::UNDEF)
3891    return InferPointerInfo(Ptr);
3892  return MachinePointerInfo();
3893}
3894
3895
3896SDValue
3897SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3898                      EVT VT, DebugLoc dl, SDValue Chain,
3899                      SDValue Ptr, SDValue Offset,
3900                      MachinePointerInfo PtrInfo, EVT MemVT,
3901                      bool isVolatile, bool isNonTemporal,
3902                      unsigned Alignment, const MDNode *TBAAInfo) {
3903  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3904    Alignment = getEVTAlignment(VT);
3905
3906  unsigned Flags = MachineMemOperand::MOLoad;
3907  if (isVolatile)
3908    Flags |= MachineMemOperand::MOVolatile;
3909  if (isNonTemporal)
3910    Flags |= MachineMemOperand::MONonTemporal;
3911
3912  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
3913  // clients.
3914  if (PtrInfo.V == 0)
3915    PtrInfo = InferPointerInfo(Ptr, Offset);
3916
3917  MachineFunction &MF = getMachineFunction();
3918  MachineMemOperand *MMO =
3919    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
3920                            TBAAInfo);
3921  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
3922}
3923
3924SDValue
3925SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3926                      EVT VT, DebugLoc dl, SDValue Chain,
3927                      SDValue Ptr, SDValue Offset, EVT MemVT,
3928                      MachineMemOperand *MMO) {
3929  if (VT == MemVT) {
3930    ExtType = ISD::NON_EXTLOAD;
3931  } else if (ExtType == ISD::NON_EXTLOAD) {
3932    assert(VT == MemVT && "Non-extending load from different memory type!");
3933  } else {
3934    // Extending load.
3935    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3936           "Should only be an extending load, not truncating!");
3937    assert(VT.isInteger() == MemVT.isInteger() &&
3938           "Cannot convert from FP to Int or Int -> FP!");
3939    assert(VT.isVector() == MemVT.isVector() &&
3940           "Cannot use trunc store to convert to or from a vector!");
3941    assert((!VT.isVector() ||
3942            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3943           "Cannot use trunc store to change the number of vector elements!");
3944  }
3945
3946  bool Indexed = AM != ISD::UNINDEXED;
3947  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3948         "Unindexed load with an offset!");
3949
3950  SDVTList VTs = Indexed ?
3951    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3952  SDValue Ops[] = { Chain, Ptr, Offset };
3953  FoldingSetNodeID ID;
3954  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3955  ID.AddInteger(MemVT.getRawBits());
3956  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3957                                     MMO->isNonTemporal()));
3958  void *IP = 0;
3959  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3960    cast<LoadSDNode>(E)->refineAlignment(MMO);
3961    return SDValue(E, 0);
3962  }
3963  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3964                                             MemVT, MMO);
3965  CSEMap.InsertNode(N, IP);
3966  AllNodes.push_back(N);
3967  return SDValue(N, 0);
3968}
3969
3970SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3971                              SDValue Chain, SDValue Ptr,
3972                              MachinePointerInfo PtrInfo,
3973                              bool isVolatile, bool isNonTemporal,
3974                              unsigned Alignment, const MDNode *TBAAInfo) {
3975  SDValue Undef = getUNDEF(Ptr.getValueType());
3976  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
3977                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
3978}
3979
3980SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, EVT VT, DebugLoc dl,
3981                                 SDValue Chain, SDValue Ptr,
3982                                 MachinePointerInfo PtrInfo, EVT MemVT,
3983                                 bool isVolatile, bool isNonTemporal,
3984                                 unsigned Alignment, const MDNode *TBAAInfo) {
3985  SDValue Undef = getUNDEF(Ptr.getValueType());
3986  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
3987                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
3988                 TBAAInfo);
3989}
3990
3991
3992SDValue
3993SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3994                             SDValue Offset, ISD::MemIndexedMode AM) {
3995  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3996  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3997         "Load is already a indexed load!");
3998  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
3999                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4000                 LD->getMemoryVT(),
4001                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4002}
4003
4004SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4005                               SDValue Ptr, MachinePointerInfo PtrInfo,
4006                               bool isVolatile, bool isNonTemporal,
4007                               unsigned Alignment, const MDNode *TBAAInfo) {
4008  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4009    Alignment = getEVTAlignment(Val.getValueType());
4010
4011  unsigned Flags = MachineMemOperand::MOStore;
4012  if (isVolatile)
4013    Flags |= MachineMemOperand::MOVolatile;
4014  if (isNonTemporal)
4015    Flags |= MachineMemOperand::MONonTemporal;
4016
4017  if (PtrInfo.V == 0)
4018    PtrInfo = InferPointerInfo(Ptr);
4019
4020  MachineFunction &MF = getMachineFunction();
4021  MachineMemOperand *MMO =
4022    MF.getMachineMemOperand(PtrInfo, Flags,
4023                            Val.getValueType().getStoreSize(), Alignment,
4024                            TBAAInfo);
4025
4026  return getStore(Chain, dl, Val, Ptr, MMO);
4027}
4028
4029SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4030                               SDValue Ptr, MachineMemOperand *MMO) {
4031  EVT VT = Val.getValueType();
4032  SDVTList VTs = getVTList(MVT::Other);
4033  SDValue Undef = getUNDEF(Ptr.getValueType());
4034  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4035  FoldingSetNodeID ID;
4036  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4037  ID.AddInteger(VT.getRawBits());
4038  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4039                                     MMO->isNonTemporal()));
4040  void *IP = 0;
4041  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4042    cast<StoreSDNode>(E)->refineAlignment(MMO);
4043    return SDValue(E, 0);
4044  }
4045  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4046                                              false, VT, MMO);
4047  CSEMap.InsertNode(N, IP);
4048  AllNodes.push_back(N);
4049  return SDValue(N, 0);
4050}
4051
4052SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4053                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4054                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4055                                    unsigned Alignment,
4056                                    const MDNode *TBAAInfo) {
4057  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4058    Alignment = getEVTAlignment(SVT);
4059
4060  unsigned Flags = MachineMemOperand::MOStore;
4061  if (isVolatile)
4062    Flags |= MachineMemOperand::MOVolatile;
4063  if (isNonTemporal)
4064    Flags |= MachineMemOperand::MONonTemporal;
4065
4066  if (PtrInfo.V == 0)
4067    PtrInfo = InferPointerInfo(Ptr);
4068
4069  MachineFunction &MF = getMachineFunction();
4070  MachineMemOperand *MMO =
4071    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4072                            TBAAInfo);
4073
4074  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4075}
4076
4077SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4078                                    SDValue Ptr, EVT SVT,
4079                                    MachineMemOperand *MMO) {
4080  EVT VT = Val.getValueType();
4081
4082  if (VT == SVT)
4083    return getStore(Chain, dl, Val, Ptr, MMO);
4084
4085  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4086         "Should only be a truncating store, not extending!");
4087  assert(VT.isInteger() == SVT.isInteger() &&
4088         "Can't do FP-INT conversion!");
4089  assert(VT.isVector() == SVT.isVector() &&
4090         "Cannot use trunc store to convert to or from a vector!");
4091  assert((!VT.isVector() ||
4092          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4093         "Cannot use trunc store to change the number of vector elements!");
4094
4095  SDVTList VTs = getVTList(MVT::Other);
4096  SDValue Undef = getUNDEF(Ptr.getValueType());
4097  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4098  FoldingSetNodeID ID;
4099  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4100  ID.AddInteger(SVT.getRawBits());
4101  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4102                                     MMO->isNonTemporal()));
4103  void *IP = 0;
4104  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4105    cast<StoreSDNode>(E)->refineAlignment(MMO);
4106    return SDValue(E, 0);
4107  }
4108  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4109                                              true, SVT, MMO);
4110  CSEMap.InsertNode(N, IP);
4111  AllNodes.push_back(N);
4112  return SDValue(N, 0);
4113}
4114
4115SDValue
4116SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4117                              SDValue Offset, ISD::MemIndexedMode AM) {
4118  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4119  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4120         "Store is already a indexed store!");
4121  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4122  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4123  FoldingSetNodeID ID;
4124  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4125  ID.AddInteger(ST->getMemoryVT().getRawBits());
4126  ID.AddInteger(ST->getRawSubclassData());
4127  void *IP = 0;
4128  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4129    return SDValue(E, 0);
4130
4131  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4132                                              ST->isTruncatingStore(),
4133                                              ST->getMemoryVT(),
4134                                              ST->getMemOperand());
4135  CSEMap.InsertNode(N, IP);
4136  AllNodes.push_back(N);
4137  return SDValue(N, 0);
4138}
4139
4140SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4141                               SDValue Chain, SDValue Ptr,
4142                               SDValue SV,
4143                               unsigned Align) {
4144  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4145  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4146}
4147
4148SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4149                              const SDUse *Ops, unsigned NumOps) {
4150  switch (NumOps) {
4151  case 0: return getNode(Opcode, DL, VT);
4152  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4153  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4154  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4155  default: break;
4156  }
4157
4158  // Copy from an SDUse array into an SDValue array for use with
4159  // the regular getNode logic.
4160  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4161  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4162}
4163
4164SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4165                              const SDValue *Ops, unsigned NumOps) {
4166  switch (NumOps) {
4167  case 0: return getNode(Opcode, DL, VT);
4168  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4169  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4170  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4171  default: break;
4172  }
4173
4174  switch (Opcode) {
4175  default: break;
4176  case ISD::SELECT_CC: {
4177    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4178    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4179           "LHS and RHS of condition must have same type!");
4180    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4181           "True and False arms of SelectCC must have same type!");
4182    assert(Ops[2].getValueType() == VT &&
4183           "select_cc node must be of same type as true and false value!");
4184    break;
4185  }
4186  case ISD::BR_CC: {
4187    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4188    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4189           "LHS/RHS of comparison should match types!");
4190    break;
4191  }
4192  }
4193
4194  // Memoize nodes.
