SelectionDAG.cpp revision de6e783b2490447866b592cd39855e6f4d25efff
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/System/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f32:     return &APFloat::IEEEsingle;
66  case MVT::f64:     return &APFloat::IEEEdouble;
67  case MVT::f80:     return &APFloat::x87DoubleExtended;
68  case MVT::f128:    return &APFloat::IEEEquad;
69  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70  }
71}
72
73SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74
75//===----------------------------------------------------------------------===//
76//                              ConstantFPSDNode Class
77//===----------------------------------------------------------------------===//
78
79/// isExactlyValue - We don't rely on operator== working on double values, as
80/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81/// As such, this method can be used to do an exact bit-for-bit comparison of
82/// two floating point values.
83bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84  return getValueAPF().bitwiseIsEqual(V);
85}
86
87bool ConstantFPSDNode::isValueValidForType(EVT VT,
88                                           const APFloat& Val) {
89  assert(VT.isFloatingPoint() && "Can only convert between FP types");
90
91  // PPC long double cannot be converted to any other type.
92  if (VT == MVT::ppcf128 ||
93      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94    return false;
95
96  // convert modifies in place, so make a copy.
97  APFloat Val2 = APFloat(Val);
98  bool losesInfo;
99  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100                      &losesInfo);
101  return !losesInfo;
102}
103
104//===----------------------------------------------------------------------===//
105//                              ISD Namespace
106//===----------------------------------------------------------------------===//
107
108/// isBuildVectorAllOnes - Return true if the specified node is a
109/// BUILD_VECTOR where all of the elements are ~0 or undef.
110bool ISD::isBuildVectorAllOnes(const SDNode *N) {
111  // Look through a bit convert.
112  if (N->getOpcode() == ISD::BIT_CONVERT)
113    N = N->getOperand(0).getNode();
114
115  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116
117  unsigned i = 0, e = N->getNumOperands();
118
119  // Skip over all of the undef values.
120  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121    ++i;
122
123  // Do not accept an all-undef vector.
124  if (i == e) return false;
125
126  // Do not accept build_vectors that aren't all constants or which have non-~0
127  // elements.
128  SDValue NotZero = N->getOperand(i);
129  if (isa<ConstantSDNode>(NotZero)) {
130    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131      return false;
132  } else if (isa<ConstantFPSDNode>(NotZero)) {
133    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134                bitcastToAPInt().isAllOnesValue())
135      return false;
136  } else
137    return false;
138
139  // Okay, we have at least one ~0 value, check to see if the rest match or are
140  // undefs.
141  for (++i; i != e; ++i)
142    if (N->getOperand(i) != NotZero &&
143        N->getOperand(i).getOpcode() != ISD::UNDEF)
144      return false;
145  return true;
146}
147
148
149/// isBuildVectorAllZeros - Return true if the specified node is a
150/// BUILD_VECTOR where all of the elements are 0 or undef.
151bool ISD::isBuildVectorAllZeros(const SDNode *N) {
152  // Look through a bit convert.
153  if (N->getOpcode() == ISD::BIT_CONVERT)
154    N = N->getOperand(0).getNode();
155
156  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157
158  unsigned i = 0, e = N->getNumOperands();
159
160  // Skip over all of the undef values.
161  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162    ++i;
163
164  // Do not accept an all-undef vector.
165  if (i == e) return false;
166
167  // Do not accept build_vectors that aren't all constants or which have non-0
168  // elements.
169  SDValue Zero = N->getOperand(i);
170  if (isa<ConstantSDNode>(Zero)) {
171    if (!cast<ConstantSDNode>(Zero)->isNullValue())
172      return false;
173  } else if (isa<ConstantFPSDNode>(Zero)) {
174    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175      return false;
176  } else
177    return false;
178
179  // Okay, we have at least one 0 value, check to see if the rest match or are
180  // undefs.
181  for (++i; i != e; ++i)
182    if (N->getOperand(i) != Zero &&
183        N->getOperand(i).getOpcode() != ISD::UNDEF)
184      return false;
185  return true;
186}
187
188/// isScalarToVector - Return true if the specified node is a
189/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190/// element is not an undef.
191bool ISD::isScalarToVector(const SDNode *N) {
192  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193    return true;
194
195  if (N->getOpcode() != ISD::BUILD_VECTOR)
196    return false;
197  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198    return false;
199  unsigned NumElems = N->getNumOperands();
200  for (unsigned i = 1; i < NumElems; ++i) {
201    SDValue V = N->getOperand(i);
202    if (V.getOpcode() != ISD::UNDEF)
203      return false;
204  }
205  return true;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211  // To perform this operation, we just need to swap the L and G bits of the
212  // operation.
213  unsigned OldL = (Operation >> 2) & 1;
214  unsigned OldG = (Operation >> 1) & 1;
215  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216                       (OldL << 1) |       // New G bit
217                       (OldG << 2));       // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223  unsigned Operation = Op;
224  if (isInteger)
225    Operation ^= 7;   // Flip L, G, E bits, but not U.
226  else
227    Operation ^= 15;  // Flip all of the condition bits.
228
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;  // Don't let N and U bits get set.
231
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: llvm_unreachable("Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return MF->getTarget();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getNode());
343    ID.AddInteger(Ops->getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356/// the NodeID data.
357static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358  switch (N->getOpcode()) {
359  case ISD::TargetExternalSymbol:
360  case ISD::ExternalSymbol:
361    llvm_unreachable("Should only be used on nodes with operands");
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::TargetConstant:
364  case ISD::Constant:
365    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366    break;
367  case ISD::TargetConstantFP:
368  case ISD::ConstantFP: {
369    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370    break;
371  }
372  case ISD::TargetGlobalAddress:
373  case ISD::GlobalAddress:
374  case ISD::TargetGlobalTLSAddress:
375  case ISD::GlobalTLSAddress: {
376    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377    ID.AddPointer(GA->getGlobal());
378    ID.AddInteger(GA->getOffset());
379    ID.AddInteger(GA->getTargetFlags());
380    break;
381  }
382  case ISD::BasicBlock:
383    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384    break;
385  case ISD::Register:
386    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387    break;
388
389  case ISD::SRCVALUE:
390    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391    break;
392  case ISD::FrameIndex:
393  case ISD::TargetFrameIndex:
394    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395    break;
396  case ISD::JumpTable:
397  case ISD::TargetJumpTable:
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    ID.AddInteger(CP->getTargetFlags());
411    break;
412  }
413  case ISD::LOAD: {
414    const LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getMemoryVT().getRawBits());
416    ID.AddInteger(LD->getRawSubclassData());
417    break;
418  }
419  case ISD::STORE: {
420    const StoreSDNode *ST = cast<StoreSDNode>(N);
421    ID.AddInteger(ST->getMemoryVT().getRawBits());
422    ID.AddInteger(ST->getRawSubclassData());
423    break;
424  }
425  case ISD::ATOMIC_CMP_SWAP:
426  case ISD::ATOMIC_SWAP:
427  case ISD::ATOMIC_LOAD_ADD:
428  case ISD::ATOMIC_LOAD_SUB:
429  case ISD::ATOMIC_LOAD_AND:
430  case ISD::ATOMIC_LOAD_OR:
431  case ISD::ATOMIC_LOAD_XOR:
432  case ISD::ATOMIC_LOAD_NAND:
433  case ISD::ATOMIC_LOAD_MIN:
434  case ISD::ATOMIC_LOAD_MAX:
435  case ISD::ATOMIC_LOAD_UMIN:
436  case ISD::ATOMIC_LOAD_UMAX: {
437    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438    ID.AddInteger(AT->getMemoryVT().getRawBits());
439    ID.AddInteger(AT->getRawSubclassData());
440    break;
441  }
442  case ISD::VECTOR_SHUFFLE: {
443    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445         i != e; ++i)
446      ID.AddInteger(SVN->getMaskElt(i));
447    break;
448  }
449  case ISD::TargetBlockAddress:
450  case ISD::BlockAddress: {
451    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453    break;
454  }
455  } // end switch (N->getOpcode())
456}
457
458/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459/// data.
460static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461  AddNodeIDOpcode(ID, N->getOpcode());
462  // Add the return value info.
463  AddNodeIDValueTypes(ID, N->getVTList());
464  // Add the operand info.
465  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466
467  // Handle SDNode leafs with special info.
468  AddNodeIDCustom(ID, N);
469}
470
471/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472/// the CSE map that carries volatility, temporalness, indexing mode, and
473/// extension/truncation information.
474///
475static inline unsigned
476encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477                     bool isNonTemporal) {
478  assert((ConvType & 3) == ConvType &&
479         "ConvType may not require more than 2 bits!");
480  assert((AM & 7) == AM &&
481         "AM may not require more than 3 bits!");
482  return ConvType |
483         (AM << 2) |
484         (isVolatile << 5) |
485         (isNonTemporal << 6);
486}
487
488//===----------------------------------------------------------------------===//
489//                              SelectionDAG Class
490//===----------------------------------------------------------------------===//
491
492/// doNotCSE - Return true if CSE should not be performed for this node.
493static bool doNotCSE(SDNode *N) {
494  if (N->getValueType(0) == MVT::Flag)
495    return true; // Never CSE anything that produces a flag.
496
497  switch (N->getOpcode()) {
498  default: break;
499  case ISD::HANDLENODE:
500  case ISD::EH_LABEL:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.pop_back_val();
541
542    if (UpdateListener)
543      UpdateListener->NodeDeleted(N, 0);
544
545    // Take the node out of the appropriate CSE map.
546    RemoveNodeFromCSEMaps(N);
547
548    // Next, brutally remove the operand list.  This is safe to do, as there are
549    // no cycles in the graph.
550    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551      SDUse &Use = *I++;
552      SDNode *Operand = Use.getNode();
553      Use.set(SDValue());
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  // First take this out of the appropriate CSE map.
571  RemoveNodeFromCSEMaps(N);
572
573  // Finally, remove uses due to operands of this node, remove from the
574  // AllNodes list, and delete the node.
575  DeleteNodeNotInCSEMaps(N);
576}
577
578void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581
582  // Drop all of the operands and decrement used node's use counts.
583  N->DropOperands();
584
585  DeallocateNode(N);
586}
587
588void SelectionDAG::DeallocateNode(SDNode *N) {
589  if (N->OperandsNeedDelete)
590    delete[] N->OperandList;
591
592  // Set the opcode to DELETED_NODE to help catch bugs when node
593  // memory is reallocated.
594  N->NodeType = ISD::DELETED_NODE;
595
596  NodeAllocator.Deallocate(AllNodes.remove(N));
597
598  // Remove the ordering of this node.
599  Ordering->remove(N);
600
601  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
602  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
603  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
604    DbgVals[i]->setIsInvalidated();
605}
606
607/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
608/// correspond to it.  This is useful when we're about to delete or repurpose
609/// the node.  We don't want future request for structurally identical nodes
610/// to return N anymore.
611bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
612  bool Erased = false;
613  switch (N->getOpcode()) {
614  case ISD::EntryToken:
615    llvm_unreachable("EntryToken should not be in CSEMaps!");
616    return false;
617  case ISD::HANDLENODE: return false;  // noop.
618  case ISD::CONDCODE:
619    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
620           "Cond code doesn't exist!");
621    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
622    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
623    break;
624  case ISD::ExternalSymbol:
625    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
626    break;
627  case ISD::TargetExternalSymbol: {
628    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
629    Erased = TargetExternalSymbols.erase(
630               std::pair<std::string,unsigned char>(ESN->getSymbol(),
631                                                    ESN->getTargetFlags()));
632    break;
633  }
634  case ISD::VALUETYPE: {
635    EVT VT = cast<VTSDNode>(N)->getVT();
636    if (VT.isExtended()) {
637      Erased = ExtendedValueTypeNodes.erase(VT);
638    } else {
639      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
640      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
641    }
642    break;
643  }
644  default:
645    // Remove it from the CSE Map.
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
749void SelectionDAG::VerifyNode(SDNode *N) {
750  switch (N->getOpcode()) {
751  default:
752    break;
753  case ISD::BUILD_PAIR: {
754    EVT VT = N->getValueType(0);
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757           "Wrong return type!");
758    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760           "Mismatched operand types!");
761    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762           "Wrong operand type!");
763    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764           "Wrong return type size");
765    break;
766  }
767  case ISD::BUILD_VECTOR: {
768    assert(N->getNumValues() == 1 && "Too many results!");
769    assert(N->getValueType(0).isVector() && "Wrong return type!");
770    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771           "Wrong number of operands!");
772    EVT EltVT = N->getValueType(0).getVectorElementType();
773    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774      assert((I->getValueType() == EltVT ||
775             (EltVT.isInteger() && I->getValueType().isInteger() &&
776              EltVT.bitsLE(I->getValueType()))) &&
777            "Wrong operand type!");
778    break;
779  }
780  }
781}
782
783/// getEVTAlignment - Compute the default alignment value for the
784/// given type.
785///
786unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
787  const Type *Ty = VT == MVT::iPTR ?
788                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
789                   VT.getTypeForEVT(*getContext());
790
791  return TLI.getTargetData()->getABITypeAlignment(Ty);
792}
793
794// EntryNode could meaningfully have debug info if we can find it...
795SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
796  : TLI(tli), FLI(fli),
797    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
798    Root(getEntryNode()), Ordering(0) {
799  AllNodes.push_back(&EntryNode);
800  Ordering = new SDNodeOrdering();
801  DbgInfo = new SDDbgInfo();
802}
803
804void SelectionDAG::init(MachineFunction &mf) {
805  MF = &mf;
806  MMI = &mf.getMMI();
807  Context = &mf.getFunction()->getContext();
808}
809
810SelectionDAG::~SelectionDAG() {
811  allnodes_clear();
812  delete Ordering;
813  DbgInfo->clear();
814  delete DbgInfo;
815}
816
817void SelectionDAG::allnodes_clear() {
818  assert(&*AllNodes.begin() == &EntryNode);
819  AllNodes.remove(AllNodes.begin());
820  while (!AllNodes.empty())
821    DeallocateNode(AllNodes.begin());
822}
823
824void SelectionDAG::clear() {
825  allnodes_clear();
826  OperandAllocator.Reset();
827  CSEMap.clear();
828
829  ExtendedValueTypeNodes.clear();
830  ExternalSymbols.clear();
831  TargetExternalSymbols.clear();
832  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
833            static_cast<CondCodeSDNode*>(0));
834  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
835            static_cast<SDNode*>(0));
836
837  EntryNode.UseList = 0;
838  AllNodes.push_back(&EntryNode);
839  Root = getEntryNode();
840  delete Ordering;
841  Ordering = new SDNodeOrdering();
842  DbgInfo->clear();
843  delete DbgInfo;
844  DbgInfo = new SDDbgInfo();
845}
846
847SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
848  return VT.bitsGT(Op.getValueType()) ?
849    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
850    getNode(ISD::TRUNCATE, DL, VT, Op);
851}
852
853SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
854  return VT.bitsGT(Op.getValueType()) ?
855    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
856    getNode(ISD::TRUNCATE, DL, VT, Op);
857}
858
859SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
860  assert(!VT.isVector() &&
861         "getZeroExtendInReg should use the vector element type instead of "
862         "the vector type!");
863  if (Op.getValueType() == VT) return Op;
864  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
865  APInt Imm = APInt::getLowBitsSet(BitWidth,
866                                   VT.getSizeInBits());
867  return getNode(ISD::AND, DL, Op.getValueType(), Op,
868                 getConstant(Imm, Op.getValueType()));
869}
870
871/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
872///
873SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
874  EVT EltVT = VT.getScalarType();
875  SDValue NegOne =
876    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
877  return getNode(ISD::XOR, DL, VT, Val, NegOne);
878}
879
880SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
881  EVT EltVT = VT.getScalarType();
882  assert((EltVT.getSizeInBits() >= 64 ||
883         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
884         "getConstant with a uint64_t value that doesn't fit in the type!");
885  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
886}
887
888SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
889  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
890}
891
892SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
893  assert(VT.isInteger() && "Cannot create FP integer constant!");
894
895  EVT EltVT = VT.getScalarType();
896  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
897         "APInt size does not match type size!");
898
899  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
900  FoldingSetNodeID ID;
901  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
902  ID.AddPointer(&Val);
903  void *IP = 0;
904  SDNode *N = NULL;
905  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
906    if (!VT.isVector())
907      return SDValue(N, 0);
908
909  if (!N) {
910    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
911    CSEMap.InsertNode(N, IP);
912    AllNodes.push_back(N);
913  }
914
915  SDValue Result(N, 0);
916  if (VT.isVector()) {
917    SmallVector<SDValue, 8> Ops;
918    Ops.assign(VT.getVectorNumElements(), Result);
919    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
920  }
921  return Result;
922}
923
924SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
925  return getConstant(Val, TLI.getPointerTy(), isTarget);
926}
927
928
929SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
930  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
931}
932
933SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
934  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
935
936  EVT EltVT = VT.getScalarType();
937
938  // Do the map lookup using the actual bit pattern for the floating point
939  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
940  // we don't have issues with SNANs.
941  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
942  FoldingSetNodeID ID;
943  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
944  ID.AddPointer(&V);
945  void *IP = 0;
946  SDNode *N = NULL;
947  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
948    if (!VT.isVector())
949      return SDValue(N, 0);
950
951  if (!N) {
952    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
953    CSEMap.InsertNode(N, IP);
954    AllNodes.push_back(N);
955  }
956
957  SDValue Result(N, 0);
958  if (VT.isVector()) {
959    SmallVector<SDValue, 8> Ops;
960    Ops.assign(VT.getVectorNumElements(), Result);
961    // FIXME DebugLoc info might be appropriate here
962    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
963  }
964  return Result;
965}
966
967SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
968  EVT EltVT = VT.getScalarType();
969  if (EltVT==MVT::f32)
970    return getConstantFP(APFloat((float)Val), VT, isTarget);
971  else
972    return getConstantFP(APFloat(Val), VT, isTarget);
973}
974
975SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
976                                       EVT VT, int64_t Offset,
977                                       bool isTargetGA,
978                                       unsigned char TargetFlags) {
979  assert((TargetFlags == 0 || isTargetGA) &&
980         "Cannot set target flags on target-independent globals");
981
982  // Truncate (with sign-extension) the offset value to the pointer size.
983  EVT PTy = TLI.getPointerTy();
984  unsigned BitWidth = PTy.getSizeInBits();
985  if (BitWidth < 64)
986    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
987
988  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
989  if (!GVar) {
990    // If GV is an alias then use the aliasee for determining thread-localness.
991    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
992      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
993  }
994
995  unsigned Opc;
996  if (GVar && GVar->isThreadLocal())
997    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
998  else
999    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1000
1001  FoldingSetNodeID ID;
1002  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1003  ID.AddPointer(GV);
1004  ID.AddInteger(Offset);
1005  ID.AddInteger(TargetFlags);
1006  void *IP = 0;
1007  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1008    return SDValue(E, 0);
1009
1010  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1011                                                      Offset, TargetFlags);
1012  CSEMap.InsertNode(N, IP);
1013  AllNodes.push_back(N);
1014  return SDValue(N, 0);
1015}
1016
1017SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1018  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1019  FoldingSetNodeID ID;
1020  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1021  ID.AddInteger(FI);
1022  void *IP = 0;
1023  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1024    return SDValue(E, 0);
1025
1026  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1027  CSEMap.InsertNode(N, IP);
1028  AllNodes.push_back(N);
1029  return SDValue(N, 0);
1030}
1031
1032SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1033                                   unsigned char TargetFlags) {
1034  assert((TargetFlags == 0 || isTarget) &&
1035         "Cannot set target flags on target-independent jump tables");
1036  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1037  FoldingSetNodeID ID;
1038  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1039  ID.AddInteger(JTI);
1040  ID.AddInteger(TargetFlags);
1041  void *IP = 0;
1042  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1043    return SDValue(E, 0);
1044
1045  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1046                                                  TargetFlags);
1047  CSEMap.InsertNode(N, IP);
1048  AllNodes.push_back(N);
1049  return SDValue(N, 0);
1050}
1051
1052SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1053                                      unsigned Alignment, int Offset,
1054                                      bool isTarget,
1055                                      unsigned char TargetFlags) {
1056  assert((TargetFlags == 0 || isTarget) &&
1057         "Cannot set target flags on target-independent globals");
1058  if (Alignment == 0)
1059    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1060  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1061  FoldingSetNodeID ID;
1062  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1063  ID.AddInteger(Alignment);
1064  ID.AddInteger(Offset);
1065  ID.AddPointer(C);
1066  ID.AddInteger(TargetFlags);
1067  void *IP = 0;
1068  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1069    return SDValue(E, 0);
1070
1071  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1072                                                     Alignment, TargetFlags);
1073  CSEMap.InsertNode(N, IP);
1074  AllNodes.push_back(N);
1075  return SDValue(N, 0);
1076}
1077
1078
1079SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1080                                      unsigned Alignment, int Offset,
1081                                      bool isTarget,
1082                                      unsigned char TargetFlags) {
1083  assert((TargetFlags == 0 || isTarget) &&
1084         "Cannot set target flags on target-independent globals");
1085  if (Alignment == 0)
1086    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1087  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1088  FoldingSetNodeID ID;
1089  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1090  ID.AddInteger(Alignment);
1091  ID.AddInteger(Offset);
1092  C->AddSelectionDAGCSEId(ID);
1093  ID.AddInteger(TargetFlags);
1094  void *IP = 0;
1095  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1096    return SDValue(E, 0);
1097
1098  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1099                                                     Alignment, TargetFlags);
1100  CSEMap.InsertNode(N, IP);
1101  AllNodes.push_back(N);
1102  return SDValue(N, 0);
1103}
1104
1105SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1106  FoldingSetNodeID ID;
1107  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1108  ID.AddPointer(MBB);
1109  void *IP = 0;
1110  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1111    return SDValue(E, 0);
1112
1113  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1114  CSEMap.InsertNode(N, IP);
1115  AllNodes.push_back(N);
1116  return SDValue(N, 0);
1117}
1118
1119SDValue SelectionDAG::getValueType(EVT VT) {
1120  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1121      ValueTypeNodes.size())
1122    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1123
1124  SDNode *&N = VT.isExtended() ?
1125    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1126
1127  if (N) return SDValue(N, 0);
1128  N = new (NodeAllocator) VTSDNode(VT);
1129  AllNodes.push_back(N);
1130  return SDValue(N, 0);
1131}
1132
1133SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1134  SDNode *&N = ExternalSymbols[Sym];
1135  if (N) return SDValue(N, 0);
1136  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1137  AllNodes.push_back(N);
1138  return SDValue(N, 0);
1139}
1140
1141SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1142                                              unsigned char TargetFlags) {
1143  SDNode *&N =
1144    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1145                                                               TargetFlags)];
1146  if (N) return SDValue(N, 0);
1147  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1148  AllNodes.push_back(N);
1149  return SDValue(N, 0);
1150}
1151
1152SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1153  if ((unsigned)Cond >= CondCodeNodes.size())
1154    CondCodeNodes.resize(Cond+1);
1155
1156  if (CondCodeNodes[Cond] == 0) {
1157    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1158    CondCodeNodes[Cond] = N;
1159    AllNodes.push_back(N);
1160  }
1161
1162  return SDValue(CondCodeNodes[Cond], 0);
1163}
1164
1165// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1166// the shuffle mask M that point at N1 to point at N2, and indices that point
1167// N2 to point at N1.
