SelectionDAG.cpp revision d22ec5f62813f8cf2ed8091f44a14377209b1a59
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44/// makeVTList - Return an instance of the SDVTList struct initialized with the
45/// specified members.
46static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
47  SDVTList Res = {VTs, NumVTs};
48  return Res;
49}
50
51static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
52  switch (VT.getSimpleVT()) {
53  default: assert(0 && "Unknown FP format");
54  case MVT::f32:     return &APFloat::IEEEsingle;
55  case MVT::f64:     return &APFloat::IEEEdouble;
56  case MVT::f80:     return &APFloat::x87DoubleExtended;
57  case MVT::f128:    return &APFloat::IEEEquad;
58  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
59  }
60}
61
62SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
73  return getValueAPF().bitwiseIsEqual(V);
74}
75
76bool ConstantFPSDNode::isValueValidForType(MVT VT,
77                                           const APFloat& Val) {
78  assert(VT.isFloatingPoint() && "Can only convert between FP types");
79
80  // PPC long double cannot be converted to any other type.
81  if (VT == MVT::ppcf128 ||
82      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  bool losesInfo;
88  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
89                      &losesInfo);
90  return !losesInfo;
91}
92
93//===----------------------------------------------------------------------===//
94//                              ISD Namespace
95//===----------------------------------------------------------------------===//
96
97/// isBuildVectorAllOnes - Return true if the specified node is a
98/// BUILD_VECTOR where all of the elements are ~0 or undef.
99bool ISD::isBuildVectorAllOnes(const SDNode *N) {
100  // Look through a bit convert.
101  if (N->getOpcode() == ISD::BIT_CONVERT)
102    N = N->getOperand(0).getNode();
103
104  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
105
106  unsigned i = 0, e = N->getNumOperands();
107
108  // Skip over all of the undef values.
109  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
110    ++i;
111
112  // Do not accept an all-undef vector.
113  if (i == e) return false;
114
115  // Do not accept build_vectors that aren't all constants or which have non-~0
116  // elements.
117  SDValue NotZero = N->getOperand(i);
118  if (isa<ConstantSDNode>(NotZero)) {
119    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
120      return false;
121  } else if (isa<ConstantFPSDNode>(NotZero)) {
122    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
123                bitcastToAPInt().isAllOnesValue())
124      return false;
125  } else
126    return false;
127
128  // Okay, we have at least one ~0 value, check to see if the rest match or are
129  // undefs.
130  for (++i; i != e; ++i)
131    if (N->getOperand(i) != NotZero &&
132        N->getOperand(i).getOpcode() != ISD::UNDEF)
133      return false;
134  return true;
135}
136
137
138/// isBuildVectorAllZeros - Return true if the specified node is a
139/// BUILD_VECTOR where all of the elements are 0 or undef.
140bool ISD::isBuildVectorAllZeros(const SDNode *N) {
141  // Look through a bit convert.
142  if (N->getOpcode() == ISD::BIT_CONVERT)
143    N = N->getOperand(0).getNode();
144
145  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
146
147  unsigned i = 0, e = N->getNumOperands();
148
149  // Skip over all of the undef values.
150  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
151    ++i;
152
153  // Do not accept an all-undef vector.
154  if (i == e) return false;
155
156  // Do not accept build_vectors that aren't all constants or which have non-~0
157  // elements.
158  SDValue Zero = N->getOperand(i);
159  if (isa<ConstantSDNode>(Zero)) {
160    if (!cast<ConstantSDNode>(Zero)->isNullValue())
161      return false;
162  } else if (isa<ConstantFPSDNode>(Zero)) {
163    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
164      return false;
165  } else
166    return false;
167
168  // Okay, we have at least one ~0 value, check to see if the rest match or are
169  // undefs.
170  for (++i; i != e; ++i)
171    if (N->getOperand(i) != Zero &&
172        N->getOperand(i).getOpcode() != ISD::UNDEF)
173      return false;
174  return true;
175}
176
177/// isScalarToVector - Return true if the specified node is a
178/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
179/// element is not an undef.
180bool ISD::isScalarToVector(const SDNode *N) {
181  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
182    return true;
183
184  if (N->getOpcode() != ISD::BUILD_VECTOR)
185    return false;
186  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
187    return false;
188  unsigned NumElems = N->getNumOperands();
189  for (unsigned i = 1; i < NumElems; ++i) {
190    SDValue V = N->getOperand(i);
191    if (V.getOpcode() != ISD::UNDEF)
192      return false;
193  }
194  return true;
195}
196
197
198/// isDebugLabel - Return true if the specified node represents a debug
199/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
200bool ISD::isDebugLabel(const SDNode *N) {
201  SDValue Zero;
202  if (N->getOpcode() == ISD::DBG_LABEL)
203    return true;
204  if (N->isMachineOpcode() &&
205      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
206    return true;
207  return false;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309const TargetMachine &SelectionDAG::getTarget() const {
310  return MF->getTarget();
311}
312
313//===----------------------------------------------------------------------===//
314//                           SDNode Profile Support
315//===----------------------------------------------------------------------===//
316
317/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
318///
319static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
320  ID.AddInteger(OpC);
321}
322
323/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
324/// solely with their pointer.
325static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
326  ID.AddPointer(VTList.VTs);
327}
328
329/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
330///
331static void AddNodeIDOperands(FoldingSetNodeID &ID,
332                              const SDValue *Ops, unsigned NumOps) {
333  for (; NumOps; --NumOps, ++Ops) {
334    ID.AddPointer(Ops->getNode());
335    ID.AddInteger(Ops->getResNo());
336  }
337}
338
339/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
340///
341static void AddNodeIDOperands(FoldingSetNodeID &ID,
342                              const SDUse *Ops, unsigned NumOps) {
343  for (; NumOps; --NumOps, ++Ops) {
344    ID.AddPointer(Ops->getVal());
345    ID.AddInteger(Ops->getSDValue().getResNo());
346  }
347}
348
349static void AddNodeIDNode(FoldingSetNodeID &ID,
350                          unsigned short OpC, SDVTList VTList,
351                          const SDValue *OpList, unsigned N) {
352  AddNodeIDOpcode(ID, OpC);
353  AddNodeIDValueTypes(ID, VTList);
354  AddNodeIDOperands(ID, OpList, N);
355}
356
357/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
358/// the NodeID data.
359static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
360  switch (N->getOpcode()) {
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::ARG_FLAGS:
363    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
364    break;
365  case ISD::TargetConstant:
366  case ISD::Constant:
367    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
368    break;
369  case ISD::TargetConstantFP:
370  case ISD::ConstantFP: {
371    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
372    break;
373  }
374  case ISD::TargetGlobalAddress:
375  case ISD::GlobalAddress:
376  case ISD::TargetGlobalTLSAddress:
377  case ISD::GlobalTLSAddress: {
378    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
379    ID.AddPointer(GA->getGlobal());
380    ID.AddInteger(GA->getOffset());
381    break;
382  }
383  case ISD::BasicBlock:
384    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
385    break;
386  case ISD::Register:
387    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
388    break;
389  case ISD::DBG_STOPPOINT: {
390    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
391    ID.AddInteger(DSP->getLine());
392    ID.AddInteger(DSP->getColumn());
393    ID.AddPointer(DSP->getCompileUnit());
394    break;
395  }
396  case ISD::SRCVALUE:
397    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
398    break;
399  case ISD::MEMOPERAND: {
400    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
401    MO.Profile(ID);
402    break;
403  }
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    break;
412  case ISD::ConstantPool:
413  case ISD::TargetConstantPool: {
414    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
415    ID.AddInteger(CP->getAlignment());
416    ID.AddInteger(CP->getOffset());
417    if (CP->isMachineConstantPoolEntry())
418      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
419    else
420      ID.AddPointer(CP->getConstVal());
421    break;
422  }
423  case ISD::CALL: {
424    const CallSDNode *Call = cast<CallSDNode>(N);
425    ID.AddInteger(Call->getCallingConv());
426    ID.AddInteger(Call->isVarArg());
427    break;
428  }
429  case ISD::LOAD: {
430    const LoadSDNode *LD = cast<LoadSDNode>(N);
431    ID.AddInteger(LD->getAddressingMode());
432    ID.AddInteger(LD->getExtensionType());
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawFlags());
435    break;
436  }
437  case ISD::STORE: {
438    const StoreSDNode *ST = cast<StoreSDNode>(N);
439    ID.AddInteger(ST->getAddressingMode());
440    ID.AddInteger(ST->isTruncatingStore());
441    ID.AddInteger(ST->getMemoryVT().getRawBits());
442    ID.AddInteger(ST->getRawFlags());
443    break;
444  }
445  case ISD::ATOMIC_CMP_SWAP_8:
446  case ISD::ATOMIC_SWAP_8:
447  case ISD::ATOMIC_LOAD_ADD_8:
448  case ISD::ATOMIC_LOAD_SUB_8:
449  case ISD::ATOMIC_LOAD_AND_8:
450  case ISD::ATOMIC_LOAD_OR_8:
451  case ISD::ATOMIC_LOAD_XOR_8:
452  case ISD::ATOMIC_LOAD_NAND_8:
453  case ISD::ATOMIC_LOAD_MIN_8:
454  case ISD::ATOMIC_LOAD_MAX_8:
455  case ISD::ATOMIC_LOAD_UMIN_8:
456  case ISD::ATOMIC_LOAD_UMAX_8:
457  case ISD::ATOMIC_CMP_SWAP_16:
458  case ISD::ATOMIC_SWAP_16:
459  case ISD::ATOMIC_LOAD_ADD_16:
460  case ISD::ATOMIC_LOAD_SUB_16:
461  case ISD::ATOMIC_LOAD_AND_16:
462  case ISD::ATOMIC_LOAD_OR_16:
463  case ISD::ATOMIC_LOAD_XOR_16:
464  case ISD::ATOMIC_LOAD_NAND_16:
465  case ISD::ATOMIC_LOAD_MIN_16:
466  case ISD::ATOMIC_LOAD_MAX_16:
467  case ISD::ATOMIC_LOAD_UMIN_16:
468  case ISD::ATOMIC_LOAD_UMAX_16:
469  case ISD::ATOMIC_CMP_SWAP_32:
470  case ISD::ATOMIC_SWAP_32:
471  case ISD::ATOMIC_LOAD_ADD_32:
472  case ISD::ATOMIC_LOAD_SUB_32:
473  case ISD::ATOMIC_LOAD_AND_32:
474  case ISD::ATOMIC_LOAD_OR_32:
475  case ISD::ATOMIC_LOAD_XOR_32:
476  case ISD::ATOMIC_LOAD_NAND_32:
477  case ISD::ATOMIC_LOAD_MIN_32:
478  case ISD::ATOMIC_LOAD_MAX_32:
479  case ISD::ATOMIC_LOAD_UMIN_32:
480  case ISD::ATOMIC_LOAD_UMAX_32:
481  case ISD::ATOMIC_CMP_SWAP_64:
482  case ISD::ATOMIC_SWAP_64:
483  case ISD::ATOMIC_LOAD_ADD_64:
484  case ISD::ATOMIC_LOAD_SUB_64:
485  case ISD::ATOMIC_LOAD_AND_64:
486  case ISD::ATOMIC_LOAD_OR_64:
487  case ISD::ATOMIC_LOAD_XOR_64:
488  case ISD::ATOMIC_LOAD_NAND_64:
489  case ISD::ATOMIC_LOAD_MIN_64:
490  case ISD::ATOMIC_LOAD_MAX_64:
491  case ISD::ATOMIC_LOAD_UMIN_64:
492  case ISD::ATOMIC_LOAD_UMAX_64: {
493    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
494    ID.AddInteger(AT->getRawFlags());
495    break;
496  }
497  } // end switch (N->getOpcode())
498}
499
500/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
501/// data.
502static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
503  AddNodeIDOpcode(ID, N->getOpcode());
504  // Add the return value info.
505  AddNodeIDValueTypes(ID, N->getVTList());
506  // Add the operand info.
507  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
508
509  // Handle SDNode leafs with special info.
510  AddNodeIDCustom(ID, N);
511}
512
513/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
514/// the CSE map that carries both alignment and volatility information.
515///
516static inline unsigned
517encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
518  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
519}
520
521//===----------------------------------------------------------------------===//
522//                              SelectionDAG Class
523//===----------------------------------------------------------------------===//
524
525/// doNotCSE - Return true if CSE should not be performed for this node.
526static bool doNotCSE(SDNode *N) {
527  if (N->getValueType(0) == MVT::Flag)
528    return true; // Never CSE anything that produces a flag.
529
530  switch (N->getOpcode()) {
531  default: break;
532  case ISD::HANDLENODE:
533  case ISD::DBG_LABEL:
534  case ISD::DBG_STOPPOINT:
535  case ISD::EH_LABEL:
536  case ISD::DECLARE:
537    return true;   // Never CSE these nodes.
538  }
539
540  // Check that remaining values produced are not flags.
541  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
542    if (N->getValueType(i) == MVT::Flag)
543      return true; // Never CSE anything that produces a flag.
544
545  return false;
546}
547
548/// RemoveDeadNodes - This method deletes all unreachable nodes in the
549/// SelectionDAG.
550void SelectionDAG::RemoveDeadNodes() {
551  // Create a dummy node (which is not added to allnodes), that adds a reference
552  // to the root node, preventing it from being deleted.
553  HandleSDNode Dummy(getRoot());
554
555  SmallVector<SDNode*, 128> DeadNodes;
556
557  // Add all obviously-dead nodes to the DeadNodes worklist.
558  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
559    if (I->use_empty())
560      DeadNodes.push_back(I);
561
562  RemoveDeadNodes(DeadNodes);
563
564  // If the root changed (e.g. it was a dead load, update the root).
565  setRoot(Dummy.getValue());
566}
567
568/// RemoveDeadNodes - This method deletes the unreachable nodes in the
569/// given list, and any nodes that become unreachable as a result.
570void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
571                                   DAGUpdateListener *UpdateListener) {
572
573  // Process the worklist, deleting the nodes and adding their uses to the
574  // worklist.
575  while (!DeadNodes.empty()) {
576    SDNode *N = DeadNodes.back();
577    DeadNodes.pop_back();
578
579    if (UpdateListener)
580      UpdateListener->NodeDeleted(N, 0);
581
582    // Take the node out of the appropriate CSE map.
583    RemoveNodeFromCSEMaps(N);
584
585    // Next, brutally remove the operand list.  This is safe to do, as there are
586    // no cycles in the graph.
587    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
588      SDNode *Operand = I->getVal();
589      Operand->removeUser(std::distance(N->op_begin(), I), N);
590
591      // Now that we removed this operand, see if there are no uses of it left.
592      if (Operand->use_empty())
593        DeadNodes.push_back(Operand);
594    }
595
596    if (N->OperandsNeedDelete)
597      delete[] N->OperandList;
598
599    N->OperandList = 0;
600    N->NumOperands = 0;
601
602    // Finally, remove N itself.
603    NodeAllocator.Deallocate(AllNodes.remove(N));
604  }
605}
606
607void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
608  SmallVector<SDNode*, 16> DeadNodes(1, N);
609  RemoveDeadNodes(DeadNodes, UpdateListener);
610}
611
612void SelectionDAG::DeleteNode(SDNode *N) {
613  assert(N->use_empty() && "Cannot delete a node that is not dead!");
614
615  // First take this out of the appropriate CSE map.
616  RemoveNodeFromCSEMaps(N);
617
618  // Finally, remove uses due to operands of this node, remove from the
619  // AllNodes list, and delete the node.
620  DeleteNodeNotInCSEMaps(N);
621}
622
623void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
624  // Drop all of the operands and decrement used node's use counts.
625  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
626    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
627
628  if (N->OperandsNeedDelete) {
629    delete[] N->OperandList;
630    N->OperandList = 0;
631  }
632
633  assert(N != AllNodes.begin());
634  NodeAllocator.Deallocate(AllNodes.remove(N));
635}
636
637/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
638/// correspond to it.  This is useful when we're about to delete or repurpose
639/// the node.  We don't want future request for structurally identical nodes
640/// to return N anymore.
641bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
642  bool Erased = false;
643  switch (N->getOpcode()) {
644  case ISD::EntryToken:
645    assert(0 && "EntryToken should not be in CSEMaps!");
646    return false;
647  case ISD::HANDLENODE: return false;  // noop.
648  case ISD::CONDCODE:
649    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
650           "Cond code doesn't exist!");
651    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
652    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
653    break;
654  case ISD::ExternalSymbol:
655    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
656    break;
657  case ISD::TargetExternalSymbol:
658    Erased =
659      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
660    break;
661  case ISD::VALUETYPE: {
662    MVT VT = cast<VTSDNode>(N)->getVT();
663    if (VT.isExtended()) {
664      Erased = ExtendedValueTypeNodes.erase(VT);
665    } else {
666      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
667      ValueTypeNodes[VT.getSimpleVT()] = 0;
668    }
669    break;
670  }
671  default:
672    // Remove it from the CSE Map.
673    Erased = CSEMap.RemoveNode(N);
674    break;
675  }
676#ifndef NDEBUG
677  // Verify that the node was actually in one of the CSE maps, unless it has a
678  // flag result (which cannot be CSE'd) or is one of the special cases that are
679  // not subject to CSE.
680  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
681      !N->isMachineOpcode() && !doNotCSE(N)) {
682    N->dump(this);
683    cerr << "\n";
684    assert(0 && "Node is not in map!");
685  }
686#endif
687  return Erased;
688}
689
690/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
691/// has been taken out and modified in some way.  If the specified node already
692/// exists in the CSE maps, do not modify the maps, but return the existing node
693/// instead.  If it doesn't exist, add it and return null.
694///
695SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
696  assert(N->getNumOperands() && "This is a leaf node!");
697
698  if (doNotCSE(N))
699    return 0;
700
701  SDNode *New = CSEMap.GetOrInsertNode(N);
702  if (New != N) return New;  // Node already existed.
703  return 0;
704}
705
706/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
707/// were replaced with those specified.  If this node is never memoized,
708/// return null, otherwise return a pointer to the slot it would take.  If a
709/// node already exists with these operands, the slot will be non-null.
710SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
711                                           void *&InsertPos) {
712  if (doNotCSE(N))
713    return 0;
714
715  SDValue Ops[] = { Op };
716  FoldingSetNodeID ID;
717  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
718  AddNodeIDCustom(ID, N);
719  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
720}
721
722/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
723/// were replaced with those specified.  If this node is never memoized,
724/// return null, otherwise return a pointer to the slot it would take.  If a
725/// node already exists with these operands, the slot will be non-null.
726SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
727                                           SDValue Op1, SDValue Op2,
728                                           void *&InsertPos) {
729  if (doNotCSE(N))
730    return 0;
731
732  SDValue Ops[] = { Op1, Op2 };
733  FoldingSetNodeID ID;
734  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
735  AddNodeIDCustom(ID, N);
736  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
737}
738
739
740/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
741/// were replaced with those specified.  If this node is never memoized,
742/// return null, otherwise return a pointer to the slot it would take.  If a
743/// node already exists with these operands, the slot will be non-null.
744SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
745                                           const SDValue *Ops,unsigned NumOps,
746                                           void *&InsertPos) {
747  if (doNotCSE(N))
748    return 0;
749
750  FoldingSetNodeID ID;
751  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
752  AddNodeIDCustom(ID, N);
753  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
754}
755
756/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
757void SelectionDAG::VerifyNode(SDNode *N) {
758  switch (N->getOpcode()) {
759  default:
760    break;
761  case ISD::BUILD_PAIR: {
762    MVT VT = N->getValueType(0);
763    assert(N->getNumValues() == 1 && "Too many results!");
764    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
765           "Wrong return type!");
766    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
767    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
768           "Mismatched operand types!");
769    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
770           "Wrong operand type!");
771    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
772           "Wrong return type size");
773    break;
774  }
775  case ISD::BUILD_VECTOR: {
776    assert(N->getNumValues() == 1 && "Too many results!");
777    assert(N->getValueType(0).isVector() && "Wrong return type!");
778    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
779           "Wrong number of operands!");
780    // FIXME: Change vector_shuffle to a variadic node with mask elements being
781    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
782    // operand, and it is not always possible to legalize it.  Turning off the
783    // following checks at least makes it possible to legalize most of the time.
784//    MVT EltVT = N->getValueType(0).getVectorElementType();
785//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
786//      assert(I->getSDValue().getValueType() == EltVT &&
787//             "Wrong operand type!");
788    break;
789  }
790  }
791}
792
793/// getMVTAlignment - Compute the default alignment value for the
794/// given type.
795///
796unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
797  const Type *Ty = VT == MVT::iPTR ?