4195  SDNode *N;
4196  SDVTList VTs = getVTList(VT);
4197
4198  if (VT != MVT::Flag) {
4199    FoldingSetNodeID ID;
4200    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4201    void *IP = 0;
4202
4203    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4204      return SDValue(E, 0);
4205
4206    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4207    CSEMap.InsertNode(N, IP);
4208  } else {
4209    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4210  }
4211
4212  AllNodes.push_back(N);
4213#ifndef NDEBUG
4214  VerifyNode(N);
4215#endif
4216  return SDValue(N, 0);
4217}
4218
4219SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4220                              const std::vector<EVT> &ResultTys,
4221                              const SDValue *Ops, unsigned NumOps) {
4222  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4223                 Ops, NumOps);
4224}
4225
4226SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4227                              const EVT *VTs, unsigned NumVTs,
4228                              const SDValue *Ops, unsigned NumOps) {
4229  if (NumVTs == 1)
4230    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4231  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4232}
4233
4234SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4235                              const SDValue *Ops, unsigned NumOps) {
4236  if (VTList.NumVTs == 1)
4237    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4238
4239#if 0
4240  switch (Opcode) {
4241  // FIXME: figure out how to safely handle things like
4242  // int foo(int x) { return 1 << (x & 255); }
4243  // int bar() { return foo(256); }
4244  case ISD::SRA_PARTS:
4245  case ISD::SRL_PARTS:
4246  case ISD::SHL_PARTS:
4247    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4248        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4249      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4250    else if (N3.getOpcode() == ISD::AND)
4251      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4252        // If the and is only masking out bits that cannot effect the shift,
4253        // eliminate the and.
4254        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4255        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4256          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4257      }
4258    break;
4259  }
4260#endif
4261
4262  // Memoize the node unless it returns a flag.
4263  SDNode *N;
4264  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4265    FoldingSetNodeID ID;
4266    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4267    void *IP = 0;
4268    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4269      return SDValue(E, 0);
4270
4271    if (NumOps == 1) {
4272      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4273    } else if (NumOps == 2) {
4274      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4275    } else if (NumOps == 3) {
4276      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4277                                            Ops[2]);
4278    } else {
4279      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4280    }
4281    CSEMap.InsertNode(N, IP);
4282  } else {
4283    if (NumOps == 1) {
4284      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4285    } else if (NumOps == 2) {
4286      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4287    } else if (NumOps == 3) {
4288      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4289                                            Ops[2]);
4290    } else {
4291      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4292    }
4293  }
4294  AllNodes.push_back(N);
4295#ifndef NDEBUG
4296  VerifyNode(N);
4297#endif
4298  return SDValue(N, 0);
4299}
4300
4301SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4302  return getNode(Opcode, DL, VTList, 0, 0);
4303}
4304
4305SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4306                              SDValue N1) {
4307  SDValue Ops[] = { N1 };
4308  return getNode(Opcode, DL, VTList, Ops, 1);
4309}
4310
4311SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4312                              SDValue N1, SDValue N2) {
4313  SDValue Ops[] = { N1, N2 };
4314  return getNode(Opcode, DL, VTList, Ops, 2);
4315}
4316
4317SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4318                              SDValue N1, SDValue N2, SDValue N3) {
4319  SDValue Ops[] = { N1, N2, N3 };
4320  return getNode(Opcode, DL, VTList, Ops, 3);
4321}
4322
4323SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4324                              SDValue N1, SDValue N2, SDValue N3,
4325                              SDValue N4) {
4326  SDValue Ops[] = { N1, N2, N3, N4 };
4327  return getNode(Opcode, DL, VTList, Ops, 4);
4328}
4329
4330SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4331                              SDValue N1, SDValue N2, SDValue N3,
4332                              SDValue N4, SDValue N5) {
4333  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4334  return getNode(Opcode, DL, VTList, Ops, 5);
4335}
4336
4337SDVTList SelectionDAG::getVTList(EVT VT) {
4338  return makeVTList(SDNode::getValueTypeList(VT), 1);
4339}
4340
4341SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4342  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4343       E = VTList.rend(); I != E; ++I)
4344    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4345      return *I;
4346
4347  EVT *Array = Allocator.Allocate<EVT>(2);
4348  Array[0] = VT1;
4349  Array[1] = VT2;
4350  SDVTList Result = makeVTList(Array, 2);
4351  VTList.push_back(Result);
4352  return Result;
4353}
4354
4355SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4356  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4357       E = VTList.rend(); I != E; ++I)
4358    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4359                          I->VTs[2] == VT3)
4360      return *I;
4361
4362  EVT *Array = Allocator.Allocate<EVT>(3);
4363  Array[0] = VT1;
4364  Array[1] = VT2;
4365  Array[2] = VT3;
4366  SDVTList Result = makeVTList(Array, 3);
4367  VTList.push_back(Result);
4368  return Result;
4369}
4370
4371SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4372  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4373       E = VTList.rend(); I != E; ++I)
4374    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4375                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4376      return *I;
4377
4378  EVT *Array = Allocator.Allocate<EVT>(4);
4379  Array[0] = VT1;
4380  Array[1] = VT2;
4381  Array[2] = VT3;
4382  Array[3] = VT4;
4383  SDVTList Result = makeVTList(Array, 4);
4384  VTList.push_back(Result);
4385  return Result;
4386}
4387
4388SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4389  switch (NumVTs) {
4390    case 0: llvm_unreachable("Cannot have nodes without results!");
4391    case 1: return getVTList(VTs[0]);
4392    case 2: return getVTList(VTs[0], VTs[1]);
4393    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4394    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4395    default: break;
4396  }
4397
4398  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4399       E = VTList.rend(); I != E; ++I) {
4400    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4401      continue;
4402
4403    bool NoMatch = false;
4404    for (unsigned i = 2; i != NumVTs; ++i)
4405      if (VTs[i] != I->VTs[i]) {
4406        NoMatch = true;
4407        break;
4408      }
4409    if (!NoMatch)
4410      return *I;
4411  }
4412
4413  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4414  std::copy(VTs, VTs+NumVTs, Array);
4415  SDVTList Result = makeVTList(Array, NumVTs);
4416  VTList.push_back(Result);
4417  return Result;
4418}
4419
4420
4421/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4422/// specified operands.  If the resultant node already exists in the DAG,
4423/// this does not modify the specified node, instead it returns the node that
4424/// already exists.  If the resultant node does not exist in the DAG, the
4425/// input node is returned.  As a degenerate case, if you specify the same
4426/// input operands as the node already has, the input node is returned.
4427SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4428  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4429
4430  // Check to see if there is no change.
4431  if (Op == N->getOperand(0)) return N;
4432
4433  // See if the modified node already exists.
4434  void *InsertPos = 0;
4435  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4436    return Existing;
4437
4438  // Nope it doesn't.  Remove the node from its current place in the maps.
4439  if (InsertPos)
4440    if (!RemoveNodeFromCSEMaps(N))
4441      InsertPos = 0;
4442
4443  // Now we update the operands.
4444  N->OperandList[0].set(Op);
4445
4446  // If this gets put into a CSE map, add it.
4447  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4448  return N;
4449}
4450
4451SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4452  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4453
4454  // Check to see if there is no change.
4455  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4456    return N;   // No operands changed, just return the input node.
4457
4458  // See if the modified node already exists.
4459  void *InsertPos = 0;
4460  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4461    return Existing;
4462
4463  // Nope it doesn't.  Remove the node from its current place in the maps.
4464  if (InsertPos)
4465    if (!RemoveNodeFromCSEMaps(N))
4466      InsertPos = 0;
4467
4468  // Now we update the operands.
4469  if (N->OperandList[0] != Op1)
4470    N->OperandList[0].set(Op1);
4471  if (N->OperandList[1] != Op2)
4472    N->OperandList[1].set(Op2);
4473
4474  // If this gets put into a CSE map, add it.
4475  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4476  return N;
4477}
4478
4479SDNode *SelectionDAG::
4480UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4481  SDValue Ops[] = { Op1, Op2, Op3 };
4482  return UpdateNodeOperands(N, Ops, 3);
4483}
4484
4485SDNode *SelectionDAG::
4486UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4487                   SDValue Op3, SDValue Op4) {
4488  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4489  return UpdateNodeOperands(N, Ops, 4);
4490}
4491
4492SDNode *SelectionDAG::
4493UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4494                   SDValue Op3, SDValue Op4, SDValue Op5) {
4495  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4496  return UpdateNodeOperands(N, Ops, 5);
4497}
4498
4499SDNode *SelectionDAG::
4500UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4501  assert(N->getNumOperands() == NumOps &&
4502         "Update with wrong number of operands");
4503
4504  // Check to see if there is no change.
4505  bool AnyChange = false;
4506  for (unsigned i = 0; i != NumOps; ++i) {
4507    if (Ops[i] != N->getOperand(i)) {
4508      AnyChange = true;
4509      break;
4510    }
4511  }
4512
4513  // No operands changed, just return the input node.
4514  if (!AnyChange) return N;
4515
4516  // See if the modified node already exists.
4517  void *InsertPos = 0;
4518  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4519    return Existing;
4520
4521  // Nope it doesn't.  Remove the node from its current place in the maps.
4522  if (InsertPos)
4523    if (!RemoveNodeFromCSEMaps(N))
4524      InsertPos = 0;
4525
4526  // Now we update the operands.
4527  for (unsigned i = 0; i != NumOps; ++i)
4528    if (N->OperandList[i] != Ops[i])
4529      N->OperandList[i].set(Ops[i]);
4530
4531  // If this gets put into a CSE map, add it.
4532  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4533  return N;
4534}
4535
4536/// DropOperands - Release the operands and set this node to have
4537/// zero operands.
4538void SDNode::DropOperands() {
4539  // Unlike the code in MorphNodeTo that does this, we don't need to
4540  // watch for dead nodes here.
4541  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4542    SDUse &Use = *I++;
4543    Use.set(SDValue());
4544  }
4545}
4546
4547/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4548/// machine opcode.
