SelectionDAG.cpp revision ea859be53ca13a1547c4675549946b74dc3c6f41
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include <algorithm>
33#include <cmath>
34using namespace llvm;
35
36/// makeVTList - Return an instance of the SDVTList struct initialized with the
37/// specified members.
38static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39  SDVTList Res = {VTs, NumVTs};
40  return Res;
41}
42
43//===----------------------------------------------------------------------===//
44//                              ConstantFPSDNode Class
45//===----------------------------------------------------------------------===//
46
47/// isExactlyValue - We don't rely on operator== working on double values, as
48/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49/// As such, this method can be used to do an exact bit-for-bit comparison of
50/// two floating point values.
51bool ConstantFPSDNode::isExactlyValue(double V) const {
52  return DoubleToBits(V) == DoubleToBits(Value);
53}
54
55//===----------------------------------------------------------------------===//
56//                              ISD Namespace
57//===----------------------------------------------------------------------===//
58
59/// isBuildVectorAllOnes - Return true if the specified node is a
60/// BUILD_VECTOR where all of the elements are ~0 or undef.
61bool ISD::isBuildVectorAllOnes(const SDNode *N) {
62  // Look through a bit convert.
63  if (N->getOpcode() == ISD::BIT_CONVERT)
64    N = N->getOperand(0).Val;
65
66  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
67
68  unsigned i = 0, e = N->getNumOperands();
69
70  // Skip over all of the undef values.
71  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
72    ++i;
73
74  // Do not accept an all-undef vector.
75  if (i == e) return false;
76
77  // Do not accept build_vectors that aren't all constants or which have non-~0
78  // elements.
79  SDOperand NotZero = N->getOperand(i);
80  if (isa<ConstantSDNode>(NotZero)) {
81    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
82      return false;
83  } else if (isa<ConstantFPSDNode>(NotZero)) {
84    MVT::ValueType VT = NotZero.getValueType();
85    if (VT== MVT::f64) {
86      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
87          (uint64_t)-1)
88        return false;
89    } else {
90      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
91          (uint32_t)-1)
92        return false;
93    }
94  } else
95    return false;
96
97  // Okay, we have at least one ~0 value, check to see if the rest match or are
98  // undefs.
99  for (++i; i != e; ++i)
100    if (N->getOperand(i) != NotZero &&
101        N->getOperand(i).getOpcode() != ISD::UNDEF)
102      return false;
103  return true;
104}
105
106
107/// isBuildVectorAllZeros - Return true if the specified node is a
108/// BUILD_VECTOR where all of the elements are 0 or undef.
109bool ISD::isBuildVectorAllZeros(const SDNode *N) {
110  // Look through a bit convert.
111  if (N->getOpcode() == ISD::BIT_CONVERT)
112    N = N->getOperand(0).Val;
113
114  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
115
116  unsigned i = 0, e = N->getNumOperands();
117
118  // Skip over all of the undef values.
119  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120    ++i;
121
122  // Do not accept an all-undef vector.
123  if (i == e) return false;
124
125  // Do not accept build_vectors that aren't all constants or which have non-~0
126  // elements.
127  SDOperand Zero = N->getOperand(i);
128  if (isa<ConstantSDNode>(Zero)) {
129    if (!cast<ConstantSDNode>(Zero)->isNullValue())
130      return false;
131  } else if (isa<ConstantFPSDNode>(Zero)) {
132    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
133      return false;
134  } else
135    return false;
136
137  // Okay, we have at least one ~0 value, check to see if the rest match or are
138  // undefs.
139  for (++i; i != e; ++i)
140    if (N->getOperand(i) != Zero &&
141        N->getOperand(i).getOpcode() != ISD::UNDEF)
142      return false;
143  return true;
144}
145
146/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
147/// when given the operation for (X op Y).
148ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
149  // To perform this operation, we just need to swap the L and G bits of the
150  // operation.
151  unsigned OldL = (Operation >> 2) & 1;
152  unsigned OldG = (Operation >> 1) & 1;
153  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
154                       (OldL << 1) |       // New G bit
155                       (OldG << 2));        // New L bit.
156}
157
158/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
159/// 'op' is a valid SetCC operation.
160ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
161  unsigned Operation = Op;
162  if (isInteger)
163    Operation ^= 7;   // Flip L, G, E bits, but not U.
164  else
165    Operation ^= 15;  // Flip all of the condition bits.
166  if (Operation > ISD::SETTRUE2)
167    Operation &= ~8;     // Don't let N and U bits get set.
168  return ISD::CondCode(Operation);
169}
170
171
172/// isSignedOp - For an integer comparison, return 1 if the comparison is a
173/// signed operation and 2 if the result is an unsigned comparison.  Return zero
174/// if the operation does not depend on the sign of the input (setne and seteq).
175static int isSignedOp(ISD::CondCode Opcode) {
176  switch (Opcode) {
177  default: assert(0 && "Illegal integer setcc operation!");
178  case ISD::SETEQ:
179  case ISD::SETNE: return 0;
180  case ISD::SETLT:
181  case ISD::SETLE:
182  case ISD::SETGT:
183  case ISD::SETGE: return 1;
184  case ISD::SETULT:
185  case ISD::SETULE:
186  case ISD::SETUGT:
187  case ISD::SETUGE: return 2;
188  }
189}
190
191/// getSetCCOrOperation - Return the result of a logical OR between different
192/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
193/// returns SETCC_INVALID if it is not possible to represent the resultant
194/// comparison.
195ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
196                                       bool isInteger) {
197  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
198    // Cannot fold a signed integer setcc with an unsigned integer setcc.
199    return ISD::SETCC_INVALID;
200
201  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
202
203  // If the N and U bits get set then the resultant comparison DOES suddenly
204  // care about orderedness, and is true when ordered.
205  if (Op > ISD::SETTRUE2)
206    Op &= ~16;     // Clear the U bit if the N bit is set.
207
208  // Canonicalize illegal integer setcc's.
209  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
210    Op = ISD::SETNE;
211
212  return ISD::CondCode(Op);
213}
214
215/// getSetCCAndOperation - Return the result of a logical AND between different
216/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
217/// function returns zero if it is not possible to represent the resultant
218/// comparison.
219ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
220                                        bool isInteger) {
221  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
222    // Cannot fold a signed setcc with an unsigned setcc.
223    return ISD::SETCC_INVALID;
224
225  // Combine all of the condition bits.
226  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
227
228  // Canonicalize illegal integer setcc's.
229  if (isInteger) {
230    switch (Result) {
231    default: break;
232    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
233    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
234    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
235    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
236    }
237  }
238
239  return Result;
240}
241
242const TargetMachine &SelectionDAG::getTarget() const {
243  return TLI.getTargetMachine();
244}
245
246//===----------------------------------------------------------------------===//
247//                           SDNode Profile Support
248//===----------------------------------------------------------------------===//
249
250/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
251///
252static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
253  ID.AddInteger(OpC);
254}
255
256/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
257/// solely with their pointer.
258void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
259  ID.AddPointer(VTList.VTs);
260}
261
262/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
263///
264static void AddNodeIDOperands(FoldingSetNodeID &ID,
265                              const SDOperand *Ops, unsigned NumOps) {
266  for (; NumOps; --NumOps, ++Ops) {
267    ID.AddPointer(Ops->Val);
268    ID.AddInteger(Ops->ResNo);
269  }
270}
271
272static void AddNodeIDNode(FoldingSetNodeID &ID,
273                          unsigned short OpC, SDVTList VTList,
274                          const SDOperand *OpList, unsigned N) {
275  AddNodeIDOpcode(ID, OpC);
276  AddNodeIDValueTypes(ID, VTList);
277  AddNodeIDOperands(ID, OpList, N);
278}
279
280/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
281/// data.
282static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
283  AddNodeIDOpcode(ID, N->getOpcode());
284  // Add the return value info.
285  AddNodeIDValueTypes(ID, N->getVTList());
286  // Add the operand info.
287  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
288
289  // Handle SDNode leafs with special info.
290  switch (N->getOpcode()) {
291  default: break;  // Normal nodes don't need extra info.
292  case ISD::TargetConstant:
293  case ISD::Constant:
294    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
295    break;
296  case ISD::TargetConstantFP:
297  case ISD::ConstantFP:
298    ID.AddDouble(cast<ConstantFPSDNode>(N)->getValue());
299    break;
300  case ISD::TargetGlobalAddress:
301  case ISD::GlobalAddress:
302  case ISD::TargetGlobalTLSAddress:
303  case ISD::GlobalTLSAddress: {
304    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
305    ID.AddPointer(GA->getGlobal());
306    ID.AddInteger(GA->getOffset());
307    break;
308  }
309  case ISD::BasicBlock:
310    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
311    break;
312  case ISD::Register:
313    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
314    break;
315  case ISD::SRCVALUE: {
316    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
317    ID.AddPointer(SV->getValue());
318    ID.AddInteger(SV->getOffset());
319    break;
320  }
321  case ISD::FrameIndex:
322  case ISD::TargetFrameIndex:
323    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
324    break;
325  case ISD::JumpTable:
326  case ISD::TargetJumpTable:
327    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
328    break;
329  case ISD::ConstantPool:
330  case ISD::TargetConstantPool: {
331    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
332    ID.AddInteger(CP->getAlignment());
333    ID.AddInteger(CP->getOffset());
334    if (CP->isMachineConstantPoolEntry())
335      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
336    else
337      ID.AddPointer(CP->getConstVal());
338    break;
339  }
340  case ISD::LOAD: {
341    LoadSDNode *LD = cast<LoadSDNode>(N);
342    ID.AddInteger(LD->getAddressingMode());
343    ID.AddInteger(LD->getExtensionType());
344    ID.AddInteger(LD->getLoadedVT());
345    ID.AddPointer(LD->getSrcValue());
346    ID.AddInteger(LD->getSrcValueOffset());
347    ID.AddInteger(LD->getAlignment());
348    ID.AddInteger(LD->isVolatile());
349    break;
350  }
351  case ISD::STORE: {
352    StoreSDNode *ST = cast<StoreSDNode>(N);
353    ID.AddInteger(ST->getAddressingMode());
354    ID.AddInteger(ST->isTruncatingStore());
355    ID.AddInteger(ST->getStoredVT());
356    ID.AddPointer(ST->getSrcValue());
357    ID.AddInteger(ST->getSrcValueOffset());
358    ID.AddInteger(ST->getAlignment());
359    ID.AddInteger(ST->isVolatile());
360    break;
361  }
362  }
363}
364
365//===----------------------------------------------------------------------===//
366//                              SelectionDAG Class
367//===----------------------------------------------------------------------===//
368
369/// RemoveDeadNodes - This method deletes all unreachable nodes in the
370/// SelectionDAG.
371void SelectionDAG::RemoveDeadNodes() {
372  // Create a dummy node (which is not added to allnodes), that adds a reference
373  // to the root node, preventing it from being deleted.
374  HandleSDNode Dummy(getRoot());
375
376  SmallVector<SDNode*, 128> DeadNodes;
377
378  // Add all obviously-dead nodes to the DeadNodes worklist.
379  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
380    if (I->use_empty())
381      DeadNodes.push_back(I);
382
383  // Process the worklist, deleting the nodes and adding their uses to the
384  // worklist.
385  while (!DeadNodes.empty()) {
386    SDNode *N = DeadNodes.back();
387    DeadNodes.pop_back();
388
389    // Take the node out of the appropriate CSE map.
390    RemoveNodeFromCSEMaps(N);
391
392    // Next, brutally remove the operand list.  This is safe to do, as there are
393    // no cycles in the graph.
394    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
395      SDNode *Operand = I->Val;
396      Operand->removeUser(N);
397
398      // Now that we removed this operand, see if there are no uses of it left.
399      if (Operand->use_empty())
400        DeadNodes.push_back(Operand);
401    }
402    if (N->OperandsNeedDelete)
403      delete[] N->OperandList;
404    N->OperandList = 0;
405    N->NumOperands = 0;
406
407    // Finally, remove N itself.
408    AllNodes.erase(N);
409  }
410
411  // If the root changed (e.g. it was a dead load, update the root).
412  setRoot(Dummy.getValue());
413}
414
415void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
416  SmallVector<SDNode*, 16> DeadNodes;
417  DeadNodes.push_back(N);
418
419  // Process the worklist, deleting the nodes and adding their uses to the
420  // worklist.
421  while (!DeadNodes.empty()) {
422    SDNode *N = DeadNodes.back();
423    DeadNodes.pop_back();
424
425    // Take the node out of the appropriate CSE map.
426    RemoveNodeFromCSEMaps(N);
427
428    // Next, brutally remove the operand list.  This is safe to do, as there are
429    // no cycles in the graph.
430    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
431      SDNode *Operand = I->Val;
432      Operand->removeUser(N);
433
434      // Now that we removed this operand, see if there are no uses of it left.
435      if (Operand->use_empty())
436        DeadNodes.push_back(Operand);
437    }
438    if (N->OperandsNeedDelete)
439      delete[] N->OperandList;
440    N->OperandList = 0;
441    N->NumOperands = 0;
442
443    // Finally, remove N itself.
444    Deleted.push_back(N);
445    AllNodes.erase(N);
446  }
447}
448
449void SelectionDAG::DeleteNode(SDNode *N) {
450  assert(N->use_empty() && "Cannot delete a node that is not dead!");
451
452  // First take this out of the appropriate CSE map.
453  RemoveNodeFromCSEMaps(N);
454
455  // Finally, remove uses due to operands of this node, remove from the
456  // AllNodes list, and delete the node.
457  DeleteNodeNotInCSEMaps(N);
458}
459
460void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
461
462  // Remove it from the AllNodes list.
463  AllNodes.remove(N);
464
465  // Drop all of the operands and decrement used nodes use counts.
466  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
467    I->Val->removeUser(N);
468  if (N->OperandsNeedDelete)
469    delete[] N->OperandList;
470  N->OperandList = 0;
471  N->NumOperands = 0;
472
473  delete N;
474}
475
476/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
477/// correspond to it.  This is useful when we're about to delete or repurpose
478/// the node.  We don't want future request for structurally identical nodes
479/// to return N anymore.
480void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
481  bool Erased = false;
482  switch (N->getOpcode()) {
483  case ISD::HANDLENODE: return;  // noop.
484  case ISD::STRING:
485    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
486    break;
487  case ISD::CONDCODE:
488    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
489           "Cond code doesn't exist!");
490    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
491    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
492    break;
493  case ISD::ExternalSymbol:
494    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
495    break;
496  case ISD::TargetExternalSymbol:
497    Erased =
498      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
499    break;
500  case ISD::VALUETYPE:
501    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
502    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
503    break;
504  default:
505    // Remove it from the CSE Map.