798                   PointerType::get(Type::Int8Ty, 0) :
799                   VT.getTypeForMVT();
800
801  return TLI.getTargetData()->getABITypeAlignment(Ty);
802}
803
804SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
805  : TLI(tli), FLI(fli),
806    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
807    Root(getEntryNode()) {
808  AllNodes.push_back(&EntryNode);
809}
810
811void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
812  MF = &mf;
813  MMI = mmi;
814}
815
816SelectionDAG::~SelectionDAG() {
817  allnodes_clear();
818}
819
820void SelectionDAG::allnodes_clear() {
821  assert(&*AllNodes.begin() == &EntryNode);
822  AllNodes.remove(AllNodes.begin());
823  while (!AllNodes.empty()) {
824    SDNode *N = AllNodes.remove(AllNodes.begin());
825    N->SetNextInBucket(0);
826
827    if (N->OperandsNeedDelete) {
828      delete [] N->OperandList;
829      N->OperandList = 0;
830    }
831
832    NodeAllocator.Deallocate(N);
833  }
834}
835
836void SelectionDAG::clear() {
837  allnodes_clear();
838  OperandAllocator.Reset();
839  CSEMap.clear();
840
841  ExtendedValueTypeNodes.clear();
842  ExternalSymbols.clear();
843  TargetExternalSymbols.clear();
844  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
845            static_cast<CondCodeSDNode*>(0));
846  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
847            static_cast<SDNode*>(0));
848
849  EntryNode.Uses = 0;
850  AllNodes.push_back(&EntryNode);
851  Root = getEntryNode();
852}
853
854SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
855  if (Op.getValueType() == VT) return Op;
856  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
857                                   VT.getSizeInBits());
858  return getNode(ISD::AND, Op.getValueType(), Op,
859                 getConstant(Imm, Op.getValueType()));
860}
861
862SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
863  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
864  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
865}
866
867SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
868  return getConstant(*ConstantInt::get(Val), VT, isT);
869}
870
871SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
872  assert(VT.isInteger() && "Cannot create FP integer constant!");
873
874  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
875  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
876         "APInt size does not match type size!");
877
878  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
879  FoldingSetNodeID ID;
880  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
881  ID.AddPointer(&Val);
882  void *IP = 0;
883  SDNode *N = NULL;
884  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
885    if (!VT.isVector())
886      return SDValue(N, 0);
887  if (!N) {
888    N = NodeAllocator.Allocate<ConstantSDNode>();
889    new (N) ConstantSDNode(isT, &Val, EltVT);
890    CSEMap.InsertNode(N, IP);
891    AllNodes.push_back(N);
892  }
893
894  SDValue Result(N, 0);
895  if (VT.isVector()) {
896    SmallVector<SDValue, 8> Ops;
897    Ops.assign(VT.getVectorNumElements(), Result);
898    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
899  }
900  return Result;
901}
902
903SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
904  return getConstant(Val, TLI.getPointerTy(), isTarget);
905}
906
907
908SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
909  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
910}
911
912SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
913  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
914
915  MVT EltVT =
916    VT.isVector() ? VT.getVectorElementType() : VT;
917
918  // Do the map lookup using the actual bit pattern for the floating point
919  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
920  // we don't have issues with SNANs.
921  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
922  FoldingSetNodeID ID;
923  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
924  ID.AddPointer(&V);
925  void *IP = 0;
926  SDNode *N = NULL;
927  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
928    if (!VT.isVector())
929      return SDValue(N, 0);
930  if (!N) {
931    N = NodeAllocator.Allocate<ConstantFPSDNode>();
932    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
933    CSEMap.InsertNode(N, IP);
934    AllNodes.push_back(N);
935  }
936
937  SDValue Result(N, 0);
938  if (VT.isVector()) {
939    SmallVector<SDValue, 8> Ops;
940    Ops.assign(VT.getVectorNumElements(), Result);
941    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
942  }
943  return Result;
944}
945
946SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
947  MVT EltVT =
948    VT.isVector() ? VT.getVectorElementType() : VT;
949  if (EltVT==MVT::f32)
950    return getConstantFP(APFloat((float)Val), VT, isTarget);
951  else
952    return getConstantFP(APFloat(Val), VT, isTarget);
953}
954
955SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
956                                       MVT VT, int64_t Offset,
957                                       bool isTargetGA) {
958  unsigned Opc;
959
960  // Truncate (with sign-extension) the offset value to the pointer size.
961  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
962  if (BitWidth < 64)
963    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
964
965  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
966  if (!GVar) {
967    // If GV is an alias then use the aliasee for determining thread-localness.
968    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
969      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
970  }
971
972  if (GVar && GVar->isThreadLocal())
973    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
974  else
975    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
976
977  FoldingSetNodeID ID;
978  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
979  ID.AddPointer(GV);
980  ID.AddInteger(Offset);
981  void *IP = 0;
982  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
983   return SDValue(E, 0);
984  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
985  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
986  CSEMap.InsertNode(N, IP);
987  AllNodes.push_back(N);
988  return SDValue(N, 0);
989}
990
991SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
992  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
993  FoldingSetNodeID ID;
994  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
995  ID.AddInteger(FI);
996  void *IP = 0;
997  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
998    return SDValue(E, 0);
999  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1000  new (N) FrameIndexSDNode(FI, VT, isTarget);
1001  CSEMap.InsertNode(N, IP);
1002  AllNodes.push_back(N);
1003  return SDValue(N, 0);
1004}
1005
1006SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1007  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1008  FoldingSetNodeID ID;
1009  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1010  ID.AddInteger(JTI);
1011  void *IP = 0;
1012  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1013    return SDValue(E, 0);
1014  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1015  new (N) JumpTableSDNode(JTI, VT, isTarget);
1016  CSEMap.InsertNode(N, IP);
1017  AllNodes.push_back(N);
1018  return SDValue(N, 0);
1019}
1020
1021SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1022                                      unsigned Alignment, int Offset,
1023                                      bool isTarget) {
1024  if (Alignment == 0)
1025    Alignment =
1026      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1027  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1028  FoldingSetNodeID ID;
1029  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1030  ID.AddInteger(Alignment);
1031  ID.AddInteger(Offset);
1032  ID.AddPointer(C);
1033  void *IP = 0;
1034  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1035    return SDValue(E, 0);
1036  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1037  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1038  CSEMap.InsertNode(N, IP);
1039  AllNodes.push_back(N);
1040  return SDValue(N, 0);
1041}
1042
1043
1044SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1045                                      unsigned Alignment, int Offset,
1046                                      bool isTarget) {
1047  if (Alignment == 0)
1048    Alignment =
1049      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1050  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1051  FoldingSetNodeID ID;
1052  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1053  ID.AddInteger(Alignment);
1054  ID.AddInteger(Offset);
1055  C->AddSelectionDAGCSEId(ID);
1056  void *IP = 0;
1057  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1058    return SDValue(E, 0);
1059  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1060  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1061  CSEMap.InsertNode(N, IP);
1062  AllNodes.push_back(N);
1063  return SDValue(N, 0);
1064}
1065
1066
1067SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1068  FoldingSetNodeID ID;
1069  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1070  ID.AddPointer(MBB);
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDValue(E, 0);
1074  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1075  new (N) BasicBlockSDNode(MBB);
1076  CSEMap.InsertNode(N, IP);
1077  AllNodes.push_back(N);
1078  return SDValue(N, 0);
1079}
1080
1081SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1082  FoldingSetNodeID ID;
1083  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1084  ID.AddInteger(Flags.getRawBits());
1085  void *IP = 0;
1086  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1087    return SDValue(E, 0);
1088  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1089  new (N) ARG_FLAGSSDNode(Flags);
1090  CSEMap.InsertNode(N, IP);
1091  AllNodes.push_back(N);
1092  return SDValue(N, 0);
1093}
1094
1095SDValue SelectionDAG::getValueType(MVT VT) {
1096  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1097    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1098
1099  SDNode *&N = VT.isExtended() ?
1100    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1101
1102  if (N) return SDValue(N, 0);
1103  N = NodeAllocator.Allocate<VTSDNode>();
1104  new (N) VTSDNode(VT);
1105  AllNodes.push_back(N);
1106  return SDValue(N, 0);
1107}
1108
1109SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1110  SDNode *&N = ExternalSymbols[Sym];
1111  if (N) return SDValue(N, 0);
1112  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1113  new (N) ExternalSymbolSDNode(false, Sym, VT);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1119  SDNode *&N = TargetExternalSymbols[Sym];
1120  if (N) return SDValue(N, 0);
1121  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1122  new (N) ExternalSymbolSDNode(true, Sym, VT);
1123  AllNodes.push_back(N);
1124  return SDValue(N, 0);
1125}
1126
1127SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1128  if ((unsigned)Cond >= CondCodeNodes.size())
1129    CondCodeNodes.resize(Cond+1);
1130
1131  if (CondCodeNodes[Cond] == 0) {
1132    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1133    new (N) CondCodeSDNode(Cond);
1134    CondCodeNodes[Cond] = N;
1135    AllNodes.push_back(N);
1136  }
1137  return SDValue(CondCodeNodes[Cond], 0);
1138}
1139
1140SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1141  FoldingSetNodeID ID;
1142  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1143  ID.AddInteger(RegNo);
1144  void *IP = 0;
1145  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1146    return SDValue(E, 0);
1147  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1148  new (N) RegisterSDNode(RegNo, VT);
1149  CSEMap.InsertNode(N, IP);
1150  AllNodes.push_back(N);
1151  return SDValue(N, 0);
1152}
1153
1154SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1155                                        unsigned Line, unsigned Col,
1156                                        const CompileUnitDesc *CU) {
1157  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1158  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1159  AllNodes.push_back(N);
1160  return SDValue(N, 0);
1161}
1162
1163SDValue SelectionDAG::getLabel(unsigned Opcode,
1164                               SDValue Root,
1165                               unsigned LabelID) {
1166  FoldingSetNodeID ID;
1167  SDValue Ops[] = { Root };
1168  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1169  ID.AddInteger(LabelID);
1170  void *IP = 0;
1171  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1172    return SDValue(E, 0);
1173  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1174  new (N) LabelSDNode(Opcode, Root, LabelID);
1175  CSEMap.InsertNode(N, IP);
1176  AllNodes.push_back(N);
1177  return SDValue(N, 0);
1178}
1179
1180SDValue SelectionDAG::getSrcValue(const Value *V) {
1181  assert((!V || isa<PointerType>(V->getType())) &&
1182         "SrcValue is not a pointer?");
1183
1184  FoldingSetNodeID ID;
1185  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1186  ID.AddPointer(V);
1187
1188  void *IP = 0;
1189  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1190    return SDValue(E, 0);
1191
1192  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1193  new (N) SrcValueSDNode(V);
1194  CSEMap.InsertNode(N, IP);
1195  AllNodes.push_back(N);
1196  return SDValue(N, 0);
1197}
1198
1199SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1200  const Value *v = MO.getValue();
1201  assert((!v || isa<PointerType>(v->getType())) &&
1202         "SrcValue is not a pointer?");
1203
1204  FoldingSetNodeID ID;
1205  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1206  MO.Profile(ID);
1207
1208  void *IP = 0;
1209  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1210    return SDValue(E, 0);
1211
1212  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1213  new (N) MemOperandSDNode(MO);
1214  CSEMap.InsertNode(N, IP);
1215  AllNodes.push_back(N);
1216  return SDValue(N, 0);
1217}
1218
1219/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1220/// specified value type.
1221SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1222  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1223  unsigned ByteSize = VT.getSizeInBits()/8;
1224  const Type *Ty = VT.getTypeForMVT();
1225  unsigned StackAlign =
1226  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1227
1228  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1229  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1230}
1231
1232SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1233                                SDValue N2, ISD::CondCode Cond) {
1234  // These setcc operations always fold.
1235  switch (Cond) {
1236  default: break;
1237  case ISD::SETFALSE:
1238  case ISD::SETFALSE2: return getConstant(0, VT);
1239  case ISD::SETTRUE:
1240  case ISD::SETTRUE2:  return getConstant(1, VT);
1241
1242  case ISD::SETOEQ:
1243  case ISD::SETOGT:
1244  case ISD::SETOGE:
1245  case ISD::SETOLT:
1246  case ISD::SETOLE:
1247  case ISD::SETONE:
1248  case ISD::SETO:
1249  case ISD::SETUO:
1250  case ISD::SETUEQ:
1251  case ISD::SETUNE:
1252    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1253    break;
1254  }
1255
1256  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1257    const APInt &C2 = N2C->getAPIntValue();
1258    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1259      const APInt &C1 = N1C->getAPIntValue();
1260
1261      switch (Cond) {
1262      default: assert(0 && "Unknown integer setcc!");
1263      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1264      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1265      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1266      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1267      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1268      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1269      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1270      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1271      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1272      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1273      }
1274    }
1275  }
1276  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1277    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1278      // No compile time operations on this type yet.
1279      if (N1C->getValueType(0) == MVT::ppcf128)
1280        return SDValue();
1281
1282      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1283      switch (Cond) {
1284      default: break;
1285      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1286                          return getNode(ISD::UNDEF, VT);
1287                        // fall through
1288      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1289      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1290                          return getNode(ISD::UNDEF, VT);
1291                        // fall through
1292      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1293                                           R==APFloat::cmpLessThan, VT);
1294      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1295                          return getNode(ISD::UNDEF, VT);
1296                        // fall through
1297      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1298      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1299                          return getNode(ISD::UNDEF, VT);
1300                        // fall through
1301      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1302      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1303                          return getNode(ISD::UNDEF, VT);
1304                        // fall through
1305      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1306                                           R==APFloat::cmpEqual, VT);
1307      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1308                          return getNode(ISD::UNDEF, VT);
1309                        // fall through
1310      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1311                                           R==APFloat::cmpEqual, VT);
1312      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1313      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1314      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1315                                           R==APFloat::cmpEqual, VT);
1316      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1317      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1318                                           R==APFloat::cmpLessThan, VT);
1319      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1320                                           R==APFloat::cmpUnordered, VT);
1321      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1322      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1323      }
1324    } else {
1325      // Ensure that the constant occurs on the RHS.
1326      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1327    }
1328  }
1329
1330  // Could not fold it.
1331  return SDValue();
1332}
1333
1334/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1335/// use this predicate to simplify operations downstream.
1336bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1337  unsigned BitWidth = Op.getValueSizeInBits();
1338  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1339}
1340
1341/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1342/// this predicate to simplify operations downstream.  Mask is known to be zero
1343/// for bits that V cannot have.
1344bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1345                                     unsigned Depth) const {
1346  APInt KnownZero, KnownOne;
1347  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1348  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1349  return (KnownZero & Mask) == Mask;
1350}
1351
1352/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1353/// known to be either zero or one and return them in the KnownZero/KnownOne
1354/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1355/// processing.
1356void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1357                                     APInt &KnownZero, APInt &KnownOne,
1358                                     unsigned Depth) const {
1359  unsigned BitWidth = Mask.getBitWidth();
1360  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1361         "Mask size mismatches value type size!");
1362
1363  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1364  if (Depth == 6 || Mask == 0)
1365    return;  // Limit search depth.
1366
1367  APInt KnownZero2, KnownOne2;
1368
1369  switch (Op.getOpcode()) {
1370  case ISD::Constant:
1371    // We know all of the bits for a constant!
1372    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1373    KnownZero = ~KnownOne & Mask;
1374    return;
1375  case ISD::AND:
1376    // If either the LHS or the RHS are Zero, the result is zero.
1377    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1378    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1379                      KnownZero2, KnownOne2, Depth+1);
1380    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1381    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1382
1383    // Output known-1 bits are only known if set in both the LHS & RHS.
1384    KnownOne &= KnownOne2;
1385    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1386    KnownZero |= KnownZero2;
1387    return;
1388  case ISD::OR:
1389    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1390    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1391                      KnownZero2, KnownOne2, Depth+1);
1392    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1393    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1394
1395    // Output known-0 bits are only known if clear in both the LHS & RHS.
1396    KnownZero &= KnownZero2;
1397    // Output known-1 are known to be set if set in either the LHS | RHS.
1398    KnownOne |= KnownOne2;
1399    return;
1400  case ISD::XOR: {
1401    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1402    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1403    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1404    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1405
1406    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1407    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1408    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1409    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1410    KnownZero = KnownZeroOut;
1411    return;
1412  }
1413  case ISD::MUL: {
1414    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1415    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1416    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1417    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1418    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1419
1420    // If low bits are zero in either operand, output low known-0 bits.
1421    // Also compute a conserative estimate for high known-0 bits.
1422    // More trickiness is possible, but this is sufficient for the
1423    // interesting case of alignment computation.
1424    KnownOne.clear();
1425    unsigned TrailZ = KnownZero.countTrailingOnes() +
1426                      KnownZero2.countTrailingOnes();
1427    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1428                               KnownZero2.countLeadingOnes(),
1429                               BitWidth) - BitWidth;
1430
1431    TrailZ = std::min(TrailZ, BitWidth);
1432    LeadZ = std::min(LeadZ, BitWidth);
1433    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1434                APInt::getHighBitsSet(BitWidth, LeadZ);
1435    KnownZero &= Mask;
1436    return;
1437  }
1438  case ISD::UDIV: {
1439    // For the purposes of computing leading zeros we can conservatively
1440    // treat a udiv as a logical right shift by the power of 2 known to
1441    // be less than the denominator.
1442    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1443    ComputeMaskedBits(Op.getOperand(0),
1444                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1445    unsigned LeadZ = KnownZero2.countLeadingOnes();
1446
1447    KnownOne2.clear();
1448    KnownZero2.clear();
1449    ComputeMaskedBits(Op.getOperand(1),
1450                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1451    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1452    if (RHSUnknownLeadingOnes != BitWidth)
1453      LeadZ = std::min(BitWidth,
1454                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1455
1456    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1457    return;
1458  }
1459  case ISD::SELECT:
1460    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1461    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1462    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1463    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1464
1465    // Only known if known in both the LHS and RHS.
1466    KnownOne &= KnownOne2;
1467    KnownZero &= KnownZero2;
1468    return;
1469  case ISD::SELECT_CC:
1470    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1471    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1472    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1473    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1474
1475    // Only known if known in both the LHS and RHS.
1476    KnownOne &= KnownOne2;
1477    KnownZero &= KnownZero2;
1478    return;
1479  case ISD::SETCC:
1480    // If we know the result of a setcc has the top bits zero, use this info.
1481    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1482        BitWidth > 1)
1483      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1484    return;
1485  case ISD::SHL:
1486    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1487    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1488      unsigned ShAmt = SA->getZExtValue();
1489
1490      // If the shift count is an invalid immediate, don't do anything.
1491      if (ShAmt >= BitWidth)
1492        return;
1493
1494      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1495                        KnownZero, KnownOne, Depth+1);
1496      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1497      KnownZero <<= ShAmt;
1498      KnownOne  <<= ShAmt;
1499      // low bits known zero.
1500      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1501    }
1502    return;
1503  case ISD::SRL:
1504    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1505    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1506      unsigned ShAmt = SA->getZExtValue();
1507
1508      // If the shift count is an invalid immediate, don't do anything.
1509      if (ShAmt >= BitWidth)
1510        return;
1511
1512      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1513                        KnownZero, KnownOne, Depth+1);
1514      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1515      KnownZero = KnownZero.lshr(ShAmt);
1516      KnownOne  = KnownOne.lshr(ShAmt);
1517
1518      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1519      KnownZero |= HighBits;  // High bits known zero.
1520    }
1521    return;
1522  case ISD::SRA:
1523    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1524      unsigned ShAmt = SA->getZExtValue();
1525
1526      // If the shift count is an invalid immediate, don't do anything.
1527      if (ShAmt >= BitWidth)
1528        return;
1529
1530      APInt InDemandedMask = (Mask << ShAmt);
1531      // If any of the demanded bits are produced by the sign extension, we also
1532      // demand the input sign bit.
1533      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1534      if (HighBits.getBoolValue())
1535        InDemandedMask |= APInt::getSignBit(BitWidth);
1536
1537      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1538                        Depth+1);
1539      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1540      KnownZero = KnownZero.lshr(ShAmt);
1541      KnownOne  = KnownOne.lshr(ShAmt);
1542
1543      // Handle the sign bits.
1544      APInt SignBit = APInt::getSignBit(BitWidth);
1545      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1546
1547      if (KnownZero.intersects(SignBit)) {
1548        KnownZero |= HighBits;  // New bits are known zero.
1549      } else if (KnownOne.intersects(SignBit)) {
1550        KnownOne  |= HighBits;  // New bits are known one.
1551      }
1552    }
1553    return;
1554  case ISD::SIGN_EXTEND_INREG: {
1555    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1556    unsigned EBits = EVT.getSizeInBits();
1557
1558    // Sign extension.  Compute the demanded bits in the result that are not
1559    // present in the input.
1560    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1561
1562    APInt InSignBit = APInt::getSignBit(EBits);
1563    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1564
1565    // If the sign extended bits are demanded, we know that the sign
1566    // bit is demanded.
1567    InSignBit.zext(BitWidth);
1568    if (NewBits.getBoolValue())
1569      InputDemandedBits |= InSignBit;
1570
1571    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1572                      KnownZero, KnownOne, Depth+1);
1573    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1574
1575    // If the sign bit of the input is known set or clear, then we know the
1576    // top bits of the result.
