SelectionDAG.cpp revision e075118489baf15a7cea2e7f155b4799b93d6d02
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetSelectionDAGInfo.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetIntrinsicInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/ManagedStatic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Support/Mutex.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallSet.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64  switch (VT.getSimpleVT().SimpleTy) {
65  default: llvm_unreachable("Unknown FP format");
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76//===----------------------------------------------------------------------===//
77//                              ConstantFPSDNode Class
78//===----------------------------------------------------------------------===//
79
80/// isExactlyValue - We don't rely on operator== working on double values, as
81/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82/// As such, this method can be used to do an exact bit-for-bit comparison of
83/// two floating point values.
84bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85  return getValueAPF().bitwiseIsEqual(V);
86}
87
88bool ConstantFPSDNode::isValueValidForType(EVT VT,
89                                           const APFloat& Val) {
90  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92  // PPC long double cannot be converted to any other type.
93  if (VT == MVT::ppcf128 ||
94      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95    return false;
96
97  // convert modifies in place, so make a copy.
98  APFloat Val2 = APFloat(Val);
99  bool losesInfo;
100  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101                      &losesInfo);
102  return !losesInfo;
103}
104
105//===----------------------------------------------------------------------===//
106//                              ISD Namespace
107//===----------------------------------------------------------------------===//
108
109/// isBuildVectorAllOnes - Return true if the specified node is a
110/// BUILD_VECTOR where all of the elements are ~0 or undef.
111bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112  // Look through a bit convert.
113  if (N->getOpcode() == ISD::BITCAST)
114    N = N->getOperand(0).getNode();
115
116  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118  unsigned i = 0, e = N->getNumOperands();
119
120  // Skip over all of the undef values.
121  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122    ++i;
123
124  // Do not accept an all-undef vector.
125  if (i == e) return false;
126
127  // Do not accept build_vectors that aren't all constants or which have non-~0
128  // elements.
129  SDValue NotZero = N->getOperand(i);
130  if (isa<ConstantSDNode>(NotZero)) {
131    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132      return false;
133  } else if (isa<ConstantFPSDNode>(NotZero)) {
134    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135                bitcastToAPInt().isAllOnesValue())
136      return false;
137  } else
138    return false;
139
140  // Okay, we have at least one ~0 value, check to see if the rest match or are
141  // undefs.
142  for (++i; i != e; ++i)
143    if (N->getOperand(i) != NotZero &&
144        N->getOperand(i).getOpcode() != ISD::UNDEF)
145      return false;
146  return true;
147}
148
149
150/// isBuildVectorAllZeros - Return true if the specified node is a
151/// BUILD_VECTOR where all of the elements are 0 or undef.
152bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153  // Look through a bit convert.
154  if (N->getOpcode() == ISD::BITCAST)
155    N = N->getOperand(0).getNode();
156
157  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159  unsigned i = 0, e = N->getNumOperands();
160
161  // Skip over all of the undef values.
162  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163    ++i;
164
165  // Do not accept an all-undef vector.
166  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  if (NumElems == 1)
202    return false;
203  for (unsigned i = 1; i < NumElems; ++i) {
204    SDValue V = N->getOperand(i);
205    if (V.getOpcode() != ISD::UNDEF)
206      return false;
207  }
208  return true;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: llvm_unreachable("Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, temporalness, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
476                     bool isNonTemporal) {
477  assert((ConvType & 3) == ConvType &&
478         "ConvType may not require more than 2 bits!");
479  assert((AM & 7) == AM &&
480         "AM may not require more than 3 bits!");
481  return ConvType |
482         (AM << 2) |
483         (isVolatile << 5) |
484         (isNonTemporal << 6);
485}
486
487//===----------------------------------------------------------------------===//
488//                              SelectionDAG Class
489//===----------------------------------------------------------------------===//
490
491/// doNotCSE - Return true if CSE should not be performed for this node.
492static bool doNotCSE(SDNode *N) {
493  if (N->getValueType(0) == MVT::Glue)
494    return true; // Never CSE anything that produces a flag.
495
496  switch (N->getOpcode()) {
497  default: break;
498  case ISD::HANDLENODE:
499  case ISD::EH_LABEL:
500    return true;   // Never CSE these nodes.
501  }
502
503  // Check that remaining values produced are not flags.
504  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
505    if (N->getValueType(i) == MVT::Glue)
506      return true; // Never CSE anything that produces a flag.
507
508  return false;
509}
510
511/// RemoveDeadNodes - This method deletes all unreachable nodes in the
512/// SelectionDAG.
513void SelectionDAG::RemoveDeadNodes() {
514  // Create a dummy node (which is not added to allnodes), that adds a reference
515  // to the root node, preventing it from being deleted.
516  HandleSDNode Dummy(getRoot());
517
518  SmallVector<SDNode*, 128> DeadNodes;
519
520  // Add all obviously-dead nodes to the DeadNodes worklist.
521  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
522    if (I->use_empty())
523      DeadNodes.push_back(I);
524
525  RemoveDeadNodes(DeadNodes);
526
527  // If the root changed (e.g. it was a dead load, update the root).
528  setRoot(Dummy.getValue());
529}
530
531/// RemoveDeadNodes - This method deletes the unreachable nodes in the
532/// given list, and any nodes that become unreachable as a result.
533void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
534                                   DAGUpdateListener *UpdateListener) {
535
536  // Process the worklist, deleting the nodes and adding their uses to the
537  // worklist.
538  while (!DeadNodes.empty()) {
539    SDNode *N = DeadNodes.pop_back_val();
540
541    if (UpdateListener)
542      UpdateListener->NodeDeleted(N, 0);
543
544    // Take the node out of the appropriate CSE map.
545    RemoveNodeFromCSEMaps(N);
546
547    // Next, brutally remove the operand list.  This is safe to do, as there are
548    // no cycles in the graph.
549    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
550      SDUse &Use = *I++;
551      SDNode *Operand = Use.getNode();
552      Use.set(SDValue());
553
554      // Now that we removed this operand, see if there are no uses of it left.
555      if (Operand->use_empty())
556        DeadNodes.push_back(Operand);
557    }
558
559    DeallocateNode(N);
560  }
561}
562
563void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564  SmallVector<SDNode*, 16> DeadNodes(1, N);
565  RemoveDeadNodes(DeadNodes, UpdateListener);
566}
567
568void SelectionDAG::DeleteNode(SDNode *N) {
569  // First take this out of the appropriate CSE map.
570  RemoveNodeFromCSEMaps(N);
571
572  // Finally, remove uses due to operands of this node, remove from the
573  // AllNodes list, and delete the node.
574  DeleteNodeNotInCSEMaps(N);
575}
576
577void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579  assert(N->use_empty() && "Cannot delete a node that is not dead!");
580
581  // Drop all of the operands and decrement used node's use counts.
582  N->DropOperands();
583
584  DeallocateNode(N);
585}
586
587void SelectionDAG::DeallocateNode(SDNode *N) {
588  if (N->OperandsNeedDelete)
589    delete[] N->OperandList;
590
591  // Set the opcode to DELETED_NODE to help catch bugs when node
592  // memory is reallocated.
593  N->NodeType = ISD::DELETED_NODE;
594
595  NodeAllocator.Deallocate(AllNodes.remove(N));
596
597  // Remove the ordering of this node.
598  Ordering->remove(N);
599
600  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
601  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
602  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
603    DbgVals[i]->setIsInvalidated();
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::HANDLENODE: return false;  // noop.
614  case ISD::CONDCODE:
615    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
616           "Cond code doesn't exist!");
617    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
618    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
619    break;
620  case ISD::ExternalSymbol:
621    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
622    break;
623  case ISD::TargetExternalSymbol: {
624    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
625    Erased = TargetExternalSymbols.erase(
626               std::pair<std::string,unsigned char>(ESN->getSymbol(),
627                                                    ESN->getTargetFlags()));
628    break;
629  }
630  case ISD::VALUETYPE: {
631    EVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
636      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
643    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746#ifndef NDEBUG
747/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
748static void VerifyNodeCommon(SDNode *N) {
749  switch (N->getOpcode()) {
750  default:
751    break;
752  case ISD::BUILD_PAIR: {
753    EVT VT = N->getValueType(0);
754    assert(N->getNumValues() == 1 && "Too many results!");
755    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
756           "Wrong return type!");
757    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
758    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
759           "Mismatched operand types!");
760    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
761           "Wrong operand type!");
762    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
763           "Wrong return type size");
764    break;
765  }
766  case ISD::BUILD_VECTOR: {
767    assert(N->getNumValues() == 1 && "Too many results!");
768    assert(N->getValueType(0).isVector() && "Wrong return type!");
769    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
770           "Wrong number of operands!");
771    EVT EltVT = N->getValueType(0).getVectorElementType();
772    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
773      assert((I->getValueType() == EltVT ||
774             (EltVT.isInteger() && I->getValueType().isInteger() &&
775              EltVT.bitsLE(I->getValueType()))) &&
776            "Wrong operand type!");
777    break;
778  }
779  }
780}
781
782/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
783static void VerifySDNode(SDNode *N) {
784  // The SDNode allocators cannot be used to allocate nodes with fields that are
785  // not present in an SDNode!
786  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
787  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
788  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
789  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
790  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
791  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
792  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
793  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
794  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
795  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
796  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
797  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
798  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
799  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
800  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
801  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
802  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
803  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
804  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
805
806  VerifyNodeCommon(N);
807}
808
809/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
810/// invalid.
811static void VerifyMachineNode(SDNode *N) {
812  // The MachineNode allocators cannot be used to allocate nodes with fields
813  // that are not present in a MachineNode!
814  // Currently there are no such nodes.
815
816  VerifyNodeCommon(N);
817}
818#endif // NDEBUG
819
820/// getEVTAlignment - Compute the default alignment value for the
821/// given type.
822///
823unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
824  const Type *Ty = VT == MVT::iPTR ?
825                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
826                   VT.getTypeForEVT(*getContext());
827
828  return TLI.getTargetData()->getABITypeAlignment(Ty);
829}
830
831// EntryNode could meaningfully have debug info if we can find it...
832SelectionDAG::SelectionDAG(const TargetMachine &tm)
833  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
834    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
835    Root(getEntryNode()), Ordering(0) {
836  AllNodes.push_back(&EntryNode);
837  Ordering = new SDNodeOrdering();
838  DbgInfo = new SDDbgInfo();
839}
840
841void SelectionDAG::init(MachineFunction &mf) {
842  MF = &mf;
843  Context = &mf.getFunction()->getContext();
844}
845
846SelectionDAG::~SelectionDAG() {
847  allnodes_clear();
848  delete Ordering;
849  delete DbgInfo;
850}
851
852void SelectionDAG::allnodes_clear() {
853  assert(&*AllNodes.begin() == &EntryNode);
854  AllNodes.remove(AllNodes.begin());
855  while (!AllNodes.empty())
856    DeallocateNode(AllNodes.begin());
857}
858
859void SelectionDAG::clear() {
860  allnodes_clear();
861  OperandAllocator.Reset();
862  CSEMap.clear();
863
864  ExtendedValueTypeNodes.clear();
865  ExternalSymbols.clear();
866  TargetExternalSymbols.clear();
867  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
868            static_cast<CondCodeSDNode*>(0));
869  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
870            static_cast<SDNode*>(0));
871
872  EntryNode.UseList = 0;
873  AllNodes.push_back(&EntryNode);
874  Root = getEntryNode();
875  Ordering->clear();
876  DbgInfo->clear();
877}
878
879SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
880  return VT.bitsGT(Op.getValueType()) ?
881    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
882    getNode(ISD::TRUNCATE, DL, VT, Op);
883}
884
885SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
886  return VT.bitsGT(Op.getValueType()) ?
887    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
888    getNode(ISD::TRUNCATE, DL, VT, Op);
889}
890
891SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
892  assert(!VT.isVector() &&
893         "getZeroExtendInReg should use the vector element type instead of "
894         "the vector type!");
895  if (Op.getValueType() == VT) return Op;
896  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
897  APInt Imm = APInt::getLowBitsSet(BitWidth,
898                                   VT.getSizeInBits());
899  return getNode(ISD::AND, DL, Op.getValueType(), Op,
900                 getConstant(Imm, Op.getValueType()));
901}
902
903/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
904///
905SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
906  EVT EltVT = VT.getScalarType();
907  SDValue NegOne =
908    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
909  return getNode(ISD::XOR, DL, VT, Val, NegOne);
910}
911
912SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
913  EVT EltVT = VT.getScalarType();
914  assert((EltVT.getSizeInBits() >= 64 ||
915         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
916         "getConstant with a uint64_t value that doesn't fit in the type!");
917  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
918}
919
920SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
921  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
922}
923
924SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
925  assert(VT.isInteger() && "Cannot create FP integer constant!");
926
927  EVT EltVT = VT.getScalarType();
928  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
929         "APInt size does not match type size!");
930
931  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
934  ID.AddPointer(&Val);
935  void *IP = 0;
936  SDNode *N = NULL;
937  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
938    if (!VT.isVector())
939      return SDValue(N, 0);
940
941  if (!N) {
942    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
943    CSEMap.InsertNode(N, IP);
944    AllNodes.push_back(N);
945  }
946
947  SDValue Result(N, 0);
948  if (VT.isVector()) {
949    SmallVector<SDValue, 8> Ops;
950    Ops.assign(VT.getVectorNumElements(), Result);
951    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
952  }
953  return Result;
954}
955
956SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
957  return getConstant(Val, TLI.getPointerTy(), isTarget);
958}
959
960
961SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
962  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
963}
964
965SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
966  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
967
968  EVT EltVT = VT.getScalarType();
969
970  // Do the map lookup using the actual bit pattern for the floating point
971  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
972  // we don't have issues with SNANs.
973  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
974  FoldingSetNodeID ID;
975  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
976  ID.AddPointer(&V);
977  void *IP = 0;
978  SDNode *N = NULL;
979  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
980    if (!VT.isVector())
981      return SDValue(N, 0);
982
983  if (!N) {
984    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
985    CSEMap.InsertNode(N, IP);
986    AllNodes.push_back(N);
987  }
988
989  SDValue Result(N, 0);
990  if (VT.isVector()) {
991    SmallVector<SDValue, 8> Ops;
992    Ops.assign(VT.getVectorNumElements(), Result);
993    // FIXME DebugLoc info might be appropriate here
994    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
995  }
996  return Result;
997}
998
999SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1000  EVT EltVT = VT.getScalarType();
1001  if (EltVT==MVT::f32)
1002    return getConstantFP(APFloat((float)Val), VT, isTarget);
1003  else if (EltVT==MVT::f64)
1004    return getConstantFP(APFloat(Val), VT, isTarget);
1005  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1006    bool ignored;
1007    APFloat apf = APFloat(Val);
1008    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1009                &ignored);
1010    return getConstantFP(apf, VT, isTarget);
1011  } else {
1012    assert(0 && "Unsupported type in getConstantFP");
1013    return SDValue();
1014  }
1015}
1016
1017SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1018                                       EVT VT, int64_t Offset,
1019                                       bool isTargetGA,
1020                                       unsigned char TargetFlags) {
1021  assert((TargetFlags == 0 || isTargetGA) &&
1022         "Cannot set target flags on target-independent globals");
1023
1024  // Truncate (with sign-extension) the offset value to the pointer size.
1025  EVT PTy = TLI.getPointerTy();
1026  unsigned BitWidth = PTy.getSizeInBits();
1027  if (BitWidth < 64)
1028    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1029
1030  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1031  if (!GVar) {
1032    // If GV is an alias then use the aliasee for determining thread-localness.
1033    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1034      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1035  }
1036
1037  unsigned Opc;
1038  if (GVar && GVar->isThreadLocal())
1039    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1040  else
1041    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1042
1043  FoldingSetNodeID ID;
1044  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1045  ID.AddPointer(GV);
1046  ID.AddInteger(Offset);
1047  ID.AddInteger(TargetFlags);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051
1052  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1053                                                      Offset, TargetFlags);
1054  CSEMap.InsertNode(N, IP);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1060  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1061  FoldingSetNodeID ID;
1062  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1063  ID.AddInteger(FI);
1064  void *IP = 0;
1065  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1066    return SDValue(E, 0);
1067
1068  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1069  CSEMap.InsertNode(N, IP);
1070  AllNodes.push_back(N);
1071  return SDValue(N, 0);
1072}
1073
1074SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1075                                   unsigned char TargetFlags) {
1076  assert((TargetFlags == 0 || isTarget) &&
1077         "Cannot set target flags on target-independent jump tables");
1078  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1079  FoldingSetNodeID ID;
1080  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1081  ID.AddInteger(JTI);
1082  ID.AddInteger(TargetFlags);
1083  void *IP = 0;
1084  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085    return SDValue(E, 0);
1086
1087  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1088                                                  TargetFlags);
1089  CSEMap.InsertNode(N, IP);
1090  AllNodes.push_back(N);
1091  return SDValue(N, 0);
1092}
1093
1094SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1095                                      unsigned Alignment, int Offset,
1096                                      bool isTarget,
1097                                      unsigned char TargetFlags) {
1098  assert((TargetFlags == 0 || isTarget) &&
1099         "Cannot set target flags on target-independent globals");
1100  if (Alignment == 0)
1101    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1102  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1103  FoldingSetNodeID ID;
1104  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1105  ID.AddInteger(Alignment);
1106  ID.AddInteger(Offset);
1107  ID.AddPointer(C);
1108  ID.AddInteger(TargetFlags);
1109  void *IP = 0;
1110  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1111    return SDValue(E, 0);
1112
1113  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1114                                                     Alignment, TargetFlags);
1115  CSEMap.InsertNode(N, IP);
1116  AllNodes.push_back(N);
1117  return SDValue(N, 0);
1118}
1119
1120
1121SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1122                                      unsigned Alignment, int Offset,
1123                                      bool isTarget,
1124                                      unsigned char TargetFlags) {
1125  assert((TargetFlags == 0 || isTarget) &&
1126         "Cannot set target flags on target-independent globals");
1127  if (Alignment == 0)
1128    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1129  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1130  FoldingSetNodeID ID;
1131  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1132  ID.AddInteger(Alignment);
1133  ID.AddInteger(Offset);
1134  C->AddSelectionDAGCSEId(ID);
1135  ID.AddInteger(TargetFlags);
1136  void *IP = 0;
1137  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1138    return SDValue(E, 0);
1139
1140  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1141                                                     Alignment, TargetFlags);
1142  CSEMap.InsertNode(N, IP);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1148  FoldingSetNodeID ID;
1149  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1150  ID.AddPointer(MBB);
1151  void *IP = 0;
1152  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1153    return SDValue(E, 0);
1154
1155  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1156  CSEMap.InsertNode(N, IP);
1157  AllNodes.push_back(N);
1158  return SDValue(N, 0);
1159}
1160
1161SDValue SelectionDAG::getValueType(EVT VT) {
1162  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1163      ValueTypeNodes.size())
1164    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1165
1166  SDNode *&N = VT.isExtended() ?
1167    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1168
1169  if (N) return SDValue(N, 0);
1170  N = new (NodeAllocator) VTSDNode(VT);
1171  AllNodes.push_back(N);
1172  return SDValue(N, 0);
1173}
1174
1175SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1176  SDNode *&N = ExternalSymbols[Sym];
1177  if (N) return SDValue(N, 0);
1178  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1179  AllNodes.push_back(N);
1180  return SDValue(N, 0);
1181}
1182
1183SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1184                                              unsigned char TargetFlags) {
1185  SDNode *&N =
1186    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1187                                                               TargetFlags)];
1188  if (N) return SDValue(N, 0);
1189  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1190  AllNodes.push_back(N);
1191  return SDValue(N, 0);
1192}
1193
1194SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1195  if ((unsigned)Cond >= CondCodeNodes.size())
1196    CondCodeNodes.resize(Cond+1);
1197
1198  if (CondCodeNodes[Cond] == 0) {
1199    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1200    CondCodeNodes[Cond] = N;
1201    AllNodes.push_back(N);
1202  }
1203
1204  return SDValue(CondCodeNodes[Cond], 0);
1205}
1206
1207// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1208// the shuffle mask M that point at N1 to point at N2, and indices that point
1209// N2 to point at N1.
1210static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1211  std::swap(N1, N2);
1212  int NElts = M.size();
1213  for (int i = 0; i != NElts; ++i) {
1214    if (M[i] >= NElts)
1215      M[i] -= NElts;
1216    else if (M[i] >= 0)
1217      M[i] += NElts;
1218  }
1219}
1220
1221SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1222                                       SDValue N2, const int *Mask) {
1223  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1224  assert(VT.isVector() && N1.getValueType().isVector() &&
1225         "Vector Shuffle VTs must be a vectors");
1226  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1227         && "Vector Shuffle VTs must have same element type");
1228
1229  // Canonicalize shuffle undef, undef -> undef
1230  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1231    return getUNDEF(VT);
1232
1233  // Validate that all indices in Mask are within the range of the elements
1234  // input to the shuffle.
1235  unsigned NElts = VT.getVectorNumElements();
1236  SmallVector<int, 8> MaskVec;
1237  for (unsigned i = 0; i != NElts; ++i) {
1238    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1239    MaskVec.push_back(Mask[i]);
1240  }
1241
1242  // Canonicalize shuffle v, v -> v, undef
1243  if (N1 == N2) {
1244    N2 = getUNDEF(VT);
1245    for (unsigned i = 0; i != NElts; ++i)
1246      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1247  }
1248
1249  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1250  if (N1.getOpcode() == ISD::UNDEF)
1251    commuteShuffle(N1, N2, MaskVec);
1252
1253  // Canonicalize all index into lhs, -> shuffle lhs, undef
1254  // Canonicalize all index into rhs, -> shuffle rhs, undef
1255  bool AllLHS = true, AllRHS = true;
1256  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1257  for (unsigned i = 0; i != NElts; ++i) {
1258    if (MaskVec[i] >= (int)NElts) {
1259      if (N2Undef)
1260        MaskVec[i] = -1;
1261      else
1262        AllLHS = false;
1263    } else if (MaskVec[i] >= 0) {
1264      AllRHS = false;
1265    }
1266  }
1267  if (AllLHS && AllRHS)
1268    return getUNDEF(VT);
1269  if (AllLHS && !N2Undef)
1270    N2 = getUNDEF(VT);
1271  if (AllRHS) {
1272    N1 = getUNDEF(VT);
1273    commuteShuffle(N1, N2, MaskVec);
1274  }
1275
1276  // If Identity shuffle, or all shuffle in to undef, return that node.
1277  bool AllUndef = true;
1278  bool Identity = true;
1279  for (unsigned i = 0; i != NElts; ++i) {
1280    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1281    if (MaskVec[i] >= 0) AllUndef = false;
1282  }
1283  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1284    return N1;
1285  if (AllUndef)
1286    return getUNDEF(VT);
1287
1288  FoldingSetNodeID ID;
1289  SDValue Ops[2] = { N1, N2 };
1290  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1291  for (unsigned i = 0; i != NElts; ++i)
1292    ID.AddInteger(MaskVec[i]);
1293
1294  void* IP = 0;
1295  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1296    return SDValue(E, 0);
1297
1298  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1299  // SDNode doesn't have access to it.  This memory will be "leaked" when
1300  // the node is deallocated, but recovered when the NodeAllocator is released.
1301  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1302  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1303
1304  ShuffleVectorSDNode *N =
1305    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1306  CSEMap.InsertNode(N, IP);
1307  AllNodes.push_back(N);
1308  return SDValue(N, 0);
1309}
1310
1311SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1312                                       SDValue Val, SDValue DTy,
1313                                       SDValue STy, SDValue Rnd, SDValue Sat,
1314                                       ISD::CvtCode Code) {
1315  // If the src and dest types are the same and the conversion is between
1316  // integer types of the same sign or two floats, no conversion is necessary.