1168static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1169  std::swap(N1, N2);
1170  int NElts = M.size();
1171  for (int i = 0; i != NElts; ++i) {
1172    if (M[i] >= NElts)
1173      M[i] -= NElts;
1174    else if (M[i] >= 0)
1175      M[i] += NElts;
1176  }
1177}
1178
1179SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1180                                       SDValue N2, const int *Mask) {
1181  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1182  assert(VT.isVector() && N1.getValueType().isVector() &&
1183         "Vector Shuffle VTs must be a vectors");
1184  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1185         && "Vector Shuffle VTs must have same element type");
1186
1187  // Canonicalize shuffle undef, undef -> undef
1188  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1189    return getUNDEF(VT);
1190
1191  // Validate that all indices in Mask are within the range of the elements
1192  // input to the shuffle.
1193  unsigned NElts = VT.getVectorNumElements();
1194  SmallVector<int, 8> MaskVec;
1195  for (unsigned i = 0; i != NElts; ++i) {
1196    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1197    MaskVec.push_back(Mask[i]);
1198  }
1199
1200  // Canonicalize shuffle v, v -> v, undef
1201  if (N1 == N2) {
1202    N2 = getUNDEF(VT);
1203    for (unsigned i = 0; i != NElts; ++i)
1204      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1205  }
1206
1207  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1208  if (N1.getOpcode() == ISD::UNDEF)
1209    commuteShuffle(N1, N2, MaskVec);
1210
1211  // Canonicalize all index into lhs, -> shuffle lhs, undef
1212  // Canonicalize all index into rhs, -> shuffle rhs, undef
1213  bool AllLHS = true, AllRHS = true;
1214  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1215  for (unsigned i = 0; i != NElts; ++i) {
1216    if (MaskVec[i] >= (int)NElts) {
1217      if (N2Undef)
1218        MaskVec[i] = -1;
1219      else
1220        AllLHS = false;
1221    } else if (MaskVec[i] >= 0) {
1222      AllRHS = false;
1223    }
1224  }
1225  if (AllLHS && AllRHS)
1226    return getUNDEF(VT);
1227  if (AllLHS && !N2Undef)
1228    N2 = getUNDEF(VT);
1229  if (AllRHS) {
1230    N1 = getUNDEF(VT);
1231    commuteShuffle(N1, N2, MaskVec);
1232  }
1233
1234  // If Identity shuffle, or all shuffle in to undef, return that node.
1235  bool AllUndef = true;
1236  bool Identity = true;
1237  for (unsigned i = 0; i != NElts; ++i) {
1238    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1239    if (MaskVec[i] >= 0) AllUndef = false;
1240  }
1241  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1242    return N1;
1243  if (AllUndef)
1244    return getUNDEF(VT);
1245
1246  FoldingSetNodeID ID;
1247  SDValue Ops[2] = { N1, N2 };
1248  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1249  for (unsigned i = 0; i != NElts; ++i)
1250    ID.AddInteger(MaskVec[i]);
1251
1252  void* IP = 0;
1253  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1254    return SDValue(E, 0);
1255
1256  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1257  // SDNode doesn't have access to it.  This memory will be "leaked" when
1258  // the node is deallocated, but recovered when the NodeAllocator is released.
1259  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1260  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1261
1262  ShuffleVectorSDNode *N =
1263    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1264  CSEMap.InsertNode(N, IP);
1265  AllNodes.push_back(N);
1266  return SDValue(N, 0);
1267}
1268
1269SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1270                                       SDValue Val, SDValue DTy,
1271                                       SDValue STy, SDValue Rnd, SDValue Sat,
1272                                       ISD::CvtCode Code) {
1273  // If the src and dest types are the same and the conversion is between
1274  // integer types of the same sign or two floats, no conversion is necessary.
1275  if (DTy == STy &&
1276      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1277    return Val;
1278
1279  FoldingSetNodeID ID;
1280  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1281  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1282  void* IP = 0;
1283  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1284    return SDValue(E, 0);
1285
1286  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1287                                                           Code);
1288  CSEMap.InsertNode(N, IP);
1289  AllNodes.push_back(N);
1290  return SDValue(N, 0);
1291}
1292
1293SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1294  FoldingSetNodeID ID;
1295  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1296  ID.AddInteger(RegNo);
1297  void *IP = 0;
1298  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1299    return SDValue(E, 0);
1300
1301  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1302  CSEMap.InsertNode(N, IP);
1303  AllNodes.push_back(N);
1304  return SDValue(N, 0);
1305}
1306
1307SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1308  FoldingSetNodeID ID;
1309  SDValue Ops[] = { Root };
1310  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1311  ID.AddPointer(Label);
1312  void *IP = 0;
1313  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1314    return SDValue(E, 0);
1315
1316  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1317  CSEMap.InsertNode(N, IP);
1318  AllNodes.push_back(N);
1319  return SDValue(N, 0);
1320}
1321
1322
1323SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1324                                      bool isTarget,
1325                                      unsigned char TargetFlags) {
1326  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1327
1328  FoldingSetNodeID ID;
1329  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1330  ID.AddPointer(BA);
1331  ID.AddInteger(TargetFlags);
1332  void *IP = 0;
1333  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1334    return SDValue(E, 0);
1335
1336  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1337  CSEMap.InsertNode(N, IP);
1338  AllNodes.push_back(N);
1339  return SDValue(N, 0);
1340}
1341
1342SDValue SelectionDAG::getSrcValue(const Value *V) {
1343  assert((!V || V->getType()->isPointerTy()) &&
1344         "SrcValue is not a pointer?");
1345
1346  FoldingSetNodeID ID;
1347  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1348  ID.AddPointer(V);
1349
1350  void *IP = 0;
1351  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1352    return SDValue(E, 0);
1353
1354  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1355  CSEMap.InsertNode(N, IP);
1356  AllNodes.push_back(N);
1357  return SDValue(N, 0);
1358}
1359
1360/// getShiftAmountOperand - Return the specified value casted to
1361/// the target's desired shift amount type.
1362SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1363  EVT OpTy = Op.getValueType();
1364  MVT ShTy = TLI.getShiftAmountTy();
1365  if (OpTy == ShTy || OpTy.isVector()) return Op;
1366
1367  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1368  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1369}
1370
1371/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1372/// specified value type.
1373SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1374  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1375  unsigned ByteSize = VT.getStoreSize();
1376  const Type *Ty = VT.getTypeForEVT(*getContext());
1377  unsigned StackAlign =
1378  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1379
1380  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1381  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1382}
1383
1384/// CreateStackTemporary - Create a stack temporary suitable for holding
1385/// either of the specified value types.
1386SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1387  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1388                            VT2.getStoreSizeInBits())/8;
1389  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1390  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1391  const TargetData *TD = TLI.getTargetData();
1392  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1393                            TD->getPrefTypeAlignment(Ty2));
1394
1395  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1396  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1397  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1398}
1399
1400SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1401                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1402  // These setcc operations always fold.
1403  switch (Cond) {
1404  default: break;
1405  case ISD::SETFALSE:
1406  case ISD::SETFALSE2: return getConstant(0, VT);
1407  case ISD::SETTRUE:
1408  case ISD::SETTRUE2:  return getConstant(1, VT);
1409
1410  case ISD::SETOEQ:
1411  case ISD::SETOGT:
1412  case ISD::SETOGE:
1413  case ISD::SETOLT:
1414  case ISD::SETOLE:
1415  case ISD::SETONE:
1416  case ISD::SETO:
1417  case ISD::SETUO:
1418  case ISD::SETUEQ:
1419  case ISD::SETUNE:
1420    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1421    break;
1422  }
1423
1424  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1425    const APInt &C2 = N2C->getAPIntValue();
1426    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1427      const APInt &C1 = N1C->getAPIntValue();
1428
1429      switch (Cond) {
1430      default: llvm_unreachable("Unknown integer setcc!");
1431      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1432      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1433      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1434      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1435      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1436      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1437      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1438      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1439      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1440      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1441      }
1442    }
1443  }
1444  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1445    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1446      // No compile time operations on this type yet.
1447      if (N1C->getValueType(0) == MVT::ppcf128)
1448        return SDValue();
1449
1450      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1451      switch (Cond) {
1452      default: break;
1453      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1454                          return getUNDEF(VT);
1455                        // fall through
1456      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1457      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1458                          return getUNDEF(VT);
1459                        // fall through
1460      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1461                                           R==APFloat::cmpLessThan, VT);
1462      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1463                          return getUNDEF(VT);
1464                        // fall through
1465      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1466      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1467                          return getUNDEF(VT);
1468                        // fall through
1469      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1470      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1471                          return getUNDEF(VT);
1472                        // fall through
1473      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1474                                           R==APFloat::cmpEqual, VT);
1475      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1476                          return getUNDEF(VT);
1477                        // fall through
1478      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1479                                           R==APFloat::cmpEqual, VT);
1480      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1481      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1482      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1483                                           R==APFloat::cmpEqual, VT);
1484      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1485      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1486                                           R==APFloat::cmpLessThan, VT);
1487      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1488                                           R==APFloat::cmpUnordered, VT);
1489      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1490      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1491      }
1492    } else {
1493      // Ensure that the constant occurs on the RHS.
1494      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1495    }
1496  }
1497
1498  // Could not fold it.
1499  return SDValue();
1500}
1501
1502/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1503/// use this predicate to simplify operations downstream.
1504bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1505  // This predicate is not safe for vector operations.
1506  if (Op.getValueType().isVector())
1507    return false;
1508
1509  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1510  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1511}
1512
1513/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1514/// this predicate to simplify operations downstream.  Mask is known to be zero
1515/// for bits that V cannot have.
1516bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1517                                     unsigned Depth) const {
1518  APInt KnownZero, KnownOne;
1519  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1520  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1521  return (KnownZero & Mask) == Mask;
1522}
1523
1524/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1525/// known to be either zero or one and return them in the KnownZero/KnownOne
1526/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1527/// processing.
1528void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1529                                     APInt &KnownZero, APInt &KnownOne,
1530                                     unsigned Depth) const {
1531  unsigned BitWidth = Mask.getBitWidth();
1532  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1533         "Mask size mismatches value type size!");
1534
1535  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1536  if (Depth == 6 || Mask == 0)
1537    return;  // Limit search depth.
1538
1539  APInt KnownZero2, KnownOne2;
1540
1541  switch (Op.getOpcode()) {
1542  case ISD::Constant:
1543    // We know all of the bits for a constant!
1544    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1545    KnownZero = ~KnownOne & Mask;
1546    return;
1547  case ISD::AND:
1548    // If either the LHS or the RHS are Zero, the result is zero.
1549    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1550    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1551                      KnownZero2, KnownOne2, Depth+1);
1552    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1553    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1554
1555    // Output known-1 bits are only known if set in both the LHS & RHS.
1556    KnownOne &= KnownOne2;
1557    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1558    KnownZero |= KnownZero2;
1559    return;
1560  case ISD::OR:
1561    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1562    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1563                      KnownZero2, KnownOne2, Depth+1);
1564    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1565    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1566
1567    // Output known-0 bits are only known if clear in both the LHS & RHS.
1568    KnownZero &= KnownZero2;
1569    // Output known-1 are known to be set if set in either the LHS | RHS.
1570    KnownOne |= KnownOne2;
1571    return;
1572  case ISD::XOR: {
1573    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1574    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1575    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1576    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1577
1578    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1579    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1580    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1581    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1582    KnownZero = KnownZeroOut;
1583    return;
1584  }
1585  case ISD::MUL: {
1586    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1587    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1588    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1589    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1590    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1591
1592    // If low bits are zero in either operand, output low known-0 bits.
1593    // Also compute a conserative estimate for high known-0 bits.
1594    // More trickiness is possible, but this is sufficient for the
1595    // interesting case of alignment computation.
1596    KnownOne.clear();
1597    unsigned TrailZ = KnownZero.countTrailingOnes() +
1598                      KnownZero2.countTrailingOnes();
1599    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1600                               KnownZero2.countLeadingOnes(),
1601                               BitWidth) - BitWidth;
1602
1603    TrailZ = std::min(TrailZ, BitWidth);
1604    LeadZ = std::min(LeadZ, BitWidth);
1605    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1606                APInt::getHighBitsSet(BitWidth, LeadZ);
1607    KnownZero &= Mask;
1608    return;
1609  }
1610  case ISD::UDIV: {
1611    // For the purposes of computing leading zeros we can conservatively
1612    // treat a udiv as a logical right shift by the power of 2 known to
1613    // be less than the denominator.
1614    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1615    ComputeMaskedBits(Op.getOperand(0),
1616                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1617    unsigned LeadZ = KnownZero2.countLeadingOnes();
1618
1619    KnownOne2.clear();
1620    KnownZero2.clear();
1621    ComputeMaskedBits(Op.getOperand(1),
1622                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1623    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1624    if (RHSUnknownLeadingOnes != BitWidth)
1625      LeadZ = std::min(BitWidth,
1626                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1627
1628    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1629    return;
1630  }
1631  case ISD::SELECT:
1632    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1633    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1634    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1636
1637    // Only known if known in both the LHS and RHS.
1638    KnownOne &= KnownOne2;
1639    KnownZero &= KnownZero2;
1640    return;
1641  case ISD::SELECT_CC:
1642    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1643    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1644    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1645    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1646
1647    // Only known if known in both the LHS and RHS.
1648    KnownOne &= KnownOne2;
1649    KnownZero &= KnownZero2;
1650    return;
1651  case ISD::SADDO:
1652  case ISD::UADDO:
1653  case ISD::SSUBO:
1654  case ISD::USUBO:
1655  case ISD::SMULO:
1656  case ISD::UMULO:
1657    if (Op.getResNo() != 1)
1658      return;
1659    // The boolean result conforms to getBooleanContents.  Fall through.
1660  case ISD::SETCC:
1661    // If we know the result of a setcc has the top bits zero, use this info.
1662    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1663        BitWidth > 1)
1664      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1665    return;
1666  case ISD::SHL:
1667    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1668    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1669      unsigned ShAmt = SA->getZExtValue();
1670
1671      // If the shift count is an invalid immediate, don't do anything.
1672      if (ShAmt >= BitWidth)
1673        return;
1674
1675      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1676                        KnownZero, KnownOne, Depth+1);
1677      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1678      KnownZero <<= ShAmt;
1679      KnownOne  <<= ShAmt;
1680      // low bits known zero.
1681      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1682    }
1683    return;
1684  case ISD::SRL:
1685    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1686    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1687      unsigned ShAmt = SA->getZExtValue();
1688
1689      // If the shift count is an invalid immediate, don't do anything.
1690      if (ShAmt >= BitWidth)
1691        return;
1692
1693      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1694                        KnownZero, KnownOne, Depth+1);
1695      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1696      KnownZero = KnownZero.lshr(ShAmt);
1697      KnownOne  = KnownOne.lshr(ShAmt);
1698
1699      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1700      KnownZero |= HighBits;  // High bits known zero.
1701    }
1702    return;
1703  case ISD::SRA:
1704    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1705      unsigned ShAmt = SA->getZExtValue();
1706
1707      // If the shift count is an invalid immediate, don't do anything.
1708      if (ShAmt >= BitWidth)
1709        return;
1710
1711      APInt InDemandedMask = (Mask << ShAmt);
1712      // If any of the demanded bits are produced by the sign extension, we also
1713      // demand the input sign bit.
1714      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1715      if (HighBits.getBoolValue())
1716        InDemandedMask |= APInt::getSignBit(BitWidth);
1717
1718      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1719                        Depth+1);
1720      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1721      KnownZero = KnownZero.lshr(ShAmt);
1722      KnownOne  = KnownOne.lshr(ShAmt);
1723
1724      // Handle the sign bits.
1725      APInt SignBit = APInt::getSignBit(BitWidth);
1726      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1727
1728      if (KnownZero.intersects(SignBit)) {
1729        KnownZero |= HighBits;  // New bits are known zero.
1730      } else if (KnownOne.intersects(SignBit)) {
1731        KnownOne  |= HighBits;  // New bits are known one.
1732      }
1733    }
1734    return;
1735  case ISD::SIGN_EXTEND_INREG: {
1736    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1737    unsigned EBits = EVT.getScalarType().getSizeInBits();
1738
1739    // Sign extension.  Compute the demanded bits in the result that are not
1740    // present in the input.
1741    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1742
1743    APInt InSignBit = APInt::getSignBit(EBits);
1744    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1745
1746    // If the sign extended bits are demanded, we know that the sign
1747    // bit is demanded.
1748    InSignBit.zext(BitWidth);
1749    if (NewBits.getBoolValue())
1750      InputDemandedBits |= InSignBit;
1751
1752    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1753                      KnownZero, KnownOne, Depth+1);
1754    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1755
1756    // If the sign bit of the input is known set or clear, then we know the
1757    // top bits of the result.
1758    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1759      KnownZero |= NewBits;
1760      KnownOne  &= ~NewBits;
1761    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1762      KnownOne  |= NewBits;
1763      KnownZero &= ~NewBits;
1764    } else {                              // Input sign bit unknown
1765      KnownZero &= ~NewBits;
1766      KnownOne  &= ~NewBits;
1767    }
1768    return;
1769  }
1770  case ISD::CTTZ:
1771  case ISD::CTLZ:
1772  case ISD::CTPOP: {
1773    unsigned LowBits = Log2_32(BitWidth)+1;
1774    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1775    KnownOne.clear();
1776    return;
1777  }
1778  case ISD::LOAD: {
1779    if (ISD::isZEXTLoad(Op.getNode())) {
1780      LoadSDNode *LD = cast<LoadSDNode>(Op);
1781      EVT VT = LD->getMemoryVT();
1782      unsigned MemBits = VT.getScalarType().getSizeInBits();
1783      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1784    }
1785    return;
1786  }
1787  case ISD::ZERO_EXTEND: {
1788    EVT InVT = Op.getOperand(0).getValueType();
1789    unsigned InBits = InVT.getScalarType().getSizeInBits();
1790    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1791    APInt InMask    = Mask;
1792    InMask.trunc(InBits);
1793    KnownZero.trunc(InBits);
1794    KnownOne.trunc(InBits);
1795    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1796    KnownZero.zext(BitWidth);
1797    KnownOne.zext(BitWidth);
1798    KnownZero |= NewBits;
1799    return;
1800  }
1801  case ISD::SIGN_EXTEND: {
1802    EVT InVT = Op.getOperand(0).getValueType();
1803    unsigned InBits = InVT.getScalarType().getSizeInBits();
1804    APInt InSignBit = APInt::getSignBit(InBits);
1805    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1806    APInt InMask = Mask;
1807    InMask.trunc(InBits);
1808
1809    // If any of the sign extended bits are demanded, we know that the sign
1810    // bit is demanded. Temporarily set this bit in the mask for our callee.
1811    if (NewBits.getBoolValue())
1812      InMask |= InSignBit;
1813
1814    KnownZero.trunc(InBits);
1815    KnownOne.trunc(InBits);
1816    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1817
1818    // Note if the sign bit is known to be zero or one.
1819    bool SignBitKnownZero = KnownZero.isNegative();
1820    bool SignBitKnownOne  = KnownOne.isNegative();
1821    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1822           "Sign bit can't be known to be both zero and one!");
1823
1824    // If the sign bit wasn't actually demanded by our caller, we don't
1825    // want it set in the KnownZero and KnownOne result values. Reset the
1826    // mask and reapply it to the result values.
1827    InMask = Mask;
1828    InMask.trunc(InBits);
1829    KnownZero &= InMask;
1830    KnownOne  &= InMask;
1831
1832    KnownZero.zext(BitWidth);
1833    KnownOne.zext(BitWidth);
1834
1835    // If the sign bit is known zero or one, the top bits match.
1836    if (SignBitKnownZero)
1837      KnownZero |= NewBits;
1838    else if (SignBitKnownOne)
1839      KnownOne  |= NewBits;
1840    return;
1841  }
1842  case ISD::ANY_EXTEND: {
1843    EVT InVT = Op.getOperand(0).getValueType();
1844    unsigned InBits = InVT.getScalarType().getSizeInBits();
1845    APInt InMask = Mask;
1846    InMask.trunc(InBits);
1847    KnownZero.trunc(InBits);
1848    KnownOne.trunc(InBits);
1849    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1850    KnownZero.zext(BitWidth);
1851    KnownOne.zext(BitWidth);
1852    return;
1853  }
1854  case ISD::TRUNCATE: {
1855    EVT InVT = Op.getOperand(0).getValueType();
1856    unsigned InBits = InVT.getScalarType().getSizeInBits();
1857    APInt InMask = Mask;
1858    InMask.zext(InBits);
1859    KnownZero.zext(InBits);
1860    KnownOne.zext(InBits);
1861    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1862    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1863    KnownZero.trunc(BitWidth);
1864    KnownOne.trunc(BitWidth);
1865    break;
1866  }
1867  case ISD::AssertZext: {
1868    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1869    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1870    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1871                      KnownOne, Depth+1);
1872    KnownZero |= (~InMask) & Mask;
1873    return;
1874  }
1875  case ISD::FGETSIGN:
1876    // All bits are zero except the low bit.
1877    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1878    return;
1879
1880  case ISD::SUB: {
1881    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1882      // We know that the top bits of C-X are clear if X contains less bits
1883      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1884      // positive if we can prove that X is >= 0 and < 16.
1885      if (CLHS->getAPIntValue().isNonNegative()) {
1886        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1887        // NLZ can't be BitWidth with no sign bit
1888        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1889        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1890                          Depth+1);
1891
1892        // If all of the MaskV bits are known to be zero, then we know the
1893        // output top bits are zero, because we now know that the output is
1894        // from [0-C].
1895        if ((KnownZero2 & MaskV) == MaskV) {
1896          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1897          // Top bits known zero.
1898          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1899        }
1900      }
1901    }
1902  }
1903  // fall through
1904  case ISD::ADD: {
1905    // Output known-0 bits are known if clear or set in both the low clear bits
1906    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1907    // low 3 bits clear.
1908    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1909    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1910    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1911    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1912
1913    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1914    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1915    KnownZeroOut = std::min(KnownZeroOut,
1916                            KnownZero2.countTrailingOnes());
1917
1918    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1919    return;
1920  }
1921  case ISD::SREM:
1922    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1923      const APInt &RA = Rem->getAPIntValue().abs();
1924      if (RA.isPowerOf2()) {
1925        APInt LowBits = RA - 1;
1926        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1927        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1928
1929        // The low bits of the first operand are unchanged by the srem.
1930        KnownZero = KnownZero2 & LowBits;
1931        KnownOne = KnownOne2 & LowBits;
1932
1933        // If the first operand is non-negative or has all low bits zero, then
1934        // the upper bits are all zero.
1935        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1936          KnownZero |= ~LowBits;
1937
1938        // If the first operand is negative and not all low bits are zero, then
1939        // the upper bits are all one.
1940        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1941          KnownOne |= ~LowBits;
1942
1943        KnownZero &= Mask;
1944        KnownOne &= Mask;
1945
1946        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1947      }
1948    }
1949    return;
1950  case ISD::UREM: {
1951    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1952      const APInt &RA = Rem->getAPIntValue();
1953      if (RA.isPowerOf2()) {
1954        APInt LowBits = (RA - 1);
1955        APInt Mask2 = LowBits & Mask;
1956        KnownZero |= ~LowBits & Mask;
1957        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1958        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1959        break;
1960      }
1961    }
1962
1963    // Since the result is less than or equal to either operand, any leading
1964    // zero bits in either operand must also exist in the result.
1965    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1966    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1967                      Depth+1);
1968    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1969                      Depth+1);
1970
1971    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1972                                KnownZero2.countLeadingOnes());
1973    KnownOne.clear();
1974    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1975    return;
1976  }
1977  default:
1978    // Allow the target to implement this method for its nodes.