506    Erased = CSEMap.RemoveNode(N);
507    break;
508  }
509#ifndef NDEBUG
510  // Verify that the node was actually in one of the CSE maps, unless it has a
511  // flag result (which cannot be CSE'd) or is one of the special cases that are
512  // not subject to CSE.
513  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
514      !N->isTargetOpcode()) {
515    N->dump(this);
516    cerr << "\n";
517    assert(0 && "Node is not in map!");
518  }
519#endif
520}
521
522/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
523/// has been taken out and modified in some way.  If the specified node already
524/// exists in the CSE maps, do not modify the maps, but return the existing node
525/// instead.  If it doesn't exist, add it and return null.
526///
527SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
528  assert(N->getNumOperands() && "This is a leaf node!");
529  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
530    return 0;    // Never add these nodes.
531
532  // Check that remaining values produced are not flags.
533  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
534    if (N->getValueType(i) == MVT::Flag)
535      return 0;   // Never CSE anything that produces a flag.
536
537  SDNode *New = CSEMap.GetOrInsertNode(N);
538  if (New != N) return New;  // Node already existed.
539  return 0;
540}
541
542/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
543/// were replaced with those specified.  If this node is never memoized,
544/// return null, otherwise return a pointer to the slot it would take.  If a
545/// node already exists with these operands, the slot will be non-null.
546SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
547                                           void *&InsertPos) {
548  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
549    return 0;    // Never add these nodes.
550
551  // Check that remaining values produced are not flags.
552  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
553    if (N->getValueType(i) == MVT::Flag)
554      return 0;   // Never CSE anything that produces a flag.
555
556  SDOperand Ops[] = { Op };
557  FoldingSetNodeID ID;
558  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
559  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
560}
561
562/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
563/// were replaced with those specified.  If this node is never memoized,
564/// return null, otherwise return a pointer to the slot it would take.  If a
565/// node already exists with these operands, the slot will be non-null.
566SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
567                                           SDOperand Op1, SDOperand Op2,
568                                           void *&InsertPos) {
569  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
570    return 0;    // Never add these nodes.
571
572  // Check that remaining values produced are not flags.
573  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
574    if (N->getValueType(i) == MVT::Flag)
575      return 0;   // Never CSE anything that produces a flag.
576
577  SDOperand Ops[] = { Op1, Op2 };
578  FoldingSetNodeID ID;
579  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
580  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
581}
582
583
584/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
585/// were replaced with those specified.  If this node is never memoized,
586/// return null, otherwise return a pointer to the slot it would take.  If a
587/// node already exists with these operands, the slot will be non-null.
588SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
589                                           const SDOperand *Ops,unsigned NumOps,
590                                           void *&InsertPos) {
591  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
592    return 0;    // Never add these nodes.
593
594  // Check that remaining values produced are not flags.
595  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
596    if (N->getValueType(i) == MVT::Flag)
597      return 0;   // Never CSE anything that produces a flag.
598
599  FoldingSetNodeID ID;
600  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
601
602  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
603    ID.AddInteger(LD->getAddressingMode());
604    ID.AddInteger(LD->getExtensionType());
605    ID.AddInteger(LD->getLoadedVT());
606    ID.AddPointer(LD->getSrcValue());
607    ID.AddInteger(LD->getSrcValueOffset());
608    ID.AddInteger(LD->getAlignment());
609    ID.AddInteger(LD->isVolatile());
610  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
611    ID.AddInteger(ST->getAddressingMode());
612    ID.AddInteger(ST->isTruncatingStore());
613    ID.AddInteger(ST->getStoredVT());
614    ID.AddPointer(ST->getSrcValue());
615    ID.AddInteger(ST->getSrcValueOffset());
616    ID.AddInteger(ST->getAlignment());
617    ID.AddInteger(ST->isVolatile());
618  }
619
620  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
621}
622
623
624SelectionDAG::~SelectionDAG() {
625  while (!AllNodes.empty()) {
626    SDNode *N = AllNodes.begin();
627    N->SetNextInBucket(0);
628    if (N->OperandsNeedDelete)
629      delete [] N->OperandList;
630    N->OperandList = 0;
631    N->NumOperands = 0;
632    AllNodes.pop_front();
633  }
634}
635
636SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
637  if (Op.getValueType() == VT) return Op;
638  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
639  return getNode(ISD::AND, Op.getValueType(), Op,
640                 getConstant(Imm, Op.getValueType()));
641}
642
643SDOperand SelectionDAG::getString(const std::string &Val) {
644  StringSDNode *&N = StringNodes[Val];
645  if (!N) {
646    N = new StringSDNode(Val);
647    AllNodes.push_back(N);
648  }
649  return SDOperand(N, 0);
650}
651
652SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
653  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
654  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
655
656  // Mask out any bits that are not valid for this constant.
657  Val &= MVT::getIntVTBitMask(VT);
658
659  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
660  FoldingSetNodeID ID;
661  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
662  ID.AddInteger(Val);
663  void *IP = 0;
664  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
665    return SDOperand(E, 0);
666  SDNode *N = new ConstantSDNode(isT, Val, VT);
667  CSEMap.InsertNode(N, IP);
668  AllNodes.push_back(N);
669  return SDOperand(N, 0);
670}
671
672
673SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
674                                      bool isTarget) {
675  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
676  if (VT == MVT::f32)
677    Val = (float)Val;  // Mask out extra precision.
678
679  // Do the map lookup using the actual bit pattern for the floating point
680  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
681  // we don't have issues with SNANs.
682  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
683  FoldingSetNodeID ID;
684  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
685  ID.AddDouble(Val);
686  void *IP = 0;
687  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
688    return SDOperand(E, 0);
689  SDNode *N = new ConstantFPSDNode(isTarget, Val, VT);
690  CSEMap.InsertNode(N, IP);
691  AllNodes.push_back(N);
692  return SDOperand(N, 0);
693}
694
695SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
696                                         MVT::ValueType VT, int Offset,
697                                         bool isTargetGA) {
698  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
699  unsigned Opc;
700  if (GVar && GVar->isThreadLocal())
701    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
702  else
703    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
704  FoldingSetNodeID ID;
705  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
706  ID.AddPointer(GV);
707  ID.AddInteger(Offset);
708  void *IP = 0;
709  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
710   return SDOperand(E, 0);
711  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
712  CSEMap.InsertNode(N, IP);
713  AllNodes.push_back(N);
714  return SDOperand(N, 0);
715}
716
717SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
718                                      bool isTarget) {
719  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
720  FoldingSetNodeID ID;
721  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
722  ID.AddInteger(FI);
723  void *IP = 0;
724  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
725    return SDOperand(E, 0);
726  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
727  CSEMap.InsertNode(N, IP);
728  AllNodes.push_back(N);
729  return SDOperand(N, 0);
730}
731
732SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
733  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
734  FoldingSetNodeID ID;
735  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
736  ID.AddInteger(JTI);
737  void *IP = 0;
738  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
739    return SDOperand(E, 0);
740  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
741  CSEMap.InsertNode(N, IP);
742  AllNodes.push_back(N);
743  return SDOperand(N, 0);
744}
745
746SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
747                                        unsigned Alignment, int Offset,
748                                        bool isTarget) {
749  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
750  FoldingSetNodeID ID;
751  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
752  ID.AddInteger(Alignment);
753  ID.AddInteger(Offset);
754  ID.AddPointer(C);
755  void *IP = 0;
756  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
757    return SDOperand(E, 0);
758  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
759  CSEMap.InsertNode(N, IP);
760  AllNodes.push_back(N);
761  return SDOperand(N, 0);
762}
763
764
765SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
766                                        MVT::ValueType VT,
767                                        unsigned Alignment, int Offset,
768                                        bool isTarget) {
769  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
770  FoldingSetNodeID ID;
771  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
772  ID.AddInteger(Alignment);
773  ID.AddInteger(Offset);
774  C->AddSelectionDAGCSEId(ID);
775  void *IP = 0;
776  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
777    return SDOperand(E, 0);
778  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
779  CSEMap.InsertNode(N, IP);
780  AllNodes.push_back(N);
781  return SDOperand(N, 0);
782}
783
784
785SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
786  FoldingSetNodeID ID;
787  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
788  ID.AddPointer(MBB);
789  void *IP = 0;
790  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
791    return SDOperand(E, 0);
792  SDNode *N = new BasicBlockSDNode(MBB);
793  CSEMap.InsertNode(N, IP);
794  AllNodes.push_back(N);
795  return SDOperand(N, 0);
796}
797
798SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
799  if ((unsigned)VT >= ValueTypeNodes.size())
800    ValueTypeNodes.resize(VT+1);
801  if (ValueTypeNodes[VT] == 0) {
802    ValueTypeNodes[VT] = new VTSDNode(VT);
803    AllNodes.push_back(ValueTypeNodes[VT]);
804  }
805
806  return SDOperand(ValueTypeNodes[VT], 0);
807}
808
809SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
810  SDNode *&N = ExternalSymbols[Sym];
811  if (N) return SDOperand(N, 0);
812  N = new ExternalSymbolSDNode(false, Sym, VT);
813  AllNodes.push_back(N);
814  return SDOperand(N, 0);
815}
816
817SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
818                                                MVT::ValueType VT) {
819  SDNode *&N = TargetExternalSymbols[Sym];
820  if (N) return SDOperand(N, 0);
821  N = new ExternalSymbolSDNode(true, Sym, VT);
822  AllNodes.push_back(N);
823  return SDOperand(N, 0);
824}
825
826SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
827  if ((unsigned)Cond >= CondCodeNodes.size())
828    CondCodeNodes.resize(Cond+1);
829
830  if (CondCodeNodes[Cond] == 0) {
831    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
832    AllNodes.push_back(CondCodeNodes[Cond]);
833  }
834  return SDOperand(CondCodeNodes[Cond], 0);
835}
836
837SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
838  FoldingSetNodeID ID;
839  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
840  ID.AddInteger(RegNo);
841  void *IP = 0;
842  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
843    return SDOperand(E, 0);
844  SDNode *N = new RegisterSDNode(RegNo, VT);
845  CSEMap.InsertNode(N, IP);
846  AllNodes.push_back(N);
847  return SDOperand(N, 0);
848}
849
850SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
851  assert((!V || isa<PointerType>(V->getType())) &&
852         "SrcValue is not a pointer?");
853
854  FoldingSetNodeID ID;
855  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
856  ID.AddPointer(V);
857  ID.AddInteger(Offset);
858  void *IP = 0;
859  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
860    return SDOperand(E, 0);
861  SDNode *N = new SrcValueSDNode(V, Offset);
862  CSEMap.InsertNode(N, IP);
863  AllNodes.push_back(N);
864  return SDOperand(N, 0);
865}
866
867SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
868                                  SDOperand N2, ISD::CondCode Cond) {
869  // These setcc operations always fold.
870  switch (Cond) {
871  default: break;
872  case ISD::SETFALSE:
873  case ISD::SETFALSE2: return getConstant(0, VT);
874  case ISD::SETTRUE:
875  case ISD::SETTRUE2:  return getConstant(1, VT);
876
877  case ISD::SETOEQ:
878  case ISD::SETOGT:
879  case ISD::SETOGE:
880  case ISD::SETOLT:
881  case ISD::SETOLE:
882  case ISD::SETONE:
883  case ISD::SETO:
884  case ISD::SETUO:
885  case ISD::SETUEQ:
886  case ISD::SETUNE:
887    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
888    break;
889  }
890
891  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
892    uint64_t C2 = N2C->getValue();
893    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
894      uint64_t C1 = N1C->getValue();
895
896      // Sign extend the operands if required
897      if (ISD::isSignedIntSetCC(Cond)) {
898        C1 = N1C->getSignExtended();
899        C2 = N2C->getSignExtended();
900      }
901
902      switch (Cond) {
903      default: assert(0 && "Unknown integer setcc!");
904      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
905      case ISD::SETNE:  return getConstant(C1 != C2, VT);
906      case ISD::SETULT: return getConstant(C1 <  C2, VT);
907      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
908      case ISD::SETULE: return getConstant(C1 <= C2, VT);
909      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
910      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
911      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
912      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
913      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
914      }
915    }
916  }
917  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
918    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
919      double C1 = N1C->getValue(), C2 = N2C->getValue();
920
921      switch (Cond) {
922      default: break; // FIXME: Implement the rest of these!
923      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
924      case ISD::SETNE:  return getConstant(C1 != C2, VT);
925      case ISD::SETLT:  return getConstant(C1 < C2, VT);
926      case ISD::SETGT:  return getConstant(C1 > C2, VT);
927      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
928      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
929      }
930    } else {
931      // Ensure that the constant occurs on the RHS.
932      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
933    }
934
935  // Could not fold it.
936  return SDOperand();
937}
938
939/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
940/// this predicate to simplify operations downstream.  Mask is known to be zero
941/// for bits that V cannot have.
942bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
943                                     unsigned Depth) const {
944  // The masks are not wide enough to represent this type!  Should use APInt.
945  if (Op.getValueType() == MVT::i128)
946    return false;
947
948  uint64_t KnownZero, KnownOne;
949  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
950  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
951  return (KnownZero & Mask) == Mask;
952}
953
954/// ComputeMaskedBits - Determine which of the bits specified in Mask are
955/// known to be either zero or one and return them in the KnownZero/KnownOne
956/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
957/// processing.
958void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
959                                     uint64_t &KnownZero, uint64_t &KnownOne,
960                                     unsigned Depth) const {
961  KnownZero = KnownOne = 0;   // Don't know anything.
962  if (Depth == 6 || Mask == 0)
963    return;  // Limit search depth.
964
965  // The masks are not wide enough to represent this type!  Should use APInt.
966  if (Op.getValueType() == MVT::i128)
967    return;
968
969  uint64_t KnownZero2, KnownOne2;
970
971  switch (Op.getOpcode()) {
972  case ISD::Constant:
973    // We know all of the bits for a constant!
974    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
975    KnownZero = ~KnownOne & Mask;
976    return;
977  case ISD::AND:
978    // If either the LHS or the RHS are Zero, the result is zero.
979    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
980    Mask &= ~KnownZero;
981    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
982    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
983    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
984
985    // Output known-1 bits are only known if set in both the LHS & RHS.
986    KnownOne &= KnownOne2;
987    // Output known-0 are known to be clear if zero in either the LHS | RHS.