1317  if (DTy == STy &&
1318      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1319    return Val;
1320
1321  FoldingSetNodeID ID;
1322  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1323  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1324  void* IP = 0;
1325  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1326    return SDValue(E, 0);
1327
1328  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1329                                                           Code);
1330  CSEMap.InsertNode(N, IP);
1331  AllNodes.push_back(N);
1332  return SDValue(N, 0);
1333}
1334
1335SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1336  FoldingSetNodeID ID;
1337  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1338  ID.AddInteger(RegNo);
1339  void *IP = 0;
1340  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1341    return SDValue(E, 0);
1342
1343  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1344  CSEMap.InsertNode(N, IP);
1345  AllNodes.push_back(N);
1346  return SDValue(N, 0);
1347}
1348
1349SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1350  FoldingSetNodeID ID;
1351  SDValue Ops[] = { Root };
1352  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1353  ID.AddPointer(Label);
1354  void *IP = 0;
1355  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356    return SDValue(E, 0);
1357
1358  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1359  CSEMap.InsertNode(N, IP);
1360  AllNodes.push_back(N);
1361  return SDValue(N, 0);
1362}
1363
1364
1365SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1366                                      bool isTarget,
1367                                      unsigned char TargetFlags) {
1368  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1369
1370  FoldingSetNodeID ID;
1371  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1372  ID.AddPointer(BA);
1373  ID.AddInteger(TargetFlags);
1374  void *IP = 0;
1375  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1376    return SDValue(E, 0);
1377
1378  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1379  CSEMap.InsertNode(N, IP);
1380  AllNodes.push_back(N);
1381  return SDValue(N, 0);
1382}
1383
1384SDValue SelectionDAG::getSrcValue(const Value *V) {
1385  assert((!V || V->getType()->isPointerTy()) &&
1386         "SrcValue is not a pointer?");
1387
1388  FoldingSetNodeID ID;
1389  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1390  ID.AddPointer(V);
1391
1392  void *IP = 0;
1393  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1394    return SDValue(E, 0);
1395
1396  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1397  CSEMap.InsertNode(N, IP);
1398  AllNodes.push_back(N);
1399  return SDValue(N, 0);
1400}
1401
1402/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1403SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1404  FoldingSetNodeID ID;
1405  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1406  ID.AddPointer(MD);
1407
1408  void *IP = 0;
1409  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1410    return SDValue(E, 0);
1411
1412  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1413  CSEMap.InsertNode(N, IP);
1414  AllNodes.push_back(N);
1415  return SDValue(N, 0);
1416}
1417
1418
1419/// getShiftAmountOperand - Return the specified value casted to
1420/// the target's desired shift amount type.
1421SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1422  EVT OpTy = Op.getValueType();
1423  MVT ShTy = TLI.getShiftAmountTy();
1424  if (OpTy == ShTy || OpTy.isVector()) return Op;
1425
1426  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1427  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1428}
1429
1430/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1431/// specified value type.
1432SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1433  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1434  unsigned ByteSize = VT.getStoreSize();
1435  const Type *Ty = VT.getTypeForEVT(*getContext());
1436  unsigned StackAlign =
1437  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1438
1439  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1440  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1441}
1442
1443/// CreateStackTemporary - Create a stack temporary suitable for holding
1444/// either of the specified value types.
1445SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1446  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1447                            VT2.getStoreSizeInBits())/8;
1448  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1449  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1450  const TargetData *TD = TLI.getTargetData();
1451  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1452                            TD->getPrefTypeAlignment(Ty2));
1453
1454  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1455  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1456  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1457}
1458
1459SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1460                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1461  // These setcc operations always fold.
1462  switch (Cond) {
1463  default: break;
1464  case ISD::SETFALSE:
1465  case ISD::SETFALSE2: return getConstant(0, VT);
1466  case ISD::SETTRUE:
1467  case ISD::SETTRUE2:  return getConstant(1, VT);
1468
1469  case ISD::SETOEQ:
1470  case ISD::SETOGT:
1471  case ISD::SETOGE:
1472  case ISD::SETOLT:
1473  case ISD::SETOLE:
1474  case ISD::SETONE:
1475  case ISD::SETO:
1476  case ISD::SETUO:
1477  case ISD::SETUEQ:
1478  case ISD::SETUNE:
1479    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1480    break;
1481  }
1482
1483  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1484    const APInt &C2 = N2C->getAPIntValue();
1485    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1486      const APInt &C1 = N1C->getAPIntValue();
1487
1488      switch (Cond) {
1489      default: llvm_unreachable("Unknown integer setcc!");
1490      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1491      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1492      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1493      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1494      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1495      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1496      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1497      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1498      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1499      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1500      }
1501    }
1502  }
1503  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1504    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1505      // No compile time operations on this type yet.
1506      if (N1C->getValueType(0) == MVT::ppcf128)
1507        return SDValue();
1508
1509      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1510      switch (Cond) {
1511      default: break;
1512      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1513                          return getUNDEF(VT);
1514                        // fall through
1515      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1516      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1517                          return getUNDEF(VT);
1518                        // fall through
1519      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1520                                           R==APFloat::cmpLessThan, VT);
1521      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1522                          return getUNDEF(VT);
1523                        // fall through
1524      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1525      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1526                          return getUNDEF(VT);
1527                        // fall through
1528      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1529      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1530                          return getUNDEF(VT);
1531                        // fall through
1532      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1533                                           R==APFloat::cmpEqual, VT);
1534      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1535                          return getUNDEF(VT);
1536                        // fall through
1537      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1538                                           R==APFloat::cmpEqual, VT);
1539      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1540      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1541      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1542                                           R==APFloat::cmpEqual, VT);
1543      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1544      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1545                                           R==APFloat::cmpLessThan, VT);
1546      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1547                                           R==APFloat::cmpUnordered, VT);
1548      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1549      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1550      }
1551    } else {
1552      // Ensure that the constant occurs on the RHS.
1553      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1554    }
1555  }
1556
1557  // Could not fold it.
1558  return SDValue();
1559}
1560
1561/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1562/// use this predicate to simplify operations downstream.
1563bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1564  // This predicate is not safe for vector operations.
1565  if (Op.getValueType().isVector())
1566    return false;
1567
1568  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1569  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1570}
1571
1572/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1573/// this predicate to simplify operations downstream.  Mask is known to be zero
1574/// for bits that V cannot have.
1575bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1576                                     unsigned Depth) const {
1577  APInt KnownZero, KnownOne;
1578  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1579  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1580  return (KnownZero & Mask) == Mask;
1581}
1582
1583/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1584/// known to be either zero or one and return them in the KnownZero/KnownOne
1585/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1586/// processing.
1587void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1588                                     APInt &KnownZero, APInt &KnownOne,
1589                                     unsigned Depth) const {
1590  unsigned BitWidth = Mask.getBitWidth();
1591  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1592         "Mask size mismatches value type size!");
1593
1594  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1595  if (Depth == 6 || Mask == 0)
1596    return;  // Limit search depth.
1597
1598  APInt KnownZero2, KnownOne2;
1599
1600  switch (Op.getOpcode()) {
1601  case ISD::Constant:
1602    // We know all of the bits for a constant!
1603    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1604    KnownZero = ~KnownOne & Mask;
1605    return;
1606  case ISD::AND:
1607    // If either the LHS or the RHS are Zero, the result is zero.
1608    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1609    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1610                      KnownZero2, KnownOne2, Depth+1);
1611    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1612    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1613
1614    // Output known-1 bits are only known if set in both the LHS & RHS.
1615    KnownOne &= KnownOne2;
1616    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1617    KnownZero |= KnownZero2;
1618    return;
1619  case ISD::OR:
1620    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1621    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1622                      KnownZero2, KnownOne2, Depth+1);
1623    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1625
1626    // Output known-0 bits are only known if clear in both the LHS & RHS.
1627    KnownZero &= KnownZero2;
1628    // Output known-1 are known to be set if set in either the LHS | RHS.
1629    KnownOne |= KnownOne2;
1630    return;
1631  case ISD::XOR: {
1632    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1633    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1634    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1636
1637    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1638    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1639    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1640    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1641    KnownZero = KnownZeroOut;
1642    return;
1643  }
1644  case ISD::MUL: {
1645    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1646    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1647    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1648    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1649    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1650
1651    // If low bits are zero in either operand, output low known-0 bits.
1652    // Also compute a conserative estimate for high known-0 bits.
1653    // More trickiness is possible, but this is sufficient for the
1654    // interesting case of alignment computation.
1655    KnownOne.clearAllBits();
1656    unsigned TrailZ = KnownZero.countTrailingOnes() +
1657                      KnownZero2.countTrailingOnes();
1658    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1659                               KnownZero2.countLeadingOnes(),
1660                               BitWidth) - BitWidth;
1661
1662    TrailZ = std::min(TrailZ, BitWidth);
1663    LeadZ = std::min(LeadZ, BitWidth);
1664    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1665                APInt::getHighBitsSet(BitWidth, LeadZ);
1666    KnownZero &= Mask;
1667    return;
1668  }
1669  case ISD::UDIV: {
1670    // For the purposes of computing leading zeros we can conservatively
1671    // treat a udiv as a logical right shift by the power of 2 known to
1672    // be less than the denominator.
1673    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1674    ComputeMaskedBits(Op.getOperand(0),
1675                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1676    unsigned LeadZ = KnownZero2.countLeadingOnes();
1677
1678    KnownOne2.clearAllBits();
1679    KnownZero2.clearAllBits();
1680    ComputeMaskedBits(Op.getOperand(1),
1681                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1682    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1683    if (RHSUnknownLeadingOnes != BitWidth)
1684      LeadZ = std::min(BitWidth,
1685                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1686
1687    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1688    return;
1689  }
1690  case ISD::SELECT:
1691    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1692    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1693    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1695
1696    // Only known if known in both the LHS and RHS.
1697    KnownOne &= KnownOne2;
1698    KnownZero &= KnownZero2;
1699    return;
1700  case ISD::SELECT_CC:
1701    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1702    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1703    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1705
1706    // Only known if known in both the LHS and RHS.
1707    KnownOne &= KnownOne2;
1708    KnownZero &= KnownZero2;
1709    return;
1710  case ISD::SADDO:
1711  case ISD::UADDO:
1712  case ISD::SSUBO:
1713  case ISD::USUBO:
1714  case ISD::SMULO:
1715  case ISD::UMULO:
1716    if (Op.getResNo() != 1)
1717      return;
1718    // The boolean result conforms to getBooleanContents.  Fall through.
1719  case ISD::SETCC:
1720    // If we know the result of a setcc has the top bits zero, use this info.
1721    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1722        BitWidth > 1)
1723      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1724    return;
1725  case ISD::SHL:
1726    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1727    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1728      unsigned ShAmt = SA->getZExtValue();
1729
1730      // If the shift count is an invalid immediate, don't do anything.
1731      if (ShAmt >= BitWidth)
1732        return;
1733
1734      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1735                        KnownZero, KnownOne, Depth+1);
1736      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737      KnownZero <<= ShAmt;
1738      KnownOne  <<= ShAmt;
1739      // low bits known zero.
1740      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1741    }
1742    return;
1743  case ISD::SRL:
1744    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1745    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1746      unsigned ShAmt = SA->getZExtValue();
1747
1748      // If the shift count is an invalid immediate, don't do anything.
1749      if (ShAmt >= BitWidth)
1750        return;
1751
1752      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1753                        KnownZero, KnownOne, Depth+1);
1754      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1755      KnownZero = KnownZero.lshr(ShAmt);
1756      KnownOne  = KnownOne.lshr(ShAmt);
1757
1758      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1759      KnownZero |= HighBits;  // High bits known zero.
1760    }
1761    return;
1762  case ISD::SRA:
1763    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1764      unsigned ShAmt = SA->getZExtValue();
1765
1766      // If the shift count is an invalid immediate, don't do anything.
1767      if (ShAmt >= BitWidth)
1768        return;
1769
1770      APInt InDemandedMask = (Mask << ShAmt);
1771      // If any of the demanded bits are produced by the sign extension, we also
1772      // demand the input sign bit.
1773      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1774      if (HighBits.getBoolValue())
1775        InDemandedMask |= APInt::getSignBit(BitWidth);
1776
1777      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1778                        Depth+1);
1779      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1780      KnownZero = KnownZero.lshr(ShAmt);
1781      KnownOne  = KnownOne.lshr(ShAmt);
1782
1783      // Handle the sign bits.
1784      APInt SignBit = APInt::getSignBit(BitWidth);
1785      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1786
1787      if (KnownZero.intersects(SignBit)) {
1788        KnownZero |= HighBits;  // New bits are known zero.
1789      } else if (KnownOne.intersects(SignBit)) {
1790        KnownOne  |= HighBits;  // New bits are known one.
1791      }
1792    }
1793    return;
1794  case ISD::SIGN_EXTEND_INREG: {
1795    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1796    unsigned EBits = EVT.getScalarType().getSizeInBits();
1797
1798    // Sign extension.  Compute the demanded bits in the result that are not
1799    // present in the input.
1800    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1801
1802    APInt InSignBit = APInt::getSignBit(EBits);
1803    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1804
1805    // If the sign extended bits are demanded, we know that the sign
1806    // bit is demanded.
1807    InSignBit = InSignBit.zext(BitWidth);
1808    if (NewBits.getBoolValue())
1809      InputDemandedBits |= InSignBit;
1810
1811    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1812                      KnownZero, KnownOne, Depth+1);
1813    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1814
1815    // If the sign bit of the input is known set or clear, then we know the
1816    // top bits of the result.
1817    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1818      KnownZero |= NewBits;
1819      KnownOne  &= ~NewBits;
1820    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1821      KnownOne  |= NewBits;
1822      KnownZero &= ~NewBits;
1823    } else {                              // Input sign bit unknown
1824      KnownZero &= ~NewBits;
1825      KnownOne  &= ~NewBits;
1826    }
1827    return;
1828  }
1829  case ISD::CTTZ:
1830  case ISD::CTLZ:
1831  case ISD::CTPOP: {
1832    unsigned LowBits = Log2_32(BitWidth)+1;
1833    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1834    KnownOne.clearAllBits();
1835    return;
1836  }
1837  case ISD::LOAD: {
1838    if (ISD::isZEXTLoad(Op.getNode())) {
1839      LoadSDNode *LD = cast<LoadSDNode>(Op);
1840      EVT VT = LD->getMemoryVT();
1841      unsigned MemBits = VT.getScalarType().getSizeInBits();
1842      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1843    }
1844    return;
1845  }
1846  case ISD::ZERO_EXTEND: {
1847    EVT InVT = Op.getOperand(0).getValueType();
1848    unsigned InBits = InVT.getScalarType().getSizeInBits();
1849    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1850    APInt InMask    = Mask.trunc(InBits);
1851    KnownZero = KnownZero.trunc(InBits);
1852    KnownOne = KnownOne.trunc(InBits);
1853    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1854    KnownZero = KnownZero.zext(BitWidth);
1855    KnownOne = KnownOne.zext(BitWidth);
1856    KnownZero |= NewBits;
1857    return;
1858  }
1859  case ISD::SIGN_EXTEND: {
1860    EVT InVT = Op.getOperand(0).getValueType();
1861    unsigned InBits = InVT.getScalarType().getSizeInBits();
1862    APInt InSignBit = APInt::getSignBit(InBits);
1863    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1864    APInt InMask = Mask.trunc(InBits);
1865
1866    // If any of the sign extended bits are demanded, we know that the sign
1867    // bit is demanded. Temporarily set this bit in the mask for our callee.
1868    if (NewBits.getBoolValue())
1869      InMask |= InSignBit;
1870
1871    KnownZero = KnownZero.trunc(InBits);
1872    KnownOne = KnownOne.trunc(InBits);
1873    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874
1875    // Note if the sign bit is known to be zero or one.
1876    bool SignBitKnownZero = KnownZero.isNegative();
1877    bool SignBitKnownOne  = KnownOne.isNegative();
1878    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1879           "Sign bit can't be known to be both zero and one!");
1880
1881    // If the sign bit wasn't actually demanded by our caller, we don't
1882    // want it set in the KnownZero and KnownOne result values. Reset the
1883    // mask and reapply it to the result values.
1884    InMask = Mask.trunc(InBits);
1885    KnownZero &= InMask;
1886    KnownOne  &= InMask;
1887
1888    KnownZero = KnownZero.zext(BitWidth);
1889    KnownOne = KnownOne.zext(BitWidth);
1890
1891    // If the sign bit is known zero or one, the top bits match.
1892    if (SignBitKnownZero)
1893      KnownZero |= NewBits;
1894    else if (SignBitKnownOne)
1895      KnownOne  |= NewBits;
1896    return;
1897  }
1898  case ISD::ANY_EXTEND: {
1899    EVT InVT = Op.getOperand(0).getValueType();
1900    unsigned InBits = InVT.getScalarType().getSizeInBits();
1901    APInt InMask = Mask.trunc(InBits);
1902    KnownZero = KnownZero.trunc(InBits);
1903    KnownOne = KnownOne.trunc(InBits);
1904    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1905    KnownZero = KnownZero.zext(BitWidth);
1906    KnownOne = KnownOne.zext(BitWidth);
1907    return;
1908  }
1909  case ISD::TRUNCATE: {
1910    EVT InVT = Op.getOperand(0).getValueType();
1911    unsigned InBits = InVT.getScalarType().getSizeInBits();
1912    APInt InMask = Mask.zext(InBits);
1913    KnownZero = KnownZero.zext(InBits);
1914    KnownOne = KnownOne.zext(InBits);
1915    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1916    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1917    KnownZero = KnownZero.trunc(BitWidth);
1918    KnownOne = KnownOne.trunc(BitWidth);
1919    break;
1920  }
1921  case ISD::AssertZext: {
1922    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1923    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1924    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1925                      KnownOne, Depth+1);
1926    KnownZero |= (~InMask) & Mask;
1927    return;
1928  }
1929  case ISD::FGETSIGN:
1930    // All bits are zero except the low bit.
1931    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1932    return;
1933
1934  case ISD::SUB: {
1935    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1936      // We know that the top bits of C-X are clear if X contains less bits
1937      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1938      // positive if we can prove that X is >= 0 and < 16.
1939      if (CLHS->getAPIntValue().isNonNegative()) {
1940        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1941        // NLZ can't be BitWidth with no sign bit
1942        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1943        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1944                          Depth+1);
1945
1946        // If all of the MaskV bits are known to be zero, then we know the
1947        // output top bits are zero, because we now know that the output is
1948        // from [0-C].
1949        if ((KnownZero2 & MaskV) == MaskV) {
1950          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1951          // Top bits known zero.
1952          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1953        }
1954      }
1955    }
1956  }
1957  // fall through
1958  case ISD::ADD:
1959  case ISD::ADDE: {
1960    // Output known-0 bits are known if clear or set in both the low clear bits
1961    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1962    // low 3 bits clear.
1963    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1964                                       BitWidth - Mask.countLeadingZeros());
1965    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1966    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1967    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1968
1969    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1970    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1971    KnownZeroOut = std::min(KnownZeroOut,
1972                            KnownZero2.countTrailingOnes());
1973
1974    if (Op.getOpcode() == ISD::ADD) {
1975      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1976      return;
1977    }
1978
1979    // With ADDE, a carry bit may be added in, so we can only use this
1980    // information if we know (at least) that the low two bits are clear.  We
1981    // then return to the caller that the low bit is unknown but that other bits
1982    // are known zero.
1983    if (KnownZeroOut >= 2) // ADDE
1984      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
1985    return;
1986  }
1987  case ISD::SREM:
1988    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1989      const APInt &RA = Rem->getAPIntValue().abs();
1990      if (RA.isPowerOf2()) {
1991        APInt LowBits = RA - 1;
1992        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1993        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1994
1995        // The low bits of the first operand are unchanged by the srem.
1996        KnownZero = KnownZero2 & LowBits;
1997        KnownOne = KnownOne2 & LowBits;
1998
1999        // If the first operand is non-negative or has all low bits zero, then
2000        // the upper bits are all zero.
2001        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2002          KnownZero |= ~LowBits;
2003
2004        // If the first operand is negative and not all low bits are zero, then
2005        // the upper bits are all one.
2006        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2007          KnownOne |= ~LowBits;
2008
2009        KnownZero &= Mask;
2010        KnownOne &= Mask;
2011
2012        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2013      }
2014    }
2015    return;
2016  case ISD::UREM: {
2017    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2018      const APInt &RA = Rem->getAPIntValue();
2019      if (RA.isPowerOf2()) {
2020        APInt LowBits = (RA - 1);
2021        APInt Mask2 = LowBits & Mask;
2022        KnownZero |= ~LowBits & Mask;
2023        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2024        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2025        break;
2026      }
2027    }
2028
2029    // Since the result is less than or equal to either operand, any leading
2030    // zero bits in either operand must also exist in the result.
2031    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2032    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2033                      Depth+1);
2034    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2035                      Depth+1);
2036
2037    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2038                                KnownZero2.countLeadingOnes());
2039    KnownOne.clearAllBits();
2040    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2041    return;
2042  }
2043  default:
2044    // Allow the target to implement this method for its nodes.
2045    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2046  case ISD::INTRINSIC_WO_CHAIN:
2047  case ISD::INTRINSIC_W_CHAIN:
2048  case ISD::INTRINSIC_VOID:
2049      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2050                                         Depth);
2051    }
2052    return;
2053  }
2054}
2055
2056/// ComputeNumSignBits - Return the number of times the sign bit of the
2057/// register is replicated into the other bits.  We know that at least 1 bit
2058/// is always equal to the sign bit (itself), but other cases can give us
2059/// information.  For example, immediately after an "SRA X, 2", we know that
2060/// the top 3 bits are all equal to each other, so we return 3.
2061unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2062  EVT VT = Op.getValueType();
2063  assert(VT.isInteger() && "Invalid VT!");
2064  unsigned VTBits = VT.getScalarType().getSizeInBits();
2065  unsigned Tmp, Tmp2;
2066  unsigned FirstAnswer = 1;
2067
2068  if (Depth == 6)
2069    return 1;  // Limit search depth.
2070
2071  switch (Op.getOpcode()) {
2072  default: break;
2073  case ISD::AssertSext:
2074    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2075    return VTBits-Tmp+1;
2076  case ISD::AssertZext:
2077    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2078    return VTBits-Tmp;
2079
2080  case ISD::Constant: {
2081    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2082    // If negative, return # leading ones.
2083    if (Val.isNegative())
2084      return Val.countLeadingOnes();
2085
2086    // Return # leading zeros.
2087    return Val.countLeadingZeros();
2088  }
2089
2090  case ISD::SIGN_EXTEND:
2091    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2092    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2093
2094  case ISD::SIGN_EXTEND_INREG:
2095    // Max of the input and what this extends.
2096    Tmp =
2097      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2098    Tmp = VTBits-Tmp+1;
2099
2100    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2101    return std::max(Tmp, Tmp2);
2102
2103  case ISD::SRA:
2104    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2105    // SRA X, C   -> adds C sign bits.
2106    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2107      Tmp += C->getZExtValue();
2108      if (Tmp > VTBits) Tmp = VTBits;
2109    }
2110    return Tmp;
2111  case ISD::SHL:
2112    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2113      // shl destroys sign bits.
2114      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2115      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2116          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2117      return Tmp - C->getZExtValue();
2118    }
2119    break;
2120  case ISD::AND:
2121  case ISD::OR:
2122  case ISD::XOR:    // NOT is handled here.
2123    // Logical binary ops preserve the number of sign bits at the worst.
2124    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2125    if (Tmp != 1) {
2126      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2127      FirstAnswer = std::min(Tmp, Tmp2);
2128      // We computed what we know about the sign bits as our first
2129      // answer. Now proceed to the generic code that uses
2130      // ComputeMaskedBits, and pick whichever answer is better.
2131    }
2132    break;
2133
2134  case ISD::SELECT:
2135    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2136    if (Tmp == 1) return 1;  // Early out.