1979    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1980  case ISD::INTRINSIC_WO_CHAIN:
1981  case ISD::INTRINSIC_W_CHAIN:
1982  case ISD::INTRINSIC_VOID:
1983      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1984                                         Depth);
1985    }
1986    return;
1987  }
1988}
1989
1990/// ComputeNumSignBits - Return the number of times the sign bit of the
1991/// register is replicated into the other bits.  We know that at least 1 bit
1992/// is always equal to the sign bit (itself), but other cases can give us
1993/// information.  For example, immediately after an "SRA X, 2", we know that
1994/// the top 3 bits are all equal to each other, so we return 3.
1995unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1996  EVT VT = Op.getValueType();
1997  assert(VT.isInteger() && "Invalid VT!");
1998  unsigned VTBits = VT.getScalarType().getSizeInBits();
1999  unsigned Tmp, Tmp2;
2000  unsigned FirstAnswer = 1;
2001
2002  if (Depth == 6)
2003    return 1;  // Limit search depth.
2004
2005  switch (Op.getOpcode()) {
2006  default: break;
2007  case ISD::AssertSext:
2008    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2009    return VTBits-Tmp+1;
2010  case ISD::AssertZext:
2011    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2012    return VTBits-Tmp;
2013
2014  case ISD::Constant: {
2015    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2016    // If negative, return # leading ones.
2017    if (Val.isNegative())
2018      return Val.countLeadingOnes();
2019
2020    // Return # leading zeros.
2021    return Val.countLeadingZeros();
2022  }
2023
2024  case ISD::SIGN_EXTEND:
2025    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2026    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2027
2028  case ISD::SIGN_EXTEND_INREG:
2029    // Max of the input and what this extends.
2030    Tmp =
2031      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2032    Tmp = VTBits-Tmp+1;
2033
2034    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2035    return std::max(Tmp, Tmp2);
2036
2037  case ISD::SRA:
2038    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2039    // SRA X, C   -> adds C sign bits.
2040    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2041      Tmp += C->getZExtValue();
2042      if (Tmp > VTBits) Tmp = VTBits;
2043    }
2044    return Tmp;
2045  case ISD::SHL:
2046    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2047      // shl destroys sign bits.
2048      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2049      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2050          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2051      return Tmp - C->getZExtValue();
2052    }
2053    break;
2054  case ISD::AND:
2055  case ISD::OR:
2056  case ISD::XOR:    // NOT is handled here.
2057    // Logical binary ops preserve the number of sign bits at the worst.
2058    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2059    if (Tmp != 1) {
2060      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2061      FirstAnswer = std::min(Tmp, Tmp2);
2062      // We computed what we know about the sign bits as our first
2063      // answer. Now proceed to the generic code that uses
2064      // ComputeMaskedBits, and pick whichever answer is better.
2065    }
2066    break;
2067
2068  case ISD::SELECT:
2069    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2070    if (Tmp == 1) return 1;  // Early out.
2071    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2072    return std::min(Tmp, Tmp2);
2073
2074  case ISD::SADDO:
2075  case ISD::UADDO:
2076  case ISD::SSUBO:
2077  case ISD::USUBO:
2078  case ISD::SMULO:
2079  case ISD::UMULO:
2080    if (Op.getResNo() != 1)
2081      break;
2082    // The boolean result conforms to getBooleanContents.  Fall through.
2083  case ISD::SETCC:
2084    // If setcc returns 0/-1, all bits are sign bits.
2085    if (TLI.getBooleanContents() ==
2086        TargetLowering::ZeroOrNegativeOneBooleanContent)
2087      return VTBits;
2088    break;
2089  case ISD::ROTL:
2090  case ISD::ROTR:
2091    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2092      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2093
2094      // Handle rotate right by N like a rotate left by 32-N.
2095      if (Op.getOpcode() == ISD::ROTR)
2096        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2097
2098      // If we aren't rotating out all of the known-in sign bits, return the
2099      // number that are left.  This handles rotl(sext(x), 1) for example.
2100      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2101      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2102    }
2103    break;
2104  case ISD::ADD:
2105    // Add can have at most one carry bit.  Thus we know that the output
2106    // is, at worst, one more bit than the inputs.
2107    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2108    if (Tmp == 1) return 1;  // Early out.
2109
2110    // Special case decrementing a value (ADD X, -1):
2111    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2112      if (CRHS->isAllOnesValue()) {
2113        APInt KnownZero, KnownOne;
2114        APInt Mask = APInt::getAllOnesValue(VTBits);
2115        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2116
2117        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2118        // sign bits set.
2119        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2120          return VTBits;
2121
2122        // If we are subtracting one from a positive number, there is no carry
2123        // out of the result.
2124        if (KnownZero.isNegative())
2125          return Tmp;
2126      }
2127
2128    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2129    if (Tmp2 == 1) return 1;
2130      return std::min(Tmp, Tmp2)-1;
2131    break;
2132
2133  case ISD::SUB:
2134    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2135    if (Tmp2 == 1) return 1;
2136
2137    // Handle NEG.
2138    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2139      if (CLHS->isNullValue()) {
2140        APInt KnownZero, KnownOne;
2141        APInt Mask = APInt::getAllOnesValue(VTBits);
2142        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2143        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2144        // sign bits set.
2145        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2146          return VTBits;
2147
2148        // If the input is known to be positive (the sign bit is known clear),
2149        // the output of the NEG has the same number of sign bits as the input.
2150        if (KnownZero.isNegative())
2151          return Tmp2;
2152
2153        // Otherwise, we treat this like a SUB.
2154      }
2155
2156    // Sub can have at most one carry bit.  Thus we know that the output
2157    // is, at worst, one more bit than the inputs.
2158    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2159    if (Tmp == 1) return 1;  // Early out.
2160      return std::min(Tmp, Tmp2)-1;
2161    break;
2162  case ISD::TRUNCATE:
2163    // FIXME: it's tricky to do anything useful for this, but it is an important
2164    // case for targets like X86.
2165    break;
2166  }
2167
2168  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2169  if (Op.getOpcode() == ISD::LOAD) {
2170    LoadSDNode *LD = cast<LoadSDNode>(Op);
2171    unsigned ExtType = LD->getExtensionType();
2172    switch (ExtType) {
2173    default: break;
2174    case ISD::SEXTLOAD:    // '17' bits known
2175      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2176      return VTBits-Tmp+1;
2177    case ISD::ZEXTLOAD:    // '16' bits known
2178      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2179      return VTBits-Tmp;
2180    }
2181  }
2182
2183  // Allow the target to implement this method for its nodes.
2184  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2185      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2186      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2187      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2188    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2189    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2190  }
2191
2192  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2193  // use this information.
2194  APInt KnownZero, KnownOne;
2195  APInt Mask = APInt::getAllOnesValue(VTBits);
2196  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2197
2198  if (KnownZero.isNegative()) {        // sign bit is 0
2199    Mask = KnownZero;
2200  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2201    Mask = KnownOne;
2202  } else {
2203    // Nothing known.
2204    return FirstAnswer;
2205  }
2206
2207  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2208  // the number of identical bits in the top of the input value.
2209  Mask = ~Mask;
2210  Mask <<= Mask.getBitWidth()-VTBits;
2211  // Return # leading zeros.  We use 'min' here in case Val was zero before
2212  // shifting.  We don't want to return '64' as for an i32 "0".
2213  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2214}
2215
2216bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2217  // If we're told that NaNs won't happen, assume they won't.
2218  if (FiniteOnlyFPMath())
2219    return true;
2220
2221  // If the value is a constant, we can obviously see if it is a NaN or not.
2222  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2223    return !C->getValueAPF().isNaN();
2224
2225  // TODO: Recognize more cases here.
2226
2227  return false;
2228}
2229
2230bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2231  // If the value is a constant, we can obviously see if it is a zero or not.
2232  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2233    return !C->isZero();
2234
2235  // TODO: Recognize more cases here.
2236
2237  return false;
2238}
2239
2240bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2241  // Check the obvious case.
2242  if (A == B) return true;
2243
2244  // For for negative and positive zero.
2245  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2246    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2247      if (CA->isZero() && CB->isZero()) return true;
2248
2249  // Otherwise they may not be equal.
2250  return false;
2251}
2252
2253bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2254  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2255  if (!GA) return false;
2256  if (GA->getOffset() != 0) return false;
2257  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2258  if (!GV) return false;
2259  return MMI->hasDebugInfo();
2260}
2261
2262
2263/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2264/// element of the result of the vector shuffle.
2265SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2266                                          unsigned i) {
2267  EVT VT = N->getValueType(0);
2268  DebugLoc dl = N->getDebugLoc();
2269  if (N->getMaskElt(i) < 0)
2270    return getUNDEF(VT.getVectorElementType());
2271  unsigned Index = N->getMaskElt(i);
2272  unsigned NumElems = VT.getVectorNumElements();
2273  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2274  Index %= NumElems;
2275
2276  if (V.getOpcode() == ISD::BIT_CONVERT) {
2277    V = V.getOperand(0);
2278    EVT VVT = V.getValueType();
2279    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2280      return SDValue();
2281  }
2282  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2283    return (Index == 0) ? V.getOperand(0)
2284                      : getUNDEF(VT.getVectorElementType());
2285  if (V.getOpcode() == ISD::BUILD_VECTOR)
2286    return V.getOperand(Index);
2287  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2288    return getShuffleScalarElt(SVN, Index);
2289  return SDValue();
2290}
2291
2292
2293/// getNode - Gets or creates the specified node.
2294///
2295SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2296  FoldingSetNodeID ID;
2297  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2298  void *IP = 0;
2299  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2300    return SDValue(E, 0);
2301
2302  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2303  CSEMap.InsertNode(N, IP);
2304
2305  AllNodes.push_back(N);
2306#ifndef NDEBUG
2307  VerifyNode(N);
2308#endif
2309  return SDValue(N, 0);
2310}
2311
2312SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2313                              EVT VT, SDValue Operand) {
2314  // Constant fold unary operations with an integer constant operand.
2315  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2316    const APInt &Val = C->getAPIntValue();
2317    switch (Opcode) {
2318    default: break;
2319    case ISD::SIGN_EXTEND:
2320      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2321    case ISD::ANY_EXTEND:
2322    case ISD::ZERO_EXTEND:
2323    case ISD::TRUNCATE:
2324      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2325    case ISD::UINT_TO_FP:
2326    case ISD::SINT_TO_FP: {
2327      const uint64_t zero[] = {0, 0};
2328      // No compile time operations on ppcf128.
2329      if (VT == MVT::ppcf128) break;
2330      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2331      (void)apf.convertFromAPInt(Val,
2332                                 Opcode==ISD::SINT_TO_FP,
2333                                 APFloat::rmNearestTiesToEven);
2334      return getConstantFP(apf, VT);
2335    }
2336    case ISD::BIT_CONVERT:
2337      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2338        return getConstantFP(Val.bitsToFloat(), VT);
2339      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2340        return getConstantFP(Val.bitsToDouble(), VT);
2341      break;
2342    case ISD::BSWAP:
2343      return getConstant(Val.byteSwap(), VT);
2344    case ISD::CTPOP:
2345      return getConstant(Val.countPopulation(), VT);
2346    case ISD::CTLZ:
2347      return getConstant(Val.countLeadingZeros(), VT);
2348    case ISD::CTTZ:
2349      return getConstant(Val.countTrailingZeros(), VT);
2350    }
2351  }
2352
2353  // Constant fold unary operations with a floating point constant operand.
2354  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2355    APFloat V = C->getValueAPF();    // make copy
2356    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2357      switch (Opcode) {
2358      case ISD::FNEG:
2359        V.changeSign();
2360        return getConstantFP(V, VT);
2361      case ISD::FABS:
2362        V.clearSign();
2363        return getConstantFP(V, VT);
2364      case ISD::FP_ROUND:
2365      case ISD::FP_EXTEND: {
2366        bool ignored;
2367        // This can return overflow, underflow, or inexact; we don't care.
2368        // FIXME need to be more flexible about rounding mode.
2369        (void)V.convert(*EVTToAPFloatSemantics(VT),
2370                        APFloat::rmNearestTiesToEven, &ignored);
2371        return getConstantFP(V, VT);
2372      }
2373      case ISD::FP_TO_SINT:
2374      case ISD::FP_TO_UINT: {
2375        integerPart x[2];
2376        bool ignored;
2377        assert(integerPartWidth >= 64);
2378        // FIXME need to be more flexible about rounding mode.
2379        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2380                              Opcode==ISD::FP_TO_SINT,
2381                              APFloat::rmTowardZero, &ignored);
2382        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2383          break;
2384        APInt api(VT.getSizeInBits(), 2, x);
2385        return getConstant(api, VT);
2386      }
2387      case ISD::BIT_CONVERT:
2388        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2389          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2390        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2391          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2392        break;
2393      }
2394    }
2395  }
2396
2397  unsigned OpOpcode = Operand.getNode()->getOpcode();
2398  switch (Opcode) {
2399  case ISD::TokenFactor:
2400  case ISD::MERGE_VALUES:
2401  case ISD::CONCAT_VECTORS:
2402    return Operand;         // Factor, merge or concat of one node?  No need.
2403  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2404  case ISD::FP_EXTEND:
2405    assert(VT.isFloatingPoint() &&
2406           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2407    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2408    assert((!VT.isVector() ||
2409            VT.getVectorNumElements() ==
2410            Operand.getValueType().getVectorNumElements()) &&
2411           "Vector element count mismatch!");
2412    if (Operand.getOpcode() == ISD::UNDEF)
2413      return getUNDEF(VT);
2414    break;
2415  case ISD::SIGN_EXTEND:
2416    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2417           "Invalid SIGN_EXTEND!");
2418    if (Operand.getValueType() == VT) return Operand;   // noop extension
2419    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2420           "Invalid sext node, dst < src!");
2421    assert((!VT.isVector() ||
2422            VT.getVectorNumElements() ==
2423            Operand.getValueType().getVectorNumElements()) &&
2424           "Vector element count mismatch!");
2425    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2426      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2427    break;
2428  case ISD::ZERO_EXTEND:
2429    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2430           "Invalid ZERO_EXTEND!");
2431    if (Operand.getValueType() == VT) return Operand;   // noop extension
2432    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2433           "Invalid zext node, dst < src!");
2434    assert((!VT.isVector() ||
2435            VT.getVectorNumElements() ==
2436            Operand.getValueType().getVectorNumElements()) &&
2437           "Vector element count mismatch!");
2438    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2439      return getNode(ISD::ZERO_EXTEND, DL, VT,
2440                     Operand.getNode()->getOperand(0));
2441    break;
2442  case ISD::ANY_EXTEND:
2443    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2444           "Invalid ANY_EXTEND!");
2445    if (Operand.getValueType() == VT) return Operand;   // noop extension
2446    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2447           "Invalid anyext node, dst < src!");
2448    assert((!VT.isVector() ||
2449            VT.getVectorNumElements() ==
2450            Operand.getValueType().getVectorNumElements()) &&
2451           "Vector element count mismatch!");
2452    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2453      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2454      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2455    break;
2456  case ISD::TRUNCATE:
2457    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2458           "Invalid TRUNCATE!");
2459    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2460    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2461           "Invalid truncate node, src < dst!");
2462    assert((!VT.isVector() ||
2463            VT.getVectorNumElements() ==
2464            Operand.getValueType().getVectorNumElements()) &&
2465           "Vector element count mismatch!");
2466    if (OpOpcode == ISD::TRUNCATE)
2467      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2468    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2469             OpOpcode == ISD::ANY_EXTEND) {
2470      // If the source is smaller than the dest, we still need an extend.
2471      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2472            .bitsLT(VT.getScalarType()))
2473        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2474      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2475        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2476      else
2477        return Operand.getNode()->getOperand(0);
2478    }
2479    break;
2480  case ISD::BIT_CONVERT:
2481    // Basic sanity checking.
2482    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2483           && "Cannot BIT_CONVERT between types of different sizes!");
2484    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2485    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2486      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2487    if (OpOpcode == ISD::UNDEF)
2488      return getUNDEF(VT);
2489    break;
2490  case ISD::SCALAR_TO_VECTOR:
2491    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2492           (VT.getVectorElementType() == Operand.getValueType() ||
2493            (VT.getVectorElementType().isInteger() &&
2494             Operand.getValueType().isInteger() &&
2495             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2496           "Illegal SCALAR_TO_VECTOR node!");
2497    if (OpOpcode == ISD::UNDEF)
2498      return getUNDEF(VT);
2499    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2500    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2501        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2502        Operand.getConstantOperandVal(1) == 0 &&
2503        Operand.getOperand(0).getValueType() == VT)
2504      return Operand.getOperand(0);
2505    break;
2506  case ISD::FNEG:
2507    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2508    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2509      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2510                     Operand.getNode()->getOperand(0));
2511    if (OpOpcode == ISD::FNEG)  // --X -> X
2512      return Operand.getNode()->getOperand(0);
2513    break;
2514  case ISD::FABS:
2515    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2516      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2517    break;
2518  }
2519
2520  SDNode *N;
2521  SDVTList VTs = getVTList(VT);
2522  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2523    FoldingSetNodeID ID;
2524    SDValue Ops[1] = { Operand };
2525    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2526    void *IP = 0;
2527    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2528      return SDValue(E, 0);
2529
2530    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2531    CSEMap.InsertNode(N, IP);
2532  } else {
2533    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2534  }
2535
2536  AllNodes.push_back(N);
2537#ifndef NDEBUG
2538  VerifyNode(N);
2539#endif
2540  return SDValue(N, 0);
2541}
2542
2543SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2544                                             EVT VT,
2545                                             ConstantSDNode *Cst1,
2546                                             ConstantSDNode *Cst2) {
2547  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2548
2549  switch (Opcode) {
2550  case ISD::ADD:  return getConstant(C1 + C2, VT);
2551  case ISD::SUB:  return getConstant(C1 - C2, VT);
2552  case ISD::MUL:  return getConstant(C1 * C2, VT);
2553  case ISD::UDIV:
2554    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2555    break;
2556  case ISD::UREM:
2557    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2558    break;
2559  case ISD::SDIV:
2560    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2561    break;
2562  case ISD::SREM:
2563    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2564    break;
2565  case ISD::AND:  return getConstant(C1 & C2, VT);
2566  case ISD::OR:   return getConstant(C1 | C2, VT);
2567  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2568  case ISD::SHL:  return getConstant(C1 << C2, VT);
2569  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2570  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2571  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2572  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2573  default: break;
2574  }
2575
2576  return SDValue();
2577}
2578
2579SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2580                              SDValue N1, SDValue N2) {
2581  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2582  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2583  switch (Opcode) {
2584  default: break;
2585  case ISD::TokenFactor:
2586    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2587           N2.getValueType() == MVT::Other && "Invalid token factor!");
2588    // Fold trivial token factors.
2589    if (N1.getOpcode() == ISD::EntryToken) return N2;
2590    if (N2.getOpcode() == ISD::EntryToken) return N1;
2591    if (N1 == N2) return N1;
2592    break;
2593  case ISD::CONCAT_VECTORS:
2594    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2595    // one big BUILD_VECTOR.
2596    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2597        N2.getOpcode() == ISD::BUILD_VECTOR) {
2598      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2599      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2600      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2601    }
2602    break;
2603  case ISD::AND:
2604    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2605           N1.getValueType() == VT && "Binary operator types must match!");
2606    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2607    // worth handling here.
2608    if (N2C && N2C->isNullValue())
2609      return N2;
2610    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2611      return N1;
2612    break;
2613  case ISD::OR:
2614  case ISD::XOR:
2615  case ISD::ADD:
2616  case ISD::SUB:
2617    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2618           N1.getValueType() == VT && "Binary operator types must match!");
2619    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2620    // it's worth handling here.
2621    if (N2C && N2C->isNullValue())
2622      return N1;
2623    break;
2624  case ISD::UDIV:
2625  case ISD::UREM:
2626  case ISD::MULHU:
2627  case ISD::MULHS:
2628  case ISD::MUL:
2629  case ISD::SDIV:
2630  case ISD::SREM:
2631    assert(VT.isInteger() && "This operator does not apply to FP types!");
2632    // fall through
2633  case ISD::FADD:
2634  case ISD::FSUB:
2635  case ISD::FMUL:
2636  case ISD::FDIV:
2637  case ISD::FREM:
2638    if (UnsafeFPMath) {
2639      if (Opcode == ISD::FADD) {
2640        // 0+x --> x
2641        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2642          if (CFP->getValueAPF().isZero())
2643            return N2;
2644        // x+0 --> x
2645        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2646          if (CFP->getValueAPF().isZero())
2647            return N1;
2648      } else if (Opcode == ISD::FSUB) {
2649        // x-0 --> x
2650        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2651          if (CFP->getValueAPF().isZero())
2652            return N1;
2653      }
2654    }
2655    assert(N1.getValueType() == N2.getValueType() &&
2656           N1.getValueType() == VT && "Binary operator types must match!");
2657    break;
2658  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2659    assert(N1.getValueType() == VT &&
2660           N1.getValueType().isFloatingPoint() &&
2661           N2.getValueType().isFloatingPoint() &&
2662           "Invalid FCOPYSIGN!");
2663    break;
2664  case ISD::SHL:
2665  case ISD::SRA:
2666  case ISD::SRL:
2667  case ISD::ROTL:
2668  case ISD::ROTR:
2669    assert(VT == N1.getValueType() &&
2670           "Shift operators return type must be the same as their first arg");
2671    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2672           "Shifts only work on integers");
2673
2674    // Always fold shifts of i1 values so the code generator doesn't need to
2675    // handle them.  Since we know the size of the shift has to be less than the
2676    // size of the value, the shift/rotate count is guaranteed to be zero.
2677    if (VT == MVT::i1)
2678      return N1;
2679    if (N2C && N2C->isNullValue())
2680      return N1;
2681    break;
2682  case ISD::FP_ROUND_INREG: {
2683    EVT EVT = cast<VTSDNode>(N2)->getVT();
2684    assert(VT == N1.getValueType() && "Not an inreg round!");
2685    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2686           "Cannot FP_ROUND_INREG integer types");
2687    assert(EVT.isVector() == VT.isVector() &&
2688           "FP_ROUND_INREG type should be vector iff the operand "
2689           "type is vector!");
2690    assert((!EVT.isVector() ||
2691            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2692           "Vector element counts must match in FP_ROUND_INREG");
2693    assert(EVT.bitsLE(VT) && "Not rounding down!");
2694    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2695    break;
2696  }
2697  case ISD::FP_ROUND:
2698    assert(VT.isFloatingPoint() &&
2699           N1.getValueType().isFloatingPoint() &&
2700           VT.bitsLE(N1.getValueType()) &&
2701           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2702    if (N1.getValueType() == VT) return N1;  // noop conversion.
2703    break;
2704  case ISD::AssertSext:
2705  case ISD::AssertZext: {
2706    EVT EVT = cast<VTSDNode>(N2)->getVT();
2707    assert(VT == N1.getValueType() && "Not an inreg extend!");
2708    assert(VT.isInteger() && EVT.isInteger() &&
2709           "Cannot *_EXTEND_INREG FP types");
2710    assert(!EVT.isVector() &&
2711           "AssertSExt/AssertZExt type should be the vector element type "
2712           "rather than the vector type!");
2713    assert(EVT.bitsLE(VT) && "Not extending!");
2714    if (VT == EVT) return N1; // noop assertion.