4549///
4550SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4551                                   EVT VT) {
4552  SDVTList VTs = getVTList(VT);
4553  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4554}
4555
4556SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4557                                   EVT VT, SDValue Op1) {
4558  SDVTList VTs = getVTList(VT);
4559  SDValue Ops[] = { Op1 };
4560  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4561}
4562
4563SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4564                                   EVT VT, SDValue Op1,
4565                                   SDValue Op2) {
4566  SDVTList VTs = getVTList(VT);
4567  SDValue Ops[] = { Op1, Op2 };
4568  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4569}
4570
4571SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4572                                   EVT VT, SDValue Op1,
4573                                   SDValue Op2, SDValue Op3) {
4574  SDVTList VTs = getVTList(VT);
4575  SDValue Ops[] = { Op1, Op2, Op3 };
4576  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4577}
4578
4579SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4580                                   EVT VT, const SDValue *Ops,
4581                                   unsigned NumOps) {
4582  SDVTList VTs = getVTList(VT);
4583  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4584}
4585
4586SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4587                                   EVT VT1, EVT VT2, const SDValue *Ops,
4588                                   unsigned NumOps) {
4589  SDVTList VTs = getVTList(VT1, VT2);
4590  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4591}
4592
4593SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4594                                   EVT VT1, EVT VT2) {
4595  SDVTList VTs = getVTList(VT1, VT2);
4596  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4597}
4598
4599SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4600                                   EVT VT1, EVT VT2, EVT VT3,
4601                                   const SDValue *Ops, unsigned NumOps) {
4602  SDVTList VTs = getVTList(VT1, VT2, VT3);
4603  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4604}
4605
4606SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4607                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4608                                   const SDValue *Ops, unsigned NumOps) {
4609  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4610  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4611}
4612
4613SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4614                                   EVT VT1, EVT VT2,
4615                                   SDValue Op1) {
4616  SDVTList VTs = getVTList(VT1, VT2);
4617  SDValue Ops[] = { Op1 };
4618  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4619}
4620
4621SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4622                                   EVT VT1, EVT VT2,
4623                                   SDValue Op1, SDValue Op2) {
4624  SDVTList VTs = getVTList(VT1, VT2);
4625  SDValue Ops[] = { Op1, Op2 };
4626  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4627}
4628
4629SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4630                                   EVT VT1, EVT VT2,
4631                                   SDValue Op1, SDValue Op2,
4632                                   SDValue Op3) {
4633  SDVTList VTs = getVTList(VT1, VT2);
4634  SDValue Ops[] = { Op1, Op2, Op3 };
4635  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4636}
4637
4638SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4639                                   EVT VT1, EVT VT2, EVT VT3,
4640                                   SDValue Op1, SDValue Op2,
4641                                   SDValue Op3) {
4642  SDVTList VTs = getVTList(VT1, VT2, VT3);
4643  SDValue Ops[] = { Op1, Op2, Op3 };
4644  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4645}
4646
4647SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4648                                   SDVTList VTs, const SDValue *Ops,
4649                                   unsigned NumOps) {
4650  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4651  // Reset the NodeID to -1.
4652  N->setNodeId(-1);
4653  return N;
4654}
4655
4656/// MorphNodeTo - This *mutates* the specified node to have the specified
4657/// return type, opcode, and operands.
4658///
4659/// Note that MorphNodeTo returns the resultant node.  If there is already a
4660/// node of the specified opcode and operands, it returns that node instead of
4661/// the current one.  Note that the DebugLoc need not be the same.
4662///
4663/// Using MorphNodeTo is faster than creating a new node and swapping it in
4664/// with ReplaceAllUsesWith both because it often avoids allocating a new
4665/// node, and because it doesn't require CSE recalculation for any of
4666/// the node's users.
4667///
4668SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4669                                  SDVTList VTs, const SDValue *Ops,
4670                                  unsigned NumOps) {
4671  // If an identical node already exists, use it.
4672  void *IP = 0;
4673  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4674    FoldingSetNodeID ID;
4675    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4676    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4677      return ON;
4678  }
4679
4680  if (!RemoveNodeFromCSEMaps(N))
4681    IP = 0;
4682
4683  // Start the morphing.
4684  N->NodeType = Opc;
4685  N->ValueList = VTs.VTs;
4686  N->NumValues = VTs.NumVTs;
4687
4688  // Clear the operands list, updating used nodes to remove this from their
4689  // use list.  Keep track of any operands that become dead as a result.
4690  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4691  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4692    SDUse &Use = *I++;
4693    SDNode *Used = Use.getNode();
4694    Use.set(SDValue());
4695    if (Used->use_empty())
4696      DeadNodeSet.insert(Used);
4697  }
4698
4699  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4700    // Initialize the memory references information.
4701    MN->setMemRefs(0, 0);
4702    // If NumOps is larger than the # of operands we can have in a
4703    // MachineSDNode, reallocate the operand list.
4704    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4705      if (MN->OperandsNeedDelete)
4706        delete[] MN->OperandList;
4707      if (NumOps > array_lengthof(MN->LocalOperands))
4708        // We're creating a final node that will live unmorphed for the
4709        // remainder of the current SelectionDAG iteration, so we can allocate
4710        // the operands directly out of a pool with no recycling metadata.
4711        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4712                         Ops, NumOps);
4713      else
4714        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4715      MN->OperandsNeedDelete = false;
4716    } else
4717      MN->InitOperands(MN->OperandList, Ops, NumOps);
4718  } else {
4719    // If NumOps is larger than the # of operands we currently have, reallocate
4720    // the operand list.
4721    if (NumOps > N->NumOperands) {
4722      if (N->OperandsNeedDelete)
4723        delete[] N->OperandList;
4724      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4725      N->OperandsNeedDelete = true;
4726    } else
4727      N->InitOperands(N->OperandList, Ops, NumOps);
4728  }
4729
4730  // Delete any nodes that are still dead after adding the uses for the
4731  // new operands.
4732  if (!DeadNodeSet.empty()) {
4733    SmallVector<SDNode *, 16> DeadNodes;
4734    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4735         E = DeadNodeSet.end(); I != E; ++I)
4736      if ((*I)->use_empty())
4737        DeadNodes.push_back(*I);
4738    RemoveDeadNodes(DeadNodes);
4739  }
4740
4741  if (IP)
4742    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4743  return N;
4744}
4745
4746
4747/// getMachineNode - These are used for target selectors to create a new node
4748/// with specified return type(s), MachineInstr opcode, and operands.
4749///
4750/// Note that getMachineNode returns the resultant node.  If there is already a
4751/// node of the specified opcode and operands, it returns that node instead of
4752/// the current one.
4753MachineSDNode *
4754SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4755  SDVTList VTs = getVTList(VT);
4756  return getMachineNode(Opcode, dl, VTs, 0, 0);
4757}
4758
4759MachineSDNode *
4760SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4761  SDVTList VTs = getVTList(VT);
4762  SDValue Ops[] = { Op1 };
4763  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4764}
4765
4766MachineSDNode *
4767SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4768                             SDValue Op1, SDValue Op2) {
4769  SDVTList VTs = getVTList(VT);
4770  SDValue Ops[] = { Op1, Op2 };
4771  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4772}
4773
4774MachineSDNode *
4775SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4776                             SDValue Op1, SDValue Op2, SDValue Op3) {
4777  SDVTList VTs = getVTList(VT);
4778  SDValue Ops[] = { Op1, Op2, Op3 };
4779  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4780}
4781
4782MachineSDNode *
4783SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4784                             const SDValue *Ops, unsigned NumOps) {
4785  SDVTList VTs = getVTList(VT);
4786  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4787}
4788
4789MachineSDNode *
4790SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4791  SDVTList VTs = getVTList(VT1, VT2);
4792  return getMachineNode(Opcode, dl, VTs, 0, 0);
4793}
4794
4795MachineSDNode *
4796SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4797                             EVT VT1, EVT VT2, SDValue Op1) {
4798  SDVTList VTs = getVTList(VT1, VT2);
4799  SDValue Ops[] = { Op1 };
4800  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4801}
4802
4803MachineSDNode *
4804SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4805                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4806  SDVTList VTs = getVTList(VT1, VT2);
4807  SDValue Ops[] = { Op1, Op2 };
4808  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4809}
4810
4811MachineSDNode *
4812SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4813                             EVT VT1, EVT VT2, SDValue Op1,
4814                             SDValue Op2, SDValue Op3) {
4815  SDVTList VTs = getVTList(VT1, VT2);
4816  SDValue Ops[] = { Op1, Op2, Op3 };
4817  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4818}
4819
4820MachineSDNode *
4821SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4822                             EVT VT1, EVT VT2,
4823                             const SDValue *Ops, unsigned NumOps) {
4824  SDVTList VTs = getVTList(VT1, VT2);
4825  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4826}
4827
4828MachineSDNode *
4829SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4830                             EVT VT1, EVT VT2, EVT VT3,
4831                             SDValue Op1, SDValue Op2) {
4832  SDVTList VTs = getVTList(VT1, VT2, VT3);
4833  SDValue Ops[] = { Op1, Op2 };
4834  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4835}
4836
4837MachineSDNode *
4838SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4839                             EVT VT1, EVT VT2, EVT VT3,
4840                             SDValue Op1, SDValue Op2, SDValue Op3) {
4841  SDVTList VTs = getVTList(VT1, VT2, VT3);
4842  SDValue Ops[] = { Op1, Op2, Op3 };
4843  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4844}
4845
4846MachineSDNode *
4847SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4848                             EVT VT1, EVT VT2, EVT VT3,
4849                             const SDValue *Ops, unsigned NumOps) {
4850  SDVTList VTs = getVTList(VT1, VT2, VT3);
4851  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4852}
4853
4854MachineSDNode *
4855SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4856                             EVT VT2, EVT VT3, EVT VT4,
4857                             const SDValue *Ops, unsigned NumOps) {
4858  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4859  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4860}
4861
4862MachineSDNode *
4863SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4864                             const std::vector<EVT> &ResultTys,
4865                             const SDValue *Ops, unsigned NumOps) {
4866  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4867  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4868}
4869
4870MachineSDNode *
4871SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4872                             const SDValue *Ops, unsigned NumOps) {
4873  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4874  MachineSDNode *N;
4875  void *IP;
4876
4877  if (DoCSE) {
4878    FoldingSetNodeID ID;
4879    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4880    IP = 0;
4881    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4882      return cast<MachineSDNode>(E);
4883  }
4884
4885  // Allocate a new MachineSDNode.
4886  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4887
4888  // Initialize the operands list.
4889  if (NumOps > array_lengthof(N->LocalOperands))
4890    // We're creating a final node that will live unmorphed for the
4891    // remainder of the current SelectionDAG iteration, so we can allocate
4892    // the operands directly out of a pool with no recycling metadata.
4893    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4894                    Ops, NumOps);
4895  else
4896    N->InitOperands(N->LocalOperands, Ops, NumOps);
4897  N->OperandsNeedDelete = false;
4898
4899  if (DoCSE)
4900    CSEMap.InsertNode(N, IP);
4901
4902  AllNodes.push_back(N);
4903#ifndef NDEBUG
4904  VerifyNode(N);
4905#endif
4906  return N;
4907}
4908
4909/// getTargetExtractSubreg - A convenience function for creating
4910/// TargetOpcode::EXTRACT_SUBREG nodes.