2137    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2138    return std::min(Tmp, Tmp2);
2139
2140  case ISD::SADDO:
2141  case ISD::UADDO:
2142  case ISD::SSUBO:
2143  case ISD::USUBO:
2144  case ISD::SMULO:
2145  case ISD::UMULO:
2146    if (Op.getResNo() != 1)
2147      break;
2148    // The boolean result conforms to getBooleanContents.  Fall through.
2149  case ISD::SETCC:
2150    // If setcc returns 0/-1, all bits are sign bits.
2151    if (TLI.getBooleanContents() ==
2152        TargetLowering::ZeroOrNegativeOneBooleanContent)
2153      return VTBits;
2154    break;
2155  case ISD::ROTL:
2156  case ISD::ROTR:
2157    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2158      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2159
2160      // Handle rotate right by N like a rotate left by 32-N.
2161      if (Op.getOpcode() == ISD::ROTR)
2162        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2163
2164      // If we aren't rotating out all of the known-in sign bits, return the
2165      // number that are left.  This handles rotl(sext(x), 1) for example.
2166      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2167      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2168    }
2169    break;
2170  case ISD::ADD:
2171    // Add can have at most one carry bit.  Thus we know that the output
2172    // is, at worst, one more bit than the inputs.
2173    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2174    if (Tmp == 1) return 1;  // Early out.
2175
2176    // Special case decrementing a value (ADD X, -1):
2177    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2178      if (CRHS->isAllOnesValue()) {
2179        APInt KnownZero, KnownOne;
2180        APInt Mask = APInt::getAllOnesValue(VTBits);
2181        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2182
2183        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2184        // sign bits set.
2185        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2186          return VTBits;
2187
2188        // If we are subtracting one from a positive number, there is no carry
2189        // out of the result.
2190        if (KnownZero.isNegative())
2191          return Tmp;
2192      }
2193
2194    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2195    if (Tmp2 == 1) return 1;
2196      return std::min(Tmp, Tmp2)-1;
2197    break;
2198
2199  case ISD::SUB:
2200    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2201    if (Tmp2 == 1) return 1;
2202
2203    // Handle NEG.
2204    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2205      if (CLHS->isNullValue()) {
2206        APInt KnownZero, KnownOne;
2207        APInt Mask = APInt::getAllOnesValue(VTBits);
2208        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2209        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2210        // sign bits set.
2211        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2212          return VTBits;
2213
2214        // If the input is known to be positive (the sign bit is known clear),
2215        // the output of the NEG has the same number of sign bits as the input.
2216        if (KnownZero.isNegative())
2217          return Tmp2;
2218
2219        // Otherwise, we treat this like a SUB.
2220      }
2221
2222    // Sub can have at most one carry bit.  Thus we know that the output
2223    // is, at worst, one more bit than the inputs.
2224    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2225    if (Tmp == 1) return 1;  // Early out.
2226      return std::min(Tmp, Tmp2)-1;
2227    break;
2228  case ISD::TRUNCATE:
2229    // FIXME: it's tricky to do anything useful for this, but it is an important
2230    // case for targets like X86.
2231    break;
2232  }
2233
2234  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2235  if (Op.getOpcode() == ISD::LOAD) {
2236    LoadSDNode *LD = cast<LoadSDNode>(Op);
2237    unsigned ExtType = LD->getExtensionType();
2238    switch (ExtType) {
2239    default: break;
2240    case ISD::SEXTLOAD:    // '17' bits known
2241      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2242      return VTBits-Tmp+1;
2243    case ISD::ZEXTLOAD:    // '16' bits known
2244      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2245      return VTBits-Tmp;
2246    }
2247  }
2248
2249  // Allow the target to implement this method for its nodes.
2250  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2251      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2252      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2253      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2254    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2255    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2256  }
2257
2258  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2259  // use this information.
2260  APInt KnownZero, KnownOne;
2261  APInt Mask = APInt::getAllOnesValue(VTBits);
2262  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2263
2264  if (KnownZero.isNegative()) {        // sign bit is 0
2265    Mask = KnownZero;
2266  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2267    Mask = KnownOne;
2268  } else {
2269    // Nothing known.
2270    return FirstAnswer;
2271  }
2272
2273  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2274  // the number of identical bits in the top of the input value.
2275  Mask = ~Mask;
2276  Mask <<= Mask.getBitWidth()-VTBits;
2277  // Return # leading zeros.  We use 'min' here in case Val was zero before
2278  // shifting.  We don't want to return '64' as for an i32 "0".
2279  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2280}
2281
2282bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2283  // If we're told that NaNs won't happen, assume they won't.
2284  if (NoNaNsFPMath)
2285    return true;
2286
2287  // If the value is a constant, we can obviously see if it is a NaN or not.
2288  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2289    return !C->getValueAPF().isNaN();
2290
2291  // TODO: Recognize more cases here.
2292
2293  return false;
2294}
2295
2296bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2297  // If the value is a constant, we can obviously see if it is a zero or not.
2298  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2299    return !C->isZero();
2300
2301  // TODO: Recognize more cases here.
2302
2303  return false;
2304}
2305
2306bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2307  // Check the obvious case.
2308  if (A == B) return true;
2309
2310  // For for negative and positive zero.
2311  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2312    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2313      if (CA->isZero() && CB->isZero()) return true;
2314
2315  // Otherwise they may not be equal.
2316  return false;
2317}
2318
2319bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2320  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2321  if (!GA) return false;
2322  if (GA->getOffset() != 0) return false;
2323  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2324  if (!GV) return false;
2325  return MF->getMMI().hasDebugInfo();
2326}
2327
2328
2329/// getNode - Gets or creates the specified node.
2330///
2331SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2332  FoldingSetNodeID ID;
2333  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2334  void *IP = 0;
2335  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2336    return SDValue(E, 0);
2337
2338  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2339  CSEMap.InsertNode(N, IP);
2340
2341  AllNodes.push_back(N);
2342#ifndef NDEBUG
2343  VerifySDNode(N);
2344#endif
2345  return SDValue(N, 0);
2346}
2347
2348SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2349                              EVT VT, SDValue Operand) {
2350  // Constant fold unary operations with an integer constant operand.
2351  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2352    const APInt &Val = C->getAPIntValue();
2353    switch (Opcode) {
2354    default: break;
2355    case ISD::SIGN_EXTEND:
2356      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2357    case ISD::ANY_EXTEND:
2358    case ISD::ZERO_EXTEND:
2359    case ISD::TRUNCATE:
2360      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2361    case ISD::UINT_TO_FP:
2362    case ISD::SINT_TO_FP: {
2363      // No compile time operations on ppcf128.
2364      if (VT == MVT::ppcf128) break;
2365      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2366      (void)apf.convertFromAPInt(Val,
2367                                 Opcode==ISD::SINT_TO_FP,
2368                                 APFloat::rmNearestTiesToEven);
2369      return getConstantFP(apf, VT);
2370    }
2371    case ISD::BITCAST:
2372      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2373        return getConstantFP(Val.bitsToFloat(), VT);
2374      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2375        return getConstantFP(Val.bitsToDouble(), VT);
2376      break;
2377    case ISD::BSWAP:
2378      return getConstant(Val.byteSwap(), VT);
2379    case ISD::CTPOP:
2380      return getConstant(Val.countPopulation(), VT);
2381    case ISD::CTLZ:
2382      return getConstant(Val.countLeadingZeros(), VT);
2383    case ISD::CTTZ:
2384      return getConstant(Val.countTrailingZeros(), VT);
2385    }
2386  }
2387
2388  // Constant fold unary operations with a floating point constant operand.
2389  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2390    APFloat V = C->getValueAPF();    // make copy
2391    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2392      switch (Opcode) {
2393      case ISD::FNEG:
2394        V.changeSign();
2395        return getConstantFP(V, VT);
2396      case ISD::FABS:
2397        V.clearSign();
2398        return getConstantFP(V, VT);
2399      case ISD::FP_ROUND:
2400      case ISD::FP_EXTEND: {
2401        bool ignored;
2402        // This can return overflow, underflow, or inexact; we don't care.
2403        // FIXME need to be more flexible about rounding mode.
2404        (void)V.convert(*EVTToAPFloatSemantics(VT),
2405                        APFloat::rmNearestTiesToEven, &ignored);
2406        return getConstantFP(V, VT);
2407      }
2408      case ISD::FP_TO_SINT:
2409      case ISD::FP_TO_UINT: {
2410        integerPart x[2];
2411        bool ignored;
2412        assert(integerPartWidth >= 64);
2413        // FIXME need to be more flexible about rounding mode.
2414        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2415                              Opcode==ISD::FP_TO_SINT,
2416                              APFloat::rmTowardZero, &ignored);
2417        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2418          break;
2419        APInt api(VT.getSizeInBits(), 2, x);
2420        return getConstant(api, VT);
2421      }
2422      case ISD::BITCAST:
2423        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2424          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2425        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2426          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2427        break;
2428      }
2429    }
2430  }
2431
2432  unsigned OpOpcode = Operand.getNode()->getOpcode();
2433  switch (Opcode) {
2434  case ISD::TokenFactor:
2435  case ISD::MERGE_VALUES:
2436  case ISD::CONCAT_VECTORS:
2437    return Operand;         // Factor, merge or concat of one node?  No need.
2438  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2439  case ISD::FP_EXTEND:
2440    assert(VT.isFloatingPoint() &&
2441           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2442    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2443    assert((!VT.isVector() ||
2444            VT.getVectorNumElements() ==
2445            Operand.getValueType().getVectorNumElements()) &&
2446           "Vector element count mismatch!");
2447    if (Operand.getOpcode() == ISD::UNDEF)
2448      return getUNDEF(VT);
2449    break;
2450  case ISD::SIGN_EXTEND:
2451    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2452           "Invalid SIGN_EXTEND!");
2453    if (Operand.getValueType() == VT) return Operand;   // noop extension
2454    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2455           "Invalid sext node, dst < src!");
2456    assert((!VT.isVector() ||
2457            VT.getVectorNumElements() ==
2458            Operand.getValueType().getVectorNumElements()) &&
2459           "Vector element count mismatch!");
2460    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2461      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2462    break;
2463  case ISD::ZERO_EXTEND:
2464    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2465           "Invalid ZERO_EXTEND!");
2466    if (Operand.getValueType() == VT) return Operand;   // noop extension
2467    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2468           "Invalid zext node, dst < src!");
2469    assert((!VT.isVector() ||
2470            VT.getVectorNumElements() ==
2471            Operand.getValueType().getVectorNumElements()) &&
2472           "Vector element count mismatch!");
2473    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2474      return getNode(ISD::ZERO_EXTEND, DL, VT,
2475                     Operand.getNode()->getOperand(0));
2476    break;
2477  case ISD::ANY_EXTEND:
2478    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2479           "Invalid ANY_EXTEND!");
2480    if (Operand.getValueType() == VT) return Operand;   // noop extension
2481    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2482           "Invalid anyext node, dst < src!");
2483    assert((!VT.isVector() ||
2484            VT.getVectorNumElements() ==
2485            Operand.getValueType().getVectorNumElements()) &&
2486           "Vector element count mismatch!");
2487
2488    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2489        OpOpcode == ISD::ANY_EXTEND)
2490      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2491      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2492
2493    // (ext (trunx x)) -> x
2494    if (OpOpcode == ISD::TRUNCATE) {
2495      SDValue OpOp = Operand.getNode()->getOperand(0);
2496      if (OpOp.getValueType() == VT)
2497        return OpOp;
2498    }
2499    break;
2500  case ISD::TRUNCATE:
2501    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2502           "Invalid TRUNCATE!");
2503    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2504    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2505           "Invalid truncate node, src < dst!");
2506    assert((!VT.isVector() ||
2507            VT.getVectorNumElements() ==
2508            Operand.getValueType().getVectorNumElements()) &&
2509           "Vector element count mismatch!");
2510    if (OpOpcode == ISD::TRUNCATE)
2511      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2512    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2513             OpOpcode == ISD::ANY_EXTEND) {
2514      // If the source is smaller than the dest, we still need an extend.
2515      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2516            .bitsLT(VT.getScalarType()))
2517        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2518      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2519        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2520      else
2521        return Operand.getNode()->getOperand(0);
2522    }
2523    break;
2524  case ISD::BITCAST:
2525    // Basic sanity checking.
2526    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2527           && "Cannot BITCAST between types of different sizes!");
2528    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2529    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2530      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2531    if (OpOpcode == ISD::UNDEF)
2532      return getUNDEF(VT);
2533    break;
2534  case ISD::SCALAR_TO_VECTOR:
2535    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2536           (VT.getVectorElementType() == Operand.getValueType() ||
2537            (VT.getVectorElementType().isInteger() &&
2538             Operand.getValueType().isInteger() &&
2539             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2540           "Illegal SCALAR_TO_VECTOR node!");
2541    if (OpOpcode == ISD::UNDEF)
2542      return getUNDEF(VT);
2543    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2544    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2545        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2546        Operand.getConstantOperandVal(1) == 0 &&
2547        Operand.getOperand(0).getValueType() == VT)
2548      return Operand.getOperand(0);
2549    break;
2550  case ISD::FNEG:
2551    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2552    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2553      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2554                     Operand.getNode()->getOperand(0));
2555    if (OpOpcode == ISD::FNEG)  // --X -> X
2556      return Operand.getNode()->getOperand(0);
2557    break;
2558  case ISD::FABS:
2559    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2560      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2561    break;
2562  }
2563
2564  SDNode *N;
2565  SDVTList VTs = getVTList(VT);
2566  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2567    FoldingSetNodeID ID;
2568    SDValue Ops[1] = { Operand };
2569    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2570    void *IP = 0;
2571    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2572      return SDValue(E, 0);
2573
2574    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2575    CSEMap.InsertNode(N, IP);
2576  } else {
2577    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2578  }
2579
2580  AllNodes.push_back(N);
2581#ifndef NDEBUG
2582  VerifySDNode(N);
2583#endif
2584  return SDValue(N, 0);
2585}
2586
2587SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2588                                             EVT VT,
2589                                             ConstantSDNode *Cst1,
2590                                             ConstantSDNode *Cst2) {
2591  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2592
2593  switch (Opcode) {
2594  case ISD::ADD:  return getConstant(C1 + C2, VT);
2595  case ISD::SUB:  return getConstant(C1 - C2, VT);
2596  case ISD::MUL:  return getConstant(C1 * C2, VT);
2597  case ISD::UDIV:
2598    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2599    break;
2600  case ISD::UREM:
2601    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2602    break;
2603  case ISD::SDIV:
2604    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2605    break;
2606  case ISD::SREM:
2607    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2608    break;
2609  case ISD::AND:  return getConstant(C1 & C2, VT);
2610  case ISD::OR:   return getConstant(C1 | C2, VT);
2611  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2612  case ISD::SHL:  return getConstant(C1 << C2, VT);
2613  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2614  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2615  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2616  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2617  default: break;
2618  }
2619
2620  return SDValue();
2621}
2622
2623SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2624                              SDValue N1, SDValue N2) {
2625  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2626  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2627  switch (Opcode) {
2628  default: break;
2629  case ISD::TokenFactor:
2630    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2631           N2.getValueType() == MVT::Other && "Invalid token factor!");
2632    // Fold trivial token factors.
2633    if (N1.getOpcode() == ISD::EntryToken) return N2;
2634    if (N2.getOpcode() == ISD::EntryToken) return N1;
2635    if (N1 == N2) return N1;
2636    break;
2637  case ISD::CONCAT_VECTORS:
2638    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2639    // one big BUILD_VECTOR.
2640    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2641        N2.getOpcode() == ISD::BUILD_VECTOR) {
2642      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2643                                    N1.getNode()->op_end());
2644      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2645      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2646    }
2647    break;
2648  case ISD::AND:
2649    assert(VT.isInteger() && "This operator does not apply to FP types!");
2650    assert(N1.getValueType() == N2.getValueType() &&
2651           N1.getValueType() == VT && "Binary operator types must match!");
2652    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2653    // worth handling here.
2654    if (N2C && N2C->isNullValue())
2655      return N2;
2656    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2657      return N1;
2658    break;
2659  case ISD::OR:
2660  case ISD::XOR:
2661  case ISD::ADD:
2662  case ISD::SUB:
2663    assert(VT.isInteger() && "This operator does not apply to FP types!");
2664    assert(N1.getValueType() == N2.getValueType() &&
2665           N1.getValueType() == VT && "Binary operator types must match!");
2666    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2667    // it's worth handling here.
2668    if (N2C && N2C->isNullValue())
2669      return N1;
2670    break;
2671  case ISD::UDIV:
2672  case ISD::UREM:
2673  case ISD::MULHU:
2674  case ISD::MULHS:
2675  case ISD::MUL:
2676  case ISD::SDIV:
2677  case ISD::SREM:
2678    assert(VT.isInteger() && "This operator does not apply to FP types!");
2679    assert(N1.getValueType() == N2.getValueType() &&
2680           N1.getValueType() == VT && "Binary operator types must match!");
2681    break;
2682  case ISD::FADD:
2683  case ISD::FSUB:
2684  case ISD::FMUL:
2685  case ISD::FDIV:
2686  case ISD::FREM:
2687    if (UnsafeFPMath) {
2688      if (Opcode == ISD::FADD) {
2689        // 0+x --> x
2690        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2691          if (CFP->getValueAPF().isZero())
2692            return N2;
2693        // x+0 --> x
2694        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2695          if (CFP->getValueAPF().isZero())
2696            return N1;
2697      } else if (Opcode == ISD::FSUB) {
2698        // x-0 --> x
2699        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2700          if (CFP->getValueAPF().isZero())
2701            return N1;
2702      }
2703    }
2704    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2705    assert(N1.getValueType() == N2.getValueType() &&
2706           N1.getValueType() == VT && "Binary operator types must match!");
2707    break;
2708  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2709    assert(N1.getValueType() == VT &&
2710           N1.getValueType().isFloatingPoint() &&
2711           N2.getValueType().isFloatingPoint() &&
2712           "Invalid FCOPYSIGN!");
2713    break;
2714  case ISD::SHL:
2715  case ISD::SRA:
2716  case ISD::SRL:
2717  case ISD::ROTL:
2718  case ISD::ROTR:
2719    assert(VT == N1.getValueType() &&
2720           "Shift operators return type must be the same as their first arg");
2721    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2722           "Shifts only work on integers");
2723    // Verify that the shift amount VT is bit enough to hold valid shift
2724    // amounts.  This catches things like trying to shift an i1024 value by an
2725    // i8, which is easy to fall into in generic code that uses
2726    // TLI.getShiftAmount().
2727    assert(N2.getValueType().getSizeInBits() >=
2728                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2729           "Invalid use of small shift amount with oversized value!");
2730
2731    // Always fold shifts of i1 values so the code generator doesn't need to
2732    // handle them.  Since we know the size of the shift has to be less than the
2733    // size of the value, the shift/rotate count is guaranteed to be zero.
2734    if (VT == MVT::i1)
2735      return N1;
2736    if (N2C && N2C->isNullValue())
2737      return N1;
2738    break;
2739  case ISD::FP_ROUND_INREG: {
2740    EVT EVT = cast<VTSDNode>(N2)->getVT();
2741    assert(VT == N1.getValueType() && "Not an inreg round!");
2742    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2743           "Cannot FP_ROUND_INREG integer types");
2744    assert(EVT.isVector() == VT.isVector() &&
2745           "FP_ROUND_INREG type should be vector iff the operand "
2746           "type is vector!");
2747    assert((!EVT.isVector() ||
2748            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2749           "Vector element counts must match in FP_ROUND_INREG");
2750    assert(EVT.bitsLE(VT) && "Not rounding down!");
2751    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2752    break;
2753  }
2754  case ISD::FP_ROUND:
2755    assert(VT.isFloatingPoint() &&
2756           N1.getValueType().isFloatingPoint() &&
2757           VT.bitsLE(N1.getValueType()) &&
2758           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2759    if (N1.getValueType() == VT) return N1;  // noop conversion.
2760    break;
2761  case ISD::AssertSext:
2762  case ISD::AssertZext: {
2763    EVT EVT = cast<VTSDNode>(N2)->getVT();
2764    assert(VT == N1.getValueType() && "Not an inreg extend!");
2765    assert(VT.isInteger() && EVT.isInteger() &&
2766           "Cannot *_EXTEND_INREG FP types");
2767    assert(!EVT.isVector() &&
2768           "AssertSExt/AssertZExt type should be the vector element type "
2769           "rather than the vector type!");
2770    assert(EVT.bitsLE(VT) && "Not extending!");
2771    if (VT == EVT) return N1; // noop assertion.
2772    break;
2773  }
2774  case ISD::SIGN_EXTEND_INREG: {
2775    EVT EVT = cast<VTSDNode>(N2)->getVT();
2776    assert(VT == N1.getValueType() && "Not an inreg extend!");
2777    assert(VT.isInteger() && EVT.isInteger() &&
2778           "Cannot *_EXTEND_INREG FP types");
2779    assert(EVT.isVector() == VT.isVector() &&
2780           "SIGN_EXTEND_INREG type should be vector iff the operand "
2781           "type is vector!");
2782    assert((!EVT.isVector() ||
2783            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2784           "Vector element counts must match in SIGN_EXTEND_INREG");
2785    assert(EVT.bitsLE(VT) && "Not extending!");
2786    if (EVT == VT) return N1;  // Not actually extending
2787
2788    if (N1C) {
2789      APInt Val = N1C->getAPIntValue();
2790      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2791      Val <<= Val.getBitWidth()-FromBits;
2792      Val = Val.ashr(Val.getBitWidth()-FromBits);
2793      return getConstant(Val, VT);
2794    }
2795    break;
2796  }
2797  case ISD::EXTRACT_VECTOR_ELT:
2798    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2799    if (N1.getOpcode() == ISD::UNDEF)
2800      return getUNDEF(VT);
2801
2802    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2803    // expanding copies of large vectors from registers.
2804    if (N2C &&
2805        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2806        N1.getNumOperands() > 0) {
2807      unsigned Factor =
2808        N1.getOperand(0).getValueType().getVectorNumElements();
2809      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2810                     N1.getOperand(N2C->getZExtValue() / Factor),
2811                     getConstant(N2C->getZExtValue() % Factor,
2812                                 N2.getValueType()));
2813    }
2814
2815    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2816    // expanding large vector constants.
2817    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2818      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2819      EVT VEltTy = N1.getValueType().getVectorElementType();
2820      if (Elt.getValueType() != VEltTy) {
2821        // If the vector element type is not legal, the BUILD_VECTOR operands
2822        // are promoted and implicitly truncated.  Make that explicit here.
2823        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2824      }
2825      if (VT != VEltTy) {
2826        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2827        // result is implicitly extended.
2828        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2829      }
2830      return Elt;
2831    }
2832
2833    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2834    // operations are lowered to scalars.
2835    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2836      // If the indices are the same, return the inserted element else
2837      // if the indices are known different, extract the element from
2838      // the original vector.
2839      SDValue N1Op2 = N1.getOperand(2);
2840      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2841
2842      if (N1Op2C && N2C) {
2843        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2844          if (VT == N1.getOperand(1).getValueType())
2845            return N1.getOperand(1);
2846          else
2847            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2848        }
2849
2850        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2851      }
2852    }
2853    break;
2854  case ISD::EXTRACT_ELEMENT:
2855    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2856    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2857           (N1.getValueType().isInteger() == VT.isInteger()) &&
2858           "Wrong types for EXTRACT_ELEMENT!");
2859
2860    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2861    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2862    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2863    if (N1.getOpcode() == ISD::BUILD_PAIR)
2864      return N1.getOperand(N2C->getZExtValue());
2865
2866    // EXTRACT_ELEMENT of a constant int is also very common.