1577    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1578      KnownZero |= NewBits;
1579      KnownOne  &= ~NewBits;
1580    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1581      KnownOne  |= NewBits;
1582      KnownZero &= ~NewBits;
1583    } else {                              // Input sign bit unknown
1584      KnownZero &= ~NewBits;
1585      KnownOne  &= ~NewBits;
1586    }
1587    return;
1588  }
1589  case ISD::CTTZ:
1590  case ISD::CTLZ:
1591  case ISD::CTPOP: {
1592    unsigned LowBits = Log2_32(BitWidth)+1;
1593    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1594    KnownOne.clear();
1595    return;
1596  }
1597  case ISD::LOAD: {
1598    if (ISD::isZEXTLoad(Op.getNode())) {
1599      LoadSDNode *LD = cast<LoadSDNode>(Op);
1600      MVT VT = LD->getMemoryVT();
1601      unsigned MemBits = VT.getSizeInBits();
1602      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1603    }
1604    return;
1605  }
1606  case ISD::ZERO_EXTEND: {
1607    MVT InVT = Op.getOperand(0).getValueType();
1608    unsigned InBits = InVT.getSizeInBits();
1609    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1610    APInt InMask    = Mask;
1611    InMask.trunc(InBits);
1612    KnownZero.trunc(InBits);
1613    KnownOne.trunc(InBits);
1614    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1615    KnownZero.zext(BitWidth);
1616    KnownOne.zext(BitWidth);
1617    KnownZero |= NewBits;
1618    return;
1619  }
1620  case ISD::SIGN_EXTEND: {
1621    MVT InVT = Op.getOperand(0).getValueType();
1622    unsigned InBits = InVT.getSizeInBits();
1623    APInt InSignBit = APInt::getSignBit(InBits);
1624    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1625    APInt InMask = Mask;
1626    InMask.trunc(InBits);
1627
1628    // If any of the sign extended bits are demanded, we know that the sign
1629    // bit is demanded. Temporarily set this bit in the mask for our callee.
1630    if (NewBits.getBoolValue())
1631      InMask |= InSignBit;
1632
1633    KnownZero.trunc(InBits);
1634    KnownOne.trunc(InBits);
1635    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1636
1637    // Note if the sign bit is known to be zero or one.
1638    bool SignBitKnownZero = KnownZero.isNegative();
1639    bool SignBitKnownOne  = KnownOne.isNegative();
1640    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1641           "Sign bit can't be known to be both zero and one!");
1642
1643    // If the sign bit wasn't actually demanded by our caller, we don't
1644    // want it set in the KnownZero and KnownOne result values. Reset the
1645    // mask and reapply it to the result values.
1646    InMask = Mask;
1647    InMask.trunc(InBits);
1648    KnownZero &= InMask;
1649    KnownOne  &= InMask;
1650
1651    KnownZero.zext(BitWidth);
1652    KnownOne.zext(BitWidth);
1653
1654    // If the sign bit is known zero or one, the top bits match.
1655    if (SignBitKnownZero)
1656      KnownZero |= NewBits;
1657    else if (SignBitKnownOne)
1658      KnownOne  |= NewBits;
1659    return;
1660  }
1661  case ISD::ANY_EXTEND: {
1662    MVT InVT = Op.getOperand(0).getValueType();
1663    unsigned InBits = InVT.getSizeInBits();
1664    APInt InMask = Mask;
1665    InMask.trunc(InBits);
1666    KnownZero.trunc(InBits);
1667    KnownOne.trunc(InBits);
1668    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1669    KnownZero.zext(BitWidth);
1670    KnownOne.zext(BitWidth);
1671    return;
1672  }
1673  case ISD::TRUNCATE: {
1674    MVT InVT = Op.getOperand(0).getValueType();
1675    unsigned InBits = InVT.getSizeInBits();
1676    APInt InMask = Mask;
1677    InMask.zext(InBits);
1678    KnownZero.zext(InBits);
1679    KnownOne.zext(InBits);
1680    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1681    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1682    KnownZero.trunc(BitWidth);
1683    KnownOne.trunc(BitWidth);
1684    break;
1685  }
1686  case ISD::AssertZext: {
1687    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1688    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1689    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1690                      KnownOne, Depth+1);
1691    KnownZero |= (~InMask) & Mask;
1692    return;
1693  }
1694  case ISD::FGETSIGN:
1695    // All bits are zero except the low bit.
1696    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1697    return;
1698
1699  case ISD::SUB: {
1700    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1701      // We know that the top bits of C-X are clear if X contains less bits
1702      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1703      // positive if we can prove that X is >= 0 and < 16.
1704      if (CLHS->getAPIntValue().isNonNegative()) {
1705        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1706        // NLZ can't be BitWidth with no sign bit
1707        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1708        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1709                          Depth+1);
1710
1711        // If all of the MaskV bits are known to be zero, then we know the
1712        // output top bits are zero, because we now know that the output is
1713        // from [0-C].
1714        if ((KnownZero2 & MaskV) == MaskV) {
1715          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1716          // Top bits known zero.
1717          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1718        }
1719      }
1720    }
1721  }
1722  // fall through
1723  case ISD::ADD: {
1724    // Output known-0 bits are known if clear or set in both the low clear bits
1725    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1726    // low 3 bits clear.
1727    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1728    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1729    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1730    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1731
1732    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1733    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1734    KnownZeroOut = std::min(KnownZeroOut,
1735                            KnownZero2.countTrailingOnes());
1736
1737    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1738    return;
1739  }
1740  case ISD::SREM:
1741    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1742      const APInt &RA = Rem->getAPIntValue();
1743      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1744        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1745        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1746        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1747
1748        // If the sign bit of the first operand is zero, the sign bit of
1749        // the result is zero. If the first operand has no one bits below
1750        // the second operand's single 1 bit, its sign will be zero.
1751        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1752          KnownZero2 |= ~LowBits;
1753
1754        KnownZero |= KnownZero2 & Mask;
1755
1756        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1757      }
1758    }
1759    return;
1760  case ISD::UREM: {
1761    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1762      const APInt &RA = Rem->getAPIntValue();
1763      if (RA.isPowerOf2()) {
1764        APInt LowBits = (RA - 1);
1765        APInt Mask2 = LowBits & Mask;
1766        KnownZero |= ~LowBits & Mask;
1767        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1768        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1769        break;
1770      }
1771    }
1772
1773    // Since the result is less than or equal to either operand, any leading
1774    // zero bits in either operand must also exist in the result.
1775    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1776    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1777                      Depth+1);
1778    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1779                      Depth+1);
1780
1781    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1782                                KnownZero2.countLeadingOnes());
1783    KnownOne.clear();
1784    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1785    return;
1786  }
1787  default:
1788    // Allow the target to implement this method for its nodes.
1789    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1790  case ISD::INTRINSIC_WO_CHAIN:
1791  case ISD::INTRINSIC_W_CHAIN:
1792  case ISD::INTRINSIC_VOID:
1793      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1794    }
1795    return;
1796  }
1797}
1798
1799/// ComputeNumSignBits - Return the number of times the sign bit of the
1800/// register is replicated into the other bits.  We know that at least 1 bit
1801/// is always equal to the sign bit (itself), but other cases can give us
1802/// information.  For example, immediately after an "SRA X, 2", we know that
1803/// the top 3 bits are all equal to each other, so we return 3.
1804unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1805  MVT VT = Op.getValueType();
1806  assert(VT.isInteger() && "Invalid VT!");
1807  unsigned VTBits = VT.getSizeInBits();
1808  unsigned Tmp, Tmp2;
1809  unsigned FirstAnswer = 1;
1810
1811  if (Depth == 6)
1812    return 1;  // Limit search depth.
1813
1814  switch (Op.getOpcode()) {
1815  default: break;
1816  case ISD::AssertSext:
1817    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1818    return VTBits-Tmp+1;
1819  case ISD::AssertZext:
1820    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1821    return VTBits-Tmp;
1822
1823  case ISD::Constant: {
1824    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1825    // If negative, return # leading ones.
1826    if (Val.isNegative())
1827      return Val.countLeadingOnes();
1828
1829    // Return # leading zeros.
1830    return Val.countLeadingZeros();
1831  }
1832
1833  case ISD::SIGN_EXTEND:
1834    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1835    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1836
1837  case ISD::SIGN_EXTEND_INREG:
1838    // Max of the input and what this extends.
1839    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1840    Tmp = VTBits-Tmp+1;
1841
1842    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1843    return std::max(Tmp, Tmp2);
1844
1845  case ISD::SRA:
1846    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1847    // SRA X, C   -> adds C sign bits.
1848    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1849      Tmp += C->getZExtValue();
1850      if (Tmp > VTBits) Tmp = VTBits;
1851    }
1852    return Tmp;
1853  case ISD::SHL:
1854    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1855      // shl destroys sign bits.
1856      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1857      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1858          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1859      return Tmp - C->getZExtValue();
1860    }
1861    break;
1862  case ISD::AND:
1863  case ISD::OR:
1864  case ISD::XOR:    // NOT is handled here.
1865    // Logical binary ops preserve the number of sign bits at the worst.
1866    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1867    if (Tmp != 1) {
1868      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1869      FirstAnswer = std::min(Tmp, Tmp2);
1870      // We computed what we know about the sign bits as our first
1871      // answer. Now proceed to the generic code that uses
1872      // ComputeMaskedBits, and pick whichever answer is better.
1873    }
1874    break;
1875
1876  case ISD::SELECT:
1877    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1878    if (Tmp == 1) return 1;  // Early out.
1879    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1880    return std::min(Tmp, Tmp2);
1881
1882  case ISD::SETCC:
1883    // If setcc returns 0/-1, all bits are sign bits.
1884    if (TLI.getSetCCResultContents() ==
1885        TargetLowering::ZeroOrNegativeOneSetCCResult)
1886      return VTBits;
1887    break;
1888  case ISD::ROTL:
1889  case ISD::ROTR:
1890    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1891      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1892
1893      // Handle rotate right by N like a rotate left by 32-N.
1894      if (Op.getOpcode() == ISD::ROTR)
1895        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1896
1897      // If we aren't rotating out all of the known-in sign bits, return the
1898      // number that are left.  This handles rotl(sext(x), 1) for example.
1899      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1900      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1901    }
1902    break;
1903  case ISD::ADD:
1904    // Add can have at most one carry bit.  Thus we know that the output
1905    // is, at worst, one more bit than the inputs.
1906    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1907    if (Tmp == 1) return 1;  // Early out.
1908
1909    // Special case decrementing a value (ADD X, -1):
1910    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1911      if (CRHS->isAllOnesValue()) {
1912        APInt KnownZero, KnownOne;
1913        APInt Mask = APInt::getAllOnesValue(VTBits);
1914        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1915
1916        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1917        // sign bits set.
1918        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1919          return VTBits;
1920
1921        // If we are subtracting one from a positive number, there is no carry
1922        // out of the result.
1923        if (KnownZero.isNegative())
1924          return Tmp;
1925      }
1926
1927    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1928    if (Tmp2 == 1) return 1;
1929      return std::min(Tmp, Tmp2)-1;
1930    break;
1931
1932  case ISD::SUB:
1933    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1934    if (Tmp2 == 1) return 1;
1935
1936    // Handle NEG.
1937    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1938      if (CLHS->isNullValue()) {
1939        APInt KnownZero, KnownOne;
1940        APInt Mask = APInt::getAllOnesValue(VTBits);
1941        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1942        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1943        // sign bits set.
1944        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1945          return VTBits;
1946
1947        // If the input is known to be positive (the sign bit is known clear),
1948        // the output of the NEG has the same number of sign bits as the input.
1949        if (KnownZero.isNegative())
1950          return Tmp2;
1951
1952        // Otherwise, we treat this like a SUB.
1953      }
1954
1955    // Sub can have at most one carry bit.  Thus we know that the output
1956    // is, at worst, one more bit than the inputs.
1957    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1958    if (Tmp == 1) return 1;  // Early out.
1959      return std::min(Tmp, Tmp2)-1;
1960    break;
1961  case ISD::TRUNCATE:
1962    // FIXME: it's tricky to do anything useful for this, but it is an important
1963    // case for targets like X86.
1964    break;
1965  }
1966
1967  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1968  if (Op.getOpcode() == ISD::LOAD) {
1969    LoadSDNode *LD = cast<LoadSDNode>(Op);
1970    unsigned ExtType = LD->getExtensionType();
1971    switch (ExtType) {
1972    default: break;
1973    case ISD::SEXTLOAD:    // '17' bits known
1974      Tmp = LD->getMemoryVT().getSizeInBits();
1975      return VTBits-Tmp+1;
1976    case ISD::ZEXTLOAD:    // '16' bits known
1977      Tmp = LD->getMemoryVT().getSizeInBits();
1978      return VTBits-Tmp;
1979    }
1980  }
1981
1982  // Allow the target to implement this method for its nodes.
1983  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1984      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1985      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1986      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1987    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1988    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1989  }
1990
1991  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1992  // use this information.
1993  APInt KnownZero, KnownOne;
1994  APInt Mask = APInt::getAllOnesValue(VTBits);
1995  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1996
1997  if (KnownZero.isNegative()) {        // sign bit is 0
1998    Mask = KnownZero;
1999  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2000    Mask = KnownOne;
2001  } else {
2002    // Nothing known.
2003    return FirstAnswer;
2004  }
2005
2006  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2007  // the number of identical bits in the top of the input value.
2008  Mask = ~Mask;
2009  Mask <<= Mask.getBitWidth()-VTBits;
2010  // Return # leading zeros.  We use 'min' here in case Val was zero before
2011  // shifting.  We don't want to return '64' as for an i32 "0".
2012  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2013}
2014
2015
2016bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2017  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2018  if (!GA) return false;
2019  if (GA->getOffset() != 0) return false;
2020  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2021  if (!GV) return false;
2022  MachineModuleInfo *MMI = getMachineModuleInfo();
2023  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2024}
2025
2026
2027/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2028/// element of the result of the vector shuffle.
2029SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2030  MVT VT = N->getValueType(0);
2031  SDValue PermMask = N->getOperand(2);
2032  SDValue Idx = PermMask.getOperand(i);
2033  if (Idx.getOpcode() == ISD::UNDEF)
2034    return getNode(ISD::UNDEF, VT.getVectorElementType());
2035  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2036  unsigned NumElems = PermMask.getNumOperands();
2037  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2038  Index %= NumElems;
2039
2040  if (V.getOpcode() == ISD::BIT_CONVERT) {
2041    V = V.getOperand(0);
2042    if (V.getValueType().getVectorNumElements() != NumElems)
2043      return SDValue();
2044  }
2045  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2046    return (Index == 0) ? V.getOperand(0)
2047                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2048  if (V.getOpcode() == ISD::BUILD_VECTOR)
2049    return V.getOperand(Index);
2050  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2051    return getShuffleScalarElt(V.getNode(), Index);
2052  return SDValue();
2053}
2054
2055
2056/// getNode - Gets or creates the specified node.
2057///
2058SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2059  FoldingSetNodeID ID;
2060  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2061  void *IP = 0;
2062  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2063    return SDValue(E, 0);
2064  SDNode *N = NodeAllocator.Allocate<SDNode>();
2065  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2066  CSEMap.InsertNode(N, IP);
2067
2068  AllNodes.push_back(N);
2069#ifndef NDEBUG
2070  VerifyNode(N);
2071#endif
2072  return SDValue(N, 0);
2073}
2074
2075SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2076  // Constant fold unary operations with an integer constant operand.
2077  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2078    const APInt &Val = C->getAPIntValue();
2079    unsigned BitWidth = VT.getSizeInBits();
2080    switch (Opcode) {
2081    default: break;
2082    case ISD::SIGN_EXTEND:
2083      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2084    case ISD::ANY_EXTEND:
2085    case ISD::ZERO_EXTEND:
2086    case ISD::TRUNCATE:
2087      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2088    case ISD::UINT_TO_FP:
2089    case ISD::SINT_TO_FP: {
2090      const uint64_t zero[] = {0, 0};
2091      // No compile time operations on this type.
2092      if (VT==MVT::ppcf128)
2093        break;
2094      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2095      (void)apf.convertFromAPInt(Val,
2096                                 Opcode==ISD::SINT_TO_FP,
2097                                 APFloat::rmNearestTiesToEven);
2098      return getConstantFP(apf, VT);
2099    }
2100    case ISD::BIT_CONVERT:
2101      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2102        return getConstantFP(Val.bitsToFloat(), VT);
2103      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2104        return getConstantFP(Val.bitsToDouble(), VT);
2105      break;
2106    case ISD::BSWAP:
2107      return getConstant(Val.byteSwap(), VT);
2108    case ISD::CTPOP:
2109      return getConstant(Val.countPopulation(), VT);
2110    case ISD::CTLZ:
2111      return getConstant(Val.countLeadingZeros(), VT);
2112    case ISD::CTTZ:
2113      return getConstant(Val.countTrailingZeros(), VT);
2114    }
2115  }
2116
2117  // Constant fold unary operations with a floating point constant operand.
2118  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2119    APFloat V = C->getValueAPF();    // make copy
2120    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2121      switch (Opcode) {
2122      case ISD::FNEG:
2123        V.changeSign();
2124        return getConstantFP(V, VT);
2125      case ISD::FABS:
2126        V.clearSign();
2127        return getConstantFP(V, VT);
2128      case ISD::FP_ROUND:
2129      case ISD::FP_EXTEND: {
2130        bool ignored;
2131        // This can return overflow, underflow, or inexact; we don't care.
2132        // FIXME need to be more flexible about rounding mode.
2133        (void)V.convert(*MVTToAPFloatSemantics(VT),
2134                        APFloat::rmNearestTiesToEven, &ignored);
2135        return getConstantFP(V, VT);
2136      }
2137      case ISD::FP_TO_SINT:
2138      case ISD::FP_TO_UINT: {
2139        integerPart x;
2140        bool ignored;
2141        assert(integerPartWidth >= 64);
2142        // FIXME need to be more flexible about rounding mode.
2143        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2144                              Opcode==ISD::FP_TO_SINT,
2145                              APFloat::rmTowardZero, &ignored);
2146        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2147          break;
2148        return getConstant(x, VT);
2149      }
2150      case ISD::BIT_CONVERT:
2151        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2152          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2153        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2154          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2155        break;
2156      }
2157    }
2158  }
2159
2160  unsigned OpOpcode = Operand.getNode()->getOpcode();
2161  switch (Opcode) {
2162  case ISD::TokenFactor:
2163  case ISD::CONCAT_VECTORS:
2164    return Operand;         // Factor or concat of one node?  No need.
2165  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2166  case ISD::FP_EXTEND:
2167    assert(VT.isFloatingPoint() &&
2168           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2169    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2170    if (Operand.getOpcode() == ISD::UNDEF)
2171      return getNode(ISD::UNDEF, VT);
2172    break;
2173  case ISD::SIGN_EXTEND:
2174    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2175           "Invalid SIGN_EXTEND!");
2176    if (Operand.getValueType() == VT) return Operand;   // noop extension
2177    assert(Operand.getValueType().bitsLT(VT)
2178           && "Invalid sext node, dst < src!");
2179    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2180      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2181    break;
2182  case ISD::ZERO_EXTEND:
2183    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2184           "Invalid ZERO_EXTEND!");
2185    if (Operand.getValueType() == VT) return Operand;   // noop extension
2186    assert(Operand.getValueType().bitsLT(VT)
2187           && "Invalid zext node, dst < src!");
2188    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2189      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2190    break;
2191  case ISD::ANY_EXTEND:
2192    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2193           "Invalid ANY_EXTEND!");
2194    if (Operand.getValueType() == VT) return Operand;   // noop extension
2195    assert(Operand.getValueType().bitsLT(VT)
2196           && "Invalid anyext node, dst < src!");
2197    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2198      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2199      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2200    break;
2201  case ISD::TRUNCATE:
2202    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2203           "Invalid TRUNCATE!");
2204    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2205    assert(Operand.getValueType().bitsGT(VT)
2206           && "Invalid truncate node, src < dst!");
2207    if (OpOpcode == ISD::TRUNCATE)
2208      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2209    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2210             OpOpcode == ISD::ANY_EXTEND) {
2211      // If the source is smaller than the dest, we still need an extend.
2212      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2213        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2214      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2215        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2216      else
2217        return Operand.getNode()->getOperand(0);
2218    }
2219    break;
2220  case ISD::BIT_CONVERT:
2221    // Basic sanity checking.