4911SDValue
4912SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4913                                     SDValue Operand) {
4914  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4915  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4916                                  VT, Operand, SRIdxVal);
4917  return SDValue(Subreg, 0);
4918}
4919
4920/// getTargetInsertSubreg - A convenience function for creating
4921/// TargetOpcode::INSERT_SUBREG nodes.
4922SDValue
4923SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4924                                    SDValue Operand, SDValue Subreg) {
4925  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4926  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4927                                  VT, Operand, Subreg, SRIdxVal);
4928  return SDValue(Result, 0);
4929}
4930
4931/// getNodeIfExists - Get the specified node if it's already available, or
4932/// else return NULL.
4933SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4934                                      const SDValue *Ops, unsigned NumOps) {
4935  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4936    FoldingSetNodeID ID;
4937    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4938    void *IP = 0;
4939    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4940      return E;
4941  }
4942  return NULL;
4943}
4944
4945/// getDbgValue - Creates a SDDbgValue node.
4946///
4947SDDbgValue *
4948SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4949                          DebugLoc DL, unsigned O) {
4950  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4951}
4952
4953SDDbgValue *
4954SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4955                          DebugLoc DL, unsigned O) {
4956  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4957}
4958
4959SDDbgValue *
4960SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4961                          DebugLoc DL, unsigned O) {
4962  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4963}
4964
4965namespace {
4966
4967/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4968/// pointed to by a use iterator is deleted, increment the use iterator
4969/// so that it doesn't dangle.
4970///
4971/// This class also manages a "downlink" DAGUpdateListener, to forward
4972/// messages to ReplaceAllUsesWith's callers.
4973///
4974class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4975  SelectionDAG::DAGUpdateListener *DownLink;
4976  SDNode::use_iterator &UI;
4977  SDNode::use_iterator &UE;
4978
4979  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4980    // Increment the iterator as needed.
4981    while (UI != UE && N == *UI)
4982      ++UI;
4983
4984    // Then forward the message.
4985    if (DownLink) DownLink->NodeDeleted(N, E);
4986  }
4987
4988  virtual void NodeUpdated(SDNode *N) {
4989    // Just forward the message.
4990    if (DownLink) DownLink->NodeUpdated(N);
4991  }
4992
4993public:
4994  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4995                     SDNode::use_iterator &ui,
4996                     SDNode::use_iterator &ue)
4997    : DownLink(dl), UI(ui), UE(ue) {}
4998};
4999
5000}
5001
5002/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5003/// This can cause recursive merging of nodes in the DAG.
5004///
5005/// This version assumes From has a single result value.
5006///
5007void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5008                                      DAGUpdateListener *UpdateListener) {
5009  SDNode *From = FromN.getNode();
5010  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5011         "Cannot replace with this method!");
5012  assert(From != To.getNode() && "Cannot replace uses of with self");
5013
5014  // Iterate over all the existing uses of From. New uses will be added
5015  // to the beginning of the use list, which we avoid visiting.
5016  // This specifically avoids visiting uses of From that arise while the
5017  // replacement is happening, because any such uses would be the result
5018  // of CSE: If an existing node looks like From after one of its operands
5019  // is replaced by To, we don't want to replace of all its users with To
5020  // too. See PR3018 for more info.
5021  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5022  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5023  while (UI != UE) {
5024    SDNode *User = *UI;
5025
5026    // This node is about to morph, remove its old self from the CSE maps.
5027    RemoveNodeFromCSEMaps(User);
5028
5029    // A user can appear in a use list multiple times, and when this
5030    // happens the uses are usually next to each other in the list.
5031    // To help reduce the number of CSE recomputations, process all
5032    // the uses of this user that we can find this way.
5033    do {
5034      SDUse &Use = UI.getUse();
5035      ++UI;
5036      Use.set(To);
5037    } while (UI != UE && *UI == User);
5038
5039    // Now that we have modified User, add it back to the CSE maps.  If it
5040    // already exists there, recursively merge the results together.
5041    AddModifiedNodeToCSEMaps(User, &Listener);
5042  }
5043}
5044
5045/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5046/// This can cause recursive merging of nodes in the DAG.
5047///
5048/// This version assumes that for each value of From, there is a
5049/// corresponding value in To in the same position with the same type.
5050///
5051void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5052                                      DAGUpdateListener *UpdateListener) {
5053#ifndef NDEBUG
5054  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5055    assert((!From->hasAnyUseOfValue(i) ||
5056            From->getValueType(i) == To->getValueType(i)) &&
5057           "Cannot use this version of ReplaceAllUsesWith!");
5058#endif
5059
5060  // Handle the trivial case.
5061  if (From == To)
5062    return;
5063
5064  // Iterate over just the existing users of From. See the comments in
5065  // the ReplaceAllUsesWith above.
5066  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5067  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5068  while (UI != UE) {
5069    SDNode *User = *UI;
5070
5071    // This node is about to morph, remove its old self from the CSE maps.
5072    RemoveNodeFromCSEMaps(User);
5073
5074    // A user can appear in a use list multiple times, and when this
5075    // happens the uses are usually next to each other in the list.
5076    // To help reduce the number of CSE recomputations, process all
5077    // the uses of this user that we can find this way.
5078    do {
5079      SDUse &Use = UI.getUse();
5080      ++UI;
5081      Use.setNode(To);
5082    } while (UI != UE && *UI == User);
5083
5084    // Now that we have modified User, add it back to the CSE maps.  If it
5085    // already exists there, recursively merge the results together.
5086    AddModifiedNodeToCSEMaps(User, &Listener);
5087  }
5088}
5089
5090/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5091/// This can cause recursive merging of nodes in the DAG.
5092///
5093/// This version can replace From with any result values.  To must match the
5094/// number and types of values returned by From.
5095void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5096                                      const SDValue *To,
5097                                      DAGUpdateListener *UpdateListener) {
5098  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5099    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5100
5101  // Iterate over just the existing users of From. See the comments in
5102  // the ReplaceAllUsesWith above.
5103  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5104  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5105  while (UI != UE) {
5106    SDNode *User = *UI;
5107
5108    // This node is about to morph, remove its old self from the CSE maps.
5109    RemoveNodeFromCSEMaps(User);
5110
5111    // A user can appear in a use list multiple times, and when this
5112    // happens the uses are usually next to each other in the list.
5113    // To help reduce the number of CSE recomputations, process all
5114    // the uses of this user that we can find this way.
5115    do {
5116      SDUse &Use = UI.getUse();
5117      const SDValue &ToOp = To[Use.getResNo()];
5118      ++UI;
5119      Use.set(ToOp);
5120    } while (UI != UE && *UI == User);
5121
5122    // Now that we have modified User, add it back to the CSE maps.  If it
5123    // already exists there, recursively merge the results together.
5124    AddModifiedNodeToCSEMaps(User, &Listener);
5125  }
5126}
5127
5128/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5129/// uses of other values produced by From.getNode() alone.  The Deleted
5130/// vector is handled the same way as for ReplaceAllUsesWith.
5131void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5132                                             DAGUpdateListener *UpdateListener){
5133  // Handle the really simple, really trivial case efficiently.
5134  if (From == To) return;
5135
5136  // Handle the simple, trivial, case efficiently.
5137  if (From.getNode()->getNumValues() == 1) {
5138    ReplaceAllUsesWith(From, To, UpdateListener);
5139    return;
5140  }
5141
5142  // Iterate over just the existing users of From. See the comments in
5143  // the ReplaceAllUsesWith above.
5144  SDNode::use_iterator UI = From.getNode()->use_begin(),
5145                       UE = From.getNode()->use_end();
5146  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5147  while (UI != UE) {
5148    SDNode *User = *UI;
5149    bool UserRemovedFromCSEMaps = false;
5150
5151    // A user can appear in a use list multiple times, and when this
5152    // happens the uses are usually next to each other in the list.
5153    // To help reduce the number of CSE recomputations, process all
5154    // the uses of this user that we can find this way.
5155    do {
5156      SDUse &Use = UI.getUse();
5157
5158      // Skip uses of different values from the same node.
5159      if (Use.getResNo() != From.getResNo()) {
5160        ++UI;
5161        continue;
5162      }
5163
5164      // If this node hasn't been modified yet, it's still in the CSE maps,
5165      // so remove its old self from the CSE maps.
5166      if (!UserRemovedFromCSEMaps) {
5167        RemoveNodeFromCSEMaps(User);
5168        UserRemovedFromCSEMaps = true;
5169      }
5170
5171      ++UI;
5172      Use.set(To);
5173    } while (UI != UE && *UI == User);
5174
5175    // We are iterating over all uses of the From node, so if a use
5176    // doesn't use the specific value, no changes are made.
5177    if (!UserRemovedFromCSEMaps)
5178      continue;
5179
5180    // Now that we have modified User, add it back to the CSE maps.  If it
5181    // already exists there, recursively merge the results together.
5182    AddModifiedNodeToCSEMaps(User, &Listener);
5183  }
5184}
5185
5186namespace {
5187  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5188  /// to record information about a use.
5189  struct UseMemo {
5190    SDNode *User;
5191    unsigned Index;
5192    SDUse *Use;
5193  };
5194
5195  /// operator< - Sort Memos by User.
5196  bool operator<(const UseMemo &L, const UseMemo &R) {
5197    return (intptr_t)L.User < (intptr_t)R.User;
5198  }
5199}
5200
5201/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5202/// uses of other values produced by From.getNode() alone.  The same value
5203/// may appear in both the From and To list.  The Deleted vector is
5204/// handled the same way as for ReplaceAllUsesWith.
5205void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5206                                              const SDValue *To,
5207                                              unsigned Num,
5208                                              DAGUpdateListener *UpdateListener){
5209  // Handle the simple, trivial case efficiently.
5210  if (Num == 1)
5211    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5212
5213  // Read up all the uses and make records of them. This helps
5214  // processing new uses that are introduced during the
5215  // replacement process.
5216  SmallVector<UseMemo, 4> Uses;
5217  for (unsigned i = 0; i != Num; ++i) {
5218    unsigned FromResNo = From[i].getResNo();
5219    SDNode *FromNode = From[i].getNode();
5220    for (SDNode::use_iterator UI = FromNode->use_begin(),
5221         E = FromNode->use_end(); UI != E; ++UI) {
5222      SDUse &Use = UI.getUse();
5223      if (Use.getResNo() == FromResNo) {
5224        UseMemo Memo = { *UI, i, &Use };
5225        Uses.push_back(Memo);
5226      }
5227    }
5228  }
5229
5230  // Sort the uses, so that all the uses from a given User are together.