988    KnownZero |= KnownZero2;
989    return;
990  case ISD::OR:
991    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
992    Mask &= ~KnownOne;
993    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
994    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
995    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
996
997    // Output known-0 bits are only known if clear in both the LHS & RHS.
998    KnownZero &= KnownZero2;
999    // Output known-1 are known to be set if set in either the LHS | RHS.
1000    KnownOne |= KnownOne2;
1001    return;
1002  case ISD::XOR: {
1003    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1004    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1005    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1006    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1007
1008    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1009    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1010    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1011    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1012    KnownZero = KnownZeroOut;
1013    return;
1014  }
1015  case ISD::SELECT:
1016    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1017    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1018    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1019    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1020
1021    // Only known if known in both the LHS and RHS.
1022    KnownOne &= KnownOne2;
1023    KnownZero &= KnownZero2;
1024    return;
1025  case ISD::SELECT_CC:
1026    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1027    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1028    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1029    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1030
1031    // Only known if known in both the LHS and RHS.
1032    KnownOne &= KnownOne2;
1033    KnownZero &= KnownZero2;
1034    return;
1035  case ISD::SETCC:
1036    // If we know the result of a setcc has the top bits zero, use this info.
1037    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1038      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1039    return;
1040  case ISD::SHL:
1041    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1042    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1043      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1044                        KnownZero, KnownOne, Depth+1);
1045      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1046      KnownZero <<= SA->getValue();
1047      KnownOne  <<= SA->getValue();
1048      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1049    }
1050    return;
1051  case ISD::SRL:
1052    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1053    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1054      MVT::ValueType VT = Op.getValueType();
1055      unsigned ShAmt = SA->getValue();
1056
1057      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1058      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1059                        KnownZero, KnownOne, Depth+1);
1060      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1061      KnownZero &= TypeMask;
1062      KnownOne  &= TypeMask;
1063      KnownZero >>= ShAmt;
1064      KnownOne  >>= ShAmt;
1065
1066      uint64_t HighBits = (1ULL << ShAmt)-1;
1067      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1068      KnownZero |= HighBits;  // High bits known zero.
1069    }
1070    return;
1071  case ISD::SRA:
1072    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1073      MVT::ValueType VT = Op.getValueType();
1074      unsigned ShAmt = SA->getValue();
1075
1076      // Compute the new bits that are at the top now.
1077      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1078
1079      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1080      // If any of the demanded bits are produced by the sign extension, we also
1081      // demand the input sign bit.
1082      uint64_t HighBits = (1ULL << ShAmt)-1;
1083      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1084      if (HighBits & Mask)
1085        InDemandedMask |= MVT::getIntVTSignBit(VT);
1086
1087      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1088                        Depth+1);
1089      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1090      KnownZero &= TypeMask;
1091      KnownOne  &= TypeMask;
1092      KnownZero >>= ShAmt;
1093      KnownOne  >>= ShAmt;
1094
1095      // Handle the sign bits.
1096      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1097      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1098
1099      if (KnownZero & SignBit) {
1100        KnownZero |= HighBits;  // New bits are known zero.
1101      } else if (KnownOne & SignBit) {
1102        KnownOne  |= HighBits;  // New bits are known one.
1103      }
1104    }
1105    return;
1106  case ISD::SIGN_EXTEND_INREG: {
1107    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1108
1109    // Sign extension.  Compute the demanded bits in the result that are not
1110    // present in the input.
1111    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1112
1113    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1114    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1115
1116    // If the sign extended bits are demanded, we know that the sign
1117    // bit is demanded.
1118    if (NewBits)
1119      InputDemandedBits |= InSignBit;
1120
1121    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1122                      KnownZero, KnownOne, Depth+1);
1123    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1124
1125    // If the sign bit of the input is known set or clear, then we know the
1126    // top bits of the result.
1127    if (KnownZero & InSignBit) {          // Input sign bit known clear
1128      KnownZero |= NewBits;
1129      KnownOne  &= ~NewBits;
1130    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1131      KnownOne  |= NewBits;
1132      KnownZero &= ~NewBits;
1133    } else {                              // Input sign bit unknown
1134      KnownZero &= ~NewBits;
1135      KnownOne  &= ~NewBits;
1136    }
1137    return;
1138  }
1139  case ISD::CTTZ:
1140  case ISD::CTLZ:
1141  case ISD::CTPOP: {
1142    MVT::ValueType VT = Op.getValueType();
1143    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1144    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1145    KnownOne  = 0;
1146    return;
1147  }
1148  case ISD::LOAD: {
1149    if (ISD::isZEXTLoad(Op.Val)) {
1150      LoadSDNode *LD = cast<LoadSDNode>(Op);
1151      MVT::ValueType VT = LD->getLoadedVT();
1152      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1153    }
1154    return;
1155  }
1156  case ISD::ZERO_EXTEND: {
1157    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1158    uint64_t NewBits = (~InMask) & Mask;
1159    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1160                      KnownOne, Depth+1);
1161    KnownZero |= NewBits & Mask;
1162    KnownOne  &= ~NewBits;
1163    return;
1164  }
1165  case ISD::SIGN_EXTEND: {
1166    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1167    unsigned InBits    = MVT::getSizeInBits(InVT);
1168    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1169    uint64_t InSignBit = 1ULL << (InBits-1);
1170    uint64_t NewBits   = (~InMask) & Mask;
1171    uint64_t InDemandedBits = Mask & InMask;
1172
1173    // If any of the sign extended bits are demanded, we know that the sign
1174    // bit is demanded.
1175    if (NewBits & Mask)
1176      InDemandedBits |= InSignBit;
1177
1178    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1179                      KnownOne, Depth+1);
1180    // If the sign bit is known zero or one, the  top bits match.
1181    if (KnownZero & InSignBit) {
1182      KnownZero |= NewBits;
1183      KnownOne  &= ~NewBits;
1184    } else if (KnownOne & InSignBit) {
1185      KnownOne  |= NewBits;
1186      KnownZero &= ~NewBits;
1187    } else {   // Otherwise, top bits aren't known.
1188      KnownOne  &= ~NewBits;
1189      KnownZero &= ~NewBits;
1190    }
1191    return;
1192  }
1193  case ISD::ANY_EXTEND: {
1194    MVT::ValueType VT = Op.getOperand(0).getValueType();
1195    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1196                      KnownZero, KnownOne, Depth+1);
1197    return;
1198  }
1199  case ISD::TRUNCATE: {
1200    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1201    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1202    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1203    KnownZero &= OutMask;
1204    KnownOne &= OutMask;
1205    break;
1206  }
1207  case ISD::AssertZext: {
1208    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1209    uint64_t InMask = MVT::getIntVTBitMask(VT);
1210    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1211                      KnownOne, Depth+1);
1212    KnownZero |= (~InMask) & Mask;
1213    return;
1214  }
1215  case ISD::ADD: {
1216    // If either the LHS or the RHS are Zero, the result is zero.
1217    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1218    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1219    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1220    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1221
1222    // Output known-0 bits are known if clear or set in both the low clear bits
1223    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1224    // low 3 bits clear.
1225    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1226                                     CountTrailingZeros_64(~KnownZero2));
1227
1228    KnownZero = (1ULL << KnownZeroOut) - 1;
1229    KnownOne = 0;
1230    return;
1231  }
1232  case ISD::SUB: {
1233    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1234    if (!CLHS) return;
1235
1236    // We know that the top bits of C-X are clear if X contains less bits
1237    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1238    // positive if we can prove that X is >= 0 and < 16.
1239    MVT::ValueType VT = CLHS->getValueType(0);
1240    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1241      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1242      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1243      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1244      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1245
1246      // If all of the MaskV bits are known to be zero, then we know the output
1247      // top bits are zero, because we now know that the output is from [0-C].
1248      if ((KnownZero & MaskV) == MaskV) {
1249        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1250        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1251        KnownOne = 0;   // No one bits known.
1252      } else {
1253        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1254      }
1255    }
1256    return;
1257  }
1258  default:
1259    // Allow the target to implement this method for its nodes.
1260    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1261  case ISD::INTRINSIC_WO_CHAIN:
1262  case ISD::INTRINSIC_W_CHAIN:
1263  case ISD::INTRINSIC_VOID:
1264      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1265    }
1266    return;
1267  }
1268}
1269
1270/// ComputeNumSignBits - Return the number of times the sign bit of the
1271/// register is replicated into the other bits.  We know that at least 1 bit
1272/// is always equal to the sign bit (itself), but other cases can give us
1273/// information.  For example, immediately after an "SRA X, 2", we know that
1274/// the top 3 bits are all equal to each other, so we return 3.
1275unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1276  MVT::ValueType VT = Op.getValueType();
1277  assert(MVT::isInteger(VT) && "Invalid VT!");
1278  unsigned VTBits = MVT::getSizeInBits(VT);
1279  unsigned Tmp, Tmp2;
1280
1281  if (Depth == 6)
1282    return 1;  // Limit search depth.
1283
1284  switch (Op.getOpcode()) {
1285  default: break;
1286  case ISD::AssertSext:
1287    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1288    return VTBits-Tmp+1;
1289  case ISD::AssertZext:
1290    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1291    return VTBits-Tmp;
1292
1293  case ISD::Constant: {
1294    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1295    // If negative, invert the bits, then look at it.
1296    if (Val & MVT::getIntVTSignBit(VT))
1297      Val = ~Val;
1298
1299    // Shift the bits so they are the leading bits in the int64_t.
1300    Val <<= 64-VTBits;
1301
1302    // Return # leading zeros.  We use 'min' here in case Val was zero before
1303    // shifting.  We don't want to return '64' as for an i32 "0".
1304    return std::min(VTBits, CountLeadingZeros_64(Val));
1305  }
1306
1307  case ISD::SIGN_EXTEND:
1308    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1309    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1310
1311  case ISD::SIGN_EXTEND_INREG:
1312    // Max of the input and what this extends.
1313    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1314    Tmp = VTBits-Tmp+1;
1315
1316    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1317    return std::max(Tmp, Tmp2);
1318
1319  case ISD::SRA:
1320    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1321    // SRA X, C   -> adds C sign bits.
1322    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1323      Tmp += C->getValue();
1324      if (Tmp > VTBits) Tmp = VTBits;
1325    }
1326    return Tmp;
1327  case ISD::SHL:
1328    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1329      // shl destroys sign bits.
1330      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1331      if (C->getValue() >= VTBits ||      // Bad shift.
1332          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1333      return Tmp - C->getValue();
1334    }
1335    break;
1336  case ISD::AND:
1337  case ISD::OR:
1338  case ISD::XOR:    // NOT is handled here.
1339    // Logical binary ops preserve the number of sign bits.
1340    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1341    if (Tmp == 1) return 1;  // Early out.
1342    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1343    return std::min(Tmp, Tmp2);
1344
1345  case ISD::SELECT:
1346    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1347    if (Tmp == 1) return 1;  // Early out.
1348    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1349    return std::min(Tmp, Tmp2);
1350
1351  case ISD::SETCC:
1352    // If setcc returns 0/-1, all bits are sign bits.
1353    if (TLI.getSetCCResultContents() ==
1354        TargetLowering::ZeroOrNegativeOneSetCCResult)
1355      return VTBits;
1356    break;
1357  case ISD::ROTL:
1358  case ISD::ROTR:
1359    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1360      unsigned RotAmt = C->getValue() & (VTBits-1);
1361
1362      // Handle rotate right by N like a rotate left by 32-N.
1363      if (Op.getOpcode() == ISD::ROTR)
1364        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1365
1366      // If we aren't rotating out all of the known-in sign bits, return the
1367      // number that are left.  This handles rotl(sext(x), 1) for example.
1368      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1369      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1370    }
1371    break;
1372  case ISD::ADD:
1373    // Add can have at most one carry bit.  Thus we know that the output
1374    // is, at worst, one more bit than the inputs.
1375    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1376    if (Tmp == 1) return 1;  // Early out.
1377
1378    // Special case decrementing a value (ADD X, -1):
1379    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1380      if (CRHS->isAllOnesValue()) {
1381        uint64_t KnownZero, KnownOne;
1382        uint64_t Mask = MVT::getIntVTBitMask(VT);
1383        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1384
1385        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1386        // sign bits set.
1387        if ((KnownZero|1) == Mask)
1388          return VTBits;
1389
1390        // If we are subtracting one from a positive number, there is no carry
1391        // out of the result.
1392        if (KnownZero & MVT::getIntVTSignBit(VT))
1393          return Tmp;
1394      }
1395
1396    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1397    if (Tmp2 == 1) return 1;
1398      return std::min(Tmp, Tmp2)-1;
1399    break;
1400
1401  case ISD::SUB:
1402    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1403    if (Tmp2 == 1) return 1;
1404
1405    // Handle NEG.
1406    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1407      if (CLHS->getValue() == 0) {
1408        uint64_t KnownZero, KnownOne;
1409        uint64_t Mask = MVT::getIntVTBitMask(VT);
1410        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1411        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1412        // sign bits set.
1413        if ((KnownZero|1) == Mask)
1414          return VTBits;
1415
1416        // If the input is known to be positive (the sign bit is known clear),
1417        // the output of the NEG has the same number of sign bits as the input.
1418        if (KnownZero & MVT::getIntVTSignBit(VT))
1419          return Tmp2;
1420
1421        // Otherwise, we treat this like a SUB.
1422      }
1423
1424    // Sub can have at most one carry bit.  Thus we know that the output
1425    // is, at worst, one more bit than the inputs.
1426    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1427    if (Tmp == 1) return 1;  // Early out.
1428      return std::min(Tmp, Tmp2)-1;
1429    break;
1430  case ISD::TRUNCATE:
1431    // FIXME: it's tricky to do anything useful for this, but it is an important
1432    // case for targets like X86.
1433    break;
1434  }
1435
1436  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1437  if (Op.getOpcode() == ISD::LOAD) {
1438    LoadSDNode *LD = cast<LoadSDNode>(Op);
1439    unsigned ExtType = LD->getExtensionType();
1440    switch (ExtType) {
1441    default: break;
1442    case ISD::SEXTLOAD:    // '17' bits known
1443      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1444      return VTBits-Tmp+1;
1445    case ISD::ZEXTLOAD:    // '16' bits known
1446      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1447      return VTBits-Tmp;
1448    }
1449  }
1450
1451  // Allow the target to implement this method for its nodes.
1452  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1453      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1454      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1455      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1456    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1457    if (NumBits > 1) return NumBits;
1458  }
1459
1460  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1461  // use this information.