2715    break;
2716  }
2717  case ISD::SIGN_EXTEND_INREG: {
2718    EVT EVT = cast<VTSDNode>(N2)->getVT();
2719    assert(VT == N1.getValueType() && "Not an inreg extend!");
2720    assert(VT.isInteger() && EVT.isInteger() &&
2721           "Cannot *_EXTEND_INREG FP types");
2722    assert(EVT.isVector() == VT.isVector() &&
2723           "SIGN_EXTEND_INREG type should be vector iff the operand "
2724           "type is vector!");
2725    assert((!EVT.isVector() ||
2726            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2727           "Vector element counts must match in SIGN_EXTEND_INREG");
2728    assert(EVT.bitsLE(VT) && "Not extending!");
2729    if (EVT == VT) return N1;  // Not actually extending
2730
2731    if (N1C) {
2732      APInt Val = N1C->getAPIntValue();
2733      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2734      Val <<= Val.getBitWidth()-FromBits;
2735      Val = Val.ashr(Val.getBitWidth()-FromBits);
2736      return getConstant(Val, VT);
2737    }
2738    break;
2739  }
2740  case ISD::EXTRACT_VECTOR_ELT:
2741    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2742    if (N1.getOpcode() == ISD::UNDEF)
2743      return getUNDEF(VT);
2744
2745    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2746    // expanding copies of large vectors from registers.
2747    if (N2C &&
2748        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2749        N1.getNumOperands() > 0) {
2750      unsigned Factor =
2751        N1.getOperand(0).getValueType().getVectorNumElements();
2752      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2753                     N1.getOperand(N2C->getZExtValue() / Factor),
2754                     getConstant(N2C->getZExtValue() % Factor,
2755                                 N2.getValueType()));
2756    }
2757
2758    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2759    // expanding large vector constants.
2760    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2761      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2762      EVT VEltTy = N1.getValueType().getVectorElementType();
2763      if (Elt.getValueType() != VEltTy) {
2764        // If the vector element type is not legal, the BUILD_VECTOR operands
2765        // are promoted and implicitly truncated.  Make that explicit here.
2766        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2767      }
2768      if (VT != VEltTy) {
2769        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2770        // result is implicitly extended.
2771        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2772      }
2773      return Elt;
2774    }
2775
2776    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2777    // operations are lowered to scalars.
2778    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2779      // If the indices are the same, return the inserted element else
2780      // if the indices are known different, extract the element from
2781      // the original vector.
2782      if (N1.getOperand(2) == N2) {
2783        if (VT == N1.getOperand(1).getValueType())
2784          return N1.getOperand(1);
2785        else
2786          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2787      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2788                 isa<ConstantSDNode>(N2))
2789        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2790    }
2791    break;
2792  case ISD::EXTRACT_ELEMENT:
2793    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2794    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2795           (N1.getValueType().isInteger() == VT.isInteger()) &&
2796           "Wrong types for EXTRACT_ELEMENT!");
2797
2798    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2799    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2800    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2801    if (N1.getOpcode() == ISD::BUILD_PAIR)
2802      return N1.getOperand(N2C->getZExtValue());
2803
2804    // EXTRACT_ELEMENT of a constant int is also very common.
2805    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2806      unsigned ElementSize = VT.getSizeInBits();
2807      unsigned Shift = ElementSize * N2C->getZExtValue();
2808      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2809      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2810    }
2811    break;
2812  case ISD::EXTRACT_SUBVECTOR:
2813    if (N1.getValueType() == VT) // Trivial extraction.
2814      return N1;
2815    break;
2816  }
2817
2818  if (N1C) {
2819    if (N2C) {
2820      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2821      if (SV.getNode()) return SV;
2822    } else {      // Cannonicalize constant to RHS if commutative
2823      if (isCommutativeBinOp(Opcode)) {
2824        std::swap(N1C, N2C);
2825        std::swap(N1, N2);
2826      }
2827    }
2828  }
2829
2830  // Constant fold FP operations.
2831  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2832  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2833  if (N1CFP) {
2834    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2835      // Cannonicalize constant to RHS if commutative
2836      std::swap(N1CFP, N2CFP);
2837      std::swap(N1, N2);
2838    } else if (N2CFP && VT != MVT::ppcf128) {
2839      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2840      APFloat::opStatus s;
2841      switch (Opcode) {
2842      case ISD::FADD:
2843        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2844        if (s != APFloat::opInvalidOp)
2845          return getConstantFP(V1, VT);
2846        break;
2847      case ISD::FSUB:
2848        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2849        if (s!=APFloat::opInvalidOp)
2850          return getConstantFP(V1, VT);
2851        break;
2852      case ISD::FMUL:
2853        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2854        if (s!=APFloat::opInvalidOp)
2855          return getConstantFP(V1, VT);
2856        break;
2857      case ISD::FDIV:
2858        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2859        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2860          return getConstantFP(V1, VT);
2861        break;
2862      case ISD::FREM :
2863        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2864        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2865          return getConstantFP(V1, VT);
2866        break;
2867      case ISD::FCOPYSIGN:
2868        V1.copySign(V2);
2869        return getConstantFP(V1, VT);
2870      default: break;
2871      }
2872    }
2873  }
2874
2875  // Canonicalize an UNDEF to the RHS, even over a constant.
2876  if (N1.getOpcode() == ISD::UNDEF) {
2877    if (isCommutativeBinOp(Opcode)) {
2878      std::swap(N1, N2);
2879    } else {
2880      switch (Opcode) {
2881      case ISD::FP_ROUND_INREG:
2882      case ISD::SIGN_EXTEND_INREG:
2883      case ISD::SUB:
2884      case ISD::FSUB:
2885      case ISD::FDIV:
2886      case ISD::FREM:
2887      case ISD::SRA:
2888        return N1;     // fold op(undef, arg2) -> undef
2889      case ISD::UDIV:
2890      case ISD::SDIV:
2891      case ISD::UREM:
2892      case ISD::SREM:
2893      case ISD::SRL:
2894      case ISD::SHL:
2895        if (!VT.isVector())
2896          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2897        // For vectors, we can't easily build an all zero vector, just return
2898        // the LHS.
2899        return N2;
2900      }
2901    }
2902  }
2903
2904  // Fold a bunch of operators when the RHS is undef.
2905  if (N2.getOpcode() == ISD::UNDEF) {
2906    switch (Opcode) {
2907    case ISD::XOR:
2908      if (N1.getOpcode() == ISD::UNDEF)
2909        // Handle undef ^ undef -> 0 special case. This is a common
2910        // idiom (misuse).
2911        return getConstant(0, VT);
2912      // fallthrough
2913    case ISD::ADD:
2914    case ISD::ADDC:
2915    case ISD::ADDE:
2916    case ISD::SUB:
2917    case ISD::UDIV:
2918    case ISD::SDIV:
2919    case ISD::UREM:
2920    case ISD::SREM:
2921      return N2;       // fold op(arg1, undef) -> undef
2922    case ISD::FADD:
2923    case ISD::FSUB:
2924    case ISD::FMUL:
2925    case ISD::FDIV:
2926    case ISD::FREM:
2927      if (UnsafeFPMath)
2928        return N2;
2929      break;
2930    case ISD::MUL:
2931    case ISD::AND:
2932    case ISD::SRL:
2933    case ISD::SHL:
2934      if (!VT.isVector())
2935        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2936      // For vectors, we can't easily build an all zero vector, just return
2937      // the LHS.
2938      return N1;
2939    case ISD::OR:
2940      if (!VT.isVector())
2941        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2942      // For vectors, we can't easily build an all one vector, just return
2943      // the LHS.
2944      return N1;
2945    case ISD::SRA:
2946      return N1;
2947    }
2948  }
2949
2950  // Memoize this node if possible.
2951  SDNode *N;
2952  SDVTList VTs = getVTList(VT);
2953  if (VT != MVT::Flag) {
2954    SDValue Ops[] = { N1, N2 };
2955    FoldingSetNodeID ID;
2956    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2957    void *IP = 0;
2958    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2959      return SDValue(E, 0);
2960
2961    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2962    CSEMap.InsertNode(N, IP);
2963  } else {
2964    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2965  }
2966
2967  AllNodes.push_back(N);
2968#ifndef NDEBUG
2969  VerifyNode(N);
2970#endif
2971  return SDValue(N, 0);
2972}
2973
2974SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2975                              SDValue N1, SDValue N2, SDValue N3) {
2976  // Perform various simplifications.
2977  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2978  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2979  switch (Opcode) {
2980  case ISD::CONCAT_VECTORS:
2981    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2982    // one big BUILD_VECTOR.
2983    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2984        N2.getOpcode() == ISD::BUILD_VECTOR &&
2985        N3.getOpcode() == ISD::BUILD_VECTOR) {
2986      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2987      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2988      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2989      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2990    }
2991    break;
2992  case ISD::SETCC: {
2993    // Use FoldSetCC to simplify SETCC's.
2994    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2995    if (Simp.getNode()) return Simp;
2996    break;
2997  }
2998  case ISD::SELECT:
2999    if (N1C) {
3000     if (N1C->getZExtValue())
3001        return N2;             // select true, X, Y -> X
3002      else
3003        return N3;             // select false, X, Y -> Y
3004    }
3005
3006    if (N2 == N3) return N2;   // select C, X, X -> X
3007    break;
3008  case ISD::BRCOND:
3009    if (N2C) {
3010      if (N2C->getZExtValue()) // Unconditional branch
3011        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3012      else
3013        return N1;         // Never-taken branch
3014    }
3015    break;
3016  case ISD::VECTOR_SHUFFLE:
3017    llvm_unreachable("should use getVectorShuffle constructor!");
3018    break;
3019  case ISD::BIT_CONVERT:
3020    // Fold bit_convert nodes from a type to themselves.
3021    if (N1.getValueType() == VT)
3022      return N1;
3023    break;
3024  }
3025
3026  // Memoize node if it doesn't produce a flag.
3027  SDNode *N;
3028  SDVTList VTs = getVTList(VT);
3029  if (VT != MVT::Flag) {
3030    SDValue Ops[] = { N1, N2, N3 };
3031    FoldingSetNodeID ID;
3032    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3033    void *IP = 0;
3034    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3035      return SDValue(E, 0);
3036
3037    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3038    CSEMap.InsertNode(N, IP);
3039  } else {
3040    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3041  }
3042
3043  AllNodes.push_back(N);
3044#ifndef NDEBUG
3045  VerifyNode(N);
3046#endif
3047  return SDValue(N, 0);
3048}
3049
3050SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3051                              SDValue N1, SDValue N2, SDValue N3,
3052                              SDValue N4) {
3053  SDValue Ops[] = { N1, N2, N3, N4 };
3054  return getNode(Opcode, DL, VT, Ops, 4);
3055}
3056
3057SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3058                              SDValue N1, SDValue N2, SDValue N3,
3059                              SDValue N4, SDValue N5) {
3060  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3061  return getNode(Opcode, DL, VT, Ops, 5);
3062}
3063
3064/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3065/// the incoming stack arguments to be loaded from the stack.
3066SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3067  SmallVector<SDValue, 8> ArgChains;
3068
3069  // Include the original chain at the beginning of the list. When this is
3070  // used by target LowerCall hooks, this helps legalize find the
3071  // CALLSEQ_BEGIN node.
3072  ArgChains.push_back(Chain);
3073
3074  // Add a chain value for each stack argument.
3075  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3076       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3077    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3078      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3079        if (FI->getIndex() < 0)
3080          ArgChains.push_back(SDValue(L, 1));
3081
3082  // Build a tokenfactor for all the chains.
3083  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3084                 &ArgChains[0], ArgChains.size());
3085}
3086
3087/// getMemsetValue - Vectorized representation of the memset value
3088/// operand.
3089static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3090                              DebugLoc dl) {
3091  assert(Value.getOpcode() != ISD::UNDEF);
3092
3093  unsigned NumBits = VT.getScalarType().getSizeInBits();
3094  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3095    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3096    unsigned Shift = 8;
3097    for (unsigned i = NumBits; i > 8; i >>= 1) {
3098      Val = (Val << Shift) | Val;
3099      Shift <<= 1;
3100    }
3101    if (VT.isInteger())
3102      return DAG.getConstant(Val, VT);
3103    return DAG.getConstantFP(APFloat(Val), VT);
3104  }
3105
3106  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3107  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3108  unsigned Shift = 8;
3109  for (unsigned i = NumBits; i > 8; i >>= 1) {
3110    Value = DAG.getNode(ISD::OR, dl, VT,
3111                        DAG.getNode(ISD::SHL, dl, VT, Value,
3112                                    DAG.getConstant(Shift,
3113                                                    TLI.getShiftAmountTy())),
3114                        Value);
3115    Shift <<= 1;
3116  }
3117
3118  return Value;
3119}
3120
3121/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3122/// used when a memcpy is turned into a memset when the source is a constant
3123/// string ptr.
3124static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3125                                  const TargetLowering &TLI,
3126                                  std::string &Str, unsigned Offset) {
3127  // Handle vector with all elements zero.
3128  if (Str.empty()) {
3129    if (VT.isInteger())
3130      return DAG.getConstant(0, VT);
3131    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3132             VT.getSimpleVT().SimpleTy == MVT::f64)
3133      return DAG.getConstantFP(0.0, VT);
3134    else if (VT.isVector()) {
3135      unsigned NumElts = VT.getVectorNumElements();
3136      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3137      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3138                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3139                                                             EltVT, NumElts)));
3140    } else
3141      llvm_unreachable("Expected type!");
3142  }
3143
3144  assert(!VT.isVector() && "Can't handle vector type here!");
3145  unsigned NumBits = VT.getSizeInBits();
3146  unsigned MSB = NumBits / 8;
3147  uint64_t Val = 0;
3148  if (TLI.isLittleEndian())
3149    Offset = Offset + MSB - 1;
3150  for (unsigned i = 0; i != MSB; ++i) {
3151    Val = (Val << 8) | (unsigned char)Str[Offset];
3152    Offset += TLI.isLittleEndian() ? -1 : 1;
3153  }
3154  return DAG.getConstant(Val, VT);
3155}
3156
3157/// getMemBasePlusOffset - Returns base and offset node for the
3158///
3159static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3160                                      SelectionDAG &DAG) {
3161  EVT VT = Base.getValueType();
3162  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3163                     VT, Base, DAG.getConstant(Offset, VT));
3164}
3165
3166/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3167///
3168static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3169  unsigned SrcDelta = 0;
3170  GlobalAddressSDNode *G = NULL;
3171  if (Src.getOpcode() == ISD::GlobalAddress)
3172    G = cast<GlobalAddressSDNode>(Src);
3173  else if (Src.getOpcode() == ISD::ADD &&
3174           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3175           Src.getOperand(1).getOpcode() == ISD::Constant) {
3176    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3177    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3178  }
3179  if (!G)
3180    return false;
3181
3182  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3183  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3184    return true;
3185
3186  return false;
3187}
3188
3189/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3190/// to replace the memset / memcpy. Return true if the number of memory ops
3191/// is below the threshold. It returns the types of the sequence of
3192/// memory ops to perform memset / memcpy by reference.
3193static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3194                                     unsigned Limit, uint64_t Size,
3195                                     unsigned DstAlign, unsigned SrcAlign,
3196                                     bool NonScalarIntSafe,
3197                                     SelectionDAG &DAG,
3198                                     const TargetLowering &TLI) {
3199  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3200         "Expecting memcpy / memset source to meet alignment requirement!");
3201  // If 'SrcAlign' is zero, that means the memory operation does not need load
3202  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3203  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3204  // specified alignment of the memory operation. If it is zero, that means
3205  // it's possible to change the alignment of the destination.
3206  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3207                                   NonScalarIntSafe, DAG);
3208
3209  if (VT == MVT::Other) {
3210    VT = TLI.getPointerTy();
3211    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3212    if (DstAlign >= TLI.getTargetData()->getABITypeAlignment(Ty) ||
3213        TLI.allowsUnalignedMemoryAccesses(VT)) {
3214      VT = MVT::i64;
3215    } else {
3216      switch (DstAlign & 7) {
3217      case 0:  VT = MVT::i64; break;
3218      case 4:  VT = MVT::i32; break;
3219      case 2:  VT = MVT::i16; break;
3220      default: VT = MVT::i8;  break;
3221      }
3222    }
3223
3224    MVT LVT = MVT::i64;
3225    while (!TLI.isTypeLegal(LVT))
3226      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3227    assert(LVT.isInteger());
3228
3229    if (VT.bitsGT(LVT))
3230      VT = LVT;
3231  }
3232
3233  unsigned NumMemOps = 0;
3234  while (Size != 0) {
3235    unsigned VTSize = VT.getSizeInBits() / 8;
3236    while (VTSize > Size) {
3237      // For now, only use non-vector load / store's for the left-over pieces.
3238      if (VT.isVector() || VT.isFloatingPoint()) {
3239        VT = MVT::i64;
3240        while (!TLI.isTypeLegal(VT))
3241          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3242        VTSize = VT.getSizeInBits() / 8;
3243      } else {
3244        // This can result in a type that is not legal on the target, e.g.
3245        // 1 or 2 bytes on PPC.
3246        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3247        VTSize >>= 1;
3248      }
3249    }
3250
3251    if (++NumMemOps > Limit)
3252      return false;
3253    MemOps.push_back(VT);
3254    Size -= VTSize;
3255  }
3256
3257  return true;
3258}
3259
3260static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3261                                       SDValue Chain, SDValue Dst,
3262                                       SDValue Src, uint64_t Size,
3263                                       unsigned Align, bool isVol,
3264                                       bool AlwaysInline,
3265                                       const Value *DstSV, uint64_t DstSVOff,
3266                                       const Value *SrcSV, uint64_t SrcSVOff) {
3267  // Turn a memcpy of undef to nop.
3268  if (Src.getOpcode() == ISD::UNDEF)
3269    return Chain;
3270
3271  // Expand memcpy to a series of load and store ops if the size operand falls
3272  // below a certain threshold.
3273  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3274  std::vector<EVT> MemOps;
3275  uint64_t Limit = -1ULL;
3276  if (!AlwaysInline)
3277    Limit = TLI.getMaxStoresPerMemcpy();
3278  bool DstAlignCanChange = false;
3279  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3280  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3281  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3282    DstAlignCanChange = true;
3283  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3284  if (Align > SrcAlign)
3285    SrcAlign = Align;
3286  std::string Str;
3287  bool CopyFromStr = isMemSrcFromString(Src, Str);
3288  bool isZeroStr = CopyFromStr && Str.empty();
3289  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3290                                (DstAlignCanChange ? 0 : Align),
3291                                (isZeroStr ? 0 : SrcAlign), true, DAG, TLI))
3292    return SDValue();
3293
3294  if (DstAlignCanChange) {
3295    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3296    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3297    if (NewAlign > Align) {
3298      // Give the stack frame object a larger alignment if needed.
3299      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3300        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3301      Align = NewAlign;
3302    }
3303  }
3304
3305  SmallVector<SDValue, 8> OutChains;
3306  unsigned NumMemOps = MemOps.size();
3307  uint64_t SrcOff = 0, DstOff = 0;
3308  for (unsigned i = 0; i != NumMemOps; ++i) {
3309    EVT VT = MemOps[i];
3310    unsigned VTSize = VT.getSizeInBits() / 8;
3311    SDValue Value, Store;
3312
3313    if (CopyFromStr &&
3314        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3315      // It's unlikely a store of a vector immediate can be done in a single
3316      // instruction. It would require a load from a constantpool first.
3317      // We only handle zero vectors here.
3318      // FIXME: Handle other cases where store of vector immediate is done in
3319      // a single instruction.
3320      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3321      Store = DAG.getStore(Chain, dl, Value,
3322                           getMemBasePlusOffset(Dst, DstOff, DAG),
3323                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3324    } else {
3325      // The type might not be legal for the target.  This should only happen
3326      // if the type is smaller than a legal type, as on PPC, so the right
3327      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3328      // to Load/Store if NVT==VT.
3329      // FIXME does the case above also need this?
3330      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3331      assert(NVT.bitsGE(VT));
3332      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3333                             getMemBasePlusOffset(Src, SrcOff, DAG),
3334                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3335                             MinAlign(SrcAlign, SrcOff));
3336      Store = DAG.getTruncStore(Chain, dl, Value,
3337                                getMemBasePlusOffset(Dst, DstOff, DAG),
3338                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3339                                Align);
3340    }
3341    OutChains.push_back(Store);
3342    SrcOff += VTSize;
3343    DstOff += VTSize;
3344  }
3345
3346  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3347                     &OutChains[0], OutChains.size());
3348}
3349
3350static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3351                                        SDValue Chain, SDValue Dst,
3352                                        SDValue Src, uint64_t Size,
3353                                        unsigned Align,  bool isVol,
3354                                        bool AlwaysInline,
3355                                        const Value *DstSV, uint64_t DstSVOff,
3356                                        const Value *SrcSV, uint64_t SrcSVOff) {
3357  // Turn a memmove of undef to nop.
3358  if (Src.getOpcode() == ISD::UNDEF)
3359    return Chain;
3360
3361  // Expand memmove to a series of load and store ops if the size operand falls
3362  // below a certain threshold.
3363  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3364  std::vector<EVT> MemOps;
3365  uint64_t Limit = -1ULL;
3366  if (!AlwaysInline)
3367    Limit = TLI.getMaxStoresPerMemmove();
3368  bool DstAlignCanChange = false;
3369  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3370  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3371  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3372    DstAlignCanChange = true;
3373  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3374  if (Align > SrcAlign)
3375    SrcAlign = Align;
3376
3377  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3378                                (DstAlignCanChange ? 0 : Align),
3379                                SrcAlign, true, DAG, TLI))
3380    return SDValue();
3381
3382  if (DstAlignCanChange) {
3383    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3384    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3385    if (NewAlign > Align) {
3386      // Give the stack frame object a larger alignment if needed.
3387      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3388        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3389      Align = NewAlign;
3390    }
3391  }
3392
3393  uint64_t SrcOff = 0, DstOff = 0;
3394  SmallVector<SDValue, 8> LoadValues;
3395  SmallVector<SDValue, 8> LoadChains;
3396  SmallVector<SDValue, 8> OutChains;
3397  unsigned NumMemOps = MemOps.size();
3398  for (unsigned i = 0; i < NumMemOps; i++) {
3399    EVT VT = MemOps[i];
3400    unsigned VTSize = VT.getSizeInBits() / 8;
3401    SDValue Value, Store;
3402
3403    Value = DAG.getLoad(VT, dl, Chain,
3404                        getMemBasePlusOffset(Src, SrcOff, DAG),
3405                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3406    LoadValues.push_back(Value);
3407    LoadChains.push_back(Value.getValue(1));
3408    SrcOff += VTSize;
3409  }
3410  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3411                      &LoadChains[0], LoadChains.size());
3412  OutChains.clear();
3413  for (unsigned i = 0; i < NumMemOps; i++) {
3414    EVT VT = MemOps[i];
3415    unsigned VTSize = VT.getSizeInBits() / 8;
3416    SDValue Value, Store;
3417
3418    Store = DAG.getStore(Chain, dl, LoadValues[i],
3419                         getMemBasePlusOffset(Dst, DstOff, DAG),
3420                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3421    OutChains.push_back(Store);
3422    DstOff += VTSize;
3423  }
3424
3425  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3426                     &OutChains[0], OutChains.size());
3427}
3428
3429static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3430                               SDValue Chain, SDValue Dst,
3431                               SDValue Src, uint64_t Size,
3432                               unsigned Align, bool isVol,
3433                               const Value *DstSV, uint64_t DstSVOff) {
3434  // Turn a memset of undef to nop.
3435  if (Src.getOpcode() == ISD::UNDEF)
3436    return Chain;
3437
3438  // Expand memset to a series of load/store ops if the size operand
3439  // falls below a certain threshold.