2222    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2223           && "Cannot BIT_CONVERT between types of different sizes!");
2224    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2225    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2226      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2227    if (OpOpcode == ISD::UNDEF)
2228      return getNode(ISD::UNDEF, VT);
2229    break;
2230  case ISD::SCALAR_TO_VECTOR:
2231    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2232           VT.getVectorElementType() == Operand.getValueType() &&
2233           "Illegal SCALAR_TO_VECTOR node!");
2234    if (OpOpcode == ISD::UNDEF)
2235      return getNode(ISD::UNDEF, VT);
2236    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2237    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2238        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2239        Operand.getConstantOperandVal(1) == 0 &&
2240        Operand.getOperand(0).getValueType() == VT)
2241      return Operand.getOperand(0);
2242    break;
2243  case ISD::FNEG:
2244    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2245      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2246                     Operand.getNode()->getOperand(0));
2247    if (OpOpcode == ISD::FNEG)  // --X -> X
2248      return Operand.getNode()->getOperand(0);
2249    break;
2250  case ISD::FABS:
2251    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2252      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2253    break;
2254  }
2255
2256  SDNode *N;
2257  SDVTList VTs = getVTList(VT);
2258  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2259    FoldingSetNodeID ID;
2260    SDValue Ops[1] = { Operand };
2261    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2262    void *IP = 0;
2263    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2264      return SDValue(E, 0);
2265    N = NodeAllocator.Allocate<UnarySDNode>();
2266    new (N) UnarySDNode(Opcode, VTs, Operand);
2267    CSEMap.InsertNode(N, IP);
2268  } else {
2269    N = NodeAllocator.Allocate<UnarySDNode>();
2270    new (N) UnarySDNode(Opcode, VTs, Operand);
2271  }
2272
2273  AllNodes.push_back(N);
2274#ifndef NDEBUG
2275  VerifyNode(N);
2276#endif
2277  return SDValue(N, 0);
2278}
2279
2280SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2281                                             MVT VT,
2282                                             ConstantSDNode *Cst1,
2283                                             ConstantSDNode *Cst2) {
2284  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2285
2286  switch (Opcode) {
2287  case ISD::ADD:  return getConstant(C1 + C2, VT);
2288  case ISD::SUB:  return getConstant(C1 - C2, VT);
2289  case ISD::MUL:  return getConstant(C1 * C2, VT);
2290  case ISD::UDIV:
2291    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2292    break;
2293  case ISD::UREM:
2294    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2295    break;
2296  case ISD::SDIV:
2297    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2298    break;
2299  case ISD::SREM:
2300    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2301    break;
2302  case ISD::AND:  return getConstant(C1 & C2, VT);
2303  case ISD::OR:   return getConstant(C1 | C2, VT);
2304  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2305  case ISD::SHL:  return getConstant(C1 << C2, VT);
2306  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2307  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2308  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2309  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2310  default: break;
2311  }
2312
2313  return SDValue();
2314}
2315
2316SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2317                              SDValue N1, SDValue N2) {
2318  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2319  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2320  switch (Opcode) {
2321  default: break;
2322  case ISD::TokenFactor:
2323    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2324           N2.getValueType() == MVT::Other && "Invalid token factor!");
2325    // Fold trivial token factors.
2326    if (N1.getOpcode() == ISD::EntryToken) return N2;
2327    if (N2.getOpcode() == ISD::EntryToken) return N1;
2328    if (N1 == N2) return N1;
2329    break;
2330  case ISD::CONCAT_VECTORS:
2331    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2332    // one big BUILD_VECTOR.
2333    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2334        N2.getOpcode() == ISD::BUILD_VECTOR) {
2335      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2336      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2337      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2338    }
2339    break;
2340  case ISD::AND:
2341    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2342           N1.getValueType() == VT && "Binary operator types must match!");
2343    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2344    // worth handling here.
2345    if (N2C && N2C->isNullValue())
2346      return N2;
2347    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2348      return N1;
2349    break;
2350  case ISD::OR:
2351  case ISD::XOR:
2352  case ISD::ADD:
2353  case ISD::SUB:
2354    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2355           N1.getValueType() == VT && "Binary operator types must match!");
2356    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2357    // it's worth handling here.
2358    if (N2C && N2C->isNullValue())
2359      return N1;
2360    break;
2361  case ISD::UDIV:
2362  case ISD::UREM:
2363  case ISD::MULHU:
2364  case ISD::MULHS:
2365    assert(VT.isInteger() && "This operator does not apply to FP types!");
2366    // fall through
2367  case ISD::MUL:
2368  case ISD::SDIV:
2369  case ISD::SREM:
2370  case ISD::FADD:
2371  case ISD::FSUB:
2372  case ISD::FMUL:
2373  case ISD::FDIV:
2374  case ISD::FREM:
2375    assert(N1.getValueType() == N2.getValueType() &&
2376           N1.getValueType() == VT && "Binary operator types must match!");
2377    break;
2378  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2379    assert(N1.getValueType() == VT &&
2380           N1.getValueType().isFloatingPoint() &&
2381           N2.getValueType().isFloatingPoint() &&
2382           "Invalid FCOPYSIGN!");
2383    break;
2384  case ISD::SHL:
2385  case ISD::SRA:
2386  case ISD::SRL:
2387  case ISD::ROTL:
2388  case ISD::ROTR:
2389    assert(VT == N1.getValueType() &&
2390           "Shift operators return type must be the same as their first arg");
2391    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2392           "Shifts only work on integers");
2393
2394    // Always fold shifts of i1 values so the code generator doesn't need to
2395    // handle them.  Since we know the size of the shift has to be less than the
2396    // size of the value, the shift/rotate count is guaranteed to be zero.
2397    if (VT == MVT::i1)
2398      return N1;
2399    break;
2400  case ISD::FP_ROUND_INREG: {
2401    MVT EVT = cast<VTSDNode>(N2)->getVT();
2402    assert(VT == N1.getValueType() && "Not an inreg round!");
2403    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2404           "Cannot FP_ROUND_INREG integer types");
2405    assert(EVT.bitsLE(VT) && "Not rounding down!");
2406    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2407    break;
2408  }
2409  case ISD::FP_ROUND:
2410    assert(VT.isFloatingPoint() &&
2411           N1.getValueType().isFloatingPoint() &&
2412           VT.bitsLE(N1.getValueType()) &&
2413           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2414    if (N1.getValueType() == VT) return N1;  // noop conversion.
2415    break;
2416  case ISD::AssertSext:
2417  case ISD::AssertZext: {
2418    MVT EVT = cast<VTSDNode>(N2)->getVT();
2419    assert(VT == N1.getValueType() && "Not an inreg extend!");
2420    assert(VT.isInteger() && EVT.isInteger() &&
2421           "Cannot *_EXTEND_INREG FP types");
2422    assert(EVT.bitsLE(VT) && "Not extending!");
2423    if (VT == EVT) return N1; // noop assertion.
2424    break;
2425  }
2426  case ISD::SIGN_EXTEND_INREG: {
2427    MVT EVT = cast<VTSDNode>(N2)->getVT();
2428    assert(VT == N1.getValueType() && "Not an inreg extend!");
2429    assert(VT.isInteger() && EVT.isInteger() &&
2430           "Cannot *_EXTEND_INREG FP types");
2431    assert(EVT.bitsLE(VT) && "Not extending!");
2432    if (EVT == VT) return N1;  // Not actually extending
2433
2434    if (N1C) {
2435      APInt Val = N1C->getAPIntValue();
2436      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2437      Val <<= Val.getBitWidth()-FromBits;
2438      Val = Val.ashr(Val.getBitWidth()-FromBits);
2439      return getConstant(Val, VT);
2440    }
2441    break;
2442  }
2443  case ISD::EXTRACT_VECTOR_ELT:
2444    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2445    if (N1.getOpcode() == ISD::UNDEF)
2446      return getNode(ISD::UNDEF, VT);
2447
2448    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2449    // expanding copies of large vectors from registers.
2450    if (N2C &&
2451        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2452        N1.getNumOperands() > 0) {
2453      unsigned Factor =
2454        N1.getOperand(0).getValueType().getVectorNumElements();
2455      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2456                     N1.getOperand(N2C->getZExtValue() / Factor),
2457                     getConstant(N2C->getZExtValue() % Factor,
2458                                 N2.getValueType()));
2459    }
2460
2461    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2462    // expanding large vector constants.
2463    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2464      return N1.getOperand(N2C->getZExtValue());
2465
2466    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2467    // operations are lowered to scalars.
2468    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2469      if (N1.getOperand(2) == N2)
2470        return N1.getOperand(1);
2471      else
2472        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2473    }
2474    break;
2475  case ISD::EXTRACT_ELEMENT:
2476    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2477    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2478           (N1.getValueType().isInteger() == VT.isInteger()) &&
2479           "Wrong types for EXTRACT_ELEMENT!");
2480
2481    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2482    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2483    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2484    if (N1.getOpcode() == ISD::BUILD_PAIR)
2485      return N1.getOperand(N2C->getZExtValue());
2486
2487    // EXTRACT_ELEMENT of a constant int is also very common.
2488    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2489      unsigned ElementSize = VT.getSizeInBits();
2490      unsigned Shift = ElementSize * N2C->getZExtValue();
2491      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2492      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2493    }
2494    break;
2495  case ISD::EXTRACT_SUBVECTOR:
2496    if (N1.getValueType() == VT) // Trivial extraction.
2497      return N1;
2498    break;
2499  }
2500
2501  if (N1C) {
2502    if (N2C) {
2503      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2504      if (SV.getNode()) return SV;
2505    } else {      // Cannonicalize constant to RHS if commutative
2506      if (isCommutativeBinOp(Opcode)) {
2507        std::swap(N1C, N2C);
2508        std::swap(N1, N2);
2509      }
2510    }
2511  }
2512
2513  // Constant fold FP operations.
2514  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2515  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2516  if (N1CFP) {
2517    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2518      // Cannonicalize constant to RHS if commutative
2519      std::swap(N1CFP, N2CFP);
2520      std::swap(N1, N2);
2521    } else if (N2CFP && VT != MVT::ppcf128) {
2522      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2523      APFloat::opStatus s;
2524      switch (Opcode) {
2525      case ISD::FADD:
2526        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2527        if (s != APFloat::opInvalidOp)
2528          return getConstantFP(V1, VT);
2529        break;
2530      case ISD::FSUB:
2531        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2532        if (s!=APFloat::opInvalidOp)
2533          return getConstantFP(V1, VT);
2534        break;
2535      case ISD::FMUL:
2536        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2537        if (s!=APFloat::opInvalidOp)
2538          return getConstantFP(V1, VT);
2539        break;
2540      case ISD::FDIV:
2541        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2542        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2543          return getConstantFP(V1, VT);
2544        break;
2545      case ISD::FREM :
2546        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2547        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2548          return getConstantFP(V1, VT);
2549        break;
2550      case ISD::FCOPYSIGN:
2551        V1.copySign(V2);
2552        return getConstantFP(V1, VT);
2553      default: break;
2554      }
2555    }
2556  }
2557
2558  // Canonicalize an UNDEF to the RHS, even over a constant.
2559  if (N1.getOpcode() == ISD::UNDEF) {
2560    if (isCommutativeBinOp(Opcode)) {
2561      std::swap(N1, N2);
2562    } else {
2563      switch (Opcode) {
2564      case ISD::FP_ROUND_INREG:
2565      case ISD::SIGN_EXTEND_INREG:
2566      case ISD::SUB:
2567      case ISD::FSUB:
2568      case ISD::FDIV:
2569      case ISD::FREM:
2570      case ISD::SRA:
2571        return N1;     // fold op(undef, arg2) -> undef
2572      case ISD::UDIV:
2573      case ISD::SDIV:
2574      case ISD::UREM:
2575      case ISD::SREM:
2576      case ISD::SRL:
2577      case ISD::SHL:
2578        if (!VT.isVector())
2579          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2580        // For vectors, we can't easily build an all zero vector, just return
2581        // the LHS.
2582        return N2;
2583      }
2584    }
2585  }
2586
2587  // Fold a bunch of operators when the RHS is undef.
2588  if (N2.getOpcode() == ISD::UNDEF) {
2589    switch (Opcode) {
2590    case ISD::XOR:
2591      if (N1.getOpcode() == ISD::UNDEF)
2592        // Handle undef ^ undef -> 0 special case. This is a common
2593        // idiom (misuse).
2594        return getConstant(0, VT);
2595      // fallthrough
2596    case ISD::ADD:
2597    case ISD::ADDC:
2598    case ISD::ADDE:
2599    case ISD::SUB:
2600    case ISD::FADD:
2601    case ISD::FSUB:
2602    case ISD::FMUL:
2603    case ISD::FDIV:
2604    case ISD::FREM:
2605    case ISD::UDIV:
2606    case ISD::SDIV:
2607    case ISD::UREM:
2608    case ISD::SREM:
2609      return N2;       // fold op(arg1, undef) -> undef
2610    case ISD::MUL:
2611    case ISD::AND:
2612    case ISD::SRL:
2613    case ISD::SHL:
2614      if (!VT.isVector())
2615        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2616      // For vectors, we can't easily build an all zero vector, just return
2617      // the LHS.
2618      return N1;
2619    case ISD::OR:
2620      if (!VT.isVector())
2621        return getConstant(VT.getIntegerVTBitMask(), VT);
2622      // For vectors, we can't easily build an all one vector, just return
2623      // the LHS.
2624      return N1;
2625    case ISD::SRA:
2626      return N1;
2627    }
2628  }
2629
2630  // Memoize this node if possible.
2631  SDNode *N;
2632  SDVTList VTs = getVTList(VT);
2633  if (VT != MVT::Flag) {
2634    SDValue Ops[] = { N1, N2 };
2635    FoldingSetNodeID ID;
2636    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2637    void *IP = 0;
2638    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2639      return SDValue(E, 0);
2640    N = NodeAllocator.Allocate<BinarySDNode>();
2641    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2642    CSEMap.InsertNode(N, IP);
2643  } else {
2644    N = NodeAllocator.Allocate<BinarySDNode>();
2645    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2646  }
2647
2648  AllNodes.push_back(N);
2649#ifndef NDEBUG
2650  VerifyNode(N);
2651#endif
2652  return SDValue(N, 0);
2653}
2654
2655SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2656                              SDValue N1, SDValue N2, SDValue N3) {
2657  // Perform various simplifications.
2658  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2659  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2660  switch (Opcode) {
2661  case ISD::CONCAT_VECTORS:
2662    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2663    // one big BUILD_VECTOR.
2664    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2665        N2.getOpcode() == ISD::BUILD_VECTOR &&
2666        N3.getOpcode() == ISD::BUILD_VECTOR) {
2667      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2668      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2669      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2670      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2671    }
2672    break;
2673  case ISD::SETCC: {
2674    // Use FoldSetCC to simplify SETCC's.
2675    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2676    if (Simp.getNode()) return Simp;
2677    break;
2678  }
2679  case ISD::SELECT:
2680    if (N1C) {
2681     if (N1C->getZExtValue())
2682        return N2;             // select true, X, Y -> X
2683      else
2684        return N3;             // select false, X, Y -> Y
2685    }
2686
2687    if (N2 == N3) return N2;   // select C, X, X -> X
2688    break;
2689  case ISD::BRCOND:
2690    if (N2C) {
2691      if (N2C->getZExtValue()) // Unconditional branch
2692        return getNode(ISD::BR, MVT::Other, N1, N3);
2693      else
2694        return N1;         // Never-taken branch
2695    }
2696    break;
2697  case ISD::VECTOR_SHUFFLE:
2698    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2699           VT.isVector() && N3.getValueType().isVector() &&
2700           N3.getOpcode() == ISD::BUILD_VECTOR &&
2701           VT.getVectorNumElements() == N3.getNumOperands() &&
2702           "Illegal VECTOR_SHUFFLE node!");
2703    break;
2704  case ISD::BIT_CONVERT:
2705    // Fold bit_convert nodes from a type to themselves.
2706    if (N1.getValueType() == VT)
2707      return N1;
2708    break;
2709  }
2710
2711  // Memoize node if it doesn't produce a flag.
2712  SDNode *N;
2713  SDVTList VTs = getVTList(VT);
2714  if (VT != MVT::Flag) {
2715    SDValue Ops[] = { N1, N2, N3 };
2716    FoldingSetNodeID ID;
2717    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2718    void *IP = 0;
2719    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2720      return SDValue(E, 0);
2721    N = NodeAllocator.Allocate<TernarySDNode>();
2722    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2723    CSEMap.InsertNode(N, IP);
2724  } else {
2725    N = NodeAllocator.Allocate<TernarySDNode>();
2726    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2727  }
2728  AllNodes.push_back(N);
2729#ifndef NDEBUG
2730  VerifyNode(N);
2731#endif
2732  return SDValue(N, 0);
2733}
2734
2735SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2736                              SDValue N1, SDValue N2, SDValue N3,
2737                              SDValue N4) {
2738  SDValue Ops[] = { N1, N2, N3, N4 };
2739  return getNode(Opcode, VT, Ops, 4);
2740}
2741
2742SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2743                              SDValue N1, SDValue N2, SDValue N3,
2744                              SDValue N4, SDValue N5) {
2745  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2746  return getNode(Opcode, VT, Ops, 5);
2747}
2748
2749/// getMemsetValue - Vectorized representation of the memset value
2750/// operand.
2751static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2752  unsigned NumBits = VT.isVector() ?
2753    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2754  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2755    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2756    unsigned Shift = 8;
2757    for (unsigned i = NumBits; i > 8; i >>= 1) {
2758      Val = (Val << Shift) | Val;
2759      Shift <<= 1;
2760    }
2761    if (VT.isInteger())
2762      return DAG.getConstant(Val, VT);
2763    return DAG.getConstantFP(APFloat(Val), VT);
2764  }
2765
2766  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2767  unsigned Shift = 8;
2768  for (unsigned i = NumBits; i > 8; i >>= 1) {
2769    Value = DAG.getNode(ISD::OR, VT,
2770                        DAG.getNode(ISD::SHL, VT, Value,
2771                                    DAG.getConstant(Shift, MVT::i8)), Value);
2772    Shift <<= 1;
2773  }
2774
2775  return Value;
2776}
2777
2778/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2779/// used when a memcpy is turned into a memset when the source is a constant
2780/// string ptr.
2781static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2782                                    const TargetLowering &TLI,
2783                                    std::string &Str, unsigned Offset) {
2784  // Handle vector with all elements zero.
2785  if (Str.empty()) {
2786    if (VT.isInteger())
2787      return DAG.getConstant(0, VT);
2788    unsigned NumElts = VT.getVectorNumElements();
2789    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2790    return DAG.getNode(ISD::BIT_CONVERT, VT,
2791                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2792  }
2793
2794  assert(!VT.isVector() && "Can't handle vector type here!");
2795  unsigned NumBits = VT.getSizeInBits();
2796  unsigned MSB = NumBits / 8;
2797  uint64_t Val = 0;
2798  if (TLI.isLittleEndian())
2799    Offset = Offset + MSB - 1;
2800  for (unsigned i = 0; i != MSB; ++i) {
2801    Val = (Val << 8) | (unsigned char)Str[Offset];
2802    Offset += TLI.isLittleEndian() ? -1 : 1;
2803  }
2804  return DAG.getConstant(Val, VT);
2805}
2806
2807/// getMemBasePlusOffset - Returns base and offset node for the
2808///
2809static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2810                                      SelectionDAG &DAG) {
2811  MVT VT = Base.getValueType();
2812  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2813}
2814
2815/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2816///
2817static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2818  unsigned SrcDelta = 0;
2819  GlobalAddressSDNode *G = NULL;
2820  if (Src.getOpcode() == ISD::GlobalAddress)
2821    G = cast<GlobalAddressSDNode>(Src);
2822  else if (Src.getOpcode() == ISD::ADD &&
2823           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2824           Src.getOperand(1).getOpcode() == ISD::Constant) {
2825    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2826    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2827  }
2828  if (!G)
2829    return false;
2830
2831  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2832  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2833    return true;
2834
2835  return false;
2836}
2837
2838/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2839/// to replace the memset / memcpy is below the threshold. It also returns the
2840/// types of the sequence of memory ops to perform memset / memcpy.
2841static
2842bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2843                              SDValue Dst, SDValue Src,
2844                              unsigned Limit, uint64_t Size, unsigned &Align,
2845                              std::string &Str, bool &isSrcStr,
2846                              SelectionDAG &DAG,
2847                              const TargetLowering &TLI) {
2848  isSrcStr = isMemSrcFromString(Src, Str);
2849  bool isSrcConst = isa<ConstantSDNode>(Src);
2850  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2851  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2852  if (VT != MVT::iAny) {
2853    unsigned NewAlign = (unsigned)
2854      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2855    // If source is a string constant, this will require an unaligned load.
2856    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2857      if (Dst.getOpcode() != ISD::FrameIndex) {
2858        // Can't change destination alignment. It requires a unaligned store.
2859        if (AllowUnalign)
2860          VT = MVT::iAny;
2861      } else {
2862        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2863        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2864        if (MFI->isFixedObjectIndex(FI)) {
2865          // Can't change destination alignment. It requires a unaligned store.
2866          if (AllowUnalign)
2867            VT = MVT::iAny;
2868        } else {
2869          // Give the stack frame object a larger alignment if needed.