2867    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2868      unsigned ElementSize = VT.getSizeInBits();
2869      unsigned Shift = ElementSize * N2C->getZExtValue();
2870      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2871      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2872    }
2873    break;
2874  case ISD::EXTRACT_SUBVECTOR: {
2875    SDValue Index = N2;
2876    if (VT.isSimple() && N1.getValueType().isSimple()) {
2877      assert(VT.isVector() && N1.getValueType().isVector() &&
2878             "Extract subvector VTs must be a vectors!");
2879      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2880             "Extract subvector VTs must have the same element type!");
2881      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2882             "Extract subvector must be from larger vector to smaller vector!");
2883
2884      if (isa<ConstantSDNode>(Index.getNode())) {
2885        assert((VT.getVectorNumElements() +
2886                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2887                <= N1.getValueType().getVectorNumElements())
2888               && "Extract subvector overflow!");
2889      }
2890
2891      // Trivial extraction.
2892      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2893        return N1;
2894    }
2895    break;
2896  }
2897  }
2898
2899  if (N1C) {
2900    if (N2C) {
2901      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2902      if (SV.getNode()) return SV;
2903    } else {      // Cannonicalize constant to RHS if commutative
2904      if (isCommutativeBinOp(Opcode)) {
2905        std::swap(N1C, N2C);
2906        std::swap(N1, N2);
2907      }
2908    }
2909  }
2910
2911  // Constant fold FP operations.
2912  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2913  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2914  if (N1CFP) {
2915    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2916      // Cannonicalize constant to RHS if commutative
2917      std::swap(N1CFP, N2CFP);
2918      std::swap(N1, N2);
2919    } else if (N2CFP && VT != MVT::ppcf128) {
2920      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2921      APFloat::opStatus s;
2922      switch (Opcode) {
2923      case ISD::FADD:
2924        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2925        if (s != APFloat::opInvalidOp)
2926          return getConstantFP(V1, VT);
2927        break;
2928      case ISD::FSUB:
2929        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2930        if (s!=APFloat::opInvalidOp)
2931          return getConstantFP(V1, VT);
2932        break;
2933      case ISD::FMUL:
2934        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2935        if (s!=APFloat::opInvalidOp)
2936          return getConstantFP(V1, VT);
2937        break;
2938      case ISD::FDIV:
2939        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2940        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2941          return getConstantFP(V1, VT);
2942        break;
2943      case ISD::FREM :
2944        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2945        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2946          return getConstantFP(V1, VT);
2947        break;
2948      case ISD::FCOPYSIGN:
2949        V1.copySign(V2);
2950        return getConstantFP(V1, VT);
2951      default: break;
2952      }
2953    }
2954  }
2955
2956  // Canonicalize an UNDEF to the RHS, even over a constant.
2957  if (N1.getOpcode() == ISD::UNDEF) {
2958    if (isCommutativeBinOp(Opcode)) {
2959      std::swap(N1, N2);
2960    } else {
2961      switch (Opcode) {
2962      case ISD::FP_ROUND_INREG:
2963      case ISD::SIGN_EXTEND_INREG:
2964      case ISD::SUB:
2965      case ISD::FSUB:
2966      case ISD::FDIV:
2967      case ISD::FREM:
2968      case ISD::SRA:
2969        return N1;     // fold op(undef, arg2) -> undef
2970      case ISD::UDIV:
2971      case ISD::SDIV:
2972      case ISD::UREM:
2973      case ISD::SREM:
2974      case ISD::SRL:
2975      case ISD::SHL:
2976        if (!VT.isVector())
2977          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2978        // For vectors, we can't easily build an all zero vector, just return
2979        // the LHS.
2980        return N2;
2981      }
2982    }
2983  }
2984
2985  // Fold a bunch of operators when the RHS is undef.
2986  if (N2.getOpcode() == ISD::UNDEF) {
2987    switch (Opcode) {
2988    case ISD::XOR:
2989      if (N1.getOpcode() == ISD::UNDEF)
2990        // Handle undef ^ undef -> 0 special case. This is a common
2991        // idiom (misuse).
2992        return getConstant(0, VT);
2993      // fallthrough
2994    case ISD::ADD:
2995    case ISD::ADDC:
2996    case ISD::ADDE:
2997    case ISD::SUB:
2998    case ISD::UDIV:
2999    case ISD::SDIV:
3000    case ISD::UREM:
3001    case ISD::SREM:
3002      return N2;       // fold op(arg1, undef) -> undef
3003    case ISD::FADD:
3004    case ISD::FSUB:
3005    case ISD::FMUL:
3006    case ISD::FDIV:
3007    case ISD::FREM:
3008      if (UnsafeFPMath)
3009        return N2;
3010      break;
3011    case ISD::MUL:
3012    case ISD::AND:
3013    case ISD::SRL:
3014    case ISD::SHL:
3015      if (!VT.isVector())
3016        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3017      // For vectors, we can't easily build an all zero vector, just return
3018      // the LHS.
3019      return N1;
3020    case ISD::OR:
3021      if (!VT.isVector())
3022        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3023      // For vectors, we can't easily build an all one vector, just return
3024      // the LHS.
3025      return N1;
3026    case ISD::SRA:
3027      return N1;
3028    }
3029  }
3030
3031  // Memoize this node if possible.
3032  SDNode *N;
3033  SDVTList VTs = getVTList(VT);
3034  if (VT != MVT::Glue) {
3035    SDValue Ops[] = { N1, N2 };
3036    FoldingSetNodeID ID;
3037    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3038    void *IP = 0;
3039    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3040      return SDValue(E, 0);
3041
3042    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3043    CSEMap.InsertNode(N, IP);
3044  } else {
3045    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3046  }
3047
3048  AllNodes.push_back(N);
3049#ifndef NDEBUG
3050  VerifySDNode(N);
3051#endif
3052  return SDValue(N, 0);
3053}
3054
3055SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3056                              SDValue N1, SDValue N2, SDValue N3) {
3057  // Perform various simplifications.
3058  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3059  switch (Opcode) {
3060  case ISD::CONCAT_VECTORS:
3061    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3062    // one big BUILD_VECTOR.
3063    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3064        N2.getOpcode() == ISD::BUILD_VECTOR &&
3065        N3.getOpcode() == ISD::BUILD_VECTOR) {
3066      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3067                                    N1.getNode()->op_end());
3068      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3069      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3070      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3071    }
3072    break;
3073  case ISD::SETCC: {
3074    // Use FoldSetCC to simplify SETCC's.
3075    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3076    if (Simp.getNode()) return Simp;
3077    break;
3078  }
3079  case ISD::SELECT:
3080    if (N1C) {
3081     if (N1C->getZExtValue())
3082        return N2;             // select true, X, Y -> X
3083      else
3084        return N3;             // select false, X, Y -> Y
3085    }
3086
3087    if (N2 == N3) return N2;   // select C, X, X -> X
3088    break;
3089  case ISD::VECTOR_SHUFFLE:
3090    llvm_unreachable("should use getVectorShuffle constructor!");
3091    break;
3092  case ISD::INSERT_SUBVECTOR: {
3093    SDValue Index = N3;
3094    if (VT.isSimple() && N1.getValueType().isSimple()
3095        && N2.getValueType().isSimple()) {
3096      assert(VT.isVector() && N1.getValueType().isVector() &&
3097             N2.getValueType().isVector() &&
3098             "Insert subvector VTs must be a vectors");
3099      assert(VT == N1.getValueType() &&
3100             "Dest and insert subvector source types must match!");
3101      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3102             "Insert subvector must be from smaller vector to larger vector!");
3103      if (isa<ConstantSDNode>(Index.getNode())) {
3104        assert((N2.getValueType().getVectorNumElements() +
3105                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3106                <= VT.getVectorNumElements())
3107               && "Insert subvector overflow!");
3108      }
3109
3110      // Trivial insertion.
3111      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3112        return N2;
3113    }
3114    break;
3115  }
3116  case ISD::BITCAST:
3117    // Fold bit_convert nodes from a type to themselves.
3118    if (N1.getValueType() == VT)
3119      return N1;
3120    break;
3121  }
3122
3123  // Memoize node if it doesn't produce a flag.
3124  SDNode *N;
3125  SDVTList VTs = getVTList(VT);
3126  if (VT != MVT::Glue) {
3127    SDValue Ops[] = { N1, N2, N3 };
3128    FoldingSetNodeID ID;
3129    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3130    void *IP = 0;
3131    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3132      return SDValue(E, 0);
3133
3134    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3135    CSEMap.InsertNode(N, IP);
3136  } else {
3137    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3138  }
3139
3140  AllNodes.push_back(N);
3141#ifndef NDEBUG
3142  VerifySDNode(N);
3143#endif
3144  return SDValue(N, 0);
3145}
3146
3147SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3148                              SDValue N1, SDValue N2, SDValue N3,
3149                              SDValue N4) {
3150  SDValue Ops[] = { N1, N2, N3, N4 };
3151  return getNode(Opcode, DL, VT, Ops, 4);
3152}
3153
3154SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3155                              SDValue N1, SDValue N2, SDValue N3,
3156                              SDValue N4, SDValue N5) {
3157  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3158  return getNode(Opcode, DL, VT, Ops, 5);
3159}
3160
3161/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3162/// the incoming stack arguments to be loaded from the stack.
3163SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3164  SmallVector<SDValue, 8> ArgChains;
3165
3166  // Include the original chain at the beginning of the list. When this is
3167  // used by target LowerCall hooks, this helps legalize find the
3168  // CALLSEQ_BEGIN node.
3169  ArgChains.push_back(Chain);
3170
3171  // Add a chain value for each stack argument.
3172  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3173       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3174    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3175      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3176        if (FI->getIndex() < 0)
3177          ArgChains.push_back(SDValue(L, 1));
3178
3179  // Build a tokenfactor for all the chains.
3180  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3181                 &ArgChains[0], ArgChains.size());
3182}
3183
3184/// SplatByte - Distribute ByteVal over NumBits bits.
3185static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3186  APInt Val = APInt(NumBits, ByteVal);
3187  unsigned Shift = 8;
3188  for (unsigned i = NumBits; i > 8; i >>= 1) {
3189    Val = (Val << Shift) | Val;
3190    Shift <<= 1;
3191  }
3192  return Val;
3193}
3194
3195/// getMemsetValue - Vectorized representation of the memset value
3196/// operand.
3197static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3198                              DebugLoc dl) {
3199  assert(Value.getOpcode() != ISD::UNDEF);
3200
3201  unsigned NumBits = VT.getScalarType().getSizeInBits();
3202  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3203    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3204    if (VT.isInteger())
3205      return DAG.getConstant(Val, VT);
3206    return DAG.getConstantFP(APFloat(Val), VT);
3207  }
3208
3209  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3210  if (NumBits > 8) {
3211    // Use a multiplication with 0x010101... to extend the input to the
3212    // required length.
3213    APInt Magic = SplatByte(NumBits, 0x01);
3214    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3215  }
3216
3217  return Value;
3218}
3219
3220/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3221/// used when a memcpy is turned into a memset when the source is a constant
3222/// string ptr.
3223static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3224                                  const TargetLowering &TLI,
3225                                  std::string &Str, unsigned Offset) {
3226  // Handle vector with all elements zero.
3227  if (Str.empty()) {
3228    if (VT.isInteger())
3229      return DAG.getConstant(0, VT);
3230    else if (VT == MVT::f32 || VT == MVT::f64)
3231      return DAG.getConstantFP(0.0, VT);
3232    else if (VT.isVector()) {
3233      unsigned NumElts = VT.getVectorNumElements();
3234      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3235      return DAG.getNode(ISD::BITCAST, dl, VT,
3236                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3237                                                             EltVT, NumElts)));
3238    } else
3239      llvm_unreachable("Expected type!");
3240  }
3241
3242  assert(!VT.isVector() && "Can't handle vector type here!");
3243  unsigned NumBits = VT.getSizeInBits();
3244  unsigned MSB = NumBits / 8;
3245  uint64_t Val = 0;
3246  if (TLI.isLittleEndian())
3247    Offset = Offset + MSB - 1;
3248  for (unsigned i = 0; i != MSB; ++i) {
3249    Val = (Val << 8) | (unsigned char)Str[Offset];
3250    Offset += TLI.isLittleEndian() ? -1 : 1;
3251  }
3252  return DAG.getConstant(Val, VT);
3253}
3254
3255/// getMemBasePlusOffset - Returns base and offset node for the
3256///
3257static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3258                                      SelectionDAG &DAG) {
3259  EVT VT = Base.getValueType();
3260  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3261                     VT, Base, DAG.getConstant(Offset, VT));
3262}
3263
3264/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3265///
3266static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3267  unsigned SrcDelta = 0;
3268  GlobalAddressSDNode *G = NULL;
3269  if (Src.getOpcode() == ISD::GlobalAddress)
3270    G = cast<GlobalAddressSDNode>(Src);
3271  else if (Src.getOpcode() == ISD::ADD &&
3272           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3273           Src.getOperand(1).getOpcode() == ISD::Constant) {
3274    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3275    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3276  }
3277  if (!G)
3278    return false;
3279
3280  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3281  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3282    return true;
3283
3284  return false;
3285}
3286
3287/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3288/// to replace the memset / memcpy. Return true if the number of memory ops
3289/// is below the threshold. It returns the types of the sequence of
3290/// memory ops to perform memset / memcpy by reference.
3291static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3292                                     unsigned Limit, uint64_t Size,
3293                                     unsigned DstAlign, unsigned SrcAlign,
3294                                     bool NonScalarIntSafe,
3295                                     bool MemcpyStrSrc,
3296                                     SelectionDAG &DAG,
3297                                     const TargetLowering &TLI) {
3298  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3299         "Expecting memcpy / memset source to meet alignment requirement!");
3300  // If 'SrcAlign' is zero, that means the memory operation does not need load
3301  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3302  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3303  // specified alignment of the memory operation. If it is zero, that means
3304  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3305  // indicates whether the memcpy source is constant so it does not need to be
3306  // loaded.
3307  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3308                                   NonScalarIntSafe, MemcpyStrSrc,
3309                                   DAG.getMachineFunction());
3310
3311  if (VT == MVT::Other) {
3312    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3313        TLI.allowsUnalignedMemoryAccesses(VT)) {
3314      VT = TLI.getPointerTy();
3315    } else {
3316      switch (DstAlign & 7) {
3317      case 0:  VT = MVT::i64; break;
3318      case 4:  VT = MVT::i32; break;
3319      case 2:  VT = MVT::i16; break;
3320      default: VT = MVT::i8;  break;
3321      }
3322    }
3323
3324    MVT LVT = MVT::i64;
3325    while (!TLI.isTypeLegal(LVT))
3326      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3327    assert(LVT.isInteger());
3328
3329    if (VT.bitsGT(LVT))
3330      VT = LVT;
3331  }
3332
3333  unsigned NumMemOps = 0;
3334  while (Size != 0) {
3335    unsigned VTSize = VT.getSizeInBits() / 8;
3336    while (VTSize > Size) {
3337      // For now, only use non-vector load / store's for the left-over pieces.
3338      if (VT.isVector() || VT.isFloatingPoint()) {
3339        VT = MVT::i64;
3340        while (!TLI.isTypeLegal(VT))
3341          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3342        VTSize = VT.getSizeInBits() / 8;
3343      } else {
3344        // This can result in a type that is not legal on the target, e.g.
3345        // 1 or 2 bytes on PPC.
3346        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3347        VTSize >>= 1;
3348      }
3349    }
3350
3351    if (++NumMemOps > Limit)
3352      return false;
3353    MemOps.push_back(VT);
3354    Size -= VTSize;
3355  }
3356
3357  return true;
3358}
3359
3360static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3361                                       SDValue Chain, SDValue Dst,
3362                                       SDValue Src, uint64_t Size,
3363                                       unsigned Align, bool isVol,
3364                                       bool AlwaysInline,
3365                                       MachinePointerInfo DstPtrInfo,
3366                                       MachinePointerInfo SrcPtrInfo) {
3367  // Turn a memcpy of undef to nop.
3368  if (Src.getOpcode() == ISD::UNDEF)
3369    return Chain;
3370
3371  // Expand memcpy to a series of load and store ops if the size operand falls
3372  // below a certain threshold.
3373  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3374  // rather than maybe a humongous number of loads and stores.
3375  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3376  std::vector<EVT> MemOps;
3377  bool DstAlignCanChange = false;
3378  MachineFunction &MF = DAG.getMachineFunction();
3379  MachineFrameInfo *MFI = MF.getFrameInfo();
3380  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3381  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3382  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3383    DstAlignCanChange = true;
3384  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3385  if (Align > SrcAlign)
3386    SrcAlign = Align;
3387  std::string Str;
3388  bool CopyFromStr = isMemSrcFromString(Src, Str);
3389  bool isZeroStr = CopyFromStr && Str.empty();
3390  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3391
3392  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3393                                (DstAlignCanChange ? 0 : Align),
3394                                (isZeroStr ? 0 : SrcAlign),
3395                                true, CopyFromStr, DAG, TLI))
3396    return SDValue();
3397
3398  if (DstAlignCanChange) {
3399    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3400    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3401    if (NewAlign > Align) {
3402      // Give the stack frame object a larger alignment if needed.
3403      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3404        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3405      Align = NewAlign;
3406    }
3407  }
3408
3409  SmallVector<SDValue, 8> OutChains;
3410  unsigned NumMemOps = MemOps.size();
3411  uint64_t SrcOff = 0, DstOff = 0;
3412  for (unsigned i = 0; i != NumMemOps; ++i) {
3413    EVT VT = MemOps[i];
3414    unsigned VTSize = VT.getSizeInBits() / 8;
3415    SDValue Value, Store;
3416
3417    if (CopyFromStr &&
3418        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3419      // It's unlikely a store of a vector immediate can be done in a single
3420      // instruction. It would require a load from a constantpool first.
3421      // We only handle zero vectors here.
3422      // FIXME: Handle other cases where store of vector immediate is done in
3423      // a single instruction.
3424      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3425      Store = DAG.getStore(Chain, dl, Value,
3426                           getMemBasePlusOffset(Dst, DstOff, DAG),
3427                           DstPtrInfo.getWithOffset(DstOff), isVol,
3428                           false, Align);
3429    } else {
3430      // The type might not be legal for the target.  This should only happen
3431      // if the type is smaller than a legal type, as on PPC, so the right
3432      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3433      // to Load/Store if NVT==VT.
3434      // FIXME does the case above also need this?
3435      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3436      assert(NVT.bitsGE(VT));
3437      Value = DAG.getExtLoad(ISD::EXTLOAD, NVT, dl, Chain,
3438                             getMemBasePlusOffset(Src, SrcOff, DAG),
3439                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3440                             MinAlign(SrcAlign, SrcOff));
3441      Store = DAG.getTruncStore(Chain, dl, Value,
3442                                getMemBasePlusOffset(Dst, DstOff, DAG),
3443                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3444                                false, Align);
3445    }
3446    OutChains.push_back(Store);
3447    SrcOff += VTSize;
3448    DstOff += VTSize;
3449  }
3450
3451  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3452                     &OutChains[0], OutChains.size());
3453}
3454
3455static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3456                                        SDValue Chain, SDValue Dst,
3457                                        SDValue Src, uint64_t Size,
3458                                        unsigned Align,  bool isVol,
3459                                        bool AlwaysInline,
3460                                        MachinePointerInfo DstPtrInfo,
3461                                        MachinePointerInfo SrcPtrInfo) {
3462  // Turn a memmove of undef to nop.
3463  if (Src.getOpcode() == ISD::UNDEF)
3464    return Chain;
3465
3466  // Expand memmove to a series of load and store ops if the size operand falls
3467  // below a certain threshold.
3468  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3469  std::vector<EVT> MemOps;
3470  bool DstAlignCanChange = false;
3471  MachineFunction &MF = DAG.getMachineFunction();
3472  MachineFrameInfo *MFI = MF.getFrameInfo();
3473  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3474  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3475  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3476    DstAlignCanChange = true;
3477  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3478  if (Align > SrcAlign)
3479    SrcAlign = Align;
3480  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3481
3482  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3483                                (DstAlignCanChange ? 0 : Align),
3484                                SrcAlign, true, false, DAG, TLI))
3485    return SDValue();
3486
3487  if (DstAlignCanChange) {
3488    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3489    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3490    if (NewAlign > Align) {
3491      // Give the stack frame object a larger alignment if needed.
3492      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3493        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3494      Align = NewAlign;
3495    }
3496  }
3497
3498  uint64_t SrcOff = 0, DstOff = 0;
3499  SmallVector<SDValue, 8> LoadValues;
3500  SmallVector<SDValue, 8> LoadChains;
3501  SmallVector<SDValue, 8> OutChains;
3502  unsigned NumMemOps = MemOps.size();
3503  for (unsigned i = 0; i < NumMemOps; i++) {
3504    EVT VT = MemOps[i];
3505    unsigned VTSize = VT.getSizeInBits() / 8;
3506    SDValue Value, Store;
3507
3508    Value = DAG.getLoad(VT, dl, Chain,
3509                        getMemBasePlusOffset(Src, SrcOff, DAG),
3510                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3511                        false, SrcAlign);
3512    LoadValues.push_back(Value);
3513    LoadChains.push_back(Value.getValue(1));
3514    SrcOff += VTSize;
3515  }
3516  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3517                      &LoadChains[0], LoadChains.size());
3518  OutChains.clear();
3519  for (unsigned i = 0; i < NumMemOps; i++) {
3520    EVT VT = MemOps[i];
3521    unsigned VTSize = VT.getSizeInBits() / 8;
3522    SDValue Value, Store;
3523
3524    Store = DAG.getStore(Chain, dl, LoadValues[i],
3525                         getMemBasePlusOffset(Dst, DstOff, DAG),
3526                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3527    OutChains.push_back(Store);
3528    DstOff += VTSize;
3529  }
3530
3531  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3532                     &OutChains[0], OutChains.size());
3533}
3534
3535static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3536                               SDValue Chain, SDValue Dst,
3537                               SDValue Src, uint64_t Size,
3538                               unsigned Align, bool isVol,
3539                               MachinePointerInfo DstPtrInfo) {
3540  // Turn a memset of undef to nop.
3541  if (Src.getOpcode() == ISD::UNDEF)
3542    return Chain;
3543
3544  // Expand memset to a series of load/store ops if the size operand
3545  // falls below a certain threshold.
3546  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3547  std::vector<EVT> MemOps;
3548  bool DstAlignCanChange = false;
3549  MachineFunction &MF = DAG.getMachineFunction();
3550  MachineFrameInfo *MFI = MF.getFrameInfo();
3551  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3552  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3553  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3554    DstAlignCanChange = true;
3555  bool NonScalarIntSafe =
3556    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3557  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3558                                Size, (DstAlignCanChange ? 0 : Align), 0,
3559                                NonScalarIntSafe, false, DAG, TLI))
3560    return SDValue();
3561
3562  if (DstAlignCanChange) {
3563    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3564    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3565    if (NewAlign > Align) {
3566      // Give the stack frame object a larger alignment if needed.
3567      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3568        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3569      Align = NewAlign;
3570    }
3571  }
3572
3573  SmallVector<SDValue, 8> OutChains;
3574  uint64_t DstOff = 0;
3575  unsigned NumMemOps = MemOps.size();
3576
3577  // Find the largest store and generate the bit pattern for it.
3578  EVT LargestVT = MemOps[0];
3579  for (unsigned i = 1; i < NumMemOps; i++)
3580    if (MemOps[i].bitsGT(LargestVT))
3581      LargestVT = MemOps[i];
3582  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3583
3584  for (unsigned i = 0; i < NumMemOps; i++) {
3585    EVT VT = MemOps[i];
3586
3587    // If this store is smaller than the largest store see whether we can get
3588    // the smaller value for free with a truncate.