1462  uint64_t KnownZero, KnownOne;
1463  uint64_t Mask = MVT::getIntVTBitMask(VT);
1464  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1465
1466  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1467  if (KnownZero & SignBit) {        // SignBit is 0
1468    Mask = KnownZero;
1469  } else if (KnownOne & SignBit) {  // SignBit is 1;
1470    Mask = KnownOne;
1471  } else {
1472    // Nothing known.
1473    return 1;
1474  }
1475
1476  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1477  // the number of identical bits in the top of the input value.
1478  Mask ^= ~0ULL;
1479  Mask <<= 64-VTBits;
1480  // Return # leading zeros.  We use 'min' here in case Val was zero before
1481  // shifting.  We don't want to return '64' as for an i32 "0".
1482  return std::min(VTBits, CountLeadingZeros_64(Mask));
1483}
1484
1485
1486/// getNode - Gets or creates the specified node.
1487///
1488SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1489  FoldingSetNodeID ID;
1490  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1491  void *IP = 0;
1492  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1493    return SDOperand(E, 0);
1494  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1495  CSEMap.InsertNode(N, IP);
1496
1497  AllNodes.push_back(N);
1498  return SDOperand(N, 0);
1499}
1500
1501SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1502                                SDOperand Operand) {
1503  unsigned Tmp1;
1504  // Constant fold unary operations with an integer constant operand.
1505  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1506    uint64_t Val = C->getValue();
1507    switch (Opcode) {
1508    default: break;
1509    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1510    case ISD::ANY_EXTEND:
1511    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1512    case ISD::TRUNCATE:    return getConstant(Val, VT);
1513    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1514    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1515    case ISD::BIT_CONVERT:
1516      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1517        return getConstantFP(BitsToFloat(Val), VT);
1518      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1519        return getConstantFP(BitsToDouble(Val), VT);
1520      break;
1521    case ISD::BSWAP:
1522      switch(VT) {
1523      default: assert(0 && "Invalid bswap!"); break;
1524      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1525      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1526      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1527      }
1528      break;
1529    case ISD::CTPOP:
1530      switch(VT) {
1531      default: assert(0 && "Invalid ctpop!"); break;
1532      case MVT::i1: return getConstant(Val != 0, VT);
1533      case MVT::i8:
1534        Tmp1 = (unsigned)Val & 0xFF;
1535        return getConstant(CountPopulation_32(Tmp1), VT);
1536      case MVT::i16:
1537        Tmp1 = (unsigned)Val & 0xFFFF;
1538        return getConstant(CountPopulation_32(Tmp1), VT);
1539      case MVT::i32:
1540        return getConstant(CountPopulation_32((unsigned)Val), VT);
1541      case MVT::i64:
1542        return getConstant(CountPopulation_64(Val), VT);
1543      }
1544    case ISD::CTLZ:
1545      switch(VT) {
1546      default: assert(0 && "Invalid ctlz!"); break;
1547      case MVT::i1: return getConstant(Val == 0, VT);
1548      case MVT::i8:
1549        Tmp1 = (unsigned)Val & 0xFF;
1550        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1551      case MVT::i16:
1552        Tmp1 = (unsigned)Val & 0xFFFF;
1553        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1554      case MVT::i32:
1555        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1556      case MVT::i64:
1557        return getConstant(CountLeadingZeros_64(Val), VT);
1558      }
1559    case ISD::CTTZ:
1560      switch(VT) {
1561      default: assert(0 && "Invalid cttz!"); break;
1562      case MVT::i1: return getConstant(Val == 0, VT);
1563      case MVT::i8:
1564        Tmp1 = (unsigned)Val | 0x100;
1565        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1566      case MVT::i16:
1567        Tmp1 = (unsigned)Val | 0x10000;
1568        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1569      case MVT::i32:
1570        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1571      case MVT::i64:
1572        return getConstant(CountTrailingZeros_64(Val), VT);
1573      }
1574    }
1575  }
1576
1577  // Constant fold unary operations with an floating point constant operand.
1578  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1579    switch (Opcode) {
1580    case ISD::FNEG:
1581      return getConstantFP(-C->getValue(), VT);
1582    case ISD::FABS:
1583      return getConstantFP(fabs(C->getValue()), VT);
1584    case ISD::FP_ROUND:
1585    case ISD::FP_EXTEND:
1586      return getConstantFP(C->getValue(), VT);
1587    case ISD::FP_TO_SINT:
1588      return getConstant((int64_t)C->getValue(), VT);
1589    case ISD::FP_TO_UINT:
1590      return getConstant((uint64_t)C->getValue(), VT);
1591    case ISD::BIT_CONVERT:
1592      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1593        return getConstant(FloatToBits(C->getValue()), VT);
1594      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1595        return getConstant(DoubleToBits(C->getValue()), VT);
1596      break;
1597    }
1598
1599  unsigned OpOpcode = Operand.Val->getOpcode();
1600  switch (Opcode) {
1601  case ISD::TokenFactor:
1602    return Operand;         // Factor of one node?  No factor.
1603  case ISD::FP_ROUND:
1604  case ISD::FP_EXTEND:
1605    assert(MVT::isFloatingPoint(VT) &&
1606           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1607    break;
1608  case ISD::SIGN_EXTEND:
1609    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1610           "Invalid SIGN_EXTEND!");
1611    if (Operand.getValueType() == VT) return Operand;   // noop extension
1612    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1613    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1614      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1615    break;
1616  case ISD::ZERO_EXTEND:
1617    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1618           "Invalid ZERO_EXTEND!");
1619    if (Operand.getValueType() == VT) return Operand;   // noop extension
1620    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1621    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1622      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1623    break;
1624  case ISD::ANY_EXTEND:
1625    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1626           "Invalid ANY_EXTEND!");
1627    if (Operand.getValueType() == VT) return Operand;   // noop extension
1628    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1629    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1630      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1631      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1632    break;
1633  case ISD::TRUNCATE:
1634    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1635           "Invalid TRUNCATE!");
1636    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1637    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1638    if (OpOpcode == ISD::TRUNCATE)
1639      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1640    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1641             OpOpcode == ISD::ANY_EXTEND) {
1642      // If the source is smaller than the dest, we still need an extend.
1643      if (Operand.Val->getOperand(0).getValueType() < VT)
1644        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1645      else if (Operand.Val->getOperand(0).getValueType() > VT)
1646        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1647      else
1648        return Operand.Val->getOperand(0);
1649    }
1650    break;
1651  case ISD::BIT_CONVERT:
1652    // Basic sanity checking.
1653    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1654           && "Cannot BIT_CONVERT between types of different sizes!");
1655    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1656    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1657      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1658    if (OpOpcode == ISD::UNDEF)
1659      return getNode(ISD::UNDEF, VT);
1660    break;
1661  case ISD::SCALAR_TO_VECTOR:
1662    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1663           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1664           "Illegal SCALAR_TO_VECTOR node!");
1665    break;
1666  case ISD::FNEG:
1667    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1668      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1669                     Operand.Val->getOperand(0));
1670    if (OpOpcode == ISD::FNEG)  // --X -> X
1671      return Operand.Val->getOperand(0);
1672    break;
1673  case ISD::FABS:
1674    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1675      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1676    break;
1677  }
1678
1679  SDNode *N;
1680  SDVTList VTs = getVTList(VT);
1681  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1682    FoldingSetNodeID ID;
1683    SDOperand Ops[1] = { Operand };
1684    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1685    void *IP = 0;
1686    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1687      return SDOperand(E, 0);
1688    N = new UnarySDNode(Opcode, VTs, Operand);
1689    CSEMap.InsertNode(N, IP);
1690  } else {
1691    N = new UnarySDNode(Opcode, VTs, Operand);
1692  }
1693  AllNodes.push_back(N);
1694  return SDOperand(N, 0);
1695}
1696
1697
1698
1699SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1700                                SDOperand N1, SDOperand N2) {
1701#ifndef NDEBUG
1702  switch (Opcode) {
1703  case ISD::TokenFactor:
1704    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1705           N2.getValueType() == MVT::Other && "Invalid token factor!");
1706    break;
1707  case ISD::AND:
1708  case ISD::OR:
1709  case ISD::XOR:
1710  case ISD::UDIV:
1711  case ISD::UREM:
1712  case ISD::MULHU:
1713  case ISD::MULHS:
1714    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1715    // fall through
1716  case ISD::ADD:
1717  case ISD::SUB:
1718  case ISD::MUL:
1719  case ISD::SDIV:
1720  case ISD::SREM:
1721    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1722    // fall through.
1723  case ISD::FADD:
1724  case ISD::FSUB:
1725  case ISD::FMUL:
1726  case ISD::FDIV:
1727  case ISD::FREM:
1728    assert(N1.getValueType() == N2.getValueType() &&
1729           N1.getValueType() == VT && "Binary operator types must match!");
1730    break;
1731  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1732    assert(N1.getValueType() == VT &&
1733           MVT::isFloatingPoint(N1.getValueType()) &&
1734           MVT::isFloatingPoint(N2.getValueType()) &&
1735           "Invalid FCOPYSIGN!");
1736    break;
1737  case ISD::SHL:
1738  case ISD::SRA:
1739  case ISD::SRL:
1740  case ISD::ROTL:
1741  case ISD::ROTR:
1742    assert(VT == N1.getValueType() &&
1743           "Shift operators return type must be the same as their first arg");
1744    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1745           VT != MVT::i1 && "Shifts only work on integers");
1746    break;
1747  case ISD::FP_ROUND_INREG: {
1748    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1749    assert(VT == N1.getValueType() && "Not an inreg round!");
1750    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1751           "Cannot FP_ROUND_INREG integer types");
1752    assert(EVT <= VT && "Not rounding down!");
1753    break;
1754  }
1755  case ISD::AssertSext:
1756  case ISD::AssertZext:
1757  case ISD::SIGN_EXTEND_INREG: {
1758    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1759    assert(VT == N1.getValueType() && "Not an inreg extend!");
1760    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1761           "Cannot *_EXTEND_INREG FP types");
1762    assert(EVT <= VT && "Not extending!");
1763  }
1764
1765  default: break;
1766  }
1767#endif
1768
1769  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1770  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1771  if (N1C) {
1772    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1773      int64_t Val = N1C->getValue();
1774      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1775      Val <<= 64-FromBits;
1776      Val >>= 64-FromBits;
1777      return getConstant(Val, VT);
1778    }
1779
1780    if (N2C) {
1781      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1782      switch (Opcode) {
1783      case ISD::ADD: return getConstant(C1 + C2, VT);
1784      case ISD::SUB: return getConstant(C1 - C2, VT);
1785      case ISD::MUL: return getConstant(C1 * C2, VT);
1786      case ISD::UDIV:
1787        if (C2) return getConstant(C1 / C2, VT);
1788        break;
1789      case ISD::UREM :
1790        if (C2) return getConstant(C1 % C2, VT);
1791        break;
1792      case ISD::SDIV :
1793        if (C2) return getConstant(N1C->getSignExtended() /
1794                                   N2C->getSignExtended(), VT);
1795        break;
1796      case ISD::SREM :
1797        if (C2) return getConstant(N1C->getSignExtended() %
1798                                   N2C->getSignExtended(), VT);
1799        break;
1800      case ISD::AND  : return getConstant(C1 & C2, VT);
1801      case ISD::OR   : return getConstant(C1 | C2, VT);
1802      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1803      case ISD::SHL  : return getConstant(C1 << C2, VT);
1804      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1805      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1806      case ISD::ROTL :
1807        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1808                           VT);
1809      case ISD::ROTR :
1810        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1811                           VT);
1812      default: break;
1813      }
1814    } else {      // Cannonicalize constant to RHS if commutative
1815      if (isCommutativeBinOp(Opcode)) {
1816        std::swap(N1C, N2C);
1817        std::swap(N1, N2);
1818      }
1819    }
1820  }
1821
1822  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1823  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1824  if (N1CFP) {
1825    if (N2CFP) {
1826      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1827      switch (Opcode) {
1828      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1829      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1830      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1831      case ISD::FDIV:
1832        if (C2) return getConstantFP(C1 / C2, VT);
1833        break;
1834      case ISD::FREM :
1835        if (C2) return getConstantFP(fmod(C1, C2), VT);
1836        break;
1837      case ISD::FCOPYSIGN: {
1838        union {
1839          double   F;
1840          uint64_t I;
1841        } u1;
1842        u1.F = C1;
1843        if (int64_t(DoubleToBits(C2)) < 0)  // Sign bit of RHS set?
1844          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1845        else
1846          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1847        return getConstantFP(u1.F, VT);
1848      }
1849      default: break;
1850      }
1851    } else {      // Cannonicalize constant to RHS if commutative
1852      if (isCommutativeBinOp(Opcode)) {
1853        std::swap(N1CFP, N2CFP);
1854        std::swap(N1, N2);
1855      }
1856    }
1857  }
1858
1859  // Canonicalize an UNDEF to the RHS, even over a constant.
1860  if (N1.getOpcode() == ISD::UNDEF) {
1861    if (isCommutativeBinOp(Opcode)) {
1862      std::swap(N1, N2);
1863    } else {
1864      switch (Opcode) {
1865      case ISD::FP_ROUND_INREG:
1866      case ISD::SIGN_EXTEND_INREG:
1867      case ISD::SUB:
1868      case ISD::FSUB:
1869      case ISD::FDIV:
1870      case ISD::FREM:
1871      case ISD::SRA:
1872        return N1;     // fold op(undef, arg2) -> undef
1873      case ISD::UDIV:
1874      case ISD::SDIV:
1875      case ISD::UREM:
1876      case ISD::SREM:
1877      case ISD::SRL:
1878      case ISD::SHL:
1879        if (!MVT::isVector(VT))
1880          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1881        // For vectors, we can't easily build an all zero vector, just return
1882        // the LHS.
1883        return N2;
1884      }
1885    }
1886  }
1887
1888  // Fold a bunch of operators when the RHS is undef.
1889  if (N2.getOpcode() == ISD::UNDEF) {
1890    switch (Opcode) {
1891    case ISD::ADD:
1892    case ISD::ADDC:
1893    case ISD::ADDE:
1894    case ISD::SUB:
1895    case ISD::FADD:
1896    case ISD::FSUB:
1897    case ISD::FMUL:
1898    case ISD::FDIV:
1899    case ISD::FREM:
1900    case ISD::UDIV:
1901    case ISD::SDIV:
1902    case ISD::UREM:
1903    case ISD::SREM:
1904    case ISD::XOR:
1905      return N2;       // fold op(arg1, undef) -> undef
1906    case ISD::MUL:
1907    case ISD::AND:
1908    case ISD::SRL:
1909    case ISD::SHL:
1910      if (!MVT::isVector(VT))
1911        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1912      // For vectors, we can't easily build an all zero vector, just return
1913      // the LHS.