5231  std::sort(Uses.begin(), Uses.end());
5232
5233  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5234       UseIndex != UseIndexEnd; ) {
5235    // We know that this user uses some value of From.  If it is the right
5236    // value, update it.
5237    SDNode *User = Uses[UseIndex].User;
5238
5239    // This node is about to morph, remove its old self from the CSE maps.
5240    RemoveNodeFromCSEMaps(User);
5241
5242    // The Uses array is sorted, so all the uses for a given User
5243    // are next to each other in the list.
5244    // To help reduce the number of CSE recomputations, process all
5245    // the uses of this user that we can find this way.
5246    do {
5247      unsigned i = Uses[UseIndex].Index;
5248      SDUse &Use = *Uses[UseIndex].Use;
5249      ++UseIndex;
5250
5251      Use.set(To[i]);
5252    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5253
5254    // Now that we have modified User, add it back to the CSE maps.  If it
5255    // already exists there, recursively merge the results together.
5256    AddModifiedNodeToCSEMaps(User, UpdateListener);
5257  }
5258}
5259
5260/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5261/// based on their topological order. It returns the maximum id and a vector
5262/// of the SDNodes* in assigned order by reference.
5263unsigned SelectionDAG::AssignTopologicalOrder() {
5264
5265  unsigned DAGSize = 0;
5266
5267  // SortedPos tracks the progress of the algorithm. Nodes before it are
5268  // sorted, nodes after it are unsorted. When the algorithm completes
5269  // it is at the end of the list.
5270  allnodes_iterator SortedPos = allnodes_begin();
5271
5272  // Visit all the nodes. Move nodes with no operands to the front of
5273  // the list immediately. Annotate nodes that do have operands with their
5274  // operand count. Before we do this, the Node Id fields of the nodes
5275  // may contain arbitrary values. After, the Node Id fields for nodes
5276  // before SortedPos will contain the topological sort index, and the
5277  // Node Id fields for nodes At SortedPos and after will contain the
5278  // count of outstanding operands.
5279  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5280    SDNode *N = I++;
5281    checkForCycles(N);
5282    unsigned Degree = N->getNumOperands();
5283    if (Degree == 0) {
5284      // A node with no uses, add it to the result array immediately.
5285      N->setNodeId(DAGSize++);
5286      allnodes_iterator Q = N;
5287      if (Q != SortedPos)
5288        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5289      assert(SortedPos != AllNodes.end() && "Overran node list");
5290      ++SortedPos;
5291    } else {
5292      // Temporarily use the Node Id as scratch space for the degree count.
5293      N->setNodeId(Degree);
5294    }
5295  }
5296
5297  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5298  // such that by the time the end is reached all nodes will be sorted.
5299  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5300    SDNode *N = I;
5301    checkForCycles(N);
5302    // N is in sorted position, so all its uses have one less operand
5303    // that needs to be sorted.
5304    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5305         UI != UE; ++UI) {
5306      SDNode *P = *UI;
5307      unsigned Degree = P->getNodeId();
5308      assert(Degree != 0 && "Invalid node degree");
5309      --Degree;
5310      if (Degree == 0) {
5311        // All of P's operands are sorted, so P may sorted now.
5312        P->setNodeId(DAGSize++);
5313        if (P != SortedPos)
5314          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5315        assert(SortedPos != AllNodes.end() && "Overran node list");
5316        ++SortedPos;
5317      } else {
5318        // Update P's outstanding operand count.
5319        P->setNodeId(Degree);
5320      }
5321    }
5322    if (I == SortedPos) {
5323#ifndef NDEBUG
5324      SDNode *S = ++I;
5325      dbgs() << "Overran sorted position:\n";
5326      S->dumprFull();
5327#endif
5328      llvm_unreachable(0);
5329    }
5330  }
5331
5332  assert(SortedPos == AllNodes.end() &&
5333         "Topological sort incomplete!");
5334  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5335         "First node in topological sort is not the entry token!");
5336  assert(AllNodes.front().getNodeId() == 0 &&
5337         "First node in topological sort has non-zero id!");
5338  assert(AllNodes.front().getNumOperands() == 0 &&
5339         "First node in topological sort has operands!");
5340  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5341         "Last node in topologic sort has unexpected id!");
5342  assert(AllNodes.back().use_empty() &&
5343         "Last node in topologic sort has users!");
5344  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5345  return DAGSize;
5346}
5347
5348/// AssignOrdering - Assign an order to the SDNode.
5349void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5350  assert(SD && "Trying to assign an order to a null node!");
5351  Ordering->add(SD, Order);
5352}
5353
5354/// GetOrdering - Get the order for the SDNode.
5355unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5356  assert(SD && "Trying to get the order of a null node!");
5357  return Ordering->getOrder(SD);
5358}
5359
5360/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5361/// value is produced by SD.
5362void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5363  DbgInfo->add(DB, SD, isParameter);
5364  if (SD)
5365    SD->setHasDebugValue(true);
5366}
5367
5368//===----------------------------------------------------------------------===//
5369//                              SDNode Class
5370//===----------------------------------------------------------------------===//
5371
5372HandleSDNode::~HandleSDNode() {
5373  DropOperands();
5374}
5375
5376GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5377                                         const GlobalValue *GA,
5378                                         EVT VT, int64_t o, unsigned char TF)
5379  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5380  TheGlobal = GA;
5381}
5382
5383MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5384                     MachineMemOperand *mmo)
5385 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5386  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5387                                      MMO->isNonTemporal());
5388  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5389  assert(isNonTemporal() == MMO->isNonTemporal() &&
5390         "Non-temporal encoding error!");
5391  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5392}
5393
5394MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5395                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5396                     MachineMemOperand *mmo)
5397   : SDNode(Opc, dl, VTs, Ops, NumOps),
5398     MemoryVT(memvt), MMO(mmo) {
5399  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5400                                      MMO->isNonTemporal());
5401  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5402  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5403}
5404
5405/// Profile - Gather unique data for the node.
5406///
5407void SDNode::Profile(FoldingSetNodeID &ID) const {
5408  AddNodeIDNode(ID, this);
5409}
5410
5411namespace {
5412  struct EVTArray {
5413    std::vector<EVT> VTs;
5414
5415    EVTArray() {
5416      VTs.reserve(MVT::LAST_VALUETYPE);
5417      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5418        VTs.push_back(MVT((MVT::SimpleValueType)i));
5419    }
5420  };
5421}
5422
5423static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5424static ManagedStatic<EVTArray> SimpleVTArray;
5425static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5426
5427/// getValueTypeList - Return a pointer to the specified value type.
5428///
5429const EVT *SDNode::getValueTypeList(EVT VT) {
5430  if (VT.isExtended()) {
5431    sys::SmartScopedLock<true> Lock(*VTMutex);
5432    return &(*EVTs->insert(VT).first);
5433  } else {
5434    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5435           "Value type out of range!");
5436    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5437  }
5438}
5439
5440/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5441/// indicated value.  This method ignores uses of other values defined by this
5442/// operation.
5443bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5444  assert(Value < getNumValues() && "Bad value!");
5445
5446  // TODO: Only iterate over uses of a given value of the node
5447  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5448    if (UI.getUse().getResNo() == Value) {
5449      if (NUses == 0)
5450        return false;
5451      --NUses;
5452    }
5453  }
5454
5455  // Found exactly the right number of uses?
5456  return NUses == 0;
5457}
5458
5459
5460/// hasAnyUseOfValue - Return true if there are any use of the indicated
5461/// value. This method ignores uses of other values defined by this operation.
5462bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5463  assert(Value < getNumValues() && "Bad value!");
5464
5465  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5466    if (UI.getUse().getResNo() == Value)
5467      return true;
5468
5469  return false;
5470}
5471
5472
5473/// isOnlyUserOf - Return true if this node is the only use of N.
5474///
5475bool SDNode::isOnlyUserOf(SDNode *N) const {
5476  bool Seen = false;
5477  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5478    SDNode *User = *I;
5479    if (User == this)
5480      Seen = true;
5481    else
5482      return false;
5483  }
5484
5485  return Seen;
5486}
5487
5488/// isOperand - Return true if this node is an operand of N.
5489///
5490bool SDValue::isOperandOf(SDNode *N) const {
5491  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5492    if (*this == N->getOperand(i))
5493      return true;
5494  return false;
5495}
5496
5497bool SDNode::isOperandOf(SDNode *N) const {
5498  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5499    if (this == N->OperandList[i].getNode())
5500      return true;
5501  return false;
5502}
5503
5504/// reachesChainWithoutSideEffects - Return true if this operand (which must
5505/// be a chain) reaches the specified operand without crossing any
5506/// side-effecting instructions on any chain path.  In practice, this looks
5507/// through token factors and non-volatile loads.  In order to remain efficient,
5508/// this only looks a couple of nodes in, it does not do an exhaustive search.
5509bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5510                                               unsigned Depth) const {
5511  if (*this == Dest) return true;
5512
5513  // Don't search too deeply, we just want to be able to see through
5514  // TokenFactor's etc.
5515  if (Depth == 0) return false;
5516
5517  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5518  // of the operands of the TF does not reach dest, then we cannot do the xform.
5519  if (getOpcode() == ISD::TokenFactor) {
5520    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5521      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5522        return false;
5523    return true;
5524  }
5525
5526  // Loads don't have side effects, look through them.
5527  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5528    if (!Ld->isVolatile())
5529      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5530  }
5531  return false;
5532}
5533
5534/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5535/// is either an operand of N or it can be reached by traversing up the operands.
5536/// NOTE: this is an expensive method. Use it carefully.