2870          if (MFI->getObjectAlignment(FI) < NewAlign)
2871            MFI->setObjectAlignment(FI, NewAlign);
2872          Align = NewAlign;
2873        }
2874      }
2875    }
2876  }
2877
2878  if (VT == MVT::iAny) {
2879    if (AllowUnalign) {
2880      VT = MVT::i64;
2881    } else {
2882      switch (Align & 7) {
2883      case 0:  VT = MVT::i64; break;
2884      case 4:  VT = MVT::i32; break;
2885      case 2:  VT = MVT::i16; break;
2886      default: VT = MVT::i8;  break;
2887      }
2888    }
2889
2890    MVT LVT = MVT::i64;
2891    while (!TLI.isTypeLegal(LVT))
2892      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2893    assert(LVT.isInteger());
2894
2895    if (VT.bitsGT(LVT))
2896      VT = LVT;
2897  }
2898
2899  unsigned NumMemOps = 0;
2900  while (Size != 0) {
2901    unsigned VTSize = VT.getSizeInBits() / 8;
2902    while (VTSize > Size) {
2903      // For now, only use non-vector load / store's for the left-over pieces.
2904      if (VT.isVector()) {
2905        VT = MVT::i64;
2906        while (!TLI.isTypeLegal(VT))
2907          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2908        VTSize = VT.getSizeInBits() / 8;
2909      } else {
2910        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2911        VTSize >>= 1;
2912      }
2913    }
2914
2915    if (++NumMemOps > Limit)
2916      return false;
2917    MemOps.push_back(VT);
2918    Size -= VTSize;
2919  }
2920
2921  return true;
2922}
2923
2924static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2925                                         SDValue Chain, SDValue Dst,
2926                                         SDValue Src, uint64_t Size,
2927                                         unsigned Align, bool AlwaysInline,
2928                                         const Value *DstSV, uint64_t DstSVOff,
2929                                         const Value *SrcSV, uint64_t SrcSVOff){
2930  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2931
2932  // Expand memcpy to a series of load and store ops if the size operand falls
2933  // below a certain threshold.
2934  std::vector<MVT> MemOps;
2935  uint64_t Limit = -1ULL;
2936  if (!AlwaysInline)
2937    Limit = TLI.getMaxStoresPerMemcpy();
2938  unsigned DstAlign = Align;  // Destination alignment can change.
2939  std::string Str;
2940  bool CopyFromStr;
2941  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2942                                Str, CopyFromStr, DAG, TLI))
2943    return SDValue();
2944
2945
2946  bool isZeroStr = CopyFromStr && Str.empty();
2947  SmallVector<SDValue, 8> OutChains;
2948  unsigned NumMemOps = MemOps.size();
2949  uint64_t SrcOff = 0, DstOff = 0;
2950  for (unsigned i = 0; i < NumMemOps; i++) {
2951    MVT VT = MemOps[i];
2952    unsigned VTSize = VT.getSizeInBits() / 8;
2953    SDValue Value, Store;
2954
2955    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2956      // It's unlikely a store of a vector immediate can be done in a single
2957      // instruction. It would require a load from a constantpool first.
2958      // We also handle store a vector with all zero's.
2959      // FIXME: Handle other cases where store of vector immediate is done in
2960      // a single instruction.
2961      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2962      Store = DAG.getStore(Chain, Value,
2963                           getMemBasePlusOffset(Dst, DstOff, DAG),
2964                           DstSV, DstSVOff + DstOff, false, DstAlign);
2965    } else {
2966      Value = DAG.getLoad(VT, Chain,
2967                          getMemBasePlusOffset(Src, SrcOff, DAG),
2968                          SrcSV, SrcSVOff + SrcOff, false, Align);
2969      Store = DAG.getStore(Chain, Value,
2970                           getMemBasePlusOffset(Dst, DstOff, DAG),
2971                           DstSV, DstSVOff + DstOff, false, DstAlign);
2972    }
2973    OutChains.push_back(Store);
2974    SrcOff += VTSize;
2975    DstOff += VTSize;
2976  }
2977
2978  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2979                     &OutChains[0], OutChains.size());
2980}
2981
2982static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
2983                                          SDValue Chain, SDValue Dst,
2984                                          SDValue Src, uint64_t Size,
2985                                          unsigned Align, bool AlwaysInline,
2986                                          const Value *DstSV, uint64_t DstSVOff,
2987                                          const Value *SrcSV, uint64_t SrcSVOff){
2988  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2989
2990  // Expand memmove to a series of load and store ops if the size operand falls
2991  // below a certain threshold.
2992  std::vector<MVT> MemOps;
2993  uint64_t Limit = -1ULL;
2994  if (!AlwaysInline)
2995    Limit = TLI.getMaxStoresPerMemmove();
2996  unsigned DstAlign = Align;  // Destination alignment can change.
2997  std::string Str;
2998  bool CopyFromStr;
2999  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3000                                Str, CopyFromStr, DAG, TLI))
3001    return SDValue();
3002
3003  uint64_t SrcOff = 0, DstOff = 0;
3004
3005  SmallVector<SDValue, 8> LoadValues;
3006  SmallVector<SDValue, 8> LoadChains;
3007  SmallVector<SDValue, 8> OutChains;
3008  unsigned NumMemOps = MemOps.size();
3009  for (unsigned i = 0; i < NumMemOps; i++) {
3010    MVT VT = MemOps[i];
3011    unsigned VTSize = VT.getSizeInBits() / 8;
3012    SDValue Value, Store;
3013
3014    Value = DAG.getLoad(VT, Chain,
3015                        getMemBasePlusOffset(Src, SrcOff, DAG),
3016                        SrcSV, SrcSVOff + SrcOff, false, Align);
3017    LoadValues.push_back(Value);
3018    LoadChains.push_back(Value.getValue(1));
3019    SrcOff += VTSize;
3020  }
3021  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3022                      &LoadChains[0], LoadChains.size());
3023  OutChains.clear();
3024  for (unsigned i = 0; i < NumMemOps; i++) {
3025    MVT VT = MemOps[i];
3026    unsigned VTSize = VT.getSizeInBits() / 8;
3027    SDValue Value, Store;
3028
3029    Store = DAG.getStore(Chain, LoadValues[i],
3030                         getMemBasePlusOffset(Dst, DstOff, DAG),
3031                         DstSV, DstSVOff + DstOff, false, DstAlign);
3032    OutChains.push_back(Store);
3033    DstOff += VTSize;
3034  }
3035
3036  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3037                     &OutChains[0], OutChains.size());
3038}
3039
3040static SDValue getMemsetStores(SelectionDAG &DAG,
3041                                 SDValue Chain, SDValue Dst,
3042                                 SDValue Src, uint64_t Size,
3043                                 unsigned Align,
3044                                 const Value *DstSV, uint64_t DstSVOff) {
3045  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3046
3047  // Expand memset to a series of load/store ops if the size operand
3048  // falls below a certain threshold.
3049  std::vector<MVT> MemOps;
3050  std::string Str;
3051  bool CopyFromStr;
3052  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3053                                Size, Align, Str, CopyFromStr, DAG, TLI))
3054    return SDValue();
3055
3056  SmallVector<SDValue, 8> OutChains;
3057  uint64_t DstOff = 0;
3058
3059  unsigned NumMemOps = MemOps.size();
3060  for (unsigned i = 0; i < NumMemOps; i++) {
3061    MVT VT = MemOps[i];
3062    unsigned VTSize = VT.getSizeInBits() / 8;
3063    SDValue Value = getMemsetValue(Src, VT, DAG);
3064    SDValue Store = DAG.getStore(Chain, Value,
3065                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3066                                 DstSV, DstSVOff + DstOff);
3067    OutChains.push_back(Store);
3068    DstOff += VTSize;
3069  }
3070
3071  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3072                     &OutChains[0], OutChains.size());
3073}
3074
3075SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3076                                SDValue Src, SDValue Size,
3077                                unsigned Align, bool AlwaysInline,
3078                                const Value *DstSV, uint64_t DstSVOff,
3079                                const Value *SrcSV, uint64_t SrcSVOff) {
3080
3081  // Check to see if we should lower the memcpy to loads and stores first.
3082  // For cases within the target-specified limits, this is the best choice.
3083  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3084  if (ConstantSize) {
3085    // Memcpy with size zero? Just return the original chain.
3086    if (ConstantSize->isNullValue())
3087      return Chain;
3088
3089    SDValue Result =
3090      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3091                              ConstantSize->getZExtValue(),
3092                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3093    if (Result.getNode())
3094      return Result;
3095  }
3096
3097  // Then check to see if we should lower the memcpy with target-specific
3098  // code. If the target chooses to do this, this is the next best.
3099  SDValue Result =
3100    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3101                                AlwaysInline,
3102                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3103  if (Result.getNode())
3104    return Result;
3105
3106  // If we really need inline code and the target declined to provide it,
3107  // use a (potentially long) sequence of loads and stores.
3108  if (AlwaysInline) {
3109    assert(ConstantSize && "AlwaysInline requires a constant size!");
3110    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3111                                   ConstantSize->getZExtValue(), Align, true,
3112                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3113  }
3114
3115  // Emit a library call.
3116  TargetLowering::ArgListTy Args;
3117  TargetLowering::ArgListEntry Entry;
3118  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3119  Entry.Node = Dst; Args.push_back(Entry);
3120  Entry.Node = Src; Args.push_back(Entry);
3121  Entry.Node = Size; Args.push_back(Entry);
3122  std::pair<SDValue,SDValue> CallResult =
3123    TLI.LowerCallTo(Chain, Type::VoidTy,
3124                    false, false, false, false, CallingConv::C, false,
3125                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3126                    Args, *this);
3127  return CallResult.second;
3128}
3129
3130SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3131                                 SDValue Src, SDValue Size,
3132                                 unsigned Align,
3133                                 const Value *DstSV, uint64_t DstSVOff,
3134                                 const Value *SrcSV, uint64_t SrcSVOff) {
3135
3136  // Check to see if we should lower the memmove to loads and stores first.
3137  // For cases within the target-specified limits, this is the best choice.
3138  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3139  if (ConstantSize) {
3140    // Memmove with size zero? Just return the original chain.
3141    if (ConstantSize->isNullValue())
3142      return Chain;
3143
3144    SDValue Result =
3145      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3146                               ConstantSize->getZExtValue(),
3147                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3148    if (Result.getNode())
3149      return Result;
3150  }
3151
3152  // Then check to see if we should lower the memmove with target-specific
3153  // code. If the target chooses to do this, this is the next best.
3154  SDValue Result =
3155    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3156                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3157  if (Result.getNode())
3158    return Result;
3159
3160  // Emit a library call.
3161  TargetLowering::ArgListTy Args;
3162  TargetLowering::ArgListEntry Entry;
3163  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3164  Entry.Node = Dst; Args.push_back(Entry);
3165  Entry.Node = Src; Args.push_back(Entry);
3166  Entry.Node = Size; Args.push_back(Entry);
3167  std::pair<SDValue,SDValue> CallResult =
3168    TLI.LowerCallTo(Chain, Type::VoidTy,
3169                    false, false, false, false, CallingConv::C, false,
3170                    getExternalSymbol("memmove", TLI.getPointerTy()),
3171                    Args, *this);
3172  return CallResult.second;
3173}
3174
3175SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3176                                SDValue Src, SDValue Size,
3177                                unsigned Align,
3178                                const Value *DstSV, uint64_t DstSVOff) {
3179
3180  // Check to see if we should lower the memset to stores first.
3181  // For cases within the target-specified limits, this is the best choice.
3182  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3183  if (ConstantSize) {
3184    // Memset with size zero? Just return the original chain.
3185    if (ConstantSize->isNullValue())
3186      return Chain;
3187
3188    SDValue Result =
3189      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3190                      Align, DstSV, DstSVOff);
3191    if (Result.getNode())
3192      return Result;
3193  }
3194
3195  // Then check to see if we should lower the memset with target-specific
3196  // code. If the target chooses to do this, this is the next best.
3197  SDValue Result =
3198    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3199                                DstSV, DstSVOff);
3200  if (Result.getNode())
3201    return Result;
3202
3203  // Emit a library call.
3204  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3205  TargetLowering::ArgListTy Args;
3206  TargetLowering::ArgListEntry Entry;
3207  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3208  Args.push_back(Entry);
3209  // Extend or truncate the argument to be an i32 value for the call.
3210  if (Src.getValueType().bitsGT(MVT::i32))
3211    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3212  else
3213    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3214  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3215  Args.push_back(Entry);
3216  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3217  Args.push_back(Entry);
3218  std::pair<SDValue,SDValue> CallResult =
3219    TLI.LowerCallTo(Chain, Type::VoidTy,
3220                    false, false, false, false, CallingConv::C, false,
3221                    getExternalSymbol("memset", TLI.getPointerTy()),
3222                    Args, *this);
3223  return CallResult.second;
3224}
3225
3226SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3227                                SDValue Ptr, SDValue Cmp,
3228                                SDValue Swp, const Value* PtrVal,
3229                                unsigned Alignment) {
3230  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3231          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3232          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3233          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3234  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3235
3236  MVT VT = Cmp.getValueType();
3237
3238  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3239    Alignment = getMVTAlignment(VT);
3240
3241  SDVTList VTs = getVTList(VT, MVT::Other);
3242  FoldingSetNodeID ID;
3243  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3244  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3245  void* IP = 0;
3246  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3247    return SDValue(E, 0);
3248  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3249  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3250  CSEMap.InsertNode(N, IP);
3251  AllNodes.push_back(N);
3252  return SDValue(N, 0);
3253}
3254
3255SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3256                                SDValue Ptr, SDValue Val,
3257                                const Value* PtrVal,
3258                                unsigned Alignment) {
3259  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3260          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3261          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3262          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3263          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3264          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3265          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3266          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3267          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3268          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3269          Opcode == ISD::ATOMIC_SWAP_8 ||
3270          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3271          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3272          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3273          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3274          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3275          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3276          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3277          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3278          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3279          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3280          Opcode == ISD::ATOMIC_SWAP_16 ||
3281          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3282          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3283          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3284          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3285          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3286          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3287          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3288          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3289          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3290          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3291          Opcode == ISD::ATOMIC_SWAP_32 ||
3292          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3293          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3294          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3295          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3296          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3297          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3298          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3299          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3300          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3301          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3302          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3303
3304  MVT VT = Val.getValueType();
3305
3306  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3307    Alignment = getMVTAlignment(VT);
3308
3309  SDVTList VTs = getVTList(VT, MVT::Other);
3310  FoldingSetNodeID ID;
3311  SDValue Ops[] = {Chain, Ptr, Val};
3312  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3313  void* IP = 0;
3314  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3315    return SDValue(E, 0);
3316  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3317  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3318  CSEMap.InsertNode(N, IP);
3319  AllNodes.push_back(N);
3320  return SDValue(N, 0);
3321}
3322
3323/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3324/// Allowed to return something different (and simpler) if Simplify is true.
3325SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3326                                     bool Simplify) {
3327  if (Simplify && NumOps == 1)
3328    return Ops[0];
3329
3330  SmallVector<MVT, 4> VTs;
3331  VTs.reserve(NumOps);
3332  for (unsigned i = 0; i < NumOps; ++i)
3333    VTs.push_back(Ops[i].getValueType());
3334  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3335}
3336
3337SDValue
3338SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3339                                  const MVT *VTs, unsigned NumVTs,
3340                                  const SDValue *Ops, unsigned NumOps,
3341                                  MVT MemVT, const Value *srcValue, int SVOff,
3342                                  unsigned Align, bool Vol,
3343                                  bool ReadMem, bool WriteMem) {
3344  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3345                             MemVT, srcValue, SVOff, Align, Vol,
3346                             ReadMem, WriteMem);
3347}
3348
3349SDValue
3350SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3351                                  const SDValue *Ops, unsigned NumOps,
3352                                  MVT MemVT, const Value *srcValue, int SVOff,
3353                                  unsigned Align, bool Vol,
3354                                  bool ReadMem, bool WriteMem) {
3355  // Memoize the node unless it returns a flag.
3356  MemIntrinsicSDNode *N;
3357  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3358    FoldingSetNodeID ID;
3359    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3360    void *IP = 0;
3361    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3362      return SDValue(E, 0);
3363
3364    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3365    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3366                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3367    CSEMap.InsertNode(N, IP);
3368  } else {
3369    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3370    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3371                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3372  }
3373  AllNodes.push_back(N);
3374  return SDValue(N, 0);
3375}
3376
3377SDValue
3378SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3379                      bool IsInreg, SDVTList VTs,
3380                      const SDValue *Operands, unsigned NumOperands) {
3381  // Do not include isTailCall in the folding set profile.
3382  FoldingSetNodeID ID;
3383  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3384  ID.AddInteger(CallingConv);
3385  ID.AddInteger(IsVarArgs);
3386  void *IP = 0;
3387  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3388    // Instead of including isTailCall in the folding set, we just
3389    // set the flag of the existing node.
3390    if (!IsTailCall)
3391      cast<CallSDNode>(E)->setNotTailCall();
3392    return SDValue(E, 0);
3393  }
3394  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3395  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3396                     VTs, Operands, NumOperands);
3397  CSEMap.InsertNode(N, IP);
3398  AllNodes.push_back(N);
3399  return SDValue(N, 0);
3400}
3401
3402SDValue
3403SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3404                      MVT VT, SDValue Chain,
3405                      SDValue Ptr, SDValue Offset,
3406                      const Value *SV, int SVOffset, MVT EVT,
3407                      bool isVolatile, unsigned Alignment) {
3408  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3409    Alignment = getMVTAlignment(VT);
3410
3411  if (VT == EVT) {
3412    ExtType = ISD::NON_EXTLOAD;
3413  } else if (ExtType == ISD::NON_EXTLOAD) {
3414    assert(VT == EVT && "Non-extending load from different memory type!");
3415  } else {
3416    // Extending load.
3417    if (VT.isVector())
3418      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3419             "Invalid vector extload!");
3420    else
3421      assert(EVT.bitsLT(VT) &&
3422             "Should only be an extending load, not truncating!");
3423    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3424           "Cannot sign/zero extend a FP/Vector load!");
3425    assert(VT.isInteger() == EVT.isInteger() &&
3426           "Cannot convert from FP to Int or Int -> FP!");
3427  }
3428
3429  bool Indexed = AM != ISD::UNINDEXED;
3430  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3431         "Unindexed load with an offset!");
3432
3433  SDVTList VTs = Indexed ?
3434    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3435  SDValue Ops[] = { Chain, Ptr, Offset };
3436  FoldingSetNodeID ID;
3437  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3438  ID.AddInteger(AM);
3439  ID.AddInteger(ExtType);
3440  ID.AddInteger(EVT.getRawBits());
3441  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3442  void *IP = 0;
3443  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3444    return SDValue(E, 0);
3445  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3446  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3447                     Alignment, isVolatile);
3448  CSEMap.InsertNode(N, IP);
3449  AllNodes.push_back(N);
3450  return SDValue(N, 0);
3451}
3452
3453SDValue SelectionDAG::getLoad(MVT VT,
3454                              SDValue Chain, SDValue Ptr,
3455                              const Value *SV, int SVOffset,
3456                              bool isVolatile, unsigned Alignment) {
3457  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3458  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3459                 SV, SVOffset, VT, isVolatile, Alignment);
3460}
3461
3462SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3463                                 SDValue Chain, SDValue Ptr,
3464                                 const Value *SV,
3465                                 int SVOffset, MVT EVT,
3466                                 bool isVolatile, unsigned Alignment) {
3467  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3468  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3469                 SV, SVOffset, EVT, isVolatile, Alignment);
3470}
3471
3472SDValue
3473SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3474                             SDValue Offset, ISD::MemIndexedMode AM) {
3475  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3476  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3477         "Load is already a indexed load!");
3478  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3479                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3480                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3481                 LD->isVolatile(), LD->getAlignment());
3482}
3483
3484SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3485                               SDValue Ptr, const Value *SV, int SVOffset,
3486                               bool isVolatile, unsigned Alignment) {
3487  MVT VT = Val.getValueType();
3488
3489  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3490    Alignment = getMVTAlignment(VT);
3491
3492  SDVTList VTs = getVTList(MVT::Other);
3493  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3494  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3495  FoldingSetNodeID ID;
3496  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3497  ID.AddInteger(ISD::UNINDEXED);
3498  ID.AddInteger(false);
3499  ID.AddInteger(VT.getRawBits());
3500  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3501  void *IP = 0;
3502  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3503    return SDValue(E, 0);
3504  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3505  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3506                      VT, SV, SVOffset, Alignment, isVolatile);
3507  CSEMap.InsertNode(N, IP);
3508  AllNodes.push_back(N);
3509  return SDValue(N, 0);
3510}
3511
3512SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3513                                    SDValue Ptr, const Value *SV,
3514                                    int SVOffset, MVT SVT,
3515                                    bool isVolatile, unsigned Alignment) {
3516  MVT VT = Val.getValueType();
3517
3518  if (VT == SVT)
3519    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3520
3521  assert(VT.bitsGT(SVT) && "Not a truncation?");
3522  assert(VT.isInteger() == SVT.isInteger() &&
3523         "Can't do FP-INT conversion!");
3524
3525  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3526    Alignment = getMVTAlignment(VT);
3527
3528  SDVTList VTs = getVTList(MVT::Other);
3529  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3530  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3531  FoldingSetNodeID ID;
3532  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3533  ID.AddInteger(ISD::UNINDEXED);
3534  ID.AddInteger(1);
3535  ID.AddInteger(SVT.getRawBits());
3536  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3537  void *IP = 0;
3538  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3539    return SDValue(E, 0);
3540  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3541  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3542                      SVT, SV, SVOffset, Alignment, isVolatile);
3543  CSEMap.InsertNode(N, IP);
3544  AllNodes.push_back(N);
3545  return SDValue(N, 0);
3546}
3547
3548SDValue
3549SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3550                              SDValue Offset, ISD::MemIndexedMode AM) {
3551  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3552  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3553         "Store is already a indexed store!");
3554  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3555  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3556  FoldingSetNodeID ID;
3557  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3558  ID.AddInteger(AM);
3559  ID.AddInteger(ST->isTruncatingStore());
3560  ID.AddInteger(ST->getMemoryVT().getRawBits());
3561  ID.AddInteger(ST->getRawFlags());
3562  void *IP = 0;
3563  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3564    return SDValue(E, 0);
3565  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3566  new (N) StoreSDNode(Ops, VTs, AM,
3567                      ST->isTruncatingStore(), ST->getMemoryVT(),
3568                      ST->getSrcValue(), ST->getSrcValueOffset(),
3569                      ST->getAlignment(), ST->isVolatile());
3570  CSEMap.InsertNode(N, IP);
3571  AllNodes.push_back(N);
3572  return SDValue(N, 0);
3573}
3574
3575SDValue SelectionDAG::getVAArg(MVT VT,
3576                               SDValue Chain, SDValue Ptr,
3577                               SDValue SV) {
3578  SDValue Ops[] = { Chain, Ptr, SV };
3579  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3580}
3581
3582SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3583                              const SDUse *Ops, unsigned NumOps) {
3584  switch (NumOps) {
3585  case 0: return getNode(Opcode, VT);
3586  case 1: return getNode(Opcode, VT, Ops[0]);
3587  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3588  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3589  default: break;
3590  }
3591
3592  // Copy from an SDUse array into an SDValue array for use with
3593  // the regular getNode logic.