1914      return N1;
1915    case ISD::OR:
1916      if (!MVT::isVector(VT))
1917        return getConstant(MVT::getIntVTBitMask(VT), VT);
1918      // For vectors, we can't easily build an all one vector, just return
1919      // the LHS.
1920      return N1;
1921    case ISD::SRA:
1922      return N1;
1923    }
1924  }
1925
1926  // Fold operations.
1927  switch (Opcode) {
1928  case ISD::TokenFactor:
1929    // Fold trivial token factors.
1930    if (N1.getOpcode() == ISD::EntryToken) return N2;
1931    if (N2.getOpcode() == ISD::EntryToken) return N1;
1932    break;
1933
1934  case ISD::AND:
1935    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1936    // worth handling here.
1937    if (N2C && N2C->getValue() == 0)
1938      return N2;
1939    break;
1940  case ISD::OR:
1941  case ISD::XOR:
1942    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1943    // worth handling here.
1944    if (N2C && N2C->getValue() == 0)
1945      return N1;
1946    break;
1947  case ISD::FP_ROUND_INREG:
1948    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1949    break;
1950  case ISD::SIGN_EXTEND_INREG: {
1951    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1952    if (EVT == VT) return N1;  // Not actually extending
1953    break;
1954  }
1955  case ISD::EXTRACT_ELEMENT:
1956    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1957
1958    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
1959    // 64-bit integers into 32-bit parts.  Instead of building the extract of
1960    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
1961    if (N1.getOpcode() == ISD::BUILD_PAIR)
1962      return N1.getOperand(N2C->getValue());
1963
1964    // EXTRACT_ELEMENT of a constant int is also very common.
1965    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
1966      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
1967      return getConstant(C->getValue() >> Shift, VT);
1968    }
1969    break;
1970
1971  // FIXME: figure out how to safely handle things like
1972  // int foo(int x) { return 1 << (x & 255); }
1973  // int bar() { return foo(256); }
1974#if 0
1975  case ISD::SHL:
1976  case ISD::SRL:
1977  case ISD::SRA:
1978    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1979        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1980      return getNode(Opcode, VT, N1, N2.getOperand(0));
1981    else if (N2.getOpcode() == ISD::AND)
1982      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1983        // If the and is only masking out bits that cannot effect the shift,
1984        // eliminate the and.
1985        unsigned NumBits = MVT::getSizeInBits(VT);
1986        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1987          return getNode(Opcode, VT, N1, N2.getOperand(0));
1988      }
1989    break;
1990#endif
1991  }
1992
1993  // Memoize this node if possible.
1994  SDNode *N;
1995  SDVTList VTs = getVTList(VT);
1996  if (VT != MVT::Flag) {
1997    SDOperand Ops[] = { N1, N2 };
1998    FoldingSetNodeID ID;
1999    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2000    void *IP = 0;
2001    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2002      return SDOperand(E, 0);
2003    N = new BinarySDNode(Opcode, VTs, N1, N2);
2004    CSEMap.InsertNode(N, IP);
2005  } else {
2006    N = new BinarySDNode(Opcode, VTs, N1, N2);
2007  }
2008
2009  AllNodes.push_back(N);
2010  return SDOperand(N, 0);
2011}
2012
2013SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2014                                SDOperand N1, SDOperand N2, SDOperand N3) {
2015  // Perform various simplifications.
2016  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2017  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2018  switch (Opcode) {
2019  case ISD::SETCC: {
2020    // Use FoldSetCC to simplify SETCC's.
2021    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2022    if (Simp.Val) return Simp;
2023    break;
2024  }
2025  case ISD::SELECT:
2026    if (N1C)
2027      if (N1C->getValue())
2028        return N2;             // select true, X, Y -> X
2029      else
2030        return N3;             // select false, X, Y -> Y
2031
2032    if (N2 == N3) return N2;   // select C, X, X -> X
2033    break;
2034  case ISD::BRCOND:
2035    if (N2C)
2036      if (N2C->getValue()) // Unconditional branch
2037        return getNode(ISD::BR, MVT::Other, N1, N3);
2038      else
2039        return N1;         // Never-taken branch
2040    break;
2041  case ISD::VECTOR_SHUFFLE:
2042    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2043           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2044           N3.getOpcode() == ISD::BUILD_VECTOR &&
2045           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2046           "Illegal VECTOR_SHUFFLE node!");
2047    break;
2048  case ISD::VBIT_CONVERT:
2049    // Fold vbit_convert nodes from a type to themselves.
2050    if (N1.getValueType() == MVT::Vector) {
2051      assert(isa<ConstantSDNode>(*(N1.Val->op_end()-2)) &&
2052             isa<VTSDNode>(*(N1.Val->op_end()-1)) && "Malformed vector input!");
2053      if (*(N1.Val->op_end()-2) == N2 && *(N1.Val->op_end()-1) == N3)
2054        return N1;
2055    }
2056    break;
2057  }
2058
2059  // Memoize node if it doesn't produce a flag.
2060  SDNode *N;
2061  SDVTList VTs = getVTList(VT);
2062  if (VT != MVT::Flag) {
2063    SDOperand Ops[] = { N1, N2, N3 };
2064    FoldingSetNodeID ID;
2065    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2066    void *IP = 0;
2067    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2068      return SDOperand(E, 0);
2069    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2070    CSEMap.InsertNode(N, IP);
2071  } else {
2072    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2073  }
2074  AllNodes.push_back(N);
2075  return SDOperand(N, 0);
2076}
2077
2078SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2079                                SDOperand N1, SDOperand N2, SDOperand N3,
2080                                SDOperand N4) {
2081  SDOperand Ops[] = { N1, N2, N3, N4 };
2082  return getNode(Opcode, VT, Ops, 4);
2083}
2084
2085SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2086                                SDOperand N1, SDOperand N2, SDOperand N3,
2087                                SDOperand N4, SDOperand N5) {
2088  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2089  return getNode(Opcode, VT, Ops, 5);
2090}
2091
2092SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2093                                SDOperand Chain, SDOperand Ptr,
2094                                const Value *SV, int SVOffset,
2095                                bool isVolatile, unsigned Alignment) {
2096  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2097    const Type *Ty = 0;
2098    if (VT != MVT::Vector && VT != MVT::iPTR) {
2099      Ty = MVT::getTypeForValueType(VT);
2100    } else if (SV) {
2101      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2102      assert(PT && "Value for load must be a pointer");
2103      Ty = PT->getElementType();
2104    }
2105    assert(Ty && "Could not get type information for load");
2106    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2107  }
2108  SDVTList VTs = getVTList(VT, MVT::Other);
2109  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2110  SDOperand Ops[] = { Chain, Ptr, Undef };
2111  FoldingSetNodeID ID;
2112  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2113  ID.AddInteger(ISD::UNINDEXED);
2114  ID.AddInteger(ISD::NON_EXTLOAD);
2115  ID.AddInteger(VT);
2116  ID.AddPointer(SV);
2117  ID.AddInteger(SVOffset);
2118  ID.AddInteger(Alignment);
2119  ID.AddInteger(isVolatile);
2120  void *IP = 0;
2121  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2122    return SDOperand(E, 0);
2123  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2124                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2125                             isVolatile);
2126  CSEMap.InsertNode(N, IP);
2127  AllNodes.push_back(N);
2128  return SDOperand(N, 0);
2129}
2130
2131SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2132                                   SDOperand Chain, SDOperand Ptr,
2133                                   const Value *SV,
2134                                   int SVOffset, MVT::ValueType EVT,
2135                                   bool isVolatile, unsigned Alignment) {
2136  // If they are asking for an extending load from/to the same thing, return a
2137  // normal load.
2138  if (VT == EVT)
2139    ExtType = ISD::NON_EXTLOAD;
2140
2141  if (MVT::isVector(VT))
2142    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2143  else
2144    assert(EVT < VT && "Should only be an extending load, not truncating!");
2145  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2146         "Cannot sign/zero extend a FP/Vector load!");
2147  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2148         "Cannot convert from FP to Int or Int -> FP!");
2149
2150  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2151    const Type *Ty = 0;
2152    if (VT != MVT::Vector && VT != MVT::iPTR) {
2153      Ty = MVT::getTypeForValueType(VT);
2154    } else if (SV) {
2155      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2156      assert(PT && "Value for load must be a pointer");
2157      Ty = PT->getElementType();
2158    }
2159    assert(Ty && "Could not get type information for load");
2160    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2161  }
2162  SDVTList VTs = getVTList(VT, MVT::Other);
2163  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2164  SDOperand Ops[] = { Chain, Ptr, Undef };
2165  FoldingSetNodeID ID;
2166  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2167  ID.AddInteger(ISD::UNINDEXED);
2168  ID.AddInteger(ExtType);
2169  ID.AddInteger(EVT);
2170  ID.AddPointer(SV);
2171  ID.AddInteger(SVOffset);
2172  ID.AddInteger(Alignment);
2173  ID.AddInteger(isVolatile);
2174  void *IP = 0;
2175  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2176    return SDOperand(E, 0);
2177  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2178                             SV, SVOffset, Alignment, isVolatile);
2179  CSEMap.InsertNode(N, IP);
2180  AllNodes.push_back(N);
2181  return SDOperand(N, 0);
2182}
2183
2184SDOperand
2185SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2186                             SDOperand Offset, ISD::MemIndexedMode AM) {
2187  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2188  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2189         "Load is already a indexed load!");
2190  MVT::ValueType VT = OrigLoad.getValueType();
2191  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2192  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2193  FoldingSetNodeID ID;
2194  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2195  ID.AddInteger(AM);
2196  ID.AddInteger(LD->getExtensionType());
2197  ID.AddInteger(LD->getLoadedVT());
2198  ID.AddPointer(LD->getSrcValue());
2199  ID.AddInteger(LD->getSrcValueOffset());
2200  ID.AddInteger(LD->getAlignment());
2201  ID.AddInteger(LD->isVolatile());
2202  void *IP = 0;
2203  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2204    return SDOperand(E, 0);
2205  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2206                             LD->getExtensionType(), LD->getLoadedVT(),
2207                             LD->getSrcValue(), LD->getSrcValueOffset(),
2208                             LD->getAlignment(), LD->isVolatile());
2209  CSEMap.InsertNode(N, IP);
2210  AllNodes.push_back(N);
2211  return SDOperand(N, 0);
2212}
2213
2214SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
2215                                   SDOperand Chain, SDOperand Ptr,
2216                                   SDOperand SV) {
2217  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
2218                      getValueType(EVT) };
2219  return getNode(ISD::VLOAD, getVTList(MVT::Vector, MVT::Other), Ops, 5);
2220}
2221
2222SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2223                                 SDOperand Ptr, const Value *SV, int SVOffset,
2224                                 bool isVolatile, unsigned Alignment) {
2225  MVT::ValueType VT = Val.getValueType();
2226
2227  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2228    const Type *Ty = 0;
2229    if (VT != MVT::Vector && VT != MVT::iPTR) {
2230      Ty = MVT::getTypeForValueType(VT);
2231    } else if (SV) {
2232      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2233      assert(PT && "Value for store must be a pointer");
2234      Ty = PT->getElementType();
2235    }
2236    assert(Ty && "Could not get type information for store");
2237    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2238  }
2239  SDVTList VTs = getVTList(MVT::Other);
2240  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2241  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2242  FoldingSetNodeID ID;
2243  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2244  ID.AddInteger(ISD::UNINDEXED);
2245  ID.AddInteger(false);
2246  ID.AddInteger(VT);
2247  ID.AddPointer(SV);
2248  ID.AddInteger(SVOffset);
2249  ID.AddInteger(Alignment);
2250  ID.AddInteger(isVolatile);
2251  void *IP = 0;
2252  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2253    return SDOperand(E, 0);
2254  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2255                              VT, SV, SVOffset, Alignment, isVolatile);
2256  CSEMap.InsertNode(N, IP);
2257  AllNodes.push_back(N);
2258  return SDOperand(N, 0);
2259}
2260
2261SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2262                                      SDOperand Ptr, const Value *SV,
2263                                      int SVOffset, MVT::ValueType SVT,
2264                                      bool isVolatile, unsigned Alignment) {
2265  MVT::ValueType VT = Val.getValueType();
2266  bool isTrunc = VT != SVT;
2267
2268  assert(VT > SVT && "Not a truncation?");
2269  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2270         "Can't do FP-INT conversion!");
2271
2272  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2273    const Type *Ty = 0;
2274    if (VT != MVT::Vector && VT != MVT::iPTR) {
2275      Ty = MVT::getTypeForValueType(VT);
2276    } else if (SV) {
2277      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2278      assert(PT && "Value for store must be a pointer");
2279      Ty = PT->getElementType();
2280    }
2281    assert(Ty && "Could not get type information for store");
2282    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2283  }
2284  SDVTList VTs = getVTList(MVT::Other);
2285  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2286  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2287  FoldingSetNodeID ID;
2288  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2289  ID.AddInteger(ISD::UNINDEXED);
2290  ID.AddInteger(isTrunc);
2291  ID.AddInteger(SVT);
2292  ID.AddPointer(SV);
2293  ID.AddInteger(SVOffset);
2294  ID.AddInteger(Alignment);
2295  ID.AddInteger(isVolatile);
2296  void *IP = 0;
2297  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2298    return SDOperand(E, 0);
2299  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2300                              SVT, SV, SVOffset, Alignment, isVolatile);
2301  CSEMap.InsertNode(N, IP);
2302  AllNodes.push_back(N);
2303  return SDOperand(N, 0);
2304}
2305
2306SDOperand
2307SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2308                              SDOperand Offset, ISD::MemIndexedMode AM) {
2309  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2310  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2311         "Store is already a indexed store!");
2312  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2313  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2314  FoldingSetNodeID ID;
2315  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2316  ID.AddInteger(AM);
2317  ID.AddInteger(ST->isTruncatingStore());
2318  ID.AddInteger(ST->getStoredVT());
2319  ID.AddPointer(ST->getSrcValue());
2320  ID.AddInteger(ST->getSrcValueOffset());
2321  ID.AddInteger(ST->getAlignment());
2322  ID.AddInteger(ST->isVolatile());
2323  void *IP = 0;
2324  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2325    return SDOperand(E, 0);
2326  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2327                              ST->isTruncatingStore(), ST->getStoredVT(),
2328                              ST->getSrcValue(), ST->getSrcValueOffset(),
2329                              ST->getAlignment(), ST->isVolatile());
2330  CSEMap.InsertNode(N, IP);
2331  AllNodes.push_back(N);
2332  return SDOperand(N, 0);
2333}
2334
2335SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2336                                 SDOperand Chain, SDOperand Ptr,
2337                                 SDOperand SV) {
2338  SDOperand Ops[] = { Chain, Ptr, SV };
2339  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2340}
2341
2342SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2343                                const SDOperand *Ops, unsigned NumOps) {
2344  switch (NumOps) {
2345  case 0: return getNode(Opcode, VT);
2346  case 1: return getNode(Opcode, VT, Ops[0]);
2347  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2348  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2349  default: break;
2350  }
2351
2352  switch (Opcode) {
2353  default: break;
2354  case ISD::SELECT_CC: {
2355    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2356    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2357           "LHS and RHS of condition must have same type!");
2358    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2359           "True and False arms of SelectCC must have same type!");
2360    assert(Ops[2].getValueType() == VT &&
2361           "select_cc node must be of same type as true and false value!");
2362    break;
2363  }
2364  case ISD::BR_CC: {
2365    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2366    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2367           "LHS/RHS of comparison should match types!");
2368    break;
2369  }
2370  }
2371
2372  // Memoize nodes.