3440  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3441  std::vector<EVT> MemOps;
3442  bool DstAlignCanChange = false;
3443  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3444  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3445  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3446    DstAlignCanChange = true;
3447  bool NonScalarIntSafe =
3448    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3449  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3450                                Size, (DstAlignCanChange ? 0 : Align), 0,
3451                                NonScalarIntSafe, DAG, TLI))
3452    return SDValue();
3453
3454  if (DstAlignCanChange) {
3455    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3456    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3457    if (NewAlign > Align) {
3458      // Give the stack frame object a larger alignment if needed.
3459      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3460        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3461      Align = NewAlign;
3462    }
3463  }
3464
3465  SmallVector<SDValue, 8> OutChains;
3466  uint64_t DstOff = 0;
3467  unsigned NumMemOps = MemOps.size();
3468  for (unsigned i = 0; i < NumMemOps; i++) {
3469    EVT VT = MemOps[i];
3470    unsigned VTSize = VT.getSizeInBits() / 8;
3471    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3472    SDValue Store = DAG.getStore(Chain, dl, Value,
3473                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3474                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3475    OutChains.push_back(Store);
3476    DstOff += VTSize;
3477  }
3478
3479  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3480                     &OutChains[0], OutChains.size());
3481}
3482
3483SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3484                                SDValue Src, SDValue Size,
3485                                unsigned Align, bool isVol, bool AlwaysInline,
3486                                const Value *DstSV, uint64_t DstSVOff,
3487                                const Value *SrcSV, uint64_t SrcSVOff) {
3488
3489  // Check to see if we should lower the memcpy to loads and stores first.
3490  // For cases within the target-specified limits, this is the best choice.
3491  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3492  if (ConstantSize) {
3493    // Memcpy with size zero? Just return the original chain.
3494    if (ConstantSize->isNullValue())
3495      return Chain;
3496
3497    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3498                                             ConstantSize->getZExtValue(),Align,
3499                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3500    if (Result.getNode())
3501      return Result;
3502  }
3503
3504  // Then check to see if we should lower the memcpy with target-specific
3505  // code. If the target chooses to do this, this is the next best.
3506  SDValue Result =
3507    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3508                                isVol, AlwaysInline,
3509                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3510  if (Result.getNode())
3511    return Result;
3512
3513  // If we really need inline code and the target declined to provide it,
3514  // use a (potentially long) sequence of loads and stores.
3515  if (AlwaysInline) {
3516    assert(ConstantSize && "AlwaysInline requires a constant size!");
3517    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3518                                   ConstantSize->getZExtValue(), Align, isVol,
3519                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3520  }
3521
3522  // Emit a library call.
3523  assert(!isVol && "library memcpy does not support volatile");
3524  TargetLowering::ArgListTy Args;
3525  TargetLowering::ArgListEntry Entry;
3526  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3527  Entry.Node = Dst; Args.push_back(Entry);
3528  Entry.Node = Src; Args.push_back(Entry);
3529  Entry.Node = Size; Args.push_back(Entry);
3530  // FIXME: pass in DebugLoc
3531  std::pair<SDValue,SDValue> CallResult =
3532    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3533                    false, false, false, false, 0,
3534                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3535                    /*isReturnValueUsed=*/false,
3536                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3537                                      TLI.getPointerTy()),
3538                    Args, *this, dl);
3539  return CallResult.second;
3540}
3541
3542SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3543                                 SDValue Src, SDValue Size,
3544                                 unsigned Align, bool isVol,
3545                                 const Value *DstSV, uint64_t DstSVOff,
3546                                 const Value *SrcSV, uint64_t SrcSVOff) {
3547
3548  // Check to see if we should lower the memmove to loads and stores first.
3549  // For cases within the target-specified limits, this is the best choice.
3550  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3551  if (ConstantSize) {
3552    // Memmove with size zero? Just return the original chain.
3553    if (ConstantSize->isNullValue())
3554      return Chain;
3555
3556    SDValue Result =
3557      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3558                               ConstantSize->getZExtValue(), Align, isVol,
3559                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3560    if (Result.getNode())
3561      return Result;
3562  }
3563
3564  // Then check to see if we should lower the memmove with target-specific
3565  // code. If the target chooses to do this, this is the next best.
3566  SDValue Result =
3567    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3568                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3569  if (Result.getNode())
3570    return Result;
3571
3572  // Emit a library call.
3573  assert(!isVol && "library memmove does not support volatile");
3574  TargetLowering::ArgListTy Args;
3575  TargetLowering::ArgListEntry Entry;
3576  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3577  Entry.Node = Dst; Args.push_back(Entry);
3578  Entry.Node = Src; Args.push_back(Entry);
3579  Entry.Node = Size; Args.push_back(Entry);
3580  // FIXME:  pass in DebugLoc
3581  std::pair<SDValue,SDValue> CallResult =
3582    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3583                    false, false, false, false, 0,
3584                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3585                    /*isReturnValueUsed=*/false,
3586                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3587                                      TLI.getPointerTy()),
3588                    Args, *this, dl);
3589  return CallResult.second;
3590}
3591
3592SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3593                                SDValue Src, SDValue Size,
3594                                unsigned Align, bool isVol,
3595                                const Value *DstSV, uint64_t DstSVOff) {
3596
3597  // Check to see if we should lower the memset to stores first.
3598  // For cases within the target-specified limits, this is the best choice.
3599  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3600  if (ConstantSize) {
3601    // Memset with size zero? Just return the original chain.
3602    if (ConstantSize->isNullValue())
3603      return Chain;
3604
3605    SDValue Result =
3606      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3607                      Align, isVol, DstSV, DstSVOff);
3608
3609    if (Result.getNode())
3610      return Result;
3611  }
3612
3613  // Then check to see if we should lower the memset with target-specific
3614  // code. If the target chooses to do this, this is the next best.
3615  SDValue Result =
3616    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3617                                DstSV, DstSVOff);
3618  if (Result.getNode())
3619    return Result;
3620
3621  // Emit a library call.
3622  assert(!isVol && "library memset does not support volatile");
3623  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3624  TargetLowering::ArgListTy Args;
3625  TargetLowering::ArgListEntry Entry;
3626  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3627  Args.push_back(Entry);
3628  // Extend or truncate the argument to be an i32 value for the call.
3629  if (Src.getValueType().bitsGT(MVT::i32))
3630    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3631  else
3632    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3633  Entry.Node = Src;
3634  Entry.Ty = Type::getInt32Ty(*getContext());
3635  Entry.isSExt = true;
3636  Args.push_back(Entry);
3637  Entry.Node = Size;
3638  Entry.Ty = IntPtrTy;
3639  Entry.isSExt = false;
3640  Args.push_back(Entry);
3641  // FIXME: pass in DebugLoc
3642  std::pair<SDValue,SDValue> CallResult =
3643    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3644                    false, false, false, false, 0,
3645                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3646                    /*isReturnValueUsed=*/false,
3647                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3648                                      TLI.getPointerTy()),
3649                    Args, *this, dl);
3650  return CallResult.second;
3651}
3652
3653SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3654                                SDValue Chain,
3655                                SDValue Ptr, SDValue Cmp,
3656                                SDValue Swp, const Value* PtrVal,
3657                                unsigned Alignment) {
3658  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3659    Alignment = getEVTAlignment(MemVT);
3660
3661  // Check if the memory reference references a frame index
3662  if (!PtrVal)
3663    if (const FrameIndexSDNode *FI =
3664          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3665      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3666
3667  MachineFunction &MF = getMachineFunction();
3668  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3669
3670  // For now, atomics are considered to be volatile always.
3671  Flags |= MachineMemOperand::MOVolatile;
3672
3673  MachineMemOperand *MMO =
3674    MF.getMachineMemOperand(PtrVal, Flags, 0,
3675                            MemVT.getStoreSize(), Alignment);
3676
3677  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3678}
3679
3680SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3681                                SDValue Chain,
3682                                SDValue Ptr, SDValue Cmp,
3683                                SDValue Swp, MachineMemOperand *MMO) {
3684  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3685  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3686
3687  EVT VT = Cmp.getValueType();
3688
3689  SDVTList VTs = getVTList(VT, MVT::Other);
3690  FoldingSetNodeID ID;
3691  ID.AddInteger(MemVT.getRawBits());
3692  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3693  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3694  void* IP = 0;
3695  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3696    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3697    return SDValue(E, 0);
3698  }
3699  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3700                                               Ptr, Cmp, Swp, MMO);
3701  CSEMap.InsertNode(N, IP);
3702  AllNodes.push_back(N);
3703  return SDValue(N, 0);
3704}
3705
3706SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3707                                SDValue Chain,
3708                                SDValue Ptr, SDValue Val,
3709                                const Value* PtrVal,
3710                                unsigned Alignment) {
3711  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3712    Alignment = getEVTAlignment(MemVT);
3713
3714  // Check if the memory reference references a frame index
3715  if (!PtrVal)
3716    if (const FrameIndexSDNode *FI =
3717          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3718      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3719
3720  MachineFunction &MF = getMachineFunction();
3721  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3722
3723  // For now, atomics are considered to be volatile always.
3724  Flags |= MachineMemOperand::MOVolatile;
3725
3726  MachineMemOperand *MMO =
3727    MF.getMachineMemOperand(PtrVal, Flags, 0,
3728                            MemVT.getStoreSize(), Alignment);
3729
3730  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3731}
3732
3733SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3734                                SDValue Chain,
3735                                SDValue Ptr, SDValue Val,
3736                                MachineMemOperand *MMO) {
3737  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3738          Opcode == ISD::ATOMIC_LOAD_SUB ||
3739          Opcode == ISD::ATOMIC_LOAD_AND ||
3740          Opcode == ISD::ATOMIC_LOAD_OR ||
3741          Opcode == ISD::ATOMIC_LOAD_XOR ||
3742          Opcode == ISD::ATOMIC_LOAD_NAND ||
3743          Opcode == ISD::ATOMIC_LOAD_MIN ||
3744          Opcode == ISD::ATOMIC_LOAD_MAX ||
3745          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3746          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3747          Opcode == ISD::ATOMIC_SWAP) &&
3748         "Invalid Atomic Op");
3749
3750  EVT VT = Val.getValueType();
3751
3752  SDVTList VTs = getVTList(VT, MVT::Other);
3753  FoldingSetNodeID ID;
3754  ID.AddInteger(MemVT.getRawBits());
3755  SDValue Ops[] = {Chain, Ptr, Val};
3756  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3757  void* IP = 0;
3758  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3759    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3760    return SDValue(E, 0);
3761  }
3762  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3763                                               Ptr, Val, MMO);
3764  CSEMap.InsertNode(N, IP);
3765  AllNodes.push_back(N);
3766  return SDValue(N, 0);
3767}
3768
3769/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3770/// Allowed to return something different (and simpler) if Simplify is true.
3771SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3772                                     DebugLoc dl) {
3773  if (NumOps == 1)
3774    return Ops[0];
3775
3776  SmallVector<EVT, 4> VTs;
3777  VTs.reserve(NumOps);
3778  for (unsigned i = 0; i < NumOps; ++i)
3779    VTs.push_back(Ops[i].getValueType());
3780  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3781                 Ops, NumOps);
3782}
3783
3784SDValue
3785SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3786                                  const EVT *VTs, unsigned NumVTs,
3787                                  const SDValue *Ops, unsigned NumOps,
3788                                  EVT MemVT, const Value *srcValue, int SVOff,
3789                                  unsigned Align, bool Vol,
3790                                  bool ReadMem, bool WriteMem) {
3791  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3792                             MemVT, srcValue, SVOff, Align, Vol,
3793                             ReadMem, WriteMem);
3794}
3795
3796SDValue
3797SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3798                                  const SDValue *Ops, unsigned NumOps,
3799                                  EVT MemVT, const Value *srcValue, int SVOff,
3800                                  unsigned Align, bool Vol,
3801                                  bool ReadMem, bool WriteMem) {
3802  if (Align == 0)  // Ensure that codegen never sees alignment 0
3803    Align = getEVTAlignment(MemVT);
3804
3805  MachineFunction &MF = getMachineFunction();
3806  unsigned Flags = 0;
3807  if (WriteMem)
3808    Flags |= MachineMemOperand::MOStore;
3809  if (ReadMem)
3810    Flags |= MachineMemOperand::MOLoad;
3811  if (Vol)
3812    Flags |= MachineMemOperand::MOVolatile;
3813  MachineMemOperand *MMO =
3814    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3815                            MemVT.getStoreSize(), Align);
3816
3817  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3818}
3819
3820SDValue
3821SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3822                                  const SDValue *Ops, unsigned NumOps,
3823                                  EVT MemVT, MachineMemOperand *MMO) {
3824  assert((Opcode == ISD::INTRINSIC_VOID ||
3825          Opcode == ISD::INTRINSIC_W_CHAIN ||
3826          (Opcode <= INT_MAX &&
3827           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3828         "Opcode is not a memory-accessing opcode!");
3829
3830  // Memoize the node unless it returns a flag.
3831  MemIntrinsicSDNode *N;
3832  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3833    FoldingSetNodeID ID;
3834    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3835    void *IP = 0;
3836    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3837      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3838      return SDValue(E, 0);
3839    }
3840
3841    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3842                                               MemVT, MMO);
3843    CSEMap.InsertNode(N, IP);
3844  } else {
3845    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3846                                               MemVT, MMO);
3847  }
3848  AllNodes.push_back(N);
3849  return SDValue(N, 0);
3850}
3851
3852SDValue
3853SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3854                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3855                      SDValue Ptr, SDValue Offset,
3856                      const Value *SV, int SVOffset, EVT MemVT,
3857                      bool isVolatile, bool isNonTemporal,
3858                      unsigned Alignment) {
3859  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3860    Alignment = getEVTAlignment(VT);
3861
3862  // Check if the memory reference references a frame index
3863  if (!SV)
3864    if (const FrameIndexSDNode *FI =
3865          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3866      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3867
3868  MachineFunction &MF = getMachineFunction();
3869  unsigned Flags = MachineMemOperand::MOLoad;
3870  if (isVolatile)
3871    Flags |= MachineMemOperand::MOVolatile;
3872  if (isNonTemporal)
3873    Flags |= MachineMemOperand::MONonTemporal;
3874  MachineMemOperand *MMO =
3875    MF.getMachineMemOperand(SV, Flags, SVOffset,
3876                            MemVT.getStoreSize(), Alignment);
3877  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3878}
3879
3880SDValue
3881SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3882                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3883                      SDValue Ptr, SDValue Offset, EVT MemVT,
3884                      MachineMemOperand *MMO) {
3885  if (VT == MemVT) {
3886    ExtType = ISD::NON_EXTLOAD;
3887  } else if (ExtType == ISD::NON_EXTLOAD) {
3888    assert(VT == MemVT && "Non-extending load from different memory type!");
3889  } else {
3890    // Extending load.
3891    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3892           "Should only be an extending load, not truncating!");
3893    assert(VT.isInteger() == MemVT.isInteger() &&
3894           "Cannot convert from FP to Int or Int -> FP!");
3895    assert(VT.isVector() == MemVT.isVector() &&
3896           "Cannot use trunc store to convert to or from a vector!");
3897    assert((!VT.isVector() ||
3898            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3899           "Cannot use trunc store to change the number of vector elements!");
3900  }
3901
3902  bool Indexed = AM != ISD::UNINDEXED;
3903  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3904         "Unindexed load with an offset!");
3905
3906  SDVTList VTs = Indexed ?
3907    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3908  SDValue Ops[] = { Chain, Ptr, Offset };
3909  FoldingSetNodeID ID;
3910  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3911  ID.AddInteger(MemVT.getRawBits());
3912  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3913                                     MMO->isNonTemporal()));
3914  void *IP = 0;
3915  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3916    cast<LoadSDNode>(E)->refineAlignment(MMO);
3917    return SDValue(E, 0);
3918  }
3919  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3920                                             MemVT, MMO);
3921  CSEMap.InsertNode(N, IP);
3922  AllNodes.push_back(N);
3923  return SDValue(N, 0);
3924}
3925
3926SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3927                              SDValue Chain, SDValue Ptr,
3928                              const Value *SV, int SVOffset,
3929                              bool isVolatile, bool isNonTemporal,
3930                              unsigned Alignment) {
3931  SDValue Undef = getUNDEF(Ptr.getValueType());
3932  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3933                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3934}
3935
3936SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3937                                 SDValue Chain, SDValue Ptr,
3938                                 const Value *SV,
3939                                 int SVOffset, EVT MemVT,
3940                                 bool isVolatile, bool isNonTemporal,
3941                                 unsigned Alignment) {
3942  SDValue Undef = getUNDEF(Ptr.getValueType());
3943  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3944                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3945}
3946
3947SDValue
3948SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3949                             SDValue Offset, ISD::MemIndexedMode AM) {
3950  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3951  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3952         "Load is already a indexed load!");
3953  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3954                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3955                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3956                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3957}
3958
3959SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3960                               SDValue Ptr, const Value *SV, int SVOffset,
3961                               bool isVolatile, bool isNonTemporal,
3962                               unsigned Alignment) {
3963  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3964    Alignment = getEVTAlignment(Val.getValueType());
3965
3966  // Check if the memory reference references a frame index
3967  if (!SV)
3968    if (const FrameIndexSDNode *FI =
3969          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3970      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3971
3972  MachineFunction &MF = getMachineFunction();
3973  unsigned Flags = MachineMemOperand::MOStore;
3974  if (isVolatile)
3975    Flags |= MachineMemOperand::MOVolatile;
3976  if (isNonTemporal)
3977    Flags |= MachineMemOperand::MONonTemporal;
3978  MachineMemOperand *MMO =
3979    MF.getMachineMemOperand(SV, Flags, SVOffset,
3980                            Val.getValueType().getStoreSize(), Alignment);
3981
3982  return getStore(Chain, dl, Val, Ptr, MMO);
3983}
3984
3985SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3986                               SDValue Ptr, MachineMemOperand *MMO) {
3987  EVT VT = Val.getValueType();
3988  SDVTList VTs = getVTList(MVT::Other);
3989  SDValue Undef = getUNDEF(Ptr.getValueType());
3990  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3991  FoldingSetNodeID ID;
3992  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3993  ID.AddInteger(VT.getRawBits());
3994  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
3995                                     MMO->isNonTemporal()));
3996  void *IP = 0;
3997  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3998    cast<StoreSDNode>(E)->refineAlignment(MMO);
3999    return SDValue(E, 0);
4000  }
4001  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4002                                              false, VT, MMO);
4003  CSEMap.InsertNode(N, IP);
4004  AllNodes.push_back(N);
4005  return SDValue(N, 0);
4006}
4007
4008SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4009                                    SDValue Ptr, const Value *SV,
4010                                    int SVOffset, EVT SVT,
4011                                    bool isVolatile, bool isNonTemporal,
4012                                    unsigned Alignment) {
4013  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4014    Alignment = getEVTAlignment(SVT);
4015
4016  // Check if the memory reference references a frame index
4017  if (!SV)
4018    if (const FrameIndexSDNode *FI =
4019          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4020      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4021
4022  MachineFunction &MF = getMachineFunction();
4023  unsigned Flags = MachineMemOperand::MOStore;
4024  if (isVolatile)
4025    Flags |= MachineMemOperand::MOVolatile;
4026  if (isNonTemporal)
4027    Flags |= MachineMemOperand::MONonTemporal;
4028  MachineMemOperand *MMO =
4029    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4030
4031  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4032}
4033
4034SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4035                                    SDValue Ptr, EVT SVT,
4036                                    MachineMemOperand *MMO) {
4037  EVT VT = Val.getValueType();
4038
4039  if (VT == SVT)
4040    return getStore(Chain, dl, Val, Ptr, MMO);
4041
4042  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4043         "Should only be a truncating store, not extending!");
4044  assert(VT.isInteger() == SVT.isInteger() &&
4045         "Can't do FP-INT conversion!");
4046  assert(VT.isVector() == SVT.isVector() &&
4047         "Cannot use trunc store to convert to or from a vector!");
4048  assert((!VT.isVector() ||
4049          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4050         "Cannot use trunc store to change the number of vector elements!");
4051
4052  SDVTList VTs = getVTList(MVT::Other);
4053  SDValue Undef = getUNDEF(Ptr.getValueType());
4054  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4055  FoldingSetNodeID ID;
4056  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4057  ID.AddInteger(SVT.getRawBits());
4058  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4059                                     MMO->isNonTemporal()));
4060  void *IP = 0;
4061  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4062    cast<StoreSDNode>(E)->refineAlignment(MMO);
4063    return SDValue(E, 0);
4064  }
4065  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4066                                              true, SVT, MMO);
4067  CSEMap.InsertNode(N, IP);
4068  AllNodes.push_back(N);
4069  return SDValue(N, 0);
4070}
4071
4072SDValue
4073SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4074                              SDValue Offset, ISD::MemIndexedMode AM) {
4075  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4076  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4077         "Store is already a indexed store!");
4078  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4079  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4080  FoldingSetNodeID ID;
4081  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4082  ID.AddInteger(ST->getMemoryVT().getRawBits());
4083  ID.AddInteger(ST->getRawSubclassData());
4084  void *IP = 0;
4085  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4086    return SDValue(E, 0);
4087
4088  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4089                                              ST->isTruncatingStore(),
4090                                              ST->getMemoryVT(),
4091                                              ST->getMemOperand());
4092  CSEMap.InsertNode(N, IP);
4093  AllNodes.push_back(N);
4094  return SDValue(N, 0);
4095}
4096
4097SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4098                               SDValue Chain, SDValue Ptr,
4099                               SDValue SV) {
4100  SDValue Ops[] = { Chain, Ptr, SV };
4101  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4102}
4103
4104SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4105                              const SDUse *Ops, unsigned NumOps) {
4106  switch (NumOps) {
4107  case 0: return getNode(Opcode, DL, VT);
4108  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4109  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4110  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4111  default: break;
4112  }
4113
4114  // Copy from an SDUse array into an SDValue array for use with
4115  // the regular getNode logic.
4116  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4117  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4118}
4119
4120SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4121                              const SDValue *Ops, unsigned NumOps) {
4122  switch (NumOps) {
4123  case 0: return getNode(Opcode, DL, VT);
4124  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4125  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4126  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4127  default: break;
4128  }
4129
4130  switch (Opcode) {
4131  default: break;
4132  case ISD::SELECT_CC: {
4133    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4134    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4135           "LHS and RHS of condition must have same type!");
4136    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4137           "True and False arms of SelectCC must have same type!");
4138    assert(Ops[2].getValueType() == VT &&
4139           "select_cc node must be of same type as true and false value!");
4140    break;
4141  }
4142  case ISD::BR_CC: {
4143    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4144    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4145           "LHS/RHS of comparison should match types!");
4146    break;
4147  }
4148  }
4149
4150  // Memoize nodes.
4151  SDNode *N;
4152  SDVTList VTs = getVTList(VT);
4153
4154  if (VT != MVT::Flag) {
4155    FoldingSetNodeID ID;
4156    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4157    void *IP = 0;
4158
4159    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4160      return SDValue(E, 0);
4161
4162    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4163    CSEMap.InsertNode(N, IP);
4164  } else {
4165    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4166  }
4167
4168  AllNodes.push_back(N);
4169#ifndef NDEBUG
4170  VerifyNode(N);
4171#endif
4172  return SDValue(N, 0);
4173}
4174
4175SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4176                              const std::vector<EVT> &ResultTys,
4177                              const SDValue *Ops, unsigned NumOps) {
4178  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4179                 Ops, NumOps);
4180}
4181
4182SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4183                              const EVT *VTs, unsigned NumVTs,
4184                              const SDValue *Ops, unsigned NumOps) {
4185  if (NumVTs == 1)
4186    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4187  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4188}
4189
4190SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4191                              const SDValue *Ops, unsigned NumOps) {
4192  if (VTList.NumVTs == 1)
4193    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4194
4195#if 0
4196  switch (Opcode) {
4197  // FIXME: figure out how to safely handle things like
4198  // int foo(int x) { return 1 << (x & 255); }
4199  // int bar() { return foo(256); }
4200  case ISD::SRA_PARTS:
4201  case ISD::SRL_PARTS:
4202  case ISD::SHL_PARTS:
4203    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4204        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4205      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4206    else if (N3.getOpcode() == ISD::AND)
4207      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4208        // If the and is only masking out bits that cannot effect the shift,
4209        // eliminate the and.