3589    SDValue Value = MemSetValue;
3590    if (VT.bitsLT(LargestVT)) {
3591      if (!LargestVT.isVector() && !VT.isVector() &&
3592          TLI.isTruncateFree(LargestVT, VT))
3593        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3594      else
3595        Value = getMemsetValue(Src, VT, DAG, dl);
3596    }
3597    assert(Value.getValueType() == VT && "Value with wrong type.");
3598    SDValue Store = DAG.getStore(Chain, dl, Value,
3599                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3600                                 DstPtrInfo.getWithOffset(DstOff),
3601                                 isVol, false, Align);
3602    OutChains.push_back(Store);
3603    DstOff += VT.getSizeInBits() / 8;
3604  }
3605
3606  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3607                     &OutChains[0], OutChains.size());
3608}
3609
3610SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3611                                SDValue Src, SDValue Size,
3612                                unsigned Align, bool isVol, bool AlwaysInline,
3613                                MachinePointerInfo DstPtrInfo,
3614                                MachinePointerInfo SrcPtrInfo) {
3615
3616  // Check to see if we should lower the memcpy to loads and stores first.
3617  // For cases within the target-specified limits, this is the best choice.
3618  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3619  if (ConstantSize) {
3620    // Memcpy with size zero? Just return the original chain.
3621    if (ConstantSize->isNullValue())
3622      return Chain;
3623
3624    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3625                                             ConstantSize->getZExtValue(),Align,
3626                                isVol, false, DstPtrInfo, SrcPtrInfo);
3627    if (Result.getNode())
3628      return Result;
3629  }
3630
3631  // Then check to see if we should lower the memcpy with target-specific
3632  // code. If the target chooses to do this, this is the next best.
3633  SDValue Result =
3634    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3635                                isVol, AlwaysInline,
3636                                DstPtrInfo, SrcPtrInfo);
3637  if (Result.getNode())
3638    return Result;
3639
3640  // If we really need inline code and the target declined to provide it,
3641  // use a (potentially long) sequence of loads and stores.
3642  if (AlwaysInline) {
3643    assert(ConstantSize && "AlwaysInline requires a constant size!");
3644    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3645                                   ConstantSize->getZExtValue(), Align, isVol,
3646                                   true, DstPtrInfo, SrcPtrInfo);
3647  }
3648
3649  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3650  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3651  // respect volatile, so they may do things like read or write memory
3652  // beyond the given memory regions. But fixing this isn't easy, and most
3653  // people don't care.
3654
3655  // Emit a library call.
3656  TargetLowering::ArgListTy Args;
3657  TargetLowering::ArgListEntry Entry;
3658  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3659  Entry.Node = Dst; Args.push_back(Entry);
3660  Entry.Node = Src; Args.push_back(Entry);
3661  Entry.Node = Size; Args.push_back(Entry);
3662  // FIXME: pass in DebugLoc
3663  std::pair<SDValue,SDValue> CallResult =
3664    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3665                    false, false, false, false, 0,
3666                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3667                    /*isReturnValueUsed=*/false,
3668                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3669                                      TLI.getPointerTy()),
3670                    Args, *this, dl);
3671  return CallResult.second;
3672}
3673
3674SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3675                                 SDValue Src, SDValue Size,
3676                                 unsigned Align, bool isVol,
3677                                 MachinePointerInfo DstPtrInfo,
3678                                 MachinePointerInfo SrcPtrInfo) {
3679
3680  // Check to see if we should lower the memmove to loads and stores first.
3681  // For cases within the target-specified limits, this is the best choice.
3682  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3683  if (ConstantSize) {
3684    // Memmove with size zero? Just return the original chain.
3685    if (ConstantSize->isNullValue())
3686      return Chain;
3687
3688    SDValue Result =
3689      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3690                               ConstantSize->getZExtValue(), Align, isVol,
3691                               false, DstPtrInfo, SrcPtrInfo);
3692    if (Result.getNode())
3693      return Result;
3694  }
3695
3696  // Then check to see if we should lower the memmove with target-specific
3697  // code. If the target chooses to do this, this is the next best.
3698  SDValue Result =
3699    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3700                                 DstPtrInfo, SrcPtrInfo);
3701  if (Result.getNode())
3702    return Result;
3703
3704  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3705  // not be safe.  See memcpy above for more details.
3706
3707  // Emit a library call.
3708  TargetLowering::ArgListTy Args;
3709  TargetLowering::ArgListEntry Entry;
3710  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3711  Entry.Node = Dst; Args.push_back(Entry);
3712  Entry.Node = Src; Args.push_back(Entry);
3713  Entry.Node = Size; Args.push_back(Entry);
3714  // FIXME:  pass in DebugLoc
3715  std::pair<SDValue,SDValue> CallResult =
3716    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3717                    false, false, false, false, 0,
3718                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3719                    /*isReturnValueUsed=*/false,
3720                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3721                                      TLI.getPointerTy()),
3722                    Args, *this, dl);
3723  return CallResult.second;
3724}
3725
3726SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3727                                SDValue Src, SDValue Size,
3728                                unsigned Align, bool isVol,
3729                                MachinePointerInfo DstPtrInfo) {
3730
3731  // Check to see if we should lower the memset to stores first.
3732  // For cases within the target-specified limits, this is the best choice.
3733  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3734  if (ConstantSize) {
3735    // Memset with size zero? Just return the original chain.
3736    if (ConstantSize->isNullValue())
3737      return Chain;
3738
3739    SDValue Result =
3740      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3741                      Align, isVol, DstPtrInfo);
3742
3743    if (Result.getNode())
3744      return Result;
3745  }
3746
3747  // Then check to see if we should lower the memset with target-specific
3748  // code. If the target chooses to do this, this is the next best.
3749  SDValue Result =
3750    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3751                                DstPtrInfo);
3752  if (Result.getNode())
3753    return Result;
3754
3755  // Emit a library call.
3756  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3757  TargetLowering::ArgListTy Args;
3758  TargetLowering::ArgListEntry Entry;
3759  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3760  Args.push_back(Entry);
3761  // Extend or truncate the argument to be an i32 value for the call.
3762  if (Src.getValueType().bitsGT(MVT::i32))
3763    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3764  else
3765    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3766  Entry.Node = Src;
3767  Entry.Ty = Type::getInt32Ty(*getContext());
3768  Entry.isSExt = true;
3769  Args.push_back(Entry);
3770  Entry.Node = Size;
3771  Entry.Ty = IntPtrTy;
3772  Entry.isSExt = false;
3773  Args.push_back(Entry);
3774  // FIXME: pass in DebugLoc
3775  std::pair<SDValue,SDValue> CallResult =
3776    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3777                    false, false, false, false, 0,
3778                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3779                    /*isReturnValueUsed=*/false,
3780                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3781                                      TLI.getPointerTy()),
3782                    Args, *this, dl);
3783  return CallResult.second;
3784}
3785
3786SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3787                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3788                                SDValue Swp, MachinePointerInfo PtrInfo,
3789                                unsigned Alignment) {
3790  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3791    Alignment = getEVTAlignment(MemVT);
3792
3793  MachineFunction &MF = getMachineFunction();
3794  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3795
3796  // For now, atomics are considered to be volatile always.
3797  Flags |= MachineMemOperand::MOVolatile;
3798
3799  MachineMemOperand *MMO =
3800    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3801
3802  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3803}
3804
3805SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3806                                SDValue Chain,
3807                                SDValue Ptr, SDValue Cmp,
3808                                SDValue Swp, MachineMemOperand *MMO) {
3809  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3810  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3811
3812  EVT VT = Cmp.getValueType();
3813
3814  SDVTList VTs = getVTList(VT, MVT::Other);
3815  FoldingSetNodeID ID;
3816  ID.AddInteger(MemVT.getRawBits());
3817  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3818  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3819  void* IP = 0;
3820  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3821    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3822    return SDValue(E, 0);
3823  }
3824  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3825                                               Ptr, Cmp, Swp, MMO);
3826  CSEMap.InsertNode(N, IP);
3827  AllNodes.push_back(N);
3828  return SDValue(N, 0);
3829}
3830
3831SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3832                                SDValue Chain,
3833                                SDValue Ptr, SDValue Val,
3834                                const Value* PtrVal,
3835                                unsigned Alignment) {
3836  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3837    Alignment = getEVTAlignment(MemVT);
3838
3839  MachineFunction &MF = getMachineFunction();
3840  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3841
3842  // For now, atomics are considered to be volatile always.
3843  Flags |= MachineMemOperand::MOVolatile;
3844
3845  MachineMemOperand *MMO =
3846    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3847                            MemVT.getStoreSize(), Alignment);
3848
3849  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3850}
3851
3852SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3853                                SDValue Chain,
3854                                SDValue Ptr, SDValue Val,
3855                                MachineMemOperand *MMO) {
3856  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3857          Opcode == ISD::ATOMIC_LOAD_SUB ||
3858          Opcode == ISD::ATOMIC_LOAD_AND ||
3859          Opcode == ISD::ATOMIC_LOAD_OR ||
3860          Opcode == ISD::ATOMIC_LOAD_XOR ||
3861          Opcode == ISD::ATOMIC_LOAD_NAND ||
3862          Opcode == ISD::ATOMIC_LOAD_MIN ||
3863          Opcode == ISD::ATOMIC_LOAD_MAX ||
3864          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3865          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3866          Opcode == ISD::ATOMIC_SWAP) &&
3867         "Invalid Atomic Op");
3868
3869  EVT VT = Val.getValueType();
3870
3871  SDVTList VTs = getVTList(VT, MVT::Other);
3872  FoldingSetNodeID ID;
3873  ID.AddInteger(MemVT.getRawBits());
3874  SDValue Ops[] = {Chain, Ptr, Val};
3875  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3876  void* IP = 0;
3877  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3878    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3879    return SDValue(E, 0);
3880  }
3881  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3882                                               Ptr, Val, MMO);
3883  CSEMap.InsertNode(N, IP);
3884  AllNodes.push_back(N);
3885  return SDValue(N, 0);
3886}
3887
3888/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3889SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3890                                     DebugLoc dl) {
3891  if (NumOps == 1)
3892    return Ops[0];
3893
3894  SmallVector<EVT, 4> VTs;
3895  VTs.reserve(NumOps);
3896  for (unsigned i = 0; i < NumOps; ++i)
3897    VTs.push_back(Ops[i].getValueType());
3898  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3899                 Ops, NumOps);
3900}
3901
3902SDValue
3903SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3904                                  const EVT *VTs, unsigned NumVTs,
3905                                  const SDValue *Ops, unsigned NumOps,
3906                                  EVT MemVT, MachinePointerInfo PtrInfo,
3907                                  unsigned Align, bool Vol,
3908                                  bool ReadMem, bool WriteMem) {
3909  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3910                             MemVT, PtrInfo, Align, Vol,
3911                             ReadMem, WriteMem);
3912}
3913
3914SDValue
3915SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3916                                  const SDValue *Ops, unsigned NumOps,
3917                                  EVT MemVT, MachinePointerInfo PtrInfo,
3918                                  unsigned Align, bool Vol,
3919                                  bool ReadMem, bool WriteMem) {
3920  if (Align == 0)  // Ensure that codegen never sees alignment 0
3921    Align = getEVTAlignment(MemVT);
3922
3923  MachineFunction &MF = getMachineFunction();
3924  unsigned Flags = 0;
3925  if (WriteMem)
3926    Flags |= MachineMemOperand::MOStore;
3927  if (ReadMem)
3928    Flags |= MachineMemOperand::MOLoad;
3929  if (Vol)
3930    Flags |= MachineMemOperand::MOVolatile;
3931  MachineMemOperand *MMO =
3932    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3933
3934  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3935}
3936
3937SDValue
3938SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3939                                  const SDValue *Ops, unsigned NumOps,
3940                                  EVT MemVT, MachineMemOperand *MMO) {
3941  assert((Opcode == ISD::INTRINSIC_VOID ||
3942          Opcode == ISD::INTRINSIC_W_CHAIN ||
3943          Opcode == ISD::PREFETCH ||
3944          (Opcode <= INT_MAX &&
3945           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3946         "Opcode is not a memory-accessing opcode!");
3947
3948  // Memoize the node unless it returns a flag.
3949  MemIntrinsicSDNode *N;
3950  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
3951    FoldingSetNodeID ID;
3952    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3953    void *IP = 0;
3954    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3955      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3956      return SDValue(E, 0);
3957    }
3958
3959    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3960                                               MemVT, MMO);
3961    CSEMap.InsertNode(N, IP);
3962  } else {
3963    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3964                                               MemVT, MMO);
3965  }
3966  AllNodes.push_back(N);
3967  return SDValue(N, 0);
3968}
3969
3970/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3971/// MachinePointerInfo record from it.  This is particularly useful because the
3972/// code generator has many cases where it doesn't bother passing in a
3973/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3974static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
3975  // If this is FI+Offset, we can model it.
3976  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
3977    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
3978
3979  // If this is (FI+Offset1)+Offset2, we can model it.
3980  if (Ptr.getOpcode() != ISD::ADD ||
3981      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
3982      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
3983    return MachinePointerInfo();
3984
3985  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3986  return MachinePointerInfo::getFixedStack(FI, Offset+
3987                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
3988}
3989
3990/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3991/// MachinePointerInfo record from it.  This is particularly useful because the
3992/// code generator has many cases where it doesn't bother passing in a
3993/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3994static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
3995  // If the 'Offset' value isn't a constant, we can't handle this.
3996  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
3997    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
3998  if (OffsetOp.getOpcode() == ISD::UNDEF)
3999    return InferPointerInfo(Ptr);
4000  return MachinePointerInfo();
4001}
4002
4003
4004SDValue
4005SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4006                      EVT VT, DebugLoc dl, SDValue Chain,
4007                      SDValue Ptr, SDValue Offset,
4008                      MachinePointerInfo PtrInfo, EVT MemVT,
4009                      bool isVolatile, bool isNonTemporal,
4010                      unsigned Alignment, const MDNode *TBAAInfo) {
4011  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4012    Alignment = getEVTAlignment(VT);
4013
4014  unsigned Flags = MachineMemOperand::MOLoad;
4015  if (isVolatile)
4016    Flags |= MachineMemOperand::MOVolatile;
4017  if (isNonTemporal)
4018    Flags |= MachineMemOperand::MONonTemporal;
4019
4020  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4021  // clients.
4022  if (PtrInfo.V == 0)
4023    PtrInfo = InferPointerInfo(Ptr, Offset);
4024
4025  MachineFunction &MF = getMachineFunction();
4026  MachineMemOperand *MMO =
4027    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4028                            TBAAInfo);
4029  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4030}
4031
4032SDValue
4033SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4034                      EVT VT, DebugLoc dl, SDValue Chain,
4035                      SDValue Ptr, SDValue Offset, EVT MemVT,
4036                      MachineMemOperand *MMO) {
4037  if (VT == MemVT) {
4038    ExtType = ISD::NON_EXTLOAD;
4039  } else if (ExtType == ISD::NON_EXTLOAD) {
4040    assert(VT == MemVT && "Non-extending load from different memory type!");
4041  } else {
4042    // Extending load.
4043    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4044           "Should only be an extending load, not truncating!");
4045    assert(VT.isInteger() == MemVT.isInteger() &&
4046           "Cannot convert from FP to Int or Int -> FP!");
4047    assert(VT.isVector() == MemVT.isVector() &&
4048           "Cannot use trunc store to convert to or from a vector!");
4049    assert((!VT.isVector() ||
4050            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4051           "Cannot use trunc store to change the number of vector elements!");
4052  }
4053
4054  bool Indexed = AM != ISD::UNINDEXED;
4055  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4056         "Unindexed load with an offset!");
4057
4058  SDVTList VTs = Indexed ?
4059    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4060  SDValue Ops[] = { Chain, Ptr, Offset };
4061  FoldingSetNodeID ID;
4062  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4063  ID.AddInteger(MemVT.getRawBits());
4064  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4065                                     MMO->isNonTemporal()));
4066  void *IP = 0;
4067  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4068    cast<LoadSDNode>(E)->refineAlignment(MMO);
4069    return SDValue(E, 0);
4070  }
4071  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4072                                             MemVT, MMO);
4073  CSEMap.InsertNode(N, IP);
4074  AllNodes.push_back(N);
4075  return SDValue(N, 0);
4076}
4077
4078SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4079                              SDValue Chain, SDValue Ptr,
4080                              MachinePointerInfo PtrInfo,
4081                              bool isVolatile, bool isNonTemporal,
4082                              unsigned Alignment, const MDNode *TBAAInfo) {
4083  SDValue Undef = getUNDEF(Ptr.getValueType());
4084  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4085                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4086}
4087
4088SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, EVT VT, DebugLoc dl,
4089                                 SDValue Chain, SDValue Ptr,
4090                                 MachinePointerInfo PtrInfo, EVT MemVT,
4091                                 bool isVolatile, bool isNonTemporal,
4092                                 unsigned Alignment, const MDNode *TBAAInfo) {
4093  SDValue Undef = getUNDEF(Ptr.getValueType());
4094  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4095                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4096                 TBAAInfo);
4097}
4098
4099
4100SDValue
4101SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4102                             SDValue Offset, ISD::MemIndexedMode AM) {
4103  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4104  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4105         "Load is already a indexed load!");
4106  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4107                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4108                 LD->getMemoryVT(),
4109                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4110}
4111
4112SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4113                               SDValue Ptr, MachinePointerInfo PtrInfo,
4114                               bool isVolatile, bool isNonTemporal,
4115                               unsigned Alignment, const MDNode *TBAAInfo) {
4116  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4117    Alignment = getEVTAlignment(Val.getValueType());
4118
4119  unsigned Flags = MachineMemOperand::MOStore;
4120  if (isVolatile)
4121    Flags |= MachineMemOperand::MOVolatile;
4122  if (isNonTemporal)
4123    Flags |= MachineMemOperand::MONonTemporal;
4124
4125  if (PtrInfo.V == 0)
4126    PtrInfo = InferPointerInfo(Ptr);
4127
4128  MachineFunction &MF = getMachineFunction();
4129  MachineMemOperand *MMO =
4130    MF.getMachineMemOperand(PtrInfo, Flags,
4131                            Val.getValueType().getStoreSize(), Alignment,
4132                            TBAAInfo);
4133
4134  return getStore(Chain, dl, Val, Ptr, MMO);
4135}
4136
4137SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4138                               SDValue Ptr, MachineMemOperand *MMO) {
4139  EVT VT = Val.getValueType();
4140  SDVTList VTs = getVTList(MVT::Other);
4141  SDValue Undef = getUNDEF(Ptr.getValueType());
4142  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4143  FoldingSetNodeID ID;
4144  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4145  ID.AddInteger(VT.getRawBits());
4146  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4147                                     MMO->isNonTemporal()));
4148  void *IP = 0;
4149  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4150    cast<StoreSDNode>(E)->refineAlignment(MMO);
4151    return SDValue(E, 0);
4152  }
4153  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4154                                              false, VT, MMO);
4155  CSEMap.InsertNode(N, IP);
4156  AllNodes.push_back(N);
4157  return SDValue(N, 0);
4158}
4159
4160SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4161                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4162                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4163                                    unsigned Alignment,
4164                                    const MDNode *TBAAInfo) {
4165  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4166    Alignment = getEVTAlignment(SVT);
4167
4168  unsigned Flags = MachineMemOperand::MOStore;
4169  if (isVolatile)
4170    Flags |= MachineMemOperand::MOVolatile;
4171  if (isNonTemporal)
4172    Flags |= MachineMemOperand::MONonTemporal;
4173
4174  if (PtrInfo.V == 0)
4175    PtrInfo = InferPointerInfo(Ptr);
4176
4177  MachineFunction &MF = getMachineFunction();
4178  MachineMemOperand *MMO =
4179    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4180                            TBAAInfo);
4181
4182  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4183}
4184
4185SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4186                                    SDValue Ptr, EVT SVT,
4187                                    MachineMemOperand *MMO) {
4188  EVT VT = Val.getValueType();
4189
4190  if (VT == SVT)
4191    return getStore(Chain, dl, Val, Ptr, MMO);
4192
4193  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4194         "Should only be a truncating store, not extending!");
4195  assert(VT.isInteger() == SVT.isInteger() &&
4196         "Can't do FP-INT conversion!");
4197  assert(VT.isVector() == SVT.isVector() &&
4198         "Cannot use trunc store to convert to or from a vector!");
4199  assert((!VT.isVector() ||
4200          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4201         "Cannot use trunc store to change the number of vector elements!");
4202
4203  SDVTList VTs = getVTList(MVT::Other);
4204  SDValue Undef = getUNDEF(Ptr.getValueType());
4205  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4206  FoldingSetNodeID ID;
4207  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4208  ID.AddInteger(SVT.getRawBits());
4209  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4210                                     MMO->isNonTemporal()));
4211  void *IP = 0;
4212  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4213    cast<StoreSDNode>(E)->refineAlignment(MMO);
4214    return SDValue(E, 0);
4215  }
4216  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4217                                              true, SVT, MMO);
4218  CSEMap.InsertNode(N, IP);
4219  AllNodes.push_back(N);
4220  return SDValue(N, 0);
4221}
4222
4223SDValue
4224SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4225                              SDValue Offset, ISD::MemIndexedMode AM) {
4226  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4227  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4228         "Store is already a indexed store!");
4229  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4230  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4231  FoldingSetNodeID ID;
4232  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4233  ID.AddInteger(ST->getMemoryVT().getRawBits());
4234  ID.AddInteger(ST->getRawSubclassData());
4235  void *IP = 0;
4236  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4237    return SDValue(E, 0);
4238
4239  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4240                                              ST->isTruncatingStore(),
4241                                              ST->getMemoryVT(),
4242                                              ST->getMemOperand());
4243  CSEMap.InsertNode(N, IP);
4244  AllNodes.push_back(N);
4245  return SDValue(N, 0);
4246}
4247
4248SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4249                               SDValue Chain, SDValue Ptr,
4250                               SDValue SV,
4251                               unsigned Align) {
4252  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4253  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4254}
4255
4256SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4257                              const SDUse *Ops, unsigned NumOps) {
4258  switch (NumOps) {
4259  case 0: return getNode(Opcode, DL, VT);
4260  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4261  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4262  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4263  default: break;
4264  }
4265
4266  // Copy from an SDUse array into an SDValue array for use with
4267  // the regular getNode logic.
4268  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4269  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4270}
4271
4272SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4273                              const SDValue *Ops, unsigned NumOps) {
4274  switch (NumOps) {
4275  case 0: return getNode(Opcode, DL, VT);
4276  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4277  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4278  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4279  default: break;
4280  }
4281
4282  switch (Opcode) {
4283  default: break;
4284  case ISD::SELECT_CC: {
4285    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4286    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4287           "LHS and RHS of condition must have same type!");
4288    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4289           "True and False arms of SelectCC must have same type!");
4290    assert(Ops[2].getValueType() == VT &&
4291           "select_cc node must be of same type as true and false value!");
4292    break;
4293  }
4294  case ISD::BR_CC: {
4295    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4296    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4297           "LHS/RHS of comparison should match types!");
4298    break;
4299  }
4300  }
4301
4302  // Memoize nodes.
4303  SDNode *N;
4304  SDVTList VTs = getVTList(VT);
4305
4306  if (VT != MVT::Glue) {
4307    FoldingSetNodeID ID;
4308    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4309    void *IP = 0;
4310
4311    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4312      return SDValue(E, 0);
4313
4314    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4315    CSEMap.InsertNode(N, IP);
4316  } else {
4317    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4318  }
4319
4320  AllNodes.push_back(N);
4321#ifndef NDEBUG
4322  VerifySDNode(N);
4323#endif
4324  return SDValue(N, 0);
4325}
4326
4327SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4328                              const std::vector<EVT> &ResultTys,
4329                              const SDValue *Ops, unsigned NumOps) {
4330  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4331                 Ops, NumOps);
4332}
4333
4334SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4335                              const EVT *VTs, unsigned NumVTs,
4336                              const SDValue *Ops, unsigned NumOps) {
4337  if (NumVTs == 1)
4338    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4339  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4340}
4341
4342SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4343                              const SDValue *Ops, unsigned NumOps) {
4344  if (VTList.NumVTs == 1)
4345    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4346
4347#if 0
4348  switch (Opcode) {
4349  // FIXME: figure out how to safely handle things like
4350  // int foo(int x) { return 1 << (x & 255); }
4351  // int bar() { return foo(256); }
4352  case ISD::SRA_PARTS:
4353  case ISD::SRL_PARTS:
4354  case ISD::SHL_PARTS:
4355    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4356        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4357      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4358    else if (N3.getOpcode() == ISD::AND)
4359      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4360        // If the and is only masking out bits that cannot effect the shift,
4361        // eliminate the and.