2373  SDNode *N;
2374  SDVTList VTs = getVTList(VT);
2375  if (VT != MVT::Flag) {
2376    FoldingSetNodeID ID;
2377    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2378    void *IP = 0;
2379    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2380      return SDOperand(E, 0);
2381    N = new SDNode(Opcode, VTs, Ops, NumOps);
2382    CSEMap.InsertNode(N, IP);
2383  } else {
2384    N = new SDNode(Opcode, VTs, Ops, NumOps);
2385  }
2386  AllNodes.push_back(N);
2387  return SDOperand(N, 0);
2388}
2389
2390SDOperand SelectionDAG::getNode(unsigned Opcode,
2391                                std::vector<MVT::ValueType> &ResultTys,
2392                                const SDOperand *Ops, unsigned NumOps) {
2393  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2394                 Ops, NumOps);
2395}
2396
2397SDOperand SelectionDAG::getNode(unsigned Opcode,
2398                                const MVT::ValueType *VTs, unsigned NumVTs,
2399                                const SDOperand *Ops, unsigned NumOps) {
2400  if (NumVTs == 1)
2401    return getNode(Opcode, VTs[0], Ops, NumOps);
2402  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2403}
2404
2405SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2406                                const SDOperand *Ops, unsigned NumOps) {
2407  if (VTList.NumVTs == 1)
2408    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2409
2410  switch (Opcode) {
2411  // FIXME: figure out how to safely handle things like
2412  // int foo(int x) { return 1 << (x & 255); }
2413  // int bar() { return foo(256); }
2414#if 0
2415  case ISD::SRA_PARTS:
2416  case ISD::SRL_PARTS:
2417  case ISD::SHL_PARTS:
2418    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2419        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2420      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2421    else if (N3.getOpcode() == ISD::AND)
2422      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2423        // If the and is only masking out bits that cannot effect the shift,
2424        // eliminate the and.
2425        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2426        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2427          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2428      }
2429    break;
2430#endif
2431  }
2432
2433  // Memoize the node unless it returns a flag.
2434  SDNode *N;
2435  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2436    FoldingSetNodeID ID;
2437    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2438    void *IP = 0;
2439    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2440      return SDOperand(E, 0);
2441    if (NumOps == 1)
2442      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2443    else if (NumOps == 2)
2444      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2445    else if (NumOps == 3)
2446      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2447    else
2448      N = new SDNode(Opcode, VTList, Ops, NumOps);
2449    CSEMap.InsertNode(N, IP);
2450  } else {
2451    if (NumOps == 1)
2452      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2453    else if (NumOps == 2)
2454      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2455    else if (NumOps == 3)
2456      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2457    else
2458      N = new SDNode(Opcode, VTList, Ops, NumOps);
2459  }
2460  AllNodes.push_back(N);
2461  return SDOperand(N, 0);
2462}
2463
2464SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2465  return makeVTList(SDNode::getValueTypeList(VT), 1);
2466}
2467
2468SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2469  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2470       E = VTList.end(); I != E; ++I) {
2471    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2472      return makeVTList(&(*I)[0], 2);
2473  }
2474  std::vector<MVT::ValueType> V;
2475  V.push_back(VT1);
2476  V.push_back(VT2);
2477  VTList.push_front(V);
2478  return makeVTList(&(*VTList.begin())[0], 2);
2479}
2480SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2481                                 MVT::ValueType VT3) {
2482  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2483       E = VTList.end(); I != E; ++I) {
2484    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2485        (*I)[2] == VT3)
2486      return makeVTList(&(*I)[0], 3);
2487  }
2488  std::vector<MVT::ValueType> V;
2489  V.push_back(VT1);
2490  V.push_back(VT2);
2491  V.push_back(VT3);
2492  VTList.push_front(V);
2493  return makeVTList(&(*VTList.begin())[0], 3);
2494}
2495
2496SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2497  switch (NumVTs) {
2498    case 0: assert(0 && "Cannot have nodes without results!");
2499    case 1: return makeVTList(SDNode::getValueTypeList(VTs[0]), 1);
2500    case 2: return getVTList(VTs[0], VTs[1]);
2501    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2502    default: break;
2503  }
2504
2505  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2506       E = VTList.end(); I != E; ++I) {
2507    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2508
2509    bool NoMatch = false;
2510    for (unsigned i = 2; i != NumVTs; ++i)
2511      if (VTs[i] != (*I)[i]) {
2512        NoMatch = true;
2513        break;
2514      }
2515    if (!NoMatch)
2516      return makeVTList(&*I->begin(), NumVTs);
2517  }
2518
2519  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2520  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2521}
2522
2523
2524/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2525/// specified operands.  If the resultant node already exists in the DAG,
2526/// this does not modify the specified node, instead it returns the node that
2527/// already exists.  If the resultant node does not exist in the DAG, the
2528/// input node is returned.  As a degenerate case, if you specify the same
2529/// input operands as the node already has, the input node is returned.
2530SDOperand SelectionDAG::
2531UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2532  SDNode *N = InN.Val;
2533  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2534
2535  // Check to see if there is no change.
2536  if (Op == N->getOperand(0)) return InN;
2537
2538  // See if the modified node already exists.
2539  void *InsertPos = 0;
2540  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2541    return SDOperand(Existing, InN.ResNo);
2542
2543  // Nope it doesn't.  Remove the node from it's current place in the maps.
2544  if (InsertPos)
2545    RemoveNodeFromCSEMaps(N);
2546
2547  // Now we update the operands.
2548  N->OperandList[0].Val->removeUser(N);
2549  Op.Val->addUser(N);
2550  N->OperandList[0] = Op;
2551
2552  // If this gets put into a CSE map, add it.
2553  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2554  return InN;
2555}
2556
2557SDOperand SelectionDAG::
2558UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2559  SDNode *N = InN.Val;
2560  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2561
2562  // Check to see if there is no change.
2563  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2564    return InN;   // No operands changed, just return the input node.
2565
2566  // See if the modified node already exists.
2567  void *InsertPos = 0;
2568  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2569    return SDOperand(Existing, InN.ResNo);
2570
2571  // Nope it doesn't.  Remove the node from it's current place in the maps.
2572  if (InsertPos)
2573    RemoveNodeFromCSEMaps(N);
2574
2575  // Now we update the operands.
2576  if (N->OperandList[0] != Op1) {
2577    N->OperandList[0].Val->removeUser(N);
2578    Op1.Val->addUser(N);
2579    N->OperandList[0] = Op1;
2580  }
2581  if (N->OperandList[1] != Op2) {
2582    N->OperandList[1].Val->removeUser(N);
2583    Op2.Val->addUser(N);
2584    N->OperandList[1] = Op2;
2585  }
2586
2587  // If this gets put into a CSE map, add it.
2588  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2589  return InN;
2590}
2591
2592SDOperand SelectionDAG::
2593UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2594  SDOperand Ops[] = { Op1, Op2, Op3 };
2595  return UpdateNodeOperands(N, Ops, 3);
2596}
2597
2598SDOperand SelectionDAG::
2599UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2600                   SDOperand Op3, SDOperand Op4) {
2601  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2602  return UpdateNodeOperands(N, Ops, 4);
2603}
2604
2605SDOperand SelectionDAG::
2606UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2607                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2608  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2609  return UpdateNodeOperands(N, Ops, 5);
2610}
2611
2612
2613SDOperand SelectionDAG::
2614UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2615  SDNode *N = InN.Val;
2616  assert(N->getNumOperands() == NumOps &&
2617         "Update with wrong number of operands");
2618
2619  // Check to see if there is no change.
2620  bool AnyChange = false;
2621  for (unsigned i = 0; i != NumOps; ++i) {
2622    if (Ops[i] != N->getOperand(i)) {
2623      AnyChange = true;
2624      break;
2625    }
2626  }
2627
2628  // No operands changed, just return the input node.
2629  if (!AnyChange) return InN;
2630
2631  // See if the modified node already exists.
2632  void *InsertPos = 0;
2633  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2634    return SDOperand(Existing, InN.ResNo);
2635
2636  // Nope it doesn't.  Remove the node from it's current place in the maps.
2637  if (InsertPos)
2638    RemoveNodeFromCSEMaps(N);
2639
2640  // Now we update the operands.
2641  for (unsigned i = 0; i != NumOps; ++i) {
2642    if (N->OperandList[i] != Ops[i]) {
2643      N->OperandList[i].Val->removeUser(N);
2644      Ops[i].Val->addUser(N);
2645      N->OperandList[i] = Ops[i];
2646    }
2647  }
2648
2649  // If this gets put into a CSE map, add it.
2650  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2651  return InN;
2652}
2653
2654
2655/// MorphNodeTo - This frees the operands of the current node, resets the
2656/// opcode, types, and operands to the specified value.  This should only be
2657/// used by the SelectionDAG class.
2658void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2659                         const SDOperand *Ops, unsigned NumOps) {
2660  NodeType = Opc;
2661  ValueList = L.VTs;
2662  NumValues = L.NumVTs;
2663
2664  // Clear the operands list, updating used nodes to remove this from their
2665  // use list.
2666  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2667    I->Val->removeUser(this);
2668
2669  // If NumOps is larger than the # of operands we currently have, reallocate
2670  // the operand list.
2671  if (NumOps > NumOperands) {
2672    if (OperandsNeedDelete)
2673      delete [] OperandList;
2674    OperandList = new SDOperand[NumOps];
2675    OperandsNeedDelete = true;
2676  }
2677
2678  // Assign the new operands.
2679  NumOperands = NumOps;
2680
2681  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2682    OperandList[i] = Ops[i];
2683    SDNode *N = OperandList[i].Val;
2684    N->Uses.push_back(this);
2685  }
2686}
2687
2688/// SelectNodeTo - These are used for target selectors to *mutate* the
2689/// specified node to have the specified return type, Target opcode, and
2690/// operands.  Note that target opcodes are stored as
2691/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2692///
2693/// Note that SelectNodeTo returns the resultant node.  If there is already a
2694/// node of the specified opcode and operands, it returns that node instead of
2695/// the current one.
2696SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2697                                   MVT::ValueType VT) {
2698  SDVTList VTs = getVTList(VT);
2699  FoldingSetNodeID ID;
2700  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2701  void *IP = 0;
2702  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2703    return ON;
2704
2705  RemoveNodeFromCSEMaps(N);
2706
2707  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2708
2709  CSEMap.InsertNode(N, IP);
2710  return N;
2711}
2712
2713SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2714                                   MVT::ValueType VT, SDOperand Op1) {
2715  // If an identical node already exists, use it.
2716  SDVTList VTs = getVTList(VT);
2717  SDOperand Ops[] = { Op1 };
2718
2719  FoldingSetNodeID ID;
2720  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2721  void *IP = 0;
2722  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2723    return ON;
2724
2725  RemoveNodeFromCSEMaps(N);
2726  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2727  CSEMap.InsertNode(N, IP);
2728  return N;
2729}
2730
2731SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2732                                   MVT::ValueType VT, SDOperand Op1,
2733                                   SDOperand Op2) {
2734  // If an identical node already exists, use it.
2735  SDVTList VTs = getVTList(VT);
2736  SDOperand Ops[] = { Op1, Op2 };
2737
2738  FoldingSetNodeID ID;
2739  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2740  void *IP = 0;
2741  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2742    return ON;
2743
2744  RemoveNodeFromCSEMaps(N);
2745
2746  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2747
2748  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2749  return N;
2750}
2751
2752SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2753                                   MVT::ValueType VT, SDOperand Op1,
2754                                   SDOperand Op2, SDOperand Op3) {
2755  // If an identical node already exists, use it.
2756  SDVTList VTs = getVTList(VT);
2757  SDOperand Ops[] = { Op1, Op2, Op3 };
2758  FoldingSetNodeID ID;
2759  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2760  void *IP = 0;
2761  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2762    return ON;
2763
2764  RemoveNodeFromCSEMaps(N);
2765
2766  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2767
2768  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2769  return N;
2770}
2771
2772SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2773                                   MVT::ValueType VT, const SDOperand *Ops,
2774                                   unsigned NumOps) {
2775  // If an identical node already exists, use it.
2776  SDVTList VTs = getVTList(VT);
2777  FoldingSetNodeID ID;
2778  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2779  void *IP = 0;
2780  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2781    return ON;
2782
2783  RemoveNodeFromCSEMaps(N);
2784  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2785
2786  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2787  return N;
2788}
2789
2790SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2791                                   MVT::ValueType VT1, MVT::ValueType VT2,
2792                                   SDOperand Op1, SDOperand Op2) {
2793  SDVTList VTs = getVTList(VT1, VT2);
2794  FoldingSetNodeID ID;
2795  SDOperand Ops[] = { Op1, Op2 };
2796  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2797  void *IP = 0;
2798  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2799    return ON;
2800
2801  RemoveNodeFromCSEMaps(N);
2802  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2803  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2804  return N;
2805}
2806
2807SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2808                                   MVT::ValueType VT1, MVT::ValueType VT2,
2809                                   SDOperand Op1, SDOperand Op2,
2810                                   SDOperand Op3) {
2811  // If an identical node already exists, use it.