3594  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3595  return getNode(Opcode, VT, &NewOps[0], NumOps);
3596}
3597
3598SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3599                              const SDValue *Ops, unsigned NumOps) {
3600  switch (NumOps) {
3601  case 0: return getNode(Opcode, VT);
3602  case 1: return getNode(Opcode, VT, Ops[0]);
3603  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3604  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3605  default: break;
3606  }
3607
3608  switch (Opcode) {
3609  default: break;
3610  case ISD::SELECT_CC: {
3611    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3612    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3613           "LHS and RHS of condition must have same type!");
3614    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3615           "True and False arms of SelectCC must have same type!");
3616    assert(Ops[2].getValueType() == VT &&
3617           "select_cc node must be of same type as true and false value!");
3618    break;
3619  }
3620  case ISD::BR_CC: {
3621    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3622    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3623           "LHS/RHS of comparison should match types!");
3624    break;
3625  }
3626  }
3627
3628  // Memoize nodes.
3629  SDNode *N;
3630  SDVTList VTs = getVTList(VT);
3631  if (VT != MVT::Flag) {
3632    FoldingSetNodeID ID;
3633    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3634    void *IP = 0;
3635    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3636      return SDValue(E, 0);
3637    N = NodeAllocator.Allocate<SDNode>();
3638    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3639    CSEMap.InsertNode(N, IP);
3640  } else {
3641    N = NodeAllocator.Allocate<SDNode>();
3642    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3643  }
3644  AllNodes.push_back(N);
3645#ifndef NDEBUG
3646  VerifyNode(N);
3647#endif
3648  return SDValue(N, 0);
3649}
3650
3651SDValue SelectionDAG::getNode(unsigned Opcode,
3652                              const std::vector<MVT> &ResultTys,
3653                              const SDValue *Ops, unsigned NumOps) {
3654  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3655                 Ops, NumOps);
3656}
3657
3658SDValue SelectionDAG::getNode(unsigned Opcode,
3659                              const MVT *VTs, unsigned NumVTs,
3660                              const SDValue *Ops, unsigned NumOps) {
3661  if (NumVTs == 1)
3662    return getNode(Opcode, VTs[0], Ops, NumOps);
3663  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3664}
3665
3666SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3667                              const SDValue *Ops, unsigned NumOps) {
3668  if (VTList.NumVTs == 1)
3669    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3670
3671  switch (Opcode) {
3672  // FIXME: figure out how to safely handle things like
3673  // int foo(int x) { return 1 << (x & 255); }
3674  // int bar() { return foo(256); }
3675#if 0
3676  case ISD::SRA_PARTS:
3677  case ISD::SRL_PARTS:
3678  case ISD::SHL_PARTS:
3679    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3680        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3681      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3682    else if (N3.getOpcode() == ISD::AND)
3683      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3684        // If the and is only masking out bits that cannot effect the shift,
3685        // eliminate the and.
3686        unsigned NumBits = VT.getSizeInBits()*2;
3687        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3688          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3689      }
3690    break;
3691#endif
3692  }
3693
3694  // Memoize the node unless it returns a flag.
3695  SDNode *N;
3696  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3697    FoldingSetNodeID ID;
3698    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3699    void *IP = 0;
3700    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3701      return SDValue(E, 0);
3702    if (NumOps == 1) {
3703      N = NodeAllocator.Allocate<UnarySDNode>();
3704      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3705    } else if (NumOps == 2) {
3706      N = NodeAllocator.Allocate<BinarySDNode>();
3707      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3708    } else if (NumOps == 3) {
3709      N = NodeAllocator.Allocate<TernarySDNode>();
3710      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3711    } else {
3712      N = NodeAllocator.Allocate<SDNode>();
3713      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3714    }
3715    CSEMap.InsertNode(N, IP);
3716  } else {
3717    if (NumOps == 1) {
3718      N = NodeAllocator.Allocate<UnarySDNode>();
3719      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3720    } else if (NumOps == 2) {
3721      N = NodeAllocator.Allocate<BinarySDNode>();
3722      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3723    } else if (NumOps == 3) {
3724      N = NodeAllocator.Allocate<TernarySDNode>();
3725      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3726    } else {
3727      N = NodeAllocator.Allocate<SDNode>();
3728      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3729    }
3730  }
3731  AllNodes.push_back(N);
3732#ifndef NDEBUG
3733  VerifyNode(N);
3734#endif
3735  return SDValue(N, 0);
3736}
3737
3738SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3739  return getNode(Opcode, VTList, 0, 0);
3740}
3741
3742SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3743                                SDValue N1) {
3744  SDValue Ops[] = { N1 };
3745  return getNode(Opcode, VTList, Ops, 1);
3746}
3747
3748SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3749                              SDValue N1, SDValue N2) {
3750  SDValue Ops[] = { N1, N2 };
3751  return getNode(Opcode, VTList, Ops, 2);
3752}
3753
3754SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3755                              SDValue N1, SDValue N2, SDValue N3) {
3756  SDValue Ops[] = { N1, N2, N3 };
3757  return getNode(Opcode, VTList, Ops, 3);
3758}
3759
3760SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3761                              SDValue N1, SDValue N2, SDValue N3,
3762                              SDValue N4) {
3763  SDValue Ops[] = { N1, N2, N3, N4 };
3764  return getNode(Opcode, VTList, Ops, 4);
3765}
3766
3767SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3768                              SDValue N1, SDValue N2, SDValue N3,
3769                              SDValue N4, SDValue N5) {
3770  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3771  return getNode(Opcode, VTList, Ops, 5);
3772}
3773
3774SDVTList SelectionDAG::getVTList(MVT VT) {
3775  return makeVTList(SDNode::getValueTypeList(VT), 1);
3776}
3777
3778SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3779  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3780       E = VTList.rend(); I != E; ++I)
3781    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3782      return *I;
3783
3784  MVT *Array = Allocator.Allocate<MVT>(2);
3785  Array[0] = VT1;
3786  Array[1] = VT2;
3787  SDVTList Result = makeVTList(Array, 2);
3788  VTList.push_back(Result);
3789  return Result;
3790}
3791
3792SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3793  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3794       E = VTList.rend(); I != E; ++I)
3795    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3796                          I->VTs[2] == VT3)
3797      return *I;
3798
3799  MVT *Array = Allocator.Allocate<MVT>(3);
3800  Array[0] = VT1;
3801  Array[1] = VT2;
3802  Array[2] = VT3;
3803  SDVTList Result = makeVTList(Array, 3);
3804  VTList.push_back(Result);
3805  return Result;
3806}
3807
3808SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3809  switch (NumVTs) {
3810    case 0: assert(0 && "Cannot have nodes without results!");
3811    case 1: return getVTList(VTs[0]);
3812    case 2: return getVTList(VTs[0], VTs[1]);
3813    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3814    default: break;
3815  }
3816
3817  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3818       E = VTList.rend(); I != E; ++I) {
3819    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3820      continue;
3821
3822    bool NoMatch = false;
3823    for (unsigned i = 2; i != NumVTs; ++i)
3824      if (VTs[i] != I->VTs[i]) {
3825        NoMatch = true;
3826        break;
3827      }
3828    if (!NoMatch)
3829      return *I;
3830  }
3831
3832  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3833  std::copy(VTs, VTs+NumVTs, Array);
3834  SDVTList Result = makeVTList(Array, NumVTs);
3835  VTList.push_back(Result);
3836  return Result;
3837}
3838
3839
3840/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3841/// specified operands.  If the resultant node already exists in the DAG,
3842/// this does not modify the specified node, instead it returns the node that
3843/// already exists.  If the resultant node does not exist in the DAG, the
3844/// input node is returned.  As a degenerate case, if you specify the same
3845/// input operands as the node already has, the input node is returned.
3846SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3847  SDNode *N = InN.getNode();
3848  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3849
3850  // Check to see if there is no change.
3851  if (Op == N->getOperand(0)) return InN;
3852
3853  // See if the modified node already exists.
3854  void *InsertPos = 0;
3855  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3856    return SDValue(Existing, InN.getResNo());
3857
3858  // Nope it doesn't.  Remove the node from its current place in the maps.
3859  if (InsertPos)
3860    if (!RemoveNodeFromCSEMaps(N))
3861      InsertPos = 0;
3862
3863  // Now we update the operands.
3864  N->OperandList[0].getVal()->removeUser(0, N);
3865  N->OperandList[0] = Op;
3866  N->OperandList[0].setUser(N);
3867  Op.getNode()->addUser(0, N);
3868
3869  // If this gets put into a CSE map, add it.
3870  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3871  return InN;
3872}
3873
3874SDValue SelectionDAG::
3875UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3876  SDNode *N = InN.getNode();
3877  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3878
3879  // Check to see if there is no change.
3880  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3881    return InN;   // No operands changed, just return the input node.
3882
3883  // See if the modified node already exists.
3884  void *InsertPos = 0;
3885  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3886    return SDValue(Existing, InN.getResNo());
3887
3888  // Nope it doesn't.  Remove the node from its current place in the maps.
3889  if (InsertPos)
3890    if (!RemoveNodeFromCSEMaps(N))
3891      InsertPos = 0;
3892
3893  // Now we update the operands.
3894  if (N->OperandList[0] != Op1) {
3895    N->OperandList[0].getVal()->removeUser(0, N);
3896    N->OperandList[0] = Op1;
3897    N->OperandList[0].setUser(N);
3898    Op1.getNode()->addUser(0, N);
3899  }
3900  if (N->OperandList[1] != Op2) {
3901    N->OperandList[1].getVal()->removeUser(1, N);
3902    N->OperandList[1] = Op2;
3903    N->OperandList[1].setUser(N);
3904    Op2.getNode()->addUser(1, N);
3905  }
3906
3907  // If this gets put into a CSE map, add it.
3908  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3909  return InN;
3910}
3911
3912SDValue SelectionDAG::
3913UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3914  SDValue Ops[] = { Op1, Op2, Op3 };
3915  return UpdateNodeOperands(N, Ops, 3);
3916}
3917
3918SDValue SelectionDAG::
3919UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3920                   SDValue Op3, SDValue Op4) {
3921  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3922  return UpdateNodeOperands(N, Ops, 4);
3923}
3924
3925SDValue SelectionDAG::
3926UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3927                   SDValue Op3, SDValue Op4, SDValue Op5) {
3928  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3929  return UpdateNodeOperands(N, Ops, 5);
3930}
3931
3932SDValue SelectionDAG::
3933UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3934  SDNode *N = InN.getNode();
3935  assert(N->getNumOperands() == NumOps &&
3936         "Update with wrong number of operands");
3937
3938  // Check to see if there is no change.
3939  bool AnyChange = false;
3940  for (unsigned i = 0; i != NumOps; ++i) {
3941    if (Ops[i] != N->getOperand(i)) {
3942      AnyChange = true;
3943      break;
3944    }
3945  }
3946
3947  // No operands changed, just return the input node.
3948  if (!AnyChange) return InN;
3949
3950  // See if the modified node already exists.
3951  void *InsertPos = 0;
3952  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3953    return SDValue(Existing, InN.getResNo());
3954
3955  // Nope it doesn't.  Remove the node from its current place in the maps.
3956  if (InsertPos)
3957    if (!RemoveNodeFromCSEMaps(N))
3958      InsertPos = 0;
3959
3960  // Now we update the operands.
3961  for (unsigned i = 0; i != NumOps; ++i) {
3962    if (N->OperandList[i] != Ops[i]) {
3963      N->OperandList[i].getVal()->removeUser(i, N);
3964      N->OperandList[i] = Ops[i];
3965      N->OperandList[i].setUser(N);
3966      Ops[i].getNode()->addUser(i, N);
3967    }
3968  }
3969
3970  // If this gets put into a CSE map, add it.
3971  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3972  return InN;
3973}
3974
3975/// DropOperands - Release the operands and set this node to have
3976/// zero operands.
3977void SDNode::DropOperands() {
3978  // Unlike the code in MorphNodeTo that does this, we don't need to
3979  // watch for dead nodes here.
3980  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3981    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3982
3983  NumOperands = 0;
3984}
3985
3986/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
3987/// machine opcode.
3988///
3989SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3990                                   MVT VT) {
3991  SDVTList VTs = getVTList(VT);
3992  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
3993}
3994
3995SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3996                                   MVT VT, SDValue Op1) {
3997  SDVTList VTs = getVTList(VT);
3998  SDValue Ops[] = { Op1 };
3999  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4000}
4001
4002SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4003                                   MVT VT, SDValue Op1,
4004                                   SDValue Op2) {
4005  SDVTList VTs = getVTList(VT);
4006  SDValue Ops[] = { Op1, Op2 };
4007  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4008}
4009
4010SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4011                                   MVT VT, SDValue Op1,
4012                                   SDValue Op2, SDValue Op3) {
4013  SDVTList VTs = getVTList(VT);
4014  SDValue Ops[] = { Op1, Op2, Op3 };
4015  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4016}
4017
4018SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4019                                   MVT VT, const SDValue *Ops,
4020                                   unsigned NumOps) {
4021  SDVTList VTs = getVTList(VT);
4022  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4023}
4024
4025SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4026                                   MVT VT1, MVT VT2, const SDValue *Ops,
4027                                   unsigned NumOps) {
4028  SDVTList VTs = getVTList(VT1, VT2);
4029  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4030}
4031
4032SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4033                                   MVT VT1, MVT VT2) {
4034  SDVTList VTs = getVTList(VT1, VT2);
4035  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4036}
4037
4038SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4039                                   MVT VT1, MVT VT2, MVT VT3,
4040                                   const SDValue *Ops, unsigned NumOps) {
4041  SDVTList VTs = getVTList(VT1, VT2, VT3);
4042  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4043}
4044
4045SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4046                                   MVT VT1, MVT VT2,
4047                                   SDValue Op1) {
4048  SDVTList VTs = getVTList(VT1, VT2);
4049  SDValue Ops[] = { Op1 };
4050  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4051}
4052
4053SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4054                                   MVT VT1, MVT VT2,
4055                                   SDValue Op1, SDValue Op2) {
4056  SDVTList VTs = getVTList(VT1, VT2);
4057  SDValue Ops[] = { Op1, Op2 };
4058  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4059}
4060
4061SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4062                                   MVT VT1, MVT VT2,
4063                                   SDValue Op1, SDValue Op2,
4064                                   SDValue Op3) {
4065  SDVTList VTs = getVTList(VT1, VT2);
4066  SDValue Ops[] = { Op1, Op2, Op3 };
4067  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4068}
4069
4070SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4071                                   SDVTList VTs, const SDValue *Ops,
4072                                   unsigned NumOps) {
4073  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4074}
4075
4076SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4077                                  MVT VT) {
4078  SDVTList VTs = getVTList(VT);
4079  return MorphNodeTo(N, Opc, VTs, 0, 0);
4080}
4081
4082SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4083                                  MVT VT, SDValue Op1) {
4084  SDVTList VTs = getVTList(VT);
4085  SDValue Ops[] = { Op1 };
4086  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4087}
4088
4089SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4090                                  MVT VT, SDValue Op1,
4091                                  SDValue Op2) {
4092  SDVTList VTs = getVTList(VT);
4093  SDValue Ops[] = { Op1, Op2 };
4094  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4095}
4096
4097SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4098                                  MVT VT, SDValue Op1,
4099                                  SDValue Op2, SDValue Op3) {
4100  SDVTList VTs = getVTList(VT);
4101  SDValue Ops[] = { Op1, Op2, Op3 };
4102  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4103}
4104
4105SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4106                                  MVT VT, const SDValue *Ops,
4107                                  unsigned NumOps) {
4108  SDVTList VTs = getVTList(VT);
4109  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4110}
4111
4112SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4113                                  MVT VT1, MVT VT2, const SDValue *Ops,
4114                                  unsigned NumOps) {
4115  SDVTList VTs = getVTList(VT1, VT2);
4116  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4117}
4118
4119SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4120                                  MVT VT1, MVT VT2) {
4121  SDVTList VTs = getVTList(VT1, VT2);
4122  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4123}
4124
4125SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4126                                  MVT VT1, MVT VT2, MVT VT3,
4127                                  const SDValue *Ops, unsigned NumOps) {
4128  SDVTList VTs = getVTList(VT1, VT2, VT3);
4129  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4130}
4131
4132SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4133                                  MVT VT1, MVT VT2,
4134                                  SDValue Op1) {
4135  SDVTList VTs = getVTList(VT1, VT2);
4136  SDValue Ops[] = { Op1 };
4137  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4138}
4139
4140SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4141                                  MVT VT1, MVT VT2,
4142                                  SDValue Op1, SDValue Op2) {
4143  SDVTList VTs = getVTList(VT1, VT2);
4144  SDValue Ops[] = { Op1, Op2 };
4145  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4146}
4147
4148SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4149                                  MVT VT1, MVT VT2,
4150                                  SDValue Op1, SDValue Op2,
4151                                  SDValue Op3) {
4152  SDVTList VTs = getVTList(VT1, VT2);
4153  SDValue Ops[] = { Op1, Op2, Op3 };
4154  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4155}
4156
4157/// MorphNodeTo - These *mutate* the specified node to have the specified
4158/// return type, opcode, and operands.
4159///
4160/// Note that MorphNodeTo returns the resultant node.  If there is already a
4161/// node of the specified opcode and operands, it returns that node instead of
4162/// the current one.
4163///
4164/// Using MorphNodeTo is faster than creating a new node and swapping it in
4165/// with ReplaceAllUsesWith both because it often avoids allocating a new
4166/// node, and because it doesn't require CSE recalculation for any of
4167/// the node's users.
4168///
4169SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4170                                  SDVTList VTs, const SDValue *Ops,
4171                                  unsigned NumOps) {
4172  // If an identical node already exists, use it.
4173  void *IP = 0;
4174  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4175    FoldingSetNodeID ID;
4176    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4177    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4178      return ON;
4179  }
4180
4181  if (!RemoveNodeFromCSEMaps(N))
4182    IP = 0;
4183
4184  // Start the morphing.
4185  N->NodeType = Opc;
4186  N->ValueList = VTs.VTs;
4187  N->NumValues = VTs.NumVTs;
4188
4189  // Clear the operands list, updating used nodes to remove this from their
4190  // use list.  Keep track of any operands that become dead as a result.
4191  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4192  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4193       I != E; ++I) {
4194    SDNode *Used = I->getVal();
4195    Used->removeUser(std::distance(B, I), N);
4196    if (Used->use_empty())
4197      DeadNodeSet.insert(Used);
4198  }
4199
4200  // If NumOps is larger than the # of operands we currently have, reallocate
4201  // the operand list.
4202  if (NumOps > N->NumOperands) {
4203    if (N->OperandsNeedDelete)
4204      delete[] N->OperandList;
4205
4206    if (N->isMachineOpcode()) {
4207      // We're creating a final node that will live unmorphed for the
4208      // remainder of the current SelectionDAG iteration, so we can allocate
4209      // the operands directly out of a pool with no recycling metadata.