4362        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4363        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4364          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4365      }
4366    break;
4367  }
4368#endif
4369
4370  // Memoize the node unless it returns a flag.
4371  SDNode *N;
4372  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4373    FoldingSetNodeID ID;
4374    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4375    void *IP = 0;
4376    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4377      return SDValue(E, 0);
4378
4379    if (NumOps == 1) {
4380      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4381    } else if (NumOps == 2) {
4382      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4383    } else if (NumOps == 3) {
4384      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4385                                            Ops[2]);
4386    } else {
4387      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4388    }
4389    CSEMap.InsertNode(N, IP);
4390  } else {
4391    if (NumOps == 1) {
4392      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4393    } else if (NumOps == 2) {
4394      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4395    } else if (NumOps == 3) {
4396      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4397                                            Ops[2]);
4398    } else {
4399      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4400    }
4401  }
4402  AllNodes.push_back(N);
4403#ifndef NDEBUG
4404  VerifySDNode(N);
4405#endif
4406  return SDValue(N, 0);
4407}
4408
4409SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4410  return getNode(Opcode, DL, VTList, 0, 0);
4411}
4412
4413SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4414                              SDValue N1) {
4415  SDValue Ops[] = { N1 };
4416  return getNode(Opcode, DL, VTList, Ops, 1);
4417}
4418
4419SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4420                              SDValue N1, SDValue N2) {
4421  SDValue Ops[] = { N1, N2 };
4422  return getNode(Opcode, DL, VTList, Ops, 2);
4423}
4424
4425SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4426                              SDValue N1, SDValue N2, SDValue N3) {
4427  SDValue Ops[] = { N1, N2, N3 };
4428  return getNode(Opcode, DL, VTList, Ops, 3);
4429}
4430
4431SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4432                              SDValue N1, SDValue N2, SDValue N3,
4433                              SDValue N4) {
4434  SDValue Ops[] = { N1, N2, N3, N4 };
4435  return getNode(Opcode, DL, VTList, Ops, 4);
4436}
4437
4438SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4439                              SDValue N1, SDValue N2, SDValue N3,
4440                              SDValue N4, SDValue N5) {
4441  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4442  return getNode(Opcode, DL, VTList, Ops, 5);
4443}
4444
4445SDVTList SelectionDAG::getVTList(EVT VT) {
4446  return makeVTList(SDNode::getValueTypeList(VT), 1);
4447}
4448
4449SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4450  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4451       E = VTList.rend(); I != E; ++I)
4452    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4453      return *I;
4454
4455  EVT *Array = Allocator.Allocate<EVT>(2);
4456  Array[0] = VT1;
4457  Array[1] = VT2;
4458  SDVTList Result = makeVTList(Array, 2);
4459  VTList.push_back(Result);
4460  return Result;
4461}
4462
4463SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4464  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4465       E = VTList.rend(); I != E; ++I)
4466    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4467                          I->VTs[2] == VT3)
4468      return *I;
4469
4470  EVT *Array = Allocator.Allocate<EVT>(3);
4471  Array[0] = VT1;
4472  Array[1] = VT2;
4473  Array[2] = VT3;
4474  SDVTList Result = makeVTList(Array, 3);
4475  VTList.push_back(Result);
4476  return Result;
4477}
4478
4479SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4480  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4481       E = VTList.rend(); I != E; ++I)
4482    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4483                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4484      return *I;
4485
4486  EVT *Array = Allocator.Allocate<EVT>(4);
4487  Array[0] = VT1;
4488  Array[1] = VT2;
4489  Array[2] = VT3;
4490  Array[3] = VT4;
4491  SDVTList Result = makeVTList(Array, 4);
4492  VTList.push_back(Result);
4493  return Result;
4494}
4495
4496SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4497  switch (NumVTs) {
4498    case 0: llvm_unreachable("Cannot have nodes without results!");
4499    case 1: return getVTList(VTs[0]);
4500    case 2: return getVTList(VTs[0], VTs[1]);
4501    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4502    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4503    default: break;
4504  }
4505
4506  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4507       E = VTList.rend(); I != E; ++I) {
4508    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4509      continue;
4510
4511    bool NoMatch = false;
4512    for (unsigned i = 2; i != NumVTs; ++i)
4513      if (VTs[i] != I->VTs[i]) {
4514        NoMatch = true;
4515        break;
4516      }
4517    if (!NoMatch)
4518      return *I;
4519  }
4520
4521  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4522  std::copy(VTs, VTs+NumVTs, Array);
4523  SDVTList Result = makeVTList(Array, NumVTs);
4524  VTList.push_back(Result);
4525  return Result;
4526}
4527
4528
4529/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4530/// specified operands.  If the resultant node already exists in the DAG,
4531/// this does not modify the specified node, instead it returns the node that
4532/// already exists.  If the resultant node does not exist in the DAG, the
4533/// input node is returned.  As a degenerate case, if you specify the same
4534/// input operands as the node already has, the input node is returned.
4535SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4536  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4537
4538  // Check to see if there is no change.
4539  if (Op == N->getOperand(0)) return N;
4540
4541  // See if the modified node already exists.
4542  void *InsertPos = 0;
4543  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4544    return Existing;
4545
4546  // Nope it doesn't.  Remove the node from its current place in the maps.
4547  if (InsertPos)
4548    if (!RemoveNodeFromCSEMaps(N))
4549      InsertPos = 0;
4550
4551  // Now we update the operands.
4552  N->OperandList[0].set(Op);
4553
4554  // If this gets put into a CSE map, add it.
4555  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4556  return N;
4557}
4558
4559SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4560  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4561
4562  // Check to see if there is no change.
4563  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4564    return N;   // No operands changed, just return the input node.
4565
4566  // See if the modified node already exists.
4567  void *InsertPos = 0;
4568  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4569    return Existing;
4570
4571  // Nope it doesn't.  Remove the node from its current place in the maps.
4572  if (InsertPos)
4573    if (!RemoveNodeFromCSEMaps(N))
4574      InsertPos = 0;
4575
4576  // Now we update the operands.
4577  if (N->OperandList[0] != Op1)
4578    N->OperandList[0].set(Op1);
4579  if (N->OperandList[1] != Op2)
4580    N->OperandList[1].set(Op2);
4581
4582  // If this gets put into a CSE map, add it.
4583  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4584  return N;
4585}
4586
4587SDNode *SelectionDAG::
4588UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4589  SDValue Ops[] = { Op1, Op2, Op3 };
4590  return UpdateNodeOperands(N, Ops, 3);
4591}
4592
4593SDNode *SelectionDAG::
4594UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4595                   SDValue Op3, SDValue Op4) {
4596  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4597  return UpdateNodeOperands(N, Ops, 4);
4598}
4599
4600SDNode *SelectionDAG::
4601UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4602                   SDValue Op3, SDValue Op4, SDValue Op5) {
4603  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4604  return UpdateNodeOperands(N, Ops, 5);
4605}
4606
4607SDNode *SelectionDAG::
4608UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4609  assert(N->getNumOperands() == NumOps &&
4610         "Update with wrong number of operands");
4611
4612  // Check to see if there is no change.
4613  bool AnyChange = false;
4614  for (unsigned i = 0; i != NumOps; ++i) {
4615    if (Ops[i] != N->getOperand(i)) {
4616      AnyChange = true;
4617      break;
4618    }
4619  }
4620
4621  // No operands changed, just return the input node.
4622  if (!AnyChange) return N;
4623
4624  // See if the modified node already exists.
4625  void *InsertPos = 0;
4626  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4627    return Existing;
4628
4629  // Nope it doesn't.  Remove the node from its current place in the maps.
4630  if (InsertPos)
4631    if (!RemoveNodeFromCSEMaps(N))
4632      InsertPos = 0;
4633
4634  // Now we update the operands.
4635  for (unsigned i = 0; i != NumOps; ++i)
4636    if (N->OperandList[i] != Ops[i])
4637      N->OperandList[i].set(Ops[i]);
4638
4639  // If this gets put into a CSE map, add it.
4640  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4641  return N;
4642}
4643
4644/// DropOperands - Release the operands and set this node to have
4645/// zero operands.
4646void SDNode::DropOperands() {
4647  // Unlike the code in MorphNodeTo that does this, we don't need to
4648  // watch for dead nodes here.
4649  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4650    SDUse &Use = *I++;
4651    Use.set(SDValue());
4652  }
4653}
4654
4655/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4656/// machine opcode.
4657///
4658SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4659                                   EVT VT) {
4660  SDVTList VTs = getVTList(VT);
4661  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4662}
4663
4664SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4665                                   EVT VT, SDValue Op1) {
4666  SDVTList VTs = getVTList(VT);
4667  SDValue Ops[] = { Op1 };
4668  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4669}
4670
4671SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4672                                   EVT VT, SDValue Op1,
4673                                   SDValue Op2) {
4674  SDVTList VTs = getVTList(VT);
4675  SDValue Ops[] = { Op1, Op2 };
4676  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4677}
4678
4679SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4680                                   EVT VT, SDValue Op1,
4681                                   SDValue Op2, SDValue Op3) {
4682  SDVTList VTs = getVTList(VT);
4683  SDValue Ops[] = { Op1, Op2, Op3 };
4684  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4685}
4686
4687SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4688                                   EVT VT, const SDValue *Ops,
4689                                   unsigned NumOps) {
4690  SDVTList VTs = getVTList(VT);
4691  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4692}
4693
4694SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4695                                   EVT VT1, EVT VT2, const SDValue *Ops,
4696                                   unsigned NumOps) {
4697  SDVTList VTs = getVTList(VT1, VT2);
4698  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4699}
4700
4701SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4702                                   EVT VT1, EVT VT2) {
4703  SDVTList VTs = getVTList(VT1, VT2);
4704  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4705}
4706
4707SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4708                                   EVT VT1, EVT VT2, EVT VT3,
4709                                   const SDValue *Ops, unsigned NumOps) {
4710  SDVTList VTs = getVTList(VT1, VT2, VT3);
4711  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4712}
4713
4714SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4715                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4716                                   const SDValue *Ops, unsigned NumOps) {
4717  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4718  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4719}
4720
4721SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4722                                   EVT VT1, EVT VT2,
4723                                   SDValue Op1) {
4724  SDVTList VTs = getVTList(VT1, VT2);
4725  SDValue Ops[] = { Op1 };
4726  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4727}
4728
4729SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4730                                   EVT VT1, EVT VT2,
4731                                   SDValue Op1, SDValue Op2) {
4732  SDVTList VTs = getVTList(VT1, VT2);
4733  SDValue Ops[] = { Op1, Op2 };
4734  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4735}
4736
4737SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4738                                   EVT VT1, EVT VT2,
4739                                   SDValue Op1, SDValue Op2,
4740                                   SDValue Op3) {
4741  SDVTList VTs = getVTList(VT1, VT2);
4742  SDValue Ops[] = { Op1, Op2, Op3 };
4743  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4744}
4745
4746SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4747                                   EVT VT1, EVT VT2, EVT VT3,
4748                                   SDValue Op1, SDValue Op2,
4749                                   SDValue Op3) {
4750  SDVTList VTs = getVTList(VT1, VT2, VT3);
4751  SDValue Ops[] = { Op1, Op2, Op3 };
4752  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4753}
4754
4755SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4756                                   SDVTList VTs, const SDValue *Ops,
4757                                   unsigned NumOps) {
4758  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4759  // Reset the NodeID to -1.
4760  N->setNodeId(-1);
4761  return N;
4762}
4763
4764/// MorphNodeTo - This *mutates* the specified node to have the specified
4765/// return type, opcode, and operands.
4766///
4767/// Note that MorphNodeTo returns the resultant node.  If there is already a
4768/// node of the specified opcode and operands, it returns that node instead of
4769/// the current one.  Note that the DebugLoc need not be the same.
4770///
4771/// Using MorphNodeTo is faster than creating a new node and swapping it in
4772/// with ReplaceAllUsesWith both because it often avoids allocating a new
4773/// node, and because it doesn't require CSE recalculation for any of
4774/// the node's users.
4775///
4776SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4777                                  SDVTList VTs, const SDValue *Ops,
4778                                  unsigned NumOps) {
4779  // If an identical node already exists, use it.
4780  void *IP = 0;
4781  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4782    FoldingSetNodeID ID;
4783    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4784    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4785      return ON;
4786  }
4787
4788  if (!RemoveNodeFromCSEMaps(N))
4789    IP = 0;
4790
4791  // Start the morphing.
4792  N->NodeType = Opc;
4793  N->ValueList = VTs.VTs;
4794  N->NumValues = VTs.NumVTs;
4795
4796  // Clear the operands list, updating used nodes to remove this from their
4797  // use list.  Keep track of any operands that become dead as a result.
4798  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4799  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4800    SDUse &Use = *I++;
4801    SDNode *Used = Use.getNode();
4802    Use.set(SDValue());
4803    if (Used->use_empty())
4804      DeadNodeSet.insert(Used);
4805  }
4806
4807  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4808    // Initialize the memory references information.
4809    MN->setMemRefs(0, 0);
4810    // If NumOps is larger than the # of operands we can have in a
4811    // MachineSDNode, reallocate the operand list.
4812    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4813      if (MN->OperandsNeedDelete)
4814        delete[] MN->OperandList;
4815      if (NumOps > array_lengthof(MN->LocalOperands))
4816        // We're creating a final node that will live unmorphed for the
4817        // remainder of the current SelectionDAG iteration, so we can allocate
4818        // the operands directly out of a pool with no recycling metadata.
4819        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4820                         Ops, NumOps);
4821      else
4822        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4823      MN->OperandsNeedDelete = false;
4824    } else
4825      MN->InitOperands(MN->OperandList, Ops, NumOps);
4826  } else {
4827    // If NumOps is larger than the # of operands we currently have, reallocate
4828    // the operand list.
4829    if (NumOps > N->NumOperands) {
4830      if (N->OperandsNeedDelete)
4831        delete[] N->OperandList;
4832      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4833      N->OperandsNeedDelete = true;
4834    } else
4835      N->InitOperands(N->OperandList, Ops, NumOps);
4836  }
4837
4838  // Delete any nodes that are still dead after adding the uses for the
4839  // new operands.
4840  if (!DeadNodeSet.empty()) {
4841    SmallVector<SDNode *, 16> DeadNodes;
4842    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4843         E = DeadNodeSet.end(); I != E; ++I)
4844      if ((*I)->use_empty())
4845        DeadNodes.push_back(*I);
4846    RemoveDeadNodes(DeadNodes);
4847  }
4848
4849  if (IP)
4850    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4851  return N;
4852}
4853
4854
4855/// getMachineNode - These are used for target selectors to create a new node
4856/// with specified return type(s), MachineInstr opcode, and operands.
4857///
4858/// Note that getMachineNode returns the resultant node.  If there is already a
4859/// node of the specified opcode and operands, it returns that node instead of
4860/// the current one.
4861MachineSDNode *
4862SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4863  SDVTList VTs = getVTList(VT);
4864  return getMachineNode(Opcode, dl, VTs, 0, 0);
4865}
4866
4867MachineSDNode *
4868SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4869  SDVTList VTs = getVTList(VT);
4870  SDValue Ops[] = { Op1 };
4871  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4872}
4873
4874MachineSDNode *
4875SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4876                             SDValue Op1, SDValue Op2) {
4877  SDVTList VTs = getVTList(VT);
4878  SDValue Ops[] = { Op1, Op2 };
4879  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4880}
4881
4882MachineSDNode *
4883SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4884                             SDValue Op1, SDValue Op2, SDValue Op3) {
4885  SDVTList VTs = getVTList(VT);
4886  SDValue Ops[] = { Op1, Op2, Op3 };
4887  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4888}
4889
4890MachineSDNode *
4891SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4892                             const SDValue *Ops, unsigned NumOps) {
4893  SDVTList VTs = getVTList(VT);
4894  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4895}
4896
4897MachineSDNode *
4898SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4899  SDVTList VTs = getVTList(VT1, VT2);
4900  return getMachineNode(Opcode, dl, VTs, 0, 0);
4901}
4902
4903MachineSDNode *
4904SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4905                             EVT VT1, EVT VT2, SDValue Op1) {
4906  SDVTList VTs = getVTList(VT1, VT2);
4907  SDValue Ops[] = { Op1 };
4908  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4909}
4910
4911MachineSDNode *
4912SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4913                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4914  SDVTList VTs = getVTList(VT1, VT2);
4915  SDValue Ops[] = { Op1, Op2 };
4916  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4917}
4918
4919MachineSDNode *
4920SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4921                             EVT VT1, EVT VT2, SDValue Op1,
4922                             SDValue Op2, SDValue Op3) {
4923  SDVTList VTs = getVTList(VT1, VT2);
4924  SDValue Ops[] = { Op1, Op2, Op3 };
4925  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4926}
4927
4928MachineSDNode *
4929SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4930                             EVT VT1, EVT VT2,
4931                             const SDValue *Ops, unsigned NumOps) {
4932  SDVTList VTs = getVTList(VT1, VT2);
4933  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4934}
4935
4936MachineSDNode *
4937SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4938                             EVT VT1, EVT VT2, EVT VT3,
4939                             SDValue Op1, SDValue Op2) {
4940  SDVTList VTs = getVTList(VT1, VT2, VT3);
4941  SDValue Ops[] = { Op1, Op2 };
4942  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4943}
4944
4945MachineSDNode *
4946SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4947                             EVT VT1, EVT VT2, EVT VT3,
4948                             SDValue Op1, SDValue Op2, SDValue Op3) {
4949  SDVTList VTs = getVTList(VT1, VT2, VT3);
4950  SDValue Ops[] = { Op1, Op2, Op3 };
4951  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4952}
4953
4954MachineSDNode *
4955SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4956                             EVT VT1, EVT VT2, EVT VT3,
4957                             const SDValue *Ops, unsigned NumOps) {
4958  SDVTList VTs = getVTList(VT1, VT2, VT3);
4959  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4960}
4961
4962MachineSDNode *
4963SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4964                             EVT VT2, EVT VT3, EVT VT4,
4965                             const SDValue *Ops, unsigned NumOps) {
4966  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4967  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4968}
4969
4970MachineSDNode *
4971SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4972                             const std::vector<EVT> &ResultTys,
4973                             const SDValue *Ops, unsigned NumOps) {
4974  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4975  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4976}
4977
4978MachineSDNode *
4979SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4980                             const SDValue *Ops, unsigned NumOps) {
4981  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
4982  MachineSDNode *N;
4983  void *IP = 0;
4984
4985  if (DoCSE) {
4986    FoldingSetNodeID ID;
4987    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4988    IP = 0;
4989    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4990      return cast<MachineSDNode>(E);
4991  }
4992
4993  // Allocate a new MachineSDNode.
4994  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4995
4996  // Initialize the operands list.
4997  if (NumOps > array_lengthof(N->LocalOperands))
4998    // We're creating a final node that will live unmorphed for the
4999    // remainder of the current SelectionDAG iteration, so we can allocate
5000    // the operands directly out of a pool with no recycling metadata.
5001    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5002                    Ops, NumOps);
5003  else
5004    N->InitOperands(N->LocalOperands, Ops, NumOps);
5005  N->OperandsNeedDelete = false;
5006
5007  if (DoCSE)
5008    CSEMap.InsertNode(N, IP);
5009
5010  AllNodes.push_back(N);
5011#ifndef NDEBUG
5012  VerifyMachineNode(N);
5013#endif
5014  return N;
5015}
5016
5017/// getTargetExtractSubreg - A convenience function for creating
5018/// TargetOpcode::EXTRACT_SUBREG nodes.
5019SDValue
5020SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5021                                     SDValue Operand) {
5022  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5023  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5024                                  VT, Operand, SRIdxVal);
5025  return SDValue(Subreg, 0);
5026}
5027
5028/// getTargetInsertSubreg - A convenience function for creating
5029/// TargetOpcode::INSERT_SUBREG nodes.
5030SDValue
5031SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5032                                    SDValue Operand, SDValue Subreg) {
5033  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5034  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5035                                  VT, Operand, Subreg, SRIdxVal);
5036  return SDValue(Result, 0);
5037}
5038
5039/// getNodeIfExists - Get the specified node if it's already available, or
5040/// else return NULL.
5041SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5042                                      const SDValue *Ops, unsigned NumOps) {
5043  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5044    FoldingSetNodeID ID;
5045    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5046    void *IP = 0;
5047    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5048      return E;
5049  }
5050  return NULL;
5051}
5052
5053/// getDbgValue - Creates a SDDbgValue node.
5054///
5055SDDbgValue *
5056SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5057                          DebugLoc DL, unsigned O) {
5058  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5059}
5060
5061SDDbgValue *
5062SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5063                          DebugLoc DL, unsigned O) {
5064  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5065}
5066
5067SDDbgValue *
5068SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5069                          DebugLoc DL, unsigned O) {
5070  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5071}
5072
5073namespace {
5074
5075/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5076/// pointed to by a use iterator is deleted, increment the use iterator
5077/// so that it doesn't dangle.
5078///
5079/// This class also manages a "downlink" DAGUpdateListener, to forward
5080/// messages to ReplaceAllUsesWith's callers.
5081///
5082class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5083  SelectionDAG::DAGUpdateListener *DownLink;
5084  SDNode::use_iterator &UI;
5085  SDNode::use_iterator &UE;
5086
5087  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5088    // Increment the iterator as needed.
5089    while (UI != UE && N == *UI)
5090      ++UI;
5091
5092    // Then forward the message.
5093    if (DownLink) DownLink->NodeDeleted(N, E);
5094  }
5095
5096  virtual void NodeUpdated(SDNode *N) {
5097    // Just forward the message.
5098    if (DownLink) DownLink->NodeUpdated(N);
5099  }
5100
5101public:
5102  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5103                     SDNode::use_iterator &ui,
5104                     SDNode::use_iterator &ue)
5105    : DownLink(dl), UI(ui), UE(ue) {}
5106};
5107
5108}
5109
5110/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5111/// This can cause recursive merging of nodes in the DAG.
5112///
5113/// This version assumes From has a single result value.
5114///
5115void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5116                                      DAGUpdateListener *UpdateListener) {
5117  SDNode *From = FromN.getNode();
5118  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5119         "Cannot replace with this method!");
5120  assert(From != To.getNode() && "Cannot replace uses of with self");
5121
5122  // Iterate over all the existing uses of From. New uses will be added
5123  // to the beginning of the use list, which we avoid visiting.
5124  // This specifically avoids visiting uses of From that arise while the
5125  // replacement is happening, because any such uses would be the result
5126  // of CSE: If an existing node looks like From after one of its operands
5127  // is replaced by To, we don't want to replace of all its users with To
5128  // too. See PR3018 for more info.
5129  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5130  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5131  while (UI != UE) {
5132    SDNode *User = *UI;
5133
5134    // This node is about to morph, remove its old self from the CSE maps.
5135    RemoveNodeFromCSEMaps(User);
5136
5137    // A user can appear in a use list multiple times, and when this
5138    // happens the uses are usually next to each other in the list.
5139    // To help reduce the number of CSE recomputations, process all
5140    // the uses of this user that we can find this way.
5141    do {
5142      SDUse &Use = UI.getUse();
5143      ++UI;
5144      Use.set(To);
5145    } while (UI != UE && *UI == User);
5146
5147    // Now that we have modified User, add it back to the CSE maps.  If it
5148    // already exists there, recursively merge the results together.
5149    AddModifiedNodeToCSEMaps(User, &Listener);
5150  }
5151}
5152
5153/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5154/// This can cause recursive merging of nodes in the DAG.