2812  SDVTList VTs = getVTList(VT1, VT2);
2813  SDOperand Ops[] = { Op1, Op2, Op3 };
2814  FoldingSetNodeID ID;
2815  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2816  void *IP = 0;
2817  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2818    return ON;
2819
2820  RemoveNodeFromCSEMaps(N);
2821
2822  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2823  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2824  return N;
2825}
2826
2827
2828/// getTargetNode - These are used for target selectors to create a new node
2829/// with specified return type(s), target opcode, and operands.
2830///
2831/// Note that getTargetNode returns the resultant node.  If there is already a
2832/// node of the specified opcode and operands, it returns that node instead of
2833/// the current one.
2834SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2835  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2836}
2837SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2838                                    SDOperand Op1) {
2839  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2840}
2841SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2842                                    SDOperand Op1, SDOperand Op2) {
2843  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2844}
2845SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2846                                    SDOperand Op1, SDOperand Op2,
2847                                    SDOperand Op3) {
2848  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2849}
2850SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2851                                    const SDOperand *Ops, unsigned NumOps) {
2852  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2853}
2854SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2855                                    MVT::ValueType VT2, SDOperand Op1) {
2856  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2857  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2858}
2859SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2860                                    MVT::ValueType VT2, SDOperand Op1,
2861                                    SDOperand Op2) {
2862  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2863  SDOperand Ops[] = { Op1, Op2 };
2864  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2865}
2866SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2867                                    MVT::ValueType VT2, SDOperand Op1,
2868                                    SDOperand Op2, SDOperand Op3) {
2869  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2870  SDOperand Ops[] = { Op1, Op2, Op3 };
2871  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2872}
2873SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2874                                    MVT::ValueType VT2,
2875                                    const SDOperand *Ops, unsigned NumOps) {
2876  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2877  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2878}
2879SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2880                                    MVT::ValueType VT2, MVT::ValueType VT3,
2881                                    SDOperand Op1, SDOperand Op2) {
2882  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2883  SDOperand Ops[] = { Op1, Op2 };
2884  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2885}
2886SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2887                                    MVT::ValueType VT2, MVT::ValueType VT3,
2888                                    SDOperand Op1, SDOperand Op2,
2889                                    SDOperand Op3) {
2890  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2891  SDOperand Ops[] = { Op1, Op2, Op3 };
2892  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
2893}
2894SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2895                                    MVT::ValueType VT2, MVT::ValueType VT3,
2896                                    const SDOperand *Ops, unsigned NumOps) {
2897  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2898  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2899}
2900
2901/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2902/// This can cause recursive merging of nodes in the DAG.
2903///
2904/// This version assumes From/To have a single result value.
2905///
2906void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2907                                      std::vector<SDNode*> *Deleted) {
2908  SDNode *From = FromN.Val, *To = ToN.Val;
2909  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2910         "Cannot replace with this method!");
2911  assert(From != To && "Cannot replace uses of with self");
2912
2913  while (!From->use_empty()) {
2914    // Process users until they are all gone.
2915    SDNode *U = *From->use_begin();
2916
2917    // This node is about to morph, remove its old self from the CSE maps.
2918    RemoveNodeFromCSEMaps(U);
2919
2920    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2921         I != E; ++I)
2922      if (I->Val == From) {
2923        From->removeUser(U);
2924        I->Val = To;
2925        To->addUser(U);
2926      }
2927
2928    // Now that we have modified U, add it back to the CSE maps.  If it already
2929    // exists there, recursively merge the results together.
2930    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2931      ReplaceAllUsesWith(U, Existing, Deleted);
2932      // U is now dead.
2933      if (Deleted) Deleted->push_back(U);
2934      DeleteNodeNotInCSEMaps(U);
2935    }
2936  }
2937}
2938
2939/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2940/// This can cause recursive merging of nodes in the DAG.
2941///
2942/// This version assumes From/To have matching types and numbers of result
2943/// values.
2944///
2945void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2946                                      std::vector<SDNode*> *Deleted) {
2947  assert(From != To && "Cannot replace uses of with self");
2948  assert(From->getNumValues() == To->getNumValues() &&
2949         "Cannot use this version of ReplaceAllUsesWith!");
2950  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2951    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2952    return;
2953  }
2954
2955  while (!From->use_empty()) {
2956    // Process users until they are all gone.
2957    SDNode *U = *From->use_begin();
2958
2959    // This node is about to morph, remove its old self from the CSE maps.
2960    RemoveNodeFromCSEMaps(U);
2961
2962    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2963         I != E; ++I)
2964      if (I->Val == From) {
2965        From->removeUser(U);
2966        I->Val = To;
2967        To->addUser(U);
2968      }
2969
2970    // Now that we have modified U, add it back to the CSE maps.  If it already
2971    // exists there, recursively merge the results together.
2972    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2973      ReplaceAllUsesWith(U, Existing, Deleted);
2974      // U is now dead.
2975      if (Deleted) Deleted->push_back(U);
2976      DeleteNodeNotInCSEMaps(U);
2977    }
2978  }
2979}
2980
2981/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2982/// This can cause recursive merging of nodes in the DAG.
2983///
2984/// This version can replace From with any result values.  To must match the
2985/// number and types of values returned by From.
2986void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2987                                      const SDOperand *To,
2988                                      std::vector<SDNode*> *Deleted) {
2989  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
2990    // Degenerate case handled above.
2991    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2992    return;
2993  }
2994
2995  while (!From->use_empty()) {
2996    // Process users until they are all gone.
2997    SDNode *U = *From->use_begin();
2998
2999    // This node is about to morph, remove its old self from the CSE maps.
3000    RemoveNodeFromCSEMaps(U);
3001
3002    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3003         I != E; ++I)
3004      if (I->Val == From) {
3005        const SDOperand &ToOp = To[I->ResNo];
3006        From->removeUser(U);
3007        *I = ToOp;
3008        ToOp.Val->addUser(U);
3009      }
3010
3011    // Now that we have modified U, add it back to the CSE maps.  If it already
3012    // exists there, recursively merge the results together.
3013    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3014      ReplaceAllUsesWith(U, Existing, Deleted);
3015      // U is now dead.
3016      if (Deleted) Deleted->push_back(U);
3017      DeleteNodeNotInCSEMaps(U);
3018    }
3019  }
3020}
3021
3022/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3023/// uses of other values produced by From.Val alone.  The Deleted vector is
3024/// handled the same was as for ReplaceAllUsesWith.
3025void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3026                                             std::vector<SDNode*> &Deleted) {
3027  assert(From != To && "Cannot replace a value with itself");
3028  // Handle the simple, trivial, case efficiently.
3029  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3030    ReplaceAllUsesWith(From, To, &Deleted);
3031    return;
3032  }
3033
3034  // Get all of the users of From.Val.  We want these in a nice,
3035  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3036  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3037
3038  while (!Users.empty()) {
3039    // We know that this user uses some value of From.  If it is the right
3040    // value, update it.
3041    SDNode *User = Users.back();
3042    Users.pop_back();
3043
3044    for (SDOperand *Op = User->OperandList,
3045         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
3046      if (*Op == From) {
3047        // Okay, we know this user needs to be updated.  Remove its old self
3048        // from the CSE maps.
3049        RemoveNodeFromCSEMaps(User);
3050
3051        // Update all operands that match "From".
3052        for (; Op != E; ++Op) {
3053          if (*Op == From) {
3054            From.Val->removeUser(User);
3055            *Op = To;
3056            To.Val->addUser(User);
3057          }
3058        }
3059
3060        // Now that we have modified User, add it back to the CSE maps.  If it
3061        // already exists there, recursively merge the results together.
3062        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
3063          unsigned NumDeleted = Deleted.size();
3064          ReplaceAllUsesWith(User, Existing, &Deleted);
3065
3066          // User is now dead.
3067          Deleted.push_back(User);
3068          DeleteNodeNotInCSEMaps(User);
3069
3070          // We have to be careful here, because ReplaceAllUsesWith could have
3071          // deleted a user of From, which means there may be dangling pointers
3072          // in the "Users" setvector.  Scan over the deleted node pointers and
3073          // remove them from the setvector.
3074          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
3075            Users.remove(Deleted[i]);
3076        }
3077        break;   // Exit the operand scanning loop.
3078      }
3079    }
3080  }
3081}
3082
3083
3084/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3085/// their allnodes order. It returns the maximum id.
3086unsigned SelectionDAG::AssignNodeIds() {
3087  unsigned Id = 0;
3088  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3089    SDNode *N = I;
3090    N->setNodeId(Id++);
3091  }
3092  return Id;
3093}
3094
3095/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3096/// based on their topological order. It returns the maximum id and a vector
3097/// of the SDNodes* in assigned order by reference.
3098unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3099  unsigned DAGSize = AllNodes.size();
3100  std::vector<unsigned> InDegree(DAGSize);
3101  std::vector<SDNode*> Sources;
3102
3103  // Use a two pass approach to avoid using a std::map which is slow.
3104  unsigned Id = 0;
3105  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3106    SDNode *N = I;
3107    N->setNodeId(Id++);
3108    unsigned Degree = N->use_size();
3109    InDegree[N->getNodeId()] = Degree;
3110    if (Degree == 0)
3111      Sources.push_back(N);
3112  }
3113
3114  TopOrder.clear();
3115  while (!Sources.empty()) {
3116    SDNode *N = Sources.back();
3117    Sources.pop_back();
3118    TopOrder.push_back(N);
3119    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3120      SDNode *P = I->Val;
3121      unsigned Degree = --InDegree[P->getNodeId()];
3122      if (Degree == 0)
3123        Sources.push_back(P);
3124    }
3125  }
3126
3127  // Second pass, assign the actual topological order as node ids.
3128  Id = 0;
3129  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3130       TI != TE; ++TI)
3131    (*TI)->setNodeId(Id++);
3132
3133  return Id;
3134}
3135
3136
3137
3138//===----------------------------------------------------------------------===//
3139//                              SDNode Class
3140//===----------------------------------------------------------------------===//
3141
3142// Out-of-line virtual method to give class a home.
3143void SDNode::ANCHOR() {}
3144void UnarySDNode::ANCHOR() {}
3145void BinarySDNode::ANCHOR() {}
3146void TernarySDNode::ANCHOR() {}
3147void HandleSDNode::ANCHOR() {}
3148void StringSDNode::ANCHOR() {}
3149void ConstantSDNode::ANCHOR() {}
3150void ConstantFPSDNode::ANCHOR() {}
3151void GlobalAddressSDNode::ANCHOR() {}
3152void FrameIndexSDNode::ANCHOR() {}
3153void JumpTableSDNode::ANCHOR() {}
3154void ConstantPoolSDNode::ANCHOR() {}
3155void BasicBlockSDNode::ANCHOR() {}
3156void SrcValueSDNode::ANCHOR() {}
3157void RegisterSDNode::ANCHOR() {}
3158void ExternalSymbolSDNode::ANCHOR() {}
3159void CondCodeSDNode::ANCHOR() {}
3160void VTSDNode::ANCHOR() {}
3161void LoadSDNode::ANCHOR() {}
3162void StoreSDNode::ANCHOR() {}
3163
3164HandleSDNode::~HandleSDNode() {
3165  SDVTList VTs = { 0, 0 };
3166  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3167}
3168
3169GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3170                                         MVT::ValueType VT, int o)
3171  : SDNode(isa<GlobalVariable>(GA) &&
3172           dyn_cast<GlobalVariable>(GA)->isThreadLocal() ?
3173           // Thread Local
3174           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3175           // Non Thread Local
3176           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3177           getSDVTList(VT)), Offset(o) {
3178  TheGlobal = const_cast<GlobalValue*>(GA);
3179}
3180
3181/// Profile - Gather unique data for the node.
3182///
3183void SDNode::Profile(FoldingSetNodeID &ID) {
3184  AddNodeIDNode(ID, this);
3185}
3186
3187/// getValueTypeList - Return a pointer to the specified value type.
3188///
3189MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3190  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3191  VTs[VT] = VT;
3192  return &VTs[VT];
3193}
3194
3195/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3196/// indicated value.  This method ignores uses of other values defined by this
3197/// operation.
3198bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3199  assert(Value < getNumValues() && "Bad value!");
3200
3201  // If there is only one value, this is easy.
3202  if (getNumValues() == 1)
3203    return use_size() == NUses;
3204  if (Uses.size() < NUses) return false;
3205
3206  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3207
3208  SmallPtrSet<SDNode*, 32> UsersHandled;
3209
3210  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3211    SDNode *User = *UI;
3212    if (User->getNumOperands() == 1 ||
3213        UsersHandled.insert(User))     // First time we've seen this?
3214      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3215        if (User->getOperand(i) == TheValue) {
3216          if (NUses == 0)
3217            return false;   // too many uses
3218          --NUses;
3219        }
3220  }
3221
3222  // Found exactly the right number of uses?
3223  return NUses == 0;
3224}
3225
3226
3227/// isOnlyUse - Return true if this node is the only use of N.
3228///
3229bool SDNode::isOnlyUse(SDNode *N) const {
3230  bool Seen = false;
3231  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3232    SDNode *User = *I;
3233    if (User == this)
3234      Seen = true;
3235    else
3236      return false;
3237  }
3238
3239  return Seen;
3240}
3241
3242/// isOperand - Return true if this node is an operand of N.
3243///
3244bool SDOperand::isOperand(SDNode *N) const {
3245  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3246    if (*this == N->getOperand(i))
3247      return true;
3248  return false;
3249}
3250
3251bool SDNode::isOperand(SDNode *N) const {
3252  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3253    if (this == N->OperandList[i].Val)
3254      return true;
3255  return false;
3256}
3257
3258static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3259                            SmallPtrSet<SDNode *, 32> &Visited) {
3260  if (found || !Visited.insert(N))
3261    return;
3262
3263  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3264    SDNode *Op = N->getOperand(i).Val;
3265    if (Op == P) {
3266      found = true;
3267      return;
3268    }
3269    findPredecessor(Op, P, found, Visited);
3270  }
3271}
3272
3273/// isPredecessor - Return true if this node is a predecessor of N. This node
3274/// is either an operand of N or it can be reached by recursively traversing
3275/// up the operands.
3276/// NOTE: this is an expensive method. Use it carefully.