4210      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4211      N->OperandsNeedDelete = false;
4212    } else {
4213      N->OperandList = new SDUse[NumOps];
4214      N->OperandsNeedDelete = true;
4215    }
4216  }
4217
4218  // Assign the new operands.
4219  N->NumOperands = NumOps;
4220  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4221    N->OperandList[i] = Ops[i];
4222    N->OperandList[i].setUser(N);
4223    SDNode *ToUse = N->OperandList[i].getVal();
4224    ToUse->addUser(i, N);
4225  }
4226
4227  // Delete any nodes that are still dead after adding the uses for the
4228  // new operands.
4229  SmallVector<SDNode *, 16> DeadNodes;
4230  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4231       E = DeadNodeSet.end(); I != E; ++I)
4232    if ((*I)->use_empty())
4233      DeadNodes.push_back(*I);
4234  RemoveDeadNodes(DeadNodes);
4235
4236  if (IP)
4237    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4238  return N;
4239}
4240
4241
4242/// getTargetNode - These are used for target selectors to create a new node
4243/// with specified return type(s), target opcode, and operands.
4244///
4245/// Note that getTargetNode returns the resultant node.  If there is already a
4246/// node of the specified opcode and operands, it returns that node instead of
4247/// the current one.
4248SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4249  return getNode(~Opcode, VT).getNode();
4250}
4251SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4252  return getNode(~Opcode, VT, Op1).getNode();
4253}
4254SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4255                                    SDValue Op1, SDValue Op2) {
4256  return getNode(~Opcode, VT, Op1, Op2).getNode();
4257}
4258SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4259                                    SDValue Op1, SDValue Op2,
4260                                    SDValue Op3) {
4261  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4262}
4263SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4264                                    const SDValue *Ops, unsigned NumOps) {
4265  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4266}
4267SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4268  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4269  SDValue Op;
4270  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4271}
4272SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4273                                    MVT VT2, SDValue Op1) {
4274  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4275  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4276}
4277SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4278                                    MVT VT2, SDValue Op1,
4279                                    SDValue Op2) {
4280  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4281  SDValue Ops[] = { Op1, Op2 };
4282  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4283}
4284SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4285                                    MVT VT2, SDValue Op1,
4286                                    SDValue Op2, SDValue Op3) {
4287  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4288  SDValue Ops[] = { Op1, Op2, Op3 };
4289  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4290}
4291SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4292                                    const SDValue *Ops, unsigned NumOps) {
4293  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4294  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4295}
4296SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4297                                    SDValue Op1, SDValue Op2) {
4298  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4299  SDValue Ops[] = { Op1, Op2 };
4300  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4301}
4302SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4303                                    SDValue Op1, SDValue Op2,
4304                                    SDValue Op3) {
4305  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4306  SDValue Ops[] = { Op1, Op2, Op3 };
4307  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4308}
4309SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4310                                    const SDValue *Ops, unsigned NumOps) {
4311  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4312  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4313}
4314SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4315                                    MVT VT2, MVT VT3, MVT VT4,
4316                                    const SDValue *Ops, unsigned NumOps) {
4317  std::vector<MVT> VTList;
4318  VTList.push_back(VT1);
4319  VTList.push_back(VT2);
4320  VTList.push_back(VT3);
4321  VTList.push_back(VT4);
4322  const MVT *VTs = getNodeValueTypes(VTList);
4323  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4324}
4325SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4326                                    const std::vector<MVT> &ResultTys,
4327                                    const SDValue *Ops, unsigned NumOps) {
4328  const MVT *VTs = getNodeValueTypes(ResultTys);
4329  return getNode(~Opcode, VTs, ResultTys.size(),
4330                 Ops, NumOps).getNode();
4331}
4332
4333/// getNodeIfExists - Get the specified node if it's already available, or
4334/// else return NULL.
4335SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4336                                      const SDValue *Ops, unsigned NumOps) {
4337  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4338    FoldingSetNodeID ID;
4339    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4340    void *IP = 0;
4341    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4342      return E;
4343  }
4344  return NULL;
4345}
4346
4347
4348/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4349/// This can cause recursive merging of nodes in the DAG.
4350///
4351/// This version assumes From has a single result value.
4352///
4353void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4354                                      DAGUpdateListener *UpdateListener) {
4355  SDNode *From = FromN.getNode();
4356  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4357         "Cannot replace with this method!");
4358  assert(From != To.getNode() && "Cannot replace uses of with self");
4359
4360  while (!From->use_empty()) {
4361    SDNode::use_iterator UI = From->use_begin();
4362    SDNode *U = *UI;
4363
4364    // This node is about to morph, remove its old self from the CSE maps.
4365    RemoveNodeFromCSEMaps(U);
4366    int operandNum = 0;
4367    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4368         I != E; ++I, ++operandNum)
4369      if (I->getVal() == From) {
4370        From->removeUser(operandNum, U);
4371        *I = To;
4372        I->setUser(U);
4373        To.getNode()->addUser(operandNum, U);
4374      }
4375
4376    // Now that we have modified U, add it back to the CSE maps.  If it already
4377    // exists there, recursively merge the results together.
4378    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4379      ReplaceAllUsesWith(U, Existing, UpdateListener);
4380      // U is now dead.  Inform the listener if it exists and delete it.
4381      if (UpdateListener)
4382        UpdateListener->NodeDeleted(U, Existing);
4383      DeleteNodeNotInCSEMaps(U);
4384    } else {
4385      // If the node doesn't already exist, we updated it.  Inform a listener if
4386      // it exists.
4387      if (UpdateListener)
4388        UpdateListener->NodeUpdated(U);
4389    }
4390  }
4391}
4392
4393/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4394/// This can cause recursive merging of nodes in the DAG.
4395///
4396/// This version assumes From/To have matching types and numbers of result
4397/// values.
4398///
4399void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4400                                      DAGUpdateListener *UpdateListener) {
4401  assert(From->getVTList().VTs == To->getVTList().VTs &&
4402         From->getNumValues() == To->getNumValues() &&
4403         "Cannot use this version of ReplaceAllUsesWith!");
4404
4405  // Handle the trivial case.
4406  if (From == To)
4407    return;
4408
4409  while (!From->use_empty()) {
4410    SDNode::use_iterator UI = From->use_begin();
4411    SDNode *U = *UI;
4412
4413    // This node is about to morph, remove its old self from the CSE maps.
4414    RemoveNodeFromCSEMaps(U);
4415    int operandNum = 0;
4416    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4417         I != E; ++I, ++operandNum)
4418      if (I->getVal() == From) {
4419        From->removeUser(operandNum, U);
4420        I->getSDValue().setNode(To);
4421        To->addUser(operandNum, U);
4422      }
4423
4424    // Now that we have modified U, add it back to the CSE maps.  If it already
4425    // exists there, recursively merge the results together.
4426    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4427      ReplaceAllUsesWith(U, Existing, UpdateListener);
4428      // U is now dead.  Inform the listener if it exists and delete it.
4429      if (UpdateListener)
4430        UpdateListener->NodeDeleted(U, Existing);
4431      DeleteNodeNotInCSEMaps(U);
4432    } else {
4433      // If the node doesn't already exist, we updated it.  Inform a listener if
4434      // it exists.
4435      if (UpdateListener)
4436        UpdateListener->NodeUpdated(U);
4437    }
4438  }
4439}
4440
4441/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4442/// This can cause recursive merging of nodes in the DAG.
4443///
4444/// This version can replace From with any result values.  To must match the
4445/// number and types of values returned by From.
4446void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4447                                      const SDValue *To,
4448                                      DAGUpdateListener *UpdateListener) {
4449  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4450    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4451
4452  while (!From->use_empty()) {
4453    SDNode::use_iterator UI = From->use_begin();
4454    SDNode *U = *UI;
4455
4456    // This node is about to morph, remove its old self from the CSE maps.
4457    RemoveNodeFromCSEMaps(U);
4458    int operandNum = 0;
4459    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4460         I != E; ++I, ++operandNum)
4461      if (I->getVal() == From) {
4462        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4463        From->removeUser(operandNum, U);
4464        *I = ToOp;
4465        I->setUser(U);
4466        ToOp.getNode()->addUser(operandNum, U);
4467      }
4468
4469    // Now that we have modified U, add it back to the CSE maps.  If it already
4470    // exists there, recursively merge the results together.
4471    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4472      ReplaceAllUsesWith(U, Existing, UpdateListener);
4473      // U is now dead.  Inform the listener if it exists and delete it.
4474      if (UpdateListener)
4475        UpdateListener->NodeDeleted(U, Existing);
4476      DeleteNodeNotInCSEMaps(U);
4477    } else {
4478      // If the node doesn't already exist, we updated it.  Inform a listener if
4479      // it exists.
4480      if (UpdateListener)
4481        UpdateListener->NodeUpdated(U);
4482    }
4483  }
4484}
4485
4486/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4487/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4488/// handled the same way as for ReplaceAllUsesWith.
4489void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4490                                             DAGUpdateListener *UpdateListener){
4491  // Handle the really simple, really trivial case efficiently.
4492  if (From == To) return;
4493
4494  // Handle the simple, trivial, case efficiently.
4495  if (From.getNode()->getNumValues() == 1) {
4496    ReplaceAllUsesWith(From, To, UpdateListener);
4497    return;
4498  }
4499
4500  // Get all of the users of From.getNode().  We want these in a nice,
4501  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4502  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4503
4504  while (!Users.empty()) {
4505    // We know that this user uses some value of From.  If it is the right
4506    // value, update it.
4507    SDNode *User = Users.back();
4508    Users.pop_back();
4509
4510    // Scan for an operand that matches From.
4511    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4512    for (; Op != E; ++Op)
4513      if (*Op == From) break;
4514
4515    // If there are no matches, the user must use some other result of From.
4516    if (Op == E) continue;
4517
4518    // Okay, we know this user needs to be updated.  Remove its old self
4519    // from the CSE maps.
4520    RemoveNodeFromCSEMaps(User);
4521
4522    // Update all operands that match "From" in case there are multiple uses.
4523    for (; Op != E; ++Op) {
4524      if (*Op == From) {
4525        From.getNode()->removeUser(Op-User->op_begin(), User);
4526        *Op = To;
4527        Op->setUser(User);
4528        To.getNode()->addUser(Op-User->op_begin(), User);
4529      }
4530    }
4531
4532    // Now that we have modified User, add it back to the CSE maps.  If it
4533    // already exists there, recursively merge the results together.
4534    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4535    if (!Existing) {
4536      if (UpdateListener) UpdateListener->NodeUpdated(User);
4537      continue;  // Continue on to next user.
4538    }
4539
4540    // If there was already an existing matching node, use ReplaceAllUsesWith
4541    // to replace the dead one with the existing one.  This can cause
4542    // recursive merging of other unrelated nodes down the line.
4543    ReplaceAllUsesWith(User, Existing, UpdateListener);
4544
4545    // User is now dead.  Notify a listener if present.
4546    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4547    DeleteNodeNotInCSEMaps(User);
4548  }
4549}
4550
4551/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4552/// uses of other values produced by From.getVal() alone.  The same value may
4553/// appear in both the From and To list.  The Deleted vector is
4554/// handled the same way as for ReplaceAllUsesWith.
4555void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4556                                              const SDValue *To,
4557                                              unsigned Num,
4558                                              DAGUpdateListener *UpdateListener){
4559  // Handle the simple, trivial case efficiently.
4560  if (Num == 1)
4561    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4562
4563  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4564  for (unsigned i = 0; i != Num; ++i)
4565    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4566         E = From[i].getNode()->use_end(); UI != E; ++UI)
4567      Users.push_back(std::make_pair(*UI, i));
4568
4569  while (!Users.empty()) {
4570    // We know that this user uses some value of From.  If it is the right
4571    // value, update it.
4572    SDNode *User = Users.back().first;
4573    unsigned i = Users.back().second;
4574    Users.pop_back();
4575
4576    // Scan for an operand that matches From.
4577    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4578    for (; Op != E; ++Op)
4579      if (*Op == From[i]) break;
4580
4581    // If there are no matches, the user must use some other result of From.
4582    if (Op == E) continue;
4583
4584    // Okay, we know this user needs to be updated.  Remove its old self
4585    // from the CSE maps.
4586    RemoveNodeFromCSEMaps(User);
4587
4588    // Update all operands that match "From" in case there are multiple uses.
4589    for (; Op != E; ++Op) {
4590      if (*Op == From[i]) {
4591        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4592        *Op = To[i];
4593        Op->setUser(User);
4594        To[i].getNode()->addUser(Op-User->op_begin(), User);
4595      }
4596    }
4597
4598    // Now that we have modified User, add it back to the CSE maps.  If it
4599    // already exists there, recursively merge the results together.
4600    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4601    if (!Existing) {
4602      if (UpdateListener) UpdateListener->NodeUpdated(User);
4603      continue;  // Continue on to next user.
4604    }
4605
4606    // If there was already an existing matching node, use ReplaceAllUsesWith
4607    // to replace the dead one with the existing one.  This can cause
4608    // recursive merging of other unrelated nodes down the line.
4609    ReplaceAllUsesWith(User, Existing, UpdateListener);
4610
4611    // User is now dead.  Notify a listener if present.
4612    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4613    DeleteNodeNotInCSEMaps(User);
4614  }
4615}
4616
4617/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4618/// based on their topological order. It returns the maximum id and a vector
4619/// of the SDNodes* in assigned order by reference.
4620unsigned SelectionDAG::AssignTopologicalOrder() {
4621
4622  unsigned DAGSize = 0;
4623
4624  // SortedPos tracks the progress of the algorithm. Nodes before it are
4625  // sorted, nodes after it are unsorted. When the algorithm completes
4626  // it is at the end of the list.
4627  allnodes_iterator SortedPos = allnodes_begin();
4628
4629  // Visit all the nodes. Add nodes with no operands to the TopOrder result
4630  // array immediately. Annotate nodes that do have operands with their
4631  // operand count. Before we do this, the Node Id fields of the nodes
4632  // may contain arbitrary values. After, the Node Id fields for nodes
4633  // before SortedPos will contain the topological sort index, and the
4634  // Node Id fields for nodes At SortedPos and after will contain the
4635  // count of outstanding operands.
4636  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4637    SDNode *N = I++;
4638    unsigned Degree = N->getNumOperands();
4639    if (Degree == 0) {
4640      // A node with no uses, add it to the result array immediately.
4641      N->setNodeId(DAGSize++);
4642      allnodes_iterator Q = N;
4643      if (Q != SortedPos)
4644        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4645      ++SortedPos;
4646    } else {
4647      // Temporarily use the Node Id as scratch space for the degree count.
4648      N->setNodeId(Degree);
4649    }
4650  }
4651
4652  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4653  // such that by the time the end is reached all nodes will be sorted.
4654  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4655    SDNode *N = I;
4656    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4657         UI != UE; ++UI) {
4658      SDNode *P = *UI;
4659      unsigned Degree = P->getNodeId();
4660      --Degree;
4661      if (Degree == 0) {
4662        // All of P's operands are sorted, so P may sorted now.
4663        P->setNodeId(DAGSize++);
4664        if (P != SortedPos)
4665          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4666        ++SortedPos;
4667      } else {
4668        // Update P's outstanding operand count.
4669        P->setNodeId(Degree);
4670      }
4671    }
4672  }
4673
4674  assert(SortedPos == AllNodes.end() &&
4675         "Topological sort incomplete!");
4676  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4677         "First node in topological sort is not the entry token!");
4678  assert(AllNodes.front().getNodeId() == 0 &&
4679         "First node in topological sort has non-zero id!");
4680  assert(AllNodes.front().getNumOperands() == 0 &&
4681         "First node in topological sort has operands!");
4682  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4683         "Last node in topologic sort has unexpected id!");
4684  assert(AllNodes.back().use_empty() &&
4685         "Last node in topologic sort has users!");
4686  assert(DAGSize == allnodes_size() && "TopOrder result count mismatch!");
4687  return DAGSize;
4688}
4689
4690
4691
4692//===----------------------------------------------------------------------===//
4693//                              SDNode Class
4694//===----------------------------------------------------------------------===//
4695
4696// Out-of-line virtual method to give class a home.
4697void SDNode::ANCHOR() {}
4698void UnarySDNode::ANCHOR() {}
4699void BinarySDNode::ANCHOR() {}
4700void TernarySDNode::ANCHOR() {}
4701void HandleSDNode::ANCHOR() {}
4702void ConstantSDNode::ANCHOR() {}
4703void ConstantFPSDNode::ANCHOR() {}
4704void GlobalAddressSDNode::ANCHOR() {}
4705void FrameIndexSDNode::ANCHOR() {}
4706void JumpTableSDNode::ANCHOR() {}
4707void ConstantPoolSDNode::ANCHOR() {}
4708void BasicBlockSDNode::ANCHOR() {}
4709void SrcValueSDNode::ANCHOR() {}
4710void MemOperandSDNode::ANCHOR() {}
4711void RegisterSDNode::ANCHOR() {}
4712void DbgStopPointSDNode::ANCHOR() {}
4713void LabelSDNode::ANCHOR() {}
4714void ExternalSymbolSDNode::ANCHOR() {}
4715void CondCodeSDNode::ANCHOR() {}
4716void ARG_FLAGSSDNode::ANCHOR() {}
4717void VTSDNode::ANCHOR() {}
4718void MemSDNode::ANCHOR() {}
4719void LoadSDNode::ANCHOR() {}
4720void StoreSDNode::ANCHOR() {}
4721void AtomicSDNode::ANCHOR() {}
4722void MemIntrinsicSDNode::ANCHOR() {}
4723void CallSDNode::ANCHOR() {}
4724
4725HandleSDNode::~HandleSDNode() {
4726  DropOperands();
4727}
4728
4729GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4730                                         MVT VT, int64_t o)
4731  : SDNode(isa<GlobalVariable>(GA) &&
4732           cast<GlobalVariable>(GA)->isThreadLocal() ?
4733           // Thread Local
4734           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4735           // Non Thread Local
4736           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4737           getSDVTList(VT)), Offset(o) {
4738  TheGlobal = const_cast<GlobalValue*>(GA);
4739}
4740
4741MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4742                     const Value *srcValue, int SVO,
4743                     unsigned alignment, bool vol)
4744 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4745   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4746
4747  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4748  assert(getAlignment() == alignment && "Alignment representation error!");
4749  assert(isVolatile() == vol && "Volatile representation error!");
4750}
4751
4752MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4753                     unsigned NumOps, MVT memvt, const Value *srcValue,
4754                     int SVO, unsigned alignment, bool vol)
4755   : SDNode(Opc, VTs, Ops, NumOps),
4756     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4757     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4758  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4759  assert(getAlignment() == alignment && "Alignment representation error!");
4760  assert(isVolatile() == vol && "Volatile representation error!");
4761}
4762
4763/// getMemOperand - Return a MachineMemOperand object describing the memory
4764/// reference performed by this memory reference.
4765MachineMemOperand MemSDNode::getMemOperand() const {
4766  int Flags = 0;
4767  if (isa<LoadSDNode>(this))
4768    Flags = MachineMemOperand::MOLoad;
4769  else if (isa<StoreSDNode>(this))
4770    Flags = MachineMemOperand::MOStore;
4771  else if (isa<AtomicSDNode>(this)) {
4772    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4773  }
4774  else {
4775    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4776    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4777    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4778    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4779  }
4780
4781  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4782  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4783
4784  // Check if the memory reference references a frame index
4785  const FrameIndexSDNode *FI =
4786  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4787  if (!getSrcValue() && FI)
4788    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4789                             Flags, 0, Size, getAlignment());
4790  else
4791    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4792                             Size, getAlignment());
4793}
4794
4795/// Profile - Gather unique data for the node.
4796///
4797void SDNode::Profile(FoldingSetNodeID &ID) const {
4798  AddNodeIDNode(ID, this);
4799}
4800
4801/// getValueTypeList - Return a pointer to the specified value type.
4802///
4803const MVT *SDNode::getValueTypeList(MVT VT) {
4804  if (VT.isExtended()) {
4805    static std::set<MVT, MVT::compareRawBits> EVTs;
4806    return &(*EVTs.insert(VT).first);
4807  } else {
4808    static MVT VTs[MVT::LAST_VALUETYPE];
4809    VTs[VT.getSimpleVT()] = VT;
4810    return &VTs[VT.getSimpleVT()];
4811  }
4812}
4813
4814/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4815/// indicated value.  This method ignores uses of other values defined by this
4816/// operation.
4817bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4818  assert(Value < getNumValues() && "Bad value!");
4819
4820  // TODO: Only iterate over uses of a given value of the node
4821  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4822    if (UI.getUse().getSDValue().getResNo() == Value) {
4823      if (NUses == 0)
4824        return false;
4825      --NUses;
4826    }
4827  }
4828
4829  // Found exactly the right number of uses?
4830  return NUses == 0;
4831}
4832
4833
4834/// hasAnyUseOfValue - Return true if there are any use of the indicated
4835/// value. This method ignores uses of other values defined by this operation.