4210        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4211        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4212          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4213      }
4214    break;
4215  }
4216#endif
4217
4218  // Memoize the node unless it returns a flag.
4219  SDNode *N;
4220  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4221    FoldingSetNodeID ID;
4222    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4223    void *IP = 0;
4224    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4225      return SDValue(E, 0);
4226
4227    if (NumOps == 1) {
4228      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4229    } else if (NumOps == 2) {
4230      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4231    } else if (NumOps == 3) {
4232      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4233                                            Ops[2]);
4234    } else {
4235      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4236    }
4237    CSEMap.InsertNode(N, IP);
4238  } else {
4239    if (NumOps == 1) {
4240      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4241    } else if (NumOps == 2) {
4242      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4243    } else if (NumOps == 3) {
4244      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4245                                            Ops[2]);
4246    } else {
4247      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4248    }
4249  }
4250  AllNodes.push_back(N);
4251#ifndef NDEBUG
4252  VerifyNode(N);
4253#endif
4254  return SDValue(N, 0);
4255}
4256
4257SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4258  return getNode(Opcode, DL, VTList, 0, 0);
4259}
4260
4261SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4262                              SDValue N1) {
4263  SDValue Ops[] = { N1 };
4264  return getNode(Opcode, DL, VTList, Ops, 1);
4265}
4266
4267SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4268                              SDValue N1, SDValue N2) {
4269  SDValue Ops[] = { N1, N2 };
4270  return getNode(Opcode, DL, VTList, Ops, 2);
4271}
4272
4273SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4274                              SDValue N1, SDValue N2, SDValue N3) {
4275  SDValue Ops[] = { N1, N2, N3 };
4276  return getNode(Opcode, DL, VTList, Ops, 3);
4277}
4278
4279SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4280                              SDValue N1, SDValue N2, SDValue N3,
4281                              SDValue N4) {
4282  SDValue Ops[] = { N1, N2, N3, N4 };
4283  return getNode(Opcode, DL, VTList, Ops, 4);
4284}
4285
4286SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4287                              SDValue N1, SDValue N2, SDValue N3,
4288                              SDValue N4, SDValue N5) {
4289  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4290  return getNode(Opcode, DL, VTList, Ops, 5);
4291}
4292
4293SDVTList SelectionDAG::getVTList(EVT VT) {
4294  return makeVTList(SDNode::getValueTypeList(VT), 1);
4295}
4296
4297SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4298  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4299       E = VTList.rend(); I != E; ++I)
4300    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4301      return *I;
4302
4303  EVT *Array = Allocator.Allocate<EVT>(2);
4304  Array[0] = VT1;
4305  Array[1] = VT2;
4306  SDVTList Result = makeVTList(Array, 2);
4307  VTList.push_back(Result);
4308  return Result;
4309}
4310
4311SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4312  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4313       E = VTList.rend(); I != E; ++I)
4314    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4315                          I->VTs[2] == VT3)
4316      return *I;
4317
4318  EVT *Array = Allocator.Allocate<EVT>(3);
4319  Array[0] = VT1;
4320  Array[1] = VT2;
4321  Array[2] = VT3;
4322  SDVTList Result = makeVTList(Array, 3);
4323  VTList.push_back(Result);
4324  return Result;
4325}
4326
4327SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4328  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4329       E = VTList.rend(); I != E; ++I)
4330    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4331                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4332      return *I;
4333
4334  EVT *Array = Allocator.Allocate<EVT>(4);
4335  Array[0] = VT1;
4336  Array[1] = VT2;
4337  Array[2] = VT3;
4338  Array[3] = VT4;
4339  SDVTList Result = makeVTList(Array, 4);
4340  VTList.push_back(Result);
4341  return Result;
4342}
4343
4344SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4345  switch (NumVTs) {
4346    case 0: llvm_unreachable("Cannot have nodes without results!");
4347    case 1: return getVTList(VTs[0]);
4348    case 2: return getVTList(VTs[0], VTs[1]);
4349    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4350    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4351    default: break;
4352  }
4353
4354  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4355       E = VTList.rend(); I != E; ++I) {
4356    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4357      continue;
4358
4359    bool NoMatch = false;
4360    for (unsigned i = 2; i != NumVTs; ++i)
4361      if (VTs[i] != I->VTs[i]) {
4362        NoMatch = true;
4363        break;
4364      }
4365    if (!NoMatch)
4366      return *I;
4367  }
4368
4369  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4370  std::copy(VTs, VTs+NumVTs, Array);
4371  SDVTList Result = makeVTList(Array, NumVTs);
4372  VTList.push_back(Result);
4373  return Result;
4374}
4375
4376
4377/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4378/// specified operands.  If the resultant node already exists in the DAG,
4379/// this does not modify the specified node, instead it returns the node that
4380/// already exists.  If the resultant node does not exist in the DAG, the
4381/// input node is returned.  As a degenerate case, if you specify the same
4382/// input operands as the node already has, the input node is returned.
4383SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4384  SDNode *N = InN.getNode();
4385  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4386
4387  // Check to see if there is no change.
4388  if (Op == N->getOperand(0)) return InN;
4389
4390  // See if the modified node already exists.
4391  void *InsertPos = 0;
4392  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4393    return SDValue(Existing, InN.getResNo());
4394
4395  // Nope it doesn't.  Remove the node from its current place in the maps.
4396  if (InsertPos)
4397    if (!RemoveNodeFromCSEMaps(N))
4398      InsertPos = 0;
4399
4400  // Now we update the operands.
4401  N->OperandList[0].set(Op);
4402
4403  // If this gets put into a CSE map, add it.
4404  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4405  return InN;
4406}
4407
4408SDValue SelectionDAG::
4409UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4410  SDNode *N = InN.getNode();
4411  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4412
4413  // Check to see if there is no change.
4414  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4415    return InN;   // No operands changed, just return the input node.
4416
4417  // See if the modified node already exists.
4418  void *InsertPos = 0;
4419  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4420    return SDValue(Existing, InN.getResNo());
4421
4422  // Nope it doesn't.  Remove the node from its current place in the maps.
4423  if (InsertPos)
4424    if (!RemoveNodeFromCSEMaps(N))
4425      InsertPos = 0;
4426
4427  // Now we update the operands.
4428  if (N->OperandList[0] != Op1)
4429    N->OperandList[0].set(Op1);
4430  if (N->OperandList[1] != Op2)
4431    N->OperandList[1].set(Op2);
4432
4433  // If this gets put into a CSE map, add it.
4434  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4435  return InN;
4436}
4437
4438SDValue SelectionDAG::
4439UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4440  SDValue Ops[] = { Op1, Op2, Op3 };
4441  return UpdateNodeOperands(N, Ops, 3);
4442}
4443
4444SDValue SelectionDAG::
4445UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4446                   SDValue Op3, SDValue Op4) {
4447  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4448  return UpdateNodeOperands(N, Ops, 4);
4449}
4450
4451SDValue SelectionDAG::
4452UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4453                   SDValue Op3, SDValue Op4, SDValue Op5) {
4454  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4455  return UpdateNodeOperands(N, Ops, 5);
4456}
4457
4458SDValue SelectionDAG::
4459UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4460  SDNode *N = InN.getNode();
4461  assert(N->getNumOperands() == NumOps &&
4462         "Update with wrong number of operands");
4463
4464  // Check to see if there is no change.
4465  bool AnyChange = false;
4466  for (unsigned i = 0; i != NumOps; ++i) {
4467    if (Ops[i] != N->getOperand(i)) {
4468      AnyChange = true;
4469      break;
4470    }
4471  }
4472
4473  // No operands changed, just return the input node.
4474  if (!AnyChange) return InN;
4475
4476  // See if the modified node already exists.
4477  void *InsertPos = 0;
4478  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4479    return SDValue(Existing, InN.getResNo());
4480
4481  // Nope it doesn't.  Remove the node from its current place in the maps.
4482  if (InsertPos)
4483    if (!RemoveNodeFromCSEMaps(N))
4484      InsertPos = 0;
4485
4486  // Now we update the operands.
4487  for (unsigned i = 0; i != NumOps; ++i)
4488    if (N->OperandList[i] != Ops[i])
4489      N->OperandList[i].set(Ops[i]);
4490
4491  // If this gets put into a CSE map, add it.
4492  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4493  return InN;
4494}
4495
4496/// DropOperands - Release the operands and set this node to have
4497/// zero operands.
4498void SDNode::DropOperands() {
4499  // Unlike the code in MorphNodeTo that does this, we don't need to
4500  // watch for dead nodes here.
4501  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4502    SDUse &Use = *I++;
4503    Use.set(SDValue());
4504  }
4505}
4506
4507/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4508/// machine opcode.
4509///
4510SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4511                                   EVT VT) {
4512  SDVTList VTs = getVTList(VT);
4513  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4514}
4515
4516SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4517                                   EVT VT, SDValue Op1) {
4518  SDVTList VTs = getVTList(VT);
4519  SDValue Ops[] = { Op1 };
4520  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4521}
4522
4523SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4524                                   EVT VT, SDValue Op1,
4525                                   SDValue Op2) {
4526  SDVTList VTs = getVTList(VT);
4527  SDValue Ops[] = { Op1, Op2 };
4528  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4529}
4530
4531SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4532                                   EVT VT, SDValue Op1,
4533                                   SDValue Op2, SDValue Op3) {
4534  SDVTList VTs = getVTList(VT);
4535  SDValue Ops[] = { Op1, Op2, Op3 };
4536  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4537}
4538
4539SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4540                                   EVT VT, const SDValue *Ops,
4541                                   unsigned NumOps) {
4542  SDVTList VTs = getVTList(VT);
4543  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4544}
4545
4546SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4547                                   EVT VT1, EVT VT2, const SDValue *Ops,
4548                                   unsigned NumOps) {
4549  SDVTList VTs = getVTList(VT1, VT2);
4550  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4551}
4552
4553SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4554                                   EVT VT1, EVT VT2) {
4555  SDVTList VTs = getVTList(VT1, VT2);
4556  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4557}
4558
4559SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4560                                   EVT VT1, EVT VT2, EVT VT3,
4561                                   const SDValue *Ops, unsigned NumOps) {
4562  SDVTList VTs = getVTList(VT1, VT2, VT3);
4563  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4564}
4565
4566SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4567                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4568                                   const SDValue *Ops, unsigned NumOps) {
4569  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4570  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4571}
4572
4573SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4574                                   EVT VT1, EVT VT2,
4575                                   SDValue Op1) {
4576  SDVTList VTs = getVTList(VT1, VT2);
4577  SDValue Ops[] = { Op1 };
4578  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4579}
4580
4581SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4582                                   EVT VT1, EVT VT2,
4583                                   SDValue Op1, SDValue Op2) {
4584  SDVTList VTs = getVTList(VT1, VT2);
4585  SDValue Ops[] = { Op1, Op2 };
4586  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4587}
4588
4589SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4590                                   EVT VT1, EVT VT2,
4591                                   SDValue Op1, SDValue Op2,
4592                                   SDValue Op3) {
4593  SDVTList VTs = getVTList(VT1, VT2);
4594  SDValue Ops[] = { Op1, Op2, Op3 };
4595  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4596}
4597
4598SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4599                                   EVT VT1, EVT VT2, EVT VT3,
4600                                   SDValue Op1, SDValue Op2,
4601                                   SDValue Op3) {
4602  SDVTList VTs = getVTList(VT1, VT2, VT3);
4603  SDValue Ops[] = { Op1, Op2, Op3 };
4604  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4605}
4606
4607SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4608                                   SDVTList VTs, const SDValue *Ops,
4609                                   unsigned NumOps) {
4610  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4611  // Reset the NodeID to -1.
4612  N->setNodeId(-1);
4613  return N;
4614}
4615
4616/// MorphNodeTo - This *mutates* the specified node to have the specified
4617/// return type, opcode, and operands.
4618///
4619/// Note that MorphNodeTo returns the resultant node.  If there is already a
4620/// node of the specified opcode and operands, it returns that node instead of
4621/// the current one.  Note that the DebugLoc need not be the same.
4622///
4623/// Using MorphNodeTo is faster than creating a new node and swapping it in
4624/// with ReplaceAllUsesWith both because it often avoids allocating a new
4625/// node, and because it doesn't require CSE recalculation for any of
4626/// the node's users.
4627///
4628SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4629                                  SDVTList VTs, const SDValue *Ops,
4630                                  unsigned NumOps) {
4631  // If an identical node already exists, use it.
4632  void *IP = 0;
4633  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4634    FoldingSetNodeID ID;
4635    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4636    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4637      return ON;
4638  }
4639
4640  if (!RemoveNodeFromCSEMaps(N))
4641    IP = 0;
4642
4643  // Start the morphing.
4644  N->NodeType = Opc;
4645  N->ValueList = VTs.VTs;
4646  N->NumValues = VTs.NumVTs;
4647
4648  // Clear the operands list, updating used nodes to remove this from their
4649  // use list.  Keep track of any operands that become dead as a result.
4650  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4651  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4652    SDUse &Use = *I++;
4653    SDNode *Used = Use.getNode();
4654    Use.set(SDValue());
4655    if (Used->use_empty())
4656      DeadNodeSet.insert(Used);
4657  }
4658
4659  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4660    // Initialize the memory references information.
4661    MN->setMemRefs(0, 0);
4662    // If NumOps is larger than the # of operands we can have in a
4663    // MachineSDNode, reallocate the operand list.
4664    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4665      if (MN->OperandsNeedDelete)
4666        delete[] MN->OperandList;
4667      if (NumOps > array_lengthof(MN->LocalOperands))
4668        // We're creating a final node that will live unmorphed for the
4669        // remainder of the current SelectionDAG iteration, so we can allocate
4670        // the operands directly out of a pool with no recycling metadata.
4671        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4672                         Ops, NumOps);
4673      else
4674        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4675      MN->OperandsNeedDelete = false;
4676    } else
4677      MN->InitOperands(MN->OperandList, Ops, NumOps);
4678  } else {
4679    // If NumOps is larger than the # of operands we currently have, reallocate
4680    // the operand list.
4681    if (NumOps > N->NumOperands) {
4682      if (N->OperandsNeedDelete)
4683        delete[] N->OperandList;
4684      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4685      N->OperandsNeedDelete = true;
4686    } else
4687      N->InitOperands(N->OperandList, Ops, NumOps);
4688  }
4689
4690  // Delete any nodes that are still dead after adding the uses for the
4691  // new operands.
4692  if (!DeadNodeSet.empty()) {
4693    SmallVector<SDNode *, 16> DeadNodes;
4694    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4695         E = DeadNodeSet.end(); I != E; ++I)
4696      if ((*I)->use_empty())
4697        DeadNodes.push_back(*I);
4698    RemoveDeadNodes(DeadNodes);
4699  }
4700
4701  if (IP)
4702    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4703  return N;
4704}
4705
4706
4707/// getMachineNode - These are used for target selectors to create a new node
4708/// with specified return type(s), MachineInstr opcode, and operands.
4709///
4710/// Note that getMachineNode returns the resultant node.  If there is already a
4711/// node of the specified opcode and operands, it returns that node instead of
4712/// the current one.
4713MachineSDNode *
4714SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4715  SDVTList VTs = getVTList(VT);
4716  return getMachineNode(Opcode, dl, VTs, 0, 0);
4717}
4718
4719MachineSDNode *
4720SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4721  SDVTList VTs = getVTList(VT);
4722  SDValue Ops[] = { Op1 };
4723  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4724}
4725
4726MachineSDNode *
4727SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4728                             SDValue Op1, SDValue Op2) {
4729  SDVTList VTs = getVTList(VT);
4730  SDValue Ops[] = { Op1, Op2 };
4731  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4732}
4733
4734MachineSDNode *
4735SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4736                             SDValue Op1, SDValue Op2, SDValue Op3) {
4737  SDVTList VTs = getVTList(VT);
4738  SDValue Ops[] = { Op1, Op2, Op3 };
4739  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4740}
4741
4742MachineSDNode *
4743SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4744                             const SDValue *Ops, unsigned NumOps) {
4745  SDVTList VTs = getVTList(VT);
4746  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4747}
4748
4749MachineSDNode *
4750SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4751  SDVTList VTs = getVTList(VT1, VT2);
4752  return getMachineNode(Opcode, dl, VTs, 0, 0);
4753}
4754
4755MachineSDNode *
4756SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4757                             EVT VT1, EVT VT2, SDValue Op1) {
4758  SDVTList VTs = getVTList(VT1, VT2);
4759  SDValue Ops[] = { Op1 };
4760  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4761}
4762
4763MachineSDNode *
4764SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4765                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4766  SDVTList VTs = getVTList(VT1, VT2);
4767  SDValue Ops[] = { Op1, Op2 };
4768  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4769}
4770
4771MachineSDNode *
4772SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4773                             EVT VT1, EVT VT2, SDValue Op1,
4774                             SDValue Op2, SDValue Op3) {
4775  SDVTList VTs = getVTList(VT1, VT2);
4776  SDValue Ops[] = { Op1, Op2, Op3 };
4777  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4778}
4779
4780MachineSDNode *
4781SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4782                             EVT VT1, EVT VT2,
4783                             const SDValue *Ops, unsigned NumOps) {
4784  SDVTList VTs = getVTList(VT1, VT2);
4785  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4786}
4787
4788MachineSDNode *
4789SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4790                             EVT VT1, EVT VT2, EVT VT3,
4791                             SDValue Op1, SDValue Op2) {
4792  SDVTList VTs = getVTList(VT1, VT2, VT3);
4793  SDValue Ops[] = { Op1, Op2 };
4794  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4795}
4796
4797MachineSDNode *
4798SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4799                             EVT VT1, EVT VT2, EVT VT3,
4800                             SDValue Op1, SDValue Op2, SDValue Op3) {
4801  SDVTList VTs = getVTList(VT1, VT2, VT3);
4802  SDValue Ops[] = { Op1, Op2, Op3 };
4803  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4804}
4805
4806MachineSDNode *
4807SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4808                             EVT VT1, EVT VT2, EVT VT3,
4809                             const SDValue *Ops, unsigned NumOps) {
4810  SDVTList VTs = getVTList(VT1, VT2, VT3);
4811  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4812}
4813
4814MachineSDNode *
4815SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4816                             EVT VT2, EVT VT3, EVT VT4,
4817                             const SDValue *Ops, unsigned NumOps) {
4818  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4819  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4820}
4821
4822MachineSDNode *
4823SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4824                             const std::vector<EVT> &ResultTys,
4825                             const SDValue *Ops, unsigned NumOps) {
4826  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4827  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4828}
4829
4830MachineSDNode *
4831SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4832                             const SDValue *Ops, unsigned NumOps) {
4833  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4834  MachineSDNode *N;
4835  void *IP;
4836
4837  if (DoCSE) {
4838    FoldingSetNodeID ID;
4839    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4840    IP = 0;
4841    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4842      return cast<MachineSDNode>(E);
4843  }
4844
4845  // Allocate a new MachineSDNode.
4846  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4847
4848  // Initialize the operands list.
4849  if (NumOps > array_lengthof(N->LocalOperands))
4850    // We're creating a final node that will live unmorphed for the
4851    // remainder of the current SelectionDAG iteration, so we can allocate
4852    // the operands directly out of a pool with no recycling metadata.
4853    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4854                    Ops, NumOps);
4855  else
4856    N->InitOperands(N->LocalOperands, Ops, NumOps);
4857  N->OperandsNeedDelete = false;
4858
4859  if (DoCSE)
4860    CSEMap.InsertNode(N, IP);
4861
4862  AllNodes.push_back(N);
4863#ifndef NDEBUG
4864  VerifyNode(N);
4865#endif
4866  return N;
4867}
4868
4869/// getTargetExtractSubreg - A convenience function for creating
4870/// TargetOpcode::EXTRACT_SUBREG nodes.
4871SDValue
4872SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4873                                     SDValue Operand) {
4874  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4875  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4876                                  VT, Operand, SRIdxVal);
4877  return SDValue(Subreg, 0);
4878}
4879
4880/// getTargetInsertSubreg - A convenience function for creating
4881/// TargetOpcode::INSERT_SUBREG nodes.
4882SDValue
4883SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4884                                    SDValue Operand, SDValue Subreg) {
4885  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4886  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4887                                  VT, Operand, Subreg, SRIdxVal);
4888  return SDValue(Result, 0);
4889}
4890
4891/// getNodeIfExists - Get the specified node if it's already available, or
4892/// else return NULL.
4893SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4894                                      const SDValue *Ops, unsigned NumOps) {
4895  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4896    FoldingSetNodeID ID;
4897    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4898    void *IP = 0;
4899    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4900      return E;
4901  }
4902  return NULL;
4903}
4904
4905/// getDbgValue - Creates a SDDbgValue node.
4906///
4907SDDbgValue *
4908SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4909                          DebugLoc DL, unsigned O) {
4910  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4911}
4912
4913SDDbgValue *
4914SelectionDAG::getDbgValue(MDNode *MDPtr, Value *C, uint64_t Off,
4915                          DebugLoc DL, unsigned O) {
4916  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4917}
4918
4919SDDbgValue *
4920SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4921                          DebugLoc DL, unsigned O) {
4922  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4923}
4924
4925namespace {
4926
4927/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4928/// pointed to by a use iterator is deleted, increment the use iterator
4929/// so that it doesn't dangle.
4930///
4931/// This class also manages a "downlink" DAGUpdateListener, to forward
4932/// messages to ReplaceAllUsesWith's callers.
4933///
4934class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4935  SelectionDAG::DAGUpdateListener *DownLink;
4936  SDNode::use_iterator &UI;
4937  SDNode::use_iterator &UE;
4938
4939  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4940    // Increment the iterator as needed.
4941    while (UI != UE && N == *UI)
4942      ++UI;
4943
4944    // Then forward the message.
4945    if (DownLink) DownLink->NodeDeleted(N, E);
4946  }
4947
4948  virtual void NodeUpdated(SDNode *N) {
4949    // Just forward the message.
4950    if (DownLink) DownLink->NodeUpdated(N);
4951  }
4952
4953public:
4954  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4955                     SDNode::use_iterator &ui,
4956                     SDNode::use_iterator &ue)
4957    : DownLink(dl), UI(ui), UE(ue) {}
4958};
4959
4960}
4961
4962/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4963/// This can cause recursive merging of nodes in the DAG.
4964///
4965/// This version assumes From has a single result value.
4966///
4967void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4968                                      DAGUpdateListener *UpdateListener) {
4969  SDNode *From = FromN.getNode();
4970  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4971         "Cannot replace with this method!");
4972  assert(From != To.getNode() && "Cannot replace uses of with self");
4973
4974  // Iterate over all the existing uses of From. New uses will be added
4975  // to the beginning of the use list, which we avoid visiting.
4976  // This specifically avoids visiting uses of From that arise while the
4977  // replacement is happening, because any such uses would be the result
4978  // of CSE: If an existing node looks like From after one of its operands
4979  // is replaced by To, we don't want to replace of all its users with To
4980  // too. See PR3018 for more info.
4981  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4982  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4983  while (UI != UE) {
4984    SDNode *User = *UI;
4985
4986    // This node is about to morph, remove its old self from the CSE maps.