3277bool SDNode::isPredecessor(SDNode *N) const {
3278  SmallPtrSet<SDNode *, 32> Visited;
3279  bool found = false;
3280  findPredecessor(N, this, found, Visited);
3281  return found;
3282}
3283
3284uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3285  assert(Num < NumOperands && "Invalid child # of SDNode!");
3286  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3287}
3288
3289std::string SDNode::getOperationName(const SelectionDAG *G) const {
3290  switch (getOpcode()) {
3291  default:
3292    if (getOpcode() < ISD::BUILTIN_OP_END)
3293      return "<<Unknown DAG Node>>";
3294    else {
3295      if (G) {
3296        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3297          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3298            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3299
3300        TargetLowering &TLI = G->getTargetLoweringInfo();
3301        const char *Name =
3302          TLI.getTargetNodeName(getOpcode());
3303        if (Name) return Name;
3304      }
3305
3306      return "<<Unknown Target Node>>";
3307    }
3308
3309  case ISD::PCMARKER:      return "PCMarker";
3310  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3311  case ISD::SRCVALUE:      return "SrcValue";
3312  case ISD::EntryToken:    return "EntryToken";
3313  case ISD::TokenFactor:   return "TokenFactor";
3314  case ISD::AssertSext:    return "AssertSext";
3315  case ISD::AssertZext:    return "AssertZext";
3316
3317  case ISD::STRING:        return "String";
3318  case ISD::BasicBlock:    return "BasicBlock";
3319  case ISD::VALUETYPE:     return "ValueType";
3320  case ISD::Register:      return "Register";
3321
3322  case ISD::Constant:      return "Constant";
3323  case ISD::ConstantFP:    return "ConstantFP";
3324  case ISD::GlobalAddress: return "GlobalAddress";
3325  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3326  case ISD::FrameIndex:    return "FrameIndex";
3327  case ISD::JumpTable:     return "JumpTable";
3328  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3329  case ISD::RETURNADDR: return "RETURNADDR";
3330  case ISD::FRAMEADDR: return "FRAMEADDR";
3331  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3332  case ISD::EHSELECTION: return "EHSELECTION";
3333  case ISD::ConstantPool:  return "ConstantPool";
3334  case ISD::ExternalSymbol: return "ExternalSymbol";
3335  case ISD::INTRINSIC_WO_CHAIN: {
3336    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3337    return Intrinsic::getName((Intrinsic::ID)IID);
3338  }
3339  case ISD::INTRINSIC_VOID:
3340  case ISD::INTRINSIC_W_CHAIN: {
3341    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3342    return Intrinsic::getName((Intrinsic::ID)IID);
3343  }
3344
3345  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3346  case ISD::TargetConstant: return "TargetConstant";
3347  case ISD::TargetConstantFP:return "TargetConstantFP";
3348  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3349  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3350  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3351  case ISD::TargetJumpTable:  return "TargetJumpTable";
3352  case ISD::TargetConstantPool:  return "TargetConstantPool";
3353  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3354
3355  case ISD::CopyToReg:     return "CopyToReg";
3356  case ISD::CopyFromReg:   return "CopyFromReg";
3357  case ISD::UNDEF:         return "undef";
3358  case ISD::MERGE_VALUES:  return "mergevalues";
3359  case ISD::INLINEASM:     return "inlineasm";
3360  case ISD::LABEL:         return "label";
3361  case ISD::HANDLENODE:    return "handlenode";
3362  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3363  case ISD::CALL:          return "call";
3364
3365  // Unary operators
3366  case ISD::FABS:   return "fabs";
3367  case ISD::FNEG:   return "fneg";
3368  case ISD::FSQRT:  return "fsqrt";
3369  case ISD::FSIN:   return "fsin";
3370  case ISD::FCOS:   return "fcos";
3371  case ISD::FPOWI:  return "fpowi";
3372
3373  // Binary operators
3374  case ISD::ADD:    return "add";
3375  case ISD::SUB:    return "sub";
3376  case ISD::MUL:    return "mul";
3377  case ISD::MULHU:  return "mulhu";
3378  case ISD::MULHS:  return "mulhs";
3379  case ISD::SDIV:   return "sdiv";
3380  case ISD::UDIV:   return "udiv";
3381  case ISD::SREM:   return "srem";
3382  case ISD::UREM:   return "urem";
3383  case ISD::AND:    return "and";
3384  case ISD::OR:     return "or";
3385  case ISD::XOR:    return "xor";
3386  case ISD::SHL:    return "shl";
3387  case ISD::SRA:    return "sra";
3388  case ISD::SRL:    return "srl";
3389  case ISD::ROTL:   return "rotl";
3390  case ISD::ROTR:   return "rotr";
3391  case ISD::FADD:   return "fadd";
3392  case ISD::FSUB:   return "fsub";
3393  case ISD::FMUL:   return "fmul";
3394  case ISD::FDIV:   return "fdiv";
3395  case ISD::FREM:   return "frem";
3396  case ISD::FCOPYSIGN: return "fcopysign";
3397  case ISD::VADD:   return "vadd";
3398  case ISD::VSUB:   return "vsub";
3399  case ISD::VMUL:   return "vmul";
3400  case ISD::VSDIV:  return "vsdiv";
3401  case ISD::VUDIV:  return "vudiv";
3402  case ISD::VAND:   return "vand";
3403  case ISD::VOR:    return "vor";
3404  case ISD::VXOR:   return "vxor";
3405
3406  case ISD::SETCC:       return "setcc";
3407  case ISD::SELECT:      return "select";
3408  case ISD::SELECT_CC:   return "select_cc";
3409  case ISD::VSELECT:     return "vselect";
3410  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3411  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
3412  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3413  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
3414  case ISD::VCONCAT_VECTORS:     return "vconcat_vectors";
3415  case ISD::VEXTRACT_SUBVECTOR:  return "vextract_subvector";
3416  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3417  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
3418  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3419  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
3420  case ISD::VBIT_CONVERT:        return "vbit_convert";
3421  case ISD::CARRY_FALSE:         return "carry_false";
3422  case ISD::ADDC:        return "addc";
3423  case ISD::ADDE:        return "adde";
3424  case ISD::SUBC:        return "subc";
3425  case ISD::SUBE:        return "sube";
3426  case ISD::SHL_PARTS:   return "shl_parts";
3427  case ISD::SRA_PARTS:   return "sra_parts";
3428  case ISD::SRL_PARTS:   return "srl_parts";
3429
3430  // Conversion operators.
3431  case ISD::SIGN_EXTEND: return "sign_extend";
3432  case ISD::ZERO_EXTEND: return "zero_extend";
3433  case ISD::ANY_EXTEND:  return "any_extend";
3434  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3435  case ISD::TRUNCATE:    return "truncate";
3436  case ISD::FP_ROUND:    return "fp_round";
3437  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3438  case ISD::FP_EXTEND:   return "fp_extend";
3439
3440  case ISD::SINT_TO_FP:  return "sint_to_fp";
3441  case ISD::UINT_TO_FP:  return "uint_to_fp";
3442  case ISD::FP_TO_SINT:  return "fp_to_sint";
3443  case ISD::FP_TO_UINT:  return "fp_to_uint";
3444  case ISD::BIT_CONVERT: return "bit_convert";
3445
3446    // Control flow instructions
3447  case ISD::BR:      return "br";
3448  case ISD::BRIND:   return "brind";
3449  case ISD::BR_JT:   return "br_jt";
3450  case ISD::BRCOND:  return "brcond";
3451  case ISD::BR_CC:   return "br_cc";
3452  case ISD::RET:     return "ret";
3453  case ISD::CALLSEQ_START:  return "callseq_start";
3454  case ISD::CALLSEQ_END:    return "callseq_end";
3455
3456    // Other operators
3457  case ISD::LOAD:               return "load";
3458  case ISD::STORE:              return "store";
3459  case ISD::VLOAD:              return "vload";
3460  case ISD::VAARG:              return "vaarg";
3461  case ISD::VACOPY:             return "vacopy";
3462  case ISD::VAEND:              return "vaend";
3463  case ISD::VASTART:            return "vastart";
3464  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3465  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3466  case ISD::BUILD_PAIR:         return "build_pair";
3467  case ISD::STACKSAVE:          return "stacksave";
3468  case ISD::STACKRESTORE:       return "stackrestore";
3469
3470  // Block memory operations.
3471  case ISD::MEMSET:  return "memset";
3472  case ISD::MEMCPY:  return "memcpy";
3473  case ISD::MEMMOVE: return "memmove";
3474
3475  // Bit manipulation
3476  case ISD::BSWAP:   return "bswap";
3477  case ISD::CTPOP:   return "ctpop";
3478  case ISD::CTTZ:    return "cttz";
3479  case ISD::CTLZ:    return "ctlz";
3480
3481  // Debug info
3482  case ISD::LOCATION: return "location";
3483  case ISD::DEBUG_LOC: return "debug_loc";
3484
3485  case ISD::CONDCODE:
3486    switch (cast<CondCodeSDNode>(this)->get()) {
3487    default: assert(0 && "Unknown setcc condition!");
3488    case ISD::SETOEQ:  return "setoeq";
3489    case ISD::SETOGT:  return "setogt";
3490    case ISD::SETOGE:  return "setoge";
3491    case ISD::SETOLT:  return "setolt";
3492    case ISD::SETOLE:  return "setole";
3493    case ISD::SETONE:  return "setone";
3494
3495    case ISD::SETO:    return "seto";
3496    case ISD::SETUO:   return "setuo";
3497    case ISD::SETUEQ:  return "setue";
3498    case ISD::SETUGT:  return "setugt";
3499    case ISD::SETUGE:  return "setuge";
3500    case ISD::SETULT:  return "setult";
3501    case ISD::SETULE:  return "setule";
3502    case ISD::SETUNE:  return "setune";
3503
3504    case ISD::SETEQ:   return "seteq";
3505    case ISD::SETGT:   return "setgt";
3506    case ISD::SETGE:   return "setge";
3507    case ISD::SETLT:   return "setlt";
3508    case ISD::SETLE:   return "setle";
3509    case ISD::SETNE:   return "setne";
3510    }
3511  }
3512}
3513
3514const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3515  switch (AM) {
3516  default:
3517    return "";
3518  case ISD::PRE_INC:
3519    return "<pre-inc>";
3520  case ISD::PRE_DEC:
3521    return "<pre-dec>";
3522  case ISD::POST_INC:
3523    return "<post-inc>";
3524  case ISD::POST_DEC:
3525    return "<post-dec>";
3526  }
3527}
3528
3529void SDNode::dump() const { dump(0); }
3530void SDNode::dump(const SelectionDAG *G) const {
3531  cerr << (void*)this << ": ";
3532
3533  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3534    if (i) cerr << ",";
3535    if (getValueType(i) == MVT::Other)
3536      cerr << "ch";
3537    else
3538      cerr << MVT::getValueTypeString(getValueType(i));
3539  }
3540  cerr << " = " << getOperationName(G);
3541
3542  cerr << " ";
3543  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3544    if (i) cerr << ", ";
3545    cerr << (void*)getOperand(i).Val;
3546    if (unsigned RN = getOperand(i).ResNo)
3547      cerr << ":" << RN;
3548  }
3549
3550  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3551    cerr << "<" << CSDN->getValue() << ">";
3552  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3553    cerr << "<" << CSDN->getValue() << ">";
3554  } else if (const GlobalAddressSDNode *GADN =
3555             dyn_cast<GlobalAddressSDNode>(this)) {
3556    int offset = GADN->getOffset();
3557    cerr << "<";
3558    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3559    if (offset > 0)
3560      cerr << " + " << offset;
3561    else
3562      cerr << " " << offset;
3563  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3564    cerr << "<" << FIDN->getIndex() << ">";
3565  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3566    cerr << "<" << JTDN->getIndex() << ">";
3567  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3568    int offset = CP->getOffset();
3569    if (CP->isMachineConstantPoolEntry())
3570      cerr << "<" << *CP->getMachineCPVal() << ">";
3571    else
3572      cerr << "<" << *CP->getConstVal() << ">";
3573    if (offset > 0)
3574      cerr << " + " << offset;
3575    else
3576      cerr << " " << offset;
3577  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3578    cerr << "<";
3579    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3580    if (LBB)
3581      cerr << LBB->getName() << " ";
3582    cerr << (const void*)BBDN->getBasicBlock() << ">";
3583  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3584    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3585      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3586    } else {
3587      cerr << " #" << R->getReg();
3588    }
3589  } else if (const ExternalSymbolSDNode *ES =
3590             dyn_cast<ExternalSymbolSDNode>(this)) {
3591    cerr << "'" << ES->getSymbol() << "'";
3592  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3593    if (M->getValue())
3594      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3595    else
3596      cerr << "<null:" << M->getOffset() << ">";
3597  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3598    cerr << ":" << MVT::getValueTypeString(N->getVT());
3599  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3600    bool doExt = true;
3601    switch (LD->getExtensionType()) {
3602    default: doExt = false; break;
3603    case ISD::EXTLOAD:
3604      cerr << " <anyext ";
3605      break;
3606    case ISD::SEXTLOAD:
3607      cerr << " <sext ";
3608      break;
3609    case ISD::ZEXTLOAD:
3610      cerr << " <zext ";
3611      break;
3612    }
3613    if (doExt)
3614      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3615
3616    const char *AM = getIndexedModeName(LD->getAddressingMode());
3617    if (AM != "")
3618      cerr << " " << AM;
3619  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3620    if (ST->isTruncatingStore())
3621      cerr << " <trunc "
3622           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3623
3624    const char *AM = getIndexedModeName(ST->getAddressingMode());
3625    if (AM != "")
3626      cerr << " " << AM;
3627  }
3628}
3629
3630static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3631  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3632    if (N->getOperand(i).Val->hasOneUse())
3633      DumpNodes(N->getOperand(i).Val, indent+2, G);
3634    else
3635      cerr << "\n" << std::string(indent+2, ' ')
3636           << (void*)N->getOperand(i).Val << ": <multiple use>";
3637
3638
3639  cerr << "\n" << std::string(indent, ' ');
3640  N->dump(G);
3641}
3642
3643void SelectionDAG::dump() const {
3644  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3645  std::vector<const SDNode*> Nodes;
3646  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3647       I != E; ++I)
3648    Nodes.push_back(I);
3649
3650  std::sort(Nodes.begin(), Nodes.end());
3651
3652  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3653    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3654      DumpNodes(Nodes[i], 2, this);
3655  }
3656
3657  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3658
3659  cerr << "\n\n";
3660}
3661
3662const Type *ConstantPoolSDNode::getType() const {
3663  if (isMachineConstantPoolEntry())
3664    return Val.MachineCPVal->getType();
3665  return Val.ConstVal->getType();
3666}
3667