4836bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4837  assert(Value < getNumValues() && "Bad value!");
4838
4839  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4840    if (UI.getUse().getSDValue().getResNo() == Value)
4841      return true;
4842
4843  return false;
4844}
4845
4846
4847/// isOnlyUserOf - Return true if this node is the only use of N.
4848///
4849bool SDNode::isOnlyUserOf(SDNode *N) const {
4850  bool Seen = false;
4851  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4852    SDNode *User = *I;
4853    if (User == this)
4854      Seen = true;
4855    else
4856      return false;
4857  }
4858
4859  return Seen;
4860}
4861
4862/// isOperand - Return true if this node is an operand of N.
4863///
4864bool SDValue::isOperandOf(SDNode *N) const {
4865  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4866    if (*this == N->getOperand(i))
4867      return true;
4868  return false;
4869}
4870
4871bool SDNode::isOperandOf(SDNode *N) const {
4872  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4873    if (this == N->OperandList[i].getVal())
4874      return true;
4875  return false;
4876}
4877
4878/// reachesChainWithoutSideEffects - Return true if this operand (which must
4879/// be a chain) reaches the specified operand without crossing any
4880/// side-effecting instructions.  In practice, this looks through token
4881/// factors and non-volatile loads.  In order to remain efficient, this only
4882/// looks a couple of nodes in, it does not do an exhaustive search.
4883bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4884                                               unsigned Depth) const {
4885  if (*this == Dest) return true;
4886
4887  // Don't search too deeply, we just want to be able to see through
4888  // TokenFactor's etc.
4889  if (Depth == 0) return false;
4890
4891  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4892  // of the operands of the TF reach dest, then we can do the xform.
4893  if (getOpcode() == ISD::TokenFactor) {
4894    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4895      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4896        return true;
4897    return false;
4898  }
4899
4900  // Loads don't have side effects, look through them.
4901  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4902    if (!Ld->isVolatile())
4903      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4904  }
4905  return false;
4906}
4907
4908
4909static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4910                            SmallPtrSet<SDNode *, 32> &Visited) {
4911  if (found || !Visited.insert(N))
4912    return;
4913
4914  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4915    SDNode *Op = N->getOperand(i).getNode();
4916    if (Op == P) {
4917      found = true;
4918      return;
4919    }
4920    findPredecessor(Op, P, found, Visited);
4921  }
4922}
4923
4924/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4925/// is either an operand of N or it can be reached by recursively traversing
4926/// up the operands.
4927/// NOTE: this is an expensive method. Use it carefully.
4928bool SDNode::isPredecessorOf(SDNode *N) const {
4929  SmallPtrSet<SDNode *, 32> Visited;
4930  bool found = false;
4931  findPredecessor(N, this, found, Visited);
4932  return found;
4933}
4934
4935uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4936  assert(Num < NumOperands && "Invalid child # of SDNode!");
4937  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4938}
4939
4940std::string SDNode::getOperationName(const SelectionDAG *G) const {
4941  switch (getOpcode()) {
4942  default:
4943    if (getOpcode() < ISD::BUILTIN_OP_END)
4944      return "<<Unknown DAG Node>>";
4945    if (isMachineOpcode()) {
4946      if (G)
4947        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4948          if (getMachineOpcode() < TII->getNumOpcodes())
4949            return TII->get(getMachineOpcode()).getName();
4950      return "<<Unknown Machine Node>>";
4951    }
4952    if (G) {
4953      TargetLowering &TLI = G->getTargetLoweringInfo();
4954      const char *Name = TLI.getTargetNodeName(getOpcode());
4955      if (Name) return Name;
4956      return "<<Unknown Target Node>>";
4957    }
4958    return "<<Unknown Node>>";
4959
4960#ifndef NDEBUG
4961  case ISD::DELETED_NODE:
4962    return "<<Deleted Node!>>";
4963#endif
4964  case ISD::PREFETCH:      return "Prefetch";
4965  case ISD::MEMBARRIER:    return "MemBarrier";
4966  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
4967  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
4968  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
4969  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
4970  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
4971  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
4972  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
4973  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
4974  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
4975  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
4976  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
4977  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
4978  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
4979  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
4980  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
4981  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
4982  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
4983  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
4984  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
4985  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
4986  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
4987  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
4988  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
4989  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
4990  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
4991  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
4992  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
4993  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
4994  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
4995  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
4996  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
4997  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
4998  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
4999  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
5000  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
5001  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
5002  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
5003  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
5004  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
5005  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
5006  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
5007  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
5008  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
5009  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
5010  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
5011  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
5012  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
5013  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
5014  case ISD::PCMARKER:      return "PCMarker";
5015  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5016  case ISD::SRCVALUE:      return "SrcValue";
5017  case ISD::MEMOPERAND:    return "MemOperand";
5018  case ISD::EntryToken:    return "EntryToken";
5019  case ISD::TokenFactor:   return "TokenFactor";
5020  case ISD::AssertSext:    return "AssertSext";
5021  case ISD::AssertZext:    return "AssertZext";
5022
5023  case ISD::BasicBlock:    return "BasicBlock";
5024  case ISD::ARG_FLAGS:     return "ArgFlags";
5025  case ISD::VALUETYPE:     return "ValueType";
5026  case ISD::Register:      return "Register";
5027
5028  case ISD::Constant:      return "Constant";
5029  case ISD::ConstantFP:    return "ConstantFP";
5030  case ISD::GlobalAddress: return "GlobalAddress";
5031  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5032  case ISD::FrameIndex:    return "FrameIndex";
5033  case ISD::JumpTable:     return "JumpTable";
5034  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5035  case ISD::RETURNADDR: return "RETURNADDR";
5036  case ISD::FRAMEADDR: return "FRAMEADDR";
5037  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5038  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5039  case ISD::EHSELECTION: return "EHSELECTION";
5040  case ISD::EH_RETURN: return "EH_RETURN";
5041  case ISD::ConstantPool:  return "ConstantPool";
5042  case ISD::ExternalSymbol: return "ExternalSymbol";
5043  case ISD::INTRINSIC_WO_CHAIN: {
5044    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5045    return Intrinsic::getName((Intrinsic::ID)IID);
5046  }
5047  case ISD::INTRINSIC_VOID:
5048  case ISD::INTRINSIC_W_CHAIN: {
5049    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5050    return Intrinsic::getName((Intrinsic::ID)IID);
5051  }
5052
5053  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5054  case ISD::TargetConstant: return "TargetConstant";
5055  case ISD::TargetConstantFP:return "TargetConstantFP";
5056  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5057  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5058  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5059  case ISD::TargetJumpTable:  return "TargetJumpTable";
5060  case ISD::TargetConstantPool:  return "TargetConstantPool";
5061  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5062
5063  case ISD::CopyToReg:     return "CopyToReg";
5064  case ISD::CopyFromReg:   return "CopyFromReg";
5065  case ISD::UNDEF:         return "undef";
5066  case ISD::MERGE_VALUES:  return "merge_values";
5067  case ISD::INLINEASM:     return "inlineasm";
5068  case ISD::DBG_LABEL:     return "dbg_label";
5069  case ISD::EH_LABEL:      return "eh_label";
5070  case ISD::DECLARE:       return "declare";
5071  case ISD::HANDLENODE:    return "handlenode";
5072  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5073  case ISD::CALL:          return "call";
5074
5075  // Unary operators
5076  case ISD::FABS:   return "fabs";
5077  case ISD::FNEG:   return "fneg";
5078  case ISD::FSQRT:  return "fsqrt";
5079  case ISD::FSIN:   return "fsin";
5080  case ISD::FCOS:   return "fcos";
5081  case ISD::FPOWI:  return "fpowi";
5082  case ISD::FPOW:   return "fpow";
5083  case ISD::FTRUNC: return "ftrunc";
5084  case ISD::FFLOOR: return "ffloor";
5085  case ISD::FCEIL:  return "fceil";
5086  case ISD::FRINT:  return "frint";
5087  case ISD::FNEARBYINT: return "fnearbyint";
5088
5089  // Binary operators
5090  case ISD::ADD:    return "add";
5091  case ISD::SUB:    return "sub";
5092  case ISD::MUL:    return "mul";
5093  case ISD::MULHU:  return "mulhu";
5094  case ISD::MULHS:  return "mulhs";
5095  case ISD::SDIV:   return "sdiv";
5096  case ISD::UDIV:   return "udiv";
5097  case ISD::SREM:   return "srem";
5098  case ISD::UREM:   return "urem";
5099  case ISD::SMUL_LOHI:  return "smul_lohi";
5100  case ISD::UMUL_LOHI:  return "umul_lohi";
5101  case ISD::SDIVREM:    return "sdivrem";
5102  case ISD::UDIVREM:    return "udivrem";
5103  case ISD::AND:    return "and";
5104  case ISD::OR:     return "or";
5105  case ISD::XOR:    return "xor";
5106  case ISD::SHL:    return "shl";
5107  case ISD::SRA:    return "sra";
5108  case ISD::SRL:    return "srl";
5109  case ISD::ROTL:   return "rotl";
5110  case ISD::ROTR:   return "rotr";
5111  case ISD::FADD:   return "fadd";
5112  case ISD::FSUB:   return "fsub";
5113  case ISD::FMUL:   return "fmul";
5114  case ISD::FDIV:   return "fdiv";
5115  case ISD::FREM:   return "frem";
5116  case ISD::FCOPYSIGN: return "fcopysign";
5117  case ISD::FGETSIGN:  return "fgetsign";
5118
5119  case ISD::SETCC:       return "setcc";
5120  case ISD::VSETCC:      return "vsetcc";
5121  case ISD::SELECT:      return "select";
5122  case ISD::SELECT_CC:   return "select_cc";
5123  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5124  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5125  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5126  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5127  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5128  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5129  case ISD::CARRY_FALSE:         return "carry_false";
5130  case ISD::ADDC:        return "addc";
5131  case ISD::ADDE:        return "adde";
5132  case ISD::SUBC:        return "subc";
5133  case ISD::SUBE:        return "sube";
5134  case ISD::SHL_PARTS:   return "shl_parts";
5135  case ISD::SRA_PARTS:   return "sra_parts";
5136  case ISD::SRL_PARTS:   return "srl_parts";
5137
5138  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5139  case ISD::INSERT_SUBREG:      return "insert_subreg";
5140
5141  // Conversion operators.
5142  case ISD::SIGN_EXTEND: return "sign_extend";
5143  case ISD::ZERO_EXTEND: return "zero_extend";
5144  case ISD::ANY_EXTEND:  return "any_extend";
5145  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5146  case ISD::TRUNCATE:    return "truncate";
5147  case ISD::FP_ROUND:    return "fp_round";
5148  case ISD::FLT_ROUNDS_: return "flt_rounds";
5149  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5150  case ISD::FP_EXTEND:   return "fp_extend";
5151
5152  case ISD::SINT_TO_FP:  return "sint_to_fp";
5153  case ISD::UINT_TO_FP:  return "uint_to_fp";
5154  case ISD::FP_TO_SINT:  return "fp_to_sint";
5155  case ISD::FP_TO_UINT:  return "fp_to_uint";
5156  case ISD::BIT_CONVERT: return "bit_convert";
5157
5158    // Control flow instructions
5159  case ISD::BR:      return "br";
5160  case ISD::BRIND:   return "brind";
5161  case ISD::BR_JT:   return "br_jt";
5162  case ISD::BRCOND:  return "brcond";
5163  case ISD::BR_CC:   return "br_cc";
5164  case ISD::RET:     return "ret";
5165  case ISD::CALLSEQ_START:  return "callseq_start";
5166  case ISD::CALLSEQ_END:    return "callseq_end";
5167
5168    // Other operators
5169  case ISD::LOAD:               return "load";
5170  case ISD::STORE:              return "store";
5171  case ISD::VAARG:              return "vaarg";
5172  case ISD::VACOPY:             return "vacopy";
5173  case ISD::VAEND:              return "vaend";
5174  case ISD::VASTART:            return "vastart";
5175  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5176  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5177  case ISD::BUILD_PAIR:         return "build_pair";
5178  case ISD::STACKSAVE:          return "stacksave";
5179  case ISD::STACKRESTORE:       return "stackrestore";
5180  case ISD::TRAP:               return "trap";
5181
5182  // Bit manipulation
5183  case ISD::BSWAP:   return "bswap";
5184  case ISD::CTPOP:   return "ctpop";
5185  case ISD::CTTZ:    return "cttz";
5186  case ISD::CTLZ:    return "ctlz";
5187
5188  // Debug info
5189  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5190  case ISD::DEBUG_LOC: return "debug_loc";
5191
5192  // Trampolines
5193  case ISD::TRAMPOLINE: return "trampoline";
5194
5195  case ISD::CONDCODE:
5196    switch (cast<CondCodeSDNode>(this)->get()) {
5197    default: assert(0 && "Unknown setcc condition!");
5198    case ISD::SETOEQ:  return "setoeq";
5199    case ISD::SETOGT:  return "setogt";
5200    case ISD::SETOGE:  return "setoge";
5201    case ISD::SETOLT:  return "setolt";
5202    case ISD::SETOLE:  return "setole";
5203    case ISD::SETONE:  return "setone";
5204
5205    case ISD::SETO:    return "seto";
5206    case ISD::SETUO:   return "setuo";
5207    case ISD::SETUEQ:  return "setue";
5208    case ISD::SETUGT:  return "setugt";
5209    case ISD::SETUGE:  return "setuge";
5210    case ISD::SETULT:  return "setult";
5211    case ISD::SETULE:  return "setule";
5212    case ISD::SETUNE:  return "setune";
5213
5214    case ISD::SETEQ:   return "seteq";
5215    case ISD::SETGT:   return "setgt";
5216    case ISD::SETGE:   return "setge";
5217    case ISD::SETLT:   return "setlt";
5218    case ISD::SETLE:   return "setle";
5219    case ISD::SETNE:   return "setne";
5220    }
5221  }
5222}
5223
5224const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5225  switch (AM) {
5226  default:
5227    return "";
5228  case ISD::PRE_INC:
5229    return "<pre-inc>";
5230  case ISD::PRE_DEC:
5231    return "<pre-dec>";
5232  case ISD::POST_INC:
5233    return "<post-inc>";
5234  case ISD::POST_DEC:
5235    return "<post-dec>";
5236  }
5237}
5238
5239std::string ISD::ArgFlagsTy::getArgFlagsString() {
5240  std::string S = "< ";
5241
5242  if (isZExt())
5243    S += "zext ";
5244  if (isSExt())
5245    S += "sext ";
5246  if (isInReg())
5247    S += "inreg ";
5248  if (isSRet())
5249    S += "sret ";
5250  if (isByVal())
5251    S += "byval ";
5252  if (isNest())
5253    S += "nest ";
5254  if (getByValAlign())
5255    S += "byval-align:" + utostr(getByValAlign()) + " ";
5256  if (getOrigAlign())
5257    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5258  if (getByValSize())
5259    S += "byval-size:" + utostr(getByValSize()) + " ";
5260  return S + ">";
5261}
5262
5263void SDNode::dump() const { dump(0); }
5264void SDNode::dump(const SelectionDAG *G) const {
5265  print(errs(), G);
5266  errs().flush();
5267}
5268
5269void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5270  OS << (void*)this << ": ";
5271
5272  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5273    if (i) OS << ",";
5274    if (getValueType(i) == MVT::Other)
5275      OS << "ch";
5276    else
5277      OS << getValueType(i).getMVTString();
5278  }
5279  OS << " = " << getOperationName(G);
5280
5281  OS << " ";
5282  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5283    if (i) OS << ", ";
5284    OS << (void*)getOperand(i).getNode();
5285    if (unsigned RN = getOperand(i).getResNo())
5286      OS << ":" << RN;
5287  }
5288
5289  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5290    SDNode *Mask = getOperand(2).getNode();
5291    OS << "<";
5292    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5293      if (i) OS << ",";
5294      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5295        OS << "u";
5296      else
5297        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5298    }
5299    OS << ">";
5300  }
5301
5302  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5303    OS << '<' << CSDN->getAPIntValue() << '>';
5304  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5305    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5306      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5307    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5308      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5309    else {
5310      OS << "<APFloat(";
5311      CSDN->getValueAPF().bitcastToAPInt().dump();
5312      OS << ")>";
5313    }
5314  } else if (const GlobalAddressSDNode *GADN =
5315             dyn_cast<GlobalAddressSDNode>(this)) {
5316    int64_t offset = GADN->getOffset();
5317    OS << '<';
5318    WriteAsOperand(OS, GADN->getGlobal());
5319    OS << '>';
5320    if (offset > 0)
5321      OS << " + " << offset;
5322    else
5323      OS << " " << offset;
5324  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5325    OS << "<" << FIDN->getIndex() << ">";
5326  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5327    OS << "<" << JTDN->getIndex() << ">";
5328  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5329    int offset = CP->getOffset();
5330    if (CP->isMachineConstantPoolEntry())
5331      OS << "<" << *CP->getMachineCPVal() << ">";
5332    else
5333      OS << "<" << *CP->getConstVal() << ">";
5334    if (offset > 0)
5335      OS << " + " << offset;
5336    else
5337      OS << " " << offset;
5338  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5339    OS << "<";
5340    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5341    if (LBB)
5342      OS << LBB->getName() << " ";
5343    OS << (const void*)BBDN->getBasicBlock() << ">";
5344  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5345    if (G && R->getReg() &&
5346        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5347      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5348    } else {
5349      OS << " #" << R->getReg();
5350    }
5351  } else if (const ExternalSymbolSDNode *ES =
5352             dyn_cast<ExternalSymbolSDNode>(this)) {
5353    OS << "'" << ES->getSymbol() << "'";
5354  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5355    if (M->getValue())
5356      OS << "<" << M->getValue() << ">";
5357    else
5358      OS << "<null>";
5359  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5360    if (M->MO.getValue())
5361      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5362    else
5363      OS << "<null:" << M->MO.getOffset() << ">";
5364  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5365    OS << N->getArgFlags().getArgFlagsString();
5366  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5367    OS << ":" << N->getVT().getMVTString();
5368  }
5369  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5370    const Value *SrcValue = LD->getSrcValue();
5371    int SrcOffset = LD->getSrcValueOffset();
5372    OS << " <";
5373    if (SrcValue)
5374      OS << SrcValue;
5375    else
5376      OS << "null";
5377    OS << ":" << SrcOffset << ">";
5378
5379    bool doExt = true;
5380    switch (LD->getExtensionType()) {
5381    default: doExt = false; break;
5382    case ISD::EXTLOAD: OS << " <anyext "; break;
5383    case ISD::SEXTLOAD: OS << " <sext "; break;
5384    case ISD::ZEXTLOAD: OS << " <zext "; break;
5385    }
5386    if (doExt)
5387      OS << LD->getMemoryVT().getMVTString() << ">";
5388
5389    const char *AM = getIndexedModeName(LD->getAddressingMode());
5390    if (*AM)
5391      OS << " " << AM;
5392    if (LD->isVolatile())
5393      OS << " <volatile>";
5394    OS << " alignment=" << LD->getAlignment();
5395  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5396    const Value *SrcValue = ST->getSrcValue();
5397    int SrcOffset = ST->getSrcValueOffset();
5398    OS << " <";
5399    if (SrcValue)
5400      OS << SrcValue;
5401    else
5402      OS << "null";
5403    OS << ":" << SrcOffset << ">";
5404
5405    if (ST->isTruncatingStore())
5406      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5407
5408    const char *AM = getIndexedModeName(ST->getAddressingMode());
5409    if (*AM)
5410      OS << " " << AM;
5411    if (ST->isVolatile())
5412      OS << " <volatile>";
5413    OS << " alignment=" << ST->getAlignment();
5414  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5415    const Value *SrcValue = AT->getSrcValue();
5416    int SrcOffset = AT->getSrcValueOffset();
5417    OS << " <";
5418    if (SrcValue)
5419      OS << SrcValue;
5420    else
5421      OS << "null";
5422    OS << ":" << SrcOffset << ">";
5423    if (AT->isVolatile())
5424      OS << " <volatile>";
5425    OS << " alignment=" << AT->getAlignment();
5426  }
5427}
5428
5429static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5430  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5431    if (N->getOperand(i).getNode()->hasOneUse())
5432      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5433    else
5434      cerr << "\n" << std::string(indent+2, ' ')
5435           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5436
5437
5438  cerr << "\n" << std::string(indent, ' ');
5439  N->dump(G);
5440}
5441
5442void SelectionDAG::dump() const {
5443  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5444
5445  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5446       I != E; ++I) {
5447    const SDNode *N = I;
5448    if (!N->hasOneUse() && N != getRoot().getNode())
5449      DumpNodes(N, 2, this);
5450  }
5451
5452  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5453
5454  cerr << "\n\n";
5455}
5456
5457const Type *ConstantPoolSDNode::getType() const {
5458  if (isMachineConstantPoolEntry())
5459    return Val.MachineCPVal->getType();
5460  return Val.ConstVal->getType();
5461}
5462