5537bool SDNode::isPredecessorOf(SDNode *N) const {
5538  SmallPtrSet<SDNode *, 32> Visited;
5539  SmallVector<SDNode *, 16> Worklist;
5540  Worklist.push_back(N);
5541
5542  do {
5543    N = Worklist.pop_back_val();
5544    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5545      SDNode *Op = N->getOperand(i).getNode();
5546      if (Op == this)
5547        return true;
5548      if (Visited.insert(Op))
5549        Worklist.push_back(Op);
5550    }
5551  } while (!Worklist.empty());
5552
5553  return false;
5554}
5555
5556uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5557  assert(Num < NumOperands && "Invalid child # of SDNode!");
5558  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5559}
5560
5561std::string SDNode::getOperationName(const SelectionDAG *G) const {
5562  switch (getOpcode()) {
5563  default:
5564    if (getOpcode() < ISD::BUILTIN_OP_END)
5565      return "<<Unknown DAG Node>>";
5566    if (isMachineOpcode()) {
5567      if (G)
5568        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5569          if (getMachineOpcode() < TII->getNumOpcodes())
5570            return TII->get(getMachineOpcode()).getName();
5571      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5572    }
5573    if (G) {
5574      const TargetLowering &TLI = G->getTargetLoweringInfo();
5575      const char *Name = TLI.getTargetNodeName(getOpcode());
5576      if (Name) return Name;
5577      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5578    }
5579    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5580
5581#ifndef NDEBUG
5582  case ISD::DELETED_NODE:
5583    return "<<Deleted Node!>>";
5584#endif
5585  case ISD::PREFETCH:      return "Prefetch";
5586  case ISD::MEMBARRIER:    return "MemBarrier";
5587  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5588  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5589  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5590  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5591  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5592  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5593  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5594  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5595  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5596  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5597  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5598  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5599  case ISD::PCMARKER:      return "PCMarker";
5600  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5601  case ISD::SRCVALUE:      return "SrcValue";
5602  case ISD::MDNODE_SDNODE: return "MDNode";
5603  case ISD::EntryToken:    return "EntryToken";
5604  case ISD::TokenFactor:   return "TokenFactor";
5605  case ISD::AssertSext:    return "AssertSext";
5606  case ISD::AssertZext:    return "AssertZext";
5607
5608  case ISD::BasicBlock:    return "BasicBlock";
5609  case ISD::VALUETYPE:     return "ValueType";
5610  case ISD::Register:      return "Register";
5611
5612  case ISD::Constant:      return "Constant";
5613  case ISD::ConstantFP:    return "ConstantFP";
5614  case ISD::GlobalAddress: return "GlobalAddress";
5615  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5616  case ISD::FrameIndex:    return "FrameIndex";
5617  case ISD::JumpTable:     return "JumpTable";
5618  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5619  case ISD::RETURNADDR: return "RETURNADDR";
5620  case ISD::FRAMEADDR: return "FRAMEADDR";
5621  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5622  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5623  case ISD::LSDAADDR: return "LSDAADDR";
5624  case ISD::EHSELECTION: return "EHSELECTION";
5625  case ISD::EH_RETURN: return "EH_RETURN";
5626  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5627  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5628  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5629  case ISD::ConstantPool:  return "ConstantPool";
5630  case ISD::ExternalSymbol: return "ExternalSymbol";
5631  case ISD::BlockAddress:  return "BlockAddress";
5632  case ISD::INTRINSIC_WO_CHAIN:
5633  case ISD::INTRINSIC_VOID:
5634  case ISD::INTRINSIC_W_CHAIN: {
5635    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5636    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5637    if (IID < Intrinsic::num_intrinsics)
5638      return Intrinsic::getName((Intrinsic::ID)IID);
5639    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5640      return TII->getName(IID);
5641    llvm_unreachable("Invalid intrinsic ID");
5642  }
5643
5644  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5645  case ISD::TargetConstant: return "TargetConstant";
5646  case ISD::TargetConstantFP:return "TargetConstantFP";
5647  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5648  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5649  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5650  case ISD::TargetJumpTable:  return "TargetJumpTable";
5651  case ISD::TargetConstantPool:  return "TargetConstantPool";
5652  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5653  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5654
5655  case ISD::CopyToReg:     return "CopyToReg";
5656  case ISD::CopyFromReg:   return "CopyFromReg";
5657  case ISD::UNDEF:         return "undef";
5658  case ISD::MERGE_VALUES:  return "merge_values";
5659  case ISD::INLINEASM:     return "inlineasm";
5660  case ISD::EH_LABEL:      return "eh_label";
5661  case ISD::HANDLENODE:    return "handlenode";
5662
5663  // Unary operators
5664  case ISD::FABS:   return "fabs";
5665  case ISD::FNEG:   return "fneg";
5666  case ISD::FSQRT:  return "fsqrt";
5667  case ISD::FSIN:   return "fsin";
5668  case ISD::FCOS:   return "fcos";
5669  case ISD::FTRUNC: return "ftrunc";
5670  case ISD::FFLOOR: return "ffloor";
5671  case ISD::FCEIL:  return "fceil";
5672  case ISD::FRINT:  return "frint";
5673  case ISD::FNEARBYINT: return "fnearbyint";
5674  case ISD::FEXP:   return "fexp";
5675  case ISD::FEXP2:  return "fexp2";
5676  case ISD::FLOG:   return "flog";
5677  case ISD::FLOG2:  return "flog2";
5678  case ISD::FLOG10: return "flog10";
5679
5680  // Binary operators
5681  case ISD::ADD:    return "add";
5682  case ISD::SUB:    return "sub";
5683  case ISD::MUL:    return "mul";
5684  case ISD::MULHU:  return "mulhu";
5685  case ISD::MULHS:  return "mulhs";
5686  case ISD::SDIV:   return "sdiv";
5687  case ISD::UDIV:   return "udiv";
5688  case ISD::SREM:   return "srem";
5689  case ISD::UREM:   return "urem";
5690  case ISD::SMUL_LOHI:  return "smul_lohi";
5691  case ISD::UMUL_LOHI:  return "umul_lohi";
5692  case ISD::SDIVREM:    return "sdivrem";
5693  case ISD::UDIVREM:    return "udivrem";
5694  case ISD::AND:    return "and";
5695  case ISD::OR:     return "or";
5696  case ISD::XOR:    return "xor";
5697  case ISD::SHL:    return "shl";
5698  case ISD::SRA:    return "sra";
5699  case ISD::SRL:    return "srl";
5700  case ISD::ROTL:   return "rotl";
5701  case ISD::ROTR:   return "rotr";
5702  case ISD::FADD:   return "fadd";
5703  case ISD::FSUB:   return "fsub";
5704  case ISD::FMUL:   return "fmul";
5705  case ISD::FDIV:   return "fdiv";
5706  case ISD::FREM:   return "frem";
5707  case ISD::FCOPYSIGN: return "fcopysign";
5708  case ISD::FGETSIGN:  return "fgetsign";
5709  case ISD::FPOW:   return "fpow";
5710
5711  case ISD::FPOWI:  return "fpowi";
5712  case ISD::SETCC:       return "setcc";
5713  case ISD::VSETCC:      return "vsetcc";
5714  case ISD::SELECT:      return "select";
5715  case ISD::SELECT_CC:   return "select_cc";
5716  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5717  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5718  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5719  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5720  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5721  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5722  case ISD::CARRY_FALSE:         return "carry_false";
5723  case ISD::ADDC:        return "addc";
5724  case ISD::ADDE:        return "adde";
5725  case ISD::SADDO:       return "saddo";
5726  case ISD::UADDO:       return "uaddo";
5727  case ISD::SSUBO:       return "ssubo";
5728  case ISD::USUBO:       return "usubo";
5729  case ISD::SMULO:       return "smulo";
5730  case ISD::UMULO:       return "umulo";
5731  case ISD::SUBC:        return "subc";
5732  case ISD::SUBE:        return "sube";
5733  case ISD::SHL_PARTS:   return "shl_parts";
5734  case ISD::SRA_PARTS:   return "sra_parts";
5735  case ISD::SRL_PARTS:   return "srl_parts";
5736
5737  // Conversion operators.