5155///
5156/// This version assumes that for each value of From, there is a
5157/// corresponding value in To in the same position with the same type.
5158///
5159void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5160                                      DAGUpdateListener *UpdateListener) {
5161#ifndef NDEBUG
5162  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5163    assert((!From->hasAnyUseOfValue(i) ||
5164            From->getValueType(i) == To->getValueType(i)) &&
5165           "Cannot use this version of ReplaceAllUsesWith!");
5166#endif
5167
5168  // Handle the trivial case.
5169  if (From == To)
5170    return;
5171
5172  // Iterate over just the existing users of From. See the comments in
5173  // the ReplaceAllUsesWith above.
5174  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5175  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5176  while (UI != UE) {
5177    SDNode *User = *UI;
5178
5179    // This node is about to morph, remove its old self from the CSE maps.
5180    RemoveNodeFromCSEMaps(User);
5181
5182    // A user can appear in a use list multiple times, and when this
5183    // happens the uses are usually next to each other in the list.
5184    // To help reduce the number of CSE recomputations, process all
5185    // the uses of this user that we can find this way.
5186    do {
5187      SDUse &Use = UI.getUse();
5188      ++UI;
5189      Use.setNode(To);
5190    } while (UI != UE && *UI == User);
5191
5192    // Now that we have modified User, add it back to the CSE maps.  If it
5193    // already exists there, recursively merge the results together.
5194    AddModifiedNodeToCSEMaps(User, &Listener);
5195  }
5196}
5197
5198/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5199/// This can cause recursive merging of nodes in the DAG.
5200///
5201/// This version can replace From with any result values.  To must match the
5202/// number and types of values returned by From.
5203void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5204                                      const SDValue *To,
5205                                      DAGUpdateListener *UpdateListener) {
5206  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5207    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5208
5209  // Iterate over just the existing users of From. See the comments in
5210  // the ReplaceAllUsesWith above.
5211  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5212  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5213  while (UI != UE) {
5214    SDNode *User = *UI;
5215
5216    // This node is about to morph, remove its old self from the CSE maps.
5217    RemoveNodeFromCSEMaps(User);
5218
5219    // A user can appear in a use list multiple times, and when this
5220    // happens the uses are usually next to each other in the list.
5221    // To help reduce the number of CSE recomputations, process all
5222    // the uses of this user that we can find this way.
5223    do {
5224      SDUse &Use = UI.getUse();
5225      const SDValue &ToOp = To[Use.getResNo()];
5226      ++UI;
5227      Use.set(ToOp);
5228    } while (UI != UE && *UI == User);
5229
5230    // Now that we have modified User, add it back to the CSE maps.  If it
5231    // already exists there, recursively merge the results together.
5232    AddModifiedNodeToCSEMaps(User, &Listener);
5233  }
5234}
5235
5236/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5237/// uses of other values produced by From.getNode() alone.  The Deleted
5238/// vector is handled the same way as for ReplaceAllUsesWith.
5239void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5240                                             DAGUpdateListener *UpdateListener){
5241  // Handle the really simple, really trivial case efficiently.
5242  if (From == To) return;
5243
5244  // Handle the simple, trivial, case efficiently.
5245  if (From.getNode()->getNumValues() == 1) {
5246    ReplaceAllUsesWith(From, To, UpdateListener);
5247    return;
5248  }
5249
5250  // Iterate over just the existing users of From. See the comments in
5251  // the ReplaceAllUsesWith above.
5252  SDNode::use_iterator UI = From.getNode()->use_begin(),
5253                       UE = From.getNode()->use_end();
5254  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5255  while (UI != UE) {
5256    SDNode *User = *UI;
5257    bool UserRemovedFromCSEMaps = false;
5258
5259    // A user can appear in a use list multiple times, and when this
5260    // happens the uses are usually next to each other in the list.
5261    // To help reduce the number of CSE recomputations, process all
5262    // the uses of this user that we can find this way.
5263    do {
5264      SDUse &Use = UI.getUse();
5265
5266      // Skip uses of different values from the same node.
5267      if (Use.getResNo() != From.getResNo()) {
5268        ++UI;
5269        continue;
5270      }
5271
5272      // If this node hasn't been modified yet, it's still in the CSE maps,
5273      // so remove its old self from the CSE maps.
5274      if (!UserRemovedFromCSEMaps) {
5275        RemoveNodeFromCSEMaps(User);
5276        UserRemovedFromCSEMaps = true;
5277      }
5278
5279      ++UI;
5280      Use.set(To);
5281    } while (UI != UE && *UI == User);
5282
5283    // We are iterating over all uses of the From node, so if a use
5284    // doesn't use the specific value, no changes are made.
5285    if (!UserRemovedFromCSEMaps)
5286      continue;
5287
5288    // Now that we have modified User, add it back to the CSE maps.  If it
5289    // already exists there, recursively merge the results together.
5290    AddModifiedNodeToCSEMaps(User, &Listener);
5291  }
5292}
5293
5294namespace {
5295  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5296  /// to record information about a use.
5297  struct UseMemo {
5298    SDNode *User;
5299    unsigned Index;
5300    SDUse *Use;
5301  };
5302
5303  /// operator< - Sort Memos by User.
5304  bool operator<(const UseMemo &L, const UseMemo &R) {
5305    return (intptr_t)L.User < (intptr_t)R.User;
5306  }
5307}
5308
5309/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5310/// uses of other values produced by From.getNode() alone.  The same value
5311/// may appear in both the From and To list.  The Deleted vector is
5312/// handled the same way as for ReplaceAllUsesWith.
5313void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5314                                              const SDValue *To,
5315                                              unsigned Num,
5316                                              DAGUpdateListener *UpdateListener){
5317  // Handle the simple, trivial case efficiently.
5318  if (Num == 1)
5319    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5320
5321  // Read up all the uses and make records of them. This helps
5322  // processing new uses that are introduced during the
5323  // replacement process.
5324  SmallVector<UseMemo, 4> Uses;
5325  for (unsigned i = 0; i != Num; ++i) {
5326    unsigned FromResNo = From[i].getResNo();
5327    SDNode *FromNode = From[i].getNode();
5328    for (SDNode::use_iterator UI = FromNode->use_begin(),
5329         E = FromNode->use_end(); UI != E; ++UI) {
5330      SDUse &Use = UI.getUse();
5331      if (Use.getResNo() == FromResNo) {
5332        UseMemo Memo = { *UI, i, &Use };
5333        Uses.push_back(Memo);
5334      }
5335    }
5336  }
5337
5338  // Sort the uses, so that all the uses from a given User are together.
5339  std::sort(Uses.begin(), Uses.end());
5340
5341  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5342       UseIndex != UseIndexEnd; ) {
5343    // We know that this user uses some value of From.  If it is the right
5344    // value, update it.
5345    SDNode *User = Uses[UseIndex].User;
5346
5347    // This node is about to morph, remove its old self from the CSE maps.
5348    RemoveNodeFromCSEMaps(User);
5349
5350    // The Uses array is sorted, so all the uses for a given User
5351    // are next to each other in the list.
5352    // To help reduce the number of CSE recomputations, process all
5353    // the uses of this user that we can find this way.
5354    do {
5355      unsigned i = Uses[UseIndex].Index;
5356      SDUse &Use = *Uses[UseIndex].Use;
5357      ++UseIndex;
5358
5359      Use.set(To[i]);
5360    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5361
5362    // Now that we have modified User, add it back to the CSE maps.  If it
5363    // already exists there, recursively merge the results together.
5364    AddModifiedNodeToCSEMaps(User, UpdateListener);
5365  }
5366}
5367
5368/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5369/// based on their topological order. It returns the maximum id and a vector
5370/// of the SDNodes* in assigned order by reference.
5371unsigned SelectionDAG::AssignTopologicalOrder() {
5372
5373  unsigned DAGSize = 0;
5374
5375  // SortedPos tracks the progress of the algorithm. Nodes before it are
5376  // sorted, nodes after it are unsorted. When the algorithm completes
5377  // it is at the end of the list.
5378  allnodes_iterator SortedPos = allnodes_begin();
5379
5380  // Visit all the nodes. Move nodes with no operands to the front of
5381  // the list immediately. Annotate nodes that do have operands with their
5382  // operand count. Before we do this, the Node Id fields of the nodes
5383  // may contain arbitrary values. After, the Node Id fields for nodes
5384  // before SortedPos will contain the topological sort index, and the
5385  // Node Id fields for nodes At SortedPos and after will contain the
5386  // count of outstanding operands.
5387  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5388    SDNode *N = I++;
5389    checkForCycles(N);
5390    unsigned Degree = N->getNumOperands();
5391    if (Degree == 0) {
5392      // A node with no uses, add it to the result array immediately.
5393      N->setNodeId(DAGSize++);
5394      allnodes_iterator Q = N;
5395      if (Q != SortedPos)
5396        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5397      assert(SortedPos != AllNodes.end() && "Overran node list");
5398      ++SortedPos;
5399    } else {
5400      // Temporarily use the Node Id as scratch space for the degree count.
5401      N->setNodeId(Degree);
5402    }
5403  }
5404
5405  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5406  // such that by the time the end is reached all nodes will be sorted.
5407  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5408    SDNode *N = I;
5409    checkForCycles(N);
5410    // N is in sorted position, so all its uses have one less operand
5411    // that needs to be sorted.
5412    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5413         UI != UE; ++UI) {
5414      SDNode *P = *UI;
5415      unsigned Degree = P->getNodeId();
5416      assert(Degree != 0 && "Invalid node degree");
5417      --Degree;
5418      if (Degree == 0) {
5419        // All of P's operands are sorted, so P may sorted now.
5420        P->setNodeId(DAGSize++);
5421        if (P != SortedPos)
5422          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5423        assert(SortedPos != AllNodes.end() && "Overran node list");
5424        ++SortedPos;
5425      } else {
5426        // Update P's outstanding operand count.
5427        P->setNodeId(Degree);
5428      }
5429    }
5430    if (I == SortedPos) {
5431#ifndef NDEBUG
5432      SDNode *S = ++I;
5433      dbgs() << "Overran sorted position:\n";
5434      S->dumprFull();
5435#endif
5436      llvm_unreachable(0);
5437    }
5438  }
5439
5440  assert(SortedPos == AllNodes.end() &&
5441         "Topological sort incomplete!");
5442  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5443         "First node in topological sort is not the entry token!");
5444  assert(AllNodes.front().getNodeId() == 0 &&
5445         "First node in topological sort has non-zero id!");
5446  assert(AllNodes.front().getNumOperands() == 0 &&
5447         "First node in topological sort has operands!");
5448  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5449         "Last node in topologic sort has unexpected id!");
5450  assert(AllNodes.back().use_empty() &&
5451         "Last node in topologic sort has users!");
5452  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5453  return DAGSize;
5454}
5455
5456/// AssignOrdering - Assign an order to the SDNode.
5457void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5458  assert(SD && "Trying to assign an order to a null node!");
5459  Ordering->add(SD, Order);
5460}
5461
5462/// GetOrdering - Get the order for the SDNode.
5463unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5464  assert(SD && "Trying to get the order of a null node!");
5465  return Ordering->getOrder(SD);
5466}
5467
5468/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5469/// value is produced by SD.
5470void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5471  DbgInfo->add(DB, SD, isParameter);
5472  if (SD)
5473    SD->setHasDebugValue(true);
5474}
5475
5476/// TransferDbgValues - Transfer SDDbgValues.
5477void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5478  if (From == To || !From.getNode()->getHasDebugValue())
5479    return;
5480  SDNode *FromNode = From.getNode();
5481  SDNode *ToNode = To.getNode();
5482  SmallVector<SDDbgValue*,2> &DVs = GetDbgValues(FromNode);
5483  DbgInfo->removeSDDbgValues(FromNode);
5484  for (SmallVector<SDDbgValue *, 2>::iterator I = DVs.begin(), E = DVs.end();
5485       I != E; ++I) {
5486    if ((*I)->getKind() == SDDbgValue::SDNODE) {
5487      AddDbgValue(*I, ToNode, false);
5488      (*I)->setSDNode(ToNode, To.getResNo());
5489    }
5490  }
5491}
5492
5493//===----------------------------------------------------------------------===//
5494//                              SDNode Class
5495//===----------------------------------------------------------------------===//
5496
5497HandleSDNode::~HandleSDNode() {
5498  DropOperands();
5499}
5500
5501GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5502                                         const GlobalValue *GA,
5503                                         EVT VT, int64_t o, unsigned char TF)
5504  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5505  TheGlobal = GA;
5506}
5507
5508MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5509                     MachineMemOperand *mmo)
5510 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5511  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5512                                      MMO->isNonTemporal());
5513  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5514  assert(isNonTemporal() == MMO->isNonTemporal() &&
5515         "Non-temporal encoding error!");
5516  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5517}
5518
5519MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5520                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5521                     MachineMemOperand *mmo)
5522   : SDNode(Opc, dl, VTs, Ops, NumOps),
5523     MemoryVT(memvt), MMO(mmo) {
5524  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5525                                      MMO->isNonTemporal());
5526  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5527  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5528}
5529
5530/// Profile - Gather unique data for the node.
5531///
5532void SDNode::Profile(FoldingSetNodeID &ID) const {
5533  AddNodeIDNode(ID, this);
5534}
5535
5536namespace {
5537  struct EVTArray {
5538    std::vector<EVT> VTs;
5539
5540    EVTArray() {
5541      VTs.reserve(MVT::LAST_VALUETYPE);
5542      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5543        VTs.push_back(MVT((MVT::SimpleValueType)i));
5544    }
5545  };
5546}
5547
5548static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5549static ManagedStatic<EVTArray> SimpleVTArray;
5550static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5551
5552/// getValueTypeList - Return a pointer to the specified value type.
5553///
5554const EVT *SDNode::getValueTypeList(EVT VT) {
5555  if (VT.isExtended()) {
5556    sys::SmartScopedLock<true> Lock(*VTMutex);
5557    return &(*EVTs->insert(VT).first);
5558  } else {
5559    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5560           "Value type out of range!");
5561    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5562  }
5563}
5564
5565/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5566/// indicated value.  This method ignores uses of other values defined by this
5567/// operation.
5568bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5569  assert(Value < getNumValues() && "Bad value!");
5570
5571  // TODO: Only iterate over uses of a given value of the node
5572  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5573    if (UI.getUse().getResNo() == Value) {
5574      if (NUses == 0)
5575        return false;
5576      --NUses;
5577    }
5578  }
5579
5580  // Found exactly the right number of uses?
5581  return NUses == 0;
5582}
5583
5584
5585/// hasAnyUseOfValue - Return true if there are any use of the indicated
5586/// value. This method ignores uses of other values defined by this operation.
5587bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5588  assert(Value < getNumValues() && "Bad value!");
5589
5590  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5591    if (UI.getUse().getResNo() == Value)
5592      return true;
5593
5594  return false;
5595}
5596
5597
5598/// isOnlyUserOf - Return true if this node is the only use of N.
5599///
5600bool SDNode::isOnlyUserOf(SDNode *N) const {
5601  bool Seen = false;
5602  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5603    SDNode *User = *I;
5604    if (User == this)
5605      Seen = true;
5606    else
5607      return false;
5608  }
5609
5610  return Seen;
5611}
5612
5613/// isOperand - Return true if this node is an operand of N.
5614///
5615bool SDValue::isOperandOf(SDNode *N) const {
5616  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5617    if (*this == N->getOperand(i))
5618      return true;
5619  return false;
5620}
5621
5622bool SDNode::isOperandOf(SDNode *N) const {
5623  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5624    if (this == N->OperandList[i].getNode())
5625      return true;
5626  return false;
5627}
5628
5629/// reachesChainWithoutSideEffects - Return true if this operand (which must
5630/// be a chain) reaches the specified operand without crossing any
5631/// side-effecting instructions on any chain path.  In practice, this looks
5632/// through token factors and non-volatile loads.  In order to remain efficient,
5633/// this only looks a couple of nodes in, it does not do an exhaustive search.
5634bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5635                                               unsigned Depth) const {
5636  if (*this == Dest) return true;
5637
5638  // Don't search too deeply, we just want to be able to see through
5639  // TokenFactor's etc.
5640  if (Depth == 0) return false;
5641
5642  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5643  // of the operands of the TF does not reach dest, then we cannot do the xform.
5644  if (getOpcode() == ISD::TokenFactor) {
5645    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5646      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5647        return false;
5648    return true;
5649  }
5650
5651  // Loads don't have side effects, look through them.
5652  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5653    if (!Ld->isVolatile())
5654      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5655  }
5656  return false;
5657}
5658
5659/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5660/// is either an operand of N or it can be reached by traversing up the operands.
5661/// NOTE: this is an expensive method. Use it carefully.
5662bool SDNode::isPredecessorOf(SDNode *N) const {
5663  SmallPtrSet<SDNode *, 32> Visited;
5664  SmallVector<SDNode *, 16> Worklist;
5665  Worklist.push_back(N);
5666
5667  do {
5668    N = Worklist.pop_back_val();
5669    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5670      SDNode *Op = N->getOperand(i).getNode();
5671      if (Op == this)
5672        return true;
5673      if (Visited.insert(Op))
5674        Worklist.push_back(Op);
5675    }
5676  } while (!Worklist.empty());
5677
5678  return false;
5679}
5680
5681uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5682  assert(Num < NumOperands && "Invalid child # of SDNode!");
5683  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5684}
5685
5686std::string SDNode::getOperationName(const SelectionDAG *G) const {
5687  switch (getOpcode()) {
5688  default:
5689    if (getOpcode() < ISD::BUILTIN_OP_END)
5690      return "<<Unknown DAG Node>>";
5691    if (isMachineOpcode()) {
5692      if (G)
5693        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5694          if (getMachineOpcode() < TII->getNumOpcodes())
5695            return TII->get(getMachineOpcode()).getName();
5696      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5697    }
5698    if (G) {
5699      const TargetLowering &TLI = G->getTargetLoweringInfo();
5700      const char *Name = TLI.getTargetNodeName(getOpcode());
5701      if (Name) return Name;
5702      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5703    }
5704    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5705
5706#ifndef NDEBUG
5707  case ISD::DELETED_NODE:
5708    return "<<Deleted Node!>>";
5709#endif
5710  case ISD::PREFETCH:      return "Prefetch";
5711  case ISD::MEMBARRIER:    return "MemBarrier";
5712  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5713  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5714  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5715  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5716  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5717  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5718  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5719  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5720  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5721  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5722  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5723  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5724  case ISD::PCMARKER:      return "PCMarker";
5725  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5726  case ISD::SRCVALUE:      return "SrcValue";
5727  case ISD::MDNODE_SDNODE: return "MDNode";
5728  case ISD::EntryToken:    return "EntryToken";
5729  case ISD::TokenFactor:   return "TokenFactor";
5730  case ISD::AssertSext:    return "AssertSext";
5731  case ISD::AssertZext:    return "AssertZext";
5732
5733  case ISD::BasicBlock:    return "BasicBlock";
5734  case ISD::VALUETYPE:     return "ValueType";
5735  case ISD::Register:      return "Register";
5736
5737  case ISD::Constant:      return "Constant";
5738  case ISD::ConstantFP:    return "ConstantFP";
5739  case ISD::GlobalAddress: return "GlobalAddress";
5740  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5741  case ISD::FrameIndex:    return "FrameIndex";
5742  case ISD::JumpTable:     return "JumpTable";
5743  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5744  case ISD::RETURNADDR: return "RETURNADDR";
5745  case ISD::FRAMEADDR: return "FRAMEADDR";
5746  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5747  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5748  case ISD::LSDAADDR: return "LSDAADDR";
5749  case ISD::EHSELECTION: return "EHSELECTION";
5750  case ISD::EH_RETURN: return "EH_RETURN";
5751  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5752  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5753  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5754  case ISD::ConstantPool:  return "ConstantPool";
5755  case ISD::ExternalSymbol: return "ExternalSymbol";
5756  case ISD::BlockAddress:  return "BlockAddress";
5757  case ISD::INTRINSIC_WO_CHAIN:
5758  case ISD::INTRINSIC_VOID:
5759  case ISD::INTRINSIC_W_CHAIN: {
5760    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5761    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5762    if (IID < Intrinsic::num_intrinsics)
5763      return Intrinsic::getName((Intrinsic::ID)IID);
5764    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5765      return TII->getName(IID);
5766    llvm_unreachable("Invalid intrinsic ID");
5767  }
5768
5769  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5770  case ISD::TargetConstant: return "TargetConstant";
5771  case ISD::TargetConstantFP:return "TargetConstantFP";
5772  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5773  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5774  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5775  case ISD::TargetJumpTable:  return "TargetJumpTable";
5776  case ISD::TargetConstantPool:  return "TargetConstantPool";
5777  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5778  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5779
5780  case ISD::CopyToReg:     return "CopyToReg";
5781  case ISD::CopyFromReg:   return "CopyFromReg";
5782  case ISD::UNDEF:         return "undef";
5783  case ISD::MERGE_VALUES:  return "merge_values";
5784  case ISD::INLINEASM:     return "inlineasm";
5785  case ISD::EH_LABEL:      return "eh_label";
5786  case ISD::HANDLENODE:    return "handlenode";
5787
5788  // Unary operators
5789  case ISD::FABS:   return "fabs";
5790  case ISD::FNEG:   return "fneg";
5791  case ISD::FSQRT:  return "fsqrt";
5792  case ISD::FSIN:   return "fsin";
5793  case ISD::FCOS:   return "fcos";
5794  case ISD::FTRUNC: return "ftrunc";
5795  case ISD::FFLOOR: return "ffloor";
5796  case ISD::FCEIL:  return "fceil";
5797  case ISD::FRINT:  return "frint";
5798  case ISD::FNEARBYINT: return "fnearbyint";
5799  case ISD::FEXP:   return "fexp";
5800  case ISD::FEXP2:  return "fexp2";
5801  case ISD::FLOG:   return "flog";
5802  case ISD::FLOG2:  return "flog2";
5803  case ISD::FLOG10: return "flog10";
5804
5805  // Binary operators
5806  case ISD::ADD:    return "add";
5807  case ISD::SUB:    return "sub";
5808  case ISD::MUL:    return "mul";
5809  case ISD::MULHU:  return "mulhu";
5810  case ISD::MULHS:  return "mulhs";
5811  case ISD::SDIV:   return "sdiv";
5812  case ISD::UDIV:   return "udiv";
5813  case ISD::SREM:   return "srem";
5814  case ISD::UREM:   return "urem";
5815  case ISD::SMUL_LOHI:  return "smul_lohi";
5816  case ISD::UMUL_LOHI:  return "umul_lohi";
5817  case ISD::SDIVREM:    return "sdivrem";
5818  case ISD::UDIVREM:    return "udivrem";
5819  case ISD::AND:    return "and";
5820  case ISD::OR:     return "or";
5821  case ISD::XOR:    return "xor";
5822  case ISD::SHL:    return "shl";
5823  case ISD::SRA:    return "sra";
5824  case ISD::SRL:    return "srl";
5825  case ISD::ROTL:   return "rotl";
5826  case ISD::ROTR:   return "rotr";
5827  case ISD::FADD:   return "fadd";
5828  case ISD::FSUB:   return "fsub";
5829  case ISD::FMUL:   return "fmul";
5830  case ISD::FDIV:   return "fdiv";
5831  case ISD::FREM:   return "frem";
5832  case ISD::FCOPYSIGN: return "fcopysign";
5833  case ISD::FGETSIGN:  return "fgetsign";
5834  case ISD::FPOW:   return "fpow";
5835
5836  case ISD::FPOWI:  return "fpowi";
5837  case ISD::SETCC:       return "setcc";
5838  case ISD::VSETCC:      return "vsetcc";
5839  case ISD::SELECT:      return "select";
5840  case ISD::SELECT_CC:   return "select_cc";
5841  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5842  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5843  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5844  case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
5845  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5846  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5847  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5848  case ISD::CARRY_FALSE:         return "carry_false";
5849  case ISD::ADDC:        return "addc";
5850  case ISD::ADDE:        return "adde";
5851  case ISD::SADDO:       return "saddo";
5852  case ISD::UADDO:       return "uaddo";
5853  case ISD::SSUBO:       return "ssubo";
5854  case ISD::USUBO:       return "usubo";
5855  case ISD::SMULO:       return "smulo";
5856  case ISD::UMULO:       return "umulo";
5857  case ISD::SUBC:        return "subc";
5858  case ISD::SUBE:        return "sube";
5859  case ISD::SHL_PARTS:   return "shl_parts";
5860  case ISD::SRA_PARTS:   return "sra_parts";
5861  case ISD::SRL_PARTS:   return "srl_parts";
5862
5863  // Conversion operators.