4987    RemoveNodeFromCSEMaps(User);
4988
4989    // A user can appear in a use list multiple times, and when this
4990    // happens the uses are usually next to each other in the list.
4991    // To help reduce the number of CSE recomputations, process all
4992    // the uses of this user that we can find this way.
4993    do {
4994      SDUse &Use = UI.getUse();
4995      ++UI;
4996      Use.set(To);
4997    } while (UI != UE && *UI == User);
4998
4999    // Now that we have modified User, add it back to the CSE maps.  If it
5000    // already exists there, recursively merge the results together.
5001    AddModifiedNodeToCSEMaps(User, &Listener);
5002  }
5003}
5004
5005/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5006/// This can cause recursive merging of nodes in the DAG.
5007///
5008/// This version assumes that for each value of From, there is a
5009/// corresponding value in To in the same position with the same type.
5010///
5011void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5012                                      DAGUpdateListener *UpdateListener) {
5013#ifndef NDEBUG
5014  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5015    assert((!From->hasAnyUseOfValue(i) ||
5016            From->getValueType(i) == To->getValueType(i)) &&
5017           "Cannot use this version of ReplaceAllUsesWith!");
5018#endif
5019
5020  // Handle the trivial case.
5021  if (From == To)
5022    return;
5023
5024  // Iterate over just the existing users of From. See the comments in
5025  // the ReplaceAllUsesWith above.
5026  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5027  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5028  while (UI != UE) {
5029    SDNode *User = *UI;
5030
5031    // This node is about to morph, remove its old self from the CSE maps.
5032    RemoveNodeFromCSEMaps(User);
5033
5034    // A user can appear in a use list multiple times, and when this
5035    // happens the uses are usually next to each other in the list.
5036    // To help reduce the number of CSE recomputations, process all
5037    // the uses of this user that we can find this way.
5038    do {
5039      SDUse &Use = UI.getUse();
5040      ++UI;
5041      Use.setNode(To);
5042    } while (UI != UE && *UI == User);
5043
5044    // Now that we have modified User, add it back to the CSE maps.  If it
5045    // already exists there, recursively merge the results together.
5046    AddModifiedNodeToCSEMaps(User, &Listener);
5047  }
5048}
5049
5050/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5051/// This can cause recursive merging of nodes in the DAG.
5052///
5053/// This version can replace From with any result values.  To must match the
5054/// number and types of values returned by From.
5055void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5056                                      const SDValue *To,
5057                                      DAGUpdateListener *UpdateListener) {
5058  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5059    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5060
5061  // Iterate over just the existing users of From. See the comments in
5062  // the ReplaceAllUsesWith above.
5063  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5064  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5065  while (UI != UE) {
5066    SDNode *User = *UI;
5067
5068    // This node is about to morph, remove its old self from the CSE maps.
5069    RemoveNodeFromCSEMaps(User);
5070
5071    // A user can appear in a use list multiple times, and when this
5072    // happens the uses are usually next to each other in the list.
5073    // To help reduce the number of CSE recomputations, process all
5074    // the uses of this user that we can find this way.
5075    do {
5076      SDUse &Use = UI.getUse();
5077      const SDValue &ToOp = To[Use.getResNo()];
5078      ++UI;
5079      Use.set(ToOp);
5080    } while (UI != UE && *UI == User);
5081
5082    // Now that we have modified User, add it back to the CSE maps.  If it
5083    // already exists there, recursively merge the results together.
5084    AddModifiedNodeToCSEMaps(User, &Listener);
5085  }
5086}
5087
5088/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5089/// uses of other values produced by From.getNode() alone.  The Deleted
5090/// vector is handled the same way as for ReplaceAllUsesWith.
5091void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5092                                             DAGUpdateListener *UpdateListener){
5093  // Handle the really simple, really trivial case efficiently.
5094  if (From == To) return;
5095
5096  // Handle the simple, trivial, case efficiently.
5097  if (From.getNode()->getNumValues() == 1) {
5098    ReplaceAllUsesWith(From, To, UpdateListener);
5099    return;
5100  }
5101
5102  // Iterate over just the existing users of From. See the comments in
5103  // the ReplaceAllUsesWith above.
5104  SDNode::use_iterator UI = From.getNode()->use_begin(),
5105                       UE = From.getNode()->use_end();
5106  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5107  while (UI != UE) {
5108    SDNode *User = *UI;
5109    bool UserRemovedFromCSEMaps = false;
5110
5111    // A user can appear in a use list multiple times, and when this
5112    // happens the uses are usually next to each other in the list.
5113    // To help reduce the number of CSE recomputations, process all
5114    // the uses of this user that we can find this way.
5115    do {
5116      SDUse &Use = UI.getUse();
5117
5118      // Skip uses of different values from the same node.
5119      if (Use.getResNo() != From.getResNo()) {
5120        ++UI;
5121        continue;
5122      }
5123
5124      // If this node hasn't been modified yet, it's still in the CSE maps,
5125      // so remove its old self from the CSE maps.
5126      if (!UserRemovedFromCSEMaps) {
5127        RemoveNodeFromCSEMaps(User);
5128        UserRemovedFromCSEMaps = true;
5129      }
5130
5131      ++UI;
5132      Use.set(To);
5133    } while (UI != UE && *UI == User);
5134
5135    // We are iterating over all uses of the From node, so if a use
5136    // doesn't use the specific value, no changes are made.
5137    if (!UserRemovedFromCSEMaps)
5138      continue;
5139
5140    // Now that we have modified User, add it back to the CSE maps.  If it
5141    // already exists there, recursively merge the results together.
5142    AddModifiedNodeToCSEMaps(User, &Listener);
5143  }
5144}
5145
5146namespace {
5147  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5148  /// to record information about a use.
5149  struct UseMemo {
5150    SDNode *User;
5151    unsigned Index;
5152    SDUse *Use;
5153  };
5154
5155  /// operator< - Sort Memos by User.
5156  bool operator<(const UseMemo &L, const UseMemo &R) {
5157    return (intptr_t)L.User < (intptr_t)R.User;
5158  }
5159}
5160
5161/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5162/// uses of other values produced by From.getNode() alone.  The same value
5163/// may appear in both the From and To list.  The Deleted vector is
5164/// handled the same way as for ReplaceAllUsesWith.
5165void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5166                                              const SDValue *To,
5167                                              unsigned Num,
5168                                              DAGUpdateListener *UpdateListener){
5169  // Handle the simple, trivial case efficiently.
5170  if (Num == 1)
5171    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5172
5173  // Read up all the uses and make records of them. This helps
5174  // processing new uses that are introduced during the
5175  // replacement process.
5176  SmallVector<UseMemo, 4> Uses;
5177  for (unsigned i = 0; i != Num; ++i) {
5178    unsigned FromResNo = From[i].getResNo();
5179    SDNode *FromNode = From[i].getNode();
5180    for (SDNode::use_iterator UI = FromNode->use_begin(),
5181         E = FromNode->use_end(); UI != E; ++UI) {
5182      SDUse &Use = UI.getUse();
5183      if (Use.getResNo() == FromResNo) {
5184        UseMemo Memo = { *UI, i, &Use };
5185        Uses.push_back(Memo);
5186      }
5187    }
5188  }
5189
5190  // Sort the uses, so that all the uses from a given User are together.
5191  std::sort(Uses.begin(), Uses.end());
5192
5193  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5194       UseIndex != UseIndexEnd; ) {
5195    // We know that this user uses some value of From.  If it is the right
5196    // value, update it.
5197    SDNode *User = Uses[UseIndex].User;
5198
5199    // This node is about to morph, remove its old self from the CSE maps.
5200    RemoveNodeFromCSEMaps(User);
5201
5202    // The Uses array is sorted, so all the uses for a given User
5203    // are next to each other in the list.
5204    // To help reduce the number of CSE recomputations, process all
5205    // the uses of this user that we can find this way.
5206    do {
5207      unsigned i = Uses[UseIndex].Index;
5208      SDUse &Use = *Uses[UseIndex].Use;
5209      ++UseIndex;
5210
5211      Use.set(To[i]);
5212    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5213
5214    // Now that we have modified User, add it back to the CSE maps.  If it
5215    // already exists there, recursively merge the results together.
5216    AddModifiedNodeToCSEMaps(User, UpdateListener);
5217  }
5218}
5219
5220/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5221/// based on their topological order. It returns the maximum id and a vector
5222/// of the SDNodes* in assigned order by reference.
5223unsigned SelectionDAG::AssignTopologicalOrder() {
5224
5225  unsigned DAGSize = 0;
5226
5227  // SortedPos tracks the progress of the algorithm. Nodes before it are
5228  // sorted, nodes after it are unsorted. When the algorithm completes
5229  // it is at the end of the list.
5230  allnodes_iterator SortedPos = allnodes_begin();
5231
5232  // Visit all the nodes. Move nodes with no operands to the front of
5233  // the list immediately. Annotate nodes that do have operands with their
5234  // operand count. Before we do this, the Node Id fields of the nodes
5235  // may contain arbitrary values. After, the Node Id fields for nodes
5236  // before SortedPos will contain the topological sort index, and the
5237  // Node Id fields for nodes At SortedPos and after will contain the
5238  // count of outstanding operands.
5239  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5240    SDNode *N = I++;
5241    checkForCycles(N);
5242    unsigned Degree = N->getNumOperands();
5243    if (Degree == 0) {
5244      // A node with no uses, add it to the result array immediately.
5245      N->setNodeId(DAGSize++);
5246      allnodes_iterator Q = N;
5247      if (Q != SortedPos)
5248        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5249      assert(SortedPos != AllNodes.end() && "Overran node list");
5250      ++SortedPos;
5251    } else {
5252      // Temporarily use the Node Id as scratch space for the degree count.
5253      N->setNodeId(Degree);
5254    }
5255  }
5256
5257  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5258  // such that by the time the end is reached all nodes will be sorted.
5259  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5260    SDNode *N = I;
5261    checkForCycles(N);
5262    // N is in sorted position, so all its uses have one less operand
5263    // that needs to be sorted.
5264    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5265         UI != UE; ++UI) {
5266      SDNode *P = *UI;
5267      unsigned Degree = P->getNodeId();
5268      assert(Degree != 0 && "Invalid node degree");
5269      --Degree;
5270      if (Degree == 0) {
5271        // All of P's operands are sorted, so P may sorted now.
5272        P->setNodeId(DAGSize++);
5273        if (P != SortedPos)
5274          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5275        assert(SortedPos != AllNodes.end() && "Overran node list");
5276        ++SortedPos;
5277      } else {
5278        // Update P's outstanding operand count.
5279        P->setNodeId(Degree);
5280      }
5281    }
5282    if (I == SortedPos) {
5283#ifndef NDEBUG
5284      SDNode *S = ++I;
5285      dbgs() << "Overran sorted position:\n";
5286      S->dumprFull();
5287#endif
5288      llvm_unreachable(0);
5289    }
5290  }
5291
5292  assert(SortedPos == AllNodes.end() &&
5293         "Topological sort incomplete!");
5294  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5295         "First node in topological sort is not the entry token!");
5296  assert(AllNodes.front().getNodeId() == 0 &&
5297         "First node in topological sort has non-zero id!");
5298  assert(AllNodes.front().getNumOperands() == 0 &&
5299         "First node in topological sort has operands!");
5300  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5301         "Last node in topologic sort has unexpected id!");
5302  assert(AllNodes.back().use_empty() &&
5303         "Last node in topologic sort has users!");
5304  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5305  return DAGSize;
5306}
5307
5308/// AssignOrdering - Assign an order to the SDNode.
5309void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5310  assert(SD && "Trying to assign an order to a null node!");
5311  Ordering->add(SD, Order);
5312}
5313
5314/// GetOrdering - Get the order for the SDNode.
5315unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5316  assert(SD && "Trying to get the order of a null node!");
5317  return Ordering->getOrder(SD);
5318}
5319
5320/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5321/// value is produced by SD.
5322void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD) {
5323  DbgInfo->add(DB, SD);
5324  if (SD)
5325    SD->setHasDebugValue(true);
5326}
5327
5328//===----------------------------------------------------------------------===//
5329//                              SDNode Class
5330//===----------------------------------------------------------------------===//
5331
5332HandleSDNode::~HandleSDNode() {
5333  DropOperands();
5334}
5335
5336GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5337                                         EVT VT, int64_t o, unsigned char TF)
5338  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5339  TheGlobal = const_cast<GlobalValue*>(GA);
5340}
5341
5342MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5343                     MachineMemOperand *mmo)
5344 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5345  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5346                                      MMO->isNonTemporal());
5347  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5348  assert(isNonTemporal() == MMO->isNonTemporal() &&
5349         "Non-temporal encoding error!");
5350  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5351}
5352
5353MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5354                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5355                     MachineMemOperand *mmo)
5356   : SDNode(Opc, dl, VTs, Ops, NumOps),
5357     MemoryVT(memvt), MMO(mmo) {
5358  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5359                                      MMO->isNonTemporal());
5360  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5361  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5362}
5363
5364/// Profile - Gather unique data for the node.
5365///
5366void SDNode::Profile(FoldingSetNodeID &ID) const {
5367  AddNodeIDNode(ID, this);
5368}
5369
5370namespace {
5371  struct EVTArray {
5372    std::vector<EVT> VTs;
5373
5374    EVTArray() {
5375      VTs.reserve(MVT::LAST_VALUETYPE);
5376      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5377        VTs.push_back(MVT((MVT::SimpleValueType)i));
5378    }
5379  };
5380}
5381
5382static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5383static ManagedStatic<EVTArray> SimpleVTArray;
5384static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5385
5386/// getValueTypeList - Return a pointer to the specified value type.
5387///
5388const EVT *SDNode::getValueTypeList(EVT VT) {
5389  if (VT.isExtended()) {
5390    sys::SmartScopedLock<true> Lock(*VTMutex);
5391    return &(*EVTs->insert(VT).first);
5392  } else {
5393    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5394  }
5395}
5396
5397/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5398/// indicated value.  This method ignores uses of other values defined by this
5399/// operation.
5400bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5401  assert(Value < getNumValues() && "Bad value!");
5402
5403  // TODO: Only iterate over uses of a given value of the node
5404  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5405    if (UI.getUse().getResNo() == Value) {
5406      if (NUses == 0)
5407        return false;
5408      --NUses;
5409    }
5410  }
5411
5412  // Found exactly the right number of uses?
5413  return NUses == 0;
5414}
5415
5416
5417/// hasAnyUseOfValue - Return true if there are any use of the indicated
5418/// value. This method ignores uses of other values defined by this operation.
5419bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5420  assert(Value < getNumValues() && "Bad value!");
5421
5422  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5423    if (UI.getUse().getResNo() == Value)
5424      return true;
5425
5426  return false;
5427}
5428
5429
5430/// isOnlyUserOf - Return true if this node is the only use of N.
5431///
5432bool SDNode::isOnlyUserOf(SDNode *N) const {
5433  bool Seen = false;
5434  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5435    SDNode *User = *I;
5436    if (User == this)
5437      Seen = true;
5438    else
5439      return false;
5440  }
5441
5442  return Seen;
5443}
5444
5445/// isOperand - Return true if this node is an operand of N.
5446///
5447bool SDValue::isOperandOf(SDNode *N) const {
5448  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5449    if (*this == N->getOperand(i))
5450      return true;
5451  return false;
5452}
5453
5454bool SDNode::isOperandOf(SDNode *N) const {
5455  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5456    if (this == N->OperandList[i].getNode())
5457      return true;
5458  return false;
5459}
5460
5461/// reachesChainWithoutSideEffects - Return true if this operand (which must
5462/// be a chain) reaches the specified operand without crossing any
5463/// side-effecting instructions.  In practice, this looks through token
5464/// factors and non-volatile loads.  In order to remain efficient, this only
5465/// looks a couple of nodes in, it does not do an exhaustive search.
5466bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5467                                               unsigned Depth) const {
5468  if (*this == Dest) return true;
5469
5470  // Don't search too deeply, we just want to be able to see through
5471  // TokenFactor's etc.
5472  if (Depth == 0) return false;
5473
5474  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5475  // of the operands of the TF reach dest, then we can do the xform.
5476  if (getOpcode() == ISD::TokenFactor) {
5477    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5478      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5479        return true;
5480    return false;
5481  }
5482
5483  // Loads don't have side effects, look through them.
5484  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5485    if (!Ld->isVolatile())
5486      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5487  }
5488  return false;
5489}
5490
5491/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5492/// is either an operand of N or it can be reached by traversing up the operands.
5493/// NOTE: this is an expensive method. Use it carefully.
5494bool SDNode::isPredecessorOf(SDNode *N) const {
5495  SmallPtrSet<SDNode *, 32> Visited;
5496  SmallVector<SDNode *, 16> Worklist;
5497  Worklist.push_back(N);
5498
5499  do {
5500    N = Worklist.pop_back_val();
5501    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5502      SDNode *Op = N->getOperand(i).getNode();
5503      if (Op == this)
5504        return true;
5505      if (Visited.insert(Op))
5506        Worklist.push_back(Op);
5507    }
5508  } while (!Worklist.empty());
5509
5510  return false;
5511}
5512
5513uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5514  assert(Num < NumOperands && "Invalid child # of SDNode!");
5515  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5516}
5517
5518std::string SDNode::getOperationName(const SelectionDAG *G) const {
5519  switch (getOpcode()) {
5520  default:
5521    if (getOpcode() < ISD::BUILTIN_OP_END)
5522      return "<<Unknown DAG Node>>";
5523    if (isMachineOpcode()) {
5524      if (G)
5525        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5526          if (getMachineOpcode() < TII->getNumOpcodes())
5527            return TII->get(getMachineOpcode()).getName();
5528      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5529    }
5530    if (G) {
5531      const TargetLowering &TLI = G->getTargetLoweringInfo();
5532      const char *Name = TLI.getTargetNodeName(getOpcode());
5533      if (Name) return Name;
5534      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5535    }
5536    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5537
5538#ifndef NDEBUG
5539  case ISD::DELETED_NODE:
5540    return "<<Deleted Node!>>";
5541#endif
5542  case ISD::PREFETCH:      return "Prefetch";
5543  case ISD::MEMBARRIER:    return "MemBarrier";
5544  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5545  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5546  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5547  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5548  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5549  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5550  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5551  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5552  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5553  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5554  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5555  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5556  case ISD::PCMARKER:      return "PCMarker";
5557  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5558  case ISD::SRCVALUE:      return "SrcValue";
5559  case ISD::EntryToken:    return "EntryToken";
5560  case ISD::TokenFactor:   return "TokenFactor";
5561  case ISD::AssertSext:    return "AssertSext";
5562  case ISD::AssertZext:    return "AssertZext";
5563
5564  case ISD::BasicBlock:    return "BasicBlock";
5565  case ISD::VALUETYPE:     return "ValueType";
5566  case ISD::Register:      return "Register";
5567
5568  case ISD::Constant:      return "Constant";
5569  case ISD::ConstantFP:    return "ConstantFP";
5570  case ISD::GlobalAddress: return "GlobalAddress";
5571  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5572  case ISD::FrameIndex:    return "FrameIndex";
5573  case ISD::JumpTable:     return "JumpTable";
5574  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5575  case ISD::RETURNADDR: return "RETURNADDR";
5576  case ISD::FRAMEADDR: return "FRAMEADDR";
5577  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5578  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5579  case ISD::LSDAADDR: return "LSDAADDR";
5580  case ISD::EHSELECTION: return "EHSELECTION";
5581  case ISD::EH_RETURN: return "EH_RETURN";
5582  case ISD::ConstantPool:  return "ConstantPool";
5583  case ISD::ExternalSymbol: return "ExternalSymbol";
5584  case ISD::BlockAddress:  return "BlockAddress";
5585  case ISD::INTRINSIC_WO_CHAIN:
5586  case ISD::INTRINSIC_VOID:
5587  case ISD::INTRINSIC_W_CHAIN: {
5588    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5589    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5590    if (IID < Intrinsic::num_intrinsics)
5591      return Intrinsic::getName((Intrinsic::ID)IID);
5592    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5593      return TII->getName(IID);
5594    llvm_unreachable("Invalid intrinsic ID");
5595  }
5596
5597  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5598  case ISD::TargetConstant: return "TargetConstant";
5599  case ISD::TargetConstantFP:return "TargetConstantFP";
5600  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5601  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5602  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5603  case ISD::TargetJumpTable:  return "TargetJumpTable";
5604  case ISD::TargetConstantPool:  return "TargetConstantPool";
5605  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5606  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5607
5608  case ISD::CopyToReg:     return "CopyToReg";
5609  case ISD::CopyFromReg:   return "CopyFromReg";
5610  case ISD::UNDEF:         return "undef";
5611  case ISD::MERGE_VALUES:  return "merge_values";
5612  case ISD::INLINEASM:     return "inlineasm";
5613  case ISD::EH_LABEL:      return "eh_label";
5614  case ISD::HANDLENODE:    return "handlenode";
5615
5616  // Unary operators
5617  case ISD::FABS:   return "fabs";
5618  case ISD::FNEG:   return "fneg";
5619  case ISD::FSQRT:  return "fsqrt";
5620  case ISD::FSIN:   return "fsin";
5621  case ISD::FCOS:   return "fcos";
5622  case ISD::FPOWI:  return "fpowi";
5623  case ISD::FPOW:   return "fpow";
5624  case ISD::FTRUNC: return "ftrunc";
5625  case ISD::FFLOOR: return "ffloor";
5626  case ISD::FCEIL:  return "fceil";
5627  case ISD::FRINT:  return "frint";
5628  case ISD::FNEARBYINT: return "fnearbyint";
5629
5630  // Binary operators
5631  case ISD::ADD:    return "add";
5632  case ISD::SUB:    return "sub";
5633  case ISD::MUL:    return "mul";
5634  case ISD::MULHU:  return "mulhu";
5635  case ISD::MULHS:  return "mulhs";
5636  case ISD::SDIV:   return "sdiv";
5637  case ISD::UDIV:   return "udiv";
5638  case ISD::SREM:   return "srem";
5639  case ISD::UREM:   return "urem";
5640  case ISD::SMUL_LOHI:  return "smul_lohi";
5641  case ISD::UMUL_LOHI:  return "umul_lohi";
5642  case ISD::SDIVREM:    return "sdivrem";
5643  case ISD::UDIVREM:    return "udivrem";
5644  case ISD::AND:    return "and";
5645  case ISD::OR:     return "or";
5646  case ISD::XOR:    return "xor";
5647  case ISD::SHL:    return "shl";
5648  case ISD::SRA:    return "sra";
5649  case ISD::SRL:    return "srl";
5650  case ISD::ROTL:   return "rotl";
5651  case ISD::ROTR:   return "rotr";
5652  case ISD::FADD:   return "fadd";
5653  case ISD::FSUB:   return "fsub";
5654  case ISD::FMUL:   return "fmul";
5655  case ISD::FDIV:   return "fdiv";
5656  case ISD::FREM:   return "frem";
5657  case ISD::FCOPYSIGN: return "fcopysign";
5658  case ISD::FGETSIGN:  return "fgetsign";
5659
5660  case ISD::SETCC:       return "setcc";
5661  case ISD::VSETCC:      return "vsetcc";
5662  case ISD::SELECT:      return "select";
5663  case ISD::SELECT_CC:   return "select_cc";
5664  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5665  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5666  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5667  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5668  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5669  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5670  case ISD::CARRY_FALSE:         return "carry_false";
5671  case ISD::ADDC:        return "addc";
5672  case ISD::ADDE:        return "adde";
5673  case ISD::SADDO:       return "saddo";
5674  case ISD::UADDO:       return "uaddo";
5675  case ISD::SSUBO:       return "ssubo";
5676  case ISD::USUBO:       return "usubo";
5677  case ISD::SMULO:       return "smulo";
5678  case ISD::UMULO:       return "umulo";
5679  case ISD::SUBC:        return "subc";
5680  case ISD::SUBE:        return "sube";
5681  case ISD::SHL_PARTS:   return "shl_parts";
5682  case ISD::SRA_PARTS:   return "sra_parts";
5683  case ISD::SRL_PARTS:   return "srl_parts";
5684
5685  // Conversion operators.