5738  case ISD::SIGN_EXTEND: return "sign_extend";
5739  case ISD::ZERO_EXTEND: return "zero_extend";
5740  case ISD::ANY_EXTEND:  return "any_extend";
5741  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5742  case ISD::TRUNCATE:    return "truncate";
5743  case ISD::FP_ROUND:    return "fp_round";
5744  case ISD::FLT_ROUNDS_: return "flt_rounds";
5745  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5746  case ISD::FP_EXTEND:   return "fp_extend";
5747
5748  case ISD::SINT_TO_FP:  return "sint_to_fp";
5749  case ISD::UINT_TO_FP:  return "uint_to_fp";
5750  case ISD::FP_TO_SINT:  return "fp_to_sint";
5751  case ISD::FP_TO_UINT:  return "fp_to_uint";
5752  case ISD::BIT_CONVERT: return "bit_convert";
5753  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5754  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5755
5756  case ISD::CONVERT_RNDSAT: {
5757    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5758    default: llvm_unreachable("Unknown cvt code!");
5759    case ISD::CVT_FF:  return "cvt_ff";
5760    case ISD::CVT_FS:  return "cvt_fs";
5761    case ISD::CVT_FU:  return "cvt_fu";
5762    case ISD::CVT_SF:  return "cvt_sf";
5763    case ISD::CVT_UF:  return "cvt_uf";
5764    case ISD::CVT_SS:  return "cvt_ss";
5765    case ISD::CVT_SU:  return "cvt_su";
5766    case ISD::CVT_US:  return "cvt_us";
5767    case ISD::CVT_UU:  return "cvt_uu";
5768    }
5769  }
5770
5771    // Control flow instructions
5772  case ISD::BR:      return "br";
5773  case ISD::BRIND:   return "brind";
5774  case ISD::BR_JT:   return "br_jt";
5775  case ISD::BRCOND:  return "brcond";
5776  case ISD::BR_CC:   return "br_cc";
5777  case ISD::CALLSEQ_START:  return "callseq_start";
5778  case ISD::CALLSEQ_END:    return "callseq_end";
5779
5780    // Other operators
5781  case ISD::LOAD:               return "load";
5782  case ISD::STORE:              return "store";
5783  case ISD::VAARG:              return "vaarg";
5784  case ISD::VACOPY:             return "vacopy";
5785  case ISD::VAEND:              return "vaend";
5786  case ISD::VASTART:            return "vastart";
5787  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5788  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5789  case ISD::BUILD_PAIR:         return "build_pair";
5790  case ISD::STACKSAVE:          return "stacksave";
5791  case ISD::STACKRESTORE:       return "stackrestore";
5792  case ISD::TRAP:               return "trap";
5793
5794  // Bit manipulation
5795  case ISD::BSWAP:   return "bswap";
5796  case ISD::CTPOP:   return "ctpop";
5797  case ISD::CTTZ:    return "cttz";
5798  case ISD::CTLZ:    return "ctlz";
5799
5800  // Trampolines
5801  case ISD::TRAMPOLINE: return "trampoline";
5802
5803  case ISD::CONDCODE:
5804    switch (cast<CondCodeSDNode>(this)->get()) {
5805    default: llvm_unreachable("Unknown setcc condition!");
5806    case ISD::SETOEQ:  return "setoeq";
5807    case ISD::SETOGT:  return "setogt";
5808    case ISD::SETOGE:  return "setoge";
5809    case ISD::SETOLT:  return "setolt";
5810    case ISD::SETOLE:  return "setole";
5811    case ISD::SETONE:  return "setone";
5812
5813    case ISD::SETO:    return "seto";
5814    case ISD::SETUO:   return "setuo";
5815    case ISD::SETUEQ:  return "setue";
5816    case ISD::SETUGT:  return "setugt";
5817    case ISD::SETUGE:  return "setuge";
5818    case ISD::SETULT:  return "setult";
5819    case ISD::SETULE:  return "setule";
5820    case ISD::SETUNE:  return "setune";
5821
5822    case ISD::SETEQ:   return "seteq";
5823    case ISD::SETGT:   return "setgt";
5824    case ISD::SETGE:   return "setge";
5825    case ISD::SETLT:   return "setlt";
5826    case ISD::SETLE:   return "setle";
5827    case ISD::SETNE:   return "setne";
5828    }
5829  }
5830}
5831
5832const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5833  switch (AM) {
5834  default:
5835    return "";
5836  case ISD::PRE_INC:
5837    return "<pre-inc>";
5838  case ISD::PRE_DEC:
5839    return "<pre-dec>";
5840  case ISD::POST_INC:
5841    return "<post-inc>";
5842  case ISD::POST_DEC:
5843    return "<post-dec>";
5844  }
5845}
5846
5847std::string ISD::ArgFlagsTy::getArgFlagsString() {
5848  std::string S = "< ";
5849
5850  if (isZExt())
5851    S += "zext ";
5852  if (isSExt())
5853    S += "sext ";
5854  if (isInReg())
5855    S += "inreg ";
5856  if (isSRet())
5857    S += "sret ";
5858  if (isByVal())
5859    S += "byval ";
5860  if (isNest())
5861    S += "nest ";
5862  if (getByValAlign())
5863    S += "byval-align:" + utostr(getByValAlign()) + " ";
5864  if (getOrigAlign())
5865    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5866  if (getByValSize())
5867    S += "byval-size:" + utostr(getByValSize()) + " ";
5868  return S + ">";
5869}
5870
5871void SDNode::dump() const { dump(0); }
5872void SDNode::dump(const SelectionDAG *G) const {
5873  print(dbgs(), G);
5874  dbgs() << '\n';
5875}
5876
5877void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5878  OS << (void*)this << ": ";
5879
5880  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5881    if (i) OS << ",";
5882    if (getValueType(i) == MVT::Other)
5883      OS << "ch";
5884    else
5885      OS << getValueType(i).getEVTString();
5886  }
5887  OS << " = " << getOperationName(G);
5888}
5889
5890void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5891  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5892    if (!MN->memoperands_empty()) {
5893      OS << "<";
5894      OS << "Mem:";
5895      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5896           e = MN->memoperands_end(); i != e; ++i) {
5897        OS << **i;
5898        if (llvm::next(i) != e)
5899          OS << " ";
5900      }
5901      OS << ">";
5902    }
5903  } else if (const ShuffleVectorSDNode *SVN =
5904               dyn_cast<ShuffleVectorSDNode>(this)) {
5905    OS << "<";
5906    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5907      int Idx = SVN->getMaskElt(i);
5908      if (i) OS << ",";
5909      if (Idx < 0)
5910        OS << "u";
5911      else
5912        OS << Idx;
5913    }
5914    OS << ">";
5915  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5916    OS << '<' << CSDN->getAPIntValue() << '>';
5917  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5918    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5919      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5920    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5921      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5922    else {
5923      OS << "<APFloat(";
5924      CSDN->getValueAPF().bitcastToAPInt().dump();
5925      OS << ")>";
5926    }
5927  } else if (const GlobalAddressSDNode *GADN =
5928             dyn_cast<GlobalAddressSDNode>(this)) {
5929    int64_t offset = GADN->getOffset();
5930    OS << '<';
5931    WriteAsOperand(OS, GADN->getGlobal());
5932    OS << '>';
5933    if (offset > 0)
5934      OS << " + " << offset;
5935    else
5936      OS << " " << offset;
5937    if (unsigned int TF = GADN->getTargetFlags())
5938      OS << " [TF=" << TF << ']';
5939  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5940    OS << "<" << FIDN->getIndex() << ">";
5941  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5942    OS << "<" << JTDN->getIndex() << ">";
5943    if (unsigned int TF = JTDN->getTargetFlags())
5944      OS << " [TF=" << TF << ']';
5945  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5946    int offset = CP->getOffset();
5947    if (CP->isMachineConstantPoolEntry())
5948      OS << "<" << *CP->getMachineCPVal() << ">";
5949    else
5950      OS << "<" << *CP->getConstVal() << ">";
5951    if (offset > 0)
5952      OS << " + " << offset;
5953    else
5954      OS << " " << offset;
5955    if (unsigned int TF = CP->getTargetFlags())
5956      OS << " [TF=" << TF << ']';
5957  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5958    OS << "<";
5959    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5960    if (LBB)
5961      OS << LBB->getName() << " ";
5962    OS << (const void*)BBDN->getBasicBlock() << ">";
5963  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5964    if (G && R->getReg() &&
5965        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5966      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5967    } else {
5968      OS << " %reg" << R->getReg();
5969    }
5970  } else if (const ExternalSymbolSDNode *ES =
5971             dyn_cast<ExternalSymbolSDNode>(this)) {
5972    OS << "'" << ES->getSymbol() << "'";
5973    if (unsigned int TF = ES->getTargetFlags())
5974      OS << " [TF=" << TF << ']';
5975  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5976    if (M->getValue())
5977      OS << "<" << M->getValue() << ">";
5978    else
5979      OS << "<null>";
5980  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5981    if (MD->getMD())
5982      OS << "<" << MD->getMD() << ">";
5983    else
5984      OS << "<null>";
5985  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5986    OS << ":" << N->getVT().getEVTString();
5987  }
5988  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5989    OS << "<" << *LD->getMemOperand();
5990
5991    bool doExt = true;
5992    switch (LD->getExtensionType()) {
5993    default: doExt = false; break;
5994    case ISD::EXTLOAD: OS << ", anyext"; break;
5995    case ISD::SEXTLOAD: OS << ", sext"; break;
5996    case ISD::ZEXTLOAD: OS << ", zext"; break;
5997    }
5998    if (doExt)
5999      OS << " from " << LD->getMemoryVT().getEVTString();
6000
6001    const char *AM = getIndexedModeName(LD->getAddressingMode());
6002    if (*AM)
6003      OS << ", " << AM;
6004
6005    OS << ">";
6006  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6007    OS << "<" << *ST->getMemOperand();
6008
6009    if (ST->isTruncatingStore())
6010      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6011
6012    const char *AM = getIndexedModeName(ST->getAddressingMode());
6013    if (*AM)
6014      OS << ", " << AM;
6015
6016    OS << ">";
6017  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6018    OS << "<" << *M->getMemOperand() << ">";
6019  } else if (const BlockAddressSDNode *BA =
6020               dyn_cast<BlockAddressSDNode>(this)) {
6021    OS << "<";
6022    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6023    OS << ", ";
6024    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6025    OS << ">";
6026    if (unsigned int TF = BA->getTargetFlags())
6027      OS << " [TF=" << TF << ']';
6028  }
6029
6030  if (G)
6031    if (unsigned Order = G->GetOrdering(this))
6032      OS << " [ORD=" << Order << ']';
6033
6034  if (getNodeId() != -1)
6035    OS << " [ID=" << getNodeId() << ']';
6036
6037  DebugLoc dl = getDebugLoc();
6038  if (G && !dl.isUnknown()) {
6039    DIScope
6040      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6041    OS << " dbg:";
6042    // Omit the directory, since it's usually long and uninteresting.
6043    if (Scope.Verify())
6044      OS << Scope.getFilename();
6045    else
6046      OS << "<unknown>";
6047    OS << ':' << dl.getLine();
6048    if (dl.getCol() != 0)
6049      OS << ':' << dl.getCol();
6050  }
6051}
6052
6053void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6054  print_types(OS, G);
6055  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6056    if (i) OS << ", "; else OS << " ";
6057    OS << (void*)getOperand(i).getNode();
6058    if (unsigned RN = getOperand(i).getResNo())
6059      OS << ":" << RN;
6060  }
6061  print_details(OS, G);
6062}
6063
6064static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6065                                  const SelectionDAG *G, unsigned depth,
6066                                  unsigned indent)
6067{
6068  if (depth == 0)
6069    return;
6070
6071  OS.indent(indent);
6072
6073  N->print(OS, G);
6074
6075  if (depth < 1)
6076    return;
6077
6078  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6079    OS << '\n';
6080    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6081  }
6082}
6083
6084void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6085                            unsigned depth) const {
6086  printrWithDepthHelper(OS, this, G, depth, 0);
6087}
6088
6089void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6090  // Don't print impossibly deep things.
6091  printrWithDepth(OS, G, 100);
6092}
6093
6094void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6095  printrWithDepth(dbgs(), G, depth);
6096}
6097
6098void SDNode::dumprFull(const SelectionDAG *G) const {
6099  // Don't print impossibly deep things.
6100  dumprWithDepth(G, 100);
6101}
6102
6103static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6104  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6105    if (N->getOperand(i).getNode()->hasOneUse())
6106      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6107    else
6108      dbgs() << "\n" << std::string(indent+2, ' ')
6109           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6110
6111
6112  dbgs() << "\n";
6113  dbgs().indent(indent);
6114  N->dump(G);
6115}
6116
6117SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6118  assert(N->getNumValues() == 1 &&
6119         "Can't unroll a vector with multiple results!");
6120
6121  EVT VT = N->getValueType(0);
6122  unsigned NE = VT.getVectorNumElements();
6123  EVT EltVT = VT.getVectorElementType();
6124  DebugLoc dl = N->getDebugLoc();
6125
6126  SmallVector<SDValue, 8> Scalars;
6127  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6128
6129  // If ResNE is 0, fully unroll the vector op.