5864  case ISD::SIGN_EXTEND: return "sign_extend";
5865  case ISD::ZERO_EXTEND: return "zero_extend";
5866  case ISD::ANY_EXTEND:  return "any_extend";
5867  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5868  case ISD::TRUNCATE:    return "truncate";
5869  case ISD::FP_ROUND:    return "fp_round";
5870  case ISD::FLT_ROUNDS_: return "flt_rounds";
5871  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5872  case ISD::FP_EXTEND:   return "fp_extend";
5873
5874  case ISD::SINT_TO_FP:  return "sint_to_fp";
5875  case ISD::UINT_TO_FP:  return "uint_to_fp";
5876  case ISD::FP_TO_SINT:  return "fp_to_sint";
5877  case ISD::FP_TO_UINT:  return "fp_to_uint";
5878  case ISD::BITCAST:     return "bit_convert";
5879  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5880  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5881
5882  case ISD::CONVERT_RNDSAT: {
5883    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5884    default: llvm_unreachable("Unknown cvt code!");
5885    case ISD::CVT_FF:  return "cvt_ff";
5886    case ISD::CVT_FS:  return "cvt_fs";
5887    case ISD::CVT_FU:  return "cvt_fu";
5888    case ISD::CVT_SF:  return "cvt_sf";
5889    case ISD::CVT_UF:  return "cvt_uf";
5890    case ISD::CVT_SS:  return "cvt_ss";
5891    case ISD::CVT_SU:  return "cvt_su";
5892    case ISD::CVT_US:  return "cvt_us";
5893    case ISD::CVT_UU:  return "cvt_uu";
5894    }
5895  }
5896
5897    // Control flow instructions
5898  case ISD::BR:      return "br";
5899  case ISD::BRIND:   return "brind";
5900  case ISD::BR_JT:   return "br_jt";
5901  case ISD::BRCOND:  return "brcond";
5902  case ISD::BR_CC:   return "br_cc";
5903  case ISD::CALLSEQ_START:  return "callseq_start";
5904  case ISD::CALLSEQ_END:    return "callseq_end";
5905
5906    // Other operators
5907  case ISD::LOAD:               return "load";
5908  case ISD::STORE:              return "store";
5909  case ISD::VAARG:              return "vaarg";
5910  case ISD::VACOPY:             return "vacopy";
5911  case ISD::VAEND:              return "vaend";
5912  case ISD::VASTART:            return "vastart";
5913  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5914  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5915  case ISD::BUILD_PAIR:         return "build_pair";
5916  case ISD::STACKSAVE:          return "stacksave";
5917  case ISD::STACKRESTORE:       return "stackrestore";
5918  case ISD::TRAP:               return "trap";
5919
5920  // Bit manipulation
5921  case ISD::BSWAP:   return "bswap";
5922  case ISD::CTPOP:   return "ctpop";
5923  case ISD::CTTZ:    return "cttz";
5924  case ISD::CTLZ:    return "ctlz";
5925
5926  // Trampolines
5927  case ISD::TRAMPOLINE: return "trampoline";
5928
5929  case ISD::CONDCODE:
5930    switch (cast<CondCodeSDNode>(this)->get()) {
5931    default: llvm_unreachable("Unknown setcc condition!");
5932    case ISD::SETOEQ:  return "setoeq";
5933    case ISD::SETOGT:  return "setogt";
5934    case ISD::SETOGE:  return "setoge";
5935    case ISD::SETOLT:  return "setolt";
5936    case ISD::SETOLE:  return "setole";
5937    case ISD::SETONE:  return "setone";
5938
5939    case ISD::SETO:    return "seto";
5940    case ISD::SETUO:   return "setuo";
5941    case ISD::SETUEQ:  return "setue";
5942    case ISD::SETUGT:  return "setugt";
5943    case ISD::SETUGE:  return "setuge";
5944    case ISD::SETULT:  return "setult";
5945    case ISD::SETULE:  return "setule";
5946    case ISD::SETUNE:  return "setune";
5947
5948    case ISD::SETEQ:   return "seteq";
5949    case ISD::SETGT:   return "setgt";
5950    case ISD::SETGE:   return "setge";
5951    case ISD::SETLT:   return "setlt";
5952    case ISD::SETLE:   return "setle";
5953    case ISD::SETNE:   return "setne";
5954    }
5955  }
5956}
5957
5958const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5959  switch (AM) {
5960  default:
5961    return "";
5962  case ISD::PRE_INC:
5963    return "<pre-inc>";
5964  case ISD::PRE_DEC:
5965    return "<pre-dec>";
5966  case ISD::POST_INC:
5967    return "<post-inc>";
5968  case ISD::POST_DEC:
5969    return "<post-dec>";
5970  }
5971}
5972
5973std::string ISD::ArgFlagsTy::getArgFlagsString() {
5974  std::string S = "< ";
5975
5976  if (isZExt())
5977    S += "zext ";
5978  if (isSExt())
5979    S += "sext ";
5980  if (isInReg())
5981    S += "inreg ";
5982  if (isSRet())
5983    S += "sret ";
5984  if (isByVal())
5985    S += "byval ";
5986  if (isNest())
5987    S += "nest ";
5988  if (getByValAlign())
5989    S += "byval-align:" + utostr(getByValAlign()) + " ";
5990  if (getOrigAlign())
5991    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5992  if (getByValSize())
5993    S += "byval-size:" + utostr(getByValSize()) + " ";
5994  return S + ">";
5995}
5996
5997void SDNode::dump() const { dump(0); }
5998void SDNode::dump(const SelectionDAG *G) const {
5999  print(dbgs(), G);
6000  dbgs() << '\n';
6001}
6002
6003void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6004  OS << (void*)this << ": ";
6005
6006  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6007    if (i) OS << ",";
6008    if (getValueType(i) == MVT::Other)
6009      OS << "ch";
6010    else
6011      OS << getValueType(i).getEVTString();
6012  }
6013  OS << " = " << getOperationName(G);
6014}
6015
6016void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6017  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6018    if (!MN->memoperands_empty()) {
6019      OS << "<";
6020      OS << "Mem:";
6021      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6022           e = MN->memoperands_end(); i != e; ++i) {
6023        OS << **i;
6024        if (llvm::next(i) != e)
6025          OS << " ";
6026      }
6027      OS << ">";
6028    }
6029  } else if (const ShuffleVectorSDNode *SVN =
6030               dyn_cast<ShuffleVectorSDNode>(this)) {
6031    OS << "<";
6032    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6033      int Idx = SVN->getMaskElt(i);
6034      if (i) OS << ",";
6035      if (Idx < 0)
6036        OS << "u";
6037      else
6038        OS << Idx;
6039    }
6040    OS << ">";
6041  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6042    OS << '<' << CSDN->getAPIntValue() << '>';
6043  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6044    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6045      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6046    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6047      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6048    else {
6049      OS << "<APFloat(";
6050      CSDN->getValueAPF().bitcastToAPInt().dump();
6051      OS << ")>";
6052    }
6053  } else if (const GlobalAddressSDNode *GADN =
6054             dyn_cast<GlobalAddressSDNode>(this)) {
6055    int64_t offset = GADN->getOffset();
6056    OS << '<';
6057    WriteAsOperand(OS, GADN->getGlobal());
6058    OS << '>';
6059    if (offset > 0)
6060      OS << " + " << offset;
6061    else
6062      OS << " " << offset;
6063    if (unsigned int TF = GADN->getTargetFlags())
6064      OS << " [TF=" << TF << ']';
6065  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6066    OS << "<" << FIDN->getIndex() << ">";
6067  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6068    OS << "<" << JTDN->getIndex() << ">";
6069    if (unsigned int TF = JTDN->getTargetFlags())
6070      OS << " [TF=" << TF << ']';
6071  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6072    int offset = CP->getOffset();
6073    if (CP->isMachineConstantPoolEntry())
6074      OS << "<" << *CP->getMachineCPVal() << ">";
6075    else
6076      OS << "<" << *CP->getConstVal() << ">";
6077    if (offset > 0)
6078      OS << " + " << offset;
6079    else
6080      OS << " " << offset;
6081    if (unsigned int TF = CP->getTargetFlags())
6082      OS << " [TF=" << TF << ']';
6083  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6084    OS << "<";
6085    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6086    if (LBB)
6087      OS << LBB->getName() << " ";
6088    OS << (const void*)BBDN->getBasicBlock() << ">";
6089  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6090    OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6091  } else if (const ExternalSymbolSDNode *ES =
6092             dyn_cast<ExternalSymbolSDNode>(this)) {
6093    OS << "'" << ES->getSymbol() << "'";
6094    if (unsigned int TF = ES->getTargetFlags())
6095      OS << " [TF=" << TF << ']';
6096  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6097    if (M->getValue())
6098      OS << "<" << M->getValue() << ">";
6099    else
6100      OS << "<null>";
6101  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6102    if (MD->getMD())
6103      OS << "<" << MD->getMD() << ">";
6104    else
6105      OS << "<null>";
6106  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6107    OS << ":" << N->getVT().getEVTString();
6108  }
6109  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6110    OS << "<" << *LD->getMemOperand();
6111
6112    bool doExt = true;
6113    switch (LD->getExtensionType()) {
6114    default: doExt = false; break;
6115    case ISD::EXTLOAD: OS << ", anyext"; break;
6116    case ISD::SEXTLOAD: OS << ", sext"; break;
6117    case ISD::ZEXTLOAD: OS << ", zext"; break;
6118    }
6119    if (doExt)
6120      OS << " from " << LD->getMemoryVT().getEVTString();
6121
6122    const char *AM = getIndexedModeName(LD->getAddressingMode());
6123    if (*AM)
6124      OS << ", " << AM;
6125
6126    OS << ">";
6127  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6128    OS << "<" << *ST->getMemOperand();
6129
6130    if (ST->isTruncatingStore())
6131      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6132
6133    const char *AM = getIndexedModeName(ST->getAddressingMode());
6134    if (*AM)
6135      OS << ", " << AM;
6136
6137    OS << ">";
6138  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6139    OS << "<" << *M->getMemOperand() << ">";
6140  } else if (const BlockAddressSDNode *BA =
6141               dyn_cast<BlockAddressSDNode>(this)) {
6142    OS << "<";
6143    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6144    OS << ", ";
6145    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6146    OS << ">";
6147    if (unsigned int TF = BA->getTargetFlags())
6148      OS << " [TF=" << TF << ']';
6149  }
6150
6151  if (G)
6152    if (unsigned Order = G->GetOrdering(this))
6153      OS << " [ORD=" << Order << ']';
6154
6155  if (getNodeId() != -1)
6156    OS << " [ID=" << getNodeId() << ']';
6157
6158  DebugLoc dl = getDebugLoc();
6159  if (G && !dl.isUnknown()) {
6160    DIScope
6161      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6162    OS << " dbg:";
6163    // Omit the directory, since it's usually long and uninteresting.
6164    if (Scope.Verify())
6165      OS << Scope.getFilename();
6166    else
6167      OS << "<unknown>";
6168    OS << ':' << dl.getLine();
6169    if (dl.getCol() != 0)
6170      OS << ':' << dl.getCol();
6171  }
6172}
6173
6174void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6175  print_types(OS, G);
6176  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6177    if (i) OS << ", "; else OS << " ";
6178    OS << (void*)getOperand(i).getNode();
6179    if (unsigned RN = getOperand(i).getResNo())
6180      OS << ":" << RN;
6181  }
6182  print_details(OS, G);
6183}
6184
6185static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6186                                  const SelectionDAG *G, unsigned depth,
6187                                  unsigned indent)
6188{
6189  if (depth == 0)
6190    return;
6191
6192  OS.indent(indent);
6193
6194  N->print(OS, G);
6195
6196  if (depth < 1)
6197    return;
6198
6199  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6200    OS << '\n';
6201    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6202  }
6203}
6204
6205void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6206                            unsigned depth) const {
6207  printrWithDepthHelper(OS, this, G, depth, 0);
6208}
6209
6210void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6211  // Don't print impossibly deep things.
6212  printrWithDepth(OS, G, 100);
6213}
6214
6215void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6216  printrWithDepth(dbgs(), G, depth);
6217}
6218
6219void SDNode::dumprFull(const SelectionDAG *G) const {
6220  // Don't print impossibly deep things.
6221  dumprWithDepth(G, 100);
6222}
6223
6224static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6225  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6226    if (N->getOperand(i).getNode()->hasOneUse())
6227      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6228    else
6229      dbgs() << "\n" << std::string(indent+2, ' ')
6230           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6231
6232
6233  dbgs() << "\n";
6234  dbgs().indent(indent);
6235  N->dump(G);
6236}
6237
6238SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6239  assert(N->getNumValues() == 1 &&
6240         "Can't unroll a vector with multiple results!");
6241
6242  EVT VT = N->getValueType(0);
6243  unsigned NE = VT.getVectorNumElements();
6244  EVT EltVT = VT.getVectorElementType();
6245  DebugLoc dl = N->getDebugLoc();
6246
6247  SmallVector<SDValue, 8> Scalars;
6248  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6249
6250  // If ResNE is 0, fully unroll the vector op.
6251  if (ResNE == 0)
6252    ResNE = NE;
6253  else if (NE > ResNE)
6254    NE = ResNE;
6255
6256  unsigned i;
6257  for (i= 0; i != NE; ++i) {
6258    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6259      SDValue Operand = N->getOperand(j);
6260      EVT OperandVT = Operand.getValueType();
6261      if (OperandVT.isVector()) {
6262        // A vector operand; extract a single element.
6263        EVT OperandEltVT = OperandVT.getVectorElementType();
6264        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6265                              OperandEltVT,
6266                              Operand,
6267                              getConstant(i, MVT::i32));
6268      } else {
6269        // A scalar operand; just use it as is.
6270        Operands[j] = Operand;
6271      }
6272    }
6273
6274    switch (N->getOpcode()) {
6275    default:
6276      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6277                                &Operands[0], Operands.size()));
6278      break;
6279    case ISD::SHL:
6280    case ISD::SRA:
6281    case ISD::SRL:
6282    case ISD::ROTL:
6283    case ISD::ROTR:
6284      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6285                                getShiftAmountOperand(Operands[1])));
6286      break;
6287    case ISD::SIGN_EXTEND_INREG:
6288    case ISD::FP_ROUND_INREG: {
6289      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6290      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6291                                Operands[0],
6292                                getValueType(ExtVT)));
6293    }
6294    }
6295  }
6296
6297  for (; i < ResNE; ++i)
6298    Scalars.push_back(getUNDEF(EltVT));
6299
6300  return getNode(ISD::BUILD_VECTOR, dl,
6301                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6302                 &Scalars[0], Scalars.size());
6303}
6304
6305
6306/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6307/// location that is 'Dist' units away from the location that the 'Base' load
6308/// is loading from.
6309bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6310                                     unsigned Bytes, int Dist) const {
6311  if (LD->getChain() != Base->getChain())
6312    return false;
6313  EVT VT = LD->getValueType(0);
6314  if (VT.getSizeInBits() / 8 != Bytes)
6315    return false;
6316
6317  SDValue Loc = LD->getOperand(1);
6318  SDValue BaseLoc = Base->getOperand(1);
6319  if (Loc.getOpcode() == ISD::FrameIndex) {
6320    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6321      return false;
6322    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6323    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6324    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6325    int FS  = MFI->getObjectSize(FI);
6326    int BFS = MFI->getObjectSize(BFI);
6327    if (FS != BFS || FS != (int)Bytes) return false;
6328    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6329  }
6330  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6331    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6332    if (V && (V->getSExtValue() == Dist*Bytes))
6333      return true;
6334  }
6335
6336  const GlobalValue *GV1 = NULL;
6337  const GlobalValue *GV2 = NULL;
6338  int64_t Offset1 = 0;
6339  int64_t Offset2 = 0;
6340  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6341  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6342  if (isGA1 && isGA2 && GV1 == GV2)
6343    return Offset1 == (Offset2 + Dist*Bytes);
6344  return false;
6345}
6346
6347
6348/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6349/// it cannot be inferred.
6350unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6351  // If this is a GlobalAddress + cst, return the alignment.
6352  const GlobalValue *GV;
6353  int64_t GVOffset = 0;
6354  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6355    // If GV has specified alignment, then use it. Otherwise, use the preferred
6356    // alignment.
6357    unsigned Align = GV->getAlignment();
6358    if (!Align) {
6359      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6360        if (GVar->hasInitializer()) {
6361          const TargetData *TD = TLI.getTargetData();
6362          Align = TD->getPreferredAlignment(GVar);
6363        }
6364      }
6365    }
6366    return MinAlign(Align, GVOffset);
6367  }
6368
6369  // If this is a direct reference to a stack slot, use information about the
6370  // stack slot's alignment.
6371  int FrameIdx = 1 << 31;
6372  int64_t FrameOffset = 0;
6373  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6374    FrameIdx = FI->getIndex();
6375  } else if (Ptr.getOpcode() == ISD::ADD &&
6376             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6377             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6378    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6379    FrameOffset = Ptr.getConstantOperandVal(1);
6380  }
6381
6382  if (FrameIdx != (1 << 31)) {
6383    // FIXME: Handle FI+CST.
6384    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6385    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6386                                    FrameOffset);
6387    return FIInfoAlign;
6388  }
6389
6390  return 0;
6391}
6392
6393void SelectionDAG::dump() const {
6394  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6395
6396  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6397       I != E; ++I) {
6398    const SDNode *N = I;
6399    if (!N->hasOneUse() && N != getRoot().getNode())
6400      DumpNodes(N, 2, this);
6401  }
6402
6403  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6404
6405  dbgs() << "\n\n";
6406}
6407
6408void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6409  print_types(OS, G);
6410  print_details(OS, G);
6411}
6412
6413typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6414static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6415                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6416  if (!once.insert(N))          // If we've been here before, return now.
6417    return;
6418
6419  // Dump the current SDNode, but don't end the line yet.
6420  OS << std::string(indent, ' ');
6421  N->printr(OS, G);
6422
6423  // Having printed this SDNode, walk the children:
6424  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6425    const SDNode *child = N->getOperand(i).getNode();
6426
6427    if (i) OS << ",";
6428    OS << " ";
6429
6430    if (child->getNumOperands() == 0) {
6431      // This child has no grandchildren; print it inline right here.
6432      child->printr(OS, G);
6433      once.insert(child);
6434    } else {         // Just the address. FIXME: also print the child's opcode.
6435      OS << (void*)child;
6436      if (unsigned RN = N->getOperand(i).getResNo())
6437        OS << ":" << RN;
6438    }
6439  }
6440
6441  OS << "\n";
6442
6443  // Dump children that have grandchildren on their own line(s).
6444  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6445    const SDNode *child = N->getOperand(i).getNode();
6446    DumpNodesr(OS, child, indent+2, G, once);
6447  }
6448}
6449
6450void SDNode::dumpr() const {
6451  VisitedSDNodeSet once;
6452  DumpNodesr(dbgs(), this, 0, 0, once);
6453}
6454
6455void SDNode::dumpr(const SelectionDAG *G) const {
6456  VisitedSDNodeSet once;
6457  DumpNodesr(dbgs(), this, 0, G, once);
6458}
6459
6460
6461// getAddressSpace - Return the address space this GlobalAddress belongs to.
6462unsigned GlobalAddressSDNode::getAddressSpace() const {
6463  return getGlobal()->getType()->getAddressSpace();
6464}
6465
6466
6467const Type *ConstantPoolSDNode::getType() const {
6468  if (isMachineConstantPoolEntry())
6469    return Val.MachineCPVal->getType();
6470  return Val.ConstVal->getType();
6471}
6472
6473bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6474                                        APInt &SplatUndef,
6475                                        unsigned &SplatBitSize,
6476                                        bool &HasAnyUndefs,
6477                                        unsigned MinSplatBits,
6478                                        bool isBigEndian) {
6479  EVT VT = getValueType(0);
6480  assert(VT.isVector() && "Expected a vector type");
6481  unsigned sz = VT.getSizeInBits();
6482  if (MinSplatBits > sz)
6483    return false;
6484
6485  SplatValue = APInt(sz, 0);
6486  SplatUndef = APInt(sz, 0);
6487
6488  // Get the bits.  Bits with undefined values (when the corresponding element
6489  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6490  // in SplatValue.  If any of the values are not constant, give up and return
6491  // false.
6492  unsigned int nOps = getNumOperands();
6493  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6494  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6495
6496  for (unsigned j = 0; j < nOps; ++j) {
6497    unsigned i = isBigEndian ? nOps-1-j : j;
6498    SDValue OpVal = getOperand(i);
6499    unsigned BitPos = j * EltBitSize;
6500
6501    if (OpVal.getOpcode() == ISD::UNDEF)
6502      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6503    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6504      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6505                    zextOrTrunc(sz) << BitPos;
6506    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6507      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6508     else
6509      return false;
6510  }
6511
6512  // The build_vector is all constants or undefs.  Find the smallest element
6513  // size that splats the vector.
6514
6515  HasAnyUndefs = (SplatUndef != 0);
6516  while (sz > 8) {
6517
6518    unsigned HalfSize = sz / 2;
6519    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6520    APInt LowValue = SplatValue.trunc(HalfSize);
6521    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6522    APInt LowUndef = SplatUndef.trunc(HalfSize);
6523
6524    // If the two halves do not match (ignoring undef bits), stop here.
6525    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6526        MinSplatBits > HalfSize)
6527      break;
6528
6529    SplatValue = HighValue | LowValue;
6530    SplatUndef = HighUndef & LowUndef;
6531
6532    sz = HalfSize;
6533  }
6534
6535  SplatBitSize = sz;
6536  return true;
6537}
6538
6539bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6540  // Find the first non-undef value in the shuffle mask.
6541  unsigned i, e;
6542  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6543    /* search */;
6544
6545  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6546
6547  // Make sure all remaining elements are either undef or the same as the first
6548  // non-undef value.
6549  for (int Idx = Mask[i]; i != e; ++i)
6550    if (Mask[i] >= 0 && Mask[i] != Idx)
6551      return false;
6552  return true;
6553}
6554
6555#ifdef XDEBUG
6556static void checkForCyclesHelper(const SDNode *N,
6557                                 SmallPtrSet<const SDNode*, 32> &Visited,
6558                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6559  // If this node has already been checked, don't check it again.
6560  if (Checked.count(N))
6561    return;
6562
6563  // If a node has already been visited on this depth-first walk, reject it as
6564  // a cycle.
6565  if (!Visited.insert(N)) {
6566    dbgs() << "Offending node:\n";
6567    N->dumprFull();
6568    errs() << "Detected cycle in SelectionDAG\n";
6569    abort();
6570  }
6571
6572  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6573    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6574
6575  Checked.insert(N);
6576  Visited.erase(N);
6577}
6578#endif
6579
6580void llvm::checkForCycles(const llvm::SDNode *N) {
6581#ifdef XDEBUG
6582  assert(N && "Checking nonexistant SDNode");
6583  SmallPtrSet<const SDNode*, 32> visited;
6584  SmallPtrSet<const SDNode*, 32> checked;
6585  checkForCyclesHelper(N, visited, checked);
6586#endif
6587}
6588
6589void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6590  checkForCycles(DAG->getRoot().getNode());
6591}
6592