5686  case ISD::SIGN_EXTEND: return "sign_extend";
5687  case ISD::ZERO_EXTEND: return "zero_extend";
5688  case ISD::ANY_EXTEND:  return "any_extend";
5689  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5690  case ISD::TRUNCATE:    return "truncate";
5691  case ISD::FP_ROUND:    return "fp_round";
5692  case ISD::FLT_ROUNDS_: return "flt_rounds";
5693  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5694  case ISD::FP_EXTEND:   return "fp_extend";
5695
5696  case ISD::SINT_TO_FP:  return "sint_to_fp";
5697  case ISD::UINT_TO_FP:  return "uint_to_fp";
5698  case ISD::FP_TO_SINT:  return "fp_to_sint";
5699  case ISD::FP_TO_UINT:  return "fp_to_uint";
5700  case ISD::BIT_CONVERT: return "bit_convert";
5701  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5702  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5703
5704  case ISD::CONVERT_RNDSAT: {
5705    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5706    default: llvm_unreachable("Unknown cvt code!");
5707    case ISD::CVT_FF:  return "cvt_ff";
5708    case ISD::CVT_FS:  return "cvt_fs";
5709    case ISD::CVT_FU:  return "cvt_fu";
5710    case ISD::CVT_SF:  return "cvt_sf";
5711    case ISD::CVT_UF:  return "cvt_uf";
5712    case ISD::CVT_SS:  return "cvt_ss";
5713    case ISD::CVT_SU:  return "cvt_su";
5714    case ISD::CVT_US:  return "cvt_us";
5715    case ISD::CVT_UU:  return "cvt_uu";
5716    }
5717  }
5718
5719    // Control flow instructions
5720  case ISD::BR:      return "br";
5721  case ISD::BRIND:   return "brind";
5722  case ISD::BR_JT:   return "br_jt";
5723  case ISD::BRCOND:  return "brcond";
5724  case ISD::BR_CC:   return "br_cc";
5725  case ISD::CALLSEQ_START:  return "callseq_start";
5726  case ISD::CALLSEQ_END:    return "callseq_end";
5727
5728    // Other operators
5729  case ISD::LOAD:               return "load";
5730  case ISD::STORE:              return "store";
5731  case ISD::VAARG:              return "vaarg";
5732  case ISD::VACOPY:             return "vacopy";
5733  case ISD::VAEND:              return "vaend";
5734  case ISD::VASTART:            return "vastart";
5735  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5736  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5737  case ISD::BUILD_PAIR:         return "build_pair";
5738  case ISD::STACKSAVE:          return "stacksave";
5739  case ISD::STACKRESTORE:       return "stackrestore";
5740  case ISD::TRAP:               return "trap";
5741
5742  // Bit manipulation
5743  case ISD::BSWAP:   return "bswap";
5744  case ISD::CTPOP:   return "ctpop";
5745  case ISD::CTTZ:    return "cttz";
5746  case ISD::CTLZ:    return "ctlz";
5747
5748  // Trampolines
5749  case ISD::TRAMPOLINE: return "trampoline";
5750
5751  case ISD::CONDCODE:
5752    switch (cast<CondCodeSDNode>(this)->get()) {
5753    default: llvm_unreachable("Unknown setcc condition!");
5754    case ISD::SETOEQ:  return "setoeq";
5755    case ISD::SETOGT:  return "setogt";
5756    case ISD::SETOGE:  return "setoge";
5757    case ISD::SETOLT:  return "setolt";
5758    case ISD::SETOLE:  return "setole";
5759    case ISD::SETONE:  return "setone";
5760
5761    case ISD::SETO:    return "seto";
5762    case ISD::SETUO:   return "setuo";
5763    case ISD::SETUEQ:  return "setue";
5764    case ISD::SETUGT:  return "setugt";
5765    case ISD::SETUGE:  return "setuge";
5766    case ISD::SETULT:  return "setult";
5767    case ISD::SETULE:  return "setule";
5768    case ISD::SETUNE:  return "setune";
5769
5770    case ISD::SETEQ:   return "seteq";
5771    case ISD::SETGT:   return "setgt";
5772    case ISD::SETGE:   return "setge";
5773    case ISD::SETLT:   return "setlt";
5774    case ISD::SETLE:   return "setle";
5775    case ISD::SETNE:   return "setne";
5776    }
5777  }
5778}
5779
5780const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5781  switch (AM) {
5782  default:
5783    return "";
5784  case ISD::PRE_INC:
5785    return "<pre-inc>";
5786  case ISD::PRE_DEC:
5787    return "<pre-dec>";
5788  case ISD::POST_INC:
5789    return "<post-inc>";
5790  case ISD::POST_DEC:
5791    return "<post-dec>";
5792  }
5793}
5794
5795std::string ISD::ArgFlagsTy::getArgFlagsString() {
5796  std::string S = "< ";
5797
5798  if (isZExt())
5799    S += "zext ";
5800  if (isSExt())
5801    S += "sext ";
5802  if (isInReg())
5803    S += "inreg ";
5804  if (isSRet())
5805    S += "sret ";
5806  if (isByVal())
5807    S += "byval ";
5808  if (isNest())
5809    S += "nest ";
5810  if (getByValAlign())
5811    S += "byval-align:" + utostr(getByValAlign()) + " ";
5812  if (getOrigAlign())
5813    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5814  if (getByValSize())
5815    S += "byval-size:" + utostr(getByValSize()) + " ";
5816  return S + ">";
5817}
5818
5819void SDNode::dump() const { dump(0); }
5820void SDNode::dump(const SelectionDAG *G) const {
5821  print(dbgs(), G);
5822}
5823
5824void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5825  OS << (void*)this << ": ";
5826
5827  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5828    if (i) OS << ",";
5829    if (getValueType(i) == MVT::Other)
5830      OS << "ch";
5831    else
5832      OS << getValueType(i).getEVTString();
5833  }
5834  OS << " = " << getOperationName(G);
5835}
5836
5837void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5838  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5839    if (!MN->memoperands_empty()) {
5840      OS << "<";
5841      OS << "Mem:";
5842      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5843           e = MN->memoperands_end(); i != e; ++i) {
5844        OS << **i;
5845        if (next(i) != e)
5846          OS << " ";
5847      }
5848      OS << ">";
5849    }
5850  } else if (const ShuffleVectorSDNode *SVN =
5851               dyn_cast<ShuffleVectorSDNode>(this)) {
5852    OS << "<";
5853    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5854      int Idx = SVN->getMaskElt(i);
5855      if (i) OS << ",";
5856      if (Idx < 0)
5857        OS << "u";
5858      else
5859        OS << Idx;
5860    }
5861    OS << ">";
5862  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5863    OS << '<' << CSDN->getAPIntValue() << '>';
5864  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5865    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5866      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5867    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5868      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5869    else {
5870      OS << "<APFloat(";
5871      CSDN->getValueAPF().bitcastToAPInt().dump();
5872      OS << ")>";
5873    }
5874  } else if (const GlobalAddressSDNode *GADN =
5875             dyn_cast<GlobalAddressSDNode>(this)) {
5876    int64_t offset = GADN->getOffset();
5877    OS << '<';
5878    WriteAsOperand(OS, GADN->getGlobal());
5879    OS << '>';
5880    if (offset > 0)
5881      OS << " + " << offset;
5882    else
5883      OS << " " << offset;
5884    if (unsigned int TF = GADN->getTargetFlags())
5885      OS << " [TF=" << TF << ']';
5886  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5887    OS << "<" << FIDN->getIndex() << ">";
5888  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5889    OS << "<" << JTDN->getIndex() << ">";
5890    if (unsigned int TF = JTDN->getTargetFlags())
5891      OS << " [TF=" << TF << ']';
5892  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5893    int offset = CP->getOffset();
5894    if (CP->isMachineConstantPoolEntry())
5895      OS << "<" << *CP->getMachineCPVal() << ">";
5896    else
5897      OS << "<" << *CP->getConstVal() << ">";
5898    if (offset > 0)
5899      OS << " + " << offset;
5900    else
5901      OS << " " << offset;
5902    if (unsigned int TF = CP->getTargetFlags())
5903      OS << " [TF=" << TF << ']';
5904  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5905    OS << "<";
5906    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5907    if (LBB)
5908      OS << LBB->getName() << " ";
5909    OS << (const void*)BBDN->getBasicBlock() << ">";
5910  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5911    if (G && R->getReg() &&
5912        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5913      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5914    } else {
5915      OS << " %reg" << R->getReg();
5916    }
5917  } else if (const ExternalSymbolSDNode *ES =
5918             dyn_cast<ExternalSymbolSDNode>(this)) {
5919    OS << "'" << ES->getSymbol() << "'";
5920    if (unsigned int TF = ES->getTargetFlags())
5921      OS << " [TF=" << TF << ']';
5922  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5923    if (M->getValue())
5924      OS << "<" << M->getValue() << ">";
5925    else
5926      OS << "<null>";
5927  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5928    OS << ":" << N->getVT().getEVTString();
5929  }
5930  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5931    OS << "<" << *LD->getMemOperand();
5932
5933    bool doExt = true;
5934    switch (LD->getExtensionType()) {
5935    default: doExt = false; break;
5936    case ISD::EXTLOAD: OS << ", anyext"; break;
5937    case ISD::SEXTLOAD: OS << ", sext"; break;
5938    case ISD::ZEXTLOAD: OS << ", zext"; break;
5939    }
5940    if (doExt)
5941      OS << " from " << LD->getMemoryVT().getEVTString();
5942
5943    const char *AM = getIndexedModeName(LD->getAddressingMode());
5944    if (*AM)
5945      OS << ", " << AM;
5946
5947    OS << ">";
5948  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5949    OS << "<" << *ST->getMemOperand();
5950
5951    if (ST->isTruncatingStore())
5952      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5953
5954    const char *AM = getIndexedModeName(ST->getAddressingMode());
5955    if (*AM)
5956      OS << ", " << AM;
5957
5958    OS << ">";
5959  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5960    OS << "<" << *M->getMemOperand() << ">";
5961  } else if (const BlockAddressSDNode *BA =
5962               dyn_cast<BlockAddressSDNode>(this)) {
5963    OS << "<";
5964    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5965    OS << ", ";
5966    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5967    OS << ">";
5968    if (unsigned int TF = BA->getTargetFlags())
5969      OS << " [TF=" << TF << ']';
5970  }
5971
5972  if (G)
5973    if (unsigned Order = G->GetOrdering(this))
5974      OS << " [ORD=" << Order << ']';
5975
5976  if (getNodeId() != -1)
5977    OS << " [ID=" << getNodeId() << ']';
5978}
5979
5980void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5981  print_types(OS, G);
5982  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5983    if (i) OS << ", "; else OS << " ";
5984    OS << (void*)getOperand(i).getNode();
5985    if (unsigned RN = getOperand(i).getResNo())
5986      OS << ":" << RN;
5987  }
5988  print_details(OS, G);
5989}
5990
5991static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5992                                  const SelectionDAG *G, unsigned depth,
5993                                  unsigned indent)
5994{
5995  if (depth == 0)
5996    return;
5997
5998  OS.indent(indent);
5999
6000  N->print(OS, G);
6001
6002  if (depth < 1)
6003    return;
6004
6005  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6006    OS << '\n';
6007    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6008  }
6009}
6010
6011void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6012                            unsigned depth) const {
6013  printrWithDepthHelper(OS, this, G, depth, 0);
6014}
6015
6016void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6017  // Don't print impossibly deep things.
6018  printrWithDepth(OS, G, 100);
6019}
6020
6021void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6022  printrWithDepth(dbgs(), G, depth);
6023}
6024
6025void SDNode::dumprFull(const SelectionDAG *G) const {
6026  // Don't print impossibly deep things.
6027  dumprWithDepth(G, 100);
6028}
6029
6030static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6031  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6032    if (N->getOperand(i).getNode()->hasOneUse())
6033      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6034    else
6035      dbgs() << "\n" << std::string(indent+2, ' ')
6036           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6037
6038
6039  dbgs() << "\n";
6040  dbgs().indent(indent);
6041  N->dump(G);
6042}
6043
6044SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6045  assert(N->getNumValues() == 1 &&
6046         "Can't unroll a vector with multiple results!");
6047
6048  EVT VT = N->getValueType(0);
6049  unsigned NE = VT.getVectorNumElements();
6050  EVT EltVT = VT.getVectorElementType();
6051  DebugLoc dl = N->getDebugLoc();
6052
6053  SmallVector<SDValue, 8> Scalars;
6054  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6055
6056  // If ResNE is 0, fully unroll the vector op.
6057  if (ResNE == 0)
6058    ResNE = NE;
6059  else if (NE > ResNE)
6060    NE = ResNE;
6061
6062  unsigned i;
6063  for (i= 0; i != NE; ++i) {
6064    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6065      SDValue Operand = N->getOperand(j);
6066      EVT OperandVT = Operand.getValueType();
6067      if (OperandVT.isVector()) {
6068        // A vector operand; extract a single element.
6069        EVT OperandEltVT = OperandVT.getVectorElementType();
6070        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6071                              OperandEltVT,
6072                              Operand,
6073                              getConstant(i, MVT::i32));
6074      } else {
6075        // A scalar operand; just use it as is.
6076        Operands[j] = Operand;
6077      }
6078    }
6079
6080    switch (N->getOpcode()) {
6081    default:
6082      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6083                                &Operands[0], Operands.size()));
6084      break;
6085    case ISD::SHL:
6086    case ISD::SRA:
6087    case ISD::SRL:
6088    case ISD::ROTL:
6089    case ISD::ROTR:
6090      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6091                                getShiftAmountOperand(Operands[1])));
6092      break;
6093    case ISD::SIGN_EXTEND_INREG:
6094    case ISD::FP_ROUND_INREG: {
6095      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6096      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6097                                Operands[0],
6098                                getValueType(ExtVT)));
6099    }
6100    }
6101  }
6102
6103  for (; i < ResNE; ++i)
6104    Scalars.push_back(getUNDEF(EltVT));
6105
6106  return getNode(ISD::BUILD_VECTOR, dl,
6107                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6108                 &Scalars[0], Scalars.size());
6109}
6110
6111
6112/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6113/// location that is 'Dist' units away from the location that the 'Base' load
6114/// is loading from.
6115bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6116                                     unsigned Bytes, int Dist) const {
6117  if (LD->getChain() != Base->getChain())
6118    return false;
6119  EVT VT = LD->getValueType(0);
6120  if (VT.getSizeInBits() / 8 != Bytes)
6121    return false;
6122
6123  SDValue Loc = LD->getOperand(1);
6124  SDValue BaseLoc = Base->getOperand(1);
6125  if (Loc.getOpcode() == ISD::FrameIndex) {
6126    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6127      return false;
6128    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6129    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6130    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6131    int FS  = MFI->getObjectSize(FI);
6132    int BFS = MFI->getObjectSize(BFI);
6133    if (FS != BFS || FS != (int)Bytes) return false;
6134    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6135  }
6136  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6137    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6138    if (V && (V->getSExtValue() == Dist*Bytes))
6139      return true;
6140  }
6141
6142  GlobalValue *GV1 = NULL;
6143  GlobalValue *GV2 = NULL;
6144  int64_t Offset1 = 0;
6145  int64_t Offset2 = 0;
6146  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6147  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6148  if (isGA1 && isGA2 && GV1 == GV2)
6149    return Offset1 == (Offset2 + Dist*Bytes);
6150  return false;
6151}
6152
6153
6154/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6155/// it cannot be inferred.
6156unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6157  // If this is a GlobalAddress + cst, return the alignment.
6158  GlobalValue *GV;
6159  int64_t GVOffset = 0;
6160  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6161    // If GV has specified alignment, then use it. Otherwise, use the preferred
6162    // alignment.
6163    unsigned Align = GV->getAlignment();
6164    if (!Align) {
6165      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6166        if (GVar->hasInitializer()) {
6167          const TargetData *TD = TLI.getTargetData();
6168          Align = TD->getPreferredAlignment(GVar);
6169        }
6170      }
6171    }
6172    return MinAlign(Align, GVOffset);
6173  }
6174
6175  // If this is a direct reference to a stack slot, use information about the
6176  // stack slot's alignment.
6177  int FrameIdx = 1 << 31;
6178  int64_t FrameOffset = 0;
6179  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6180    FrameIdx = FI->getIndex();
6181  } else if (Ptr.getOpcode() == ISD::ADD &&
6182             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6183             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6184    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6185    FrameOffset = Ptr.getConstantOperandVal(1);
6186  }
6187
6188  if (FrameIdx != (1 << 31)) {
6189    // FIXME: Handle FI+CST.
6190    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6191    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6192                                    FrameOffset);
6193    if (MFI.isFixedObjectIndex(FrameIdx)) {
6194      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6195
6196      // The alignment of the frame index can be determined from its offset from
6197      // the incoming frame position.  If the frame object is at offset 32 and
6198      // the stack is guaranteed to be 16-byte aligned, then we know that the
6199      // object is 16-byte aligned.
6200      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6201      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6202
6203      // Finally, the frame object itself may have a known alignment.  Factor
6204      // the alignment + offset into a new alignment.  For example, if we know
6205      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6206      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6207      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6208      return std::max(Align, FIInfoAlign);
6209    }
6210    return FIInfoAlign;
6211  }
6212
6213  return 0;
6214}
6215
6216void SelectionDAG::dump() const {
6217  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6218
6219  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6220       I != E; ++I) {
6221    const SDNode *N = I;
6222    if (!N->hasOneUse() && N != getRoot().getNode())
6223      DumpNodes(N, 2, this);
6224  }
6225
6226  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6227
6228  dbgs() << "\n\n";
6229}
6230
6231void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6232  print_types(OS, G);
6233  print_details(OS, G);
6234}
6235
6236typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6237static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6238                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6239  if (!once.insert(N))          // If we've been here before, return now.
6240    return;
6241
6242  // Dump the current SDNode, but don't end the line yet.
6243  OS << std::string(indent, ' ');
6244  N->printr(OS, G);
6245
6246  // Having printed this SDNode, walk the children:
6247  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6248    const SDNode *child = N->getOperand(i).getNode();
6249
6250    if (i) OS << ",";
6251    OS << " ";
6252
6253    if (child->getNumOperands() == 0) {
6254      // This child has no grandchildren; print it inline right here.
6255      child->printr(OS, G);
6256      once.insert(child);
6257    } else {         // Just the address. FIXME: also print the child's opcode.
6258      OS << (void*)child;
6259      if (unsigned RN = N->getOperand(i).getResNo())
6260        OS << ":" << RN;
6261    }
6262  }
6263
6264  OS << "\n";
6265
6266  // Dump children that have grandchildren on their own line(s).
6267  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6268    const SDNode *child = N->getOperand(i).getNode();
6269    DumpNodesr(OS, child, indent+2, G, once);
6270  }
6271}
6272
6273void SDNode::dumpr() const {
6274  VisitedSDNodeSet once;
6275  DumpNodesr(dbgs(), this, 0, 0, once);
6276}
6277
6278void SDNode::dumpr(const SelectionDAG *G) const {
6279  VisitedSDNodeSet once;
6280  DumpNodesr(dbgs(), this, 0, G, once);
6281}
6282
6283
6284// getAddressSpace - Return the address space this GlobalAddress belongs to.
6285unsigned GlobalAddressSDNode::getAddressSpace() const {
6286  return getGlobal()->getType()->getAddressSpace();
6287}
6288
6289
6290const Type *ConstantPoolSDNode::getType() const {
6291  if (isMachineConstantPoolEntry())
6292    return Val.MachineCPVal->getType();
6293  return Val.ConstVal->getType();
6294}
6295
6296bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6297                                        APInt &SplatUndef,
6298                                        unsigned &SplatBitSize,
6299                                        bool &HasAnyUndefs,
6300                                        unsigned MinSplatBits,
6301                                        bool isBigEndian) {
6302  EVT VT = getValueType(0);
6303  assert(VT.isVector() && "Expected a vector type");
6304  unsigned sz = VT.getSizeInBits();
6305  if (MinSplatBits > sz)
6306    return false;
6307
6308  SplatValue = APInt(sz, 0);
6309  SplatUndef = APInt(sz, 0);
6310
6311  // Get the bits.  Bits with undefined values (when the corresponding element
6312  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6313  // in SplatValue.  If any of the values are not constant, give up and return
6314  // false.
6315  unsigned int nOps = getNumOperands();
6316  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6317  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6318
6319  for (unsigned j = 0; j < nOps; ++j) {
6320    unsigned i = isBigEndian ? nOps-1-j : j;
6321    SDValue OpVal = getOperand(i);
6322    unsigned BitPos = j * EltBitSize;
6323
6324    if (OpVal.getOpcode() == ISD::UNDEF)
6325      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6326    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6327      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6328                     zextOrTrunc(sz) << BitPos);
6329    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6330      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6331     else
6332      return false;
6333  }
6334
6335  // The build_vector is all constants or undefs.  Find the smallest element
6336  // size that splats the vector.
6337
6338  HasAnyUndefs = (SplatUndef != 0);
6339  while (sz > 8) {
6340
6341    unsigned HalfSize = sz / 2;
6342    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6343    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6344    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6345    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6346
6347    // If the two halves do not match (ignoring undef bits), stop here.
6348    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6349        MinSplatBits > HalfSize)
6350      break;
6351
6352    SplatValue = HighValue | LowValue;
6353    SplatUndef = HighUndef & LowUndef;
6354
6355    sz = HalfSize;
6356  }
6357
6358  SplatBitSize = sz;
6359  return true;
6360}
6361
6362bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6363  // Find the first non-undef value in the shuffle mask.
6364  unsigned i, e;
6365  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6366    /* search */;
6367
6368  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6369
6370  // Make sure all remaining elements are either undef or the same as the first
6371  // non-undef value.
6372  for (int Idx = Mask[i]; i != e; ++i)
6373    if (Mask[i] >= 0 && Mask[i] != Idx)
6374      return false;
6375  return true;
6376}
6377
6378#ifdef XDEBUG
6379static void checkForCyclesHelper(const SDNode *N,
6380                                 SmallPtrSet<const SDNode*, 32> &Visited,
6381                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6382  // If this node has already been checked, don't check it again.
6383  if (Checked.count(N))
6384    return;
6385
6386  // If a node has already been visited on this depth-first walk, reject it as
6387  // a cycle.
6388  if (!Visited.insert(N)) {
6389    dbgs() << "Offending node:\n";
6390    N->dumprFull();
6391    errs() << "Detected cycle in SelectionDAG\n";
6392    abort();
6393  }
6394
6395  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6396    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6397
6398  Checked.insert(N);
6399  Visited.erase(N);
6400}
6401#endif
6402
6403void llvm::checkForCycles(const llvm::SDNode *N) {
6404#ifdef XDEBUG
6405  assert(N && "Checking nonexistant SDNode");
6406  SmallPtrSet<const SDNode*, 32> visited;
6407  SmallPtrSet<const SDNode*, 32> checked;
6408  checkForCyclesHelper(N, visited, checked);
6409#endif
6410}
6411
6412void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6413  checkForCycles(DAG->getRoot().getNode());
6414}
6415