6130  if (ResNE == 0)
6131    ResNE = NE;
6132  else if (NE > ResNE)
6133    NE = ResNE;
6134
6135  unsigned i;
6136  for (i= 0; i != NE; ++i) {
6137    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6138      SDValue Operand = N->getOperand(j);
6139      EVT OperandVT = Operand.getValueType();
6140      if (OperandVT.isVector()) {
6141        // A vector operand; extract a single element.
6142        EVT OperandEltVT = OperandVT.getVectorElementType();
6143        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6144                              OperandEltVT,
6145                              Operand,
6146                              getConstant(i, MVT::i32));
6147      } else {
6148        // A scalar operand; just use it as is.
6149        Operands[j] = Operand;
6150      }
6151    }
6152
6153    switch (N->getOpcode()) {
6154    default:
6155      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6156                                &Operands[0], Operands.size()));
6157      break;
6158    case ISD::SHL:
6159    case ISD::SRA:
6160    case ISD::SRL:
6161    case ISD::ROTL:
6162    case ISD::ROTR:
6163      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6164                                getShiftAmountOperand(Operands[1])));
6165      break;
6166    case ISD::SIGN_EXTEND_INREG:
6167    case ISD::FP_ROUND_INREG: {
6168      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6169      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6170                                Operands[0],
6171                                getValueType(ExtVT)));
6172    }
6173    }
6174  }
6175
6176  for (; i < ResNE; ++i)
6177    Scalars.push_back(getUNDEF(EltVT));
6178
6179  return getNode(ISD::BUILD_VECTOR, dl,
6180                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6181                 &Scalars[0], Scalars.size());
6182}
6183
6184
6185/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6186/// location that is 'Dist' units away from the location that the 'Base' load
6187/// is loading from.
6188bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6189                                     unsigned Bytes, int Dist) const {
6190  if (LD->getChain() != Base->getChain())
6191    return false;
6192  EVT VT = LD->getValueType(0);
6193  if (VT.getSizeInBits() / 8 != Bytes)
6194    return false;
6195
6196  SDValue Loc = LD->getOperand(1);
6197  SDValue BaseLoc = Base->getOperand(1);
6198  if (Loc.getOpcode() == ISD::FrameIndex) {
6199    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6200      return false;
6201    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6202    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6203    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6204    int FS  = MFI->getObjectSize(FI);
6205    int BFS = MFI->getObjectSize(BFI);
6206    if (FS != BFS || FS != (int)Bytes) return false;
6207    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6208  }
6209  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6210    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6211    if (V && (V->getSExtValue() == Dist*Bytes))
6212      return true;
6213  }
6214
6215  const GlobalValue *GV1 = NULL;
6216  const GlobalValue *GV2 = NULL;
6217  int64_t Offset1 = 0;
6218  int64_t Offset2 = 0;
6219  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6220  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6221  if (isGA1 && isGA2 && GV1 == GV2)
6222    return Offset1 == (Offset2 + Dist*Bytes);
6223  return false;
6224}
6225
6226
6227/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6228/// it cannot be inferred.
6229unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6230  // If this is a GlobalAddress + cst, return the alignment.
6231  const GlobalValue *GV;
6232  int64_t GVOffset = 0;
6233  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6234    // If GV has specified alignment, then use it. Otherwise, use the preferred
6235    // alignment.
6236    unsigned Align = GV->getAlignment();
6237    if (!Align) {
6238      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6239        if (GVar->hasInitializer()) {
6240          const TargetData *TD = TLI.getTargetData();
6241          Align = TD->getPreferredAlignment(GVar);
6242        }
6243      }
6244    }
6245    return MinAlign(Align, GVOffset);
6246  }
6247
6248  // If this is a direct reference to a stack slot, use information about the
6249  // stack slot's alignment.
6250  int FrameIdx = 1 << 31;
6251  int64_t FrameOffset = 0;
6252  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6253    FrameIdx = FI->getIndex();
6254  } else if (Ptr.getOpcode() == ISD::ADD &&
6255             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6256             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6257    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6258    FrameOffset = Ptr.getConstantOperandVal(1);
6259  }
6260
6261  if (FrameIdx != (1 << 31)) {
6262    // FIXME: Handle FI+CST.
6263    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6264    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6265                                    FrameOffset);
6266    return FIInfoAlign;
6267  }
6268
6269  return 0;
6270}
6271
6272void SelectionDAG::dump() const {
6273  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6274
6275  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6276       I != E; ++I) {
6277    const SDNode *N = I;
6278    if (!N->hasOneUse() && N != getRoot().getNode())
6279      DumpNodes(N, 2, this);
6280  }
6281
6282  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6283
6284  dbgs() << "\n\n";
6285}
6286
6287void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6288  print_types(OS, G);
6289  print_details(OS, G);
6290}
6291
6292typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6293static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6294                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6295  if (!once.insert(N))          // If we've been here before, return now.
6296    return;
6297
6298  // Dump the current SDNode, but don't end the line yet.
6299  OS << std::string(indent, ' ');
6300  N->printr(OS, G);
6301
6302  // Having printed this SDNode, walk the children:
6303  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6304    const SDNode *child = N->getOperand(i).getNode();
6305
6306    if (i) OS << ",";
6307    OS << " ";
6308
6309    if (child->getNumOperands() == 0) {
6310      // This child has no grandchildren; print it inline right here.
6311      child->printr(OS, G);
6312      once.insert(child);
6313    } else {         // Just the address. FIXME: also print the child's opcode.
6314      OS << (void*)child;
6315      if (unsigned RN = N->getOperand(i).getResNo())
6316        OS << ":" << RN;
6317    }
6318  }
6319
6320  OS << "\n";
6321
6322  // Dump children that have grandchildren on their own line(s).
6323  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6324    const SDNode *child = N->getOperand(i).getNode();
6325    DumpNodesr(OS, child, indent+2, G, once);
6326  }
6327}
6328
6329void SDNode::dumpr() const {
6330  VisitedSDNodeSet once;
6331  DumpNodesr(dbgs(), this, 0, 0, once);
6332}
6333
6334void SDNode::dumpr(const SelectionDAG *G) const {
6335  VisitedSDNodeSet once;
6336  DumpNodesr(dbgs(), this, 0, G, once);
6337}
6338
6339
6340// getAddressSpace - Return the address space this GlobalAddress belongs to.
6341unsigned GlobalAddressSDNode::getAddressSpace() const {
6342  return getGlobal()->getType()->getAddressSpace();
6343}
6344
6345
6346const Type *ConstantPoolSDNode::getType() const {
6347  if (isMachineConstantPoolEntry())
6348    return Val.MachineCPVal->getType();
6349  return Val.ConstVal->getType();
6350}
6351
6352bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6353                                        APInt &SplatUndef,
6354                                        unsigned &SplatBitSize,
6355                                        bool &HasAnyUndefs,
6356                                        unsigned MinSplatBits,
6357                                        bool isBigEndian) {
6358  EVT VT = getValueType(0);
6359  assert(VT.isVector() && "Expected a vector type");
6360  unsigned sz = VT.getSizeInBits();
6361  if (MinSplatBits > sz)
6362    return false;
6363
6364  SplatValue = APInt(sz, 0);
6365  SplatUndef = APInt(sz, 0);
6366
6367  // Get the bits.  Bits with undefined values (when the corresponding element
6368  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6369  // in SplatValue.  If any of the values are not constant, give up and return
6370  // false.
6371  unsigned int nOps = getNumOperands();
6372  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6373  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6374
6375  for (unsigned j = 0; j < nOps; ++j) {
6376    unsigned i = isBigEndian ? nOps-1-j : j;
6377    SDValue OpVal = getOperand(i);
6378    unsigned BitPos = j * EltBitSize;
6379
6380    if (OpVal.getOpcode() == ISD::UNDEF)
6381      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6382    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6383      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6384                    zextOrTrunc(sz) << BitPos;
6385    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6386      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6387     else
6388      return false;
6389  }
6390
6391  // The build_vector is all constants or undefs.  Find the smallest element
6392  // size that splats the vector.
6393
6394  HasAnyUndefs = (SplatUndef != 0);
6395  while (sz > 8) {
6396
6397    unsigned HalfSize = sz / 2;
6398    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6399    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6400    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6401    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6402
6403    // If the two halves do not match (ignoring undef bits), stop here.
6404    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6405        MinSplatBits > HalfSize)
6406      break;
6407
6408    SplatValue = HighValue | LowValue;
6409    SplatUndef = HighUndef & LowUndef;
6410
6411    sz = HalfSize;
6412  }
6413
6414  SplatBitSize = sz;
6415  return true;
6416}
6417
6418bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6419  // Find the first non-undef value in the shuffle mask.
6420  unsigned i, e;
6421  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6422    /* search */;
6423
6424  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6425
6426  // Make sure all remaining elements are either undef or the same as the first
6427  // non-undef value.
6428  for (int Idx = Mask[i]; i != e; ++i)
6429    if (Mask[i] >= 0 && Mask[i] != Idx)
6430      return false;
6431  return true;
6432}
6433
6434#ifdef XDEBUG
6435static void checkForCyclesHelper(const SDNode *N,
6436                                 SmallPtrSet<const SDNode*, 32> &Visited,
6437                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6438  // If this node has already been checked, don't check it again.
6439  if (Checked.count(N))
6440    return;
6441
6442  // If a node has already been visited on this depth-first walk, reject it as
6443  // a cycle.
6444  if (!Visited.insert(N)) {
6445    dbgs() << "Offending node:\n";
6446    N->dumprFull();
6447    errs() << "Detected cycle in SelectionDAG\n";
6448    abort();
6449  }
6450
6451  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6452    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6453
6454  Checked.insert(N);
6455  Visited.erase(N);
6456}
6457#endif
6458
6459void llvm::checkForCycles(const llvm::SDNode *N) {
6460#ifdef XDEBUG
6461  assert(N && "Checking nonexistant SDNode");
6462  SmallPtrSet<const SDNode*, 32> visited;
6463  SmallPtrSet<const SDNode*, 32> checked;
6464  checkForCyclesHelper(N, visited, checked);
6465#endif
6466}
6467
6468void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6469  checkForCycles(DAG->getRoot().getNode());
6470}
6471